WO2018124293A1 - トランスクリプトームによる医薬成分の特徴分析法および分類 - Google Patents

トランスクリプトームによる医薬成分の特徴分析法および分類 Download PDF

Info

Publication number
WO2018124293A1
WO2018124293A1 PCT/JP2017/047319 JP2017047319W WO2018124293A1 WO 2018124293 A1 WO2018124293 A1 WO 2018124293A1 JP 2017047319 W JP2017047319 W JP 2017047319W WO 2018124293 A1 WO2018124293 A1 WO 2018124293A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical ingredient
candidate
adjuvant
ingredient
transcriptome
Prior art date
Application number
PCT/JP2017/047319
Other languages
English (en)
French (fr)
Inventor
石井 健
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Priority to US16/475,038 priority Critical patent/US20190325991A1/en
Priority to EP22204376.2A priority patent/EP4194853A1/en
Priority to JP2018559642A priority patent/JPWO2018124293A1/ja
Priority to EP17886714.9A priority patent/EP3598128A4/en
Publication of WO2018124293A1 publication Critical patent/WO2018124293A1/ja
Priority to JP2022003612A priority patent/JP2022068141A/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5041Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • G16B25/10Gene or protein expression profiling; Expression-ratio estimation or normalisation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/142Toxicological screening, e.g. expression profiles which identify toxicity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a characteristic analysis method and classification of components used in medicine (hereinafter referred to as “pharmaceutical ingredients” unless otherwise specified, and means active ingredients, additive ingredients, adjuvants and the like). More particularly, the present invention relates to a classification and characterization technique based on transcriptome analysis of pharmaceutical ingredients such as adjuvants.
  • adjuvants have been recognized as an auxiliary component rather than attracting attention to their own medicinal properties.
  • Adjuvant is derived from the Latin word “adjuvare”, which means “help”, and is used to enhance its effectiveness (eg, immunogenicity) when administered together with a main agent such as a vaccine. It is a general term for substances (factors).
  • the history of research and development of classic adjuvants ie, immunoadjuvants
  • immunoadjuvants is as long as 90 years, but research on the mechanism of the adjuvant itself has not been very popular until recently.
  • the present invention clusters the results of transcriptome analysis for a plurality of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants), so that each cluster has its ingredients (eg, active ingredients, additive ingredients, adjuvants). It was completed by finding that each feature can be clustered and systematically classified.
  • pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • typical pharmaceutical ingredients typical of known pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • reference active ingredients in the case of active ingredients, reference additive ingredients in the case of additive ingredients, and standard adjuvants in the case of adjuvants New substances or specific action effects or functions (for example, medicinal effects of active ingredients, auxiliary functions of added ingredients, adjuvant functions) unknown substances belong to different (for example, 6 types) categories It also provides technology that can identify whether it is something else.
  • the present invention provides the following.
  • (Item a1) A method for generating an organ transcriptome profile of an adjuvant, the method comprising: (A) performing expression of at least one organ of a target organism by performing a transcriptome analysis using two or more adjuvants Obtaining the data; (B) clustering the adjuvant for the expression data; (C) generating a transcriptome profile of the organ of the adjuvant based on the clustering.
  • the transcriptome analysis comprises the step of administering the adjuvant to the target organism and comparing the transcriptome in the organ with the transcriptome in the organ before administration of the adjuvant at a certain time after administration.
  • the method of item a1 comprising the step of identifying a set of genes (DEG) whose expression is altered as a result of the comparison.
  • the method of item a2 comprising the step of integrating the set of DEGs in two or more adjuvants to generate a set of commonly varying genes (DEGs).
  • (Item a4) including the step of identifying a gene whose expression has fluctuated beyond a predetermined threshold as a result of the comparison, selecting the commonly fluctuating gene among the identified genes, and generating a set of significant DEGs
  • the predetermined threshold value is specified by a predetermined multiple difference and a predetermined statistical significance (p value).
  • (Item a6) including the step of performing the transcriptome analysis on at least two or more organs, identifying a set of genes whose expression varies only in a specific organ, and using the set as the organ-specific gene set
  • the method according to any one of items a2 to 5, wherein: (Item a7) The transcriptome analysis according to any one of items a1 to 6, wherein the transcriptome analysis is performed on a transcriptome in at least one organ selected from the group consisting of a liver, a spleen, and a lymph node. Method. (Item a8) The method according to any one of items a1 to 7, wherein the number of adjuvants is a number that enables a statistically significant clustering analysis.
  • the biological indicators are wound, cell death, apoptosis, NF ⁇ B signal pathway, inflammatory response, TNF signal pathway, cytokines, migration, chemokine, chemotaxis, stress, defense response, immune response, innate immunity
  • the method of item a10 comprising at least one indicator selected from the group consisting of responses, adaptive immune responses, interferons and interleukins.
  • the biological index includes a hematological index.
  • the hematological indicators are leukocytes (WBC), lymphocytes (LYM), monocytes (MON), granulocytes (GRA), relative content% (LY%) of lymphocytes, relative of monocytes % Content (MO%),% relative granulocyte content (GR%), red blood cells (RBC), hemoglobin (Hb, HGB), hematocrit (HCT), average red blood cell volume (MCV), average red blood cell hemoglobin (MCH) At least one selected from the group consisting of: mean red blood cell hemoglobin concentration (MCHC), red blood cell distribution width (RDW), platelet (PLT), platelet concentration (PCT), average platelet volume (MPV) and platelet distribution width (PDW)
  • WBC leukocytes
  • LYM lymphocytes
  • MON monocytes
  • GAA granulocytes
  • LY% relative content%
  • LY% Content relative of monocytes % Content
  • MO% relative granulocyte content GR%
  • red blood cells RBC
  • a computer-implemented program for generating a method of generating an organ transcriptome profile of an adjuvant comprising: (A) transcription of at least one organ of a target organism using two or more adjuvants (B) clustering the adjuvant for the expression data; (C) generating a transcriptome profile of the organ of the adjuvant based on the clustering; Includes programs.
  • a recording medium storing a program for implementing a method for generating an organ transcriptome profile of an adjuvant on a computer, the method comprising: (A) at least one target organism using two or more adjuvants Performing transcriptome analysis of one organ to obtain expression data; (B) clustering the adjuvant for the expression data; (C) a transcriptome profile of the organ based on the clustering; A recording medium including the step of generating (Item a16A) The recording medium according to item a16, further including the feature according to any one of items a1 to a14.
  • a system for generating an organ transcriptome profile of an adjuvant comprising: (A) performing a transcriptome analysis of at least one organ of a target organism using two or more adjuvants An expression data acquisition unit that obtains or inputs expression data; (B) a clustering operation unit that clusters the adjuvant for the expression data; (C) a transcriptome profile of the organ of the adjuvant based on the clustering; A system that includes a profiling section to generate.
  • a method of providing characteristic information of an adjuvant comprising: (a) providing a candidate adjuvant in at least one organ of a subject organism; (b) providing a reference adjuvant set of known function (C) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; (d) the same as the candidate adjuvant belongs to Providing a characteristic of a member of the reference adjuvant set belonging to a cluster as a characteristic of the candidate adjuvant. (Item a19) The method according to item a18, further comprising the feature according to any one of items a1 to a14.
  • a program for causing a computer to implement a method for providing characteristic information of an adjuvant comprising: (a) providing a candidate adjuvant in at least one organ of a target organism; (b) known function Providing a reference adjuvant set of: (c) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; (d) the candidate adjuvant Providing a characteristic of a member of the reference adjuvant set belonging to the same cluster as that of the candidate adjuvant as a characteristic of the candidate adjuvant.
  • a recording medium storing a program for causing a computer to implement a method for providing characteristic information of an adjuvant, the method comprising: (A) providing a candidate adjuvant in at least one organ of the subject organism; (b) providing a reference adjuvant set of known function; (c) transcriptome analysis of the candidate adjuvant and the reference adjuvant set. Providing gene expression data and clustering the gene expression data; (d) providing the characteristics of the members of the reference adjuvant set belonging to the same cluster as the candidate adjuvant as characteristics of the candidate adjuvant A recording medium comprising the step of: (Item a21A) The recording medium according to item a20, further including the feature according to any one of items a1 to a14.
  • a system for providing characteristic information of an adjuvant comprising: (a) a candidate adjuvant providing unit for providing a candidate adjuvant; (b) a reference adjuvant providing unit for providing a reference adjuvant set having a known function (C) a transcriptome clustering analysis unit that obtains gene expression data by performing transcriptome analysis of the candidate adjuvant and the reference adjuvant set, and clusters the gene expression data; (d) the candidate adjuvant belongs to; A feature analysis unit that provides features of members of the reference adjuvant set that belong to the same cluster as features of the candidate adjuvant. (Item a22A) The system according to item a22, further including the feature according to any one of items a1 to a14.
  • the classification includes classification based on at least one characteristic selected from the group consisting of classification based on host response, classification based on mechanism, classification of cells (liver, lymph node, spleen), classification based on use based on mechanism, and module classification.
  • the classification is G1 to G6: (1) G1 (interferon signaling); (2) G2 (lipid and lipoprotein metabolism); (3) G3 (stress responsiveness); (4) G4 (wound responsiveness); (5) G5 (phosphate-containing compound metabolic processability); and (6) G6 (phagosomal):
  • the method of item b1 or 2 comprising at least one classification selected from the group consisting of: (Item b4)
  • the classification of G1 to G6 is performed in comparison with the transcriptome clustering of the reference adjuvant,
  • the reference adjuvant for G1 is a STING ligand, G2 reference adjuvants are cyclodextrins, G3 reference adjuvants are immunoreactive peptides,
  • the reference adjuvant for G4 is TLR2 ligand,
  • the G5 reference adjuvant is a CpG oligonucleotide and / or the G6 reference
  • the method according to item b3. (Item b5) The classification of G1 to G6 is performed in comparison with the transcriptome clustering of the reference adjuvant,
  • the reference adjuvant for G1 is selected from the group consisting of cdiGMP, cGAMP, DMXAA, PolyIC and R848,
  • the reference adjuvant for G2 is bCD ( ⁇ cyclodextrin)
  • the reference adjuvant for G3 is FK565,
  • the reference adjuvant for G4 is MALP2s,
  • the G5 reference adjuvant is selected from the group consisting of D35, K3 and K3SPG, and / or the G6 reference adjuvant is AddaVax.
  • Item 5 The method according to item b3 or 4.
  • the classification of G1 to G6 is performed based on the expression profile of a gene (identification marker gene; DEG) having a significant difference in expression in transcriptome analysis
  • the G1 DEG includes at least one selected from the group consisting of Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6,
  • the G2 DEG includes at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap and Ggt5.
  • the G3 DEG includes at least one selected from the group consisting of Bbc3, Pdk4, Cd55, Cd93, Clec4e, Coro1a, and Traf3, Trem3, C5ar1, Clec4n, Ier3, Il1r1, Plek, Tbx3, and Trem1,
  • the G4 DEG includes at least one selected from the group consisting of Ccl3, Myof, Papss2, Slc7a11, and Tnfrsf1b
  • the G5 DEG includes at least one selected from the group consisting of Ak3, Insm1, Nek1, Pik3r2, and Ttn
  • the G6 DEG includes at least one selected from the group consisting of Atp6v0d2, Atp6v1c1, and Clec7a.
  • Item 6 The method according to any one of Items b3 to b5.
  • Item b7 A method for classifying adjuvants, the method comprising: (A) providing a candidate adjuvant in at least one organ of the subject organism; (B) providing a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6 according to any one of items b3 to 6; (C) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate adjuvant belongs belongs to groups G1 to Determining that the candidate adjuvant belongs to the same group if it is classified into the same cluster as at least one of G6; Including the method.
  • a method for producing an adjuvant composition having a desired function comprising: (A) providing an adjuvant candidate; An adjuvant composition comprising: (B) selecting an adjuvant candidate having a transcriptome expression pattern corresponding to a desired function; and (C) producing an adjuvant composition using the selected adjuvant candidate. Production method. (Item b9) The method according to item b8, wherein the desired function includes any one or more of G1 to G6 according to any one of items b3 to b6.
  • An adjuvant composition for exerting a desired function comprising an adjuvant that exhibits the desired function, wherein the desired function is any of G1 to G6 according to any one of items b3 to b6 Or a composition comprising one or more thereof.
  • the desired function is any of G1 to G6 according to any one of items b3 to b6 Or a composition comprising one or more thereof.
  • the desired function is any of G1 to G6 according to any one of items b3 to b6 Or a composition comprising one or more thereof.
  • the method for quality control of an adjuvant using the method according to any one of items b1 to b7. (Item b12) 8. A method for testing the safety of an adjuvant using the method according to any one of items b1 to b7. (Item b13) 8.
  • (Item b14) A program for causing a computer to implement an adjuvant classification method including a step of classifying an adjuvant based on transcriptome clustering.
  • (Item b14A) The program according to item b14, wherein the transcriptome clustering further includes one or more features according to any one of items b2 to b7.
  • (Item b15) A recording medium storing a program for causing a computer to implement an adjuvant classification method including a step of classifying an adjuvant based on transcriptome clustering.
  • (Item b15A) The recording medium according to item b15, wherein the transcriptome clustering further includes one or more features according to any one of items b2 to b7.
  • a system for classifying an adjuvant including a classifying unit for classifying an adjuvant based on transcriptome clustering.
  • a program for causing a computer to implement a method of classifying an adjuvant for classifying an adjuvant comprising: (A) providing a candidate adjuvant in at least one organ of the subject organism; (B) providing a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6 according to any one of items b3 to 6; (C) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate adjuvant belongs belongs to groups G1 to Determining that the candidate adjuvant belongs to the same group if it is classified into the same cluster as at least one of G6; A program that includes (Item b17A) The program according to item b17, further including one or more features according to any one of items b2 to b7.
  • a recording medium storing a program for causing a computer to implement a method for classifying an adjuvant, the method comprising: (A) providing a candidate adjuvant in at least one organ of the subject organism; (B) providing a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6 according to any one of items b3 to 6; (C) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate adjuvant belongs belongs to groups G1 to Determining that the candidate adjuvant belongs to the same group if it is classified into the same cluster as at least one of G6; Including a recording medium.
  • a system for classifying adjuvants comprising: (A) a candidate adjuvant providing unit that provides a candidate adjuvant in at least one organ of the target organism; (B) a reference adjuvant storage providing a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6 according to any one of items b3 to b6; (C) a transcriptome clustering analysis unit that obtains gene expression data by performing transcriptome analysis of the candidate adjuvant and the reference adjuvant set, and clusters the gene expression data; and (d) a cluster to which the candidate adjuvant belongs.
  • the determination unit determines that the candidate adjuvant belongs to the same group, and determines that the candidate adjuvant does not belong anywhere, Including system.
  • the G1 DEG includes at least one selected from the group consisting of Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6,
  • the G2 DEG comprises at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap and Ggt5,
  • the G3 DEG includes at least one selected from the group consisting of Bbc3, Pdk4, Cd55
  • the genetic analysis panel comprises at least G1 DEG detection means, at least G2 DEG detection means, at least G3 DEG detection means, at least G4 DEG detection means, at least G5 DEG detection means, and at least G6 DEG
  • the gene analysis panel according to item b20 comprising: ⁇ Adjuvant of “Adjuvant”> (Item bX1)
  • a composition for inducing or enhancing the adjuvanticity of an antigen comprising ⁇ inulin ( ⁇ -D- [2 ⁇ 1] poly (fructo-furanosyl) ⁇ -D-glucose) or a functional equivalent thereof.
  • (Item bX2) The composition of item bX1, wherein the equivalent has a transcriptome expression profile equivalent to ⁇ inulin.
  • ⁇ Activation of dendritic cells > (Item bA1) A composition for activating dendritic cells, comprising ⁇ inulin or a functional equivalent thereof.
  • (Item bA2) The composition according to item bA1, wherein the activation is performed in the presence of macrophages.
  • (Item bA3) The composition according to item bA1 or A2, wherein the composition comprising ⁇ inulin or a functional equivalent thereof is administered together with a macrophage potentiator.
  • ⁇ Th directivity> (Item bB1) A composition for enhancing the Th1 response of a Th1-type antigen and enhancing the Th2 response of a Th2-type antigen, comprising ⁇ inulin or a functional equivalent thereof.
  • ⁇ TNF ⁇ > (Item bC1) An adjuvant composition comprising ⁇ inulin or a functional equivalent thereof, wherein the composition is administered in a state in which TNF ⁇ is normal or enhanced.
  • a method for determining whether a candidate adjuvant induces or enhances the adjuvanticity of an antigen comprising: (a) providing a candidate adjuvant; (b) delta inulin or a functional equivalent thereof as a reference adjuvant (C) performing transcriptome analysis of the candidate adjuvant and the evaluation criteria adjuvant to obtain gene expression data and clustering the gene expression data; and (d) the candidate adjuvant is the evaluation
  • a method comprising determining, when it is determined that the candidate adjuvant belongs to the same cluster as the reference adjuvant, to induce or enhance the adjuvant property of the antigen.
  • a method of producing a composition comprising an adjuvant that elicits or enhances the antigenicity of an antigen comprising: (a) providing one or more candidate adjuvants; (b) ⁇ inulin or a functional equivalent thereof (C) performing a transcriptome analysis of the candidate adjuvant and the evaluation adjuvant to obtain gene expression data and clustering the gene expression data; (d) the candidate adjuvant Among them, when an adjuvant belonging to the same cluster as the evaluation standard adjuvant is present, the adjuvant is selected as an adjuvant that induces or enhances the adjuvant property of the antigen. And (e) the adjuvant property of the antigen obtained in (d) Comprising the step of preparing a composition comprising an adjuvant which caused or enhanced methods.
  • a pharmaceutical ingredient classification method comprising a step of classifying pharmaceutical ingredients based on transcriptome clustering.
  • the method of item c1 wherein the classifying step comprises: a) generating a reference component based on the transcriptome clustering; and b) classifying a candidate pharmaceutical component based on the reference component.
  • the pharmaceutical ingredient is selected from the group consisting of an active ingredient, an additive ingredient and an adjuvant.
  • the classification includes classification based on at least one characteristic selected from the group consisting of classification based on host response, classification based on mechanism, classification of cells (liver, lymph node, spleen), classification based on use based on mechanism, and module classification.
  • the classification is G1 to G6: (1) G1 (interferon signaling); (2) G2 (lipid and lipoprotein metabolism); (3) G3 (stress responsiveness); (4) G4 (wound responsiveness); (5) G5 (phosphate-containing compound metabolic processability); and (6) G6 (phagosomal):
  • the pharmaceutical ingredient is an adjuvant, and the classification of G1 to G6 is performed in comparison with the transcriptome clustering of the reference pharmaceutical ingredient,
  • the reference pharmaceutical ingredient of G1 is a STING ligand, G2 standard pharmaceutical ingredients are cyclodextrins, G3 reference pharmaceutical ingredients are immunoreactive peptides,
  • the reference adjuvant for G4 is TLR2 ligand,
  • the reference pharmaceutical ingredient of G5 is a CpG oligonu
  • the method according to item c6. (Item c8) The classification of G1 to G6 is performed in comparison with the transcriptome clustering of the reference pharmaceutical ingredient,
  • the reference component of G1 is selected from the group consisting of cdiGMP, cGAMP, DMXAA, PolyIC and R848,
  • the reference pharmaceutical ingredient of G2 is bCD ( ⁇ cyclodextrin),
  • the reference pharmaceutical ingredient of G3 is FK565,
  • the reference pharmaceutical ingredient of G4 is MALP2s,
  • the reference pharmaceutical ingredient of G5 is selected from the group consisting of D35, K3 and K3SPG, and / or the reference pharmaceutical ingredient of G6 is AddaVax.
  • the classification of G1 to G6 is performed based on the expression profile of a gene (identification marker gene; DEG) having a significant difference in expression in transcriptome analysis,
  • the G1 DEG includes at least one selected from the group consisting of Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6,
  • the G2 DEG includes at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap and Ggt5.
  • the G3 DEG includes at least one selected from the group consisting of Bbc3, Pdk4, Cd55, Cd93, Clec4e, Coro1a, and Traf3, Trem3, C5ar1, Clec4n, Ier3, Il1r1, Plek, Tbx3, and Trem1,
  • the G4 DEG includes at least one selected from the group consisting of Ccl3, Myof, Papss2, Slc7a11, and Tnfrsf1b
  • the G5 DEG includes at least one selected from the group consisting of Ak3, Insm1, Nek1, Pik3r2, and Ttn
  • the G6 DEG includes at least one selected from the group consisting of Atp6v0d2, Atp6v1c1, and Clec7a.
  • Item 9 The method according to any one of items c6 to c8.
  • (Item c10) A method of classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient; (B) providing a reference pharmaceutical ingredient set; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs; Determining that the candidate pharmaceutical ingredient belongs to the same group if it is classified into the same cluster as at least one of the reference pharmaceutical ingredient set; Including the method.
  • (Item c11) A method of classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set classified into at least one selected from the group consisting of G1 to G6 according to any one of items c6 to 8; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs; Determining that the candidate pharmaceutical ingredient belongs to the same group if it is classified into the same cluster as at least one of the groups G1 to G6;
  • the method of item c10 comprising: (Item c12) A method for producing a composition having a desired function, (A) providing a candidate pharmaceutical ingredient; (B) selecting a candidate pharmaceutical ingredient having a transcriptome expression pattern corresponding to a desired function, and (C) producing the composition using the selected candidate pharmaceutical ingredient.
  • Production method (Item c13) A method for screening a composition having a desired function, A method for producing a composition, comprising: (A) providing a candidate pharmaceutical ingredient; and (B) selecting a candidate pharmaceutical ingredient having a transcriptome expression pattern corresponding to a desired function. (Item c14) The method according to item c12 or 13, wherein the desired function includes any one or more of G1 to G6 according to any one of items c6 to 8.
  • compositions for exerting a desired function comprising a pharmaceutical ingredient that exhibits the desired function, wherein the desired function is classified by the method according to any one of items c1 to 11
  • a composition comprising one or more of:
  • the composition of item c15 comprising one or more.
  • (Item c17) A method for quality control of a pharmaceutical ingredient using the method according to any one of items c1 to 11.
  • (Item c18) A method for testing the safety of a pharmaceutical ingredient using the method according to any one of items c1 to 11. (Item c19) Identifying a candidate for a toxic bottleneck gene using the method according to any one of items c1 to 11; Creating a knockout animal by deleting the toxic gene in other animal species; Determining whether or not toxicity is reduced or eliminated in the knockout animal, and selecting a gene that has been reduced or eliminated as a toxic bottlenet gene.
  • (Item c20) Determining whether activation of gene expression is observed for at least one of the toxic bottleneck genes for a candidate pharmaceutical ingredient such as an adjuvant; A method for determining the toxicity of a drug, comprising: determining a candidate drug component in which the activation is observed to be toxic. (Item c21) A method for determining the effect of a pharmaceutical ingredient using the method according to any one of items c1 to 11.
  • (Item c24) A program for causing a computer to implement a pharmaceutical ingredient classification method including a process of classifying pharmaceutical ingredients based on transcriptome clustering.
  • (Item c25) A recording medium storing a program for causing a computer to implement a pharmaceutical component classification method including a step of classifying pharmaceutical components based on transcriptome clustering.
  • (Item c26) A system for classifying medicinal components including a classifying unit that classifies medicinal components based on transcriptome clustering.
  • (Item c27) A program that causes a computer to implement a method for classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) calculating a reference pharmaceutical ingredient set; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs; Determining that the candidate pharmaceutical ingredient belongs to the same group if it is classified into the same cluster as at least one of the reference pharmaceutical ingredient set, and determining that the candidate pharmaceutical ingredient belongs to the same group; A program that includes (Item c28) A program that causes a computer to implement a method for classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set classified into at least one selected from the group consisting of G1 to G6 according to any one of items c6 to 8; (C) performing a
  • a recording medium storing a program for causing a computer to implement a method for classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set classified into at least one selected from the group consisting of G1 to G6 according to any one of items c6 to 8; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs; Determining that the candidate pharmaceutical ingredient belongs to the same group if it is classified into the same cluster as at least one of the groups G1 to G6;
  • the recording medium according to item c29 comprising: (Item c31) A system for classifying pharmaceutical ingredients, the system comprising: (A) a candidate pharmaceutical ingredient provider that provides a candidate pharmaceutical ingredient in at least one organ of the target organism; (B) a reference pharmaceutical ingredient calculation unit for calculating a reference pharmaceutical ingredient
  • (Item c32) A system for classifying pharmaceutical ingredients, the system comprising: (A) a candidate pharmaceutical ingredient provider that provides a candidate pharmaceutical ingredient in at least one organ of the target organism; (B) a reference pharmaceutical ingredient storage unit that provides a reference pharmaceutical ingredient set classified into at least one selected from the group consisting of G1 to G6 according to any one of items c6 to 8; (C) a transcriptome clustering analysis unit that performs a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data, and clusters the gene expression data; and (d) the candidate pharmaceutical ingredient Is determined to belong to the same group when the cluster to which at least one of the groups G1 to G6 belongs is classified into the same cluster,
  • the system according to item c31 comprising: (Item c33) A genetic analysis panel for using a pharmaceutical ingredient for classification specified by the method according to any one of items c1 to 11.
  • the G1 DEG includes at least one selected from the group consisting of Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6,
  • the G2 DEG comprises at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap and Ggt5,
  • the G3 DEG includes at least one selected from the group consisting of Bbc3, Pdk4, Cd55, Cd93, C
  • the genetic analysis panel comprises at least G1 DEG detection means, at least G2 DEG detection means, at least G3 DEG detection means, at least G4 DEG detection means, at least G5 DEG detection means, and at least G6 DEG
  • the gene analysis panel according to item c34 comprising: (Item c36) A method of generating an organ transcriptome profile of a pharmaceutical ingredient, the method comprising: Performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients to obtain expression data; Clustering the pharmaceutical component for the expression data; and generating a transcriptome profile of the organ of the pharmaceutical component based on the clustering.
  • the transcriptome analysis comprises administering the pharmaceutical component to the subject organism and comparing the transcriptome in the organ to the transcriptome in the organ prior to administration of the pharmaceutical component at a fixed time after administration; and
  • the method according to item c36 comprising the step of identifying a set of genes (DEG) whose expression is varied as a result of the comparison.
  • the method of item c37 comprising the step of integrating the set of DEGs in two or more pharmaceutical ingredients to produce a commonly varying set of DEGs.
  • (Item c42) The method according to any one of items c36-41, wherein the transcriptome analysis is performed on a transcriptome in at least one organ selected from the group consisting of liver, spleen and lymph nodes.
  • (Item c43) The method according to any one of Items c36 to 42, wherein the number of types of the medicinal component medicinal component is a number that allows a statistically significant clustering analysis.
  • (Item c44) The item c36 to 43, comprising the step of providing one or more of genetic profiles specific to a specific pharmaceutical ingredient or pharmaceutical ingredient cluster and a specific organ as a pharmaceutical ingredient evaluation marker in the profile. the method of.
  • the biological indicators are wound, cell death, apoptosis, NF ⁇ B signaling pathway, inflammatory response, TNF signaling pathway, cytokines, migration, chemokine, chemotaxis, stress, defense response, immune response, innate immune response, fitness
  • the method of item c46, wherein the biological indicator comprises a hematological indicator.
  • the hematological indicators are leukocytes (WBC), lymphocytes (LYM), monocytes (MON), granulocytes (GRA), lymphocyte relative content% (LY%), monocyte relative content% ( MO%), relative percentage of granulocytes (GR%), red blood cells (RBC), hemoglobin (Hb, HGB), hematocrit (HCT), average red blood cell volume (MCV), average red blood cell hemoglobin (MCH), average red blood cell hemoglobin Item comprising at least one selected from the group consisting of concentration (MCHC), red blood cell distribution width (RDW), platelet (PLT), platelet concentration (PCT), mean platelet volume (MPV) and platelet distribution width (PDW)
  • WBC leukocytes
  • LYM lymphocytes
  • MON monocyte relative content%
  • MO% monocyte relative content%
  • GR% relative percentage of granulocytes
  • RBC red blood cells
  • Hb hemoglobin
  • HCT hematocrit
  • MCV average red
  • (Item c49) The method of item c45, wherein the biological indicator comprises a cytokine profile.
  • (Item c50) A program for implementing in a computer a method for generating an organ transcriptome profile of a pharmaceutical ingredient, the method comprising: (A) performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients to obtain expression data; (B) clustering the medicinal component medicinal component for the expression data; (C) A program comprising the step of generating a transcriptome profile of the organ of the medicinal component medicinal component based on the clustering.
  • a recording medium storing a program for implementing in a computer a method for generating an organ transcriptome profile of a pharmaceutical ingredient, the method comprising: (A) performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients to obtain expression data; (B) clustering the pharmaceutical ingredients for the expression data; (C) A recording medium including a step of generating a transcriptome profile of the organ of the medicinal component based on the clustering.
  • a system for generating an organ transcriptome profile of a pharmaceutical component comprising: (A) an expression data acquisition unit that obtains or inputs expression data by performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical components; (B) a clustering operation unit for clustering the pharmaceutical ingredients for the expression data; (C) A system including a profiling unit that generates a transcriptome profile of the organ of the medicinal component based on the clustering.
  • (Item c53) A method for providing characteristic information of a pharmaceutical ingredient, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set of known function; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data, and clustering the gene expression data; (D) providing a feature of a member of the reference pharmaceutical ingredient set belonging to the same cluster to which the candidate pharmaceutical ingredient belongs as a feature of the candidate pharmaceutical ingredient; Including the method. (Item c54) The method of item c53, further comprising the feature of any one of items c36-49.
  • a program for causing a computer to implement a method for providing characteristic information of a pharmaceutical ingredient comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set of known function; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data, and clustering the gene expression data; (D) providing a feature of a member of the reference pharmaceutical ingredient set belonging to the same cluster to which the candidate pharmaceutical ingredient belongs as a feature of the candidate pharmaceutical ingredient; Including the program.
  • a recording medium storing a program for causing a computer to implement a method for providing characteristic information of a pharmaceutical ingredient, the method comprising: (A) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (B) providing a reference pharmaceutical ingredient set of known function; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data, and clustering the gene expression data; (D) providing a feature of a member of the reference pharmaceutical ingredient set belonging to the same cluster to which the candidate pharmaceutical ingredient belongs as a feature of the candidate pharmaceutical ingredient; Including a recording medium.
  • a system for providing medicinal component characteristic information comprising: (A) a candidate pharmaceutical ingredient providing unit for providing a candidate pharmaceutical ingredient; (B) a reference pharmaceutical ingredient providing unit for providing a reference pharmaceutical ingredient set having a known function; (C) a transcriptome clustering analysis unit that obtains gene expression data by performing transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set, and clusters the gene expression data; (D) a feature analysis unit that provides characteristics of members of the reference pharmaceutical ingredient set belonging to the same cluster to which the candidate pharmaceutical ingredient belongs as characteristics of the candidate pharmaceutical ingredient; Including the system. (Item c58) A method for quality control of pharmaceutical ingredients using the method according to item c36 to 49 or item c53.
  • (Item c59) A method for testing the safety of a pharmaceutical ingredient using the method according to item c36-49 or item c53.
  • (Item c60) A method for determining the effect of a pharmaceutical ingredient using the method according to item c36-49 or item c53.
  • the present invention systematically classifies pharmaceutical ingredients (active ingredients, additive ingredients, adjuvants, etc.), and pharmaceutical ingredients with unknown functions (for example, active ingredients, additive ingredients, adjuvants) without conducting detailed experiments.
  • pharmaceutical ingredients active ingredients, additive ingredients, adjuvants, etc.
  • pharmaceutical ingredients with unknown functions for example, active ingredients, additive ingredients, adjuvants
  • a technique capable of analyzing and accurately predicting its functions for example, active ingredients, additive ingredients, detailed properties of adjuvants, safety, efficacy, etc.
  • the present invention systematically classifies pharmaceutical ingredients (active ingredients, additive ingredients, adjuvants, etc.), and even existing pharmaceutical ingredients with unknown functions (for example, active ingredients, additive ingredients, adjuvants)
  • active ingredients for example, active ingredients, additive ingredients, adjuvants
  • existing pharmaceutical ingredients with unknown functions for example, active ingredients, additive ingredients, adjuvants
  • Provided is a technique capable of analyzing the function of whether it is the same as or other than for example, the G1-G6 reference adjuvants of the adjuvants exemplified herein).
  • FIG. 1 shows the adjuvant gene space comprising the significantly differentially expressed gene (sDEG) from each organ.
  • the sDEG for each gene is displayed as a Venn diagram.
  • Unique sets in lymph nodes (LN), liver (LV) and spleen (SP) were analyzed using TargetMine pathway annotations with p-values.
  • the gene set shared by all three organs (LV, SP and LN) was annotated with pathway analysis along with p-value.
  • FIG. 1 shows the adjuvant gene space comprising the significantly differentially expressed gene (sDEG) from each organ.
