WO2018124328A1 - 차량용 안테나 장치 - Google Patents

차량용 안테나 장치 Download PDF

Info

Publication number
WO2018124328A1
WO2018124328A1 PCT/KR2016/015401 KR2016015401W WO2018124328A1 WO 2018124328 A1 WO2018124328 A1 WO 2018124328A1 KR 2016015401 W KR2016015401 W KR 2016015401W WO 2018124328 A1 WO2018124328 A1 WO 2018124328A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
ground plane
antenna
frequency band
antenna module
Prior art date
Application number
PCT/KR2016/015401
Other languages
English (en)
French (fr)
Inventor
최승호
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to PCT/KR2016/015401 priority Critical patent/WO2018124328A1/ko
Publication of WO2018124328A1 publication Critical patent/WO2018124328A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the present application relates to a vehicle antenna device, and to a vehicle antenna device capable of integration and miniaturization of the antenna structure.
  • Recent vehicle antenna apparatuses require not only a function of receiving radio signals and broadcast signals but also a function of receiving communication signals. That is, a function of receiving AM / FM radio signals, receiving broadcast signals such as DMB, DAB, and SXM, and receiving communication signals such as 3G / 4G (LTE) is required.
  • ADAS Advanced Driver Assistance Systems
  • WAVE Wireless Access in Vehicular Environment
  • a conventional vehicle antenna apparatus includes a base 110, a signal processing board 120, an antenna module 130: 130-1, 130-2, 130-3, and a housing 150. Include.
  • the base 110 is a member having a plate shape as a whole, the lower surface of which is coupled to the exterior panel of the vehicle, and the signal processing substrate 120 and the antenna module 130 are installed on the upper side.
  • the signal processing board 120 processes a signal received through the antenna module 130. For example, a signal of a desired frequency band is filtered by a band pass filter to remove noise and the like and amplify to a required level.
  • the signal processing board 120 may be configured, for example, in the form of a printed circuit board (PCB).
  • the antenna module 130 is provided in plurality.
  • the first antenna module 130-1 receives a global navigation satellite system (GNSS) signal
  • the second antenna module 130-2 receives an SXM signal for a North American satellite multimedia service
  • a third antenna module 130-3 receives the AM / FM radio signal.
  • an antenna module for receiving a telematics signal may be further included.
  • the antenna module 130 receives the signal and transmits the signal to the signal processing board 120.
  • the housing 150 is coupled to the base 110 to accommodate the signal processing board 120, the antenna module 130, and the reflector 140 in an internal accommodation space.
  • the housing 150 may be implemented in the form of a shark pin to reduce air resistance and wind noise generated when the vehicle moves.
  • the first and second antenna modules 130-1 and 130-2 are provided on the ground plane of the signal processing board 120, and dielectrics and antenna patches are sequentially stacked. That is, the first and second antenna modules 130-1 and 130-2 are general patch antenna types.
  • the third antenna module 130-3 is a monopole type antenna and has a spiral coil structure.
  • the third antenna module 130-3 includes an inner coil 130a in an outer coil 130b to support various frequency bands.
  • the outer coil 130b receives an AM / FM radio signal
  • the inner coil 130a receives a communication signal such as LTE.
  • the monopole type third antenna module 130-3 is implemented by adding an internal coil 130a to the external coil 130b.
  • a performance between the external coil 130b and the internal coil 130a is performed.
  • interference may not be achieved, and when the external coil 130b and the internal coil 130a come into contact with each other in actual implementation, antenna characteristics may be changed, thereby causing a problem in implementing the function.
  • the monopole type has a characteristic of being well bent so that the external coil 130b and the internal coil 130a may be damaged by wind or shock during vehicle movement. Physical contact occurs and thus interferes with antenna performance.
  • the internal coil 130a is inserted inside the external coil 130b, the product cost increases, and the number of processes increases, which causes a cost increase.
  • the present invention has been proposed to solve the above problems, and an object of the present invention is to provide an antenna device for a vehicle, which enables the integration and miniaturization of an antenna structure by having a multi-band characteristic with one coil.
  • a vehicle antenna apparatus including: a signal processing substrate including a ground plane; And an antenna module including helical coils having at least two regions in which coil pitches connected to the ground plane of the signal processing substrate are different from each other.
  • the spiral coil is composed of three regions having different coil pitches, and the coil pitch increases from the upper end to the ground plane.
  • From the upper end of the spiral coil to the ground plane may resonate in the 88 ⁇ 108MHz frequency band.
  • From the first pitch inflection point to the ground plane as the upper reference of the spiral coil may be resonated in the 700 ⁇ 900MHz frequency band.
  • From the second pitch inflection point to the ground plane with respect to the top of the spiral coil may be resonated in the frequency band 1710 ⁇ 2170MHz.
  • the three regions of the helical coil may have a larger coil pitch from the top to the ground plane.
  • the semiconductor device may further include a conductor structure installed between the ground plane and the spiral coil and connected to the ground plane and supporting the spiral coil.
  • a structure such as a housing and a base component of an existing vehicle antenna device may be used as it is.
  • the present invention can implement a multi-band using a single coil to prevent a failure by the contact of the two coils.
  • the present invention is the use of one coil, there is no increase in parts compared to the conventional and the process is simplified can reduce the working time and manufacturing cost.
  • the present invention can maintain the existing monopole-type antenna structure, it is possible to cope with the increasingly small SUV / CVU market.
  • FIG. 1 is a view showing the configuration of a vehicle antenna device according to the prior art.
  • FIG. 2 is a view showing a vehicle antenna device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a third antenna module of FIG. 2.
  • FIG. 4 is a diagram illustrating a voltage standing wave ratio (VSWR) in the LTE frequency band of the antenna module of FIG. 3.
  • VSWR voltage standing wave ratio
  • FIG. 5 is a diagram illustrating a gain in the LTE frequency band of the antenna module of FIG. 3.
  • FIG. 6 is a diagram illustrating a voltage standing wave ratio VSWR in the V2X frequency band of the antenna module of FIG. 3.
  • FIG. 7 is a diagram illustrating a gain in a V2X frequency band of the antenna module of FIG. 3.
  • the vehicle antenna apparatus includes a base 210, a signal processing board 220, and an antenna.
