WO2018124294A1 - Polyester, and production method therefor and molded article made therefrom - Google Patents

Polyester, and production method therefor and molded article made therefrom Download PDF

Info

Publication number
WO2018124294A1
WO2018124294A1 PCT/JP2017/047333 JP2017047333W WO2018124294A1 WO 2018124294 A1 WO2018124294 A1 WO 2018124294A1 JP 2017047333 W JP2017047333 W JP 2017047333W WO 2018124294 A1 WO2018124294 A1 WO 2018124294A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyester
unit
units
cobalt
Prior art date
Application number
PCT/JP2017/047333
Other languages
French (fr)
Japanese (ja)
Inventor
宗一郎 田邉
豪 坂野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2018559643A priority Critical patent/JP7033553B2/en
Publication of WO2018124294A1 publication Critical patent/WO2018124294A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used

Definitions

  • the present invention relates to a polyester having high transparency, good color tone and excellent impact resistance, a method for producing the same, and a molded product comprising the same.
  • Polyesters such as polyethylene terephthalate are excellent in properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, polyester has less concern about residual monomers and harmful additives when formed into molded articles, and is excellent in hygiene and safety. Therefore, polyester has been widely used in recent years as a hollow container for filling beverages, seasonings, oils, cosmetics, detergents, etc. as an alternative to the conventionally used vinyl chloride, taking advantage of these properties. .
  • a resin melted and plasticized through a die orifice is extruded as a cylindrical parison, and the parison is sandwiched between molds while it is in a softened state.
  • An extrusion blow molding method is known in which molding is performed by blowing a fluid. Compared with the injection blow molding method, this method is simpler and does not require advanced technology for the production and molding of the mold. Suitable for varieties and small volume production. In addition, there is an advantage that it is possible to manufacture a molded product having a complicated shape having a thin object, a deep object, a large object, a handle, and the like.
  • containers for cosmetics and oils are required to have excellent mechanical properties in order to prevent damage due to impact such as dropping in addition to excellent properties such as chemical resistance and gas barrier properties. It is done. Further, cosmetic containers and the like are required to have a glass-like texture and appearance. However, polyester is colored yellow during molding. For this reason, a blueing agent is often used to improve the color tone, and in particular, a deep blue cobalt compound or the like is used.
  • Patent Document 1 a polyester resin in which 50 to 95 mol% of the acid component constituting the polyester is terephthalic acid, 2 to 20 mol% is isophthalic acid, and 80 mol% or more of the glycol component is ethylene glycol.
  • Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane is contained in an amount of 0.1 to 1.0% by mass, and the germanium compound is added to 1 mol of the acid component of the polyester resin.
  • polyester resin composition containing 1.0 ⁇ 10 ⁇ 4 to 1.0 ⁇ 10 ⁇ 3 mol per mol of the acid component of the polyester resin. And such a polyester resin composition is excellent in thermal stability without causing the problem of whitening due to drawdown or crystallization at the time of direct blow molding, and by using the polyester resin composition, the color tone, It is described that a direct blow molded article excellent in transparency can be obtained with high productivity. However, the polyester resin composition still has insufficient color tone and transparency of the obtained molded product, and may have insufficient impact resistance.
  • the present invention has been made to solve the above problems, and provides a polyester capable of obtaining a molded article having high transparency, good color tone, and excellent impact resistance, and a method for producing the same. With the goal.
  • the above-mentioned problem is a polyester containing 50 mol% or more of terephthalic acid units with respect to the total of dicarboxylic acid units, and containing 50 mol% or more of ethylene glycol units with respect to the total of diol units, Polyhydric carboxylic acid having at least one phosphorus compound (P) selected from the group consisting of cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and ⁇ , ⁇ -dicarboxylic acid unit
  • P phosphorus compound
  • M cobalt compound
  • phosphoric acid phosphoric acid
  • phosphorous acid organic phosphonic acid and esters thereof
  • ⁇ , ⁇ -dicarboxylic acid unit In the presence of (X), a polycarboxylic acid and a diol are polycondensed, and the addition amount of the cobalt compound (M) with respect to a total of 100 parts by mass of the dicarboxylic acid is 0.0005 to 0.05 mass
  • the molar ratio (P / M) of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) is 0. And having a molar ratio (X / M) of the polyvalent carboxylic acid (X) to the cobalt atom in the cobalt compound (M) of 0.01 to 10 to solve the problem.
  • the phosphorus compound (P) is preferably at least one of phosphorous acid and phosphoric acid. It is also preferred that the polyvalent carboxylic acid (X) has a hydroxyl group. It is also preferred that the polyvalent carboxylic acid (X) is a tricarboxylic acid. It is particularly preferable that the polyvalent carboxylic acid (X) is citric acid.
  • the polyester further contains 0.1 to 20 mol% of a unit derived from a bisphenol A ethylene oxide adduct based on the total of the diol units. It is also preferable that the polyester further contains 0.1 to 45 mol% of cyclohexanedimethanol units with respect to the total of the diol units.
  • the polyester preferably further contains 0.1 to 20 mol% of isophthalic acid units based on the total of the dicarboxylic acid units.
  • a molded product formed by extruding the polyester is a preferred embodiment of the present invention.
  • a container made of the molded product is a more preferred embodiment of the present invention.
  • the film or sheet which consists of the said molded article is also a more suitable embodiment of this invention, and the thermoformed article formed by thermoforming the said film or sheet is a more suitable embodiment.
  • a molded product obtained by thermoforming the polyester is also a preferred embodiment of the present invention.
  • the above-mentioned problem can also be solved by providing a method for producing the polyester, in which a dicarboxylic acid and a diol are polycondensed in the presence of a cobalt compound (M), a phosphorus compound (P) and a polyvalent carboxylic acid (X).
  • M cobalt compound
  • P phosphorus compound
  • X polyvalent carboxylic acid
  • the polyester of the present invention Since the cobalt compound (M) in the polyester of the present invention is uniformly dispersed and has few coarse aggregates, the polyester has a good color tone, and a molded product obtained using such a polyester is transparent. High impact resistance. According to the production method of the present invention, such a polyester can be produced easily.
  • the polyester of the present invention is a polyester containing 50 mol% or more of terephthalic acid units with respect to the total of dicarboxylic acid units and containing 50 mol% or more of ethylene glycol units with respect to the total of diol units; Is a polyvalent compound having at least one phosphorus compound (P) selected from the group consisting of a cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and an ⁇ , ⁇ -dicarboxylic acid unit.
  • P phosphorus compound
  • the molar ratio of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) ( P / M) is 0.01 to 10; and the molar ratio (X / M) of the polyvalent carboxylic acid (X) to the cobalt atom in the cobalt compound (M) is 0.01 to 10. .
  • the polyester contains terephthalic acid (TA) units in an amount of 50 mol% or more based on the total of dicarboxylic acid units.
  • the total of dicarboxylic acid units is the total of dicarboxylic acid units having no ⁇ , ⁇ -dicarboxylic acid units in the polyester.
  • the polyester contains terephthalic acid units in an amount of 50 mol% or more, the melt viscosity becomes appropriate and the impact resistance of the obtained molded article is improved. Furthermore, the thermal stability during molding is improved.
  • the content of terephthalic acid units is preferably 80 mol% or more.
  • the polyester contains 50 mol% or more of ethylene glycol units with respect to the total of diol units. Thereby, when manufacturing the said polyester, since solid phase polymerization can be performed at high temperature, while improving productivity, a molded article with a more favorable color tone comes to be obtained.
  • the content of ethylene glycol units is preferably 75 mol% or more.
  • a polyester obtained using ethylene glycol as a raw material diol contains 1 to 5 mol% of diethylene glycol units, which are by-products in the condensation polymerization reaction, based on the total of diol units.
  • the structural unit contained in the polyester may be only a unit derived from a polyvalent carboxylic acid (X) having a terephthalic acid unit, an ethylene glycol unit, a diethylene glycol unit and an ⁇ , ⁇ -dicarboxylic acid unit,
  • the polyester preferably further contains 0.1 to 20 mol% of isophthalic acid (IPA) units based on the total of the dicarboxylic acid units.
  • IPA isophthalic acid
  • the total of dicarboxylic acid units is the total of dicarboxylic acid units having no ⁇ , ⁇ -dicarboxylic acid units in the polyester.
  • the content of the isophthalic acid unit is 0.1 mol% or more, the chemical resistance is further improved.
  • the content is more preferably 2 mol% or more.
  • the content of isophthalic acid units is more preferably 15 mol% or less.
  • the polyester further contains 0.1 to 20 mol% of units derived from bisphenol A ethylene oxide adduct (EOBPA) based on the total of the diol units.
  • EOBPA bisphenol A ethylene oxide adduct
  • the bisphenol A ethylene oxide adduct is obtained by adding at least one ethylene oxide to each hydroxyl group of bisphenol A.
  • the addition amount of ethylene oxide is usually 2 to 4 mol with respect to 1 mol of bisphenol A.
  • the content of the unit derived from the bisphenol A ethylene oxide adduct in the polyester is more preferably 0.5 mol% or more, and further preferably 2 mol% or more.
  • the content is 20 mol% or less, the melt viscosity of the polyester becomes appropriate, and the impact resistance of the obtained molded product is further improved.
  • the content is more preferably 15 mol% or less, further preferably 10 mol% or less, and particularly preferably 8 mol% or less.
  • the polyester preferably further contains cyclohexanedimethanol (CHDM) units in an amount of 0.1 to 45 mol% based on the total of the diol units.
  • the cyclohexanedimethanol unit in the polyester may be at least one divalent unit selected from 1,2-cyclohexanedimethanol unit, 1,3-cyclohexanedimethanol unit and 1,4-cyclohexanedimethanol unit. .
  • cyclohexanedimethanol is easy to obtain, easy to make the polyester crystalline, difficult to cause sticking between pellets during solid phase polymerization, and further improves the impact resistance of the resulting molded product.
  • the unit is preferably 1,4-cyclohexanedimethanol unit.
  • the ratio of the cis and trans isomers in the cyclohexanedimethanol unit in the polyester is not particularly limited.
  • the ratio of cis isomer: trans isomer is in the range of 0: 100 to 50:50, which makes it easy to make the polyester crystalline. This is preferable from the viewpoint that sticking between the pellets hardly occurs and the impact resistance of the obtained molded product is further improved.
  • the resulting molded article has further improved impact resistance at room temperature and low temperature, and further improved transparency.
  • the content is more preferably 2 mol% or more, further preferably 4 mol% or more, and particularly preferably 6 mol% or more.
  • the content of the cyclohexanedimethanol unit is 45 mol% or less, a polyester having a high degree of polymerization is obtained.
  • the content is more preferably 30 mol% or less. And it is further more preferable that the said content is 15 mol% or less.
  • polyester having a content of 15 mol% or less By subjecting polyester having a content of 15 mol% or less to a pre-crystallization treatment, drying at a temperature higher than the glass transition temperature becomes possible, and the moisture content can be reduced, resulting in a decrease in intrinsic viscosity due to hydrolysis during molding. Can be suppressed.
  • the total content of terephthalic acid units and ethylene glycol units in the polyester is 50 mol% or more based on the total of all structural units in the polyester. Thereby, when manufacturing the said polyester by solid-phase polymerization, since the sticking by softening of resin is suppressed, a polymerization degree can be raised easily.
  • the content is preferably 75 mol% or more, more preferably 85 mol% or more, and further preferably 90 mol% or more.
  • the polyester may be a polyvalent compound having a terephthalic acid unit, an ethylene glycol unit, a diethylene glycol unit, an isophthalic acid unit, a cyclohexanedimethanol unit, a unit derived from a bisphenol A ethylene oxide adduct and an ⁇ , ⁇ -dicarboxylic acid unit. You may contain other comonomer units other than the unit derived from carboxylic acid (X).
  • the other comonomer unit preferably has 5 or more carbon atoms.
  • the number of carbon atoms is less than 5, the comonomer boiling point of the raw material is lowered and volatilizes during the condensation polymerization reaction, so that it may be difficult to recover ethylene glycol.
  • the upper limit of the carbon number is not particularly limited, but is usually 50 or less.
  • the other comonomer unit contained in the polyester may be one type or two or more types.
  • Bifunctional compound units are mainly used as other comonomer units.
  • the content of other bifunctional compound units (the total when two or more units are included) is preferably 20 mol% or less with respect to the total of all structural units constituting the polyester. It is more preferably at most mol%, further preferably at most 5 mol%.
  • Other bifunctional compound units that can be contained in the polyester include terephthalic acid units, ethylene glycol units, diethylene glycol units, isophthalic acid units, cyclohexane dimethanol units, units derived from bisphenol A ethylene oxide adducts and ⁇ , Other than dicarboxylic acids having ⁇ -dicarboxylic acid units.
  • the other bifunctional compound unit is a dicarboxylic acid unit, a diol unit, or a hydroxycarboxylic acid unit, an aliphatic bifunctional compound unit, an alicyclic bifunctional compound unit, or an aromatic bifunctional compound unit Any of these may be used.
  • Aromatic dicarboxylic acid units used as other comonomer units include furandicarboxylic acid (FDCA), phthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalenedicarboxylic acid, 1,4 -Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4, Mention may be made of units derived from aromatic dicarboxylic acids such as 4′-biphenyl ether dicarboxylic acid, pamoic acid, anthracene dicarboxylic acid or their ester-forming derivatives.
  • FDCA furandicarboxylic acid
  • phthalic acid phthalic acid
  • Examples of aliphatic dicarboxylic acid units used as other comonomer units include dimer acid, hydrogenated dimer acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, docosanedioic acid, fumaric acid, itaconic acid, etc.
  • rubonic acid decalin dicarboxylic acid
  • tetralin dicarboxylic acid tetralin dicarboxylic acid
  • Examples of aliphatic diol units used as other comonomer units include triethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, isosorbide, , 2-propanediol, neopentyl glycol (2,2-dimethyl-1,3-propanediol), 3-methyl-1,5-pentanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, tetra
  • Examples thereof include units derived from aliphatic diols such as methylcyclobutanediol, 1,9-nonanediol, dimer diol having 36 carbon atoms, and dimer diol having 44 carbon atoms, or ester-forming derivatives thereof.
  • Hydroxycarboxylic acids used as other comonomer units include aliphatic hydroxycarboxylic acids such as 10-hydroxyoctadecanoic acid or ester-forming derivatives thereof; hydroxymethylcyclohexanecarboxylic acid, hydroxymethylnorbornenecarboxylic acid, hydroxymethyltricyclohexane Alicyclic hydroxycarboxylic acids such as decanecarboxylic acid or ester-forming derivatives thereof; hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3- (hydroxyphenyl) propionic acid, hydroxyphenylacetic acid, 3-hydroxy-3- Aromatic hydroxycarboxylic acids such as phenylpropionic acid and their ester-forming derivatives.
  • the polyester has a carboxyl group, a hydroxyl group, in addition to a unit derived from a polyvalent carboxylic acid (X) having an ⁇ , ⁇ -dicarboxylic acid unit as another comonomer unit, as long as the effects of the present invention are not impaired. And / or a polyfunctional compound unit derived from a polyfunctional compound having three or more ester-forming groups thereof can be used. When the polyester contains such a polyfunctional compound unit, inflation moldability is improved.
  • the content of other polyfunctional compound units (the total when two or more units are included) is preferably 0.00005 to 1 mol% based on the total of the structural units of the polyester.
  • the amount is more preferably 0.0015 to 0.8 mol%, and further preferably 0.00025 to 0.4 mol%.
  • polyfunctional compound units trifunctional compound units and tetrafunctional compound units are preferred.
  • Other polyfunctional compound units are preferably polyvalent carboxylic acid units derived from trimellitic acid, trimesic acid and the like; polyhydric alcohol units derived from trimethylolpropane, glycerin and the like.
  • polyfunctional compound unit examples include a carboxylic acid ester of a trivalent or higher polyol, wherein the carboxylic acid is derived from a polyvalent ester having a hindered phenol group.
  • the polyvalent ester include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris [2- [3- (3,5-di- -Tert-butyl-4-hydroxyphenyl) propanoyloxy] ethyl] hexahydro-1,3,5-triazine-2,4,6-trione and the like.
  • the polyester has a monofunctional compound unit derived from at least one monofunctional compound of monocarboxylic acid, monoalcohol and ester-forming derivatives thereof as another comonomer unit. It may be.
  • the monofunctional compound unit functions as a sealing compound unit and seals molecular chain end groups and / or branched chain end groups in the polyester, thereby preventing excessive crosslinking and gel generation in the polyester.
  • the content of the monofunctional compound unit (the total when there are two or more units) is based on the total of all the structural units of the polyester. It is preferably 1 mol% or less, and more preferably 0.5 mol% or less.
  • the monofunctional compound unit include units derived from a monofunctional compound selected from benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol.
  • the polyester has at least one phosphorus compound (P) selected from the group consisting of a cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid, and esters thereof, and an ⁇ , ⁇ -dicarboxylic acid unit.
  • P phosphorus compound
  • M cobalt compound
  • phosphoric acid phosphorous acid
  • organic phosphonic acid organic phosphonic acid
  • esters thereof an ⁇ , ⁇ -dicarboxylic acid unit.
  • X polyvalent carboxylic acid
  • the dicarboxylic acid as a raw material monomer does not have an ⁇ , ⁇ -dicarboxylic acid unit.
  • At the time of polycondensation together with the cobalt compound (M), at least one phosphorus compound (P) selected from the group consisting of phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and ⁇ , ⁇ -
  • P phosphorus compound
  • the polyvalent carboxylic acid (X) having a dicarboxylic acid unit a polyester having a good color tone can be obtained. Further, by using the polyester, a molded product having high transparency and excellent impact resistance can be obtained. It is considered that the dispersibility of the cobalt compound (M) is improved by using the phosphorus compound (P) and the polyvalent carboxylic acid (X).
  • Examples of the cobalt compound (M) used in the present invention include cobalt salts of organic acids such as cobalt acetate, cobalt oxide and the like. Among these, acetic acid is soluble in alcohol and easy to handle during production. Cobalt is preferred.
  • the added amount of the cobalt compound (M) is 0.0005 to 0.05 parts by mass in terms of cobalt element with respect to 100 parts by mass of the total dicarboxylic acid.
  • the total of dicarboxylic acid units is the total of dicarboxylic acid units having no ⁇ , ⁇ -dicarboxylic acid units in the polyester.
  • the color tone of the obtained polyester is improved, and a molded product obtained using the polyester Improves impact resistance.
  • 0.001 mass part or more is preferable and, as for the addition amount of a cobalt compound (M), 0.002 mass part or more is more preferable.
  • the addition amount of the cobalt compound (M) is 0.05 parts by mass or less with respect to a total of 100 parts by mass of the dicarboxylic acid during the polymerization, the polymerization reaction is not inhibited.
  • the addition amount of the cobalt compound (M) is preferably 0.02 parts by mass or less.
  • a polyvalent carboxylic acid (X) having an ⁇ , ⁇ -dicarboxylic acid unit is used together with the cobalt compound (M) during polycondensation.
  • the polyvalent carboxylic acid (X) having an ⁇ , ⁇ -dicarboxylic acid unit is considered to easily interact with the cobalt compound (M), which is one factor for improving the dispersibility of the cobalt compound (M). it is conceivable that.
  • the polyvalent carboxylic acid (X) preferably has a hydroxyl group.
  • the polycarboxylic acid (X) is preferably a tricarboxylic acid.