  • the sDEG for each gene is displayed as a Venn diagram.
  • FIG. 2A shows a consistent adjuvant among the three organs. Adjuvant clusters in liver (LV, top), spleen (SP, left) and lymph nodes (LN, right) as determined by R's Ward D2 method. See Figure 14 for cluster details. Reference adjuvant is shown in colored font. Batch effects and weak adjuvants (above batch effects but below baseline) are shown in gray. The adjuvant cluster relationship between the three organs is shown as a line.
  • FIG. 2B shows an adjuvant that is consistent among the three organs.
  • Adjuvant cluster in liver (LV) as determined by R's Ward D2 method. Reference adjuvant is shown in colored font. Batch effects and weak adjuvants (above batch effects but below baseline) are shown in gray.
  • FIG. 2C shows a consistent adjuvant among the three organs.
  • Adjuvant cluster in spleen (SP) as determined by R's Ward D2 method. Reference adjuvant is shown in colored font. Batch effects and weak adjuvants (above batch effects but below baseline) are shown in gray.
  • FIG. 2D shows an adjuvant that is consistent among the three organs.
  • Adjuvant cluster in lymph nodes (LN) as determined by R's Ward D2 method. Reference adjuvant is shown in colored font.
  • FIG. 3 is an enlarged view of the left side of the mouse liver (LV) cluster of FIG. 2B.
  • 2B is an enlarged view of the right side of the mouse liver (LV) cluster of FIG. 2B.
  • FIG. FIG. 2D is an enlarged view of the left side of the mouse spleen (SP) cluster of FIG. 2C.
  • 2D is an enlarged view of the right side of the mouse spleen (SP) cluster of FIG. 2C.
  • FIG. 2D is an enlarged view of the left side of the cluster of mouse lymph nodes (LN) of FIG. 2D.
  • LN mouse lymph nodes
  • FIG. 2D is an enlarged view of the right side of the cluster of mouse lymph nodes (LN) of FIG. 2D.
  • FIG. 2K shows a consistent adjuvant among the three organs in the rat. A trend similar to that in mice was observed.
  • FIG. 2A adjuvant clusters in the liver (top), spleen (right) and lung (left) as determined by the R Ward D2 method.
  • FIG. 2E is an enlarged view of the rat liver cluster of FIG. 2E.
  • 2E is an enlarged view of the rat spleen cluster of FIG. 2E.
  • FIG. 2E is an enlarged view of the rat lung cluster of FIG. 2E.
  • FIG. 2D is an enlarged view of the left side of the rat liver cluster of FIG. 2L.
  • FIG. 2D is an enlarged view of the right side of the rat liver cluster of FIG. 2L.
  • FIG. 2B is an enlarged view of the left side of the rat spleen cluster of FIG. 2M.
  • 2D is an enlarged view of the right side of the rat spleen cluster of FIG. 2M.
  • FIG. 2B is an enlarged view of the left side of the rat lung cluster of FIG. 2N.
  • FIG. 2B is an enlarged view of the right side of the rat lung cluster of FIG. 2N.
  • FIG. 3 shows the biological annotation and cytokine annotation of the adjuvant group.
  • Adjuvant group-related genes selected using the z-score were annotated with biological processes using TargetMine (a), or cytokine annotation was inferred by upstream analysis using IPA (b). Representative annotations, genes (Table 18) and IPA upstream analysis (Table 19) are displayed.
  • FIG. 3 shows the biological annotation and cytokine annotation of the adjuvant group.
  • Adjuvant group-related genes selected using the z-score (Table 17) were annotated with biological processes using TargetMine (a), or cytokine annotation was inferred by upstream analysis using IPA (b).
  • Representative annotations, genes (Table 18) and IPA upstream analysis (Table 19) are displayed.
  • FIG. 4 shows a relative comparison of adjuvants targeting the same receptor in lymph nodes.
  • FIG. 4 shows a relative comparison of adjuvants targeting the same receptor in lymph nodes.
  • Venn diagram (a, d) shows the top 10 genes preferentially up-regulated (b, e) and the mapping of selected genes to 40 modules (c, f).
  • the upper left column, the middle middle column, and the lower right column correspond to the relationship between the adjuvant and the top 10 genes that are preferentially up-regulated.
  • FIG. 4 shows a relative comparison of adjuvants targeting the same receptor in lymph nodes.
  • FIG. 4 shows a relative comparison of adjuvants targeting the same receptor in lymph nodes.
  • FIG. 5 shows adjuvant-induced hematological changes. Hematological changes in peripheral blood after adjuvant injection (a).
  • the black solid line, the two outer gray dashed lines, and the two outer red dashed lines represent the mean of the mice treated with the buffer control and the standard deviation (SD) level of 1SD and the SD level of 2SD, respectively. Show. Parameter changes exceeding 1SD are indicated by red bars (1SD, light red; 2SD, dark red), and other parameter changes are indicated by black bars.
  • the number of correlated genes and a representative list thereof are shown (b).
  • the red slanted line indicates the linear fitting line.
  • Adjuvants with WBC numbers greater than 1SD are shown in red (light color) font.
  • FIG. 5 shows adjuvant-induced hematological changes. Hematological changes in peripheral blood after adjuvant injection (a). The black solid line, the two outer gray dashed lines, and the two outer red dashed lines represent the mean of the mice treated with the buffer control and the standard deviation (SD) level of 1SD and the SD level of 2SD, respectively. Show.
  • FC fold change
  • t-test result vertical axis
  • MPLA_ID_LN and Pam3CSK4_ID_LN are underlined, but one of the three samples from these two adjuvant treatments (green, top right) showed little response compared to the other two samples, Only a slight response was shown.
  • MPLA_ID_LN and Pam3CSK4_ID_LN the data for one of the samples was considered unsuitable for analysis (see standard procedure 3 for details) and only the results for two samples are shown.
  • a large Venn diagram overlap in this analysis indicates a consistent gene response between individual mice in the same adjuvant treatment group. Correlation between the number of up-regulated gene probes and the consistency between adjuvant treated mice (overlapping part in the Venn diagram).
  • the horizontal axis shows the percentage of probes (overlap between two samples for some adjuvants) present in the overlapped portion of the total number of gene probes excluding overlap (see FIG. 8).
  • the vertical axis shows the number of gene probes up-regulated (average FC> 2). Red line (inclined line) indicates linear fitting.
  • the gray area indicates the 99% confidence area.
  • the adjuvant that appeared outside the 99% confidence region indicated its name. This analysis shows that the strong gene response induced with adjuvant in each organ positively correlates with the consistency of the gene response between individual mice. Biological process annotations for each adjuvant are shown.
  • an FC> 2 gene probe set for each adjuvant was annotated by TargetMine according to its biological annotation.
  • the resulting annotations (annotation p value ⁇ 0.05, including the selected keyword (eg, wound, death, cytokine)) were integrated by summing the LogP values of the annotation containing the keyword (see Table 12 for details). See The heat map (red and green gradation) shows -LogP. A darker red (lighter than the darkest area but relatively darker in the other areas) indicates a higher score. Green (the darkest area) indicates that no annotation has reached a p-value ⁇ 0.05.
  • the ENDCN data (c) in the LN is blank.
  • Biological process annotations for each adjuvant are shown.
  • an FC> 2 gene probe set for each adjuvant was annotated by TargetMine according to its biological annotation.
  • the resulting annotations (annotation p value ⁇ 0.05, including the selected keyword (eg, wound, death, cytokine)) were integrated by summing the LogP values of the annotation containing the keyword (see Table 12 for details). See The heat map (red and green gradation) shows -LogP. A darker red (lighter than the darkest area but relatively darker in the other areas) indicates a higher score.
  • Green the darkest area indicates that no annotation has reached a p-value ⁇ 0.05. Since the intranasal route was used, the ENDCN data (c) in the LN is blank. Biological process annotations for each adjuvant are shown. For each organ (LV, a; SP, b; LN, c), an FC> 2 gene probe set for each adjuvant was annotated by TargetMine according to its biological annotation. The resulting annotations (annotation p value ⁇ 0.05, including the selected keyword (eg, wound, death, cytokine)) were integrated by summing the LogP values of the annotation containing the keyword (see Table 12 for details). See The heat map (red and green gradation) shows -LogP.
  • the annotation, the number of probes, and the p value of each module by TargetMine are shown on the right side. Shows hierarchical clustering of gene probes and adjuvants. Significantly differentially expressed genes were sequentially clustered for adjuvant (horizontal axis) and gene probe (vertical axis) in LV (a), SP (b) and LN (c). The fold change expression value of each gene probe is shown as a heat map on the color scale shown in the figure. The gene probe was split into 40 modules with the associated annotation with the highest score shown. The annotation, the number of probes, and the p value of each module by TargetMine are shown on the right side. Shows hierarchical clustering of gene probes and adjuvants.
  • the probe ID and its FC expression values were processed using a prediction matrix of 10 immune cell types based on the ImmGen database.
  • Cell type scores and samples are clustered on both vertical and horizontal axes and shown as a z-score heat map.
  • Analysis of cell populations in response to adjuvant in each organ Cell populations that responded to the adjuvant in each organ were predicted by gene probes that satisfy an average FC> 2 for each adjuvant.
  • the probe ID and its FC expression values were processed using a prediction matrix of 10 immune cell types based on the ImmGen database.
  • Cell type scores and samples are clustered on both vertical and horizontal axes and shown as a z-score heat map. Analysis of cell populations in response to adjuvant in each organ.
  • Cell populations that responded to the adjuvant in each organ were predicted by gene probes that satisfy an average FC> 2 for each adjuvant.
  • the probe ID and its FC expression values were processed using a prediction matrix of 10 immune cell types based on the ImmGen database. Cell type scores and samples are clustered on both vertical and horizontal axes and shown as a z-score heat map.
  • 40 module immune cell type analysis in each organ Forty modules in each organ (LV, a; SP, b; LN, c) were analyzed for their responsive immune cell population using the ImmGen database as a reference. The cell population associated with the module is shown as a heat map. 40 module immune cell type analysis in each organ.
  • Adjuvants are grouped at a height threshold of 1.0 for LV and SP, and at a height threshold of 1.5 for LN, and the threshold line is shown in red. Adjuvant group members consistent between the three organs are colored. Groups of batch effects and weak adjuvants (above batch effects but below the threshold line) are shown in gray. D35_ID_x2 and K3_ID_x3 (two samples that showed very strong gene responses) were clustered into G2LV along with other DAMP-related adjuvants such as ALM, bCD, ENDCN and FCA. Cluster analysis of adjuvant.
  • Each sample from adjuvant-administered mice was individually clustered for each organ (LV, a; SP, b; LN, c) by the R Ward D2 method.
  • Adjuvants are grouped at a height threshold of 1.0 for LV and SP, and at a height threshold of 1.5 for LN, and the threshold line is shown in red.
  • Adjuvant group members consistent between the three organs are colored.
  • Groups of batch effects and weak adjuvants (above batch effects but below the threshold line) are shown in gray.
  • D35_ID_x2 and K3_ID_x3 two samples that showed very strong gene responses were clustered into G2LV along with other DAMP-related adjuvants such as ALM, bCD, ENDCN and FCA.
  • FIG. 14B is an enlarged view of the left side of the LV cluster of FIG. 14A.
  • FIG. 14B is an enlarged view of the right side of the LV cluster of FIG. 14A.
  • FIG. 14B is an enlarged view of the left side of the SP cluster of FIG. 14B.
  • FIG. 14B is an enlarged view on the right side of the SP cluster of FIG. 14B.
  • FIG. 14D is an enlarged view of the left side of the LN cluster of FIG. 14C.
  • Top 10 genes in the group associated with the adjuvant Z-score heat map of adjuvant group related genes. Adjuvant group-related genes were selected from the z-score. A list of the top 30 genes was first selected according to this z-score, and then the top 10 genes were selected according to actual gene expression values. Top 10 genes in the group associated with the adjuvant. Z-score heat map of adjuvant group related genes. Adjuvant group-related genes were selected from the z-score. A list of the top 30 genes was first selected according to this z-score, and then the top 10 genes were selected according to actual gene expression values. Top 10 genes in the group associated with the adjuvant.
  • Adjuvant group-related genes were selected from the z-score. A list of the top 30 genes was first selected according to this z-score, and then the top 10 genes were selected according to actual gene expression values. Different and common relationships between adjuvant group related genes and 40 modules from each organ. Adjuvant group-related up-regulated genes were selected based on the z-score of gene expression values (Table 17). Selected probes were analyzed for distribution within 40 modules for each organ. G1-related genes were distributed in a single interferon-related module (Table 17 and Table 18). Other group-related genes were widely distributed in several modules for each organ.
  • G1 (5 types of adjuvant) in LN shows the result of distribution of genes related to 5 types of adjuvants (cdiGMP, cGAMP, DMXAA, PolyIC and R848). Bars and numbers indicate the percentage of gene probes within each group. G4 in LV and G3 and G6 in LN each contain only one type of adjuvant (MALP2s, FK565 and AddaVax, respectively). These results require careful interpretation because of the limited data available. Different and common relationships between adjuvant group related genes and 40 modules from each organ. Adjuvant group-related up-regulated genes were selected based on the z-score of gene expression values (Table 17). Selected probes were analyzed for distribution within 40 modules for each organ.
  • G1-related genes were distributed in a single interferon-related module (Table 17 and Table 18). Other group-related genes were widely distributed in several modules for each organ.
  • G1 (5 types of adjuvant) in LN shows the result of distribution of genes related to 5 types of adjuvants (cdiGMP, cGAMP, DMXAA, PolyIC and R848). Bars and numbers indicate the percentage of gene probes within each group.
  • G4 in LV and G3 and G6 in LN each contain only one type of adjuvant (MALP2s, FK565 and AddaVax, respectively). These results require careful interpretation because of the limited data available. Different and common relationships between adjuvant group related genes and 40 modules from each organ.
  • Adjuvant group-related up-regulated genes were selected based on the z-score of gene expression values (Table 17). Selected probes were analyzed for distribution within 40 modules for each organ. G1-related genes were distributed in a single interferon-related module (Table 17 and Table 18). Other group-related genes were widely distributed in several modules for each organ. G1 (5 types of adjuvant) in LN shows the result of distribution of genes related to 5 types of adjuvants (cdiGMP, cGAMP, DMXAA, PolyIC and R848). Bars and numbers indicate the percentage of gene probes within each group.
  • G4 in LV and G3 and G6 in LN each contain only one type of adjuvant (MALP2s, FK565 and AddaVax, respectively). These results require careful interpretation because of the limited data available.
  • the lower panel shows lymphocytes (LYM).
  • LYM lymphocytes
  • ALM_gsk Data for AS04 and alum (ALM_gsk) control samples were processed and analyzed for each organ (LV, a; SP, b; LN, c). Overall, the cluster structure was similar to that shown in FIGS.
  • ALM_gsk in LN was above the batch effect threshold and was classified as G2 in LN.
  • the control alum was below the batch effect threshold, as was ALM in LV and SP.
  • ALM_gsk was above the batch effect threshold and was classified as G2 in LN.
  • the control alum (ALM_gsk) was below the batch effect threshold, as was ALM in LV and SP.
  • One sample of ALM_gsk in LN was above the batch effect threshold and was classified as G2 in LN.
  • FIG. 20B is an enlarged view of the left side of the LV cluster of FIG. 20A.
  • FIG. 20B is an enlarged view of the right side of the LV cluster of FIG. 20A.
  • FIG. 20B is an enlarged view of the left side of the SP cluster of FIG. 20B.
  • FIG. 20B is an enlarged view on the right side of the SP cluster of FIG. 20B.
  • FIG. 20D is an enlarged view of the left side of the LN cluster of FIG. 20C.
  • FIG. 20D is an enlarged view of the right side of the LN cluster of FIG. 20C.
  • FIG. 21 shows adjuvant grouping as determined by cluster analysis of multiple organs. The data shown in FIG. 2, FIG. 14 and FIG. 20 are summarized in one table.
  • FIG. 22 shows that Advax TM induces a Th2 response when combined with a Th2-type antigen.
  • splenocytes were prepared from mice immunized with 15 ⁇ g SV and adjuvant and stimulated with MHC class I or II nucleoprotein epitope peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments. Median and SEM are shown for each group. Statistical significance was determined by * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001, ⁇ P ⁇ 0.05, ⁇ P ⁇ 0.001 in Dunnett's multiple comparison test. Show. FIG. 22 shows that Advax TM induces a Th2 response when combined with a Th2-type antigen.
  • EG splenocytes were prepared from mice immunized with 15 ⁇ g SV and adjuvant and stimulated with MHC class I or II nucleoprotein epitope peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments. Median and SEM are shown for each group.
  • FIG. 22 shows that Advax TM induces a Th2 response when combined with a Th2-type antigen.
  • splenocytes were prepared from mice immunized with 15 ⁇ g SV and adjuvant and stimulated with MHC class I or II nucleoprotein epitope peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments. Median and SEM are shown for each group. Statistical significance was determined by * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001, ⁇ P ⁇ 0.05, ⁇ P ⁇ 0.001 in Dunnett's multiple comparison test. Show. FIG. 23 shows that Advax TM exhibits a Th1 response when combined with a Th1-type antigen.
  • EG splenocytes were prepared from mice immunized with 15 ⁇ g WV and adjuvant and stimulated with MHC class I or II specific nucleoprotein peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments.
  • FIG. 23 shows that Advax TM exhibits a Th1 response when combined with a Th1-type antigen.
  • splenocytes were prepared from mice immunized with 15 ⁇ g WV and adjuvant and stimulated with MHC class I or II specific nucleoprotein peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments. Median and SEM are shown for each group. Statistical significance is indicated by * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001, ⁇ P ⁇ 0.05 in Dunnett's multiple comparison test.
  • FIG. 23 shows that Advax TM exhibits a Th1 response when combined with a Th1-type antigen.
  • EG splenocytes were prepared from mice immunized with 15 ⁇ g WV and adjuvant and stimulated with MHC class I or II specific nucleoprotein peptides. After stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA. Results represent 3 separate experiments.
  • FIG. 24 shows that Advax TM does not induce an immune response when combined with Th0 type antigen or in Tlr7 ⁇ / ⁇ mice.
  • FIG. 25 shows that Advax TM activates DCs in vivo but not in vitro.
  • AC Bone marrow-derived DCs were stimulated with 1 mg / ml alum, 1 mg / ml Advax TM or 50 ng / ml LPS in vitro for 24 hours, after which CD40 expression on pDC was assessed.
  • DF C57BL / 6J mice were injected with 0.67 mg alum, 1 mg Advax TM or 50 ng LPS into the tail base. Twenty-four hours after injection, inguinal lymph nodes were harvested and treated with DNase I and collagenase. Cells were then stained and analyzed by FACS. Results represent 3 separate experiments. Saline results are shown in a gray area with a line, and adjuvant results are shown only with a line without further filling. FIG. 26 shows that macrophages are required for Advax TM adjuvant effect. Brilliant Violet 421 labeled Advax delta inulin particles i. d. Two-photon excitation microscopic analysis of lymph nodes 1 hour after administration (AC) and 24 hours after (DF).
  • Anti-CD169-FITC and anti-MARCO-phycoerythrin antibodies were administered i. 30 minutes prior to Advax TM administration.
  • CD169 + and MARCO + macrophages were stained by injection.
  • A, D blue (left) indicates Advax TM
  • B, E green (middle) indicates CD169 + macrophages
  • C, F red (right) indicates MARCO + macrophages.
  • Phagocytic cells in (G, H) lymph nodes are depleted by injection of clodronic acid liposomes on the indicated days (-2 days and -7 days), after which WV + Advax TM is i. d. Immunized by administration.
  • FIG. 26 shows that macrophages are required for Advax TM adjuvant effect.
  • Anti-CD169-FITC and anti-MARCO-phycoerythrin antibodies were administered i. 30 minutes prior to Advax TM administration.
  • CD169 + and MARCO + macrophages were stained by injection.
  • A, D blue (left) indicates Advax TM
  • B, E green (middle) indicates CD169 + macrophages
  • C, F red (right) indicates MARCO + macrophages.
  • Phagocytic cells in (G, H) lymph nodes are depleted by injection of clodronic acid liposomes on the indicated days (-2 days and -7 days), after which WV + Advax TM is i. d.
  • FIG. 27 shows that Advax TM alters gene expression of IL-1 ⁇ , CLR and TNF- ⁇ signaling pathways.
  • Advax TM responsive cell population analysis was performed. The left half of the figure shows 10 immune cell types and the right half shows the sample.
  • the ribbon in the inner circle represents the cell type score for each sample.
  • the color of the ring in the middle layer represents the cell type or sample.
  • the outermost ring represents the percent of the total contribution for each factor (cell type or sample) as seen from the opposing factor.
  • SP In ip, neutrophils account for about 30% of the cell population.
  • C IPA upstream regulator analysis of Advax TM inducible gene in SP.
  • FIG. 27 shows that Advax TM alters gene expression of IL-1 ⁇ , CLR and TNF- ⁇ signaling pathways.
  • FIG. 27 shows that Advax TM alters gene expression of IL-1 ⁇ , CLR and TNF- ⁇ signaling pathways.
  • FIG. 28C is an enlarged view of the explanation of the code for the IPA upstream regulator analysis of the Advax TM -inducible gene in SP of FIG. FIG.
  • FIG. 28B is an enlarged view of a correlation diagram by IPA upstream regulator analysis of an Advax TM -inducible gene in the SP of FIG. 27C.
  • FIG. 28 shows that TNF- ⁇ is required for the adjuvant effect of Advax TM.
  • A Peritoneal macrophages were stimulated with Advax TM or Alum for 8 hours, and TNF- ⁇ in the supernatant was measured by ELISA.
  • B 1 mg Advax TM or 0.67 mg alum i. p.
  • serum and peritoneal lavage fluid were collected and TNF- ⁇ levels in the serum and lavage fluid were measured by ELISA.
  • Antigen-specific total IgG, IgG1, and IgG2c titers in serum were measured by ELISA on days 14 and 28. Results represent 3 separate experiments. Median and SEM are shown for each group. Statistical significance is indicated by * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001 in Dunnett's multiple comparison test or Student's t test. Schematic representation of the creation of “toxic” and “non-toxic” groups based on a toxicogenomic database. The probe (gene) selected for the necrosis prediction model is enriched in five pathways related to immune response (1) and metabolism (4).
  • the gene variation pattern at 6 and 24 hours after each adjuvant administration is compared to the “toxic” and “non-toxic” gene patterns at 6 and 24 hours in the toxicogenomics database.
  • the “toxicity” score of was calculated.
  • the top shows an adjuvant that showed a high toxicity score in the comparison results after 6 hours (left) or 24 hours (right).
  • the bottom shows the toxicity score of each adjuvant in the comparison results after 24 hours.
  • the activity of ALT is shown at 6 hours (top) and 24 hours (bottom) after actually administering each adjuvant.
  • the results of histological analysis of hepatoxylin-eosin stained livers collected on days 1, 2, 3, and 5 when FK565 was administered intraperitoneally to mice are shown. Arrow indicates liver damage.
  • the scale bar indicates 100 ⁇ m.
  • the result of confirming apoptosis by staining the liver collected after intraperitoneal administration of FK565 to mice was shown.
  • the left shows the result of symmetrical PBS administration, and the right shows the result of FK565 administration.
  • Blood was collected on days 1 and 2 3 hours after intraperitoneal administration of PBS, FK565 (1 ⁇ g / kg, 10 ⁇ g / kg or 100 ⁇ g / kg) or LPS (1 mg / kg) to mice.
  • the result of having performed biochemical analysis about the serum level of aspartate transaminase (AST) and alanine transaminase (ALT) using these blood is shown.
  • the gene cluster centering on Osmr obtained as a result of analyzing the database is shown.
  • the upper row shows the expression change (fold change) of gene Y in the liver 6 hours after administration of each adjuvant to rats.
  • the lower panel shows the result of TUNEL staining of the liver collected by administering FK565 to wild-type (left) or Osmr-deficient (right) mice. Blood was collected one day after intraperitoneal administration of PBS, FK565 (1 ⁇ g / kg, 10 ⁇ g / kg or 100 ⁇ g / kg) or LPS (1 mg / kg) to wild type or Osmr deficient mice.
  • the result of having performed biochemical analysis about the serum level of aspartate transaminase (AST) and alanine transaminase (ALT) using these blood is shown.
  • the schematic of preparation of an adjuvant property prediction model is shown.
  • the probes (genes) selected for the adjuvant predictive model are shown to be enriched in 42 pathways related to cell death (4), immune response (2) and metabolism (36) (left).
  • a Venn diagram of the genes making up the pathway for cell death (4) and immune response (2) is shown (right).
  • the scores for drugs, immunostimulants, LPS and TNF calculated by the adjuvant predictive model are shown (top).
  • PO represents oral administration
  • IV represents intravenous administration
  • IP represents intraperitoneal administration.
  • the ROC curve of the adjuvant predictive model is shown (bottom).
  • mice were given intradermal administration of alum, CpGk3 or 5 drugs (ACAP, BOR, CHX, COL, PHA) with ovalbumin at 2-3 doses on days 0 and 14, and on day 21 Blood and spleen were collected. The results of measuring anti-ovalbumin (ova) antibody titers (IgG1, IgG2 and total IgG) on day 21 are shown. The Y axis shows an increase in antibody titer on a log 10 scale. Numbers in parentheses indicate dose administered ( ⁇ g / dose / mouse). Ovalbumin was administered at 10 ⁇ g / dose / mouse.
  • Ovalbumin (ova) 257-264 peptide (OVA-MHC1), ova 323-339 peptide (OVA-MHC2) or ova protein (OVA-hole) is added to spleen cells in vitro in addition to each drug
  • Ovalbumin (ova) 257-264 peptide (OVA-MHC1), ova 323-339 peptide (OVA-MHC2) or ova protein (OVA-hole) is added to spleen cells in vitro in addition to each drug
  • the supernatant was collected by treatment with or without additional stimulation.
  • the results of measuring Th1-type (IL-2 and IFN- ⁇ ) cytokines in the supernatant by ELISA are shown.
  • the numbers in parentheses indicate the dose administered ( ⁇ g / once / mouse).
  • Ovalbumin was administered at 10 ⁇ g / dose / mouse.
  • Ovalbumin (ova) 257-264 peptide (OVA-MHC1), ova 323-339 peptide (OVA-MHC2) or ova protein (OVA-hole) is added to spleen cells in vitro in addition to each drug
  • Ovalbumin (ova) 257-264 peptide (OVA-MHC1), ova 323-339 peptide (OVA-MHC2) or ova protein (OVA-hole) is added to spleen cells in vitro in addition to each drug
  • the supernatant was collected by treatment with or without additional stimulation.
  • the results of measuring Th2-type (IL-4 and IL-5) cytokines in the supernatant by ELISA are shown.
  • the numbers in parentheses indicate the dose administered ( ⁇ g / once / mouse).
  • Ovalbumin was administered at 10 ⁇ g / dose / mouse.
  • mice were administered alum, CpGk3 or 5 drugs (ACAP, BOR, CHX, COL, PHA) with ovalbumin, blood was collected 3 hours later (day 0), and aspartate transaminase (AST) and The result of having performed biochemical analysis about the serum level of alanine transaminase (ALT) is shown.
  • the numbers in parentheses indicate the dose administered ( ⁇ g / once / mouse).
  • Ovalbumin was administered at 10 ⁇ g / dose / mouse.
  • the blood was collected 6 hours and 24 hours after intraperitoneal administration of each drug to mice, and the results of analysis of miRNA in circulating blood are shown.
  • the vertical axis represents -log 10 (p value), and the horizontal axis represents -log 2 (miRNA amount).
  • the result of analyzing miRNA in circulating blood 6 hours and 24 hours after administration of Alum and AS04 to mice is shown.
  • the vertical axis represents -log 10 (p value), and the horizontal axis represents -log 2 (miRNA amount).
  • the present invention performs transcriptome analysis of organs and organs in animals (for example, mice) using a large number (in the examples, 21 types) of different pharmaceutical components (for example, adjuvants), and induces these pharmaceutical components.
  • each adjuvant can be classified into, for example, a characteristic adjuvant group named at least G1 to G6 or other groups.
  • a reference medicinal component for example, a reference adjuvant
  • a target substance such as a substance whose function (for example, an adjuvant function) is unknown or a novel substance.
  • clustering analysis including the transcriptome analysis data of and determining which reference medicinal component is classified into the same cluster as the target drug component, the attribute of the target substance can be specified or specified it can.
  • the present invention provides a flexible standardized method and framework for comprehensively and systematically evaluating any pharmaceutical ingredient (active ingredient, additive ingredient, adjuvant, etc.).
  • the adjuvant that is an exemplary classification subject of the present invention has traditionally been used as an additive in vaccines.
  • Various substances such as small molecules, lipids and nucleic acids often formulated as oil emulsions, aluminum salts or nanoparticles are known to function as adjuvants with many vaccine antigens (Coffman, RL, Sher, A. & Seder, RA Immunity 33,492-503 (2010); Reed, SG, Orr, MT & Fox, CB Nat Med 19, 1597-1608 (2013) and Desmet, CJ & Ishii, KJ Nature reviews. Immunology 12, 479 -491 (2012)).
  • Immunostimulants are pathogen-related molecular patterns (PAMPs) (Janeway, CA, Jr. Cold Spring symposia on quantitative biology 54 Pt 1, 1-13 (1989)) or injury, depending on their exogenous or endogenous origin It has been proposed to further classify related molecular patterns (DAMPs) (Matzinger, P. Annu Rev Immunol 12, 991-1045 (1994)), which are recognized by germline encoded pattern recognition receptors, thereby interferon and Secretion of pro-inflammatory cytokines is induced (Kawai, T.
  • PAMPs pathogen-related molecular patterns
  • DAMPs related molecular patterns
  • the system vaccinology method (Pulendran, B. Proc Natl Acad Sci US A 111, 12300-12306 (2014)) is a research method of vaccine science by identifying the correlation between protective actions (especially human vaccines). (Ravindran, R. et al. Science 343, 313-317 (2014); Tsang, JS et al. Cell 157, 499-513 (2014); Nakaya, HI et al. Immunity 43 , 1186-1198 (2015); Sobolev, O. et al. Nature immunology 17, 204-213 (2016)). By examining gene expression profiles induced early after vaccination, these approaches can predict subsequent adaptive immune responses.
  • the present invention provides a systematic and comprehensive research method for pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants).
  • pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • various analytical methods have been studied for vaccine adjuvants and molecular signatures have been reported, but no systematic solution has been reached, rather, various known classification methods have It is reported that this is not possible (Olafsdottir, T., Lindqvist, M. & Harandi, AM Vaccine 33,5302-5307 (2015)). Therefore, the present invention systematically and comprehensively classifies pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants), and relies on the effectiveness and safety of the new pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants). It provides a means of predicting sex.
  • the present invention provides a reliable predicting means for specifying the function of a substance whose function of the pharmaceutical ingredient (for example, the efficacy of the active ingredient, the auxiliary function of the added ingredient, the adjuvant function) is unknown or undefined.
  • a reliable predicting means for specifying the function of a substance whose function of the pharmaceutical ingredient for example, the efficacy of the active ingredient, the auxiliary function of the added ingredient, the adjuvant function
  • those whose functions are known can be used for quality control and can be used as part of safety management.
  • it can utilize as part of confirmation of the effectiveness and safety
  • the present inventors acquired approximately 330 microarray gene expression data from mouse liver (LV), spleen (SP) and inflow region inguinal lymph nodes (LN) after administration of a wide variety of different adjuvants.
  • LV mouse liver
  • SP spleen
  • LN inflow region inguinal lymph nodes
  • adjuvant gene space By analyzing the expression data (transcutome) of adjuvant-inducible genes in this space, the nature of each adjuvant in vivo was clarified. This approach was used to predict its unknown mechanism of action for two relatively new adjuvants.
  • the term “pharmaceutical ingredient” means any ingredient that can constitute a medicine, for example, an active ingredient (indicating itself a medicinal effect), an additive ingredient (in itself, no medicinal effect is expected) Is a drug that is expected to play a certain role (for example, excipients, lubricants, surfactants, etc.) and adjuvants (for example, antigens in the case of vaccines, etc.) (For example, those that enhance the ability to elicit an immune response) and the like.
  • the pharmaceutical ingredient include pharmaceutically acceptable carriers, diluents, excipients, buffers, binders, blasting agents, diluents, flavoring agents, lubricants, and the like.
  • the pharmaceutical ingredient may be a single substance or a combination of a plurality of substances or agents. Arbitrary combinations such as a combination of an active ingredient and an additive ingredient, and a combination of an adjuvant and an active ingredient can also be included.
  • the “active ingredient” refers to an ingredient that exhibits an intended medicinal effect, and may be a single ingredient or a plurality of ingredients.