  • the base 210 is a member having a plate shape as a whole, and a bottom surface thereof is coupled to an external panel of the vehicle, and the signal processing substrate 220 and the antenna module 230 are installed on an upper portion thereof.
  • the signal processing substrate 220 processes a signal received through the antenna module 230. For example, a signal of a desired frequency band is filtered by a band pass filter to remove noise and the like and amplify to a required level.
  • the signal processing substrate 220 may be configured, for example, in the form of a printed circuit board (PCB).
  • the antenna module 230 is provided in plurality.
  • the first antenna module 230-1 receives a global navigation satellite system (GNSS) signal
  • the second antenna module 230-2 receives an SXM signal for a North American satellite multimedia service
  • a third antenna module 230-3 receives AM / FM radio signals and signals for communication such as LTE.
  • an antenna module for receiving a telematics signal may be further included.
  • the antenna module 230 receives the signal and transmits the signal to the signal processing substrate 220.
  • the first and second antenna modules 230-1 and 230-2 are provided on the ground plane of the signal processing board 220, and dielectrics and antenna patches are sequentially stacked. That is, the first and second antenna modules 230-1 and 230-2 are general patch antenna types.
  • the third antenna module 230-3 is a monopole type antenna and has a helical coil structure.
  • the third antenna module 130-3 includes one coil, but the one coil is divided into at least two regions having different pitches. Pitch here means the spacing between two windings of the coil. Each region having a different pitch has different frequency band characteristics. This will be described in detail with reference to FIG. 3.
  • the third antenna module 230-3 is a monopole type antenna, which is connected to the ground plane and the feed line of the signal processing substrate 220 and supports the coil and the conductive structure 310. And a coil 320 connected to 310.
  • the conductor structure 310 is connected to the ground plane of the signal processing board 220 and receives a signal received through the coil 320 and transmits the signal to the signal processing board 220.
  • the conductor structure 310 is not particularly limited as long as it is connected to the coil 320 to support the coil 320.
  • an antenna has an impedance change due to a change in material or shape, and a resonance is newly formed or a resonance characteristic is changed.
  • the third antenna module 230-3 forms multiple bands by using these characteristics.
  • one coil 320 supports a plurality of frequency bands.
  • the coil 320 of the third antenna module 230-3 is a helical coil and has at least two regions with different pitches for receiving signals of at least two frequency bands. Separated by. In this embodiment, three regions are divided into three frequency bands. As shown in FIG.
  • the pitch of the second region 320b is greater than the pitch of the first region 320a
  • the pitch of the third region 320c is greater than the pitch of the second region 320b.
  • the pitch of the corresponding region also increases proportionally.
  • the antenna should have a length of one quarter of the wavelength [lambda] in the operating frequency band.
  • the frequency band of AM / FM radio signal is 88 ⁇ 108MHz, the center frequency is 98MHz, and the wavelength ⁇ is 3.06m. Therefore, for the AM / FM radio signal, the antenna has a length of 76.5 cm, which is 1/4 of the wavelength?,
  • the total length t 1 of 3) is 76.5 cm. That is, the entire third antenna module 230-3 including the conductor structure 310 and the coil 320 resonates in the AM / FM frequency band, and the coil 320 from the bottom of the conductor structure 310, that is, the ground plane.
  • the length up to the top is 76.5 cm.
  • the LTE signal is divided into two frequency bands. It is divided into 700 ⁇ 900MHz band and 1710 ⁇ 2170MHz band.
  • the 700 to 900 MHz band is referred to as LTE low frequency band (Low)
  • the 1710 to 2170 MHz band is referred to as LTE high frequency band (high).
  • the bottom of the conductor structure 310 to the top of the second region 320b resonates in the LTE low frequency band Low
  • Up to the top of the resonator resonates in the LTE high frequency band (High).
  • the center frequency of the LTE low frequency band (Low) is 800 MHz and thus the wavelength ⁇ is 0.375m.
  • the length of the conductor structure 310 to the top of the second region 320b has a length t 2 of 9.3 cm, which is 1/4 of the wavelength ⁇ .
  • the center frequency of the LTE high frequency band (High) is 1900MHz and the wavelength ⁇ is 0.157m. Accordingly, for the LTE high frequency band High, the bottom of the conductor structure 310, that is, the ground plane to the top of the third region 320c has a length t 3 of 1/4 of the wavelength ⁇ .
  • the conductor structure 310 may be divided into two regions 310a and 310b as shown in FIG. 3.
  • the two regions 310a and 310b of the conductor structure 310 may be divided by a difference in diameter, and the region 310a at the bottom resonates in the V2X band. That is, the lower region 310a of the conductor structure 310 has a length of 1/4 of the wavelength ⁇ of the V2X band.
  • the V2X signal has a band of 5850 ⁇ 5925MHz with a center frequency of 5885MHz, with a wavelength lambda of 0.051m and a quarter of the wavelength lambda of 1.2cm.
  • the region 310a at the bottom of the conductor structure 310 has a length of 1.2 cm.
  • FIG. 4 is a diagram illustrating a voltage standing wave ratio (VSWR) in the LTE frequency band of the antenna module of FIG. 3
  • FIG. 5 is a diagram illustrating a gain in the LTE frequency band of the antenna module of FIG. 3.
  • the antenna module 230-3 of FIG. 3 can confirm that the resonance characteristics are shown in the 700 to 900 MHz band and the 1710 to 2170 MHz band, and as shown in FIG. It can be seen that the specification satisfies with a gain of -3 dBi or more at a 60 degree angle in the 1710 to 2170 MHz band.
  • FIG. 6 is a diagram illustrating a voltage standing wave ratio (VSWR) in the V2X frequency band of the antenna module of FIG. 3
  • FIG. 7 is a diagram illustrating a gain in the V2X frequency band of the antenna module of FIG. 3.
  • the antenna module 230-3 of FIG. 3 can confirm that the resonance characteristics appear in the 5850 to 5925 MHz band, and 45 and 60 degrees in the 5850 to 5825 MHz band as shown in FIG. 7. It can be seen that the specification satisfies with a gain of -3 dBi or more at all angles.
  • the third antenna module 230-3 of the vehicle antenna apparatus services all of the AM / FM frequency band, the LTE frequency band, and the V2X frequency band with one coil. It can receive signals in the AM / FM frequency band, the LTE frequency band, and the V2X frequency band without increasing or changing the instrument size of existing small monopole antennas.
  • Vehicle antenna apparatus according to an embodiment of the present invention can implement a multi-band with a single coil can use the structure, such as the housing, the base component of the existing vehicle antenna device.
  • the vehicle antenna device can implement a multi-band using a single coil to prevent a failure due to the contact of the two coils, there is no increase in parts compared to the conventional and the process is simplified This saves time and reduces manufacturing costs.