  • Examples of the polyvalent carboxylic acid (X) having an ⁇ , ⁇ -dicarboxylic acid unit include citric acid, tartaric acid, succinic acid, fumaric acid, maleic acid and the like. Among these, citric acid, tartaric acid and succinic acid are preferable. Acid and succinic acid are more preferable, and citric acid is more preferable. At least a part of the polyvalent carboxylic acid (X) having an ⁇ , ⁇ -dicarboxylic acid unit or a decomposition product thereof may be contained in the main chain, branched chain or terminal of the polyester.
  • the amount of polyvalent carboxylic acid (X) added so that the molar ratio (X / M) of polyvalent carboxylic acid (X) to cobalt atoms in cobalt compound (M) is 0.01 to 10 Adjust.
  • the molar ratio (X / M) is preferably 0.1 or more, more preferably 0.5 or more, and still more preferably 1 or more.
  • the molar ratio (X / M) is 10 or less, the polymerization reaction is not inhibited, and the hue of the resin and the transparency of the molded product are excellent.
  • the molar ratio (X / M) is preferably 5 or less.
  • At the time of polycondensation at least one phosphorus compound (P) selected from the group consisting of phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof is used together with the cobalt compound (M).
  • the phosphoric acid used as the phosphorus compound (P) may be orthophosphoric acid or polyphosphoric acid such as pyrophosphoric acid.
  • the phosphoric acid ester used as the phosphorous compound (P) is preferably a monoester or diester of phosphoric acid and an aliphatic monoalcohol having 1 to 20 carbon atoms, such as dibutyl phosphate, diethyl phosphate, dimethyl phosphate.
  • the phosphite used as the phosphorus compound (P) is preferably a monoester of phosphorous acid and an aliphatic monoalcohol having 1 to 20 carbon atoms.
  • the organic phosphonic acid used as the phosphorus compound (P) is preferably an alkyl phosphonic acid. In the alkylphosphonic acid, the alkyl group directly bonded to the phosphorus atom preferably has 1 to 20 carbon atoms.
  • the organic phosphonic acid ester used as the phosphorus compound (P) is preferably a monoester of the organic phosphonic acid and an aliphatic monoalcohol having 1 to 20 carbon atoms.
  • the phosphorus compound (P) used for this invention is at least 1 sort (s) of phosphorous acid or phosphoric acid, and it is more preferable that it is phosphorous acid.
  • the molar ratio (P / M) is 0.01 or more, the color tone of the obtained polyester is improved. Moreover, the thermal stability of the molded article obtained using the said polyester improves by the antioxidant effect of a phosphorus compound (P).
  • the molar ratio (P / M) is preferably 0.1 or more, more preferably 1 or more, and further preferably 1.5 or more.
  • the molar ratio (P / M) is 10 or less, the polymerization reaction is not inhibited.
  • the molar ratio (P / M) is preferably 5 or less.
  • a method of polycondensing a dicarboxylic acid (a dicarboxylic acid having no ⁇ , ⁇ -dicarboxylic acid unit) and a diol is particularly preferable.
  • esterification reaction or ester using terephthalic acid, ethylene glycol or ester-forming derivatives thereof, and optionally using cyclohexanedimethanol, bisphenol A ethylene oxide adduct, isophthalic acid, or other comonomer After the exchange reaction, a method of melt polycondensation of the obtained polyester oligomer can be mentioned.
  • the timing of adding the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X) is not particularly limited, and may be added before the esterification reaction or transesterification reaction. Although it may be added after the reaction, the former is preferred. Further, the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X) may be added separately, or the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X). ), At least two of them may be mixed in advance, and the resulting mixture may be added to other raw materials.
  • polyvalent ester may be added before the esterification reaction or transesterification reaction, or may be added after the reaction. Further, other raw materials and polymerization catalyst can be appropriately added before the esterification reaction or transesterification reaction, or after these reactions have been performed.
  • the above esterification reaction or transesterification reaction is carried out by adding a cobalt compound (M), a phosphorus compound (P), a polyvalent carboxylic acid (X), a raw material monomer, a polymerization catalyst, and other additives described later as required. It is preferably carried out while distilling off the produced water or alcohol at a temperature of 160 to 280 ° C. under a pressure of about 0.5 MPa or less in absolute pressure or at normal pressure.
  • the melt polycondensation reaction following the esterification reaction or transesterification reaction is carried out by subjecting the obtained polyester oligomer to a cobalt compound (M), a phosphorus compound (P), a polyvalent carboxylic acid (X), a raw material monomer, It is preferable to add a polycondensation catalyst and other additives described later, under a reduced pressure of 1 kPa or less, at a temperature of 260 to 290 ° C. until a polyester having a desired viscosity is obtained.
  • M cobalt compound
  • P phosphorus compound
  • X polyvalent carboxylic acid
  • the melt polycondensation reaction can be performed using, for example, a tank-type batch polycondensation apparatus or a continuous polycondensation apparatus including a biaxial rotating horizontal reactor.
  • any catalyst that can be used for the production of polyester can be selected, but a compound containing a germanium element or an antimony element is preferable.
  • germanium dioxide and antimony trioxide are preferable from the viewpoint of polymerization catalyst activity, physical properties of the resulting polyester, and cost, and the former is more preferable from the viewpoint of transparency and color tone.
  • the amount added is within the range of 0.002 to 0.8 mass% based on the mass of the dicarboxylic acid (dicarboxylic acid having no ⁇ , ⁇ -dicarboxylic acid unit) component. Is preferred.
  • the intrinsic viscosity of the polyester obtained by melt polycondensation is preferably 0.4 dl / g or more. Thereby, the handleability is improved and, when the polyester obtained by melt polycondensation is further solid-phase polymerized, the molecular weight can be increased in a short time, so that productivity is improved.
  • the intrinsic viscosity is more preferably 0.55 dl / g or more, and still more preferably 0.65 dl / g or more.
  • the intrinsic viscosity is preferably 0.9 dl / g or less, more preferably 0.85 dl / g or less, from the viewpoint that polyester can be easily taken out from the reactor and coloring due to thermal deterioration is suppressed. More preferably, it is 0.8 dl / g or less.
  • the polyester thus obtained is suitably used as a raw material for extrusion molding. It is also preferred to further solid-phase polymerize the polyester obtained by melt polycondensation. The solid phase polymerization will be described below.
  • the polyester obtained as described above is extruded into a strand shape, a sheet shape, and the like, cooled, and then cut with a strand cutter, a sheet cutter, or the like to have a shape such as a column shape, an elliptical column shape, a disk shape, or a die shape.
  • Intermediate pellets are produced.
  • the above-described cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
  • solid phase polymerization is performed. It is preferable to crystallize a part of the polyester by heating before solid phase polymerization. By doing so, it is possible to prevent the pellets from sticking during solid phase polymerization.
  • the crystallization temperature is preferably 100 to 180 ° C.
  • crystallization may be performed in a vacuum tumbler, or crystallization may be performed by heating in an air circulation type heating apparatus. When heating in an air circulation heating device, the internal temperature is preferably 100 to 160 ° C.
  • the time required for crystallization is not particularly limited, but is usually about 30 minutes to 24 hours. It is also preferred to dry the pellets at a temperature below 100 ° C. prior to crystallization.
  • the temperature of solid phase polymerization is preferably 170 to 250 ° C. When the temperature of the solid phase polymerization is lower than 170 ° C., the time for the solid phase polymerization becomes long and the productivity may be lowered.
  • the temperature of solid phase polymerization is more preferably 175 ° C. or higher, and further preferably 180 ° C. or higher. On the other hand, when the temperature of the solid phase polymerization exceeds 250 ° C., the pellets may be stuck.
  • the temperature of the solid phase polymerization is more preferably 240 ° C. or lower, and further preferably 230 ° C. or lower.
  • the time for solid phase polymerization is usually about 5 to 70 hours.
  • the solid phase polymerization is preferably performed under reduced pressure or in an inert gas such as nitrogen gas. Further, it is preferable to perform solid-state polymerization while moving the pellets by an appropriate method such as a rolling method or a gas fluidized bed method so that no sticking occurs between the pellets.
  • the pressure when solid-state polymerization is performed under reduced pressure is preferably 1 kPa or less.
  • the polyester obtained by solid phase polymerization is suitably used as a raw material for extrusion molding, particularly extrusion blow molding.
  • the polyester obtained as described above may contain other additives as long as the effects of the present invention are not impaired.
  • stabilizers such as antioxidants and ultraviolet absorbers, and antistatic agents.
  • the content of these additives in the polyester is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • the intrinsic viscosity of the polyester obtained by solid phase polymerization is preferably 0.9 dl / g or more. Thereby, the drawdown resistance at the time of carrying out extrusion blow molding of the said polyester further improves.
  • the intrinsic viscosity is more preferably 1.0 dl / g or more, and still more preferably 1.05 dl / g or more.
  • the intrinsic viscosity is preferably 1.5 dl / g or less, more preferably 1.4 l / g or less, and further preferably 1.3 l / g or less.
  • a molded product obtained by melt molding the polyester of the present invention has good color tone, high transparency, and high impact strength.
  • the intrinsic viscosity of the polyester subjected to melt molding is not particularly limited, but is 0.55 dl / g or more from the viewpoint of further improving the strength, impact resistance, melt moldability, and production stability of the obtained molded product. Is preferable, and 0.65 dl / g or more is more preferable. On the other hand, from the viewpoint of further improving melt moldability and productivity, the intrinsic viscosity is preferably 1.5 dl / g or less, more preferably 1.4 dl / g or less, and further preferably 1.3 dl / g or less.
  • the total light transmittance of the molded product is preferably 90.3% or more, more preferably 90.5% or more, and further preferably 90.7% or more.
  • the molding method is not particularly limited, but an extrusion molding method is preferably employed.
  • a molded product obtained by extrusion molding of the polyester is a preferred embodiment of the present invention.
  • a film or sheet obtained by extruding the polyester is a more preferred embodiment of the present invention.
  • a container formed by extrusion molding the polyester is also a more preferred embodiment of the present invention.
  • the polyester is suitable for extrusion molding because of its high viscosity during melt molding.
  • the temperature of the resin composition at the time of extrusion molding is preferably a temperature within the range of (polyester melting point + 10 ° C.) to (polyester melting point + 70 ° C.), and (polyester melting point + 10 ° C.) to (polyester melting point + 40). It is more preferable to set the temperature within the range of ° C. By extruding at a temperature relatively close to the melting point, drawdown can be suppressed.
  • a sheet or film is produced using the polyester by extrusion molding such as a T-die method or an inflation method
  • a highly transparent, high-quality sheet or film can be produced with high productivity.
  • secondary processing such as thermoforming is performed using the sheet or film thus obtained
  • the degree of crystallization of the molded product can be adjusted by adjusting the temperature of the mold.
  • the film is biaxially stretched, the crystallinity is improved, so that the strength of the stretched film can be improved.
  • Such a biaxially stretched film, a sheet or a thermoformed product formed by thermoforming a film, particularly a container formed by thermoforming the sheet or film is a preferred embodiment of the present invention.
  • extrusion blow molding that is particularly suitable for using the polyester.
  • the method of extrusion blow molding is not particularly limited, and can be performed in the same manner as conventionally known extrusion blow molding methods.
  • the polyester is melt-extruded to form a cylindrical parison, which is sandwiched between blow molds while the parison is in a softened state, and a gas such as air is blown to conform the parison to the mold cavity shape. It can be performed by a method of expanding into a predetermined hollow shape.
  • a foreign matter in which the cobalt compound is aggregated is hardly generated, so that a molded product can be produced with a high yield.
  • a molded product obtained by extrusion blow molding of the polyester is also a preferred embodiment of the present invention.
  • the molded article has good transparency, color tone, and impact resistance. Therefore, the molded product can be used for various applications.
  • a container made of the molded product is a preferred embodiment of the molded product. Such a container is suitably used as a container for cosmetics or oil. Moreover, it can also be set as the molded article which has the laminated structure of the said polyester, another thermoplastic resin, etc.
  • the particle size distribution in the polyester obtained in Example 2 and Comparative Example 1 is shown in FIG.
  • the number of particles having a particle diameter of 5 ⁇ m or more contained in 1 g of the pellets thus measured was used as an index of the dispersibility of the cobalt compound (M).
  • Total light transmittance A sample (3 cm in length, 3 cm in width, 0.8 mm in thickness) was cut out from the body of the molded transparent bottle, and all light was transmitted using a haze meter (manufactured by Murakami Color Research Laboratory, HR-100). The rate was measured.
  • IZOD impact strength After solid-phase polymerization pellets were dried at 120 ° C overnight, test pieces of length 80mm, width 10mm, and thickness 4mm were prepared by injection molding, and 10 samples were each notched. went. After the specimen was stored at 23 ° C. for 48 hours, the IZOD impact strength was measured at a lifting angle of 150 degrees using a hammer with a nominal pendulum energy of 0.5 J. The average value of 10 test results for each sample was defined as IZOD impact strength, and the impact resistance was evaluated.
  • Bottle drop strength Water (water temperature 20 to 25 ° C.) is poured into a bottle immediately after molding so that the total weight is 263 g ⁇ 0.5 g, and then passed through a vertically installed cylinder 10 cm in diameter. From a height of 125 cm, it was dropped alternately on a horizontal concrete surface and a concrete surface inclined 45 degrees. The number of cycles until the bottle was cracked or cracked (the bottle was dropped twice in total, once on the horizontal surface and once on the 45 ° slope) was measured. Up to 20 cycles were repeated. A drop test of five bottles was performed per composition, and the average value was defined as the bottle drop strength. It was used as an index of impact resistance of the molded product.
  • Example 1 Melt polycondensation 100 parts by mass of terephthalic acid (TA), 42.6 parts by mass of ethylene glycol (EG), 9.5 parts by mass of bisphenol A ethylene oxide 2-mol adduct (EOBPA), germanium dioxide (GeO 2 ) 0123 parts by mass, 0.0123 parts by mass of phosphorous acid as the phosphorus compound (P), 0.0130 parts by mass of cobalt acetate tetrahydrate (0.0031 parts by mass in terms of cobalt element) as the cobalt compound (M), many A slurry composed of 0.0109 parts by mass of citric acid / monohydrate as a monovalent carboxylic acid (X) is prepared and heated to a temperature of 250 ° C.
  • TA terephthalic acid
  • EG ethylene glycol
  • EOBPA bisphenol A ethylene oxide 2-mol adduct
  • GeO 2 germanium dioxide
  • P 0.0123 parts by mass of phosphorous acid as the phosphorus compound
  • M cobalt a
  • the obtained oligomer was transferred to a polycondensation tank and subjected to melt polycondensation at 260 ° C. to 280 ° C. for 80 minutes under 0.1 kPa to produce a polyester having an intrinsic viscosity of 0.7 dL / g.
  • the obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester.
  • (2) Precrystallization of amorphous pellets The obtained polyester amorphous pellets were put into a rolling vacuum solid-phase polymerization apparatus, and precrystallization was performed at 120 ° C for 2 hours under 0.1 kPa.
  • the number of particles of 5 ⁇ m or more contained in 1 g of the obtained polyester was measured by an in-liquid particle counter and found to be 229 particles / g.
  • the number of foreign matters in the film was measured, the number of foreign matters of 20 ⁇ m or more and less than 60 ⁇ m was 190 / m 2 , and the number of foreign matters of 60 ⁇ m or more was 10 / m 2 .
  • the IZOD impact strength was 4.5 kJ / m 2 .
  • Example 2 A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0154 parts by mass.
  • Example 3 A polyester resin was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0861 parts by mass.
  • Example 4 A polyester resin was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0006 parts by mass.
  • Example 5 A polyester resin was produced and evaluated in the same manner as in Example 2 except that 0.0144 parts by mass of phosphoric acid was added instead of phosphorous acid.
  • Example 6 The raw material slurry was 86 parts by mass of terephthalic acid, 14 parts by mass of isophthalic acid (IPA), 44.8 parts by mass of ethylene glycol, 0.0123 parts by mass of germanium dioxide, 0.0123 parts by mass of phosphorous acid, cobalt acetate / tetrahydrous.
  • Example 1 was repeated except that the slurry was changed to 0.0130 parts by mass, 0.0154 parts by mass of citric acid / monohydrate, and the solid phase polymerization temperature was changed to 180 to 190 ° C.
  • the polyester obtained in the same manner as in Example 1 was evaluated except that the molding cycle during bottle molding was changed to 7 seconds.
  • Example 8 A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0086 parts by mass of succinic acid was added instead of citric acid / monohydrate.
  • Example 9 A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0065 parts by mass of tartaric acid was added instead of the addition amount of citric acid / monohydrate.
  • Example 10 Except that the addition amount of cobalt acetate tetrahydrate was changed to 0.0026 parts by mass (0.0006 parts by mass in terms of cobalt element), and the addition amount of phosphorous acid was changed to 0.0062 parts by mass.
  • Polyester was produced and evaluated in the same manner as in 2.
  • Example 11 Except that the addition amount of cobalt acetate tetrahydrate was changed to 0.0615 parts by mass (0.0146 parts by mass in terms of cobalt element), and the addition amount of phosphorous acid was changed to 0.0246 parts by mass.
  • Polyester was produced and evaluated in the same manner as in 2.
  • Example 12 A polyester was produced and evaluated in the same manner as in Example 2 except that the amount of phosphorous acid added was changed to 0.0062 parts by mass.
  • Example 13 A polyester was produced and evaluated in the same manner as in Example 2 except that 0.0615 parts by mass of dibutyl phosphate was added instead of phosphorous acid.
  • Comparative Example 1 A polyester was produced and evaluated in the same manner as in Example 1 except that citric acid monohydrate was not added.
  • Comparative Example 2 A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.00006 parts by mass.
  • Comparative Example 3 A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.369 parts by mass and the solid phase polymerization time was 100 hours.
  • Comparative Example 4 A polyester was produced and evaluated in the same manner as in Example 2 except that phosphorous acid was not added.
  • Comparative Example 5 A polyester was produced and evaluated in the same manner as in Example 6 except that citric acid / monohydrate was not added.
  • Comparative Example 6 A polyester was produced and evaluated in the same manner as in Example 7 except that citric acid / monohydrate was not added.
  • Comparative Example 7 A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0065 parts by mass of lactic acid was added instead of citric acid / monohydrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is a polyester which contains at least 50 mol% of a terephthalic acid unit with respect to the sum total of dicarboxylic acid units, and which contains at least 50 mol% of an ethylene glycol unit with respect to the sum total of diol units, and which is obtained by polycondensation of a dicarboxylic acid and a diol in the presence of: a cobalt compound (M); at least one type of phosphorus compound (P) selected from the group consisting of phosphoric acid, phosphorous acid, organo-phosphonic acid, and esters thereof; and a poly-carboxylic acid (X) having an α,β-dicarboxylic acid unit, wherein the cobalt compound (M) is added in an amount of 0.0005-0.05 parts by mass in terms of cobalt element with respect to 100 parts by mass of the sum total of dicarboxylic acids, the molar ratio (P/M) of the phosphorus atoms in the phosphorus compound (P) with respect to the cobalt atoms in the cobalt compound (M) is 0.01-10, and the molar ratio (X/M) of the poly-carboxylic acid (X) with respect to the cobalt atoms in the cobalt compound (M) is 0.01-10. Such polyester exhibits a good color tone, and molded articles obtained using said polyester are highly transparent and exhibit excellent impact resistance.