  • additive component refers to any component that is not expected to have a medicinal effect but plays a certain role when contained as a pharmaceutical, such as a pharmaceutically acceptable carrier, diluent, excipient. Examples include agents, buffers, binders, blasting agents, diluents, flavoring agents, and lubricants.
  • ⁇ -cyclodextrin and the like are also included as an additive component, and such a component may prove effective as an adjuvant. In this case, a person skilled in the art determines whether it is an adjuvant or an additive component depending on the purpose.
  • an antigen such as a vaccine
  • a compound refers to a compound.
  • Adjuvant-mediated enhancement of the immune response was typically generated in response to immunization with the adjuvant / antigen combination, versus (i) the number of antibodies generated in response to immunization with the antigen alone.
  • transcriptome refers to any transcript (eg, mRNA or primary transcript (mRNA, rRNA, tRNA) present in a cell (a single cell or population of cells) under certain circumstances. And a set of all RNA molecules, including other non-coding RNAs), a designation that refers to the sum of transscripts).
  • a transcriptome is a set of all RNA molecules produced in one cell, a population of cells, preferably a population of cancer cells, or all cells of a given individual at a particular time. Means.
  • exome refers to an aggregate of all exons in the human genome, and refers to the entire part of the genome of an organism formed by the exons that are the coding part of the expressed gene. Exome provides a genetic blueprint that is used in the synthesis of proteins and other functional gene products. This is the functionally most important part of the genome and has therefore been most likely to contribute to the phenotype of the organism.
  • NGS Next generation sequencing
  • Sanger Chemistry which divides the entire genome into smaller pieces by dividing the nucleic acid template along the entire genome. Mean all new high-throughput sequencing technologies that read randomly in parallel.
  • NGS technology (also referred to as massively parallel sequencing technology) is a very short period of time for nucleic acid sequence information of whole genome, exome, transcriptome (all transcripts of genome) or methylome (all methylated sequences of genome), For example, it can be delivered within 1-2 weeks, preferably within 1-7 days, or most preferably within less than 24 hours, in principle allowing a single cell sequencing approach. Any NGS platform that is commercially available or mentioned in the literature can be used for the practice of the present invention.
  • transcriptome expression profile refers to a profile of the expression status of each gene when transcriptome analysis is performed for a certain factor.
  • transcriptome expression profile equivalent to means that the "transcriptome expression profile" is substantially the same, identical, or substantially similar for some purpose.
  • the identity of the expression profile can be determined by whether the expression profiles are similar for a molecule such as a pharmaceutical ingredient (eg, an adjuvant) or a part thereof.
  • whether or not they are similar can be defined by the level of gene expression such as sDEG defined herein, and can be determined based on the level of expression, amount, amount of activity, and the like.
  • the pharmaceutical ingredients belonging to the same cluster eg, An adjuvant is understood to have similar characteristics as a pharmaceutical ingredient (eg, an adjuvant) that falls within the same category. Therefore, by examining whether they belong to the same pharmaceutical ingredient cluster (eg, adjuvant cluster) using the technique of the present invention, the characteristics of a novel pharmaceutical ingredient (eg, adjuvant) or a pharmaceutical ingredient of unknown function (eg, adjuvant) Analysis can be performed.
  • a “similarity score” may be used to investigate similarity herein. This “similarity score” refers to a specific numerical value indicating the degree of similarity.
  • an appropriate score may be adopted depending on the technique used when calculating the expression pattern of the transcriptome, etc. .
  • the similarity score can be calculated using, for example, a recursive method, a neural network method, a machine learning algorithm such as a support vector machine or a random forest.
  • clustering or “cluster analysis” or “clustering analysis” is used interchangeably, and collects similar groups from a group (objects) of a mixture of different properties.
  • partitioning methods There are several types of partitioning methods, and when all classification targets are elements of one cluster (hard or crisp cluster), and one cluster is divided into multiple clusters. There is a case where it belongs to a part at the same time (it is called software or fuzzy cluster).
  • hard cluster analysis is used. Typical cluster analysis includes hierarchical cluster analysis and non-hierarchical cluster analysis. Usually hierarchical cluster analysis is used, but not limited to.
  • “transcriptome clustering” refers to clustering based on the result of transcriptome analysis.
  • a “cluster” generally refers to an element of a population (eg, a pharmaceutical ingredient (eg, an adjuvant)) from the distribution of elements in a multidimensional space, without specifying external criteria or number of groups.
  • the term “cluster” of pharmaceutical ingredients (eg, adjuvant) is used herein to refer to a collection of similar pharmaceutical ingredients (eg, adjuvants).
  • Pharmaceutical components (eg, adjuvants) belonging to the same cluster have similar (ie, the same or similar) action effects (eg, adjuvant function (eg, cytokine stimulation, etc.)).
  • Classification can be performed by multivariate analysis, and clusters can be constructed using various cluster analysis techniques.
  • the cluster of the pharmaceutical ingredient (for example, adjuvant) provided by the present invention belongs to the cluster, it is possible to classify according to the function of the pharmaceutical ingredient (for example, adjuvant).
  • a pharmaceutical ingredient (for example, an adjuvant) belonging to the same cluster after classification has a characteristic characteristic of the cluster, it can be accurately predicted with a reasonable probability.
  • Reasonable probabilities are, for example, 99%, 98%, 97%, 96%, 95%, 90% depending on the parameters used for cluster analysis. It can be appropriately set to 85%, 80%, 75%, 70%, and the like.
  • the functions “same” or “similar” are used for the result after cluster analysis, and are said to be the same when having substantially the same degree of activity for a certain property, and qualitatively for a certain property. Are said to be “similar” if they have the same activity but differ in amount. Such similar degrees are, for example, 99%, 98%, 97%, 96%, 95%, 90%. It can be appropriately determined as 85%, 80%, 75%, 70%, or the like.
  • “identical cluster” refers to entering the same cluster in cluster analysis. Whether to enter the same cluster can be determined by the similarity.
  • similarity refers to the degree of similarity of expression profiles for molecules such as active ingredients, additive ingredients, pharmaceutical ingredients such as adjuvants, or a part thereof.
  • the degree of similarity can be defined by the level of gene expression such as sDEG as defined herein, and can be determined based on the level, amount, activity, etc. of expression. While not wishing to be bound by theory, in some embodiments of the invention, by classifying pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants) based on this similarity, they are grouped into the same cluster.
  • the pharmaceutical ingredient (eg active ingredient, additive ingredient, adjuvant) to which it belongs has the same characteristics as a pharmaceutical ingredient (eg active ingredient, additive ingredient, adjuvant) falling into the same category. Therefore, by using the method of the present invention to determine whether they belong to the same pharmaceutical ingredient cluster (eg, adjuvant cluster), a novel pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) or pharmaceutical ingredient of unknown function (eg, For example, the active ingredient, additive ingredient, adjuvant) pharmaceutical ingredient can be analyzed.
  • a “similarity score” may be used to investigate similarity herein. This “similarity score” refers to a specific numerical value indicating the degree of similarity.
  • an appropriate score may be adopted depending on the technique used when calculating the expression pattern of the transcriptome, etc. .
  • the similarity score can be calculated using a technique used in artificial intelligence (AI) such as a recursive method, a neural network method, a machine learning algorithm such as a support vector machine, or a random forest.
  • AI artificial intelligence
  • FIG. 1 An example of performing cluster analysis is also illustrated in FIG.
  • threshold value As an important indicator, it is appropriate to set a threshold value so that it closely matches the expression pattern of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants) that are known to have the same or similar functions.
  • pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • other threshold values may be employed, and those skilled in the art can appropriately set threshold values with reference to the description of the present specification according to the situation.
  • clustering analysis is performed using a hierarchical clustering method (for example, group average clustering, shortest distance method (NN method), K-NN method, Ward method, relong distance method, centroid method) Those having the maximum distance required in the above can be regarded as the same cluster.
  • Such values include less than 1, less than 0.95, less than 0.9, less than 0.85, less than 0.8, less than 0.75, less than 0.7, less than 0.65, less than 0.6, ⁇ 0.55, ⁇ 0.5, ⁇ 0.45, ⁇ 0.4, ⁇ 0.35, ⁇ 0.3, ⁇ 0.25, ⁇ 0.2, ⁇ 0.15, ⁇ 0.1, Although less than 0.05 can be mentioned, it is not limited to these.
  • the clustering method is not limited to the hierarchical method (for example, the shortest distance method), and a non-hierarchical method (for example, the k-means method) may be used. Hierarchical clustering may be preferred.
  • distance between the elements to be classified.
  • Commonly used distances between elements include Euclidean distance, Mahalanobis distance, cosine similarity (distance), and the like.
  • the software for performing the hierarchical clustering is not limited.
  • Java registered trademark
  • Clustering Calculator (Brzustowski, J.) (http://www2.biology.ualberta.ca/ jbrzusto / cluster.php /).
  • a tree diagram can be drawn from such output data using appropriate software (Phylip / DRAWTREE format, (hierarchical trees) using Tree Explorer software, Tamura, K., available at http: // www evolgen.biol., but not limited to).
  • a value such as p-value of multiscale bootstrap (Au) can be output.
  • These values are values indicating the mathematical stability of clustering.
  • AU is often used in sequence analysis and the like, and is a parameter that may be suitable for showing the stability of a phylogenetic tree.
  • Hierarchical clustering is classified into a branch type and an aggregate type.
  • aggregation type that is typically used, when data consisting of N objects is given, first, an initial state with N clusters including only one object is created. Starting from this state, the distance d (C1, C2) between the clusters is calculated from the distance d (x1, x2) (dissimilarity) between the objects x1 and x2, and the two clusters having the closest distance are sequentially calculated. Will merge. Then, this merging is repeated until all objects are merged into one cluster to obtain a hierarchical structure. This hierarchical structure is displayed by a dendrogram (dendrogram).
  • a dendrogram is a binary tree in which each terminal node represents each object, and a cluster formed by merging is represented by a non-terminal node.
  • the horizontal axis of non-terminal nodes represents the distance between clusters when merged.
  • the shortest distance method, the longest distance method, and the group average method can be applied when the distance d (xi, xj) between arbitrary objects is given, and the update of the distance after merging clusters is performed by Lance-Williams It is possible in constant time by the update formula (GNLance and WTWilliams, The Computer Journal, vol.9, pp.373-380 (1967)).
  • the target is described by a numerical vector
  • the Euclidean distance between the vectors can be obtained and applied.
  • the Ward method can be applied directly when the target is given as a numerical vector, and when only the distance between the targets is given, the distance can be updated using the Lance-Williams update formula. Can be applied.
  • the calculation amount in the general case where the distance can be updated in constant time using the Lance-Williams update formula is determined by O (N 2 logN), but the distance update method described above has the property of reducibility.
  • There is an algorithm (F. Murtagh, The Computer Journal, vol. 26, pp. 354-359 (1983)) that can be calculated in O (N 2 ) time by utilizing the properties of the re-neighbor graph. Yes.
  • the amount of calculation on a color / parallel computer can be implemented using known information such as Olson literature (CFOlson: Parallel Computing, Vol. 21, pp. 1313-1325 (1995)).
  • An analysis example of the hierarchical clustering of the present invention is illustrated in the embodiment, and is illustrated in FIG. 14, for example.
  • Hierarchical clustering can be performed in each organ for each pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) and for each gene probe (FIG. 11). This analysis can also analyze the percentage of the cell population that responds to a pharmaceutical ingredient (eg, an adjuvant) (FIG. 12). Cells can also be analyzed by type of immune cell (FIG. 13).
  • pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • gene probe FIG. 11
  • This analysis can also analyze the percentage of the cell population that responds to a pharmaceutical ingredient (eg, an adjuvant) (FIG. 12).
  • Cells can also be analyzed by type of immune cell (FIG. 13).
  • transcriptome analysis is performed by administering a target pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) to a target organism, and at a certain time after administration. Comparing the transcriptome in the organ (organ) to the transcriptome in the same or corresponding organ prior to administration of the pharmaceutical component (eg, adjuvant), and a gene (DEG) with altered expression as a result of this comparison Can be implemented by identifying a set of a target pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) to a target organism, and at a certain time after administration. Comparing the transcriptome in the organ (organ) to the transcriptome in the same or corresponding organ prior to administration of the pharmaceutical component (eg, adjuvant), and a gene (DEG) with altered expression as a result of this comparison Can be implemented by identifying a set of a target pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) to a target organism, and at a certain time after administration. Comparing the transcriptome in the organ (organ) to the transcript
  • a differentially expressed gene or “a differentially expressed gene (DEG)” refers to a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) as the target organism. Comparing the transcriptome in the organ to the transcriptome in the organ before administration of the pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) at a certain time after administration, and the result of the comparison , refers to a gene whose expression varies (eg, increases, decreases, develops or disappears). When the variation is “significant”, it is referred to as “significant DEG” or “sDEG”.
  • the term “significant variation” usually means a statistically significant variation, but is not limited to this, and if appropriate for the purpose of the present invention, the significance is judged using an appropriate criterion. Can do.
  • the determination method of DEG is exemplified in the Examples and is typically as follows: It can be defined as a statistically significant change (up regulation or down regulation) that satisfies all of the following conditions:
  • the predetermined threshold when setting a significant DEG is specified by a predetermined fold difference and a predetermined statistical significance (p value); typically, the mean fold change (FC) is> 1.5 or ⁇ Including, but not limited to, 0.667, the associated t-test p-value is ⁇ 0.01 without multiple-test correction, and the customized PA call is 1.
  • the specific method may be used.
  • genes whose expression has fluctuated beyond a predetermined threshold are identified, and among the identified genes, the commonly fluctuating genes are selected to generate a set of significant DEGs.
  • the analysis of DEG can use any method capable of analyzing differential expression.
  • the Volcano plot used in the examples is a scatter plot with statistical effects on the y-axis and biological effects on the x-axis for all individuals / characteristic matrices. The only constraint can only be enforced by considering the difference between the levels of the two levels of qualitative explanatory variables.
  • the y-axis coordinates are usually scaled with -log10 (p-value) to make the figure easier to read, with higher values reflecting the most significant effect, while lower values are almost significant. Corresponds to effects that are not. Because a statistically significant effect is not always interesting on a biological scale, using Volcano plots, experiments involving very accurate measurements with multiple iterations are related by very weak differences in biological The risk that it may provide a low p-value can be reduced, and therefore analysis can be performed focusing on not only the p-value but also the biological effect.
  • the state of the reaction is represented as a Venn diagram (for example, FIG. 8), and if there are many overlaps, it can be determined that expression is consistently made, and that universality is high. Can do. It has been found in the present invention that the overlapping ratio of the Venn diagram correlates with the number of gene probes that are up-regulated.
  • a powerful gene response that is inducible to a pharmaceutical ingredient for example, a medicinal effect of an active ingredient, an auxiliary function of an added ingredient, and an adjuvant-inducible
  • FIG. An example of a Venn diagram and annotation analysis of genes significantly up-regulated with CpG adjuvant is illustrated in FIG. Similarly, what was done for cdiGMP is illustrated in FIG.
  • a set of all sDEGs for a pharmaceutical component and each organ is referred to as a “medical component gene space (space)”.
  • the collection of adjuvants and all sDEGs for each organ is referred to as “adjuvant gene space”.
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ.
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all sDEGs for each organ
  • adjuvant gene space the collection of adjuvants and all s
  • the transcriptome analysis is performed on at least two or more organs to identify a set of genes whose expression varies only in specific organs (eg, liver, spleen, and lymph nodes).
  • the set can be the organ-specific gene set. Therefore, as used herein, “organ-specific gene set” refers to a set of genes whose expression varies specifically in a certain organ.
  • An “organ” that can be used in the present specification is also referred to as an “organ” and is a unit constituting a body of a multicellular organism such as an animal or a plant among organisms, and is morphologically distinguished from the surroundings, and as a whole is a person. The one that takes on the function of a unit.
  • representative examples include the liver, spleen, and lymph node.
  • other organs such as the kidney, lung, adrenal gland, pancreas, and heart can be exemplified, but not limited thereto.
  • a number that enables statistically significant clustering analysis is a number related to an adjuvant and refers to the number of samples from which a statistically significant difference can be detected when clustering analysis is performed.
  • Those skilled in the art can appropriately set the detection power and the like based on conventional techniques in the field of statistics.
  • gene marker is an index for evaluating the state or action of an object, and here refers to a gene-related substance that correlates with the expression level of a gene. Unless otherwise specified herein, “gene marker” may be referred to as “marker”.
  • a gene (marker) group related to a pharmaceutical ingredient can be expressed using a z-score heat map technique, but is not limited thereto (FIG. 15).
  • pharmaceutical component evaluation marker refers to a genetic marker specific to or specific to a specific pharmaceutical component or cluster of pharmaceutical components and a specific organ.
  • the pharmaceutical component evaluation marker may be specific or specific to multiple organs or pharmaceutical components or pharmaceutical component clusters, in which case it is used in combination with other markers to identify a particular organ or pharmaceutical component or pharmaceutical component Clusters can be identified.
  • a gene having a significant relationship shared among pharmaceutical component-related genes is selected.
  • the pharmaceutical component group of the up-regulated gene can be selected based on the z-score of its expression (see FIG. 16).
  • the pharmaceutical ingredient evaluation marker is also called “adjuvant evaluation marker”. That is, in the present specification, the “adjuvant evaluation marker” refers to a genetic marker specific to or specific to a specific adjuvant or adjuvant cluster and a specific organ. Adjuvant assessment markers may be specific or specific to multiple organs or adjuvants or adjuvant clusters, in which case they are used in combination with other markers to identify a particular organ or adjuvant or adjuvant cluster Can do. In relation to such a relationship, genes having a significant relationship shared among adjuvant-related genes are selected. The upregulated gene adjuvant group can be selected based on the z-score of its expression (see FIG. 16). When the pharmaceutical ingredient is an active ingredient, it can be referred to as an “active ingredient evaluation marker”, and when it is an additive ingredient, it can be referred to as an “additive ingredient evaluation marker”.
  • transcriptome profile data By analyzing transcriptome profile data, biological processes can be annotated. Such annotation can be executed by using software such as TargetMine.
  • Annotations can be represented by keywords, wound, cell death, apoptosis, NF ⁇ B signaling pathway, inflammatory response, TNF signaling pathway, cytokines, migration, chemokine, chemotaxis, stress, defense response, immune response, innate immune response Compatible immune responses, interferons, interleukins, and the like. This can be divided into organs and administration routes (see FIG. 10). Examples of wound annotation include regulation of response to wounding; response to wounding; positive regulation of response to wounding.
  • Cell death annotation cell death; death; programmed cell death; regulation of cell death; regulation of programmed cell death; positive regulation of programmed cell death; positive regulation of cell death; negative regulation of cell death; negative regulation of Can mention programmed cell death.
  • Apoptotic annotation apoptotic process; regulation of apoptotic process; apoptotic signaling pathway; intrinsic apoptotic signaling pathway; positive regulatory of apoptotic process; regulation of apoptotic signaling pathway; negative regulatory of apoptotic process; regulatory path Can do.
  • NF-kappa B signaling pathway I-kappa B kinase / NF-kappa B signaling; positive regulation of I-kappa B kinase / NF-kappa B signaling; regulation of I-kappa B kinase / NF-kappa B signaling can be mentioned.
  • inflammatory response there can be mentioned inflammatory response; regulation of inflammatory response; positive regulation of inflammatory response; acute inflammatory response; leukocyte migration involved in inflammatory response.
  • TNF signaling pathway annotation is TNF signaling pathway.
  • Cytokine annotation response to cytokine; Cytokine-cytokine receptor interaction
  • Examples of migration annotations include positive regulation of leukocyte migration; cell migration; leukocyte migration; regulation of leukocyte migration; neutrophil migration; positive regulation of cell migration; granulocyte migration; myeloid leukocyte migration; regulation of cell migration; lymphocyte migration it can.
  • Chemokine annotation includes chemokine-mediated signaling pathway; chemokine production; regulation of chemokine production; positive regulation of chemokine production.
  • Chemotaxis annotation includes cell chemotaxis; chemotaxis; leukocyte chemotaxis; positive regulation of leukocyte chemotaxis; taxis; granulocyte chemotaxis; neutrophil chemotaxis; positive regulation of chemotaxis; regulation of leukocyte chemotaxis; regulation of chemotaxis; it can.
  • stress annotations include response to stress; regulation of response to stress; cellular response to stress.
  • Defense response annotations include defense response; regulation of defense response; positive regulation of defense response; defense response to other organization; defense response to bacteria; defense response to gram-positive bacterium; defense response to protozoan; defense response to virus; regulation of defense response to virus; regulation of defense response to virus by host; negative regulation of defense response.
  • Annotation of immune response includes: immune response; positive regulation of immune response; regulation of immune response; activation of immune response; immune response-activating signal transduction; immune response-regulating signaling pathway; negative regulation of immune response; production of molecular mediator of immune response.
  • Innate immune response annotations include innate immune response; regulation of innate immune response; positive regulation of innate immune response; activation of innate immune response; innate immune response-activating signal transduction; negative regulation of innate immune response .
  • Annotation of adaptive immune response includes adaptive immune response based on somatic recombination of immunoreceptors built from immunoglobulin superfamily domains; adaptive immune response; positive regulation of adaptive immune response; regulation of adaptive immune response response.regulation recombination of immune receptors built from immunoglobulin superfamily domains.
  • Interferon annotations include response to interferon-alpha; interferon-alpha production; cellular response to interferon-alpha; positive regulation of interferon-alpha production; regulation of interferon-alpha production; cellular response to interferon-beta; response to interferon -beta; positive regulation of interferon-beta production; regulation ofinterferon-beta production; interferon-beta production; response to interferon-gamma; cellular response to interferon-gamma; interferon-gamma production; regulation of interferon-gamma production it can.
  • Interleukin-6 production regulation of interleukin-6 production; positive regulation of interleukin-6 production; interleukin-12 production; regulation of interleukin-12 production; positive regulation of interleukin-12 production be able to.
  • Biological indicators also include cytokine profiles.
  • the cytokine profile is IFNA2; IFNB1; IFNG; IFNL1; IFNA1 / IFNA13; IL15; IL4; IL1RN; IFNK; IFNA4; IL1B; IL12B; TNFSF10; TNF; IFNA10; IFNA21; IFNA5; CD40LG; IL6; IL2; IL12A; IL27; OSM; IFNA17; EBI3; IL10; IFNW1; TNFSF11; IL7 and the like.
  • hematological indicators are leukocytes (WBC), lymphocytes (LYM), monocytes (MON), granulocytes (GRA), relative content percentage of lymphocytes (LY%), relative content ratio of monocytes.
  • % (MO%) relative content of granulocytes (GR%), red blood cells (RBC), hemoglobin (Hb, HGB), hematocrit (HCT), average red blood cell volume (MCV), average red blood cell hemoglobin (MCH), average Examples include, but are not limited to, erythrocyte hemoglobin concentration (MCHC), erythrocyte distribution width (RDW), platelet (PLT), platelet concentration (PCT), average platelet volume (MPV), and platelet distribution width (PDW).
  • compositions eg, active ingredients, additive ingredients, adjuvants
  • pharmaceutical ingredients eg, active ingredients, additive ingredients, adjuvants
  • FIG. 21 cluster analysis
  • Biological activity includes, for example, binding constants and dissociation constants of antigen-antibody reactions, data using binding constants and dissociation constants of each antibody when two or more antibodies are used, ELISA, etc. In the case of this data, it can also be expressed by the absolute value or relative value of absorbance.
  • the detection agent or detection means used in the analysis of the present invention may be any means as long as the gene or its expression can be detected.
  • the detection agent or detection means of the present invention may be a complex or a complex molecule in which another substance (for example, a label or the like) is bound to a detectable moiety (for example, an antibody or the like).
  • a detectable moiety for example, an antibody or the like.
  • complex or “complex molecule” means any construct comprising two or more moieties.
  • the other part may be a polypeptide or other substance (eg, sugar, lipid, nucleic acid, other hydrocarbon, etc.).
  • two or more parts constituting the complex may be bonded by a covalent bond, or bonded by other bonds (for example, hydrogen bond, ionic bond, hydrophobic interaction, van der Waals force, etc.). May be.
  • the “complex” includes a molecule formed by linking a plurality of molecules such as a polypeptide, a polynucleotide, a lipid, a sugar, and a small molecule.
  • “detection” or “quantification” of polynucleotide or polypeptide expression uses suitable methods, including, for example, mRNA measurement and immunoassay methods, including binding or interaction with marker detection agents. In the present invention, it can be measured by the amount of PCR product.
  • molecular biological measurement methods include Northern blotting, dot blotting, and PCR.
  • immunological measurement methods include ELISA using a microtiter plate, RIA, fluorescent antibody method, luminescence immunoassay (LIA), immunoprecipitation (IP), immunodiffusion method (SRID), immunization. Examples are turbidimetry (TIA), Western blotting, immunohistochemical staining, and the like.
  • Examples of the quantitative method include an ELISA method and an RIA method. It can also be performed by a gene analysis method using an array (eg, DNA array, protein array).
  • the DNA array is widely outlined in (edited by Shujunsha, separate volume of cell engineering "DNA microarray and latest PCR method”).
  • Examples of gene expression analysis methods include, but are not limited to, RT-PCR, RACE method, SSCP method, immunoprecipitation method, two-hybrid system, in vitro translation and the like.
  • refers to any tool that can achieve a certain purpose (for example, detection, diagnosis, treatment). "Means a means capable of recognizing (detecting) a certain object differently from others.
  • nucleic acid primer refers to a substance necessary for the initiation of a reaction of a polymer compound to be synthesized in a polymer synthase reaction.
  • a nucleic acid molecule for example, DNA or RNA
  • the primer can be used as a marker detection means.
  • a nucleic acid sequence is preferably at least 12 contiguous nucleotides long, at least 9 contiguous nucleotides, more preferably at least 10 contiguous nucleotides, and even more preferably at least 11 contiguous nucleotides.
  • Nucleic acid sequences used as probes are nucleic acid sequences that are at least 70% homologous, more preferably at least 80% homologous, more preferably at least 90% homologous, at least 95% homologous to the sequences described above. Is included.
  • a sequence suitable as a primer may vary depending on the nature of the sequence intended for synthesis (amplification), but those skilled in the art can appropriately design a primer according to the intended sequence. Such primer design is well known in the art, and may be performed manually or using a computer program (eg, LASERGENE, PrimerSelect, DNAStar).
  • the term “probe” refers to a substance that serves as a search means used in biological experiments such as screening in vitro and / or in vivo.
  • a nucleic acid molecule containing a specific base sequence or a specific nucleic acid molecule examples include, but are not limited to, peptides containing amino acid sequences, specific antibodies or fragments thereof.
  • a probe is used as a marker detection means.
  • the classification of the adjuvant is, for example, G1 (interferon signaling); G2 (lipid and lipoprotein metabolism); G3 (stress responsiveness); G4 (wound responsiveness) G5 (phosphate-containing compound metabolic process property); and G6 (phagosomal property), and the like, but are not limited to these (see FIGS. 2, 14, and 21).
  • G1 interferon signaling
  • G2 lipid and lipoprotein metabolism
  • G3 stress responsiveness
  • G4 wound responsiveness
  • G5 phosphate-containing compound metabolic process property
  • G6 phagosomal property
  • a reference pharmaceutical product also referred to as a standard pharmaceutical ingredient
  • a reference adjuvant standard adjuvant
  • the reference adjuvant (standard adjuvant) of G1 is cdiGMP, cGAMP, DMXAA, Selected from the group consisting of PolyIC and R848, the G2 reference adjuvant (standard adjuvant) is bCD, the G3 reference adjuvant (standard adjuvant) is FK565, and the G4 reference adjuvant (standard adjuvant) is MALP2s Yes, the G5 reference adjuvant (standard adjuvant) is selected from the group consisting of D35, K3 and K3SPG, and / or the G6 reference adjuvant (standard adjuvant) is AddaVax.
  • cdiGMP, cGAMP, DMXAA, PolyIC and R848 are RNA-related adjuvants (STING ligands), and cdiGMP is said to elicit a Th1 response and DMXAA is a Th2 response.
  • G1 can be said to be a biological function: interferon response (type I, type II), a stress-based pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant).
  • G2 is lipid and lipoprotein metabolic, and bCD is a representative pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant), but ALM has a similar action, and biological functions include inflammatory cytokines, lipids Examples thereof include metabolism and DAMP (action with host-derived dsDNA).
  • G3 is a stress-responsive cluster
  • FK565 is exemplified as a representative pharmaceutical ingredient (for example, an adjuvant)
  • T cell cytokine, NK cell cytokine, stress response, wound response, PAMP, etc. are exemplified as biological functions.
  • typical pharmaceutical ingredients for example, adjuvants
  • biological functions can include TNF response, stress response, wound response, and PAMP.
  • G5 is a phosphate-containing compound metabolic process property
  • CpG D35, K3, K3SPG
  • TLR9 ligand is a representative example
  • biological function Examples thereof include nucleic acid metabolism and phosphate-containing compound metabolism.
  • G6 is phagosomal
  • AddaVax (MF59) is a representative pharmaceutical ingredient (for example, adjuvant)
  • biological functions include phagosome (phagocytosis), ATP, and the like.
  • STING ligand is typically a reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant), and representative examples are cdiGMP, cGAMP, DMXAA, PolyIC and R848, RNA Including a related adjuvant (STING ligand), cdiGMP is said to elicit a Th1 response and DMXAA is a Th2 response.
  • G1 can be said to be a biological function: interferon response (type I, type II), a stress-based pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant).
  • STING (stimulator of interferon genes) was identified as a membrane protein localized in the endoplasmic reticulum, and is an adapter protein that activates TBK1 and IRF3 and induces expression of type I interferon by stimulation of dsDNA .
  • the STING ligand is a ligand for STING, and interferon is secreted by STING stimulation.
  • Examples of STING include cdiGMP, cGAMP, DMXAA, PolyIC, R848, 2'3'-cGAMP, and the like.
  • cdiGMP is cyclic di GMP.
  • cGAMP is cyclic AMP-AMP.
  • DMXAA is 5,6-dimethylxanthenone-4-acetic acid.
  • PolyIC is also called Poly I: C. R848 is resiquimod.
  • Genes with significant differences in expression in the transcriptome analysis of G1 are from Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6 At least one selected from the group consisting of:
  • G2 lipid and lipoprotein metabolism
  • ⁇ cyclodextrin (bCD) is a representative pharmaceutical ingredient (eg, representative active ingredient, representative additive ingredient, representative adjuvant) and reference pharmaceutical ingredient (
  • ALM D35, K3 (LV)
  • DAMP host-derived dsDNA
  • BCD is an abbreviation for ⁇ -cyclodextrin and is a typical example used as an adjuvant.
  • the gene (significant DEG) having a significant difference in expression in the transcriptome analysis of G2 includes at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap, and Ggt5.
  • G3 stress responsiveness
  • typical adjuvants include FK565 (heptanoyl- ⁇ -D-glutamyl- (L) -meso-diaminopimeryl- (D) -alanine), This is an immunoreactive peptide, and examples of biological functions include T cell cytokines, NK cell cytokines, stress responses, wound responses, and PAMPs.
  • Genes with significant differences in expression in the transcriptome analysis of G3 are Bbc3, Pdk4, Cd55, Cd93, Clec4e, Coro1a, and Traf3, Trem3, C5ar1, Clec4n, Ier3, Il1r1, Plek, Tbx3, and Including at least one selected from the group consisting of Trem1.
  • G4 wound responsiveness
  • wound responsiveness is a wound-responsive pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant), and can be expressed as Toll-like ligand (TLR) 2 ligand.
  • TLR Toll-like ligand
  • MALP2s macrophage activating lipopeptide 2 or
  • biological functions can include TNF response, stress response, wound response, and PAMP.
  • the gene (significant DEG) having a significant difference in expression in the transcriptome analysis of G4 includes at least one selected from the group consisting of Ccl3, Myof, Papss2, Slc7a11, and Tnfrsf1b.
  • G5 phosphate-containing compound metabolic process property
  • CpG D35, K3, K3SPG, etc.
  • reference pharmaceutical components for example, reference adjuvants
  • TLR9 ligands and the like are also representative examples, and biological functions include nucleic acid metabolism and phosphate-containing compound metabolism.
  • the gene (significant DEG) having a significant difference in expression in the transcriptome analysis of G5 includes at least one selected from the group consisting of Ak3, Insm1, Nek1, Pik3r2, and Ttn.
  • G6 is a phagosomal adjuvant
  • squalene oil-in-water emulsions such as AddaVax and MF59 are representative pharmaceutical ingredients (eg, representative active ingredients, representative additive ingredients, representative adjuvants), reference pharmaceutical ingredients (eg, Reference active ingredients, reference addition ingredients, reference adjuvants), and biological functions include phagosome (phagocytosis), ATP and the like.
  • the gene (significant DEG) having a significant difference in expression in the transcriptome analysis of G6 includes at least one selected from the group consisting of Atp6v0d2, Atp6v1c1, and Clec7a.