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

하나의 코일로 다중 대역 특성을 갖도록 하여 안테나 구조의 통합화와 소형화를 가능하게 하는 차량용 안테나 장치로서, 접지면을 포함하는 신호 처리 기판; 및 상기 신호 처리 기판의 상기 접지면에 연결되는 코일 피치가 서로 다른 적어도 두 개의 영역으로 이루어진 나선형 코일을 포함하여 다중 대역 특성을 나타내는 안테나 모듈을 포함한다.

Description

차량용 안테나 장치
본 출원은 차량용 안테나 장치에 관한 것으로서, 안테나 구조의 통합화와 소형화가 가능한 차량용 안테나 장치에 관한 것이다.
최근의 차량용 안테나 장치는 라디오 신호, 방송 신호의 수신 기능뿐만 아니라 통신 신호 수신 기능까지도 요구된다. 즉, AM/FM 라디오 신호의 수신, DMB, DAB, SXM 등 방송 신호의 수신, 3G/4G(LTE) 등 통신 신호의 수신 기능이 요구되고 있다. 향후에는 ADAS(Advanced Driver Assistance Systems) 기능 및 WAVE(Wireless Access in Vehicular Environment) 기능도 요구될 것으로 예상된다. 따라서 다양한 신호의 수신을 위한 여러 안테나가 차량용 안테나 장치에 추가되면서 차량용 안테나 장치의 크기가 커지고 있고, 업계에서는 차량의 공간 제약 등의 이유로 안테나를 소형화하는 것을 주요 기술적 과제로 삼고 있다.
도 1은 종래 기술에 따른 차량용 안테나 장치의 구성을 나타낸 도면이다. 도 1에 도시된 바와 같이, 종래의 차량용 안테나 장치는, 베이스(110), 신호 처리 기판(120), 안테나 모듈(130:130-1, 130-2, 130-3) 및 하우징(150)을 포함한다.
베이스(110)는, 전체적으로 플레이트(plate) 형상을 가지는 부재로서, 하부면이 차량의 외부 패널에 결합되고 상부에 상기 신호 처리 기판(120) 및 안테나 모듈(130)이 설치된다.
신호 처리 기판(120)은 상기 안테나 모듈(130)을 통해 수신되는 신호를 처리한다. 예컨대, 원하는 주파수 대역의 신호를 대역 통과 필터로 필터링하여 노이즈 등을 제거하고 필요한 수준으로 증폭한다. 이러한 신호 처리 기판(120)은 예를 들어 PCB(Printed Circuit Board) 형태로 구성될 수 있다.
안테나 모듈(130)은 복수 개가 구비된다. 제 1 안테나 모듈(130-1)은, GNSS(Global Navigation Satellite System) 신호를 수신하고, 제 2 안테나 모듈(130-2)은 북미향 위성 멀티미디어 서비스를 위한 SXM 신호를 수신하며, 제 3 안테나 모듈(130-3)은 AM/FM 라디오 신호를 수신한다. 이외에도 텔레메틱스 신호를 수신하기 위한 안테나 모듈 등이 더 포함될 수도 있다. 안테나 모듈(130)은 신호를 수신하여 상기 신호 처리 기판(120)으로 전달한다.
하우징(150)은, 베이스(110)와 결합하여 내부 수용 공간에 상기 신호 처리 기판(120), 안테나 모듈(130), 리플렉터(140)를 수용한다. 하우징(150)은 샤크 핀 형태로 구현되어 차량 이동시 발생하는 공기 저항과 풍절음을 감소시킬 수 있다.
제 1, 2 안테나 모듈(130-1, 130-2)은 상기 신호 처리 기판(120)의 접지면에 설치되고, 유전체 및 안테나 패치가 순서대로 적층되어 있다. 즉 제 1, 2 안테나 모듈(130-1, 130-2)은 일반적인 패치 안테나 타입이다. 제 3 안테나 모듈(130-3)은 모노폴(monopole) 타입의 안테나로서 나선형 코일 구조로 이루어져 있다. 특히, 제 3 안테나 모듈(130-3)은 여러 주파수 대역을 지원하기 위해 외부 코일(Outer Coil)(130b) 내에 내부 코일(Inner Coil)(130a)을 포함하여 이루어져 있다. 외부 코일(130b)은 AM/FM 라디오 신호를 수신하고, 내부 코일(130a)은 LTE 등의 통신 신호를 수신한다.