Description

ポリエステル、その製造方法及びそれからなる成形品Polyester, method for producing the same, and molded article comprising the same
 本発明は、透明性が高く、色調が良好であり、なおかつ耐衝撃性にも優れたポリエステル、その製造方法およびそれからなる成形品に関する。 The present invention relates to a polyester having high transparency, good color tone and excellent impact resistance, a method for producing the same, and a molded product comprising the same.
 ポリエチレンテレフタレートなどのポリエステルは、透明性、力学的特性、ガスバリア性、フレーバーバリア性などの特性に優れている。さらに、ポリエステルは、成形品にした際に残留モノマーや有害な添加剤の心配が少なく、衛生性および安全性にも優れている。そのため、ポリエステルは、それらの特性を活かして、従来用いられてきた塩化ビニルに代わるものとして、飲料、調味料、油、化粧品、洗剤などを充填するための中空容器等として近年広く使用されている。 Polyesters such as polyethylene terephthalate are excellent in properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, polyester has less concern about residual monomers and harmful additives when formed into molded articles, and is excellent in hygiene and safety. Therefore, polyester has been widely used in recent years as a hollow container for filling beverages, seasonings, oils, cosmetics, detergents, etc. as an alternative to the conventionally used vinyl chloride, taking advantage of these properties. .
 ポリエステルからなる中空成形品を製造するための成形法として、ダイオリフィスを通して溶融可塑化した樹脂を円筒状のパリソンとして押出し、そのパリソンが軟化状態にある間に金型で挟んで内部に空気などの流体を吹き込んで成形を行う押出ブロー成形法が知られている。この方法は、射出ブロー成形法に比べて、工程が簡単で、しかも金型の作製および成形に高度な技術を必要としないために、設備費や金型の製作費などが安くてすみ、多品種、少量生産に適している。しかも、細物、深物、大物、取っ手などを有する複雑な形状の成形品の製造も可能であるという利点がある。 As a molding method for producing a hollow molded product made of polyester, a resin melted and plasticized through a die orifice is extruded as a cylindrical parison, and the parison is sandwiched between molds while it is in a softened state. An extrusion blow molding method is known in which molding is performed by blowing a fluid. Compared with the injection blow molding method, this method is simpler and does not require advanced technology for the production and molding of the mold. Suitable for varieties and small volume production. In addition, there is an advantage that it is possible to manufacture a molded product having a complicated shape having a thin object, a deep object, a large object, a handle, and the like.
 ところで、化粧品や油用の容器などには、耐薬品性及びガスバリア性等の性質に優れていることに加え、落下等の衝撃による破損を防止するため、力学的特性に優れていることも求められる。また、化粧品の容器などには、ガラスのような質感や外観であることが求められる。しかしながら、ポリエステルは成形時に黄色に着色する。そのため、色調改善のために、ブルーイング剤が用いられる場合が多く、特に濃い青色のコバルト化合物などが用いられている。 By the way, containers for cosmetics and oils are required to have excellent mechanical properties in order to prevent damage due to impact such as dropping in addition to excellent properties such as chemical resistance and gas barrier properties. It is done. Further, cosmetic containers and the like are required to have a glass-like texture and appearance. However, polyester is colored yellow during molding. For this reason, a blueing agent is often used to improve the color tone, and in particular, a deep blue cobalt compound or the like is used.
 しかしながら、重合時にコバルト化合物を添加すると、重合槽中で凝集し、凝集物がポリエステル中に残留することによって、フィルムやカップ、シートなどの成形品中に異物が発生する問題があった。さらに、コバルト化合物由来の青色で樹脂の黄色味を打ち消しているため、ポリエステルの透明性が低下してしまう問題があった。 However, when a cobalt compound is added at the time of polymerization, there is a problem that foreign matter is generated in a molded product such as a film, a cup, or a sheet by aggregating in a polymerization tank and remaining in the polyester. Furthermore, since the yellowish color of the resin is canceled with the blue color derived from the cobalt compound, there is a problem that the transparency of the polyester is lowered.
 特許文献1には、ポリエステルを構成する酸成分の50~95モル%がテレフタル酸、2~20モル%がイソフタル酸であり、グリコール成分の80モル%以上がエチレングリコールであるポリエステル樹脂中に、テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタンを0.1~1.0質量%含有し、ゲルマニウム化合物をポリエステル樹脂の酸成分1モルに対し5×10-5モル~3.0×10-4モル含有し、コバルト化合物をポリエステル樹脂の酸成分1モルに対し1×10-5~2.0×10-4モル含有し、アルカリ金属化合物をポリエステル樹脂の酸成分1モルに対し1.0×10-4~1.0×10-3モル含有するポリエステル樹脂組成物が記載されている。そして、このようなポリエステル樹脂組成物は、ダイレクトブロー成形時にドローダウンや結晶化による白化の問題が生じることなく、熱安定性にも優れており、当該ポリエステル樹脂組成物を用いることによって、色調、透明性に優れたダイレクトブロー成形品を生産性よく得ることができると記載されている。しかしながら、当該ポリエステル樹脂組成物は、得られる成形品の色調や透明性がなお不十分であったうえに、耐衝撃性も不十分となる場合があった。 In Patent Document 1, a polyester resin in which 50 to 95 mol% of the acid component constituting the polyester is terephthalic acid, 2 to 20 mol% is isophthalic acid, and 80 mol% or more of the glycol component is ethylene glycol. Tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane is contained in an amount of 0.1 to 1.0% by mass, and the germanium compound is added to 1 mol of the acid component of the polyester resin. 5 × 10 −5 mol to 3.0 × 10 −4 mol, a cobalt compound containing 1 × 10 −5 to 2.0 × 10 −4 mol per mol of the acid component of the polyester resin, and an alkali metal compound Describes a polyester resin composition containing 1.0 × 10 −4 to 1.0 × 10 −3 mol per mol of the acid component of the polyester resin. And such a polyester resin composition is excellent in thermal stability without causing the problem of whitening due to drawdown or crystallization at the time of direct blow molding, and by using the polyester resin composition, the color tone, It is described that a direct blow molded article excellent in transparency can be obtained with high productivity. However, the polyester resin composition still has insufficient color tone and transparency of the obtained molded product, and may have insufficient impact resistance.
特開2012-224836号公報JP 2012-224836 A
 本発明は上記課題を解決するためになされたものであり、透明性が高く、色調が良好であるとともに、耐衝撃性に優れた成形品を得ることができるポリエステル及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides a polyester capable of obtaining a molded article having high transparency, good color tone, and excellent impact resistance, and a method for producing the same. With the goal.
 上記課題は、テレフタル酸単位をジカルボン酸単位の合計に対して50モル%以上含有し、かつエチレングリコール単位をジオール単位の合計に対して50モル%以上含有するポリエステルであって、前記ポリエステルが、コバルト化合物(M)、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させてなるものであり、ジカルボン酸の合計100質量部に対するコバルト化合物(M)の添加量がコバルト元素換算で0.0005~0.05質量部であり、コバルト化合物(M)中のコバルト原子に対するリン化合物(P)中のリン原子のモル比(P/M)が0.01~10であり、かつコバルト化合物(M)中のコバルト原子に対する多価カルボン酸(X)のモル比(X/M)が0.01~10である、ポリエステルを提供することによって解決される。 The above-mentioned problem is a polyester containing 50 mol% or more of terephthalic acid units with respect to the total of dicarboxylic acid units, and containing 50 mol% or more of ethylene glycol units with respect to the total of diol units, Polyhydric carboxylic acid having at least one phosphorus compound (P) selected from the group consisting of cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and α, β-dicarboxylic acid unit In the presence of (X), a polycarboxylic acid and a diol are polycondensed, and the addition amount of the cobalt compound (M) with respect to a total of 100 parts by mass of the dicarboxylic acid is 0.0005 to 0.05 mass in terms of cobalt element. The molar ratio (P / M) of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) is 0. And having a molar ratio (X / M) of the polyvalent carboxylic acid (X) to the cobalt atom in the cobalt compound (M) of 0.01 to 10 to solve the problem. The
 このとき、リン化合物(P)が亜リン酸又はリン酸の少なくとも1種であることが好ましい。多価カルボン酸(X)が水酸基を有することも好ましい。多価カルボン酸(X)がトリカルボン酸であることも好ましい。多価カルボン酸(X)がクエン酸であることが特に好ましい。 At this time, the phosphorus compound (P) is preferably at least one of phosphorous acid and phosphoric acid. It is also preferred that the polyvalent carboxylic acid (X) has a hydroxyl group. It is also preferred that the polyvalent carboxylic acid (X) is a tricarboxylic acid. It is particularly preferable that the polyvalent carboxylic acid (X) is citric acid.
 前記ポリエステルがさらにビスフェノールAエチレンオキサイド付加物由来の単位を、前記ジオール単位の合計に対して0.1~20モル%含有することが好ましい。前記ポリエステルがさらにシクロヘキサンジメタノール単位を、前記ジオール単位の合計に対して0.1~45モル%含有することも好ましい。前記ポリエステルがさらにイソフタル酸単位を、前記ジカルボン酸単位の合計に対して0.1~20モル%含有することも好ましい。 It is preferable that the polyester further contains 0.1 to 20 mol% of a unit derived from a bisphenol A ethylene oxide adduct based on the total of the diol units. It is also preferable that the polyester further contains 0.1 to 45 mol% of cyclohexanedimethanol units with respect to the total of the diol units. The polyester preferably further contains 0.1 to 20 mol% of isophthalic acid units based on the total of the dicarboxylic acid units.
 前記ポリエステルを押出成形してなる成形品が本発明の好適な実施態様である。前記成形品からなる容器が本発明のより好適な実施態様である。また、前記成形品からなるフィルム又はシートも本発明のより好適な実施態様であり、前記フィルム又はシートを熱成形してなる熱成形品がさらに好適な実施態様である。 A molded product formed by extruding the polyester is a preferred embodiment of the present invention. A container made of the molded product is a more preferred embodiment of the present invention. Moreover, the film or sheet which consists of the said molded article is also a more suitable embodiment of this invention, and the thermoformed article formed by thermoforming the said film or sheet is a more suitable embodiment.
 前記ポリエステルを熱成形してなる成形品もまた本発明の好適な実施態様である。 A molded product obtained by thermoforming the polyester is also a preferred embodiment of the present invention.
 上記課題は、コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させる前記ポリエステルの製造方法を提供することによっても解決される。 The above-mentioned problem can also be solved by providing a method for producing the polyester, in which a dicarboxylic acid and a diol are polycondensed in the presence of a cobalt compound (M), a phosphorus compound (P) and a polyvalent carboxylic acid (X).
 本発明のポリエステル中のコバルト化合物(M)は、均一に分散していて粗大な凝集物が少ないので、当該ポリエステルは色調が良好であり、このようなポリエステルを用いて得られる成形品は、透明性が高く耐衝撃性にも優れる。本発明の製造方法によれば、このようなポリエステルを簡便に製造できる。 Since the cobalt compound (M) in the polyester of the present invention is uniformly dispersed and has few coarse aggregates, the polyester has a good color tone, and a molded product obtained using such a polyester is transparent. High impact resistance. According to the production method of the present invention, such a polyester can be produced easily.
実施例2及び比較例1で得られたポリエステル中の粒子径の分布を示す図である。It is a figure which shows distribution of the particle diameter in polyester obtained in Example 2 and Comparative Example 1.
 本発明のポリエステルは、テレフタル酸単位をジカルボン酸単位の合計に対して50モル%以上含有し、かつエチレングリコール単位をジオール単位の合計に対して50モル%以上含有するポリエステルであって;前記ポリエステルが、コバルト化合物(M)、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させてなるものであり;ジカルボン酸の合計100質量部に対するコバルト化合物(M)の添加量がコバルト元素換算で0.0005~0.05質量部であり;コバルト化合物(M)中のコバルト原子に対するリン化合物(P)中のリン原子のモル比(P/M)が0.01~10であり;かつコバルト化合物(M)中のコバルト原子に対する多価カルボン酸(X)のモル比(X/M)が0.01~10であるものである。 The polyester of the present invention is a polyester containing 50 mol% or more of terephthalic acid units with respect to the total of dicarboxylic acid units and containing 50 mol% or more of ethylene glycol units with respect to the total of diol units; Is a polyvalent compound having at least one phosphorus compound (P) selected from the group consisting of a cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and an α, β-dicarboxylic acid unit. This is formed by polycondensation of dicarboxylic acid and diol in the presence of carboxylic acid (X); the amount of cobalt compound (M) added to 100 parts by mass of dicarboxylic acid is 0.0005-0. The molar ratio of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) ( P / M) is 0.01 to 10; and the molar ratio (X / M) of the polyvalent carboxylic acid (X) to the cobalt atom in the cobalt compound (M) is 0.01 to 10. .
 前記ポリエステルは、テレフタル酸(TA)単位を、ジカルボン酸単位の合計に対して、50モル%以上含有する。ここで、ジカルボン酸単位の合計とは、前記ポリエステル中のα,β-ジカルボン酸単位を有さないジカルボン酸単位の合計である。前記ポリエステルがテレフタル酸単位を50モル%以上含有することにより、溶融粘度が適度になるとともに、得られる成形品の耐衝撃性が向上する。さらに、成形する際の熱安定性が向上する。テレフタル酸単位の含有量は、80モル%以上が好ましい。 The polyester contains terephthalic acid (TA) units in an amount of 50 mol% or more based on the total of dicarboxylic acid units. Here, the total of dicarboxylic acid units is the total of dicarboxylic acid units having no α, β-dicarboxylic acid units in the polyester. When the polyester contains terephthalic acid units in an amount of 50 mol% or more, the melt viscosity becomes appropriate and the impact resistance of the obtained molded article is improved. Furthermore, the thermal stability during molding is improved. The content of terephthalic acid units is preferably 80 mol% or more.
 前記ポリエステルは、エチレングリコール単位を、ジオール単位の合計に対して、50モル%以上含有する。これにより、前記ポリエステルを製造する際に、高温で固相重合を行うことができるため、生産性が向上するとともに、色調がより良好な成形品が得られるようになる。エチレングリコール単位の含有量は、75モル%以上が好ましい。通常、原料のジオールとしてエチレングリコールを用いて得られるポリエステルは、縮重合反応中の副生物であるジエチレングリコール単位を、ジオール単位の合計に対して1~5モル%含有する。 The polyester contains 50 mol% or more of ethylene glycol units with respect to the total of diol units. Thereby, when manufacturing the said polyester, since solid phase polymerization can be performed at high temperature, while improving productivity, a molded article with a more favorable color tone comes to be obtained. The content of ethylene glycol units is preferably 75 mol% or more. Usually, a polyester obtained using ethylene glycol as a raw material diol contains 1 to 5 mol% of diethylene glycol units, which are by-products in the condensation polymerization reaction, based on the total of diol units.
 前記ポリエステルに含有される構造単位が、テレフタル酸単位、エチレングリコール単位、ジエチレングリコール単位及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)に由来する単位のみであっても構わないが、前記ポリエステルが、さらにイソフタル酸(IPA)単位を、前記ジカルボン酸単位の合計に対して、0.1~20モル%含有することが好ましい。ここで、ジカルボン酸単位の合計とは、前記ポリエステル中のα,β-ジカルボン酸単位を有さないジカルボン酸単位の合計である。イソフタル酸単位の含有量が0.1モル%以上であることにより、耐薬品性がさらに向上する。当該含有量は、2モル%以上がより好ましい。一方、イソフタル酸単位の含有量が20モル%を超えると固相重合する場合に樹脂の軟化による膠着が生じ易く、その為に固相重合温度を高くすることができないので生産性が低下するおそれがある。イソフタル酸単位の含有量は15モル%以下がより好ましい。 The structural unit contained in the polyester may be only a unit derived from a polyvalent carboxylic acid (X) having a terephthalic acid unit, an ethylene glycol unit, a diethylene glycol unit and an α, β-dicarboxylic acid unit, The polyester preferably further contains 0.1 to 20 mol% of isophthalic acid (IPA) units based on the total of the dicarboxylic acid units. Here, the total of dicarboxylic acid units is the total of dicarboxylic acid units having no α, β-dicarboxylic acid units in the polyester. When the content of the isophthalic acid unit is 0.1 mol% or more, the chemical resistance is further improved. The content is more preferably 2 mol% or more. On the other hand, when the content of the isophthalic acid unit exceeds 20 mol%, when solid phase polymerization is performed, sticking due to softening of the resin is likely to occur, and therefore the solid phase polymerization temperature cannot be increased, and thus productivity may be reduced. There is. The content of isophthalic acid units is more preferably 15 mol% or less.
 前記ポリエステルが、さらにビスフェノールAエチレンオキサイド付加物(EOBPA)由来の単位を、前記ジオール単位の合計に対して、0.1~20モル%含有することも好ましい。これにより、前記ポリエステルを押出成形する際の耐ドローダウン性がさらに向上する。ビスフェノールAエチレンオキサイド付加物とは、ビスフェノールAの各水酸基にエチレンオキサイドが少なくとも1つ付加したものである。エチレンオキサイドの付加量は、通常、ビスフェノールA1モルに対して、2~4モルである。 It is also preferable that the polyester further contains 0.1 to 20 mol% of units derived from bisphenol A ethylene oxide adduct (EOBPA) based on the total of the diol units. Thereby, the drawdown resistance at the time of extruding the polyester is further improved. The bisphenol A ethylene oxide adduct is obtained by adding at least one ethylene oxide to each hydroxyl group of bisphenol A. The addition amount of ethylene oxide is usually 2 to 4 mol with respect to 1 mol of bisphenol A.
 上述した効果が得られる点から、前記ポリエステル中のビスフェノールAエチレンオキサイド付加物由来の単位の含有量は、0.5モル%以上がより好ましく、2モル%以上がさらに好ましい。一方、前記含有量が20モル%以下であることにより、前記ポリエステルの溶融粘度が適度になるとともに、得られる成形品の耐衝撃性がさらに向上する。前記含有量は15モル%以下がより好ましく、10モル%以下がさらに好ましく、8モル%以下が特に好ましい。 In view of obtaining the above-described effects, the content of the unit derived from the bisphenol A ethylene oxide adduct in the polyester is more preferably 0.5 mol% or more, and further preferably 2 mol% or more. On the other hand, when the content is 20 mol% or less, the melt viscosity of the polyester becomes appropriate, and the impact resistance of the obtained molded product is further improved. The content is more preferably 15 mol% or less, further preferably 10 mol% or less, and particularly preferably 8 mol% or less.
 前記ポリエステルが、さらにシクロヘキサンジメタノール(CHDM)単位を、前記ジオール単位の合計に対して、0.1~45モル%含有することが好ましい。前記ポリエステルにおけるシクロヘキサンジメタノール単位は、1,2-シクロヘキサンジメタノール単位、1,3-シクロヘキサンジメタノール単位および1,4-シクロヘキサンジメタノール単位から選ばれる少なくとも1種の2価の単位であればよい。なかでも、入手の容易性、前記ポリエステルを結晶性のものにしやすい点、固相重合時にペレット間の膠着が生じにくい点、得られる成形品の耐衝撃性がさらに向上する点から、シクロヘキサンジメタノール単位が1,4-シクロヘキサンジメタノール単位であることが好ましい。 The polyester preferably further contains cyclohexanedimethanol (CHDM) units in an amount of 0.1 to 45 mol% based on the total of the diol units. The cyclohexanedimethanol unit in the polyester may be at least one divalent unit selected from 1,2-cyclohexanedimethanol unit, 1,3-cyclohexanedimethanol unit and 1,4-cyclohexanedimethanol unit. . Among these, cyclohexanedimethanol is easy to obtain, easy to make the polyester crystalline, difficult to cause sticking between pellets during solid phase polymerization, and further improves the impact resistance of the resulting molded product. The unit is preferably 1,4-cyclohexanedimethanol unit.
 シクロヘキサンジメタノール単位にはシス体およびトランス体が存在するが、前記ポリエステル中のシクロヘキサンジメタノール単位におけるシス体とトランス体の割合は特に制限されない。なかでも、前記ポリエステルにおけるシクロヘキサンジメタノール単位では、シス体:トランス体の割合が、0:100~50:50の範囲であることが、前記ポリエステルを結晶性のものにし易い点、固相重合時にペレット間の膠着が生じにくい点、得られる成形品の耐衝撃性がさらに向上する点から好ましい。 There are cis and trans isomers in the cyclohexanedimethanol unit, but the ratio of the cis and trans isomers in the cyclohexanedimethanol unit in the polyester is not particularly limited. In particular, in the cyclohexanedimethanol unit in the polyester, the ratio of cis isomer: trans isomer is in the range of 0: 100 to 50:50, which makes it easy to make the polyester crystalline. This is preferable from the viewpoint that sticking between the pellets hardly occurs and the impact resistance of the obtained molded product is further improved.
 前記ポリエステルがシクロヘキサンジメタノール単位を0.1モル%以上含有することにより、得られる成形品の常温および低温での耐衝撃性がさらに向上するうえに、透明性もさらに向上する。前記含有量は、2モル%以上がより好ましく、4モル%以上がさらに好ましく、6モル%以上が特に好ましい。一方、シクロヘキサンジメタノール単位の含有量が45モル%以下である場合、高重合度のポリエステルが得られる。当該含有量が30モル%以下であることがより好ましい。そして、当該含有量が15モル%以下であることがさらに好ましい。当該含有量が15モル%以下であるポリエステルに予備結晶化処理を施すことによって、ガラス転移温度以上の温度での乾燥が可能となり、水分量を低減できるため成形時の加水分解による極限粘度の低下を抑制できる。 When the polyester contains 0.1 mol% or more of cyclohexanedimethanol units, the resulting molded article has further improved impact resistance at room temperature and low temperature, and further improved transparency. The content is more preferably 2 mol% or more, further preferably 4 mol% or more, and particularly preferably 6 mol% or more. On the other hand, when the content of the cyclohexanedimethanol unit is 45 mol% or less, a polyester having a high degree of polymerization is obtained. The content is more preferably 30 mol% or less. And it is further more preferable that the said content is 15 mol% or less. By subjecting polyester having a content of 15 mol% or less to a pre-crystallization treatment, drying at a temperature higher than the glass transition temperature becomes possible, and the moisture content can be reduced, resulting in a decrease in intrinsic viscosity due to hydrolysis during molding. Can be suppressed.