  • compositions eg active ingredients, additive ingredients, adjuvants
  • pharmaceutical ingredients may be abbreviated, but (if present) their full names, typical sources, physical properties, (if present) acceptance
  • a table summarizing the body and reference papers is shown below.
  • BCD is an abbreviation for ⁇ -cyclodextrin and is a typical example used as an adjuvant. bCD can also be an additive component.
  • FK565 is a kind of immunoreactive peptide, and its chemical name is heptanoyl-gamma-D-glutamyl- (L) -meso-diaminopimeryl- (D) -alanine. ) -meso-diaminopimelyl- (D) -alanine) and is described in detail in J Antibiot (Tokyo). 1983 Aug; 36 (8): 1045-50.
  • MALP2s is an abbreviation for Macrophage-activating lipopeptide-2, and is a Toll-like ligand (TLR) 2 ligand similar to BCG-CWS.
  • TLR Toll-like ligand
  • CpG motif refers to an unmethylated dinucleotide portion of an oligonucleotide containing a cytosine nucleotide followed by a guanosine nucleotide, and is used as a representative example of an adjuvant.
  • G5 that is, nucleic acid metabolism and phosphate-containing compound metabolism. 5-methylcytosine can also be used in place of cytosine.
  • CpG ODN CpG oligonucleotide
  • TLR9 Toll-like receptor 9
  • DCs dendritic cells
  • B cells B cells to produce type I interferons (IFNs) and inflammatory cytokines (Hemmi, H., et al. Nature 408, 740-745 (2000); Krieg , AM. Nature reviews.
  • CTL cytotoxic T lymphocyte
  • CpG oligodeoxynucleotide is a single-stranded DNA containing an immunostimulatory unmethylated CpG motif and is an agonist of TLR9.
  • K type also called B type
  • D type also called A type
  • C type and P type, which have different skeletal sequences and immunostimulatory properties (Advanced drug delivery reviews 61 , 195-204 (2009)).
  • a / D type is an oligonucleotide characterized by a phosphorothioate (PS) bond at the 5 ′ and 3 ′ ends and a poly G motif centered on a phosphodiester (PO) palindromic (palindromic) CpG-containing sequence And is characterized by high interferon (IFN) - ⁇ production from plasmacytoid dendritic cells (pDC).
  • PS phosphorothioate
  • PO phosphodiester
  • IFN interferon
  • pDC plasmacytoid dendritic cells
  • the B / K type contains multiple unmethylated CpG motifs, typically non-palindrome, and mainly induces inflammatory cytokines such as interleukin (IL) -6 and IL-12. , IFN- ⁇ production is low.
  • B / K type ODNs are easily formulated using saline, some of which are in clinical trials. Two modified ODNs, including D35-dAs40 and D35core-dAs40, were found by the inventors and are immunostimulatory in human PBMC similar to the original D35, and are highly IFN in a dose-dependent manner. -Causes alpha secretion.
  • C-type and P-type CpG ODNs contain one and two palindromic CpG sequences, respectively.
  • AddaVax refers to a squalene-based oil-in-water adjuvant.
  • MF59 also shows a similar structure.
  • squalene-based oil-in-water adjuvant refers to an adjuvant that is an oil-in-water emulsion containing squalene.
  • the pharmaceutical ingredients used can be isolated or purified.
  • a “purified” substance or biological factor for example, a nucleic acid or protein such as a genetic marker
  • a purified biological factor is obtained by removing at least a part of the factor naturally associated with the biological factor.
  • the purity of a biological agent in a purified biological agent is higher (ie, enriched) than the state in which the biological agent is normally present.
  • the term “purified” as used herein is preferably at least 75% by weight, more preferably at least 85% by weight, even more preferably at least 95% by weight, and most preferably at least 98% by weight, Means the presence of the same type of biological agent.
  • the materials used in the present invention are preferably “purified” materials.
  • isolated refers to a product obtained by removing at least one of the naturally associated substances, for example, when a specific gene sequence is taken out from a genomic sequence. It can be said. Thus, the genes used herein can be isolated.
  • the “subject (person)” refers to a subject to be diagnosed or detected or treated according to the present invention (for example, an organism such as a human or a cell, blood, serum, etc. removed from the organism). .
  • drug drug
  • drug may also be a substance or other element (eg energy such as light, radioactivity, heat, electricity).
  • Such substances include, for example, proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids (eg, DNA such as cDNA, genomic DNA, RNA such as mRNA), poly Saccharides, oligosaccharides, lipids, small organic molecules (for example, hormones, ligands, signaling substances, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals (for example, small molecule ligands, etc.)) , These complex molecules are included, but not limited thereto.
  • treatment refers to prevention of worsening of a disease or disorder when a disease or disorder (eg, cancer, allergy) occurs, preferably, maintaining the status quo. More preferably, it means reduction, more preferably elimination, including the ability to exert a symptom improving effect or a preventive effect on one or more symptoms associated with a patient's disease or disease. Diagnosing in advance and performing appropriate treatment is referred to as “companion treatment”, and the diagnostic agent therefor is sometimes referred to as “companion diagnostic agent”.
  • the term “therapeutic agent (agent)” refers to any drug that can treat a target condition (for example, diseases such as cancer, allergy, etc.) in a broad sense.
  • the “therapeutic agent” may be a pharmaceutical composition comprising an active ingredient and one or more pharmacologically acceptable carriers.
  • the pharmaceutical composition can be produced by any method known in the technical field of pharmaceutics, for example, by mixing the active ingredient and the carrier.
  • the form of use of the therapeutic agent is not limited as long as it is a substance used for treatment, and it may be an active ingredient alone or a mixture of an active ingredient and an arbitrary ingredient.
  • the shape of the carrier is not particularly limited, and may be, for example, a solid or a liquid (for example, a buffer solution).
  • the therapeutic agent for cancer, allergy and the like includes a drug (preventive agent) used for preventing cancer, allergy and the like, or a suppressor for cancer, allergy and the like.
  • prevention refers to preventing a certain disease or disorder (for example, diseases such as cancer, allergies, etc.) from entering such a state before it enters such a state. Diagnosis can be performed using the drug of the present invention, and for example, allergies can be prevented using the drug of the present invention, or countermeasures for prevention can be taken as necessary.
  • a certain disease or disorder for example, diseases such as cancer, allergies, etc.
  • prophylactic agent refers to any agent that can prevent a target condition (for example, diseases such as cancer and allergies) in a broad sense.
  • the “kit” is a unit provided with a portion to be provided (eg, a test agent, a diagnostic agent, a therapeutic agent, an antibody, a label, instructions, etc.) usually divided into two or more compartments.
  • a portion to be provided eg, a test agent, a diagnostic agent, a therapeutic agent, an antibody, a label, instructions, etc.
  • This kit form is preferred when it is intended to provide a composition that should not be provided in admixture for stability or the like, but preferably used in admixture immediately before use.
  • Such kits preferably include instructions or instructions that describe how to use the provided parts (eg, test agents, diagnostic agents, therapeutic agents, or how the reagents should be processed).
  • the kit when the kit is used as a reagent kit, the kit usually contains instructions including usage of test agents, diagnostic agents, therapeutic agents, antibodies, etc. Is included.
  • the “instruction sheet” describes the method for using the present invention for a doctor or other user.
  • This instruction manual includes a word indicating that the detection method of the present invention, how to use a diagnostic agent, or administration of a medicine or the like is given.
  • the instructions may include a word indicating that the administration site is oral or esophageal administration (for example, by injection).
  • This instruction is prepared in accordance with the format prescribed by the national supervisory authority (for example, the Ministry of Health, Labor and Welfare in Japan and the Food and Drug Administration (FDA) in the United States, etc.) It is clearly stated that it has been received.
  • the instruction sheet is a so-called package insert and is usually provided in a paper medium, but is not limited thereto, and is in a form such as an electronic medium (for example, a homepage or an e-mail provided on the Internet). But it can be provided.
  • diagnosis refers to identifying various parameters related to a disease, disorder, or condition in a subject and determining the current state or future of such a disease, disorder, or condition.
  • conditions within the body can be examined, and such information can be used to formulate a disease, disorder, condition, treatment to be administered or prevention in a subject.
  • various parameters such as methods can be selected.
  • diagnosis in a narrow sense means diagnosis of the current state, but in a broad sense includes “early diagnosis”, “predictive diagnosis”, “preliminary diagnosis”, and the like.
  • the diagnostic method of the present invention is industrially useful because, in principle, the diagnostic method of the present invention can be used from the body and can be performed away from the hands of medical personnel such as doctors.
  • diagnosis, prior diagnosis or diagnosis may be referred to as “support”.
  • the prescription procedure as a pharmaceutical or the like of the present invention is known in the art, and is described in, for example, the Japanese Pharmacopeia, the US Pharmacopeia, and the pharmacopoeia of other countries. Accordingly, those skilled in the art can determine the amount to be used without undue experimentation as described herein.
  • program is used in a normal meaning used in the field, and describes processing to be performed by a computer in order, and is treated as “thing” by law. All computers operate according to the program. In a modern computer, a program is expressed as data and stored in a recording medium or a storage device.
  • the “recording medium” is a recording medium storing a program for executing the present invention, and the recording medium may be anything as long as the program can be recorded.
  • the recording medium may be an external storage device such as a ROM, HDD, magnetic disk, or flash memory such as a USB memory that can be stored inside, but is not limited thereto.
  • system means a configuration for executing the method or program of the present invention, and originally means a system or organization for accomplishing the purpose, and a plurality of elements are systematically configured.
  • computer field it refers to the overall configuration of hardware, software, OS, network, etc.
  • the present invention provides a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the method comprises: (A) performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) to obtain expression data; ) Clustering the pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) with respect to the expression data; (C) based on the clustering, the pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) Generating a transcriptome profile of the organ.
  • the transcriptome analysis used in the method of the present invention can be realized by any method.
  • Transcriptome analysis is performed by performing a transcriptome analysis of an organ of a target organism without administering a pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant), obtaining a control transcriptome, For example, after administering an active ingredient, an additive ingredient, and an adjuvant, a transcriptome analysis of the same organ of the target organism is performed, normalized using a control transcriptome as necessary, and the pharmaceutical ingredient (eg, active ingredient) , Addition component, adjuvant) organ transcriptome analysis. The same procedure can be performed for other second and subsequent pharmaceutical ingredients (for example, active ingredient, additive ingredient, adjuvant).
  • a pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • each pharmaceutical component eg, active ingredient, additive component, adjuvant
  • expression data obtained by performing a transcriptome analysis on two or more pharmaceutical components (eg, active ingredient, additive component, adjuvant) Analysis
  • each pharmaceutical ingredient eg, active ingredient, additive ingredients, adjuvant
  • each pharmaceutical ingredient Can be analyzed.
  • a pharmaceutical ingredient belonging to the same cluster as a standard pharmaceutical ingredient eg active ingredient, additive ingredient, adjuvant
  • a reference pharmaceutical ingredient eg , Active ingredient, additive ingredient, adjuvant
  • Generating a transcriptome profile of the organ of the adjuvant based on the clustering can be achieved using any technique known in the art. For example, the profile may use a dendrogram as shown in FIG. 2 or may be expressed using spreadsheet software such as Excel (registered trademark), but is not limited thereto.
  • the present invention provides an adjuvant classification method including a step of classifying pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants) based on transcriptome clustering.
  • classification based on transcriptome clustering is based on transcriptome clustering of a reference pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) as a target pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant). Classification may be included based on the results.
  • classifications of pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants. For example, classification is classified into classification based on host response, classification based on mechanism, cell (liver, lymph node, spleen), mechanism. Based on usage-based classification, and classification by at least one feature selected from the group consisting of module classification.
  • the classification of pharmaceutical ingredients is (1) G1 (interferon signaling); (2) G2 (lipid and lipoprotein metabolic) Selected from the group consisting of: (3) G3 (stress responsiveness); (4) G4 (wound responsiveness); (5) G5 (phosphate-containing compound metabolic processability); and (6) G6 (phagosomal).
  • G1 to G6 the corresponding portion of the adjuvant can be classified, but there are some that are not classified into these although there are a few. These can be handled as those not classified into G1 to G6. If necessary, further transcriptome analysis can be performed for further classification.
  • the results of the transcriptome analysis are clustered using each of the reference pharmaceutical ingredients G1 to G6 (eg, active ingredient, additive ingredient, adjuvant). Classification can be performed by comparing these.
  • the reference pharmaceutical ingredient of G1 is selected from the group consisting of cdiGMP, cGAMP, DMXAA, PolyIC and R848, the reference pharmaceutical ingredient of G2 is bCD, the reference pharmaceutical ingredient of G3 is FK565, and G4
  • the reference pharmaceutical ingredient is MALP2s, the G5 reference pharmaceutical ingredient is selected from the group consisting of D35, K3 and K3SPG, and / or the G6 reference pharmaceutical ingredient is AddaVax.
  • These reference pharmaceutical ingredients are representative, and other pharmaceutical ingredients determined to belong to G1 to G6 (for example, active ingredients, additive ingredients, adjuvants) can be used instead.
  • the classification of G1 to G6 is performed based on the expression profile of a gene (discriminating marker gene; DEG) that is significantly different in expression in transcriptome analysis, and the G1 DEG is Gm14446, Pml. , H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6, and the G2 DEG includes Elovl6, Gpam, Hsd3b7 , Acer2, Acox1, Tbl1xr1, Alox5ap, and Ggt5, wherein the G3 DEG is Bbc3, Pdk4, Cd55, Cd93, Clec4e, Coro1a, and Traf3, Trem3, C5ar1, Clec4n,
  • the G4 DEG includes at least one selected from the group consisting of Ccl3, Myof, Papss2, Slc7a11, and Tn
  • the DEG in the G6 is, Atp6v0d2, Atp6v1c1, and comprises at least one selected from the group consisting of Clec7a.
  • DEGs can also be used to specify alternatives to reference pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants), and pharmaceutical ingredients (eg, active ingredients) having substantially the same pattern of the above-mentioned DEG.
  • pharmaceutical ingredients eg, active ingredients, additive ingredients, adjuvants
  • pharmaceutical ingredients eg, active ingredients having substantially the same pattern of the above-mentioned DEG.
  • Additive ingredients, adjuvants can be used as reference pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants).
  • the present invention provides a gene analysis panel for using an adjuvant for classification into G1 to G6 or other.
  • the genetic analysis panel includes at least one DEG detection agent or detection means selected from the group consisting of G1 DEG, G2 DEG, G3 DEG, G4 DEG, G5 DEG and G6 DEG,
  • the G1 DEG includes at least one selected from the group consisting of Gm14446, Pml, H2-T22, Ifit1, Irf7, Isg15, Stat1, Fcgr1, Oas1a, Oas2, Trim12a, Trim12c, Uba7 and Ube2l6.
  • DEG includes at least one selected from the group consisting of Elovl6, Gpam, Hsd3b7, Acer2, Acox1, Tbl1xr1, Alox5ap and Ggt5, and the DEG of G3 is Bbc3, Pdk4, Cd55, Cd93, Clec4e, Coro1a, and Including at least one selected from the group consisting of Traf3, Trem3, C5ar1, Clec4n, Ier3, Il1r1, Plek, Tbx3 and Trem1, and the G4 DEG is selected from the group consisting of Ccl3, Myof, Papss2, Slc7a11, and Tnfrsf1b Including at least one selected,
  • the G5 DEG includes at least one selected from the group consisting of Ak3, Insm1, Nek1, Pik3r2, and Ttn
  • the G6 DEG is at least one selected from the group consisting of Atp6v0d2, Atp6v1c1, and Cle
  • the genetic analysis panel of the present invention comprises at least a G1 DEG detection agent or detection means, at least a G2 DEG detection agent or detection means, at least a G3 DEG detection agent or detection means, or at least a G4 DEG detection.
  • the detection agent or detection means included in the gene analysis panel of the present invention may be any means as long as a gene can be detected.
  • the invention is a method of classifying pharmaceutical ingredients, the method comprising: (A) providing a candidate pharmaceutical ingredient; (B) providing a reference pharmaceutical ingredient set; (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs; Determining that the candidate adjuvant belongs to the same group if it is classified into the same cluster as at least one of the reference pharmaceutical ingredient set, and determining that the candidate adjuvant cannot be classified if it does not belong anywhere;
  • a method comprising:
  • the pharmaceutical ingredient can be, for example, an active ingredient, an additive ingredient, an adjuvant, and the like.
  • the present invention provides a method for classifying adjuvants.
  • the method comprises: (a) providing a candidate pharmaceutical ingredient (candidate adjuvant) in at least one organ of the subject organism; (b) a reference pharmaceutical ingredient classified into at least one selected from the group consisting of G1-G6 Providing a (reference adjuvant) set; (c) performing a transcriptome analysis of the candidate pharmaceutical component (candidate adjuvant) and the reference pharmaceutical component (reference adjuvant) set to obtain gene expression data; And (d) when the cluster to which the candidate pharmaceutical component (candidate adjuvant) belongs is classified into the same cluster as at least one of groups G1 to G6, the candidate pharmaceutical component (candidate adjuvant) is classified into the same group. If it does not belong anywhere, it is determined that it cannot be classified. To.
  • the step of providing a candidate pharmaceutical ingredient (for example, a candidate adjuvant) in at least one organ of the target organism can be performed by any technique.
  • a novel substance may be obtained or synthesized, or a substance that is already on the market may be obtained and provided as a candidate pharmaceutical ingredient (eg, a candidate adjuvant).
  • Candidate pharmaceutical ingredients include, for example, proteins, polypeptides, oligopeptides, peptides, polynucleotides, oligonucleotides, nucleotides, nucleic acids, polysaccharides, oligosaccharides, lipids, liposomes, oil-in-water molecules, Water-in-oil molecules, small organic molecules (for example, hormones, ligands, information mediators, small organic molecules, molecules synthesized by combinatorial chemistry, small molecules that can be used as pharmaceuticals or additive ingredients), and complex molecules of these But not limited to.
  • the step of providing a reference pharmaceutical ingredient set may be performed by any technique. It can.
  • a reference pharmaceutical ingredient set for example, a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6
  • the characteristics of G1 to G6 exemplified are as described elsewhere in this specification, and any reference pharmaceutical component (reference adjuvant, etc.) can be used.
  • the G1 reference pharmaceutical ingredient eg, reference adjuvant
  • the G2 reference pharmaceutical ingredient is bCD.
  • the G3 reference pharmaceutical component eg, reference adjuvant
  • the G4 reference pharmaceutical component eg, reference adjuvant
  • MALP2s G4 reference pharmaceutical component
  • the G5 reference pharmaceutical component eg, reference adjuvant
  • G6 a reference pharmaceutical ingredient of G6
  • AddaVax a reference pharmaceutical ingredient of G6
  • These pharmaceutical ingredients may be commercially available, or may be newly synthesized or manufactured.
  • transcriptome analysis of the set of candidate pharmaceutical components (for example, candidate adjuvant) and the reference pharmaceutical component (for example, reference adjuvant) is performed to obtain gene expression data, and the gene expression data is clustered
  • the process to perform can be performed by arbitrary methods.
  • Transcriptome analysis and clustering can be performed by appropriately combining methods known in the art.
  • the transcriptome analysis performed in the present invention comprises administering a pharmaceutical component (eg, an adjuvant) to the subject organism, and then transcribing the transcriptome in the organ (eg, an adjuvant) at a certain time after administration. Identify a set of genes (DEGs) whose expression is altered as a result of the comparison (preferably statistically significantly altered genes, i.e., significant DEGs) To do.
  • DEGs genes preferably statistically significantly altered genes, i.e., significant DEGs
  • These series of operations may be standardized, and such a standardized procedure may be described in, for example, http://sysimg.ifrec.osaka-u.ac.jp/adjvdb/ .
  • a pharmaceutical ingredient for example, an adjuvant
  • collection of an organ, RNA extraction, and GeneChip data acquisition can be appropriately applied with techniques known in the art as described above.
  • a pharmaceutical ingredient for example, an adjuvant
  • collection of an organ, RNA extraction, and GeneChip data acquisition can be appropriately applied with techniques known in the art as described above.
  • it may conform to laws and guidelines, meet the standards in the facility as appropriate, and be approved by the appropriate committee of the facility.
  • Examples of the administration of a pharmaceutical ingredient include, but are not limited to, administration to a site with less irritation such as the tail base.
  • intradermal administration (id) to the tail base for example, intraperitoneal (ip), i. n. (Intranasal) administration, oral administration, etc. may be sufficient.
  • the dosage of a pharmaceutical ingredient (for example, an adjuvant) can be determined by taking into consideration known information in the art or information in the Examples, and exhibiting a good action effect (for example, an adjuvant function) without serious reactivity in the target animal. Select a dose to induce.
  • a negative control experiment is performed using an appropriate buffer target group.
  • Expression analysis can be performed using any method known in the art.
  • software attached to a system such as Affimetrix GeneChip microarray system (Affymetrix) may be used, or it may be created by itself, or another program available on the Internet or the like may be used.
  • Affimetrix GeneChip microarray system Affymetrix
  • the method of the present invention integrates the set of DEGs in two or more pharmaceutical components (eg, adjuvants), and commonly varies genes (DEG ).
  • the DEG may preferably be a significant DEG.
  • Significant DEG can be extracted by setting an arbitrary threshold, but in a specific embodiment, the predetermined threshold used in the present invention is specified by a predetermined multiple difference and a predetermined statistical significance (p value). Can be done.
  • FC mean fold change
  • t-test p-value ⁇ 0.01 without multiple-test correction and the customized PA call is 1.
  • other values can be set for FC, and it may be more than 1 time and 10 times or less (the other is the reciprocal thereof). For example, it may be 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times (and the other is the inverse thereof).
  • This set of values is usually in a reciprocal relationship, but a combination that is not in a reciprocal relationship may be used.
  • the p-value can also use criteria other than ⁇ 0.01.
  • it may be ⁇ 0.05, ⁇ 0.04, ⁇ 0.03, ⁇ 0.02, etc., ⁇ 0.009, ⁇ 0.008, ⁇ 0.007, ⁇ 0.006, ⁇ 0 0.005, ⁇ 0.004, ⁇ 0.003, ⁇ 0.002, ⁇ 0.001, etc.
  • the method of the present invention identifies genes whose expression has fluctuated beyond a predetermined threshold as a result of comparison before and after administration of a pharmaceutical ingredient (eg, adjuvant), and is common among the identified genes. And selecting a fluctuating gene to generate a set of significant DEGs.
  • a predetermined threshold any threshold described elsewhere in this specification can be used.
  • genes that are selected as commonly fluctuating are used as a set of significant DEGs.
  • Such a set of significant DEGs can be used to classify pharmaceutical ingredients (eg, adjuvants).
  • the method of the present invention performs a transcriptome analysis for at least two or more organs, identifies a set of genes whose expression varies only in a particular organ, and sets the set to the organ-specific Including the step of making a gene set.
  • pharmaceutical components for example, adjuvants
  • the classification of a pharmaceutical ingredient can be performed using a reference pharmaceutical ingredient (for example, a standard adjuvant) or a comparison with a standard pharmaceutical ingredient (for example, a standard adjuvant).
  • the transcriptome analysis performed in the present invention is performed on a number of organs, preferably trans for at least one organ selected from the group consisting of, for example, liver, spleen and lymph nodes. Made for the crypto. While not wishing to be bound by theory, these organs have shown results that allow the identification of the properties of the adjuvant more clearly as shown in the examples, but are not limited to this. Alternatively, pharmaceutical ingredients other than adjuvants (eg, active ingredients, additive ingredients, etc.) and other organs (eg, kidney, lung, adrenal gland, pancreas, heart, etc.) can also be selected.
  • adjuvants eg, active ingredients, additive ingredients, etc.
  • other organs eg, kidney, lung, adrenal gland, pancreas, heart, etc.
  • the number of pharmaceutical ingredients (eg, adjuvants) analyzed by the present invention is a number that allows a statistically significant clustering analysis. Such numbers can be specified using technical common sense regarding statistics, and it is not the essence of the present invention to specify the numbers.
  • the method of the present invention uses one or more of a determined pharmaceutical profile (eg, an adjuvant) and a genetic marker specific to a particular organ as a pharmaceutical ingredient (eg, adjuvant) evaluation marker.
  • a pharmaceutical ingredient eg, adjuvant
  • an assay that could not be achieved previously such as an unknown pharmaceutical component (eg, an adjuvant) or a known pharmaceutical component (eg, an adjuvant)
  • an adjuvant an assay that could not be achieved previously, such as an unknown pharmaceutical component (eg, an adjuvant) or a known pharmaceutical component (eg, an adjuvant)
  • the candidate pharmaceutical component eg, candidate adjuvant
  • the step of determining that the group does not belong to any other group and determining that it cannot be classified can also be determined by analyzing the cluster described in (c) in this field.
  • specific pharmaceutical ingredients eg, adjuvants
  • a pharmaceutical ingredient eg, an adjuvant
  • a standard pharmaceutical ingredient eg, a standard adjuvant
  • the method of the present invention further comprises the step of analyzing a biological indicator and correlating it with a cluster for a pharmaceutical ingredient (eg, an adjuvant).
  • a pharmaceutical ingredient eg, an adjuvant
  • Any biological index can be used as long as it can be analyzed.
  • Biological indicators are items that are objectively measured and evaluated as indicators of normal processes, pathological processes, or pharmacological responses to treatment, and can be measured with biomarkers or the like.
  • biological indicators typically, for example, wound, cell death, apoptosis, NF ⁇ B signal pathway, inflammatory response, TNF signal pathway, cytokines, migration, chemokine, chemotaxis, stress, defense response, immune response Including, but not limited to, an innate immune response, a compatible immune response, at least one indicator selected from the group consisting of interferons and interleukins, and the like.
  • Biomarkers that characterize disease states, changes, and degree of cure are used as surrogate markers (surrogate markers) to confirm the effectiveness of new drugs in clinical trials. Blood sugar levels and cholesterol levels are representative biomarkers as indicators of lifestyle-related diseases.
  • the biological indicator comprises a hematological indicator.
  • Such hematological indicators include leukocytes (WBC), lymphocytes (LYM), monocytes (MON), granulocytes (GRA), relative percentage of lymphocytes (LY%), relative content of monocytes % (MO%), relative percentage of granulocytes (GR%), red blood cells (RBC), hemoglobin (Hb, HGB), hematocrit (HCT), average red blood cell volume (MCV), average red blood cell hemoglobin (MCH), Examples include, but are not limited to, mean erythrocyte hemoglobin concentration (MCHC), erythrocyte distribution width (RDW), platelet (PLT), platelet concentration (PCT), mean platelet volume (MPV), and platelet distribution width (PDW). .
  • the hematological index may measure one or more or all of these.
  • the biological indicator analyzed for the present invention comprises a cytokine profile.
  • cytokine profile refers to the type of cytokine produced in a patient and the amount of various cytokines at a given time.
  • Cytokines are proteins released by leukocytes and having an immune effect. Examples of cytokines include interferons (such as ⁇ -interferon), tumor mortality factor, interleukin (IL) 1, IL-2, IL-4, IL-6, and IL-10. It is not limited to. Examples of cytokines include interferons (such as ⁇ -interferon), tumor mortality factor, interleukin (IL) 1, IL-2, IL-4, IL-6, and IL-10. It is not limited to.
  • CCL2 MCP-1
  • CCL3 MIP-1 ⁇
  • CCL4 MIP-1 ⁇
  • CRP CSF
  • CXCL16 Erythropoietin
  • EPO Erythropoietin
  • FGF Fractalkine
  • G-CSF G-CSF
  • GM-CSF IFN ⁇
  • IL-1 IL-2
  • IL-5 IL-6
  • IL-8 IL-8
  • IL-8 CXCL8
  • IL-10 IL-15
  • IL-18 examples include, but are not limited to, M-CSF, PDGF, RANTES (CCL5), TNF ⁇ , and VEGF.
  • the present invention provides a program for implementing in a computer a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, an adjuvant).
  • the method implemented by this program is: (A) performing a transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients (eg, an adjuvant) to obtain expression data; Clustering the pharmaceutical component (eg, adjuvant) for expression data; (C) generating a transcriptome profile of the organ of the pharmaceutical component (eg, adjuvant) based on the clustering.
  • Each step used here can be performed in any embodiment or combination thereof that can be employed in the method of the present invention.
  • the present invention provides a method for producing a composition having a desired function.
  • the method comprises (A) providing a candidate pharmaceutical ingredient, (B) selecting a candidate pharmaceutical ingredient having a transcriptome expression pattern corresponding to the desired function, and (C) selecting the selected candidate pharmaceutical ingredient Using to produce a composition.
  • candidate pharmaceutical ingredients eg, adjuvants
  • transcriptome analysis e.g. transcriptome analysis and Any feature such as clustering can be employed.
  • compositions using a selected pharmaceutical ingredient can also be carried out using any technique known in the art.
  • manufacture of such compositions preferably involves pharmaceutically acceptable carriers, diluents, excipients, etc. and / or active ingredients (adjuvants, antigens in the case of vaccines, etc.) selected candidate pharmaceutical ingredients (eg , Candidate adjuvants).
  • Excipients can include buffers, binders, blasting agents, diluents, flavorings, lubricants, and the like.
  • the desired function is any one of G1 to G6. Contains one or more.
  • the present invention is a composition for exerting a desired function, and includes a pharmaceutical ingredient (for example, an adjuvant) that exerts the desired function.
  • the desired function is G1
  • a composition comprising any one or more of ⁇ G6 is provided.
  • the pharmaceutical ingredient (for example, adjuvant) which exhibits the desired function contained in the pharmaceutical ingredient (for example, adjuvant) contained in the composition of this invention may be specified by the method of this invention.
  • the pharmaceutical ingredient (eg, adjuvant) that exhibits the desired function contained in the pharmaceutical ingredient (eg, adjuvant) contained in the composition of the present invention is not a reference pharmaceutical ingredient (eg, reference adjuvant), but is newly Its function (G1-G6 or otherwise) may have been identified.
  • the present invention also provides a method for quality control of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) using the method for classifying a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention.
  • Quality control refers to the analysis results of transcriptome clustering used in the classification method of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants), and the reference pharmaceutical ingredients (for example, reference active ingredients) It can be determined by determining whether a gene expression pattern similar to that of the reference addition component and the reference adjuvant is observed.
  • Gene expression pattern substantially similar to a reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) of a group to which the target pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) belongs, or an alternative thereof Can be judged that the target pharmaceutical ingredient (for example, target active ingredient, target additive, target adjuvant) is of good quality, and if there is a difference in gene expression pattern, Can be specified.
  • a reference pharmaceutical ingredient eg, reference active ingredient, reference additive ingredient, reference adjuvant
  • the present invention also provides a method for testing the safety of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) using the method for classifying a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention.
  • a pharmaceutical ingredient eg, active ingredient, additive ingredient, adjuvant
  • the safety test is carried out by examining the transcriptome clustering analysis results used in the classification method of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants) described in this specification, This can be determined by determining whether a gene expression pattern similar to that of a pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) is observed.
  • a reference pharmaceutical ingredient eg, reference active ingredient, reference additive ingredient, reference adjuvant
  • the present invention also tests the effect (efficacy) of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) using the classification method of the pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention.
  • a pharmaceutical ingredient eg, active ingredient, additive ingredient, adjuvant
  • the effect test is performed by referring to the analysis result of transcriptome clustering used in the classification method of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants), For example, it can be determined by determining whether the same gene expression pattern as that of the reference active ingredient, the reference addition ingredient, or the reference adjuvant is observed.
  • a reference pharmaceutical ingredient eg, reference active ingredient, reference additive ingredient, reference adjuvant
  • the present invention is characterized in that a bottleneck gene for efficacy or toxicity (safety) can be identified.
  • the “bottleneck gene” refers to a gene that has a substantial influence on the outcome of a certain phenomenon (eg, effectiveness or toxicity).
  • a toxic bottleneck gene can be identified.
  • a toxic bottleneck gene is toxic to a subject (eg, a pharmaceutical ingredient) if the expression of that gene varies (eg, expression goes from no to yes, yes to no, or increases or decreases) A thing that can be judged as having or not.
  • a toxic bottleneck gene is examined after a subject is administered, and if the expression of the gene is seen or increased, the subject can be determined to be toxic.
  • a toxic bottleneck gene can be identified. For example, using the method of the present invention, for a substance that is known to be toxic, a transcriptome analysis is performed to identify the pattern, and for the target substance, a gene that has at least a similar pattern is identified, Can be a candidate gene for a toxic bottleneck gene. Regarding the candidate gene, a corresponding gene in another animal species is deleted in the other animal species to produce a knockout animal, and whether the toxicity is reduced or eliminated in the knockout animal compared to an animal that is not knocked out. The genes that have been determined and reduced or eliminated can be selected as toxic bottlenet genes. The decrease or disappearance is preferably statistically significant. The present invention also provides methods for providing or identifying such toxic bottleneck genes.