이와 같이 모노폴 타입의 제 3 안테나 모듈(130-3)은 외부 코일(130b) 내에 내부 코일(130a)을 추가한 형태로 구현되어 있는데, 일반적으로 외부 코일(130b)과 내부 코일(130a) 간에 성능 간섭을 일으켜 원하는 성능 발현이 안 되는 경우가 많고, 실제 구현시 외부 코일(130b)과 내부 코일(130a)이 접촉하게 되면 안테나 특성이 변하게 되어 기능 구현이 문제가 발생한다. 또한, 외부 코일(130b)과 내부 코일(130a)이 접촉하지 않도록 구현하더라도 모노폴 타입은 잘 휘는 특성을 가지고 있어 차량 이동 중에 바람에 의해 또는 충격에 의해 외부 코일(130b)과 내부 코일(130a)이 물리적으로 접촉하는 경우가 발생하고 이에 따라 안테나 성능에 장애를 일으킨다. 그리고, 외부 코일(130b)의 안쪽에 내부 코일(130a)을 삽입하는 구조이므로 제품 단가가 상승하고, 공정 수가 증가하여 비용 증가의 요인이 된다.
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로 하나의 코일로 다중 대역 특성을 갖도록 하여 안테나 구조의 통합화와 소형화를 가능하게 하는 차량용 안테나 장치를 제공하는데 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따른 차량용 안테나 장치는, 접지면을 포함하는 신호 처리 기판; 및 상기 신호 처리 기판의 상기 접지면에 연결되는 코일 피치가 서로 다른 적어도 두 개의 영역으로 이루어진 나선형 코일을 포함하여 다중 대역 특성을 나타내는 안테나 모듈을 포함한다.
상기 나선형 코일은, 코일 피치가 서로 다른 세 개의 영역으로 이루어지고, 상단으로부터 상기 접지면으로 갈수록 코일 피치가 커진다.
상기 나선형 코일의 상단부터 상기 접지면까지는 88~108MHz 주파수 대역에서 공진할 수 있다.
상기 나선형 코일의 상단 기준으로 첫 번째 피치 변곡점부터 상기 접지면까지는 700~900MHz 주파수 대역에서 공진할 수 있다.
상기 나선형 코일의 상단 기준으로 두 번째 피치 변곡점부터 상기 접지면까지는 1710~2170MHz 주파수 대역에서 공진할 수 있다.
상기 나선형 코일의 상기 세 개의 영역은, 상단으로부터 상기 접지면으로 갈수록 코일 피치가 커질 수 있다.
상기 접지면과 상기 나선형 코일의 사이에 설치되어 상기 접지면과 연결되고 상기 나선형 코일을 지지하는 도체 구조물을 더 포함하고, 상기 도체 구조물은, 5850~5925MHz 주파수 대역에서 공진할 수 있다.
본 발명은 하나의 코일로 다중 대역을 구현함으로써 기존 차량용 안테나 장치의 하우징, 베이스 구성품 등의 구조물을 그대로 사용할 수 있다.
또한, 본 발명은 하나의 코일을 이용하여 다중 대역을 구현하여 두 개의 코일의 접촉에 의한 불량을 방지할 수 있다.
또한, 본 발명은 하나의 코일을 이용함으로써 종래에 비해 부품의 증가가 없고 공정이 단순화되어 작업 시간을 줄이고 제조 비용을 절감할 수 있다.
또한, 본 발명은, 기존 모노폴 타입의 안테나 구조를 유지할 수 있어 점차 늘어가는 소형 SUV/CVU 시장에 대응이 가능하다.
도 1은 종래 기술에 따른 차량용 안테나 장치의 구성을 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 차량용 안테나 장치를 나타낸 도면이다.
도 3은 도 2의 제 3 안테나 모듈을 나타낸 도면이다.
도 4는 도 3의 안테나 모듈의 LTE 주파수 대역에서의 전압 정재파 비(VSWR)를 나타낸 도면이다.
도 5는 도 3의 안테나 모듈의 LTE 주파수 대역에서의 이득(Gain)을 나타낸 도면이다.
도 6은 도 3의 안테나 모듈의 V2X 주파수 대역에서의 전압 정재파 비(VSWR)를 나타낸 도면이다.
도 7은 도 3의 안테나 모듈의 V2X 주파수 대역에서의 이득(Gain)을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 바람직한 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예를 상세하게 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 유사한 기능 및 작용을 하는 부분에 대해서는 도면 전체에 걸쳐 동일한 부호를 사용한다.
도 2는 본 발명의 일 실시예에 따른 차량용 안테나 장치를 나타낸 도면으로, 도 2에 도시된 바와 같이, 본 실시예에 따른 차량용 안테나 장치는, 베이스(210), 신호 처리 기판(220), 안테나 모듈(230:230-1, 230-2, 230-3) 및 하우징(250)을 포함한다.