 前記ポリエステル中のテレフタル酸単位及びエチレングリコール単位の合計含有量は、前記ポリエステル中の全構造単位の合計に対して、50モル%以上である。これにより、前記ポリエステルを固相重合により製造する場合に、樹脂の軟化による膠着が抑制されるため、容易に重合度を高めることができる。前記含有量は75モル%以上が好ましく、85モル%以上がより好ましく、90モル%以上がさらに好ましい。 The total content of terephthalic acid units and ethylene glycol units in the polyester is 50 mol% or more based on the total of all structural units in the polyester. Thereby, when manufacturing the said polyester by solid-phase polymerization, since the sticking by softening of resin is suppressed, a polymerization degree can be raised easily. The content is preferably 75 mol% or more, more preferably 85 mol% or more, and further preferably 90 mol% or more.
 前記ポリエステルは、必要に応じて、テレフタル酸単位、エチレングリコール単位、ジエチレングリコール単位、イソフタル酸単位、シクロヘキサンジメタノール単位、ビスフェノールAエチレンオキサイド付加物由来の単位及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)に由来する単位以外の他のコモノマー単位を含有していてもよい。 If necessary, the polyester may be a polyvalent compound having a terephthalic acid unit, an ethylene glycol unit, a diethylene glycol unit, an isophthalic acid unit, a cyclohexanedimethanol unit, a unit derived from a bisphenol A ethylene oxide adduct and an α, β-dicarboxylic acid unit. You may contain other comonomer units other than the unit derived from carboxylic acid (X).
 他のコモノマー単位の炭素数は5以上であることが好ましい。当該炭素数が5未満の場合には、原料のコモノマー沸点が低下して縮重合反応中に揮発するのでエチレングリコールを回収するのが困難になるおそれがある。前記炭素数の上限値は特に限定されないが、通常50以下である。前記ポリエステル中に含有される他のコモノマー単位は1種類であってもよいし、2種類以上であってもよい。 The other comonomer unit preferably has 5 or more carbon atoms. When the number of carbon atoms is less than 5, the comonomer boiling point of the raw material is lowered and volatilizes during the condensation polymerization reaction, so that it may be difficult to recover ethylene glycol. The upper limit of the carbon number is not particularly limited, but is usually 50 or less. The other comonomer unit contained in the polyester may be one type or two or more types.
 他のコモノマー単位として2官能性化合物単位が主に用いられる。他の2官能性化合物単位の含有量(2種以上の単位を有する場合はその合計)は、前記ポリエステルを構成する全構造単位の合計に対して、20モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましい。前記ポリエステル中に含有させることのできる他の2官能性化合物単位は、テレフタル酸単位、エチレングリコール単位、ジエチレングリコール単位、イソフタル酸単位、シクロヘキサンジメタノール単位、ビスフェノールAエチレンオキサイド付加物由来の単位及びα,β-ジカルボン酸単位を有するジカルボン酸以外のものである。他の2官能性化合物単位はジカルボン酸単位、ジオール単位、ヒドロキシカルボン酸単位であれば、脂肪族の2官能性化合物単位、脂環式の2官能性化合物単位、芳香族の2官能性化合物単位のいずれであってもよい。 Bifunctional compound units are mainly used as other comonomer units. The content of other bifunctional compound units (the total when two or more units are included) is preferably 20 mol% or less with respect to the total of all structural units constituting the polyester. It is more preferably at most mol%, further preferably at most 5 mol%. Other bifunctional compound units that can be contained in the polyester include terephthalic acid units, ethylene glycol units, diethylene glycol units, isophthalic acid units, cyclohexane dimethanol units, units derived from bisphenol A ethylene oxide adducts and α, Other than dicarboxylic acids having β-dicarboxylic acid units. If the other bifunctional compound unit is a dicarboxylic acid unit, a diol unit, or a hydroxycarboxylic acid unit, an aliphatic bifunctional compound unit, an alicyclic bifunctional compound unit, or an aromatic bifunctional compound unit Any of these may be used.
 他のコモノマー単位として用いられる、芳香族ジカルボン酸単位としては、フランジカルボン酸(FDCA)、フタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5ーナフタレンジカルボン酸、2,6ーナフタレンジカルボン酸、2,7ーナフタレンジカルボン酸、4、4’-ビフェニルジカルボン酸、4、4’-ビフェニルスルホンジカルボン酸、4、4’-ビフェニルエーテルジカルボン酸、パモイン酸、アントラセンジカルボン酸等の芳香族ジカルボン酸またはそれらのエステル形成性誘導体に由来する単位を挙げることができる。 Aromatic dicarboxylic acid units used as other comonomer units include furandicarboxylic acid (FDCA), phthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 1,3-naphthalenedicarboxylic acid, 1,4 -Naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4, Mention may be made of units derived from aromatic dicarboxylic acids such as 4′-biphenyl ether dicarboxylic acid, pamoic acid, anthracene dicarboxylic acid or their ester-forming derivatives.
 他のコモノマー単位として用いられる、脂肪族ジカルボン酸単位としては、例えば、ダイマー酸、水添ダイマー酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ドコサン二酸、フマール酸、イタコン酸等の脂肪族ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、デカヒドロナフタレンジカルボン酸(デカリンジカルボン酸)、テトラリンジカルボン酸、シクロブテンジカルボン酸、トリシクロデカンジカルボン酸、ノルボルナンジカルボン酸、アダマンタンジカルボン酸などの脂肪族ジカルボン酸またはそれらのエステル形成性誘導体に由来する単位を挙げることができる。 Examples of aliphatic dicarboxylic acid units used as other comonomer units include dimer acid, hydrogenated dimer acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, docosanedioic acid, fumaric acid, itaconic acid, etc. Aliphatic dicarboxylic acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, , 3-Cyclohexanedicarboxylic acid, decahydronaphthalene List units derived from aliphatic dicarboxylic acids such as rubonic acid (decalin dicarboxylic acid), tetralin dicarboxylic acid, cyclobutene dicarboxylic acid, tricyclodecane dicarboxylic acid, norbornane dicarboxylic acid, adamantane dicarboxylic acid or their ester-forming derivatives. Can do.
 他のコモノマー単位として用いられる、脂肪族ジオール単位としては、トリエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、イソソルビド、1,2-プロパンジオール、ネオペンチルグリコール(2,2-ジメチル-1,3-プロパンジオール)、3-メチル-1,5-ペンタンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、テトラメチルシクロブタンジオール、1,9-ノナンジオール、炭素数36のダイマージオール、炭素数44のダイマージオールなどの脂肪族ジオールまたはそれらのエステル形成性誘導体に由来する単位を挙げることができる。 Examples of aliphatic diol units used as other comonomer units include triethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, isosorbide, , 2-propanediol, neopentyl glycol (2,2-dimethyl-1,3-propanediol), 3-methyl-1,5-pentanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, tetra Examples thereof include units derived from aliphatic diols such as methylcyclobutanediol, 1,9-nonanediol, dimer diol having 36 carbon atoms, and dimer diol having 44 carbon atoms, or ester-forming derivatives thereof.
 他のコモノマー単位として用いられる、ヒドロキシカルボン酸としては、10-ヒドロキシオクタデカン酸などの脂肪族ヒドロキシカルボン酸またはそれらのエステル形成性誘導体;ヒドロキシメチルシクロヘキサンカルボン酸、ヒドロキシメチルノルボルネンカルボン酸、ヒドロキシメチルトリシクロデカンカルボン酸などの脂環式ヒドロキシカルボン酸またはそれらのエステル形成性誘導体;ヒドロキシ安息香酸、ヒドロキシトルイル酸、ヒドロキシナフトエ酸、3-(ヒドロキシフェニル)プロピオン酸、ヒドロキシフェニル酢酸、3-ヒドロキシ-3-フェニルプロピオン酸などの芳香族ヒドロキシカルボン酸およびそれらのエステル形成性誘導体が挙げられる。 Hydroxycarboxylic acids used as other comonomer units include aliphatic hydroxycarboxylic acids such as 10-hydroxyoctadecanoic acid or ester-forming derivatives thereof; hydroxymethylcyclohexanecarboxylic acid, hydroxymethylnorbornenecarboxylic acid, hydroxymethyltricyclohexane Alicyclic hydroxycarboxylic acids such as decanecarboxylic acid or ester-forming derivatives thereof; hydroxybenzoic acid, hydroxytoluic acid, hydroxynaphthoic acid, 3- (hydroxyphenyl) propionic acid, hydroxyphenylacetic acid, 3-hydroxy-3- Aromatic hydroxycarboxylic acids such as phenylpropionic acid and their ester-forming derivatives.
 前記ポリエステルは、本発明の効果を阻害しない範囲であれば、他のコモノマー単位として、α,β-ジカルボン酸単位を有する多価カルボン酸(X)に由来する単位以外に、カルボキシル基、ヒドロキシル基および/またはそれらのエステル形成性基を3個以上有する多官能性化合物から誘導される多官能性化合物単位を用いることができる。前記ポリエステルがこのような多官能性化合物単位を含有することによってインフレーション成形性が向上する。他の多官能性化合物単位の含有量(2種以上の単位を有する場合はその合計)は、前記ポリエステルの構造単位の合計に対して、0.00005~1モル%であることが好ましく、0.00015~0.8モル%であることがより好ましく、0.00025~0.4モル%であることがさらに好ましい。他の多官能性化合物単位の中でも3官能性化合物単位及び4官能性化合物単位が好ましい。他の多官能性化合物単位として、トリメリット酸、トリメシン酸等から誘導される多価カルボン酸単位;トリメチロールプロパン、グリセリン等から誘導される多価アルコール単位が好ましい。 The polyester has a carboxyl group, a hydroxyl group, in addition to a unit derived from a polyvalent carboxylic acid (X) having an α, β-dicarboxylic acid unit as another comonomer unit, as long as the effects of the present invention are not impaired. And / or a polyfunctional compound unit derived from a polyfunctional compound having three or more ester-forming groups thereof can be used. When the polyester contains such a polyfunctional compound unit, inflation moldability is improved. The content of other polyfunctional compound units (the total when two or more units are included) is preferably 0.00005 to 1 mol% based on the total of the structural units of the polyester. The amount is more preferably 0.0015 to 0.8 mol%, and further preferably 0.00025 to 0.4 mol%. Among other polyfunctional compound units, trifunctional compound units and tetrafunctional compound units are preferred. Other polyfunctional compound units are preferably polyvalent carboxylic acid units derived from trimellitic acid, trimesic acid and the like; polyhydric alcohol units derived from trimethylolpropane, glycerin and the like.
 前記多官能性化合物単位として、3価以上のポリオールのカルボン酸エステルであって、該カルボン酸がヒンダードフェノール基を有する多価エステル由来の単位を挙げることもできる。多価エステルとしては、ペンタエリスリトール テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス[2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパノイルオキシ]エチル]ヘキサヒドロ-1,3,5-トリアジン-2,4,6-トリオンなどが挙げられる。 Examples of the polyfunctional compound unit include a carboxylic acid ester of a trivalent or higher polyol, wherein the carboxylic acid is derived from a polyvalent ester having a hindered phenol group. Examples of the polyvalent ester include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris [2- [3- (3,5-di- -Tert-butyl-4-hydroxyphenyl) propanoyloxy] ethyl] hexahydro-1,3,5-triazine-2,4,6-trione and the like.
 また、必要に応じて、前記ポリエステルは他のコモノマー単位として、モノカルボン酸、モノアルコールおよびそれらのエステル形成性誘導体の少なくとも1種の単官能性化合物から誘導される単官能性化合物単位を有していてもよい。単官能性化合物単位は、封止化合物単位として機能し、前記ポリエステルにおける分子鎖末端基および/または分岐鎖末端基の封止を行い、前記ポリエステルにおける過度の架橋およびゲルの発生を防止する。前記ポリエステルがこのような単官能性化合物単位を有する場合は、単官能性化合物単位の含有量(2種以上の単位を有する場合はその合計)が、前記ポリエステルの全構造単位の合計に対して、1モル%以下であることが好ましく、0.5モル%以下であることがより好ましい。前記ポリエステルにおける単官能性化合物単位の含有量が1モル%を超えると、前記ポリエステルを製造する際の重合速度が遅くなって、生産性が低下し易い。単官能性化合物単位としては、安息香酸、2,4,6-トリメトキシ安息香酸、2-ナフトエ酸、ステアリン酸およびステアリルアルコールから選ばれる単官能性化合物から誘導される単位などが例示される。 Further, if necessary, the polyester has a monofunctional compound unit derived from at least one monofunctional compound of monocarboxylic acid, monoalcohol and ester-forming derivatives thereof as another comonomer unit. It may be. The monofunctional compound unit functions as a sealing compound unit and seals molecular chain end groups and / or branched chain end groups in the polyester, thereby preventing excessive crosslinking and gel generation in the polyester. When the polyester has such a monofunctional compound unit, the content of the monofunctional compound unit (the total when there are two or more units) is based on the total of all the structural units of the polyester. It is preferably 1 mol% or less, and more preferably 0.5 mol% or less. When content of the monofunctional compound unit in the said polyester exceeds 1 mol%, the polymerization rate at the time of manufacturing the said polyester will become slow, and productivity will fall easily. Examples of the monofunctional compound unit include units derived from a monofunctional compound selected from benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthoic acid, stearic acid and stearyl alcohol.
 前記ポリエステルは、コバルト化合物(M)、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させてなるものである。ここで、原料モノマーである前記ジカルボン酸は、α,β-ジカルボン酸単位を有さない。 The polyester has at least one phosphorus compound (P) selected from the group consisting of a cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid, and esters thereof, and an α, β-dicarboxylic acid unit. A product obtained by polycondensation of a dicarboxylic acid and a diol in the presence of the polyvalent carboxylic acid (X). Here, the dicarboxylic acid as a raw material monomer does not have an α, β-dicarboxylic acid unit.
 このように、重縮合時に、コバルト化合物(M)とともに、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)を用いることによって、色調が良好なポリエステルが得られる。また、当該ポリエステルを用いることによって、透明性が高く耐衝撃性にも優れた成形品を得ることができる。リン化合物(P)及び多価カルボン酸(X)を用いることによって、コバルト化合物(M)の分散性が向上するものと考えられる。そして、前記ポリエステル中にコバルト化合物(M)が均一に分散することによって、コバルト化合物(M)による色調改善効果が効率的に奏されるとともに、コバルト化合物(M)による透明性の低下も抑制されるものと考えられる。また、コバルト化合物(M)の粗大な凝集物の発生が抑制されることによって、得られる成形品の耐衝撃性が向上するものと考えられる。さらに、従来、重縮合時に生じたコバルト化合物の凝集物をフィルターで除去していた。そして、当該フィルターが短時間で目詰まりを起こして生産性を低下させていた。それに対して、本発明のポリエステル中にはコバルト化合物(M)の粗大な凝集物が少ないため、フィルター交換間隔が長くなり、生産性が向上する。 Thus, at the time of polycondensation, together with the cobalt compound (M), at least one phosphorus compound (P) selected from the group consisting of phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof and α, β- By using the polyvalent carboxylic acid (X) having a dicarboxylic acid unit, a polyester having a good color tone can be obtained. Further, by using the polyester, a molded product having high transparency and excellent impact resistance can be obtained. It is considered that the dispersibility of the cobalt compound (M) is improved by using the phosphorus compound (P) and the polyvalent carboxylic acid (X). And since a cobalt compound (M) disperse | distributes uniformly in the said polyester, while the color tone improvement effect by a cobalt compound (M) is show | played efficiently, the fall of the transparency by a cobalt compound (M) is also suppressed. It is thought that. Moreover, it is thought that the impact resistance of the obtained molded article is improved by suppressing the generation of coarse aggregates of the cobalt compound (M). Further, conventionally, aggregates of cobalt compounds generated during polycondensation have been removed with a filter. And the said filter produced clogging in a short time, and was reducing productivity. On the other hand, since the polyester of the present invention has few coarse aggregates of the cobalt compound (M), the filter replacement interval becomes longer, and the productivity is improved.
 本発明に用いられるコバルト化合物(M)としては、酢酸コバルト等の有機酸のコバルト塩、酸化コバルトなどが挙げられ、なかでもアルコールに可溶であり生産時の取り扱いが容易である点から、酢酸コバルトが好ましい。コバルト化合物(M)の添加量は、ジカルボン酸の合計100質量部に対して、コバルト元素換算で0.0005~0.05質量部である。ここで、ジカルボン酸単位の合計とは、前記ポリエステル中のα,β-ジカルボン酸単位を有さないジカルボン酸単位の合計である。重合時に、ジカルボン酸の合計100質量部に対して、コバルト化合物(M)を0.0005質量部以上添加することによって、得られるポリエステルの色調が改善するとともに、当該ポリエステルを用いて得られる成形品の耐衝撃性が向上する。コバルト化合物(M)の添加量は、0.001質量部以上が好ましく、0.002質量部以上がより好ましい。一方、重合時に、ジカルボン酸の合計100質量部に対する、コバルト化合物(M)の添加量が0.05質量部以下である場合には、重合反応が阻害されない。コバルト化合物(M)の添加量は0.02質量部以下が好ましい。 Examples of the cobalt compound (M) used in the present invention include cobalt salts of organic acids such as cobalt acetate, cobalt oxide and the like. Among these, acetic acid is soluble in alcohol and easy to handle during production. Cobalt is preferred. The added amount of the cobalt compound (M) is 0.0005 to 0.05 parts by mass in terms of cobalt element with respect to 100 parts by mass of the total dicarboxylic acid. Here, the total of dicarboxylic acid units is the total of dicarboxylic acid units having no α, β-dicarboxylic acid units in the polyester. At the time of polymerization, by adding 0.0005 parts by mass or more of the cobalt compound (M) to 100 parts by mass of the total dicarboxylic acid, the color tone of the obtained polyester is improved, and a molded product obtained using the polyester Improves impact resistance. 0.001 mass part or more is preferable and, as for the addition amount of a cobalt compound (M), 0.002 mass part or more is more preferable. On the other hand, when the addition amount of the cobalt compound (M) is 0.05 parts by mass or less with respect to a total of 100 parts by mass of the dicarboxylic acid during the polymerization, the polymerization reaction is not inhibited. The addition amount of the cobalt compound (M) is preferably 0.02 parts by mass or less.
 本発明において、重縮合時に、コバルト化合物(M)とともに、α,β-ジカルボン酸単位を有する多価カルボン酸(X)が用いられる。α,β-ジカルボン酸単位を有する多価カルボン酸(X)は、コバルト化合物(M)と相互作用し易いものと考えられ、それがコバルト化合物(M)の分散性が向上する一因であると考えられる。コバルト化合物(M)の分散性がさらに向上する観点から多価カルボン酸(X)が水酸基を有することが好ましい。また、同様の観点から、多価カルボン酸(X)がトリカルボン酸であることも好ましい。α,β-ジカルボン酸単位を有する多価カルボン酸(X)としては、クエン酸、酒石酸、コハク酸、フマル酸、マレイン酸などが挙げられ、なかでもクエン酸、酒石酸及びコハク酸が好ましく、クエン酸及びコハク酸がより好ましく、クエン酸がさらに好ましい。α,β-ジカルボン酸単位を有する多価カルボン酸(X)やその分解物の少なくとも一部が、前記ポリエステルの主鎖、分岐鎖又は末端に含有されることがある。 In the present invention, a polyvalent carboxylic acid (X) having an α, β-dicarboxylic acid unit is used together with the cobalt compound (M) during polycondensation. The polyvalent carboxylic acid (X) having an α, β-dicarboxylic acid unit is considered to easily interact with the cobalt compound (M), which is one factor for improving the dispersibility of the cobalt compound (M). it is conceivable that. From the viewpoint of further improving the dispersibility of the cobalt compound (M), the polyvalent carboxylic acid (X) preferably has a hydroxyl group. From the same viewpoint, the polycarboxylic acid (X) is preferably a tricarboxylic acid. Examples of the polyvalent carboxylic acid (X) having an α, β-dicarboxylic acid unit include citric acid, tartaric acid, succinic acid, fumaric acid, maleic acid and the like. Among these, citric acid, tartaric acid and succinic acid are preferable. Acid and succinic acid are more preferable, and citric acid is more preferable. At least a part of the polyvalent carboxylic acid (X) having an α, β-dicarboxylic acid unit or a decomposition product thereof may be contained in the main chain, branched chain or terminal of the polyester.
 重縮合するに際して、コバルト化合物(M)中のコバルト原子に対する多価カルボン酸(X)のモル比(X/M)が0.01~10となるように多価カルボン酸(X)の添加量を調整する。モル比(X/M)が0.01以上であることにより、前記ポリエステル中のコバルト化合物(M)の分散性が向上する。モル比(X/M)は0.1以上が好ましく、0.5以上がより好ましく、1以上がさらに好ましい。一方、モル比(X/M)が10以下である場合には、重合反応が阻害されないことに加え、樹脂の色相や成形品の透明性が優れたものとなる。モル比(X/M)は、5以下が好ましい。 In polycondensation, the amount of polyvalent carboxylic acid (X) added so that the molar ratio (X / M) of polyvalent carboxylic acid (X) to cobalt atoms in cobalt compound (M) is 0.01 to 10 Adjust. When the molar ratio (X / M) is 0.01 or more, the dispersibility of the cobalt compound (M) in the polyester is improved. The molar ratio (X / M) is preferably 0.1 or more, more preferably 0.5 or more, and still more preferably 1 or more. On the other hand, when the molar ratio (X / M) is 10 or less, the polymerization reaction is not inhibited, and the hue of the resin and the transparency of the molded product are excellent. The molar ratio (X / M) is preferably 5 or less.
 本発明において、重縮合時に、コバルト化合物(M)とともに、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)が用いられる。リン化合物(P)として用いられるリン酸は、オルトリン酸であってもよいし、ピロリン酸等のポリリン酸であってもよい。リン化合物(P)として用いられるリン酸エステルが、前記リン酸と炭素数1~20の脂肪族モノアルコールとのモノエステル又はジエステルであることが好ましく、リン酸ジブチル、リン酸ジエチル、リン酸ジメチルであることがより好ましい。リン化合物(P)として用いられる亜リン酸エステルが、亜リン酸と炭素数1~20の脂肪族モノアルコールとのモノエステルであることが好ましい。リン化合物(P)として用いられる有機ホスホン酸がアルキルホスホン酸であることが好ましい。アルキルホスホン酸においてリン原子に直接結合しているアルキル基の炭素数が1~20であることが好ましい。リン化合物(P)として用いられる有機ホスホン酸エステルが、前記有機ホスホン酸と炭素数1~20の脂肪族モノアルコールとのモノエステルであることが好ましい。なかでも、本発明に用いられるリン化合物(P)が、亜リン酸又はリン酸の少なくとも1種であることが好ましく、亜リン酸であることがより好ましい。 In the present invention, at the time of polycondensation, at least one phosphorus compound (P) selected from the group consisting of phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof is used together with the cobalt compound (M). The phosphoric acid used as the phosphorus compound (P) may be orthophosphoric acid or polyphosphoric acid such as pyrophosphoric acid. The phosphoric acid ester used as the phosphorous compound (P) is preferably a monoester or diester of phosphoric acid and an aliphatic monoalcohol having 1 to 20 carbon atoms, such as dibutyl phosphate, diethyl phosphate, dimethyl phosphate. It is more preferable that The phosphite used as the phosphorus compound (P) is preferably a monoester of phosphorous acid and an aliphatic monoalcohol having 1 to 20 carbon atoms. The organic phosphonic acid used as the phosphorus compound (P) is preferably an alkyl phosphonic acid. In the alkylphosphonic acid, the alkyl group directly bonded to the phosphorus atom preferably has 1 to 20 carbon atoms. The organic phosphonic acid ester used as the phosphorus compound (P) is preferably a monoester of the organic phosphonic acid and an aliphatic monoalcohol having 1 to 20 carbon atoms. Especially, it is preferable that the phosphorus compound (P) used for this invention is at least 1 sort (s) of phosphorous acid or phosphoric acid, and it is more preferable that it is phosphorous acid.