  • the present invention provides a method for determining the toxicity of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the method comprises the steps of determining whether a variation (eg, activation) in gene expression is observed for at least one of the toxic bottleneck genes for a candidate pharmaceutical component, such as a candidate adjuvant, and the variation (eg, activity) And determining a candidate drug component that has been observed to be toxic.
  • a variation eg, activation
  • a candidate pharmaceutical component such as a candidate adjuvant
  • the variation eg, activity
  • an efficacy bottleneck gene can be identified.
  • An efficacy bottleneck gene is present in a subject (eg, a pharmaceutical ingredient) if the expression of that gene varies (eg, expression goes from no, goes from yes to no, or increases or decreases). It can be judged to be effective or not.
  • an efficacy bottleneck gene is examined after a subject is administered, and if the expression of the gene is seen or increased, the subject can be judged to be effective.
  • At least one efficacy bottleneck gene can be identified, but may be provided in sets.
  • the effectiveness bottleneck gene can be identified by using the method of the present invention. For example, by using the method of the present invention, a transcriptome analysis is performed on a substance that is known to be effective to identify the pattern, and a gene that takes at least a similar pattern on the target substance is identified. , Can be a candidate gene for the efficacy bottleneck gene. Does the candidate gene have a corresponding gene in another animal species deleted in the other animal species to produce a knockout animal, and the knockout animal has increased or expressed efficacy compared to an animal that has not been knocked out? And the gene with increased or expressed can be selected as an effective bottlenet gene. The increase or expression is preferably statistically significant. The present invention also provides methods for providing or identifying such efficacy bottleneck genes.
  • the present invention provides a method for determining the effectiveness of a pharmaceutical ingredient (eg, active ingredient, adjuvant).
  • the method comprises determining, for a candidate pharmaceutical ingredient, such as a candidate adjuvant, whether a variation (eg, activation) in gene expression is observed for at least one of the efficacy bottleneck genes; And determining a candidate pharmaceutical component that has been observed to be effective.
  • effectiveness can be defined also about an additional component, effectiveness determination using an effectiveness bottleneck gene can be performed similarly.
  • an adjuvant it is envisaged to test with the active agent (eg, antigen in the case of a vaccine).
  • the present invention provides a recording medium storing a program for implementing in a computer a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the method executed by the program stored in the recording medium is as follows: (A) Transcriptome analysis of at least one organ of the target organism using two or more pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant). Performing expression data; (B) clustering the pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) for the expression data; (C) based on the clustering, the pharmaceutical ingredients (eg, Generating a transcriptome profile of the organ of active ingredients, additive ingredients, adjuvants).
  • Each step used here can be performed in any embodiment or combination thereof that can be employed in the method of the present invention.
  • the present invention provides a system for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • This system : (A) Expression that obtains or inputs expression data by performing transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) A data acquisition unit; (B) a clustering operation unit that clusters the pharmaceutical components (for example, active ingredients, additive components, adjuvants) for the expression data; (C) the pharmaceutical components (for example, active ingredients) based on the clustering;
  • Each component (expression data acquisition unit, clustering calculation unit, profiling unit, etc.) of the system of the present invention including a profiling unit that generates a transcriptome profile of the organ (additive component, adjuvant) is adopted in the method of the present invention.
  • Any configuration that implements any embodiment or combination thereof that can be implemented. It can be can be implemented in any embodiment.
  • a transcriptome analysis using a pharmaceutical ingredient is performed to generate data, or a result obtained is obtained. It is configured to be able to.
  • the present invention provides a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) comprising classifying a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) based on transcriptome clustering.
  • a pharmaceutical ingredient eg, active ingredient, additive ingredient, adjuvant
  • a program for causing a computer to implement the classification method is provided. Each step used herein can be performed in any embodiment or combination thereof described herein that can be employed in the methods of the invention.
  • the present invention relates to a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) comprising the step of classifying a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) based on transcriptome clustering.
  • a pharmaceutical ingredient eg, active ingredient, additive ingredient, adjuvant
  • a recording medium storing a program for causing a computer to implement the classification method is provided.
  • the present invention relates to a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) including a classification part that classifies the pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) based on transcriptome clustering. )
  • a pharmaceutical ingredient eg, active ingredient, additive ingredient, adjuvant
  • a classification part that classifies the pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) based on transcriptome clustering. )
  • Each part (classification part etc.) of the system of the present invention can adopt any configuration described in the present specification that realizes any embodiment or combination thereof that can be employed in the method of the present invention, It can be implemented in any embodiment.
  • a transcriptome analysis using a pharmaceutical ingredient can be performed to generate data, or a result obtained can be obtained.
  • a pharmaceutical ingredient for example, an active ingredient, an additive ingredient, an adjuvant
  • the method realized by this system can be described as a program (for example, a program for implementing classification of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants) in a computer).
  • a program for example, a program for implementing classification of pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants) in a computer).
  • Such a program can be recorded on a recording medium and can be realized as a method.
  • a system 1000 includes a CPU 1001 built in a computer system via a system bus 1020, a RAM 1003, an external storage device 1005 such as a flash memory such as a ROM, SSD, HDD, magnetic disk, and USB memory, and an input / output interface (I). / F) 1025 is connected.
  • An input device 1009 such as a keyboard and a mouse, an output device 1007 such as a display, and a communication device 1011 such as a modem are connected to the input / output I / F 1025.
  • the external storage device 1005 includes an information database storage unit 1030 and a program storage unit 1040. Both are fixed storage areas secured in the external storage device 1005.
  • transcriptome analysis of at least one organ of the target organism with respect to data for use as transcriptome clustering eg, pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants)
  • pharmaceutical ingredients eg, active ingredients, additive ingredients, adjuvants
  • Expression data obtained by performing tome analysis or information equivalent thereto is input via an input device 1009, or a communication I / F, a communication device 1011, or the like. Or may be stored in the database storage unit 1030.
  • Performing transcriptome analysis of at least one organ of a target organism using two or more pharmaceutical ingredients (eg, active ingredient, additive ingredient, adjuvant) to obtain expression data and / or transcriptome for classification Clustering is performed by inputting a program stored in the program storage unit 1040, various commands (commands) via the input device 1009, or via a communication I / F, a communication device 1011, or the like. Can be executed by a software program installed in the external storage device 1005. As the software for performing such transcriptome analysis, those exemplified in the embodiments may be used, but the software is not limited to this, and any software known in the art can be used.
  • the analyzed data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • the step of clustering the pharmaceutical ingredients is also performed by various commands (commands) via the program stored in the program storage unit 1040 or the input device 1009. It can be executed by a software program installed in the storage device 1005 by being input or by receiving a command via the communication I / F, the communication device 1011 or the like.
  • the created clustering analysis data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • the step of generating a transcriptome profile of an organ of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) based on clustering is also performed via a program stored in the program storage unit 1040 or an input device 1009.
  • the created transcriptome profile data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • Data processing and storage related to various characteristics of transcriptome profile data is also performed by inputting a program stored in the program storage unit 1040 or various commands (commands) via the input device 1009, or by communication.
  • the command can be executed by a software program installed in the storage device 1005.
  • Profile characteristics and information may be output through the output device 1007 or stored in an external storage device 1005 such as the information database storage unit 1030.
  • these data, calculation results, or information acquired via the communication device 1011 or the like is written and updated as needed.
  • the information belonging to the sample to be accumulated can be identified by the ID defined in each master table. It becomes possible to manage.
  • the calculation result may be stored in association with known information such as various types of information on pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants), and biological information.
  • association may be made with data available through a network (Internet, intranet, etc.) as it is or as a network link.
  • the computer program stored in the program storage unit 1040 performs processing that performs the above-described processing system, for example, data provision, transcriptome analysis, expression data analysis, clustering, profiling, and other processing. It is configured as a system.
  • Each of these functions is an independent computer program, its module, routine, etc., and is executed by the CPU 1001 to configure the computer as each system or device. In the following, it is assumed that each function in each system cooperates to constitute each system.
  • the present invention provides a method for providing characteristic information of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the method includes: (a) providing a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant); (b) a reference pharmaceutical ingredient of known function (eg, reference active ingredient, reference additive ingredient, Providing a reference adjuvant) set; (c) the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) set (C) performing gene transcript data analysis to obtain gene expression data and clustering the gene expression data; (d) same as that to which the candidate pharmaceutical ingredient (eg candidate active ingredient, candidate additive ingredient, candidate adjuvant) belongs Members of the set of reference pharmaceutical ingredients (eg, reference active ingredient, reference additive, reference adjuvant) belonging to a cluster of Including features, the candidate pharmaceutical ingredient (e.g., a candidate pharmaceutical ingredient (e.g., a candidate pharmaceutical ingredient,
  • the provision of the characteristic information of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention is based on the transcriptome analysis technique of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention.
  • Any of the ⁇ transcriptome analysis of pharmaceutical ingredients> described herein may be included singly or in combination.
  • the candidate pharmaceutical ingredient for example, candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • the candidate pharmaceutical ingredient may be a novel substance or a known substance.
  • the properties as conventional pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • candidate pharmaceutical ingredients are intended to be provided to at least one organ of the subject organism. Such organs can include, but are not limited to, the liver, spleen and lymph nodes.
  • a set of reference pharmaceutical ingredients with known functions is provided by any of the adjuvants belonging to the specific G1 to G6 mentioned in ⁇ Transcriptome analysis of pharmaceutical ingredients>.
  • a pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • a set thereof may be used.
  • Gene expression data is obtained by performing transcriptome analysis of a set of candidate pharmaceutical ingredients (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and a reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) Any method known in the art can be used, and already analyzed data can be used for a reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) set, or a new The data may be taken again. When using data that has already been analyzed, preferably a transcriptome analysis of a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) will be performed under the conditions (eg, It may be preferable to perform transcriptome analysis in a dosage form, dosage regimen, etc.), but is not necessarily limited thereto. When gene expression data is obtained, clustering is performed. Any method can be used for clustering, and the method mentioned in ⁇ Transcriptome analysis of pharmaceutical ingredients> described in this specification can be used.
  • a clustering analysis result of the gene expression data is obtained, which drug component (eg, active ingredient, additive component, adjuvant) is a candidate drug component (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) It is determined whether it belongs to a cluster (group), and the reference pharmaceutical ingredient (eg, reference active ingredient, reference addition) belonging to the same cluster to which the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) belongs
  • the characteristics of the members of the component, reference adjuvant) set can be provided as the characteristics of the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant).
  • Information provided by such a method for providing characteristic information is highly likely to be a characteristic that a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) actually has, and a novel substance or pharmaceutical ingredient (eg, It can be said that this is an extremely useful method for predicting the characteristics of known substances whose functions as active ingredients, additive ingredients, and adjuvants are unknown.
  • a candidate pharmaceutical ingredient eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • the present invention provides a program for causing a computer to implement a method for providing characteristic information of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the method implemented by this program is: (a) providing a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant); (b) a reference pharmaceutical ingredient with known function (eg, reference active ingredient, Providing a reference additive component, reference adjuvant) set; (c) the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient), Performing a transcriptome analysis of a reference adjuvant set) to obtain gene expression data and clustering the gene expression data; (d) the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) The reference pharmaceutical ingredient belonging to the same cluster to which it belongs (eg reference active ingredient, reference additive ingredient, reference adjuvant) Including the features of the members of G) set, the candidate pharmaceutical ingredient (e.
  • the provision of the characteristic information of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention is based on the transcriptome analysis technique of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention.
  • Any of the ⁇ transcriptome analysis of pharmaceutical ingredients> described herein may be included singly or in combination.
  • the present invention provides a recording medium storing a program that causes a computer to implement a method for providing characteristic information of a pharmaceutical ingredient (for example, an active ingredient, an additive ingredient, and an adjuvant).
  • the method executed by the program stored in this recording medium is: (a) providing a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant); (b) a reference pharmaceutical ingredient (eg, function known) A reference active ingredient, a reference additive ingredient, a reference adjuvant) set; (c) the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient) , A reference additive component, a reference adjuvant) set to perform a transcriptome analysis to obtain gene expression data and clustering the gene expression data; (d) the candidate pharmaceutical component (eg, candidate active ingredient, candidate additive ingredient) The reference pharmaceutical ingredient (eg, reference active ingredient, reference addition) belonging to the same cluster to which the candidate adjuvant belongs) Min, including the characteristics of the candidate
  • the provision of the characteristic information of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention is based on the transcriptome analysis technique of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention.
  • Any of the ⁇ transcriptome analysis of pharmaceutical ingredients> described herein may be included singly or in combination.
  • the present invention provides a system that provides characteristic information of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant).
  • the system includes: (a) a candidate pharmaceutical ingredient providing unit that provides a candidate pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant); (b) a reference pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) having a known function ) A reference pharmaceutical ingredient providing unit that provides a set; (c) a transcriptome of the candidate pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) and the reference pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) set A transcriptome clustering analysis unit for performing gene analysis to obtain gene expression data and clustering the gene expression data; (d) the same cluster to which the candidate pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) belongs
  • Members of the set of reference pharmaceutical ingredients (eg active ingredient, additive ingredient, adjuvant) belonging to The symptoms include the candidate pharmaceutical ingredient (e.g., active ingredient, additional ingredients, adjuvants)
  • the provision of the characteristic information of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention is based on the transcriptome analysis technique of the pharmaceutical ingredient (for example, active ingredient, additive ingredient, adjuvant) of the present invention.
  • Any of the ⁇ transcriptome analysis of pharmaceutical ingredients> described herein may be included singly or in combination.
  • Each part of the system of the present invention (candidate drug component providing unit, reference drug component providing unit, transcriptome clustering analysis unit, feature analysis unit, etc.) realizes any embodiment or combination thereof that can be employed in the method of the present invention. Any configuration can be employed, and can be implemented in any embodiment.
  • the candidate pharmaceutical ingredient providing unit may have any configuration as long as it has a function and arrangement for providing a candidate pharmaceutical ingredient (for example, an active ingredient, an additive ingredient, and an adjuvant).
  • the analysis unit and the profiling unit can be provided as the same or different structures.
  • Candidate pharmaceutical ingredients eg, active ingredients, additive ingredients, adjuvants are intended to be provided to at least one organ of the subject organism.
  • the reference pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) providing unit provides a set of reference pharmaceutical ingredients (eg, reference active ingredient, reference additive ingredient, reference adjuvant) having a known function.
  • the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) providing unit may be stored in advance or separately. It may be configured such that a pharmaceutical ingredient (for example, a reference active ingredient, a reference addition ingredient, a reference adjuvant) is provided and accepted from the outside.
  • the candidate pharmaceutical ingredient providing unit and the reference pharmaceutical ingredient providing unit may be different or the same.
  • candidate pharmaceutical ingredient eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • reference pharmaceutical ingredient eg, reference active ingredient, reference additive ingredient, reference adjuvant
  • the transcriptome clustering analyzer comprises a set of candidate pharmaceutical ingredients (eg, candidate active ingredients, candidate additive ingredients, candidate adjuvants) and a reference pharmaceutical ingredient (eg, reference active ingredients, reference additive ingredients, reference adjuvant) set.
  • the transcriptome analysis is performed to obtain gene expression data, and the gene expression data is clustered.
  • the transcriptome analysis of a set of candidate pharmaceutical ingredients (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) is performed by the transcriptome clustering analysis unit itself. May have all of its functions, or it may be configured to obtain gene expression data externally, input the data, and the transcriptome clustering analysis unit has a function to analyze the results of the transcriptome. It may be.
  • the feature analysis unit includes the reference pharmaceutical ingredient (eg, reference active ingredient, reference) belonging to the same cluster to which the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) belongs.
  • the candidate pharmaceutical ingredient eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • features of members of the additive component, reference adjuvant) set are provided as features of the candidate pharmaceutical component (eg, candidate active ingredient, candidate additive component, candidate adjuvant).
  • an organ transcriptome profile for the pharmaceutical ingredient is generated. Processing similar to that of the system is possible (see the functional block diagram of FIG. 6).
  • the present invention provides a program for causing a computer to implement a method for classifying pharmaceutical ingredients (for example, active ingredients, additive ingredients, and adjuvants).
  • the method includes: (a) providing a candidate pharmaceutical ingredient in at least one organ of the subject organism; (b) calculating a reference pharmaceutical ingredient set; (c) translating the candidate pharmaceutical ingredient and the reference pharmaceutical ingredient set A step of obtaining gene expression data by performing cryptogram analysis and clustering the gene expression data; and And determining that the candidate pharmaceutical ingredient belongs to the same group, and determining that the candidate pharmaceutical ingredient does not belong anywhere, it is determined that classification is impossible.
  • the pharmaceutical ingredient can be an active ingredient, an additive ingredient, an adjuvant, or a combination thereof.
  • the present invention provides a recording medium storing a program for causing a computer to implement the above method for classifying pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants).
  • the present invention is a program for causing a computer to implement a method of classifying a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant), the method comprising: (a) at least one of a target organism Providing a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) in the organ; (b) providing a reference adjuvant set classified into at least one selected from the group consisting of G1 to G6 (C) performing a transcriptome analysis of the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) set Obtaining gene expression data and clustering the gene expression data; and (d) the candidate physician When a cluster to which an ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) belongs is classified into the same cluster as at least one of groups G1 to G6, the candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient) , A candidate adjuvant
  • the present invention provides a recording medium storing a program for causing a computer to implement the above method for classifying pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants).
  • pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants.
  • the present invention provides a program for causing a computer to implement a method for classifying an adjuvant, and a recording medium storing the program.
  • the method comprises: (a) providing a candidate adjuvant in at least one organ of the subject organism; (b) providing a reference adjuvant set classified into at least one selected from the group consisting of G1-G6 (C) performing transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data and clustering the gene expression data; and (d) a cluster to which the candidate adjuvant belongs; If the candidate adjuvant is classified into the same cluster as at least one of the groups G1 to G6, the candidate adjuvant is determined to belong to the same group, and if it does not belong anywhere, the step of determining as unclassifiable is included.
  • Each step used here can be performed in any embodiment or combination thereof that can be employed in the method of the present invention.
  • the present invention provides a system for classifying pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants).
  • the system includes: (a) a candidate pharmaceutical component providing unit that provides a candidate pharmaceutical component in at least one organ of a target organism; (b) a reference pharmaceutical component calculation unit that calculates a reference pharmaceutical component set; (c) the candidate pharmaceutical component And a transcriptome clustering analysis unit that obtains gene expression data by performing transcriptome analysis of the reference pharmaceutical ingredient set and clusters the gene expression data; and (d) a cluster to which the candidate pharmaceutical ingredient belongs is a reference medicine.
  • the pharmaceutical ingredient can be an active ingredient, an additive ingredient, an adjuvant, or a combination thereof.
  • the present invention provides a system for classifying pharmaceutical ingredients.
  • This system is classified into: (a) a candidate pharmaceutical ingredient providing unit that provides a candidate pharmaceutical ingredient in at least one organ of a target organism; (b) at least one selected from the group consisting of G1 to G6 of the present invention.
  • a reference drug component storage unit for providing a reference drug component set; (c) a transcript that performs transcriptome analysis of the candidate drug component and the reference drug component set to obtain gene expression data, and clusters the gene expression data And (d) if the cluster to which the candidate pharmaceutical ingredient belongs is classified into the same cluster as at least one of the groups G1 to G6, it is determined that the candidate pharmaceutical ingredient belongs to the same group, and nowhere If it does not belong, a determination unit that determines that classification is not possible is included.
  • the present invention is a system for classifying adjuvants, the system comprising: (a) a candidate adjuvant provider that provides a candidate adjuvant in at least one organ of the subject organism; (b) G1-G6 A reference adjuvant storage providing a reference adjuvant set classified into at least one selected from the group consisting of: (c) performing a transcriptome analysis of the candidate adjuvant and the reference adjuvant set to obtain gene expression data; A transcriptome clustering analyzer for clustering the gene expression data; and (d) when the cluster to which the candidate adjuvant belongs is classified into the same cluster as at least one of the groups G1 to G6, the candidate adjuvant is classified into the same group.
  • determination unit determines that the unclassified.
  • Each part of the system of the present invention can be used to implement any embodiment or combination thereof that can be employed in the method of the present invention. Configurations can be employed and can be implemented in any embodiment.
  • a transcriptome analysis using a pharmaceutical ingredient can be performed to generate data, or a result obtained can be obtained.
  • a pharmaceutical ingredient for example, an active ingredient, an additive ingredient, an adjuvant
  • a system 1000 includes a CPU 1001 built in a computer system via a system bus 1020, a RAM 1003, an external storage device 1005 such as a flash memory such as a ROM, SSD, HDD, magnetic disk, and USB memory, and an input / output interface (I). / F) 1025 is connected.
  • An input device 1009 such as a keyboard and a mouse, an output device 1007 such as a display, and a communication device 1011 such as a modem are connected to the input / output I / F 1025.
  • the external storage device 1005 includes an information database storage unit 1030 and a program storage unit 1040. Both are fixed storage areas secured in the external storage device 1005.
  • a transcriptome of a set of candidate pharmaceutical ingredients eg, candidate active ingredients, candidate additive ingredients, candidate adjuvants
  • reference pharmaceutical ingredients eg, reference active ingredients, reference additive ingredients, reference adjuvant
  • expression data obtained through the transcriptome analysis or information equivalent thereto is input via the input device 1009. Or may be input via the communication I / F, the communication device 1011, or the like, or may be stored in the database storage unit 1030.
  • Transcriptome analysis of the set of candidate pharmaceutical ingredients (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) set is performed to obtain gene expression data.
  • the step of clustering the gene expression data is performed by inputting a program stored in the program storage unit 1040 or various commands (commands) via the input device 1009, or by using a communication I / F, By receiving a command via the communication device 1011 or the like, the command can be executed by a software program installed in the external storage device 1005.
  • software for performing such transcriptome analysis and expression analysis those exemplified in the examples may be used, but the software is not limited thereto, and any software known in the art can be used.
  • the analyzed data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • Features of members of the reference pharmaceutical ingredient eg, reference active ingredient, reference additive ingredient, reference adjuvant
  • the candidate pharmaceutical ingredient eg candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • the candidate pharmaceutical ingredient for example, candidate active ingredient, candidate additive ingredient, candidate adjuvant
  • various commands via the program stored in the program storage unit 1040 or the input device 1009.
  • the data of the characteristics of the created candidate pharmaceutical ingredient is output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030. Also good. Data processing and storage related to various characteristics of transcriptome profile data is also performed by inputting a program stored in the program storage unit 1040 or various commands (commands) via the input device 1009, or by communication. By receiving a command via the I / F, the communication device 1011 or the like, the command can be executed by a software program installed in the storage device 1005. Profile characteristics and information may be output through the output device 1007 or stored in an external storage device 1005 such as the information database storage unit 1030.
  • data regarding a candidate adjuvant provided by the step of providing a candidate pharmaceutical ingredient (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) in at least one organ of the target organism is input. It may be input via the device 1009, input via the communication I / F, the communication device 1011, or the like, or stored in the database storage unit 1030.
  • data of a reference pharmaceutical ingredient (for example, reference active ingredient, reference additive ingredient, reference adjuvant) set may be used by calling data from the database storage unit 1030 or via the communication I / F or the communication device 1011. .
  • Transcriptome analysis of the set of candidate pharmaceutical ingredients (eg, candidate active ingredient, candidate additive ingredient, candidate adjuvant) and the reference pharmaceutical ingredient (eg, reference active ingredient, reference additive ingredient, reference adjuvant) set is performed to obtain gene expression data.
  • the step of clustering the gene expression data can be performed by inputting a program stored in the program storage unit 1040 or various commands (commands) via the input device 1009, or a communication I / F, By receiving a command via the communication device 1011 or the like, the command can be executed by a software program installed in the external storage device 1005.
  • the software for performing such transcriptome analysis and / or clustering may use the software exemplified in the embodiments, but is not limited thereto, and any software known in the art can be used.
  • the analyzed data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • the step of determining that classification is impossible is also performed via the program stored in the program storage unit 1040 or the input device 1009 It can be executed by a software program installed in the storage device 1005 by inputting various commands (commands) or by receiving a command via the communication I / F, the communication device 1011 or the like.
  • the determination data may be output through the output device 1007 or stored in the external storage device 1005 such as the information database storage unit 1030.
  • these data, calculation results, or information acquired via the communication device 1011 or the like is written and updated as needed.
  • the information belonging to the sample to be accumulated can be identified by the ID defined in each master table. It becomes possible to manage.
  • the calculation result may be stored in association with known information such as various types of information on pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants), and biological information.
  • association may be made with data available through a network (Internet, intranet, etc.) as it is or as a network link.
  • the computer program stored in the program storage unit 1040 performs processing that performs the above-described processing system, for example, data provision, transcriptome analysis, expression data analysis, clustering, profiling, and other processing. It is configured as a system.
  • Each of these functions is an independent computer program, its module, routine, etc., and is executed by the CPU 1001 to configure the computer as each system or device. In the following, it is assumed that each function in each system cooperates to constitute each system.
  • the present invention provides a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention and / or a pharmaceutical ingredient (eg, active ingredient, additive) of the invention.
  • a method for quality control of a pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • a method for providing characteristic information of the ingredient or adjuvant is provided.
  • the quality control of pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants
  • whether the quality of the pharmaceutical ingredients (for example, active ingredients, additive ingredients, adjuvants) in each lot is appropriate, especially when shipped as pharmaceutical products By pre-testing the quality, the quality is kept above a certain level. Since the organ transcriptome profile of pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants) can be characterized using significant DEG, the characteristics of various pharmaceutical ingredients (eg, active ingredients, additive ingredients, adjuvants) The quality can be kept at a certain level without actually conducting complicated tests.
  • the above analysis is performed on a pharmaceutical ingredient (for example, an active ingredient, an additive ingredient, and an adjuvant) to be quality controlled, and an organ transcriptome profile is obtained.
  • Standard organ transcriptome profile also referred to as reference transcriptome profile
  • the assumed quality is maintained if there is no significant difference in comparison with the organ transcriptome profile of the additive component and adjuvant), but is not limited thereto.
  • the quality standard is not satisfied, and when there is no significant difference, it may be determined by further testing whether the quality standard is satisfied.
  • the present invention provides a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention and / or a pharmaceutical ingredient (eg, active ingredient, additive) of the invention.
  • a method for testing the safety of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) is provided using a method that provides characteristic information of the ingredient (adjuvant).
  • New pharmaceutical ingredients for example, active ingredients, additive ingredients, adjuvants themselves need to be evaluated for toxicity, and in the case of adjuvants, toxicity evaluation is also required for preparations containing novel adjuvants and antigens.
  • toxicity evaluation is required.
  • organ transcriptome profile or characteristic information of a pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • the above analysis is performed on a pharmaceutical ingredient (for example, an active ingredient, an additive ingredient, and an adjuvant) that is a target of safety determination, and an organ transcriptome profile thereof is obtained.
  • Standard organ transcriptome profile also referred to as a reference transcriptome profile
  • the medicinal component for example, active ingredient, additive component, adjuvant
  • medicinal component for example, effective
  • Ingredients, additive ingredients, adjuvants) and organ transcriptome profiles and if there is no significant difference, it may be determined that the assumed safety is maintained, but is not limited thereto. .
  • when there is a significant difference it may be determined that the safety standard is not satisfied, and when there is no significant difference, it may be determined by further testing whether the safety standard is satisfied.
  • the present invention provides a method for generating an organ transcriptome profile of a pharmaceutical ingredient (eg, active ingredient, additive ingredient, adjuvant) of the invention and / or a pharmaceutical ingredient (eg, active ingredient, additive) of the invention.
  • a method for determining the effect of a pharmaceutical ingredient is provided using a method for providing characteristic information of the ingredient or an adjuvant.
  • a novel pharmaceutical ingredient for example, active ingredient, additive ingredient, adjuvant
  • a novel pharmaceutical ingredient itself needs to be evaluated for effectiveness, and in the case of an adjuvant, it is also necessary to evaluate the effectiveness of a preparation containing a novel adjuvant and an antigen. Even if it is an antigen, effectiveness evaluation is required depending on the combination.
  • the organ transcriptome profile or the characteristic information of the pharmaceutical ingredient can be utilized. Useful for extrapolating efficacy assessment after human consumption.
  • the above transcriptome analysis is performed on a pharmaceutical ingredient (for example, an active ingredient, an additive ingredient, and an adjuvant) that is a target of the efficacy judgment, and the organ transcriptome profile is obtained.
  • a pharmaceutical ingredient for example, an active ingredient, an additive ingredient, and an adjuvant
  • the organ transcriptome profile is obtained.
  • Standard organ transcriptome profile also referred to as a reference transcriptome profile
  • medicinal component for example, active ingredient, additive component, adjuvant
  • medicinal component for example, effective Ingredients, additive ingredients, adjuvants
  • inter-database analysis can be performed using a toxicity genome database (gate) or the like in addition to the adjuvant database.
  • a toxicity genome database (gate) or the like in addition to the adjuvant database.
  • the adjuvant database has been demonstrated in humans, monkeys, mice, rats, etc. and has been demonstrated to be usable, and can be used in other animals as well.
  • the toxic genome database is open to humans and rats, and interdatabase analysis can be performed using other available databases. These have 6 and 24 hour data for single agent administration, gene expression profiles (liver, kidney, lymph nodes, spleen, etc.), hematology (leukocytes, red blood cells, platelets, etc.), biochemical tests (amino aspartate).
  • AST group transferase
  • ALT alanine aminotransferase
  • CRE creatinine
  • serum miRNA profiles can be tested, and these databases are also available.
  • toxicity prediction and effectiveness prediction can be performed on a transcriptome basis, but it is also possible to generate and predict a prediction model using machine learning (for example, a support vector machine).
  • machine learning for example, a support vector machine
  • the public toxicity genome gate (150) with respect to the toxicity group (10) and the non-toxic group (10), for example, a group in which pathological findings were obtained during four administrations and toxicity-related characteristics were observed. Identify what is not.
  • a sample showing an expression pattern similar to this for the toxicity group can be predicted as toxicity, and a sample showing a pattern similar to the non-toxic group can be determined as non-toxic.
  • prediction models can be generated by machine learning, and these models and prediction methods based on the models are also within the scope of the present invention.
  • Effectiveness can be determined by using an adjuvant database such as an adjuvant database.
  • Databases such as particles, emulsions, DNA / RNA, TLR ligands can be used.
  • the present invention can be implemented using artificial intelligence (AI) using machine learning.
  • machine learning refers to a technique that gives a computer the ability to learn without explicitly programming. This is a process in which a functional unit improves its performance by acquiring new knowledge and skills, or by reconstructing existing knowledge and skills. Programming a computer to learn from experience reduces much of the effort required to program details, and in the machine learning field, discusses how to build computer programs that can automatically improve from experience is doing.
  • the role of data analysis and machine learning is an elemental technology that forms the basis of intelligent processing along with the algorithm field. Usually, it is used in cooperation with other technologies, and knowledge of the field (domain knowledge; for example, medicine) Field) is necessary.
  • Machine learning is based on an index indicating the achievement level of a real-world goal, and a user of machine learning must grasp a goal in the real world. And it is necessary to formulate an index that improves when the objective is achieved.
  • linear regression, logistic regression, support vector machine, etc. can be used, and cross-validation (also called cross-validation, cross-validation; Cross Validation) can be used to calculate the discrimination accuracy of each model. it can.
  • the feature amount is increased one by one, machine learning (linear regression, logistic regression, support vector machine, etc.) and cross-validation are performed, and the discrimination accuracy of each model can be calculated. Thereby, the model with the highest accuracy can be selected.
  • machine learning linear regression, logistic regression, support vector machine, etc.
  • SVM support vector machine
  • logical reasoning In machine learning, logical reasoning is performed. There are roughly three types of logical reasoning: deduction, induction, and abduction. Deduction is a special conclusion because it draws the conclusion that Socrates will die when the hypothesis is that Socrates will be human and all humans will die. Induction leads to the general rule that draws the conclusion that Socrates dies and Socrates dies when all humans die. Abduction is a hypothesis / explanation that leads to Socrates being human when Socrates is supposed to die and all humans are supposed to die. However, it should be noted that it may not be objective because it is based on the assumption that it will be generalized even if it is inductive.
  • Impossibility includes generalization error, Norfree Collins theorem, and ugly duck child theorem, and it is necessary to pay attention to the defect setting problem that the true model cannot be observed and cannot be verified.
  • a feature / attribute represents a state when a prediction target is viewed from a certain aspect.
  • a feature vector / attribute vector is a collection of features (attributes) describing a prediction target in a vector format.
  • model or “hypothesis” is used synonymously, and is a mapping that describes an object correspondence from an input prediction target to a prediction result, or a candidate set thereof. , Expressed using mathematical functions or logical expressions. In learning by machine learning, a model that best approximates a true model is selected from a model set with reference to training data.
  • the model includes a generation model, an identification model, a function model, and the like. It shows the difference in the policy of expressing the classification model of the mapping relationship between the input (prediction target) x and the output (prediction result) y.