베이스(210)는 전체적으로 판 형상을 가지는 부재로서 하부면이 차량의 외부 패널에 결합되고 상부에 상기 신호 처리 기판(220) 및 상기 안테나 모듈(230)이 설치된다.
신호 처리 기판(220)은 상기 안테나 모듈(230)을 통해 수신되는 신호를 처리한다. 예컨대, 원하는 주파수 대역의 신호를 대역 통과 필터로 필터링하여 노이즈 등을 제거하고 필요한 수준으로 증폭한다. 이러한 신호 처리 기판(220)은 예를 들어 PCB(Printed Circuit Board) 형태로 구성될 수 있다.
안테나 모듈(230)은 복수 개가 구비된다. 제 1 안테나 모듈(230-1)은, GNSS(Global Navigation Satellite System) 신호를 수신하고, 제 2 안테나 모듈(230-2)은 북미향 위성 멀티미디어 서비스를 위한 SXM 신호를 수신하며, 제 3 안테나 모듈(230-3)은 AM/FM 라디오 신호 및 LTE 등의 통신용 신호를 수신한다. 이외에도 텔레메틱스 신호를 수신하기 위한 안테나 모듈 등이 더 포함될 수도 있다. 안테나 모듈(230)은 신호를 수신하여 상기 신호 처리 기판(220)으로 전달한다.
제 1, 2 안테나 모듈(230-1, 230-2)은 상기 신호 처리 기판(220)의 접지면에 설치되고, 유전체 및 안테나 패치가 순서대로 적층되어 있다. 즉 제 1, 2 안테나 모듈(230-1, 230-2)은 일반적인 패치 안테나 타입이다. 제 3 안테나 모듈(230-3)은 모노폴(monopole) 타입의 안테나로서 나선형(helical) 코일 구조로 이루어져 있다. 특히, 제 3 안테나 모듈(130-3)은 하나의 코일로 포함하되 그 하나의 코일은 피치(pitch)가 다른 적어도 두 개의 영역으로 구분된다. 여기서 피치는 코일의 두 권선 사이의 간격을 의미한다. 피치가 다른 각 영역은 서로 다른 주파수 대역 특성을 갖는다. 이에 관해서는 도 3을 참조하여 자세히 설명한다.
도 3은 도 2의 제 3 안테나 모듈을 나타낸 도면이다. 도 3을 참조하면, 제 3 안테나 모듈(230-3)은 모노폴 타입의 안테나로서 신호 처리 기판(220)의 접지면 및 급전선에 연결되고 코일을 지지하는 전도성의 도체 구조물(310)과 상기 도체 구조물(310)에 연결된 코일(320)을 포함한다.
도체 구조물(310)은 신호 처리 기판(220)의 접지면에 연결되고 코일(320)을 통해 수신되는 신호를 전달받아 신호 처리 기판(220)으로 전달한다. 도체 구조물(310)은 코일(320)과 연결되어 코일(320)을 지지할 수 있는 형태라면 특별히 그 형태가 제한되지 않는다.
일반적으로 안테나는 재질이나 형상의 변화로 안테나가 가지는 임피던스가 변하게 되며 공진이 새롭게 형성되거나 공진 특성이 변하게 된다. 본 실시예에 따른 제 3 안테나 모듈(230-3)은 이러한 특성을 이용하여 다중 대역을 형성한다. 하나의 코일(320)의 피치를 조절하여 임피던스를 변경함으로써 하나의 코일(320)로 복수의 주파수 대역을 지원한다. 즉 피치의 변곡점을 원하는 주파수 대역만큼 형성함으로써 다중 대역을 구현한다. 구체적으로 도 3에 도시된 바와 같이, 제 3 안테나 모듈(230-3)의 코일(320)은 나선형 코일(helical coil)로서 적어도 두 개의 주파수 대역의 신호를 수신하기 위해 피치가 다른 적어도 두 개의 영역으로 구분된다. 본 실시예에서는 세 개의 주파수 대역을 위해 세 개의 영역으로 구분된다. 도 3에 도시된 바와 같이, 제 1 영역(320a)의 피치보다 제 2 영역(320b)의 피치가 크고, 제 2 영역(320b)의 피치보다 제 3 영역(320c)의 피치가 크다. 공진 주파수가 클수록 이에 대응하는 영역의 피치도 비례하여 커지는 것이 바람직하다.
일반적으로 안테나는 동작 주파수 대역의 파장(λ)의 1/4의 길이를 가져야 한다. AM/FM 라디오 신호의 주파수 대역은 88~108MHz이고 중심 주파수는 98MHz이며 이에 따른 파장(λ)은 3.06m이다. 따라서 AM/FM 라디오 신호를 위해서는 안테나는 파장(λ)의 1/4인 76.5cm의 길이를 갖고, 본 실시예에서 도체 구조물(310) 및 코일(320)을 포함하는 제 3 안테나 모듈(230-3)의 전체 길이(t1)가 76.5cm이다. 즉 도체 구조물(310) 및 코일(320)을 포함하는 제 3 안테나 모듈(230-3) 전체가 AM/FM 주파수 대역에서 공진하고, 도체 구조물(310)의 밑단, 즉 접지면으로부터 코일(320)의 상단까지의 길이가 76.5cm이다.