 重縮合するに際して、コバルト化合物(M)中のコバルト原子に対するリン化合物(P)中のリン原子のモル比(P/M)が0.01~10となるようにリン化合物(P)の添加量を調整する。モル比(P/M)が0.01以上であることにより、得られるポリエステルの色調が良好になる。また、リン化合物(P)の酸化防止効果によって、前記ポリエステルを用いて得られる成形品の熱安定性が向上する。モル比(P/M)は0.1以上が好ましく、1以上がより好ましく、1.5以上がさらに好ましい。一方、モル比(P/M)が10以下である場合には、重合反応が阻害されない。モル比(P/M)は5以下が好ましい。 The amount of phosphorus compound (P) added so that the molar ratio (P / M) of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) is 0.01 to 10 during the polycondensation Adjust. When the molar ratio (P / M) is 0.01 or more, the color tone of the obtained polyester is improved. Moreover, the thermal stability of the molded article obtained using the said polyester improves by the antioxidant effect of a phosphorus compound (P). The molar ratio (P / M) is preferably 0.1 or more, more preferably 1 or more, and further preferably 1.5 or more. On the other hand, when the molar ratio (P / M) is 10 or less, the polymerization reaction is not inhibited. The molar ratio (P / M) is preferably 5 or less.
 コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)の存在下、ジカルボン酸(α,β-ジカルボン酸単位を有さないジカルボン酸)及びジオールを重縮合させる方法は、特に制限されないが、テレフタル酸、エチレングリコール又はそれらのエステル形成性誘導体、及び必要に応じてシクロヘキサンジメタノール、ビスフェノールAエチレンオキサイド付加物、イソフタル酸、他のコモノマーを原料として用いて、エステル化反応またはエステル交換反応を行った後、得られたポリエステルオリゴマーを溶融重縮合させる方法が挙げられる。コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)を添加する時期は、特に限定されず、エステル化反応またはエステル交換反応を行う前に添加してもよいし、これらの反応を行った後に添加してもよいが前者が好ましい。また、コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)は、別々に添加してもよいし、コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)のうち、少なくとも2つを予め混合してから、得られた混合物を他の原料に添加してもよい。 In the presence of the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X), a method of polycondensing a dicarboxylic acid (a dicarboxylic acid having no α, β-dicarboxylic acid unit) and a diol is particularly preferable. Without limitation, esterification reaction or ester using terephthalic acid, ethylene glycol or ester-forming derivatives thereof, and optionally using cyclohexanedimethanol, bisphenol A ethylene oxide adduct, isophthalic acid, or other comonomer After the exchange reaction, a method of melt polycondensation of the obtained polyester oligomer can be mentioned. The timing of adding the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X) is not particularly limited, and may be added before the esterification reaction or transesterification reaction. Although it may be added after the reaction, the former is preferred. Further, the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X) may be added separately, or the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X). ), At least two of them may be mixed in advance, and the resulting mixture may be added to other raw materials.
 また、前記多価エステルは、エステル化反応またはエステル交換反応を行う前に添加してもよいし、これらの反応を行った後に添加してもよい。また、その他の原料や重合触媒も、適宜、エステル化反応またはエステル交換反応を行う前に添加することや、これらの反応を行った後に添加することができる。 Further, the polyvalent ester may be added before the esterification reaction or transesterification reaction, or may be added after the reaction. Further, other raw materials and polymerization catalyst can be appropriately added before the esterification reaction or transesterification reaction, or after these reactions have been performed.
 上記したエステル化反応またはエステル交換反応は、コバルト化合物(M)、リン化合物(P)、多価カルボン酸(X)、原料モノマー、重合触媒及び必要に応じて後述するその他の添加剤を反応器に仕込み、絶対圧で約0.5MPa以下の加圧下または常圧下に、160~280℃の温度で、生成する水またはアルコールを留去させながら行うことが好ましい。 The above esterification reaction or transesterification reaction is carried out by adding a cobalt compound (M), a phosphorus compound (P), a polyvalent carboxylic acid (X), a raw material monomer, a polymerization catalyst, and other additives described later as required. It is preferably carried out while distilling off the produced water or alcohol at a temperature of 160 to 280 ° C. under a pressure of about 0.5 MPa or less in absolute pressure or at normal pressure.
 エステル化反応またはエステル交換反応に続く溶融重縮合反応は、得られたポリエステルオリゴマーに、必要に応じて、コバルト化合物(M)、リン化合物(P)、多価カルボン酸(X)、原料モノマー、重縮合触媒及び後述するその他の添加剤を添加して、1kPa以下の減圧下に、260~290℃の温度で、所望の粘度のポリエステルが得られるまで行うのが好ましい。溶融重縮合反応の反応温度が260℃未満の場合、重合触媒の重合活性が低く、目標の重合度のポリエステルが得られないおそれがある。一方、溶融重合反応の反応温度が290℃を超える場合、分解反応が進みやすくなり、その結果、目標の重合度のポリエステルが得られないおそれがある。溶融重縮合反応は、例えば、槽型のバッチ式重縮合装置、2軸回転式の横型反応器からなる連続式重縮合装置などを用いて行うことができる。 The melt polycondensation reaction following the esterification reaction or transesterification reaction is carried out by subjecting the obtained polyester oligomer to a cobalt compound (M), a phosphorus compound (P), a polyvalent carboxylic acid (X), a raw material monomer, It is preferable to add a polycondensation catalyst and other additives described later, under a reduced pressure of 1 kPa or less, at a temperature of 260 to 290 ° C. until a polyester having a desired viscosity is obtained. When the reaction temperature of the melt polycondensation reaction is less than 260 ° C., the polymerization activity of the polymerization catalyst is low, and there is a possibility that a polyester having a target degree of polymerization cannot be obtained. On the other hand, when the reaction temperature of the melt polymerization reaction exceeds 290 ° C., the decomposition reaction easily proceeds, and as a result, there is a possibility that a polyester having a target degree of polymerization cannot be obtained. The melt polycondensation reaction can be performed using, for example, a tank-type batch polycondensation apparatus or a continuous polycondensation apparatus including a biaxial rotating horizontal reactor.
 上記縮重合に使用される重合触媒としては、ポリエステルの製造に用いることのできる任意の触媒を選択することができるが、ゲルマニウム元素又はアンチモン元素を含有する化合物が好ましい。なかでも、重合触媒活性、得られるポリエステルの物性及びコストの点から、二酸化ゲルマニウム及び三酸化アンチモンが好ましく、透明性と色調の観点から前者がより好ましい。重縮合触媒を用いる場合、その添加量は、ジカルボン酸(α,β-ジカルボン酸単位を有さないジカルボン酸)成分の質量に基づいて0.002~0.8質量%の範囲内であるのが好ましい。 As the polymerization catalyst used for the condensation polymerization, any catalyst that can be used for the production of polyester can be selected, but a compound containing a germanium element or an antimony element is preferable. Of these, germanium dioxide and antimony trioxide are preferable from the viewpoint of polymerization catalyst activity, physical properties of the resulting polyester, and cost, and the former is more preferable from the viewpoint of transparency and color tone. When a polycondensation catalyst is used, the amount added is within the range of 0.002 to 0.8 mass% based on the mass of the dicarboxylic acid (dicarboxylic acid having no α, β-dicarboxylic acid unit) component. Is preferred.
 溶融重縮合により得られるポリエステルの極限粘度は0.4dl/g以上が好ましい。これにより、取り扱い性が向上するとともに、溶融重縮合により得られたポリエステルをさらに固相重合する際に、短時間で高分子量化できるため生産性が向上する。前記極限粘度は、より好ましくは0.55dl/g以上であり、さらに好ましくは0.65dl/g以上である。一方、反応器からポリエステルを容易に取り出せる点や熱劣化による着色が抑制される点から、前記極限粘度は好ましくは0.9dl/g以下であり、より好ましくは0.85dl/g以下であり、さらに好ましくは0.8dl/g以下である。 The intrinsic viscosity of the polyester obtained by melt polycondensation is preferably 0.4 dl / g or more. Thereby, the handleability is improved and, when the polyester obtained by melt polycondensation is further solid-phase polymerized, the molecular weight can be increased in a short time, so that productivity is improved. The intrinsic viscosity is more preferably 0.55 dl / g or more, and still more preferably 0.65 dl / g or more. On the other hand, the intrinsic viscosity is preferably 0.9 dl / g or less, more preferably 0.85 dl / g or less, from the viewpoint that polyester can be easily taken out from the reactor and coloring due to thermal deterioration is suppressed. More preferably, it is 0.8 dl / g or less.
 こうして得られたポリエステルは、押出成形用の原料などとして好適に使用される。また、溶融重縮合により得られたポリエステルをさらに固相重合することも好ましい。当該固相重合について以下に説明する。 The polyester thus obtained is suitably used as a raw material for extrusion molding. It is also preferred to further solid-phase polymerize the polyester obtained by melt polycondensation. The solid phase polymerization will be described below.
 上記のようにして得られたポリエステルをストランド状、シート状などの形状に押出し、冷却後、ストランドカッターやシートカッターなどにより裁断して、円柱状、楕円柱状、円盤状、ダイス状などの形状の中間ペレットを製造する。前記した押出し後の冷却は、例えば、水槽を用いる水冷法、冷却ドラムを用いる方法、空冷法などにより行うことができる。 The polyester obtained as described above is extruded into a strand shape, a sheet shape, and the like, cooled, and then cut with a strand cutter, a sheet cutter, or the like to have a shape such as a column shape, an elliptical column shape, a disk shape, or a die shape. Intermediate pellets are produced. The above-described cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
 こうして得られた中間ペレットの重合度をさらに高くするために固相重合を行う。固相重合する前に加熱して予めポリエステルの一部を結晶化させることが好ましい。こうすることによって、固相重合時のペレットの膠着を防止することができる。結晶化の温度は、好適には100~180℃である。結晶化の方法としては、真空タンブラー中で結晶化させてもよいし、空気循環式加熱装置内で加熱して結晶化させてもよい。空気循環式加熱装置内で加熱する場合には、内部の温度が100~160℃であることが好ましい。空気循環式加熱装置を用いて加熱する場合には、真空タンブラーを用いて結晶化する場合に比べて、熱伝導が良好なので結晶化に要する時間を短縮できるし、装置も安価である。結晶化に要する時間は特に限定されないが、通常30分~24時間程度である。結晶化に先立って、100℃未満の温度でペレットを乾燥することも好ましい。 In order to further increase the degree of polymerization of the intermediate pellets thus obtained, solid phase polymerization is performed. It is preferable to crystallize a part of the polyester by heating before solid phase polymerization. By doing so, it is possible to prevent the pellets from sticking during solid phase polymerization. The crystallization temperature is preferably 100 to 180 ° C. As a crystallization method, crystallization may be performed in a vacuum tumbler, or crystallization may be performed by heating in an air circulation type heating apparatus. When heating in an air circulation heating device, the internal temperature is preferably 100 to 160 ° C. When heating using an air circulation type heating device, compared with crystallization using a vacuum tumbler, heat conduction is good, so the time required for crystallization can be shortened and the device is also inexpensive. The time required for crystallization is not particularly limited, but is usually about 30 minutes to 24 hours. It is also preferred to dry the pellets at a temperature below 100 ° C. prior to crystallization.
 固相重合の温度は、好適には170~250℃である。固相重合の温度が170℃未満の場合には、固相重合の時間が長くなり生産性が低下するおそれがある。固相重合の温度は、より好適には175℃以上であり、さらに好適には180℃以上である。一方、固相重合の温度が250℃を超える場合には、ペレットが膠着するおそれがある。固相重合の温度は、より好適には240℃以下であり、さらに好適には230℃以下である。固相重合の時間は、通常5~70時間程度である。 The temperature of solid phase polymerization is preferably 170 to 250 ° C. When the temperature of the solid phase polymerization is lower than 170 ° C., the time for the solid phase polymerization becomes long and the productivity may be lowered. The temperature of solid phase polymerization is more preferably 175 ° C. or higher, and further preferably 180 ° C. or higher. On the other hand, when the temperature of the solid phase polymerization exceeds 250 ° C., the pellets may be stuck. The temperature of the solid phase polymerization is more preferably 240 ° C. or lower, and further preferably 230 ° C. or lower. The time for solid phase polymerization is usually about 5 to 70 hours.
 また、固相重合は、減圧下または窒素ガスなどの不活性ガス中で行うことが好ましい。また、ペレット間の膠着が生じないように、転動法、気体流動床法などの適当な方法でペレットを動かしながら固相重合を行うことが好ましい。減圧下で固相重合を行う場合の圧力は好適には1kPa以下である。 Further, the solid phase polymerization is preferably performed under reduced pressure or in an inert gas such as nitrogen gas. Further, it is preferable to perform solid-state polymerization while moving the pellets by an appropriate method such as a rolling method or a gas fluidized bed method so that no sticking occurs between the pellets. The pressure when solid-state polymerization is performed under reduced pressure is preferably 1 kPa or less.
 こうして固相重合して得られるポリエステルは、押出成形用、特に押出ブロー成形用の原料等として好適に使用される。 Thus, the polyester obtained by solid phase polymerization is suitably used as a raw material for extrusion molding, particularly extrusion blow molding.
 上記のようにして得られるポリエステルは、本発明の効果を阻害しない範囲であればその他の添加剤を含有していてもよく、例えば、酸化防止剤、紫外線吸収剤などの安定剤、帯電防止剤、難燃剤、難燃補助剤、潤滑剤、可塑剤、無機充填剤などが挙げられる。前記ポリエステル中のこれらの添加剤の含有量は、10質量%以下が好ましく、5質量%以下がより好ましい。 The polyester obtained as described above may contain other additives as long as the effects of the present invention are not impaired. For example, stabilizers such as antioxidants and ultraviolet absorbers, and antistatic agents. , Flame retardants, flame retardant aids, lubricants, plasticizers, inorganic fillers and the like. The content of these additives in the polyester is preferably 10% by mass or less, and more preferably 5% by mass or less.
 固相重合して得られるポリエステルの極限粘度は0.9dl/g以上であることが好ましい。これにより、当該ポリエステルを押出ブロー成形する際の耐ドローダウン性がさらに向上する。前記極限粘度は、より好ましくは1.0dl/g以上であり、さらに好ましくは1.05dl/g以上である。一方、前記極限粘度は1.5dl/g以下が好ましく、1.4l/g以下がより好ましく、1.3l/g以下がさらに好ましい。 The intrinsic viscosity of the polyester obtained by solid phase polymerization is preferably 0.9 dl / g or more. Thereby, the drawdown resistance at the time of carrying out extrusion blow molding of the said polyester further improves. The intrinsic viscosity is more preferably 1.0 dl / g or more, and still more preferably 1.05 dl / g or more. On the other hand, the intrinsic viscosity is preferably 1.5 dl / g or less, more preferably 1.4 l / g or less, and further preferably 1.3 l / g or less.
 得られたポリエステルを溶融成形することによって様々な成形品を得ることができる。本発明のポリエステルを溶融成形することによって得られる成形品は、良好な色調、高透明性及び高い衝撃強度を有する。 Various molded products can be obtained by melt-molding the obtained polyester. A molded product obtained by melt molding the polyester of the present invention has good color tone, high transparency, and high impact strength.
 溶融成形に供される前記ポリエステルの極限粘度は、特に限定されないが、得られる成形品の強度、耐衝撃性及び溶融成形性、並びに生産安定性がさらに向上する観点から、0.55dl/g以上が好ましく、0.65dl/g以上がより好ましい。一方、溶融成形性や生産性がさらに向上する観点から、前記極限粘度は1.5dl/g以下が好ましく、1.4dl/g以下がより好ましく、1.3dl/g以下がさらに好ましい。前記成形品の全光線透過率は90.3%以上が好ましく、90.5%以上がより好ましく、90.7%以上がさらに好ましい。前記ポリエステルを用いることにより、このように透明性に優れた成形品が得られる。溶融成形品をさらに二次加工して成形品を得ることもできる。 The intrinsic viscosity of the polyester subjected to melt molding is not particularly limited, but is 0.55 dl / g or more from the viewpoint of further improving the strength, impact resistance, melt moldability, and production stability of the obtained molded product. Is preferable, and 0.65 dl / g or more is more preferable. On the other hand, from the viewpoint of further improving melt moldability and productivity, the intrinsic viscosity is preferably 1.5 dl / g or less, more preferably 1.4 dl / g or less, and further preferably 1.3 dl / g or less. The total light transmittance of the molded product is preferably 90.3% or more, more preferably 90.5% or more, and further preferably 90.7% or more. By using the polyester, a molded article having excellent transparency can be obtained. The melt-molded product can be further subjected to secondary processing to obtain a molded product.
 成形方法は特に限定されないが押出成形法が好適に採用される。前記ポリエステルを押出成形してなる成形品が本発明の好適な実施態様である。前記ポリエステルを押出成形してなるフィルム又はシートが本発明のより好適な実施態様である。また、前記ポリエステルを押出成形してなる容器もまた本発明のより好適な実施態様である。前記ポリエステルは溶融成形時の粘度が高いので、押出成形に適している。押出成形時の樹脂組成物の温度は、(ポリエステルの融点+10℃)~(ポリエステルの融点+70℃)の範囲内の温度にするのが好ましく、(ポリエステルの融点+10℃)~(ポリエステルの融点+40℃)の範囲内の温度にするのがより好ましい。比較的融点に近い温度で押出すことによって、ドローダウンを抑制できる。 The molding method is not particularly limited, but an extrusion molding method is preferably employed. A molded product obtained by extrusion molding of the polyester is a preferred embodiment of the present invention. A film or sheet obtained by extruding the polyester is a more preferred embodiment of the present invention. A container formed by extrusion molding the polyester is also a more preferred embodiment of the present invention. The polyester is suitable for extrusion molding because of its high viscosity during melt molding. The temperature of the resin composition at the time of extrusion molding is preferably a temperature within the range of (polyester melting point + 10 ° C.) to (polyester melting point + 70 ° C.), and (polyester melting point + 10 ° C.) to (polyester melting point + 40). It is more preferable to set the temperature within the range of ° C. By extruding at a temperature relatively close to the melting point, drawdown can be suppressed.
 前記ポリエステルを用いて、例えば、Tダイ法やインフレーション法などの押出成形によってシートやフィルムを製造する場合には、透明性の高い、高品質のシートまたはフィルムを生産性よく製造することができる。そして、そのようにして得られたシートまたはフィルムを用いて熱成形などの二次加工を行った場合には、深絞りの成形品や大型の成形品を成形する際に、用途に合わせて金型の温度を調節することで成形品の結晶化の度合いを調整できる。また、フィルムを二軸延伸する場合、結晶性が向上するため、延伸フィルムの強度を改善することができる。このような、二軸延伸フィルム、シートまたはフィルムを熱成形してなる熱成形品、なかでも前記シートまたはフィルムを熱成形してなる容器が本発明の好適な実施態様である。 For example, when a sheet or film is produced using the polyester by extrusion molding such as a T-die method or an inflation method, a highly transparent, high-quality sheet or film can be produced with high productivity. When secondary processing such as thermoforming is performed using the sheet or film thus obtained, when forming a deep-drawn molded product or a large molded product, The degree of crystallization of the molded product can be adjusted by adjusting the temperature of the mold. In addition, when the film is biaxially stretched, the crystallinity is improved, so that the strength of the stretched film can be improved. Such a biaxially stretched film, a sheet or a thermoformed product formed by thermoforming a film, particularly a container formed by thermoforming the sheet or film is a preferred embodiment of the present invention.
 そして、押出成形の中でも、特に前記ポリエステルを用いることが適しているのは押出ブロー成形である。押出ブロー成形の方法は特に制限されず、従来既知の押出ブロー成形法と同様に行うことができる。例えば、前記ポリエステルを溶融押出して円筒状のパリソンを形成し、このパリソンが軟化状態にある間にブロー用金型で挟んで、空気などの気体を吹き込んでパリソンを金型キャビィティの形状に沿った所定の中空形状に膨張させる方法によって行うことができる。前記ポリエステルを用いた場合には、コバルト化合物が凝集した異物が生じにくいため、成形品を高収率で製造することができる。 Of the extrusion molding, it is extrusion blow molding that is particularly suitable for using the polyester. The method of extrusion blow molding is not particularly limited, and can be performed in the same manner as conventionally known extrusion blow molding methods. For example, the polyester is melt-extruded to form a cylindrical parison, which is sandwiched between blow molds while the parison is in a softened state, and a gas such as air is blown to conform the parison to the mold cavity shape. It can be performed by a method of expanding into a predetermined hollow shape. When the polyester is used, a foreign matter in which the cobalt compound is aggregated is hardly generated, so that a molded product can be produced with a high yield.