  • the generation model represents a conditional distribution of output y when input x is given.
  • the identification model represents the simultaneous distribution of input x and output y.
  • the identification model and the generation model are probabilistic in the mapping relationship.
  • the function model has a definite mapping relationship and expresses a definite function relationship between the input x and the output y. In the discrimination model and the generation model, discrimination is sometimes said to be slightly more accurate, but basically there is no superiority or inferiority due to the no-free lunch theorem.
  • a model that best approximates a true model is selected from a model set.
  • learning methods There are various learning methods depending on what kind of "approximation" is used.
  • maximum likelihood estimation which is a learning criterion for selecting a model having the highest probability of generating training data from a set of probabilistic models.
  • maximum likelihood estimation the model that best approximates the true model can be selected.
  • KL divergence As the likelihood increases, the KL divergence to the true distribution decreases.
  • types of estimation and they differ depending on the types of formats for obtaining estimated predicted values and parameters.
  • Point estimation is to obtain only one value with the highest certainty, and uses the mode of distribution or function such as maximum likelihood estimation or MAP estimation, and is most often used.
  • interval estimation is often used in the statistical field in such a way that the probability that an estimated value exists in this range is 95% for obtaining a range where the estimated value exists.
  • distribution estimation it is used in Bayesian estimation in combination with a generation model that introduces a prior distribution for obtaining a distribution in which an estimated value exists.
  • adjuvant adjuvants are very important in initiating, maximizing and prolonging the immunogenicity of many vaccines and their efficacy.
  • aluminum salts alum, alum
  • adjuvants have been the only adjuvants routinely used in humans.
  • adjuvants limited but further adjuvants have been approved for human use, such as alum combined with monophosphoryl lipid A and squalene oil emulsion.
  • Appropriate adjuvants should ideally be selected based on vaccine characteristics that provide the best pathogen protection, including the type of immune response.
  • the lack of adjuvant types currently approved for use in humans limits the fine tuning of the induction of immune responses, and the development of different types of adjuvants is urgent .
  • PRR pathogen recognition receptors
  • TLR inflammatory cytokines and type I interferons
  • APC antigen presenting cells
  • PAMPs Pathogen-related molecular patterns contained in vaccines, such as microbial nucleic acids, glycolipids or proteins, function as endogenous intrinsic adjuvants, elicit innate immune responses, and then induced by specific antigens Adaptive immune response occurs (Desmet, CJ, and Ishii, KJ (2012). Nature reviews Immunology 12, 479-491).
  • viral RNA in the influenza WV vaccine activates TLR7, thereby inducing a Th1-biased response to the WV antigen (Koyama, S., Aoshi, T., Tanimoto, T., Kumagai , Y., Kobiyama, K., Tougan, T., Sakurai, K., Coban, C., Horii, T., Akira, S., et al. (2010). Science translational medical 2, 25ra24.
  • the present invention is based on the results of studying the immunological characteristics and mechanism of action of Advax TM, a delta inulin, a microparticle derived from inulin being developed as an adjuvant for vaccines.
  • delta inulin becomes a type 2 adjuvant when combined with an influenza split vaccine that is a Th2 type antigen, but a type 1 adjuvant when combined with an influenza inactivated whole virion (WV) that is a Th1 type antigen.
  • delta inulin enhances the intrinsic properties of co-administered antigens and its adjuvant function necessarily requires phagocytic macrophages and TNF- ⁇ as well as dendritic cells.
  • inulin refers to ⁇ -D- (2 ⁇ 1) polyfructofuranosyl ⁇ -D in which fructose is linearly bound without a side chain and one glucose is bound at the end.
  • -A simple and inactive polysaccharide of the glucose family which can eliminate not only inulin, ⁇ -D- [2 ⁇ 1] -polyfructofuranosyl ⁇ -D-glucose, but also, for example, this terminal glucose
  • derivatives of inulin including ⁇ -D- [2 ⁇ 1] polyfructose, which may be obtained by enzymatic removal of terminal glucose from inulin using an invertase or inulase enzyme that is To be included in the equivalent).
  • inulins in which the free hydroxyl group is etherified or esterified, for example by chemical substitution with alkyl, aryl or acyl groups by known methods.
  • Inulin compositions are known compositions consisting of simple, neutral polysaccharides, but vary in molecular weight and range up to 16 kilodaltons (kD) or more.
  • Inulin is a stored carbohydrate of the Compositae family and is inexpensively obtained from dahlia bulbs.
  • Inulin has a relatively hydrophobic polyoxyethylene-like skeleton, and this unusual structure plus the non-ionized nature allows the preparation of very pure inulin easily by recrystallization.
  • inulin is composed of fructose with a degree of polymerization (DP) of about 60 or more, and has various solubility and characteristics.
  • DP degree of polymerization
  • inulin The molecular composition of inulin is well known, but the reported solubility varies. At present, at least five types of inulin are known, including alpha inulin (aIN; Phelps, CF. The physical properties of inulin solutions. Biochem J95: 41-47 (1965)), beta inulin (bIN; Phelps, CF. The. physical properties of inulin solutions. Biochem J95: 41-47 (1965)), gamma inulin (gIN), delta inulin (also referred to as dIN, deltin), and epsilon inulin (eIN) are known. aIN to dIN go from a rapidly soluble form at 23 ° C.
  • Delta inulin is known as an adjuvant product sold as Advax TM. Delta inulin is insoluble in water at 50 ° C. and is disclosed in WO 2006/024100, the contents of which are incorporated herein by reference. Delta inulin is only soluble in concentrated solutions (eg 50 mg / ml) when heated to 70-80 ° C., the thin solution has a 50% OD700 thermal transition point of 53-58 ° C. Delta inulin is readily prepared by heating a concentrated gamma inulin solution to 55 ° C. or higher. Alpha inulin (aIN) is obtained by precipitation from water, and beta inulin is obtained by precipitation from ethanol.
  • aIN Alpha inulin
  • beta inulin is obtained by precipitation from ethanol.
  • Epsilon inulin has a 50% OD 700 thermal transition point of dilute suspension ( ⁇ 0.5 mg / ml), preferably in the range of about 58 ° C. to about 80 ° C., and has a low solubility in aqueous solvents below 59 ° C. More preferably, the solubility in an aqueous solvent is low at 75 ° C. or lower.
  • a single molecule of eIN particles has a molecular weight in the range of about 5 to about 50 kilodaltons (kD).
  • the degree of polymerization (DP) of single molecules of eIN particles is often high (that is, the degree of polymerization of fructose is 25 or more, preferably the degree of polymerization of fructose is 35 or more).
  • eIN exhibits lower solubility in dimethyl sulfoxide (a solvent known to neutralize hydrogen bonds) compared to each of aIN, bIN, gIN and dIN.
  • Gamma inulin is substantially insoluble in water at 37 ° C., but is soluble in concentrated solutions (eg 50 mg / ml) only at temperatures above 45 ° C., as in ⁇ and ⁇ polymorphic forms.
  • Delta inulin is particulate and has a sharp melting point of 47 ⁇ 1 ° C. with a 50% OD700 thermal transition point (dissolution phase transition of a thin solution).
  • Delta inulin is insoluble in water at 50 ° C. and is soluble only when heated to 70-80 ° C. in a concentrated solution (eg 50 mg / ml) as in WO 2006/024100.
  • dIN is characterized by a 50% OD700 thermal transition point of a thin solution of 53-58 ° C.
  • dIN can be easily prepared by heating the concentrated gIN solution to 55 ° C. or higher.
  • Delta inulin (dIN) and gamma inulin (gIN) are insoluble at 37 ° C and can maintain their respective particle morphology if introduced into a human-like organism with this temperature, and are immunologically active.
  • an antigen-binding carrier material such as aluminum hydroxide as an adjuvant for a vaccine (Cooper, PD and EJ Steel, 1991, Cooper, PD et al., 1991a, Cooper. , PD et al., 1991b, WO 90/01949 and WO 2006/024100).
  • Epsilon inulin is also immunologically active and may have comparable or higher immune activity than gamma and delta inulin.
  • Epsilon inulin is the most thermostable of the five inulin polymorphic forms, and the suspension of particles remains insoluble at the temperature at which the other polymorphic forms dissolve.
  • Epsilon inulin is considered to be most thermally stable even when heated to 85 ° C., and when used as an adjuvant that requires heat stability, epsilon inulin particles can be stable even at high temperatures.
  • ⁇ inulin ( ⁇ -D- [2 ⁇ 1] poly (fructo-furanosyl) ⁇ -D-glucose) is a substance constituting an adjuvant, and an adjuvant composed of microparticles constituting the same Is typically available as an adjuvant product known as Advax TM.
  • Advax TM a delta inulin-type adjuvant, is a microparticle adjuvant, and the microparticles are derived from polyfructofuranosyl-d-glucose (delta inulin) microparticles.
  • Vaccines containing Advax TM adjuvants such as vaccines for hepatitis B, influenza, and insect bite allergies have been evaluated in human clinical trials (Gordon et al., 2014; Heddle et al., 2013; Nolan et al. , 2008).
  • delta inulin unlike TLR agonists, did not bias the immune response against co-administered antigens. Instead, interestingly, delta inulin enhanced the immune bias of the vaccine antigen itself. This suggests that delta inulin functions in a new manner called “adjuvant adjuvant” and has the effect of amplifying the inherent adjuvant activity of the antigen itself.
  • inducing or enhancing the antigenicity of an antigen means inducing (ie, generating from the absence of) the antigenicity of the antigen itself for an antigen, or enhancing (ie, existing activity). Increase).
  • activating a dendritic cell means that the dendritic cell becomes in a state where it can exert its original function or the degree of the state increases, for example, expression of an auxiliary signal molecule And the like, and the antigen is presented to naive T cells that have never met the antigen, and has a function to enhance the naive T cells or is enhanced.
  • Dendritic cells that have not been encountered with foreign substances are called immature dendritic cells, and are greatly different from activated dendritic cells, including the expression of cell surface molecules. Although immature dendritic cells have high phagocytic ability, the expression levels of MHC class II molecules and auxiliary signal molecules such as CD80, CD86, CD40 are low.
  • dendritic cells take up antigens even in the absence of infection, naive T cells cannot be activated due to low expression of MHC class II and auxiliary signal molecules.
  • MHC class II presenting bacterial and virus-derived antigenic peptides
  • auxiliary signal molecules auxiliary signal molecules
  • the antigen is presented to the naive T cell in the T cell region of the lymph node, and at the same time, various cytokines are released to induce differentiation from the naive T cell to the effector T cell. It is considered that the following three types of signals are involved in the activation of dendritic cells accompanying infection. The first is cytokines such as TNF ⁇ released from neutrophils and macrophages that have infiltrated the infected area, the second is a component derived from dead cells derived from neutrophils and macrophages that have died due to infection, and the third is bacteria and viruses.
  • cytokines such as TNF ⁇ released from neutrophils and macrophages that have infiltrated the infected area
  • the second is a component derived from dead cells derived from neutrophils and macrophages that have died due to infection
  • the third is bacteria and viruses.
  • TLR Toll-like receptor
  • Dendritic cells stay for several hours in the local area where the infection has occurred and fully take up and activate the antigen, then travel through the lymphatics and migrate to the regional lymph nodes, where they activate naive T-cells, reaching a life span in about one week. Finish.
  • New dendritic cells are supplied from the bone marrow to the infected area where the dendritic cells have stopped moving, and as long as the infection continues, the steps of activation of the dendritic cells in the infected lesion ⁇ migration to the regional lymph nodes are repeated. .
  • macrophages in the presence of macrophages refers to any environment in which native or exogenous macrophages are present.
  • macrophage potentiator refers to any drug that imparts or enhances the function or activity of macrophages.
  • macrophage potentiator include conventional adjuvants such as picolinic acid, crystalline silica, and aluminum salts.
  • Th1-type antigen refers to an antigen associated with Th1 cells, preferably any antigen that elicits or enhances a Th1 immune response. As will be described below, in particular, cellular immunity (phagocytosing pathogens) is enhanced.
  • Th2-type antigen refers to an antigen associated with Th2 cells, preferably any antigen that elicits or enhances a Th2 immune response. As will be explained below, it particularly refers to those in which humoral immunity (neutralizing pathogen toxins) is enhanced.
  • Th1 cells and Th2 cells have arbitrary properties and functions known in the art.
  • the properties to be particularly referred to for Th1 cells and Th2 cells The function is further described below.
  • Lymphocytes include T cells and B cells that produce antibodies (immunoglobulins).
  • T cells are further presented with helper T cells that are presented with antigens from monocytes / macrophages and regulate immune responses.
  • CD4 antigen positive) and killer T cells CD8 antigen positive
  • helper T cells include Th1 cells (T helper 1 cells) and Th2 cells (T helper 2 cells). is there.
  • antigen-presenting cells produce interleukin (IL) -12 or prostaglandin (PG) E2, Th1 cells (responsible for cellular immunity) and Th2 cells (responsible for humoral immunity) ) To determine which will be superior.
  • IL interleukin
  • PG prostaglandin
  • Th1 cells are IL-2, interferon (IFN) - ⁇ (suppresses the production of IgE antibody), tumor necrosis factor (TNF) - ⁇ , TNF- ⁇ , granulocyte monocyte colony stimulating factor (GM-CSF), It produces IL-3, increases the activity of phagocytes such as T cells and monocytes, and is involved in cellular immunity (such as tuberculin reaction). IFN- ⁇ produced by Th1 cells promotes differentiation of Th0 cells into Th1 cells.
  • IFN interferon
  • Th2 cells which is secreted when macrophages present antigens to T cells, differentiates Th0 cells into Th2 cells.
  • Th2 cells are IL-3, IL-4 (a cytokine that increases the production of immunoglobulin (Ig) E antibodies and is also produced from mast cells and natural killer (NK) T cells), IL-5, IL -6, IL-10 and IL-13 are produced and involved in humoral immunity (antibody production, etc.).
  • IL-10 suppresses IFN- ⁇ production and IL-12 production from Th1 cells.
  • IL-4 and IL-6 produced by Th2 cells promote the differentiation of Th0 cells into Th2 cells.
  • PGE2 produced from arachidonic acid is considered to be more important than IL-4.
  • Th2 cells proliferate as antigen-presenting cells even when subjected to antigen stimulation from B cells (which do not produce IL-12).
  • Th1 cells In the immune response by Th1 cells, cellular immunity works to cause an inflammatory reaction centered on mononuclear cells such as lymphocytes and macrophages.
  • mononuclear cells such as lymphocytes and macrophages.
  • Th1 cells when Th1 cells predominate, a strong granuloma is formed and infection is confined locally.
  • Th2 cells when Th2 cells work predominantly, inflammatory cell infiltration is extremely poor.
  • humoral immunity does not kill intracellular parasites such as cryptococcus.
  • the alveolar space is filled with cryptococcus, and the infection easily spreads to the bloodstream, causing meningitis and the like.
  • IgE antibody production increases and is likely to fall into an allergic constitution.
  • the bacterial cell component (Pathogen-associated molecular pattern: PAMP) acts on dendritic cells, promotes differentiation of Th0 cells into Th1 cells, makes Th1 cells dominant, and improves allergic constitution. According to the so-called hygiene hypothesis, the intake of foodstuffs such as natto and yogurt is the basis that allergic predisposition is improved. Viral infection produces type 1 interferons (IFN- ⁇ and IFN- ⁇ ). Type 1 interferon acts on T cells to produce IFN- ⁇ or IL-10.
  • PAMP antigen-associated molecular pattern
  • Th1 cells In bacterial infection, IFN- ⁇ , a type 2 interferon, is produced and Th1 cells are induced. In infections caused by intracellular parasitic bacteria (M. tuberculosis, Salmonella, Listeria, etc.), Th1 cells are mainly induced, and phagocytes (macrophages) are activated by IFN- ⁇ produced from Th1 cells. The CD8 positive killer T cells are activated by IL-2 produced from Th1 cells and sterilized.
  • Th2 cells are mainly induced, and antibodies are produced and killed by cytokines produced from Th2 cells.
  • Th1 cells produce IL-2, activate killer T cells, NK cells, etc., and activate cellular immunity.
  • Th2 cells produce IL-4, activate B cells via CD40 ligand (CD40L, gp39), promote the production of IgE antibodies that cause type I allergy, and activate humoral immunity.
  • Th1 cells also produce IFN- ⁇ , but IFN- ⁇ suppresses CD40 ligand (CD40L) expression in Th2 cells and suppresses IgE antibody production.
  • IL-4 and IL-10 produced by Th2 cells suppress the reaction of Th1 cells.
  • Antigen-presenting cells identify whether the pathogen (bacteria or virus) or toxin has invaded the body by TLRs on the surface, and in response to this, inflammatory cytokines Produces interferon and the like. As a result, Th0 cells are differentiated into Th1 cells or Th2 cells.
  • macrophages are activated and intracellular parasites are sterilized by IFN- ⁇ produced by Th1 cells.
  • IFN- ⁇ produced by Th1 cells.
  • IL-2 produced by Th1 cells activates killer T cells and damages virus-infected cells.
  • B cells are differentiated and proliferated by IL-4, IL-5, IL-6, and IL-13 produced by Th2 cells, and antibodies (immunoglobulins) are produced.
  • the antibody neutralizes the exotoxin produced by the pathogen, opsonizes the extracellular parasite, promotes phagocytosis by macrophages, and activates the complement system to lyse.
  • Th1 response refers to an immune response by Th1 cells as described above.
  • Th1 cells in the immune response by Th1 cells, as described in detail above, cellular immunity works and lymphocytes, macrophages, etc. A mononuclear cell-centered inflammatory response occurs.
  • Th2 response refers to a case where Th2 cells are dominant, and as described in detail above, inflammatory cell infiltration is extremely poor.
  • humoral immunity cannot kill intracellular parasites such as cryptococcus.
  • the alveolar space is filled with cryptococcus, and the infection easily spreads to the bloodstream, causing meningitis and the like.
  • a state in which TNF ⁇ is normal or enhanced means that tumor necrosis factor ⁇ (TNF ⁇ ) is maintained at a normal level in vivo or a normal level of TNF ⁇ in vivo is reproduced.
  • TNF ⁇ tumor necrosis factor ⁇
  • enhancement refers to a state in which a higher level of TNF ⁇ is present than TNF ⁇ normally present in the living body, or TNF ⁇ higher than the normal level in the living body is reproduced.
  • adjuvant of adjuvant includes an activity that enhances the adjuvant activity of a compound that has already been found to be an adjuvant, and other substances that are unknown or do not possess adjuvants It is understood that this is a concept including providing an adjuvant activity to the substance.
  • candidate adjuvant is a kind of candidate pharmaceutical ingredient, and refers to any substance or combination thereof considered as an adjuvant.
  • Candidate adjuvants can be adjuvants such as TLR-independent adjuvants and TLR-dependent adjuvants as described below, but compounds and other substances whose functions and properties as adjuvants other than these are unknown, Combinations can also be used.
  • TLR-independent adjuvants may include, but are not limited to: alum (aluminum phosphate / aluminum hydroxide; inorganic salts showing various indications); AS03 (GSK; squalene) (10.68 mg) , DL- ⁇ -tocopherol (11.86 mg), and polysorbate 80 (4.85 mg), an oil-in-water emulsion used for pandemic influenza); MF59 (Novartis; 4-5% (w / v) squalene, 0.
  • mulamuru tripeptide phosphatidyl-ethanolamine MTP-PE
  • oil-in-water emulsion used for influenza Probax ( Biogen Idec; Squalene + P Ronic L121), oil-in-water emulsions); Montanide (Seppic SA; Bioven; Cancervax; mannide oleate and mineral oil), water-in-oil emulsions used in the treatment of malaria and cancer); TiterMax (CytRx; Squalene + CRL-8941) ), In a water-in-oil emulsion); QS21 (Antigenics; Quil A fraction), plant-derived composition used in the treatment of melanoma, malaria, HIV, and influenza); Quil A (Statens Serum Institute; Kiraya) Purified fractions), plant-derived compositions used in various treatments); ISCOM (CSL; Isconova
  • TLR-dependent adjuvants can include, but are not limited to, the following adjuvants: Ampligen (Hemispherx; a specifically constructed synthetic double-stranded RNA containing mismatched regions that appear regularly), of TLR3 Acts by activation and is used as a vaccine against pandemic influenza); AS01 (GSK; MPL, liposomes, and QS-21), acts by MPL activation of TLR4, and liposomes facilitate the delivery of antigens to APC QS-21 results in enhanced antigen presentation to APC and induction of cytotoxic T cells, and it is used as a vaccine against malaria and tuberculosis.
  • Ampligen Hydropligen
  • Hemispherx a specifically constructed synthetic double-stranded RNA containing mismatched regions that appear regularly
  • AS02 acts by MPL activation of TLR4, which is a natural inflammatory response, recruitment and activation of APC, antigen at injection site Persistence enhancement, presentation to immunocompetent cells, induction of various patterns of cytokines, QS-21 results in enhanced antigen presentation to APC and induction of cytotoxic T cells, Used as a vaccine against tuberculosis, HBV, and HIV.
  • AS04 GLK; MPL, aluminum hydroxide / aluminum phosphate
  • MPL activation of TLR4 acts by MPL activation of TLR4
  • alum results in a depot effect, local inflammation, and increased antigen uptake by APC, Used as a vaccine against HBV, HPV, HSV, RSV, and EBV.
  • MPL RC-529 acts by activating TLR4 and is used as a vaccine against HBV.
  • E6020 Eisa / Sanofi Pasteur; synthetic phospholipid dimer acts by activating TLR4.
  • TLR-Technology (Vaxnate; acts by activation of antigen and flagellin, TLR5 and is used in vaccines against influenza); PF-3512676 (CpG 7909) (Coley / Pfizer / Novartis; immunomodulating synthetic oligonucleotide) Acts by activation of TLR9 and is used in vaccines against HBV, influenza, malaria, and anthrax. ); ISS (Dynavax; short DNA sequence), acts by activation of TLR9 and is used in vaccines against HBV and influenza.
  • the “evaluation standard adjuvant” is also referred to as “standard adjuvant” or “standard adjuvant”, which is one of the standard pharmaceutical ingredients and has an already known function.
  • standard adjuvant is one of the standard pharmaceutical ingredients and has an already known function.
  • the properties and functions of such adjuvants have been determined by methods known in the art.
  • ⁇ inulin ( ⁇ -D- [2 ⁇ 1] poly (fructo-furanosyl) ⁇ -D-glucose) or a functional equivalent thereof has been known to function as an adjuvant. , That can be the reference.
  • gene expression data refers to arbitrary expression data of various genes.
  • the present invention is for inducing or enhancing the adjuvanticity of an antigen, including ⁇ inulin ( ⁇ -D- [2 ⁇ 1] poly (fructo-furanosyl) ⁇ -D-glucose) or a functional equivalent thereof.
  • an adjuvant product known as ⁇ inulin ( ⁇ -D- [2 ⁇ 1] poly (fructo-furanosyl) ⁇ -D-glucose) or its functional equivalent Advax TM, but not limited thereto. Not.
  • the equivalent of ⁇ inulin used in the present invention has a transcriptome expression profile equivalent to ⁇ inulin.
  • a transcriptome expression profile can be implemented by performing a transcriptome analysis and analyzing the gene expression profile. Transcriptome analysis can be performed by any of the techniques described herein.
  • the present invention provides a composition for activating dendritic cells comprising ⁇ inulin or a functional equivalent thereof.
  • the activation may be performed in the presence of macrophages.
  • the composition comprising ⁇ inulin or a functional equivalent thereof may be administered with a macrophage potentiator. This is because the present invention has found that ⁇ inulin or a functional equivalent thereof activates dendritic cells under the condition that macrophages are normal or enhanced. Therefore, the present invention can be used as an index or a basis for activation when ⁇ inulin or a functional equivalent thereof is used as an adjuvant.
  • any substance described in the section “Adjuvant of“ Adjuvant ”” or a combination thereof can be used.
  • dendritic cell activation similar to that of ⁇ inulin or a functional equivalent thereof is performed using the transcriptome analysis described in ⁇ Adjuvant of “Adjuvant”> or ⁇ Method for determining and producing similar adjuvant / adjuvant> Can be identified.
  • the present invention provides a composition for enhancing the Th1 response of a Th1 type antigen and enhancing the Th2 response of a Th2 type antigen, comprising ⁇ inulin or a functional equivalent thereof.
  • ⁇ inulin or a functional equivalent thereof used herein any substance described in the section “Adjuvant of“ Adjuvant ”” or a combination thereof can be used.
  • Adjuvants can be identified using the transcriptome analysis described in ⁇ Adjuvant of “Adjuvant”> or ⁇ Method of determining and producing similar adjuvant / adjuvant>. Adjuvants can be identified.
  • the present invention provides an adjuvant composition comprising ⁇ inulin or a functional equivalent thereof, wherein the composition is administered in a state where TNF ⁇ is normal or enhanced.
  • an adjuvant composition comprising ⁇ inulin or a functional equivalent thereof, wherein the composition is administered in a state where TNF ⁇ is normal or enhanced.
  • any substance described in the section “Adjuvant of“ Adjuvant ”” or a combination thereof can be used.
  • TNF ⁇ similar to ⁇ inulin or its functional equivalent is normal or enhanced It is possible to identify adjuvants that have the properties in their defined state.
  • the present invention provides a method for determining whether a candidate adjuvant elicits or enhances the adjuvanticity of an antigen.
  • the method comprises (a) providing a candidate adjuvant; (b) providing delta inulin or a functional equivalent thereof as a reference adjuvant; (c) transcriptome analysis of the candidate adjuvant and the reference adjuvant. Performing the step of obtaining gene expression data and clustering the gene expression data; and (d) if it is determined that the candidate adjuvant belongs to the same cluster as the evaluation adjuvant, Determining that it induces or enhances.
  • any substance described in the section “Adjuvant of“ Adjuvant ”” or a combination thereof can be used.
  • the candidate adjuvant can be provided in any form. Provision of ⁇ inulin or a functional equivalent thereof as an evaluation standard adjuvant can also be performed in any form.
  • delta inulin such as Advax TM may be used as an evaluation criterion adjuvant.
  • Advax TM is a crystal particle in the name of inulin, in hepatitis B (prophylactic and therapeutic), influenza, anthrax, Shigella, Japanese encephalitis, rabies, bee venom, vaccine against allergies, and cancer immunotherapy It is a biopolymer used (sold by Vaxine Pty).
  • the present invention provides a method for producing a composition comprising an adjuvant that induces or enhances the adjuvant properties of an antigen.
  • the method comprises (a) providing one or more candidate adjuvants; (b) providing ⁇ inulin or a functional equivalent thereof as a reference adjuvant; (c) transducing said candidate adjuvant and said reference adjuvant (B) clustering the gene expression data by performing gene analysis by performing cryptome analysis; (d) if there is an adjuvant belonging to the same cluster as the reference adjuvant among the candidate adjuvants, (A) to (c) are repeated, and (e) an adjuvant that induces or enhances the adjuvant property of the antigen obtained in (d).
  • Producing a composition comprising.
  • any substance described in the section “Adjuvant of“ Adjuvant ”” or a combination thereof can be used.
  • the adjuvant or “adjuvant adjuvant” used in the present invention is provided as a pharmaceutical or a pharmaceutical composition.
  • composition of the present invention can be prepared as an injection or an oral, enteral, vaginal, transdermal or ophthalmic preparation together with a pharmaceutically acceptable carrier, diluent or excipient.
  • the composition can also be such that the active ingredient comprises, for example, a vaccine antigen (including a recombinant antigen), an antigenic peptide or an anti-idiotype antibody.
  • active ingredients may include lymphokines, cytokines, thymocyte stimulating factors, macrophage stimulating factors, endotoxins, polynucleotide molecules (eg, encoding vaccine antigens) or recombinant viral vectors, microorganisms (eg, extraction of microorganisms) Or viruses (eg, inactivated or attenuated viruses).
  • the compositions of the present invention are particularly suitable for use when an inactivated or attenuated virus is the active ingredient.
  • Preferred vaccine antigens of interest when the present invention is used as an adjuvant composition include bacterial antigens, viruses, yeasts, molds, protozoa and other microbial antigens or pathogens derived from humans, animals or plants And pollen and other allergens, especially toxins (eg, bee and wasp venoms) and allergens that cause asthma such as house dust mites and dog and cat dander.
  • HA proteins of influenza virus eg, inactivated seasonal influenza virus and seasonal H1, H3, B or recombinant HA antigen of pandemic H5 strain
  • influenza nucleoprotein eg, rotavirus outer layer Capsid protein
  • human immunodeficiency virus (HIV) antigen such as gp120
  • RS virus (RSV) surface antigen human papillomavirus E7 antigen
  • herpes simplex virus antigen eg HBs antigen
  • hepatitis B virus antigen eg HBs antigen
  • HCV hepatitis C virus
  • Surface antigens inactivated Japanese encephalitis virus
  • viral antigens such as Lissavirus surface antigen (causing rabies), and Shigella, Porphyromonas gingivalis (eg protease and adhesin protein), Helicobacter pylori (eg U Ase), Listeria monocytogenesis, Mycobacterium tuberculosis (e
  • cancer antigens ie, antigens associated with one or more cancers
  • CEA carcinoembryonic antigen
  • MUC-1 mucin-1
  • ETA epithelial tumor antigen
  • MAGE melanoma antigen
  • the composition of the present invention preferably contains an antigen-binding carrier material.
  • the antigen-binding carrier material is one or more of metal salts or precipitates such as magnesium, calcium or aluminum phosphates, sulfates, hydroxides (eg aluminum hydroxide and / or aluminum sulfate). And / or organic acids including proteins, lipids, sulfated or phosphorylated polysaccharides (eg, heparin, dextran, or cellulose derivatives) and chitin (poly N-acetylglucosamine) or their deacetylated derivatives, or basic cellulose derivatives One or more of organic bases and / or other antigens.
  • the antigen-binding carrier material may be particles of any material with poor solubility (aluminum hydroxide (alum) gel or a hydrated salt complex thereof). Typically, the antigen-binding carrier material has no tendency to aggregate or is treated to avoid aggregation. Most preferably, the antigen binding carrier material is an aluminum hydroxide (alum) gel, an aluminum phosphate gel or a calcium phosphate gel.
  • kits are a unit provided with a portion to be provided (eg, a test agent, a diagnostic agent, a therapeutic agent, an antibody, a label, instructions, etc.) usually divided into two or more compartments.
  • a portion to be provided eg, a test agent, a diagnostic agent, a therapeutic agent, an antibody, a label, instructions, etc.
  • This kit form is preferred when it is intended to provide a composition that should not be provided in admixture for stability or the like, but preferably used in admixture immediately before use.
  • kits preferably include instructions or instructions that describe how to use the provided parts (eg, test agents, diagnostic agents, therapeutic agents, or how the reagents should be processed).
  • the kit when the kit is used as a reagent kit, the kit usually contains instructions including usage of test agents, diagnostic agents, therapeutic agents, antibodies, etc. Is included.
  • the invention relates to a kit comprising: (a) a container containing the pharmaceutical composition of the invention in solution or lyophilized form; and (b) selected A second container containing a diluent or reconstitution liquid for the lyophilized formulation, and (c) optionally (i) use of the solution or (ii) reconstitution of the lyophilized formulation and And / or instructions for use.
  • the kit further comprises one or more (iii) a buffer, (iv) a diluent, (v) a filter, (vi) a needle, or (v) a syringe.
  • the container is preferably a bottle, vial, syringe, or test tube and may be a versatile container.
  • the pharmaceutical composition is preferably dried and frozen.
  • the kit of the present invention preferably has the dry frozen preparation of the present invention and instructions regarding its reconstitution and / or use in a suitable container.
  • suitable containers include, for example, bottles, vials (eg, dual chamber vials), syringes (such as dual champ syringes), and test tubes.
  • the container can be formed from a variety of materials such as glass or plastic.
  • the kit and / or container includes instructions on how to reconstitute and / or use that are on or associated with the container.
  • the label can indicate that the dried frozen formulation is reconstituted to the peptide concentration described above.
  • the label can further indicate that the formulation is useful for or for subcutaneous injection.
  • the kit of the present invention has a single container containing the formulation of the pharmaceutical composition of the present invention with or without other components (e.g., other compounds or pharmaceutical compositions of these other compounds). Or, each component can have a separate container.
  • the pharmaceutical composition of the present invention administers the peptide by any acceptable route such as oral (enteral), nasal, ocular, subcutaneous, intradermal, intramuscular, intravenous, or transdermal. It is suitable for. Preferably, the administration is subcutaneous, most preferably intradermal. Administration can be performed by an infusion pump. Therefore, the medicament of the present invention can be provided as a therapeutic method or a prophylactic method.
  • a method for treating or preventing such diseases comprises the step of administering an effective amount of the composition, adjuvant or medicament of the present invention together with an effective amount of a vaccine antigen or the like to a subject in need of treatment or prevention. Include.