LTE 신호는 두 개의 주파수 대역으로 나누어진다. 700~900MHz 대역과 1710~2170MHz 대역으로 나누어진다. 700~900MHz 대역은 LTE 저주파수 대역(Low)으로 칭하고, 1710~2170MHz 대역은 LTE 고주파수 대역(high)으로 칭한다. 본 실시예에서 도체 구조물(310)의 밑단으로부터 제 2 영역(320b)의 상단까지가 LTE 저주파수 대역(Low)에서 공진하고, 도체 구조물(310)의 밑단, 즉 접지면으로부터 제 3 영역(320c)의 상단까지가 LTE 고주파수 대역(High)에서 공진한다. LTE 저주파수 대역(Low)의 중심 주파수는 800MHz이고 이에 따른 파장(λ)은 0.375m이다. 따라서 LTE 저주파수 대역(Low)을 위해서 도체 구조물(310)의 밑단으로부터 제 2 영역(320b)의 상단까지는 파장(λ)의 1/4인 9.3cm의 길이(t2)를 갖는다. 그리고 LTE 고주파수 대역(High)의 중심 주파수는 1900MHz이고 이에 따른 파장(λ)은 0.157m이다. 따라서 LTE 고주파수 대역(High)을 위해서 도체 구조물(310)의 밑단, 즉 접지면으로부터 제 3 영역(320c)의 상단까지는 파장(λ)의 1/4인 3.9cm의 길이(t3)를 갖는다.
한편, 도체 구조물(310)은 도 3에 도시된 바와 같이 두 개의 영역(310a, 310b)으로 구분될 수 있다. 도체 구조물(310)의 두 영역(310a, 310b)은 직경의 차이를 두어 구분될 수 있고 하단의 영역(310a)은 V2X 대역에서 공진한다. 즉 도체 구조물(310)의 하단 영역(310a)은 V2X 대역의 파장(λ)의 1/4의 길이를 갖는다. V2X 신호는 5850~5925MHz 대역으로서 중심 주파수는 5885MHz이고 이에 따른 파장(λ)은 0.051m이고 파장(λ)의 1/4은 1.2cm이다. 따라서 도체 구조물(310)의 하단의 영역(310a)은 1.2cm의 길이를 갖는다.
도 4는 도 3의 안테나 모듈의 LTE 주파수 대역에서의 전압 정재파 비(VSWR)를 나타낸 도면이고, 도 5는 도 3의 안테나 모듈의 LTE 주파수 대역에서의 이득(Gain)을 나타낸 도면이다. 도 4에 도시된 바와 같이, 도 3의 안테나 모듈(230-3)은 700~900MHz 대역과 1710~2170MHz 대역에서 공진 특성이 나타나는 것을 확인할 수 있고, 도 5에 도시된 바와 같이 700~900MHz 대역과 1710~2170MHz 대역에서 60도 각도에서 -3dBi 이상의 이득(gain)을 가져 규격을 만족하는 것을 알 수 있다.
도 6은 도 3의 안테나 모듈의 V2X 주파수 대역에서의 전압 정재파 비(VSWR)를 나타낸 도면이고, 도 7은 도 3의 안테나 모듈의 V2X 주파수 대역에서의 이득(Gain)을 나타낸 도면이다. 도 6에 도시된 바와 같이, 도 3의 안테나 모듈(230-3)은 5850~5925MHz 대역에서 공진 특성이 나타나는 것을 확인할 수 있고, 도 7에 도시된 바와 같이 5850~5925MHz 대역에서 45도 및 60도 각도에서 모두 -3dBi 이상의 이득(gain)을 가져 규격을 만족하는 것을 알 수 있다.
이상에서 설명한 바와 같이 본 발명의 실시예에 따른 차량용 안테나 장치의 제 3 안테나 모듈(230-3)은 하나의 코일로 AM/FM 주파수 대역, LTE 주파수 대역 및 V2X 주파수 대역을 모두 서비스한다. 기존의 소형 모노폴 안테나의 기구 크기를 늘리거나 변경하지 않으면서 AM/FM 주파수 대역, LTE 주파수 대역 및 V2X 주파수 대역의 신호를 수신할 수 있다. 본 발명의 실시예에 따른 차량용 안테나 장치는 하나의 코일로 다중 대역을 구현함으로써 기존 차량용 안테나 장치의 하우징, 베이스 구성품 등의 구조물을 그대로 사용할 수 있다. 또한, 본 발명의 실시예에 따른 차량용 안테나 장치는 하나의 코일을 이용하여 다중 대역을 구현하여 두 개의 코일의 접촉에 의한 불량을 방지할 수 있고, 종래에 비해 부품의 증가가 없고 공정이 단순화되어 작업 시간을 줄이고 제조 비용을 절감할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (6)