 こうして前記ポリエステルを押出ブロー成形してなる成形品も本発明の好適な実施態様である。当該成形品は、透明性、色調、および耐衝撃性が良好である。したがって、当該成形品は様々な用途に用いることができる。前記成形品からなる容器が当該成形品の好適な実施態様である。このような容器は、化粧品や油用の容器として好適に使用される。また、前記ポリエステルと他の熱可塑性樹脂などとの積層構造を有する成形品とすることもできる。 Thus, a molded product obtained by extrusion blow molding of the polyester is also a preferred embodiment of the present invention. The molded article has good transparency, color tone, and impact resistance. Therefore, the molded product can be used for various applications. A container made of the molded product is a preferred embodiment of the molded product. Such a container is suitably used as a container for cosmetics or oil. Moreover, it can also be set as the molded article which has the laminated structure of the said polyester, another thermoplastic resin, etc.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はかかる実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.
(1)ポリエステルの組成
ポリエステルを構成する単量体単位の比率は1H-NMRスペクトル(装置:日本電子社製「JNM-GX-500型」、溶媒:重水素化トリフルオロ酢酸)により評価した。
(2)極限粘度(IV)
 溶融重合後のポリエステル及び固相重合後のポリエステルの極限粘度は、フェノールと1,1,2,2-テトラクロロエタンとの等質量混合物を溶媒として用いて、温度30℃にて測定した。
(1) Composition of polyester The ratio of monomer units constituting the polyester was evaluated by 1 H-NMR spectrum (apparatus: “JNM-GX-500 type” manufactured by JEOL Ltd., solvent: deuterated trifluoroacetic acid). .
(2) Intrinsic viscosity (IV)
The intrinsic viscosity of the polyester after the melt polymerization and the polyester after the solid phase polymerization were measured at a temperature of 30 ° C. using an equal mass mixture of phenol and 1,1,2,2-tetrachloroethane as a solvent.
(3)粒子径分布
 目開き1ミクロンのフィルタでろ過した、フェノールと1,1,2,2-テトラクロロエタンとの等質量混合物500g中に、固相重合後の結晶ペレット0.4gを100℃で溶解させ、室温に戻して1日間静置した。50mL(65g)の溶液を液中パーティクルカウンタ(Particle Sizing Systems社製 アキュサイザー780SIS)に通液させ、0.5~500μmの範囲を128に対数分割して計測したペレット中に含まれる粒子数の分布を求めた。測定は3回行い、平均値を用いた。ポリエステル中の粒子径の分布の例として、実施例2及び比較例1で得られたポリエステル中の粒子径の分布を図1に示す。こうして測定されたペレット1g当たりに含まれる粒径5μm以上の粒子数をコバルト化合物(M)の分散性の指標とした。
(4)フィルム中の異物数
固相重合後のペレットを120℃で終夜乾燥させたのち、20φの単軸押出機(シリンダー温度:280-290℃、冷却ロール温度:80℃)を用いて、Tダイから冷却ロール上にポリエステル樹脂を押し出して厚さ400μmのフィルムを製膜し、シート欠点検出器(フロンティアシステム社製、ZD-CMAP)により、20μm以上60μm未満の異物数、および60μm以上の異物数をそれぞれ測定した。
(3) Particle size distribution In 500 g of an equal-mass mixture of phenol and 1,1,2,2-tetrachloroethane filtered through a 1 micron opening filter, 0.4 g of crystal pellets after solid-phase polymerization were added at 100 ° C. And then returned to room temperature and allowed to stand for 1 day. 50 mL (65 g) of the solution was passed through an in-liquid particle counter (Accurizer 780SIS manufactured by Particle Sizing Systems), and the number of particles contained in the pellet was measured by logarithmically dividing the range of 0.5 to 500 μm into 128. The distribution was determined. The measurement was performed 3 times and the average value was used. As an example of the particle size distribution in the polyester, the particle size distribution in the polyester obtained in Example 2 and Comparative Example 1 is shown in FIG. The number of particles having a particle diameter of 5 μm or more contained in 1 g of the pellets thus measured was used as an index of the dispersibility of the cobalt compound (M).
(4) Number of foreign matters in the film After drying the solid phase polymerization pellets at 120 ° C overnight, using a 20φ single screw extruder (cylinder temperature: 280-290 ° C, cooling roll temperature: 80 ° C), A polyester resin is extruded from a T-die onto a cooling roll to form a film having a thickness of 400 μm, and by a sheet defect detector (manufactured by Frontier System, ZD-CMAP), the number of foreign matters from 20 μm to less than 60 μm and 60 μm or more The number of foreign objects was measured respectively.
(5)全光線透過率
 成形した透明ボトルの胴部からサンプル(縦3cm、横3cm、厚み0.8mm)を切り出し、ヘイズメータ(村上色彩技術研究所製、HR-100)を用いて全光線透過率を測定した。
(5) Total light transmittance A sample (3 cm in length, 3 cm in width, 0.8 mm in thickness) was cut out from the body of the molded transparent bottle, and all light was transmitted using a haze meter (manufactured by Murakami Color Research Laboratory, HR-100). The rate was measured.
(6)IZOD衝撃強度
 固相重合後のペレットを120℃で終夜乾燥させたのち、射出成形により長さ80mm、幅10mm、厚さ4mmの試験片を作製し、各サンプル10本ずつノッチング加工を行った。試験片を23℃下で48時間保管後、公称振り子エネルギー0.5Jのハンマーを用いて、持ち上げ角度150度にて、IZOD衝撃強度を測定した。各サンプル10回の試験結果の平均値を、IZOD衝撃強度とし、耐衝撃性を評価した。
(6) IZOD impact strength After solid-phase polymerization pellets were dried at 120 ° C overnight, test pieces of length 80mm, width 10mm, and thickness 4mm were prepared by injection molding, and 10 samples were each notched. went. After the specimen was stored at 23 ° C. for 48 hours, the IZOD impact strength was measured at a lifting angle of 150 degrees using a hammer with a nominal pendulum energy of 0.5 J. The average value of 10 test results for each sample was defined as IZOD impact strength, and the impact resistance was evaluated.
(7)ボトル落下強度
 成形直後のボトルに総重量が263g±0.5gになるように水(水温20~25℃)を入れた後、垂直に設置された直径10cmの筒中を通過させて、高さ125cmから水平なコンクリート面と45度傾斜したコンクリート面に交互に落下させた。ボトルに割れ又は亀裂が発生するまでのサイクル数(1サイクルにつき、ボトルを、水平面に1回、45度斜面に1回の計2回落下させた)を測定した。最大20サイクル繰り返した。1組成につき、5本のボトルの落下試験を行い、その平均値をボトル落下強度とした。成形品の耐衝撃性の指標とした。
(7) Bottle drop strength Water (water temperature 20 to 25 ° C.) is poured into a bottle immediately after molding so that the total weight is 263 g ± 0.5 g, and then passed through a vertically installed cylinder 10 cm in diameter. From a height of 125 cm, it was dropped alternately on a horizontal concrete surface and a concrete surface inclined 45 degrees. The number of cycles until the bottle was cracked or cracked (the bottle was dropped twice in total, once on the horizontal surface and once on the 45 ° slope) was measured. Up to 20 cycles were repeated. A drop test of five bottles was performed per composition, and the average value was defined as the bottle drop strength. It was used as an index of impact resistance of the molded product.
(8)色相
 ポリエステル樹脂ペレットの色相(b値)を、ASTM-D2244(color scale system2)に準拠して、日本電色工業株式会社製測色色差計「ZE-2000」を用いて測定した。
(8) Hue The hue (b value) of the polyester resin pellets was measured using a colorimetric color difference meter “ZE-2000” manufactured by Nippon Denshoku Industries Co., Ltd. according to ASTM-D2244 (color scale system 2).
実施例1
(1)溶融重縮合
 テレフタル酸(TA)100質量部、エチレングリコール(EG)42.6質量部、ビスフェノールAエチレンオキシド2モル付加物(EOBPA)9.5質量部、二酸化ゲルマニウム(GeO)0.0123質量部、リン化合物(P)として亜リン酸0.0123質量部、コバルト化合物(M)として酢酸コバルト・四水和物0.0130質量部(コバルト元素換算で0.0031質量部)、多価カルボン酸(X)としてクエン酸・一水和物0.0109質量部からなるスラリーをつくり、加圧下(ゲージ圧0.25MPa)で250℃の温度に加熱してエステル化反応を行ってオリゴマーを製造した。得られたオリゴマーを重縮合槽に移し、0.1kPa下、260℃~280℃で80分間溶融重縮合させて、極限粘度0.7dL/gのポリエステルを製造した。得られたポリエステルをノズルからストランド状に押出し水冷した後、円柱状(直径約2.5mm、長さ約2.5mm)に切断して、ポリエステルの非晶ペレットを得た。
(2)非晶ペレットの予備結晶化
 得られたポリエステルの非晶ペレットを転動式真空固相重合装置に投入し、0.1kPa下、120℃で2時間予備結晶化を行った。
Example 1
(1) Melt polycondensation 100 parts by mass of terephthalic acid (TA), 42.6 parts by mass of ethylene glycol (EG), 9.5 parts by mass of bisphenol A ethylene oxide 2-mol adduct (EOBPA), germanium dioxide (GeO 2 ) 0123 parts by mass, 0.0123 parts by mass of phosphorous acid as the phosphorus compound (P), 0.0130 parts by mass of cobalt acetate tetrahydrate (0.0031 parts by mass in terms of cobalt element) as the cobalt compound (M), many A slurry composed of 0.0109 parts by mass of citric acid / monohydrate as a monovalent carboxylic acid (X) is prepared and heated to a temperature of 250 ° C. under pressure (gauge pressure of 0.25 MPa) to carry out an esterification reaction to form an oligomer. Manufactured. The obtained oligomer was transferred to a polycondensation tank and subjected to melt polycondensation at 260 ° C. to 280 ° C. for 80 minutes under 0.1 kPa to produce a polyester having an intrinsic viscosity of 0.7 dL / g. The obtained polyester was extruded into a strand form from a nozzle and cooled with water, and then cut into a cylindrical shape (diameter: about 2.5 mm, length: about 2.5 mm) to obtain an amorphous pellet of polyester.
(2) Precrystallization of amorphous pellets The obtained polyester amorphous pellets were put into a rolling vacuum solid-phase polymerization apparatus, and precrystallization was performed at 120 ° C for 2 hours under 0.1 kPa.
(3)固相重合
 前記予備結晶化の後に、温度を上昇させて、0.1kPa下、190~200℃で40時間固相重合させて、結晶ペレットを得た。当該ポリエステルを構成する単量体成分の比率を1H-NMRスペクトル(装置:日本電子社製「JNM-GX-500型」、溶媒:重水素化トリフルオロ酢酸)により確認したところ、TA単位:EG単位:EOBPA単位:ジエチレングリコール(DEG)単位=100:93:5:2(モル比)であった。得られたポリエステル樹脂の極限粘度は1.2dL/g、得られたポリエステル樹脂のb値は-2.0であった。また、得られたポリエステル1g中に含まれる5μm以上の粒子数を液中パーティクルカウンタにより測定したところ、229個/gであった。フィルム中の異物数を測定したところ、20μm以上60μm未満の異物数は190個/m、60μm以上の異物数は10個/mであった。IZOD衝撃強度は、4.5kJ/mであった。
(3) Solid Phase Polymerization After the preliminary crystallization, the temperature was increased and solid phase polymerization was performed at 190 to 200 ° C. under 0.1 kPa for 40 hours to obtain crystal pellets. When the ratio of monomer components constituting the polyester was confirmed by 1 H-NMR spectrum (apparatus: “JNM-GX-500 type” manufactured by JEOL Ltd., solvent: deuterated trifluoroacetic acid), TA unit: EG unit: EOBPA unit: diethylene glycol (DEG) unit = 100: 93: 5: 2 (molar ratio). The intrinsic viscosity of the obtained polyester resin was 1.2 dL / g, and the b value of the obtained polyester resin was −2.0. Further, the number of particles of 5 μm or more contained in 1 g of the obtained polyester was measured by an in-liquid particle counter and found to be 229 particles / g. When the number of foreign matters in the film was measured, the number of foreign matters of 20 μm or more and less than 60 μm was 190 / m 2 , and the number of foreign matters of 60 μm or more was 10 / m 2 . The IZOD impact strength was 4.5 kJ / m 2 .
(4)ボトルの作製
 得られたペレットを除湿乾燥機で120℃にて24時間乾燥した後、押出ブロー成形装置(株式会社タハラ製「MSE-40E型」)を用いて容積220mLの透明ボトル(27g)を成形した。このとき、シリンダー温度は280℃から240℃までの勾配をつけ、ダイス温度240~250℃、成形サイクル10秒、スクリュ回転数24rpm、金型温度20℃とした。得られたボトルの落下強度を調べたところ、ボトル落下強度は14であった。また、成形品の全光線透過率は、91.0%であった。
(4) Production of bottle After the obtained pellets were dried at 120 ° C. for 24 hours with a dehumidifying dryer, a transparent bottle having a volume of 220 mL (“MSE-40E type” manufactured by Tahara Co., Ltd.) was used. 27g) was molded. At this time, the cylinder temperature was graded from 280 ° C. to 240 ° C., the die temperature was 240 to 250 ° C., the molding cycle was 10 seconds, the screw rotation speed was 24 rpm, and the mold temperature was 20 ° C. When the drop strength of the obtained bottle was examined, the bottle drop strength was 14. The total light transmittance of the molded product was 91.0%.
実施例2
 クエン酸・一水和物の添加量を0.0154質量部に変更した以外は、実施例1と同様にしてポリエステルを製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 2
A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0154 parts by mass. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例3
 クエン酸・一水和物の添加量を0.0861質量部に変更した以外は、実施例1と同様にしてポリエステル樹脂を製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 3
A polyester resin was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0861 parts by mass. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例4
 クエン酸・一水和物の添加量を0.0006質量部に変更した以外は、実施例1と同様にしてポリエステル樹脂を製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 4
A polyester resin was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.0006 parts by mass. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例5
 亜リン酸の代わりにリン酸0.0144質量部を添加した以外は、実施例2と同様にしてポリエステル樹脂を製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 5
A polyester resin was produced and evaluated in the same manner as in Example 2 except that 0.0144 parts by mass of phosphoric acid was added instead of phosphorous acid. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例6
 原料のスラリーを、テレフタル酸86質量部、イソフタル酸(IPA)14質量部、エチレングリコール44.8質量部、二酸化ゲルマニウム0.0123質量部、亜リン酸0.0123質量部、酢酸コバルト・四水和物0.0130質量部、クエン酸・一水和物0.0154質量部からなるスラリーに変更したこと、固相重合温度を180~190℃に変更したこと以外は、実施例1と同様にしてポリエステルを製造した。また、ボトル成形時の成形サイクルを7秒に変更した以外は、実施例1と同様にして得られたポリエステルを評価した。当該ポリエステルを構成する単量体成分は、TA単位:IPA単位:EG単位:DEG単位=86:14:98:2(モル比)であった。結果をまとめて表1に示す。
Example 6
The raw material slurry was 86 parts by mass of terephthalic acid, 14 parts by mass of isophthalic acid (IPA), 44.8 parts by mass of ethylene glycol, 0.0123 parts by mass of germanium dioxide, 0.0123 parts by mass of phosphorous acid, cobalt acetate / tetrahydrous. Example 1 was repeated except that the slurry was changed to 0.0130 parts by mass, 0.0154 parts by mass of citric acid / monohydrate, and the solid phase polymerization temperature was changed to 180 to 190 ° C. To produce a polyester. The polyester obtained in the same manner as in Example 1 was evaluated except that the molding cycle during bottle molding was changed to 7 seconds. The monomer component constituting the polyester was TA unit: IPA unit: EG unit: DEG unit = 86: 14: 98: 2 (molar ratio). The results are summarized in Table 1.
実施例7
 原料のスラリーを、テレフタル酸100質量部、1,4-シクロヘキサンジメタノール(CHDM)12.2質量部、エチレングリコール38.5質量部、二酸化ゲルマニウム(GeO)0.0123質量部、亜リン酸0.0123質量部、酢酸コバルト・四水和物0.0130質量部(コバルト元素換算で0.0031質量部)、クエン酸・一水和物0.0154質量部からなるスラリーに変更したこと、固相重合温度を180~190℃に変更したこと以外は、実施例1と同様にしてポリエステルを製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:CHDM単位:DEG単位=100:84:14:2(モル比)であった。結果をまとめて表1に示す。
Example 7
The raw material slurry was made of 100 parts by mass of terephthalic acid, 12.2 parts by mass of 1,4-cyclohexanedimethanol (CHDM), 38.5 parts by mass of ethylene glycol, 0.0123 parts by mass of germanium dioxide (GeO 2 ), phosphorous acid The slurry was changed to 0.0123 parts by mass, cobalt acetate tetrahydrate 0.0130 parts by mass (0.0031 parts by mass in terms of cobalt element), citric acid monohydrate 0.0154 parts by mass, A polyester was produced and evaluated in the same manner as in Example 1 except that the solid-state polymerization temperature was changed to 180 to 190 ° C. The monomer component constituting the polyester was TA unit: EG unit: CHDM unit: DEG unit = 100: 84: 14: 2 (molar ratio). The results are summarized in Table 1.
実施例8
 クエン酸・一水和物の代わりにコハク酸0.0086質量部を添加した以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 8
A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0086 parts by mass of succinic acid was added instead of citric acid / monohydrate. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例9
 クエン酸・一水和物の添加量の代わりに酒石酸0.0065質量部を添加した以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 9
A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0065 parts by mass of tartaric acid was added instead of the addition amount of citric acid / monohydrate. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例10
 酢酸コバルト・四水和物の添加量を0.0026質量部(コバルト元素換算で0.0006質量部)に、亜リン酸の添加量を0.0062質量部にそれぞれ変更した以外は、実施例2と同様にしてポリエステルを製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 10
Except that the addition amount of cobalt acetate tetrahydrate was changed to 0.0026 parts by mass (0.0006 parts by mass in terms of cobalt element), and the addition amount of phosphorous acid was changed to 0.0062 parts by mass. Polyester was produced and evaluated in the same manner as in 2. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例11
 酢酸コバルト・四水和物の添加量を0.0615質量部(コバルト元素換算で0.0146質量部)に、亜リン酸の添加量を0.0246質量部にそれぞれ変更した以外は、実施例2と同様にしてポリエステルを製造して評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 11
Except that the addition amount of cobalt acetate tetrahydrate was changed to 0.0615 parts by mass (0.0146 parts by mass in terms of cobalt element), and the addition amount of phosphorous acid was changed to 0.0246 parts by mass. Polyester was produced and evaluated in the same manner as in 2. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例12
 亜リン酸の添加量を0.0062質量部に変更した以外は、実施例2と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 12
A polyester was produced and evaluated in the same manner as in Example 2 except that the amount of phosphorous acid added was changed to 0.0062 parts by mass. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
実施例13
 亜リン酸の代わりにリン酸ジブチル0.0615質量部を添加した以外は、実施例2と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表1に示す。
Example 13
A polyester was produced and evaluated in the same manner as in Example 2 except that 0.0615 parts by mass of dibutyl phosphate was added instead of phosphorous acid. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 1.
比較例1
 クエン酸・一水和物を添加しなかった以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 1
A polyester was produced and evaluated in the same manner as in Example 1 except that citric acid monohydrate was not added. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 2.
比較例2
 クエン酸・一水和物の添加量を0.00006質量部に変更した以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 2
A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.00006 parts by mass. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 2.
比較例3
 クエン酸・一水和物の添加量を0.369質量部に変更した点、固層重合時間を100時間とした点以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 3
A polyester was produced and evaluated in the same manner as in Example 1 except that the amount of citric acid / monohydrate added was changed to 0.369 parts by mass and the solid phase polymerization time was 100 hours. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 2.
比較例4
 亜リン酸を添加しなかった以外は、実施例2と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 4
A polyester was produced and evaluated in the same manner as in Example 2 except that phosphorous acid was not added. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 2.
比較例5
 クエン酸・一水和物を添加しなかった以外は、実施例6と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:IPA単位:EG単位:DEG単位=86:14:98:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 5
A polyester was produced and evaluated in the same manner as in Example 6 except that citric acid / monohydrate was not added. The monomer component constituting the polyester was TA unit: IPA unit: EG unit: DEG unit = 86: 14: 98: 2 (molar ratio). The results are summarized in Table 2.
比較例6
 クエン酸・一水和物を添加しなかった以外は、実施例7と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:CHDM単位:DEG単位=100:84:14:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 6
A polyester was produced and evaluated in the same manner as in Example 7 except that citric acid / monohydrate was not added. The monomer component constituting the polyester was TA unit: EG unit: CHDM unit: DEG unit = 100: 84: 14: 2 (molar ratio). The results are summarized in Table 2.
 比較例7
 クエン酸・一水和物の代わりに乳酸0.0065質量部を添加した以外は、実施例1と同様にしてポリエステルを製造して、評価した。当該ポリエステルを構成する単量体成分は、TA単位:EG単位:EOBPA単位:DEG単位=100:93:5:2(モル比)であった。結果をまとめて表2に示す。
Comparative Example 7
A polyester was produced and evaluated in the same manner as in Example 1 except that 0.0065 parts by mass of lactic acid was added instead of citric acid / monohydrate. The monomer component constituting the polyester was TA unit: EG unit: EOBPA unit: DEG unit = 100: 93: 5: 2 (molar ratio). The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (13)