  • C57BL / 6 mice male, 5 weeks old, C57BL / 6JJc1 were purchased from CLEAJapan and acclimated for at least one week (from -7 days to -10 days).
  • Day 1 AM 10 o'clock Administration of buffer or adjuvant solution is started (dosing is completed within 30 minutes).
  • id A total of 100 ⁇ L is administered to the tail base (left side 50 ⁇ L + right side 50 ⁇ L). * A total of 200 ⁇ L of bCD was administered id.
  • ip A total of 200 ⁇ L is administered to the lower quarter of the abdomen.
  • LN The inguinal lymph nodes (both sides) are exposed and removed. Adipose tissue is removed in a 35 mm dish containing about 1 mL of RNAlater to reduce as much as possible adipose tissue contamination under a stereo microscope. After cleaning, the lymph nodes on both sides are transferred to a 2.0 mL Eppendorf Protein LoBind tube containing 1 mL RNAlater. SP: Expose and remove spleen. Remove as much fatty and pancreatic tissue as possible. After cleaning, the spleen is divided into three parts with a razor. Transfer each part separately to a 2.0 mL Eppendorf Protein LoBind tube containing 1 mL RNAlater (3 tubes in total).
  • LN The left lobe of the liver is exposed and removed. Cut out 3 places with biopsy punch ( ⁇ 5mm). Transfer each part separately to a 2.0 mL Eppendorf ProteinLoBind tube containing 1 mL of RNAlater (3 tubes in total). The collected organs were each placed in a tube containing RNAlater, which was kept at 4 ° C. overnight and then stored at ⁇ 80 ° C. until use.
  • Hematological cell count Hematological cell counts were performed using VetScan HMII (Abaxis). A 50 ul EDTA-2K blood sample was diluted by adding 250 ul of physiological saline and measured with VetScanHMII according to the instructions.
  • Procedure for homogenizing animal tissues 1) Dissolve the sample at room temperature. Make sure that no crystals or precipitates are present in the RNAlater. • Generally, this does not affect subsequent RNA purification, but rarely may cause RNA destabilization. 2) Measure the weight of the organ. ⁇ Make the sample weight about 30-100mg. ⁇ Mass weight should be about 30-50mg. If the muscle sample is too much, homogenate aggregation will occur. 3) Remove RNAlater reagent by aspiration. If formed, all crystals are removed here. 4) Place the zirconium beads in the tube using flame sterilized tweezers (1 bead per tube). 5) Add 400 ⁇ L BufferRLT.
  • TRI-easy method 2. Purification of total RNA from animal tissues (TRI-easy method) This section describes the extraction and purification of total RNA from animal tissues.
  • the “TRI-easy method” is a combination of acid guanidinin-phenol-chloroform (AGPC) extraction and RNeasy technology.
  • Reagents and equipment 2.1.1 Reagents 1) TRIzol (registered trademark) LS reagent (Invitrogen, catalog number 10296-028) 2) RNeasy (registered trademark) MiniKit (QIAGEN, catalog number 74106) BufferRLT * BufferRW1 * BufferRPE RNase-free water RNeasy mini spin column Collection tube (1.5 mL) Collection tube (2mL) 3) DNase (QIAGEN, catalog number 79254) DNase I, RNase free (freeze-dried) BufferRDD DNase-RNase-free water 4) 2-Mercaptoethanol ( ⁇ -ME) 5) Ethanol 6) Chloroform 7) DEPC treated water (Ambion, catalog number 9920)
  • DNase 1 Dissolve lyophilized DNase I (1500 Kunitz units) in 560 ⁇ L of DNase-RNase-free water. • Thawed aliquots can be stored at 2-8 ° C for up to 6 weeks. ⁇ For long-term storage, aliquots can be stored at -20 °C for up to 9 months. ⁇ Do not vortex DNaseI reconstituted. ⁇ Do not refreeze aliquots after thawing. 2) Add 10 ⁇ l DNase I stock solution (above) to 70 ⁇ L Buffer RDD. Invert the tube slowly and mix, and collect the liquid remaining on the side of the tube by briefly centrifuging. -DNase I is particularly susceptible to physical denaturation. Mixing must be done by slowly inverting the tube. Do not vortex.
  • RNA volume ⁇ 2.4 Total RNA purification procedure (TRI-easy method) 1) Dissolve the tissue homogenate at room temperature. 2) Adjust the volume to 150 ⁇ L with RLT Buffer and prepare an appropriate concentration of sample homogenate in a collection tube (2 mL). 3) Add 3 volumes of TRIzolLS reagent (450 ⁇ L), mix by vortexing, and incubate at room temperature for 5 minutes. 4) Add 1 volume of chloroform (150 ⁇ L), shake vigorously by hand for 30 seconds, then incubate at room temperature for 2-15 minutes. 5) Centrifuge at 12000xg or less for 15 minutes at room temperature.
  • TRI-easy method 1) Dissolve the tissue homogenate at room temperature. 2) Adjust the volume to 150 ⁇ L with RLT Buffer and prepare an appropriate concentration of sample homogenate in a collection tube (2 mL). 3) Add 3 volumes of TRIzolLS reagent (450 ⁇ L), mix by vortexing, and incubate at room temperature for 5 minutes. 4) Add 1
  • RNA concentration of the eluate is less than the required concentration, repeat steps 29-31.
  • Reagents 1) One-Cycle cDNA Synthesis Kit (Affymetrix, catalog number 900431, stored at -20 °C) T7-oligo (dT) primer, 50 ⁇ M 5X 1stStrand Reaction Mix DTT, 0.1M dNTP, 10mM SuperScript II, 200U / ⁇ L 5X 2ndStrand Reaction Mix E. coli DNA ligase, 10 U / ⁇ L E.
  • Second-StrandMaster Mix 1 Prepare a sufficient amount of Second-StrandMaster Mix in a 15 mL tube. See the table below. 2) Shake and dissolve the tube, then centrifuge briefly. 3) Shake the tube slowly and thoroughly and centrifuge briefly. 4) Prepare Second-Strand Master Mix immediately before use and leave on ice.
  • CDNAWash Buffer 1 Add 24mL of ethanol to obtain a working solution, and check the checkbox to avoid confusion. ⁇ Store at room temperature. ⁇ If the entire buffer is not used within one month, prepare the required amount of buffer in a DNase / RNase-free tube.
  • Second-StrandMaster Mix to each first strand synthesis sample, shake the tube well and centrifuge briefly. 2) Incubate the tube at 16 ° C for 2 hours. 3) Add 2 ⁇ L of T4 DNA polymerase. Shake the tube well and centrifuge briefly. 4) Incubate the tube at 16 ° C for 5 minutes. 5) Add 10 ⁇ L EDTA, 0.5M. Mix well by vortexing and centrifuge briefly. • Double-stranded cDNA samples can be stored at -20 ° C.
  • Double-stranded cDNA cleanup • All steps in this protocol should be performed at room temperature. 2) Add 600 ⁇ L of cDNA Binding Buffer to the double-stranded cDNA sample. Mix by vortexing for 3 minutes and centrifuge briefly. -Confirm that the color of the mixture is yellow (the color of the cDNA Binding Buffer when no cDNA synthesis reaction has occurred). If the color of the mixture is orange or purple, add 10 ⁇ L of 3M sodium acetate, pH 5.0 and mix to make sure the color of the mixture is yellow. 3) Place the cDNA cleanup spin column into a 2mL collection tube. 4) Enter the sample number on the spin column lid to prevent sample confusion.
  • ⁇ 4.2. Preparation of reagents ⁇ 4.2.1. IVTReaction Mix 1) Prepare a sufficient amount of IVTReaction Mix in a 1.5mL tube. See the table below. 2) Shake the tubes to dissolve each and then centrifuge briefly. ⁇ First-Strand Master Mix is prepared just before use and left on ice. ⁇ 4.2.2. IVT cRNAWash Buffer (store at room temperature) 1) Add 20 mL of ethanol to obtain a working solution, and check the checkbox on the bottle label to avoid confusion. -If necessary, dissolve the precipitate by warming in a 30 ° C water bath, then place the buffer at room temperature. ⁇ 4.2.3. 80% ethanol (store at room temperature) 1) Mix ethanol and DEPC-treated water at a ratio of 4: 1 in an RNase / DNase-free tube.
  • IVT reaction ⁇ 4.3.1. IVT reaction 1) Prepare 30 ⁇ L of IVTReaction Mix in a 1.5 mL tube. 2) Add 10 ⁇ L of double stranded cDNA sample. Shake the tubes to dissolve each and then centrifuge briefly. 3) Incubate the tube for 16 hours at 37 ° C with mixing at 300 rpm. 4) Store labeled cRNA at -80 ° C if not immediately purified.
  • ⁇ 4.3.3.cRNA fragmentation 1 Calculate the amount of cRNA and RNase-free water and adjust the cRNA concentration to 20 ⁇ g / ⁇ L. • For whole blood samples, the cRNA concentration is 10 ⁇ g / ⁇ L. • In TGP, the amount of cRNA was calculated according to the following formula in order to eliminate carryover of total RNA.
  • [CRNA amount] RNAm ⁇ total RNAi * Y RNAm: Apparent amount of cRNA measured after IVT reaction Total RNAi 1) : Total RNA amount of starting sample Y: [Amount of cDNA solution used in IVT reaction] 2) / [Amount of cDNA solution] 3) 1) 5 ⁇ g in TGP, 2) 10 ⁇ L in TGP, 3) 12 ⁇ L in TGP 2) Dispense RNase-free water and cRNA calculated in step 1) into 1.5mL microtubes. 3) Write the sample number on the tube lid. ⁇ If there is a possibility of contamination, replace the chip. • For TGP, the remaining cRNA samples were barcode labeled and stored at -80 ° C.
  • Wash Asolution (Non-stringent wash buffer, stored at room temperature for up to 1 month) 1) Prepare in a beaker using a graduated cylinder and mix well with a stirrer. 2) Transfer the adjusted Wash Asolution to a clean dedicated container. This operation is for degassing and dust removal rather than for sterilization.
  • Hybridization 1) Equilibrate the GeneChip to room temperature 30 minutes before use to prevent condensation and cracking of the rubber septum. -Check the GeneChip (eg, glass surface wrinkles). 2) Transfer 30 ⁇ L of each fragment labeled cRNA sample to a 1.5 mL microtube. 3) Prepare a sufficient amount of Hybridization Mix in a 15 mL tube. See below. 4) Add 270 ⁇ L of Hybridization Mix to the fragmented labeled cRNA sample, shake the tube, and centrifuge briefly. ⁇ If there is a possibility of contamination, replace the chip. 5) Incubate the tube for 5 minutes at 99 ° C using a heat block.
  • K3SPG_IP_LV_x2 and K3SPG_IP_SP_x2 were excluded because they showed a gene response that was too strong compared to the other two mice (not shown) .
  • ADX_ID_LN K3SPG_IP_LV and K3SPG_IP_SP, only two treated samples were used for subsequent analysis. The other samples were analyzed with 3 samples.
  • CV filtering During QC analysis of GeneChip data, some samples contained low levels but not substantial levels of genes from other tissues (eg, red in the QC scatter plot above). ). It was technically difficult to completely remove micro-contamination (QC example 3) even if the organ was collected by careful cleaning. Therefore, a coefficient of variation (CV) filter was developed to reduce genes derived from micro contamination from target organ gene analysis. (The figure shows the variation in baseline of each gene probe calculated using GeneChip data from a total of 33 control mice injected with buffer). Gene probes that showed large CV in each organ were further analyzed for their origin using the GeneExpression Barcode 3.0 (http://barcode.luhs.org/) database.
  • C57BL / 6 mice male, 5 weeks old, C57BL / 6JJc1 were purchased from CLEA Japan and allowed to acclimate for at least one week.
  • Five adjuvants (ADX, ALM, bCD, K3 and K3SPG) were administered ip.
  • ENDCN was administered in (in the nose).
  • the dose of MBT selected was the same as the dose of FK565, but no experiments were conducted in this regard, and were determined based on preliminary data (data not shown) for FK565 and other NOD ligands.
  • 3-5 different adjuvants were used in one experiment, and appropriate buffer control groups were used (PBS for most adjuvants, Tris-HCl for ENDCN, and DMXAA).
  • PBS buffer control groups
  • MALP2s MALP2s
  • MPLA and R848 a total of 10 independent experiments were performed (see standard procedure 1, eg Table 11).
  • FCA and ALM were tested at different time points up to 72 hours, and in the tested dose range, changes in gene expression often peaked at 6 hours and most changes at 24 hours. It was settled.
  • Six hours after administration of adjuvant, LV, SP and LN (both sides) were removed, and their gene expression was examined using an Affimetrix GeneChip microarray system (Affymetrix). The collected organs were each placed in a tube containing RNAlater, which was kept at 4 ° C.
  • the presence or absence (PA) call in MAS5.0 was customized as follows: Normalized MAS5.0 expression data obtained from each of two groups of 3 mice treated with a single adjuvant or its appropriate vehicle control was averaged and the average expression ratio was calculated for each group. In this process, MAS5.0 PA calls (customized PA calls) were also integrated as follows. When the PA calls from the three control samples were [“P”, “P” and “A”], “P” was selected as the dominant PA call (more than half “P”). The same strategy was applied to three adjuvant treated samples. If the expression ratio of each gene was> 1.0, the customized PA call was determined by the dominant call in the treatment group.
  • the customized PA call was determined by the dominant call in the vehicle control group.
  • the obtained customized PA call was processed with “P” as “1” and “A” as “0”. That is, when the expression ratio was greater than 1 and the PA call of the treated sample was “P”, “P” and “A”, the customized PA call of this gene set was “1”.
  • ADX_ID_LN, K3SPG_IP_LV and K3SPG_IP_SP [“P”, “A”] was treated as “A”.
  • sDEG sDEG was defined as a statistically significant change (up-regulation or down-regulation) that met all of the following conditions: mean fold change (FC)> 1.5 or ⁇ 0.667, associated t-test p-value Is ⁇ 0.01 without multiple test correction, and the customized PA call is 1.
  • TargetMine Bio theme enrichment analysis by TargetMine
  • the defined gene set was selected according to specific criteria (eg FC, PA call, threshold). Then, the function enrichment value can be obtained from TargetMine (Chen, YA, Tripathi, LP & Mizuguchi, K. PloS one 6, e17844 (2011)) (http://targetmine.mizuguchilab.org/) using the API interface. I got it.
  • the following resources (GO, GOSlim, Integrated Pathway, KEGG, Reactome and NCI pathway) were used throughout the analysis by TargetMine Interface. Holm-Bonferroni method was used for multiple test correction.
  • the whole organ transcriptome data for each organ obtained from each mouse was analyzed as follows, and a biological theme was obtained for each sample obtained from a group of 3 mice administered with each adjuvant.
  • ei (c) is the corresponding control sample Mean expression value.
  • the set of Pj genes when eij / ei (c)> 2.0 was first defined. Subsequently, the biological theme concentrated in Pj was identified using TargetMine (Chen, Y.A. et al., PloS one 6, e17844 (2011)) (http://targetmine.mizuguchilab.org/). Tj represents the resulting list of biological themes and the relevant p-values were obtained by Fischer's accuracy test.
  • T ⁇ (t1, p1), (t2, p2), .. ⁇ (ti is , T1, T2 and T3 are all biological themes, and pi is the minimum associated p-value). Only themes with a p-value ⁇ 0.05 were included in T.
  • This scoring scheme summarized the relative enrichment of preselected adjuvant-related terms in genes that respond to each adjuvant in each organ.
  • the set of adjuvants and all sDEGs for each organ was defined as the “adjuvant gene space”.
  • Hierarchical clustering of adjuvants and genes in the adjuvant gene space was performed by the hclust function of the R package (using the 1-Pearson correlation coefficient as a distance measure and using the Ward D2 algorithm).
  • the resulting gene cluster (defined as "gene module") (expressed as Mi x, where i represents the module number, x is representative of the organ) well as the genes of the same module administers a predetermined adjuvant Assuming that The 21 adjuvants used herein were also hierarchically clustered and grouped as Gj y (j represents the group number and y represents the organ).
  • the ImmGen database (Heng, TS et al., Nature immunology 9, 1091-1094 (2008)) (http://www.immgen.org/) provides gene expression profiles of various immune cell types at steady state . These expression profiles were used to infer the cell type from which the gene was derived.
  • each gene (i) in all 10 immune cell types (j) was weighted from the ImmGen expression profile.
  • the weight of a cell type e.g., neutrophil
  • the weight of a cell type depends only on the expression level of that gene in that particular cell type, and other cell types (e.g., macrophages, B cells) It was assumed that it does not depend on the expression level.
  • FC value for each sample was converted to a z-score on a gene basis by using the entire data set for each organ.
  • the Z-scores of the desired triplicate samples were summed for each adjuvant. For example, the z-scores of three samples in the LV sample after cdiGMP administration are summed for each gene, and then a gene having a total score of> 3 is selected as a gene that is relatively preferentially expressed in LV after cdiGMP administration. did.
  • G1 LV- related genes were selected by cdiGMP (z> 3) & cGAMP (z> 3) & DMXAA (z> 3) & PolyIC (z> 3) & R848 (z> 3).
  • G2 LV ALM_IP (z> 1) & bCD (z> 1) & ENDCN (z> 1) & FCA (z> 1).
  • G3 LV ADX (z> 1) & Pam3CSK4 (z> 1) & FK565 (z> 1).
  • G4 LV MALP2s (z> 3).
  • G1 SP cdiGMP (z> 3) & cGAMP (z> 3) & DMXAA (z> 3) & PolyIC (z> 3) & R848 (z> 3).
  • G2 SP ENDCN_x2 + ENDCN_x3 (z> 2) & ALM_IP (z> 3) & bCD (z> 3).
  • G3 SP FCA (z> 3) & FK565 (z> 3) & Pam3CSK4 (z> 3).
  • G4 SP ADX_ID_x2 + ADX_ID_x3 (z> 2) & ADX_IP (z> 3) & MALP2s (z> 3).
  • G2 LN bCD (z> 3) & FCA (z> 3).
  • G3 LN FK565 (z> 3).
  • G5 LN K3 (z> 1.5) & K3SPG_x1 + K3SPG_x2 (z> 1) & D35_x1 + D35_x3 (z> 1).
  • G6 LN AddaVax (z> 3).
  • sDEG significantly differentially expressed genes ''
  • Adjuvant gene space characterizing organ response to adjuvant by assembly of sDEG
  • a total of 21 adjuvants (Table 1) can be administered to the tail base (intradermal, id), intraperitoneal (ip) or intranasal (in) of mice Administered.
  • whole body transcriptomes of LV, SP (as systemic organs) and LN (as local lymphoid tissues) were obtained and marked for each organ and adjuvant pair.
  • a set of differentially expressed genes (sDEG) was defined (Table 15). Next, the adjuvant-induced gene response was integrated by combining all sDEGs per organ.
  • the aggregates of sDEG from LV, SP and LN were a total of 8049, 8449 and 9451 gene probes, respectively (FIG. 1).
  • the adjuvant gene space contained genes whose expression was significantly altered by administration of at least one of the 21 different adjuvants tested in vivo.
  • 3874 genes (48% of LV-inducible genes), 2331 genes (28% of SP-inducible genes) and 2991 genes (31% of LN-inducible genes) were unique to each organ. It was.
  • PathM analysis by TargetMine (Chen, YA et al., PloS one 6, e17844 (2011)) revealed that these unique genes were associated with lipid metabolism, transcription and immune system for LV, SP and LN, respectively. (FIG. 1).
  • These three organs shared 2299 genes, which were enriched in pathways related to interferon, cytokines, NF- ⁇ B and TNF signaling (FIG. 1).
  • Volcano plot data show that half of the adjuvants (AddaVax, ADX, ALM, D35, ISA51VG, K3, K3SPG, MBT, MPLA and sHZ) have a mild response ( ⁇ 100 sDEG This is consistent with the fact that the dose level was chosen to mimic the actual vaccination situation.
  • bCD, ENDCN and Pam3CSK4 induced a moderate response (100-200 sDEG).
  • cdiGMP, cGAMP, DMXAA, FCA, FK565, MALP2s, PolyIC and R848 induced a strong gene response (> 500 sDEG) in at least one organ.
  • Hierarchical clustering of genes and adjuvants was performed to obtain more detailed information about the adjuvant gene space that reveals the adjuvant-induced host response in the three organs (Fig. 11; http: / /sysimg.ifrec.osaka-u.ac.jp/adjvdb/methodologies/adjv_space.html).
  • dividing approximately 10,000 gene probes for each organ into a total of 40 clusters is appropriate for using TargetMine to obtain biological annotations for each cluster. I found out. From here onwards, these 40 clusters for each organ are referred to as “modules” in order to distinguish the gene clusters from the adjuvant clusters described below (FIG.
  • M 15 LN , M27 LN and M40 LN were associated with different cell types.
  • M15 LN weakly induced by ALM and K3 is associated with T cells
  • M27 LN best induced by these adjuvants
  • M40 LN cdiGMP, cGAMP, Strongly induced by DMXAA, PolyIC and R848 was associated with a wider range of immune cells including dendritic cells, macrophages, neutrophils and stromal cells (FIG. 13c).
  • Adjuvants are grouped into six groups within the adjuvant gene space
  • Adjuvants were categorized according to their stimulating properties (eg, PAMPs or DAMPs) or their physicochemical properties (eg, solutes, particles or emulsions). Qualitative differences in these descriptors make it difficult to categorize adjuvants without bias. Therefore, adjuvants were categorized using hierarchical clustering. This cluster analysis showed an interesting and insightful grouping within the adjuvant gene space for each organ. Each organ showed a characteristic gene profile (Fig 1), but a fairly consistent adjuvant grouping was observed among LV, SP and LN (Figs. 2 (AD) and Fig. 14).
  • each adjuvant associated with a characteristic biological response To further characterize each adjuvant group at the gene level, first the genes up-regulated in each adjuvant group (G1-G6) preferentially compared to the other groups, the z-score change in its expression fold. (Table 17 (partial excerpt) and FIG. 15).
  • the genes with high z-scores in G1 from LV and SP are almost the same as modules M20 LV (annotated as “response to biological stimuli”) and M23 SP ( (Annotated as “response to virus”) (FIGS. 15 and 16).
  • M20 LV annotated as “response to biological stimuli”
  • M23 SP (Annotated as “response to virus”)
  • the genes preferentially up-regulated in five G1 reference adjuvants cdiGMP, cGAMP, DMXAA, PolyIC and R848) are expressed in the M40 LN module (annotated as "Immune System Process”). Found (FIGS. 15 and 16).
  • TargetMine Table 18
  • IPA Ingenuity Pathways Analysis
  • G1 adjuvant was characterized as an interferon response (FIGS. 3a and 3b).
  • G2-G6 adjuvants have been associated with inflammatory cytokines such as IL6 and TNF (FIG. 3b).
  • G2 adjuvant was weakly associated with lipid metabolism ( Figure 3a), and IPA analysis suggested an association with Oncostatin M and IL10 ( Figure 3b).
  • IPA analysis suggested an association with Oncostatin M and IL10 ( Figure 3b).
  • G3-G5 adjuvants it was difficult to derive a preferential association for these groups due to the limited number of adjuvants and organs ( Figure 3a). Analyzes were performed under limited conditions, suggesting that G3 adjuvant may be associated with T cell and NK cell cytokines such as IL2, IL4 and IL15 (FIG.
  • G4 adjuvant had a broader profile than other adjuvants and contained many cytokines. However, the preferential association of M32 SP modules suggested that G4 could be characterized by a TNF response (FIG. 16b).
  • G5 adjuvants are associated with phosphate-containing compounds along with metabolic processes, suggesting a nucleotide metabolic process, and this finding is consistent with G5 being a CpG nucleic acid adjuvant group (FIG. 3a).
  • AddaVax an oil emulsion equivalent to a G6 adjuvant, eg, MF59, was associated with phagosomes (FIG. 3a), and IPA upstream cytokine analysis suggested that IL1A and IL33 are cytokines for them (FIG. 3b).
  • G1-adjuvants that are RNA-related adjuvants or STING ligands (cdiGMP, cGAMP, DMXAA, PolyIC and R848) are strongly associated with type I and type II interferon responses and are distinctly different from G2-G6 adjuvants.
  • G2-G6 adjuvant appears to be associated with an inflammatory response.
  • G2 includes ALM and bCD, both of which are predicted to function via DAMPs (Marichal, T. et al., Nat Med 17, 996-1002 (2011) and Onishi, M. et al. al., Journal ofimmunology 194, 2673-2682 (2015)).
  • D35_ID_x2 and K3_ID_x3 were clustered into G2 LV .
  • D35_ID_x2 and K3_ID_x3 were clustered into G2 LV .
  • D35_ID_x2 and K3_ID_x3 were clustered into G2 LV .
  • D35 and K3 can mimic DNA being released from damaged cells and inducing a host immune response (Marichal, T. et al., Nat Med 17, 996 -1002 (2011) and Onishi, M. et al., Journal ofimmunology 194, 2673-2682 (2015)).
  • G3 and G4 consist mainly of adjuvants derived from PAMPs derived from the bacterial cell wall.
  • G5 consists of CpG adjuvant.
  • G5 adjuvants such as D35, K3 and K3SPG are recognized as good interferon inducers in vitro
  • CpG adjuvants are biologically related to typical G1-type TLR and RLR ligands in vivo. It was suggested that they were different.
  • G6 consists of AddaVax, the MF59 equivalent. The mechanism of action of MF59 has been well investigated, suggesting that ATP released from muscle (another DAMPs) acts as a mediator of adjuvant effects (Vono, M. et al., Proceedings of the National Academy of Sciences of the United States of America 110, 21095-21100 (2013)). Since G2 and G6 formed related but distinct clusters in LN-derived samples (FIG. 14c), adjuvant clustering results may support this interpretation.
  • ENDCN is a novel lipid-based nasal adjuvant and is currently in phase I / II phase of clinical trial as part of influenza vaccine (Falkeborn, T. et al., PloS one 8, e70527 (2013) and Maltais, AK et al., Vaccine 32, 3307-3315 (2014)).
  • ENDCN has been categorized as G2 (a group of bCDs in both LV and SP).
  • bCD has previously been shown that its adjuvant function is likely to be associated with dAMPs-mediated host-derived dsDNA (Onishi, M. et al., Journal of immunology 194, 2673-2682 (2015 )).
  • the categorization of ENDCN to G2 strongly suggests that ENDCN uses host-derived factors to function as an adjuvant.
  • This hypothesis was further examined, and detailed in vivo immunological analysis of ENDCN revealed that host cell-released RNA and TBK1 are involved in its adjuvant function (Hayashi, M. et al., Scientific Reports, 6, Article number: 29165 (2016)). This further supports that ENDCN is a G2 adjuvant.
  • ADX Honda-Okubo, Y. et al., Vaccine 30, 5373-5381 (2012) and Saade, F. et al., Vaccine 31,1999-2007 (2013)
  • ADX acts It is an inulin-based particulate adjuvant of unknown mode.
  • Clustering to G3 LV / G4 SP instead of G2 suggests that ADX acts via unspecified PAMPs receptors rather than DAMPs mediators (FIGS. 2 and 14).
  • a more detailed analysis of ADX is currently underway (Hayashi et al. Scientific Reports 6, Article number: 29165 (2016)).
  • D35, K3 and K3SPG all act on TLR9, and cdiGMP, cGAMP and DMXAA target STING (Gao, P. et al., Cell 154, 748-762 (2013)).
  • these adjuvants were clustered into the same adjuvant group by the method of the present invention, with all TLR9 ligands clustered on G5 and all STING ligands clustered on G1 (FIGS. 2 and 14).
  • D35 and K3 are known to induce substantially different biological responses with overlapping parts (Steinhagen, F.
  • Regulated examples include Il7 and S1pr5 in SP, which also correlated with lymphopenia ( Figures 5b and 19b, c)
  • Figures 5b and 19b, c In contrast, for genes related to monocyte increase and granulocyte increase, No correlation was found ( Figure 5b and Table 22), suggesting that multiple genes are involved in these processes, and these results indicate that the number of granulocytes, monocytes and lymphocytes in the blood depends on different mechanisms. Suggested to be controlled, genetic changes in systemic organs caused adjuvant-induced leukopenia and lymphopenia, possibly by interferon, Il7 and S1P-related mechanisms it is conceivable that.
  • AS04 consists of aluminum hydroxide and 3-O-desacyl-4'-monophosphoryl lipid A, which is used in Cervarix (a vaccine against human papillomavirus 16/18).
  • AS04, buffer control and alum-only control were id administered to mice and their hematological parameters and organ gene expression were examined (see Experiment 11).
  • Volcano plot (related to FIG. 7): Explaining the format, the x-axis and y-axis correspond to Log (change multiple) and Log (p-value), respectively.
  • ENDCN lymphoid tissue that flows directly into the ENDCN
  • ENDCN lymphoid tissue that flows directly into the ENDCN
  • the transcriptome of LV and SP revealed that ENDCN is a potential DAMPs release adjuvant.
  • ENDCN is somewhat similar to bCD25 (Onishi, M. et al., Journal of immunology 194, 2673-2682 (2015)) in terms of its mode of action.
  • transcriptome studies in distant organs provided an in vivo “adjuvant effect” biodistribution (FIG. 21).
  • the organ transcriptome does not tell if the adjuvant itself has reached the organ, but does confirm that the organ has responded to the administration of the adjuvant.
  • gene expression in remote organs after adjuvant administration does not necessarily indicate organ toxicity, and the doses used for mice were generally excessive doses for human application based on doses per body weight. For this reason, there is a limit to extrapolating the obtained results directly to humans, and these points require further examination in the future.
  • this approach can provide a useful platform for evaluating preclinical and clinical adjuvants in an exhaustive and objective manner.
  • the flexibility of this approach will allow further improvements by simply accumulating data sets for new adjuvants, further dosage variations, or by including antigen data.
  • 21 adjuvants were examined only at 6 hours without antigen.
  • Future studies using other time points and antigens, as well as incorporating immunological signatures Korean, NP et al., Scientific reports 6, 19570 (2016)) related to commonly available vaccine adjuvants in silico, It is necessary to understand in more detail the mechanism of adjuvanted vaccines.
  • Rat transcriptome data is from genotoxicology of publicly available TG-GATE (Igarashi, Y. et al., Nucleic acids research 43, D921-927 (2015)) (this also relates to rats). Can be incorporated directly into the data set.
  • TG-GATE publicly available TG-GATE
  • microRNA expression profiles from human clinical samples (see Example 4). When all the above data sets were integrated, these databases demonstrated that a more integrated and exhaustive analysis of different species of adjuvant-inducible gene expression signatures under different experimental conditions could be performed. .
  • Example 2 In this example, a method of classifying a substance whose adjuvant function is unknown using the method of the present invention is performed.
  • Adjuvant administration is performed according to Example 1.
  • Candidate substances and reference adjuvants (G1) dciGMP, cGAMP, DMXAA, PolyIC and R848; (G2) bCD; (G3) FK565; (G4) MALP2s; (G5) D35, K3 and K3SPG; and (G6) AddaVax) Clustering.
  • transcriptome of the candidate substance and the transcriptome of the reference adjuvant of G1 to G6 are compared with those of the candidate adjuvant when administered to the mouse spleen, liver, etc., those classified into the same cluster are classified as G1 to G6, respectively.
  • Example 3 Adjuvant of adjuvant
  • mice Six week old female C57BL / 6J mice were purchased from CLEA Japan. Tlr7 ⁇ / ⁇ or Il-1r ⁇ / ⁇ mice were purchased from Oriental BioService and Jackson Laboratory, respectively. Card9 -/- (Hara et al., 2007, Nature immunology 8, 619-629.), Fcrg -/- (Arase et al., 1997, J Exp Med 186, 1957-1963.) Or Dap12 -/- ( Takai et al., 1994, Cell 76, 519-529.). Mice were assigned from Dr. Hara, Dr. Saito or Dr. Takai, respectively.
  • Tnfa ⁇ / ⁇ mice have been previously described (Marichal et al., 2011, Nature medicine 17, 996-1002.). All animal experiments were approved by the Institutional Animal Care and Use Committee and conducted in accordance with the facility guidelines for animal facilities of the National Institute of Biomedical Innovation, Health and Nutrition.
  • mice C57BL / 6J mice were immunized twice, either intramuscularly (im) or id, at 2 week intervals (Day 0 and Day 14). Blood samples were taken on days 14 and 28 for antigen-specific ELISA. Mice were anesthetized with ketamine during vaccination and blood collection. Alum-adjuvanted antigens were rotated for more than 1 hour prior to immunization. Immunizations were performed using Advax TM, Alum or CpG-SPG, 1 mg per mouse, 0.67 mg per mouse or 10 ⁇ g per mouse, respectively.
  • the plate was incubated with TMB substrate for 30 minutes, the reaction was stopped with 1N H 2 SO 4 and then the absorbance was measured. Antibody titers were calculated. An OD of 0.2 was set as the cutoff for positive samples. The concentration of total IgE in serum was measured with a total IgE ELISA kit (Bethyl).