  1. 차량용 안테나 장치에 있어서,
    접지면을 포함하는 신호 처리 기판; 및
    상기 신호 처리 기판의 상기 접지면에 연결되는 코일 피치가 서로 다른 적어도 두 개의 영역으로 이루어진 나선형 코일을 포함하여 다중 대역 특성을 나타내는 안테나 모듈을 포함하는 차량용 안테나 장치.
  2. 제 1 항에 있어서,
    상기 나선형 코일은,
    코일 피치가 서로 다른 세 개의 영역으로 이루어지고, 상단으로부터 상기 접지면으로 갈수록 코일 피치가 커지는 차량용 안테나 장치.
  3. 제 2 항에 있어서,
    상기 나선형 코일의 상단부터 상기 접지면까지는 88~108MHz 주파수 대역에서 공진하는 차량용 안테나 장치.
  4. 제 2 항에 있어서,
    상기 나선형 코일의 상단 기준으로 첫 번째 피치 변곡점부터 상기 접지면까지는 700~900MHz 주파수 대역에서 공진하는 차량용 안테나 장치.
  5. 제 2 항에 있어서,
    상기 나선형 코일의 상단 기준으로 두 번째 피치 변곡점부터 상기 접지면까지는 1710~2170MHz 주파수 대역에서 공진하는 차량용 안테나 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 접지면과 상기 나선형 코일의 사이에 설치되어 상기 접지면과 연결되고 상기 나선형 코일을 지지하는 도체 구조물을 더 포함하고,
    상기 도체 구조물은, 5850~5925MHz 주파수 대역에서 공진하는 차량용 안테나 장치.
PCT/KR2016/015401 2016-12-28 2016-12-28 차량용 안테나 장치 WO2018124328A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/015401 WO2018124328A1 (ko) 2016-12-28 2016-12-28 차량용 안테나 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/015401 WO2018124328A1 (ko) 2016-12-28 2016-12-28 차량용 안테나 장치