  1.  テレフタル酸単位をジカルボン酸単位の合計に対して50モル%以上含有し、かつエチレングリコール単位をジオール単位の合計に対して50モル%以上含有するポリエステルであって、
     前記ポリエステルが、コバルト化合物(M)、リン酸、亜リン酸、有機ホスホン酸及びそれらのエステルからなる群より選択される少なくとも1種のリン化合物(P)及びα,β-ジカルボン酸単位を有する多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させてなるものであり、
     ジカルボン酸の合計100質量部に対するコバルト化合物(M)の添加量がコバルト元素換算で0.0005~0.05質量部であり、
     コバルト化合物(M)中のコバルト原子に対するリン化合物(P)中のリン原子のモル比(P/M)が0.01~10であり、かつ
     コバルト化合物(M)中のコバルト原子に対する多価カルボン酸(X)のモル比(X/M)が0.01~10である、ポリエステル。
    A polyester containing 50 mol% or more of terephthalic acid units with respect to the total of dicarboxylic acid units and 50 mol% or more of ethylene glycol units with respect to the total of diol units,
    The polyester has at least one phosphorus compound (P) selected from the group consisting of a cobalt compound (M), phosphoric acid, phosphorous acid, organic phosphonic acid and esters thereof, and an α, β-dicarboxylic acid unit. In the presence of the polyvalent carboxylic acid (X), a dicarboxylic acid and a diol are polycondensed,
    The addition amount of the cobalt compound (M) with respect to 100 parts by mass of the dicarboxylic acid is 0.0005 to 0.05 parts by mass in terms of cobalt element,
    The molar ratio (P / M) of the phosphorus atom in the phosphorus compound (P) to the cobalt atom in the cobalt compound (M) is 0.01 to 10, and the polyvalent carboxylic to the cobalt atom in the cobalt compound (M) Polyester having a molar ratio (X / M) of acid (X) of 0.01 to 10.
  2.  リン化合物(P)が亜リン酸又はリン酸の少なくとも1種である、請求項1に記載のポリエステル。 The polyester according to claim 1, wherein the phosphorus compound (P) is at least one of phosphorous acid and phosphoric acid.
  3.  多価カルボン酸(X)が水酸基を有する、請求項1又は2に記載のポリエステル。 The polyester according to claim 1 or 2, wherein the polyvalent carboxylic acid (X) has a hydroxyl group.
  4.  多価カルボン酸(X)がトリカルボン酸である、請求項1~3のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 3, wherein the polyvalent carboxylic acid (X) is a tricarboxylic acid.
  5.  多価カルボン酸(X)がクエン酸である、請求項1~4のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 4, wherein the polyvalent carboxylic acid (X) is citric acid.
  6.  さらにビスフェノールAエチレンオキサイド付加物由来の単位を、前記ジオール単位の合計に対して0.1~20モル%含有する、請求項1~5のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 5, further comprising 0.1 to 20 mol% of a unit derived from a bisphenol A ethylene oxide adduct based on a total of the diol units.
  7.  さらにシクロヘキサンジメタノール単位を、前記ジオール単位の合計に対して0.1~45モル%含有する、請求項1~6のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 6, further comprising a cyclohexanedimethanol unit in an amount of 0.1 to 45 mol% based on the total of the diol units.
  8.  さらにイソフタル酸単位を、前記ジカルボン酸単位の合計に対して0.1~20モル%含有する、請求項1~7のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 7, further comprising 0.1 to 20 mol% of isophthalic acid units based on the total of the dicarboxylic acid units.
  9.  請求項1~8のいずれかに記載のポリエステルを押出成形してなる成形品。 A molded product obtained by extruding the polyester according to any one of claims 1 to 8.
  10.  請求項9に記載の成形品からなるフィルム又はシート。 A film or sheet comprising the molded product according to claim 9.
  11.  請求項10に記載のフィルム又はシートを熱成形してなる熱成形品。 A thermoformed product obtained by thermoforming the film or sheet according to claim 10.
  12.  請求項9に記載の成形品からなる容器。 A container comprising the molded product according to claim 9.
  13.  コバルト化合物(M)、リン化合物(P)及び多価カルボン酸(X)の存在下、ジカルボン酸及びジオールを重縮合させる、請求項1~8のいずれかに記載のポリエステルの製造方法。 The method for producing a polyester according to any one of claims 1 to 8, wherein the dicarboxylic acid and the diol are polycondensed in the presence of the cobalt compound (M), the phosphorus compound (P) and the polyvalent carboxylic acid (X).
PCT/JP2017/047333 2016-12-29 2017-12-28 Polyester, and production method therefor and molded article made therefrom WO2018124294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559643A JP7033553B2 (en) 2016-12-29 2017-12-28 Polyester, its manufacturing method and molded products made of it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016257383 2016-12-29
JP2016-257383 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018124294A1 true WO2018124294A1 (en) 2018-07-05