Publications (1)

Publication Number Publication Date
WO2018124328A1 true WO2018124328A1 (ko) 2018-07-05

Family

ID=62709546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015401 WO2018124328A1 (ko) 2016-12-28 2016-12-28 차량용 안테나 장치

Country Status (1)

Country Link
WO (1) WO2018124328A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080046790A (ko) * 2006-11-23 2008-05-28 주식회사 현대오토넷 폴타입 안테나
KR200450208Y1 (ko) * 2007-10-12 2010-09-13 인팩일렉스 주식회사 차량용 다중 안테나
KR20130037891A (ko) * 2011-10-07 2013-04-17 현대모비스 주식회사 차량용 다중 대역 통합안테나
KR101285809B1 (ko) * 2010-05-04 2013-07-12 인팩일렉스 주식회사 차량용 다중 대역 통합 안테나
KR20130127669A (ko) * 2012-05-15 2013-11-25 인팩일렉스 주식회사 방송 및 통신 서비스를 위한 차량용 안테나

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080046790A (ko) * 2006-11-23 2008-05-28 주식회사 현대오토넷 폴타입 안테나
KR200450208Y1 (ko) * 2007-10-12 2010-09-13 인팩일렉스 주식회사 차량용 다중 안테나
KR101285809B1 (ko) * 2010-05-04 2013-07-12 인팩일렉스 주식회사 차량용 다중 대역 통합 안테나
KR20130037891A (ko) * 2011-10-07 2013-04-17 현대모비스 주식회사 차량용 다중 대역 통합안테나
KR20130127669A (ko) * 2012-05-15 2013-11-25 인팩일렉스 주식회사 방송 및 통신 서비스를 위한 차량용 안테나

Similar Documents

Publication Publication Date Title
KR101431724B1 (ko) 방사효율을 향상시키고 신호간섭을 방지하는 차량용 방송안테나 및 이를 내부에 구비하는 차량용 샤크핀 안테나 장치
US8482466B2 (en) Low profile antenna assemblies
JP4121424B2 (ja) 2偏波共用アンテナ
US20050162321A1 (en) Dual band, low profile omnidirectional antenna
US20180212301A1 (en) Composite antenna device
KR101633844B1 (ko) 차량용 다중대역안테나
CN102893456A (zh) 天线装置
CN1667871A (zh) 由在水平和天顶方向具有指向性的天线组成的紧凑式组合天线
US10211539B2 (en) Reconfigurable antenna
US20130135161A1 (en) Antenna device
KR20110015407A (ko) 2주파 안테나
EP2963737B1 (en) Integrated antenna, and manufacturing method thereof
US8106841B2 (en) Antenna structure
JP2011091557A (ja) アンテナ装置
EP1657788A1 (en) Multiband concentric mast and microstrip patch antenna arrangement
CN109672018A (zh) 宽频带天线系统
CN1667872A (zh) 由水平方向性天线和天顶方向性天线形成的组合天线
JP2007124016A (ja) 統合アンテナ
WO2018124328A1 (ko) 차량용 안테나 장치
KR102337296B1 (ko) 차량용 안테나 장치
WO2009125972A2 (ko) 유전체와 자성체의 수직 주기 구조를 갖는 복합 구조체를 이용한 안테나
Hopf et al. Compact multi-antenna system for cars with electrically invisible phone antennas for SDARS frequencies
CN107925165B (zh) 多频段贴片天线模块
WO2011049351A2 (ko) Lc 필터를 이용한 다중 대역 안테나
KR102117274B1 (ko) 모노폴 안테나 및 이를 포함하는 안테나 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925681

Country of ref document: EP

Kind code of ref document: A1