Family

ID=62709576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047333 WO2018124294A1 (en) 2016-12-29 2017-12-28 Polyester, and production method therefor and molded article made therefrom

Country Status (3)

Country Link
JP (1) JP7033553B2 (en)
TW (1) TWI754709B (en)
WO (1) WO2018124294A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073639A (en) * 2017-10-17 2019-05-16 ユニチカ株式会社 Polyester resin and blow molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771686B (en) * 2020-05-26 2022-07-21 遠東新世紀股份有限公司 Zinc oxide dispersion and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117216A (en) * 1981-12-29 1983-07-12 Mitsubishi Chem Ind Ltd Production of polyester
JP2001510493A (en) * 1996-06-11 2001-07-31 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Polyester products
WO2005080480A1 (en) * 2004-02-24 2005-09-01 Mitsui Chemicals, Inc. Hollow molded article comprising polyester resin
JP2010235938A (en) * 2009-03-11 2010-10-21 Toyobo Co Ltd Aromatic polyester and polyester molded article comprising the same
JP2012046734A (en) * 2010-07-30 2012-03-08 Fujifilm Corp Method for producing polyester sheet, polyester film and method for producing the polyester film
JP2012224836A (en) * 2011-04-07 2012-11-15 Nippon Ester Co Ltd Polyester resin composition and direct blow-molded article comprising the same
JP2013057046A (en) * 2010-12-15 2013-03-28 Fujifilm Corp Process for producing polyester resin, polyester film, process for producing polyester film, back sheet for solar cell, and solar-cell module

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08113634A (en) * 1994-10-18 1996-05-07 Kanebo Ltd Production of thermoplastic polyester resin
BG100572A (en) * 1995-06-01 1996-12-31 Enichem S.P.A. Low speed crystallization polyesters and catalytic system for their preparation
KR19990067538A (en) * 1995-11-13 1999-08-25 그윈넬 해리 제이 Thermally Stable Polyesters Prepared Using Antimony Compounds as Catalysts
JPH11246657A (en) * 1998-03-05 1999-09-14 Nippon Ester Co Ltd Production of copolyester
JP3679264B2 (en) * 1999-03-10 2005-08-03 三菱化学株式会社 Production method of polyester resin
WO2006013768A1 (en) * 2004-08-03 2006-02-09 Toyo Boseki Kabushiki Kaisha Polyester resin composition
JP2009052039A (en) * 2007-08-02 2009-03-12 Toyobo Co Ltd Polyester and polyester molded product formed thereof
CN103772684B (en) * 2012-10-25 2016-05-18 中国石油化工股份有限公司 The production method of the polyester of titanium catalysis
JP5698281B2 (en) * 2013-02-08 2015-04-08 ロッテケミカルコーポレーション Composition for producing thermoplastic polyester resin using environmentally friendly catalyst and polyester resin produced using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117216A (en) * 1981-12-29 1983-07-12 Mitsubishi Chem Ind Ltd Production of polyester
JP2001510493A (en) * 1996-06-11 2001-07-31 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ Polyester products
WO2005080480A1 (en) * 2004-02-24 2005-09-01 Mitsui Chemicals, Inc. Hollow molded article comprising polyester resin
JP2010235938A (en) * 2009-03-11 2010-10-21 Toyobo Co Ltd Aromatic polyester and polyester molded article comprising the same
JP2012046734A (en) * 2010-07-30 2012-03-08 Fujifilm Corp Method for producing polyester sheet, polyester film and method for producing the polyester film
JP2013057046A (en) * 2010-12-15 2013-03-28 Fujifilm Corp Process for producing polyester resin, polyester film, process for producing polyester film, back sheet for solar cell, and solar-cell module
JP2012224836A (en) * 2011-04-07 2012-11-15 Nippon Ester Co Ltd Polyester resin composition and direct blow-molded article comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019073639A (en) * 2017-10-17 2019-05-16 ユニチカ株式会社 Polyester resin and blow molding

Also Published As

Publication number Publication date
TWI754709B (en) 2022-02-11
JP7033553B2 (en) 2022-03-10
JPWO2018124294A1 (en) 2019-11-07
TW201835184A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP7193345B2 (en) Polyester, method for producing same, and molded article made of same
KR100217955B1 (en) Copolyester, and hollow container and stretched film made thereof
KR20180089419A (en) 1,4: 3,6-dianhydrohexitol and thermoplastic copolyesters comprising various aromatic diacids
MX2013000506A (en) High dimensional stability polyester compositions.
JP5598162B2 (en) Copolyester molded product
WO2018124294A1 (en) Polyester, and production method therefor and molded article made therefrom
JP6757669B2 (en) Polyester resin pellets, their manufacturing methods and molded products made from them
JP3566250B2 (en) Copolyester with improved extrudability and color
JP6152989B2 (en) Mixed pellet containing polyester pellet and resin composition
JP6689846B2 (en) Crystalline polyester pellets, uses thereof and manufacturing method thereof
US20060280885A1 (en) Hollow molded article comprising polyester resin
KR101121361B1 (en) Blend of polyester copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and polycarbonate, and preparing method thereof
EP1963396A2 (en) An improved process for the production of slow crystallizing polyester resin
JP6181847B2 (en) Polyethylene-2,6-naphthalate composition having good blow moldability and molded product thereof
JP2020537010A (en) Thermoplastic polyester with high uptake of 1,4: 3,6-dianhydro-L-iditol units
JP6300266B2 (en) Copolyester resin and its hollow container
JP4209634B2 (en) POLYESTER RESIN, POLYESTER RESIN MOLDED BODY, AND BLOW BOTTLE MANUFACTURING METHOD
JP3395423B2 (en) polyester
JP2006188676A (en) Polyester composition and polyester molded product composed of the same
KR101159850B1 (en) Polyester resin copolymerized with neopentylglycol having low oligomer content and preparing method thereof
KR101159840B1 (en) Polyester resin copolymerized with 1,4-cyclohexanedimethanol having low oligomer content and preparing method thereof
JP2004002664A (en) Copolyester and molded article
TW202411290A (en) Polyester and shaped article of the same
JP2011252087A (en) Method for producing solid phase-polymerized pellet comprising polyester resin composition
JP2006002046A (en) Method for producing polyester and molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885601

Country of ref document: EP

Kind code of ref document: A1