  • mice Two weeks after the second immunization, spleens were collected from mice and 1 ⁇ 10 6 spleen cells were seeded in 96-well plates and stimulated with nucleoprotein MHC class I or II epitope peptides. Two days after stimulation, IFN- ⁇ , IL-13 and IL-17 in the supernatant were measured by ELISA.
  • mice were sacrificed and peritoneal lavage fluid was collected. Cytokines in the washing solution were measured by Bio-plex (BioRad).
  • CD11c + / mPDCA-1 + cells CD8a + DC is defined as CD11c + / CD8a + cells
  • CD8a - DC are CD11c + / CD8a - was defined as cells - / mPDCA-1.
  • mice were injected ip with 3 ml of 4% (w / v) thioglycolate (Sigma) solution. After 4 days, macrophages were collected from the peritoneal cavity and seeded in 96 well plates. Macrophages were primed with 50 ng / ml LPS for 18 hours and stimulated with adjuvant for 8 hours. IL-1 ⁇ in the supernatant was measured by ELISA. Without priming with LPS, TNF- ⁇ in the supernatant was measured by ELISA after stimulation with Advax TM or Alum.
  • mouse bone marrow cells were cultured for 7 days in RPMI 1640 supplemented with 10% FBS, 1% penicillin / streptomycin solution and 20 ng / ml mouse GM-CSF (PeproTech).
  • GM-DC was collected, seeded in a 96-well plate, primed with 50 ng / ml LPS for 18 hours, and stimulated with adjuvant for 8 hours.
  • IL-1 ⁇ in the supernatant was measured by ELISA.
  • Biotinylated delta inulin particles (1 mg) were premixed with Brilliant Violet 421 streptavidin (BioLegend) and then id administered to the tail base of mice.
  • Anti-MARCO-phycoerythrin or anti-CD169-FITC antibody was id-administered to mice 30 minutes before inguinal LN extraction.
  • the distribution of Advax TM particles in the inguinal lymph nodes was examined with a two-photon excitation microscope (FV1000MPE; Olympus, Tokyo, Japan).
  • Clodronic acid liposomes (FormMax) were administered to the tail base of mice 7 or 2 days before immunization. On days 0 and 14, mice were immunized with WV (1.5 ⁇ g) + adjuvant administered to the tail base of mice. -On day 2, clodronate treatment depleted both macrophages and DCs on day 0. Treatment on day -7 depleted macrophages, but DC had already recovered on day 0. Blood samples were taken on days 14 and 28, and serum antibody titers were measured by ELISA.
  • MAS5.0 Affymetrix Microarray Suite version 5.0 algorithm
  • MAS5.0 and PA call analysis was performed using the Bioconductor Affy package for R (http://www.bioconductor.org). P values for the significance of differentially expressed genes were calculated by using a t-test between normalized treatment samples and normalized vehicle samples. For subsequent analyses, only probes with a fold change> 2 between the control and stimulus samples were used. Probes that were not flagged, that is, the PA call was “0” were excluded.
  • SV influenza split vaccine
  • Influenza split vaccines have previously been shown to elicit Th2 immune responses (Kistner et al., 2010, PloS one 5, e9349.). Immunization with SV alone induced IgG1 production (Th2-type IgG subclass), and IL-13 (Th2-type cytokine) production was induced at higher immunization doses. This is consistent with SV being a Th2-inducing antigen (FIGS. 22A-22C).
  • Advax TM additive of Advax TM to SV enhances IgG1 antibody production but not IgG2c antibody production, which is noticeable at lower antigen doses (0.015 and 0.15) (FIGS. 22A-22C).
  • a typical Th2-type adjuvant, Alum is commonly used in human vaccination, which also enhances the IgG1-dominant antibody response.
  • Advax TM like Alum, induced a Th2 response to SV antigen.
  • Alum is also known to induce IgE production that potentially increases the risk of vaccine allergy (Nordvall, 1982, Allergy 37, 259-264.). Therefore, serum IgE levels were measured after SV immunization with either Advax TM or Alum.
  • T cell responses were tested by stimulating splenocytes obtained from mice immunized with MHC class I (CD8 T cells) or MHC class II (CD4 T cells) peptides derived from influenza virus nucleoprotein.
  • IL-13 production of CD4 T cells was not significantly different between mice immunized with SV + Advax TM and controls, but Advax TM enhanced the ability to produce IgG1 subclass antibodies by SV .
  • Alum subsequently showed a significant increase in IL-13 production (FIGS. 22E-22G).
  • Advax TM adjuvant only enhanced IgG2c (Th1-type subclass) production and had minimal effect on IgG1 production, but alum suppressed WV-induced IgG2c response and IgG1 Levels were increased significantly (FIGS. 23A-23D).
  • Advax TM enhanced IFN- ⁇ (Th1-type cytokine) production by CD4 and CD8 T cells compared to mice immunized with WV alone.
  • alum suppressed IFN- ⁇ production but significantly increased IL-13 production by CD4 T cells (FIGS. 23E-23G).
  • Advax TM ovalbumin (OVA) antigen (considered to be a neutral Th0 type antigen) was tested.
  • Advax TM did not enhance the OVA-specific antibody response, but as expected, alum only enhanced IgG1 production (FIG. 24A).
  • Advax adjuvant activates dendritic cells in vivo but not in vitro
  • DC dendritic cells
  • Advax TM could activate DC in vitro and in vivo.
  • Mouse bone marrow-derived DCs were stimulated in vitro with Advax TM, alum or lipopolysaccharide (LPS) for 15 hours, and the expression of CD40 (DC activation marker) was assessed by flow cytometry.
  • LPS increased CD40 expression on DCs in vitro as expected, but neither Advax TM nor Alum affected CD40 expression on DCs (FIGS. 25A-25C).
  • Advax TM or Alum could activate CD40 expression on DC in vivo by measuring CD40 expression on DC obtained from draining lymph nodes after adjuvant administration .
  • both Advax TM and Alum increased the frequency of activated DCs in the draining lymph nodes when administered in vivo (FIGS. 25D-12F).
  • Alum induces extracellular DNA release from dead cells at the injection site (Marichal et al., 2011, Nature medicine 17, 996-1002.), And this extracellular DNA through binding to the DAMP receptor It can be explained why alum induced DC activation in vivo but not in vitro.
  • Advax (TM) was also examined to induce cell death at the injection site and activate DC indirectly through the DAMP receptor.
  • cytotoxicity and host DNA / RNA release at the injection site of Advax TM or Alum were evaluated in vivo.
  • Advax TM or Alum was administered intraperitoneally (ip)
  • peritoneal lavage fluid was collected and the number of dead cells and DNA / RNA concentration in the lavage fluid were measured.
  • Alum induced cell death and nucleic acid release as expected, but Advax TM injection did not induce cell death or nucleic acid release. This indicates that the DAMP signaling pathway is not involved in the action of Advax TM that induces DC activation and CD40 expression in vivo.
  • CD169 + also called Siglec-1 or MOMA-1
  • MARCO + macrophages
  • Advax TM behavior in DLN was analyzed in vivo using fluorescently labeled Advax TM particles.
  • a weak Advax TM signal was co-localized with MARCO + macrophages in DLN, which was even greater after 24 hours. Little co-localization of Advax TM with CD169 + macrophages was observed in DLN (FIGS. 26A-26F).
  • Advax TM was taken up by MARCO + macrophages.
  • the difference in recovery kinetics of macrophages and DCs after clodronate liposome injection was utilized. Clodronic acid liposomes completely deplete both macrophages and DCs by day 2, after which macrophages do not recover for at least 7 days, whereas the majority of DCs recover in this period (Aoshi et al ., 2008, Immunity 29, 476-486 .; Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.).
  • Advax TM adjuvant effect was significantly reduced by clodronate liposome treatment regardless of the time point tested (Day 2 or Day 7) (FIGS. 26G and 26H). This suggests that Advax TM adjuvant function is dependent on the presence of macrophages.
  • the adjuvant function of CpG-SPG was significantly reduced on the second day after clodronate treatment but not on the seventh day. This suggests that most of the adjuvant function of CpG-SPG is DC-dependent and not macrophage-dependent as previously reported (Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.).
  • Advax TM alters gene expression of IL-1 ⁇ -, C-type lectin receptor and TNF- ⁇ related signaling pathways
  • cytokine production was investigated.
  • peritoneal lavage fluid was collected and cytokines in the lavage fluid were analyzed.
  • IL interleukin
  • TNF tumor necrosis factor
  • G-CSF granulocyte colony stimulating factor
  • Advax TM i.d. administration had limited changes in gene expression, but i.p. administration altered gene expression in several tissues (FIG. 27A).
  • i.p. administration differentially controlled genes associated with acute phase responses, inflammation, chemokines, complement / platelets, and C-type lectin receptor (CLR) -related responses.
  • CLR C-type lectin receptor
  • NF- ⁇ B complex
  • IL-1 ⁇ interleukin-1 ⁇
  • IFN- ⁇ interleukin-1 ⁇
  • TNF- ⁇ tumor necrosis factor-1 ⁇
  • Advax TM adjuvant function To examine how these biological factors contribute to Advax TM adjuvant function, we first tested whether Advax TM could induce IL-1 ⁇ production .
  • Bone marrow-derived DCs (GM-DC) induced with peritoneal macrophages or granulocyte-macrophage colony stimulating factor (GM-CSF) were stimulated with Advax TM or alum after priming with LPS, followed by IL-1 ⁇ production was tested. However, IL-1 ⁇ production was not detected in these cells stimulated with Advax TM in vitro. On the other hand, alum significantly induced IL-1 ⁇ production.
  • GM-DC Bone marrow-derived DCs
  • GM-CSF granulocyte-macrophage colony stimulating factor
  • Certain particulate adjuvants require activation of the NLRP3 inflammasome and subsequent production of IL-1 ⁇ to perform adjuvant function (Eisenbarth et al., 2008, Nature 453, 1122-1126 .; Kuroda et al., 2013, Int Rev Immunol 32, 209-220.), the effect of absence of Nlrp3, Caspase1 or IL-1r, a component of the NLPR3 inflammasome, on Advax TM adjuvant function. Tested in vivo. Advax TM showed a significant adjuvant effect in each mouse deficient in these NLPR3 inflammasomes.
  • mice lacking CLR signaling pathway-related genes Fcrg -/- , Card9 -/- or Dap12 -/- ) Were tested for their adjuvant effect. The absence of these genes did not affect Advax TM 's ability to enhance antibody responses. This suggests that the adjuvant effect of Advax TM is independent of these CLR-related signaling pathways.
  • Advax TM (TNF- ⁇ is essential for the adjuvant effect of Advax TM)
  • FNF- ⁇ is essential for the adjuvant effect of Advax TM
  • FIG. 27C TNF- ⁇ -related signaling pathways
  • Advax TM could induce TNF- ⁇ production. Macrophages were stimulated in vitro with Advax TM and TNF- ⁇ in the culture supernatant was measured. Advax TM did not induce TNF- ⁇ production, but stimulation with alum significantly induced macrophage TNF- ⁇ production in vitro (FIG. 28A). However, ip injected Advax TM caused a significant increase in serum TNF- ⁇ levels (FIG. 28B).
  • ip administered alum had no effect on serum TNF- ⁇ levels. Since ip injected Advax TM affected gene expression including genes related to TNF- ⁇ -signaling pathway in distant tissues such as lung and spleen (FIGS. 27A and 27B), TNF- ⁇ in serum was It is thought to be derived from these tissues.
  • Tnfa ⁇ / ⁇ mice were immunized with Advax TM adjuvanted WV or hepatitis B surface antigen and the resulting antibody response Tested (FIGS. 28C-28E, respectively). Deletion of Tnfa significantly reduced the adjuvant effect on Advax TM antibody response. This suggests that complete TNF- ⁇ signaling is important for Advax TM adjuvant effect on antibody responses.
  • Example 4 Modeling of safety and effectiveness
  • a toxicity genomics database enables prediction of transcriptome-based toxicity and safety by machine learning or the like.
  • the genetic variation pattern at 6 and 24 hours after administration of each adjuvant in the adjuvant database as shown in Example 1-2 shows the “toxic” genes at 6 and 24 hours after administration for these known compounds.
  • the “toxicity” score for each adjuvant was calculated (FIG. 30B).
  • ALT activity of ALT was measured at 6 and 24 hours after administration of each adjuvant (FIG. 31).
  • Measurement of AST and ALT activity was performed by a technique known in the art (for example, colorimetric measurement by kinetics assay or endpoint assay), and this data was measured by entrusting LSI Rulece.
  • Adjuvant X (FK565), which was predicted to be highly toxic, was actually confirmed in mice.
  • Mice were given intraperitoneal administration of PBS, FK565 (1 ⁇ g / kg, 10 ⁇ g / kg or 100 ⁇ g / kg) or LPS (1 mg / kg), 3 hours / 6 hours later, day 1, day 2, day 3 and On day 5 blood and liver were collected.
  • the collected liver was stained with hematoxylin and eosin, and histological analysis was performed (FIG. 32).
  • the liver was stained with TUNEL to confirm apoptosis (FIG. 33).
  • AST and ALT activity measurements were performed by techniques known in the art (eg, colorimetric measurement by kinetics assay or endpoint assay)
  • genes suggested to be associated with toxicity in rats can be selected as candidates for knockout in mice (eg, NOD1 for NOD1 ligand).
  • Osmr was knocked out.
  • the adjuvant prediction model suggested that many drugs may be adjuvants. This was confirmed by experiments using mice.
  • Probes selected for the adjuvant predictive model were enriched in 42 pathways related to cell death (4), immune response (2) and metabolism (36). In the Venn diagram of the genes constituting the pathways related to cell death (4) and immune response (2), seven genes were common to both (FIG. 39).
  • the adjuvant predictive model resulted in high scores for many drugs, immunostimulants, LPS and TNF (top in FIG. 40), and drugs shown in colored letters were purchased and then tested in mice. The validity of the adjuvant prediction model was confirmed by the ROC curve (FIG. 40 bottom).
  • mice were intradermally administered with ovalbumin along with alum, CpGk3 or 5 types of drugs (ACAP, BOR, CHX, COL, PHA) on days 0 and 14 at 2-3 doses. On day 21, blood and spleen were collected. Anti-ovalbumin (ova) antibody titers (IgG1 and IgG2) were measured on day 21. Different adjuvant properties of IgG1 and IgG2 titers were observed depending on the drug (FIG. 41). In the above examples, each drug, ovalbumin and the like obtained from Nippon Biochemical or WAKO were used. These drugs can be obtained from these suppliers as well as those obtained from other suppliers.
  • spleen cells cells derived from organs collected from immunized mice
  • ovalbumin (ova) 257-264 peptide OVA-MHC1
  • ova 323- Supernatant was collected by adding 339 peptide (OVA-MHC2) or ova protein (OVA-hole) and stimulating or processing without additional stimulation.
  • the cytokines of Th1 type (IL-2 and IFN- ⁇ ) (FIG. 42) and Th2 type (IL-4 and IL-5) (FIG. 43) in the supernatant were measured by ELISA.
  • mice were administered alum, CpGk3 or 5 types of drugs (ACAP, BOR, CHX, COL, PHA) together with ovalbumin, blood was collected 3 hours later (day 0), and DRI-CHEM 7000V (Fuji Film, Biochemical analysis was performed on serum levels of aspartate transaminase (AST) and alanine transaminase (ALT) using Tokyo, Japan (FIG. 44).
  • ACAP aspartate transaminase
  • ALT alanine transaminase
  • Rat transcriptome data is from genotoxicology of publicly available TG-GATE (Igarashi, Y. et al., Nucleic acids research 43, D921-927 (2015)) (this also relates to rats). Since it can be directly incorporated into the data set, analysis based on this proved that toxicity analysis can be performed, and knockout experiments were conducted in mice based on the findings obtained from transcriptome analysis. As a result, it was proved to be a gene involved in toxicity.
  • the same analysis can be performed not only for adjuvants but also for pharmaceutical components in general.
  • the same test can be performed not only for active ingredients but also for added ingredients (excipients, carriers, etc.), or for a mixture or final formulation in which a plurality of same or different pharmaceutical ingredients are mixed. Similar tests can be performed.
  • the same transcriptome analysis test can be similarly performed on the active ingredient based on the index of the active ingredient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Evolutionary Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)

Abstract

本発明はアジュバントの新たな分類手法を提供する。一つの実施形態では、本発明は、アジュバントの器官トランスクリプトームプロファイルを生成する方法であって、該方法は:(A)2つ以上のアジュバントを用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該アジュバントをクラスタリングする工程;および(C)該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成する工程を包含する方法を提供する。

Description

トランスクリプトームによる医薬成分の特徴分析法および分類
 本発明は医薬に用いられる成分(以下、特に断らない限り「医薬成分」といい、有効成分、添加成分、アジュバント等の成分をいう。)の特徴分析法および分類に関する。より特定すると、本発明はアジュバント等の医薬成分のトランスクリプトーム分析に基づく分類および特徴解析手法に関する。
 医薬成分(たとえば、有効成分、添加成分、アジュバント等)または医薬自体の有効性および安全性(毒性)の評価は、その医薬に承認を与え、市場に流通させるかどうかを決めるのに重要な役割を果たす。
 有効成分については、原薬の段階から積極的に有効性、安全性について非臨床試験がなされている。しかしながら、追加の成分(添加成分)やアジュバントについては、積極的に試験がなされているというものではなく、現在では、経験ベースに基づき体系だった安全性・有効性の試験がなされているとはいえない。
 特に、アジュバント(Adjuvant)は、それ自体の薬効に注目が集まるというより、補助的な成分として認識されてきた。アジュバントとは、ラテン語の「助ける」という意味をもつ'adjuvare'という言葉を語源に持ち、ワクチンなどの主剤と一緒に投与して、その効果(例えば、免疫原性)を増強する目的で使用される物質(因子)の総称である。古典的なアジュバント(すなわち、免疫アジュバント)の開発研究の歴史は古く90年程度の歴史があるが、アジュバント自体のメカニズム等の研究は最近まであまり盛んではなかった。最近では、免疫学、微生物学の研究、自然免疫、樹状細胞の研究が起爆剤となり、研究開発が盛んに行われており、経験的に行われていたアジュバントの開発は、最近は分子から生体のレベルにいたるまで科学的なアプローチが可能となりつつある。
 本発明は、トランスクリプトーム分析の結果を、複数の医薬成分(例えば、有効成分、添加成分、アジュバント)についてクラスタリングすることで、各クラスターがその成分(例えば、有効成分、添加成分、アジュバント)の特徴ごとにクラスタリングされ、系統的に分類することができることを見出すことで完成した。また、既知の医薬成分(例えば、有効成分、添加成分、アジュバント)で典型的な基準医薬成分(有効成分の場合は基準有効成分、添加成分の場合は基準添加成分、アジュバントの場合は基準アジュバント)が存在することを見出し、新規物質または特定の作用効果もしくは機能(例えば、有効成分の有する薬効、添加成分の有する補助機能、アジュバント機能)未知の物質を別々の(例えば、6種類)カテゴリーに属するかまたはそれ以外のものであるかを特定できる技術も提供する。
 したがって、本発明は以下を提供する。
(項目a1)アジュバントの器官トランスクリプトームプロファイルを生成する方法であって、該方法は:(A)2つ以上のアジュバントを用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該アジュバントをクラスタリングする工程;(C)該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成する工程を包含する方法。
(項目a2)前記トランスクリプトーム分析は、前記アジュバントを前記対象生物に投与し、投与後一定時間で前記器官におけるトランスクリプトームを該アジュバントの投与前の該器官におけるトランスクリプトームと比較する工程、および該比較の結果発現が変動した遺伝子(DEG)のセットを特定する工程を包含する、項目a1に記載の方法。
(項目a3)前記DEGのセットを2つ以上のアジュバントにおいて統合し、共通して変動する遺伝子(DEG)のセットを生成する工程を包含する、項目a2に記載の方法。
(項目a4)前記比較の結果、発現が所定の閾値を超えて変動した遺伝子を特定し、特定された遺伝子のうち前記共通して変動する遺伝子を選択し有意DEGのセットを生成する工程を包含する、項目a3に記載の方法。
(項目a5)前記所定の閾値は、所定の倍数の相違および所定の統計学的有意(p値)で特定される、項目a4に記載の方法。
(項目a6)少なくとも2つ以上の器官について、前記トランスクリプトーム分析を行い、特定の器官でのみ発現が変動する遺伝子のセットを特定し、該セットを該器官特異的遺伝子セットとする工程を包含する、項目a2~5のいずれか1項に記載の方法。
(項目a7)前記トランスクリプトーム分析は、肝臓、脾臓およびリンパ節からなる群より選択される少なくとも1つの器官におけるトランスクリプトームに対してなされる、項目a1~6のいずれか1項に記載の方法。
(項目a8)前記アジュバントの数は、統計学的に有意なクラスタリング分析を可能とする数である、項目a1~7のいずれか1項に記載の方法。
(項目a9)前記プロファイルのうち、特定のアジュバントまたはアジュバントクラスターおよび特定の器官に特有の遺伝子マーカーの1または複数をアジュバント評価マーカーとして提供する工程を包含する、項目a1~8のいずれか1項に記載の方法。
(項目a10)前記アジュバントについて、生物学的指標を分析し、クラスターと相関づける工程をさらに包含する、項目a1~9のいずれか1項に記載の方法。
(項目a11)前記生物学的指標は、創傷、細胞死、アポトーシス、NFκBシグナル経路、炎症応答、TNFシグナル経路、サイトカイン類、遊走、ケモカイン、化学走性、ストレス、防御応答、免疫応答、生来免疫応答、適合性免疫応答、インターフェロン類およびインターロイキン類からなる群より選択される少なくとも1つの指標を含む、項目a10に記載の方法。
(項目a12)前記生物学的指標は、血液学的指標を含む、項目a10に記載の方法。
(項目a13)前記血液学的指標は、白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)および血小板分布幅(PDW)からなる群より選択される少なくとも1つを含む、項目a12に記載の方法。
(項目a14)前記生物学的指標は、サイトカインプロファイルを含む、項目a10に記載の方法。
(項目a15)アジュバントの器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムであって、該方法は:(A)2つ以上のアジュバントを用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該アジュバントをクラスタリングする工程;(C)該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成する工程を包含する、プログラム。
(項目a15A)項目a1~14のいずれか一項に記載の特徴をさらに含む、項目a15に記載のプログラム。
(項目a16)アジュバントの器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムを格納した記録媒体であって、該方法は:(A)2つ以上のアジュバントを用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該アジュバントをクラスタリングする工程;(C)該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成する工程を包含する、記録媒体。
(項目a16A)項目a1~14のいずれか一項に記載の特徴をさらに含む、項目a16に記載の記録媒体。
(項目a17)アジュバントの器官トランスクリプトームプロファイルを生成するためのシステムであって、該システムは:(A)2つ以上のアジュバントを用いて対象生物の少な
くとも1つの器官のトランスクリプトーム分析を行って発現データを得るまたは入力する発現データ獲得部;(B)該発現データについて、該アジュバントをクラスタリングするクラスタリング演算部;(C)該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成するプロファイリング部を包含する、システム。
(項目a17A)項目a1~項目a14のいずれか一項に記載の特徴をさらに含む、項目a17に記載のシステム。
(項目a18)アジュバントの特徴情報を提供する方法であって、該方法は:(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;(b)機能が既知の基準アジュバントセットを提供する工程;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補アジュバントが属するのと同一のクラスターに属する該基準アジュバントセットのメンバーの特徴を、該候補アジュバントの特徴として提供する工程、を包含する方法。
(項目a19)項目a1~項目a14のいずれか一項に記載の特徴をさらに含む、項目a18に記載の方法。
(項目a20)アジュバントの特徴情報を提供する方法をコンピュータに実装させるプログラムであって、該方法は:(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;(b)機能が既知の基準アジュバントセットを提供する工程;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補アジュバントが属するのと同一のクラスターに属する該基準アジュバントセットのメンバーの特徴を、該候補アジュバントの特徴として提供する工程、を包含する、プログラム。
(項目a20A)項目a1~項目a14のいずれか一項に記載の特徴をさらに含む、項目a19に記載のプログラム。
(項目a21)アジュバントの特徴情報を提供する方法をコンピュータに実装させるプログラムを格納する記録媒体であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;(b)機能が既知の基準アジュバントセットを提供する工程;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補アジュバントが属するのと同一のクラスターに属する該基準アジュバントセットのメンバーの特徴を、該候補アジュバントの特徴として提供する工程、を包含する、記録媒体。
(項目a21A)項目a1~項目a14のいずれか一項に記載の特徴をさらに含む、項目a20に記載の記録媒体。
(項目a22)アジュバントの特徴情報を提供するシステムであって、該システムは:(a)候補アジュバントを提供する候補アジュバント提供部;(b)機能が既知の基準アジュバントセットを提供する基準アジュバント提供部;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング解析部;(d)該候補アジュバントが属するのと同一のクラスターに属する該基準アジュバントセットのメンバーの特徴を、該候補アジュバントの特徴として提供する特徴分析部、を包含する、システム。
(項目a22A)項目a1~項目a14のいずれか一項に記載の特徴をさらに含む、項目a22に記載のシステム。
(項目a23)項目a1~項目a14または項目a18もしくは項目a19に記載の方法、項目a15、15A、項目a20または項目a20Aに記載のプログラム、項目a16、項目a16A、項目a21または項目a21Aに記載の記録媒体、あるいは項目a項目a17、項目a17A、項目a22または項目a22Aに記載のシステムを用いて、アジュバントの品質管理を行う方法。
(項目a24)項目a1~項目a14または項目a18もしくは項目a19に記載の方法、項目a15、15A、項目a20または項目a20Aに記載のプログラム、項目a16、項目a16A、項目a21または項目a21Aに記載の記録媒体、あるいは項目a項目a17、項目a17A、項目a22または項目a22Aに記載のシステムを用いて、アジュバントの安全性を試験する方法。
(項目a25)項目a1~項目a14または項目a18もしくは項目a19に記載の方法、項目a15、15A、項目a20または項目a20Aに記載のプログラム、項目a16、項目a16A、項目a21または項目a21Aに記載の記録媒体、あるいは項目a項目a17、項目a17A、項目a22または項目a22Aに記載のシステムを用いて、アジュバントの効果を判定する方法。
<分類法>
(項目b1)
 トランスクリプトームクラスタリングに基づいて、アジュバントを分類する工程を包含するアジュバント分類方法。
(項目b2)
 前記分類は、宿主応答に基づく分類、メカニズムに基づく分類、細胞(肝臓、リンパ節、脾臓)、メカニズムに基づく用途別の分類、およびモジュール分類からなる群より選択される少なくとも1つの特徴による分類をさらに含む、項目b1に記載の方法。
(項目b3)
 前記分類は、G1~G6:
(1)G1(インターフェロンシグナリング);
(2)G2(脂質およびリポタンパク質代謝性);
(3)G3(ストレス応答性);
(4)G4(創傷応答性);
(5)G5(リン酸含有化合物代謝プロセス性);および
(6)G6(ファゴソーム性): 
からなる群より選択される少なくとも1つの分類を含む、項目b1または2に記載の方法。
(項目b4)
 前記G1~G6の分類は、基準アジュバントのトランスクリプトームクラスタリングとの比較で行われ、
G1の基準アジュバントは、STINGリガンドであり、
G2の基準アジュバントは、シクロデキストリン類であり、
G3の基準アジュバントは、免疫反応性ペプチド類であり、
G4の基準アジュバントは、TLR2リガンドであり、
G5の基準アジュバントは、CpGオリゴヌクレオチドであり、および/または
G6の基準アジュバントは、スクアレン水中油型エマルジョンアジュバントである、
項目b3に記載の方法。
(項目b5)
 前記G1~G6の分類は、基準アジュバントのトランスクリプトームクラスタリングとの比較で行われ、
G1の基準アジュバントは、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、
G2の基準アジュバントは、bCD(βシクロデキストリン)であり、
G3の基準アジュバントは、FK565であり、
G4の基準アジュバントは、MALP2sであり、
G5の基準アジュバントは、D35,K3およびK3SPGからなる群より選択され、および/または
G6の基準アジュバントは、AddaVaxである、
項目b3または4に記載の方法。
(項目b6)
 前記G1~G6の分類は、トランスクリプトーム分析において発現に有意差がある遺伝子(識別マーカー遺伝子;DEG)の発現プロファイルに基づいて行われ、
 前記G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
 前記G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
 前記G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
 前記G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
 前記G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
 前記G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む、
項目b3~5のいずれか1項に記載の方法。
(項目b7)
 アジュバントを分類する方法であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;
(b)項目b3~6のいずれか1項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する工程;
(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する方法。
(項目b8)
 所望の機能を有するアジュバント組成物の製造方法であって、
(A)アジュバント候補を提供する工程、
(B)所望の機能に対応するトランスクリプトーム発現パターンを有するアジュバント候補を選択する工程、および
(C)選択されたアジュバント候補を用いてアジュバント組成物を製造する工程を包含する、アジュバント組成物の製造方法。
(項目b9)
 前記所望の機能は、項目b3~6のいずれか1項に記載のG1~G6のいずれか1つまたは複数を含む、項目b8に記載の方法。
(項目b10)
 所望の機能を有する発揮するためのアジュバント組成物であって、該所望の機能を発揮するアジュバントを含み、該所望の機能は、項目b3~6のいずれか1項に記載のG1~G6のいずれか1つまたは複数を含む、組成物。
(項目b11)
 項目b1~7のいずれか1項に記載の方法を用いて、アジュバントの品質管理を行う方法。
(項目b12)
 項目b1~7のいずれか1項に記載の方法を用いて、アジュバントの安全性を試験する方法。
(項目b13)
 項目b1~7のいずれか1項に記載の方法を用いて、アジュバントの効果を判定する方法。
(項目b14)
 トランスクリプトームクラスタリングに基づいて、アジュバントを分類する工程を包含するアジュバント分類方法をコンピュータに実装させるプログラム。
(項目b14A)
 前記トランスクリプトームクラスタリングは、項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b14に記載のプログラム。
(項目b15)
 トランスクリプトームクラスタリングに基づいて、アジュバントを分類する工程を包含するアジュバント分類方法をコンピュータに実装させるプログラムを格納した記録媒体。
(項目b15A)
 前記トランスクリプトームクラスタリングは、項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b15に記載の記録媒体。
(項目b16)
  トランスクリプトームクラスタリングに基づいて、アジュバントを分類する分類部を包含するアジュバント分類するためのシステム。
(項目b16A)
 前記トランスクリプトームクラスタリングは、項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b16に記載のシステム。
(項目b17)
 アジュバントを分類するアジュバントを分類する方法をコンピュータに実装させるプログラムであって、該方法は:
(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;
(b)項目b3~6のいずれか1項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する工程;
(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含するプログラム。
(項目b17A)
 項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b17に記載のプログラム。
(項目b18)
 アジュバントを分類する方法をコンピュータに実装させるプログラムを格納した記録媒体であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;
(b)項目b3~6のいずれか1項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する工程;
(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する、記録媒体。
(項目b18A)
 項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b18に記載の記録媒体。
(項目b19)
 アジュバントを分類するシステムであって、該システムは:
(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する候補アジュバント提供部;
(b)項目b3~6のいずれか1項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する基準アジュバント格納部;
(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および
(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、
を包含するシステム。
(項目b19A)
 項目b2~7のいずれか1項に記載の1または複数の特徴をさらに含む、項目b19に記載のシステム。
(項目b20)
 アジュバントを項目b3~6のいずれか1項に記載のG1~G6および/またはそれ以外への分類に使用するための遺伝子分析パネルであって、該遺伝子分析パネルは、G1のDEG、G2のDEG、G3のDEG、G4のDEG、G5のDEGおよびG6のDEGからなる群より選択される少なくとも1つのDEGを検出する手段を含み、
 該G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
 該G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
 該G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
 該G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
 該G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
 該G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む、
遺伝子分析パネル。
(項目b21)
 前記遺伝子分析パネルは、少なくともG1のDEGの検出手段、少なくともG2のDEGの検出手段、少なくともG3のDEGの検出手段、少なくともG4のDEGの検出手段、少なくともG5のDEGの検出手段および少なくともG6のDEGの検出手段を含む、項目b20に記載の遺伝子分析パネル。

<「アジュバント」のアジュバント>
(項目bX1)
 δイヌリン(β-D-[2→1]ポリ(フルクト-フラノシル)α-D-グルコース)またはその機能等価物を含む、抗原のアジュバント性を惹起または増強するための組成物。
(項目bX2)
 前記等価物は、δイヌリンと等価のトランスクリプト―ム発現プロファイルを有する、項目bX1に記載の組成物。
<樹状細胞活性化>
(項目bA1)
 δイヌリンまたはその機能等価物を含む、樹状細胞を活性化するための組成物。
(項目bA2)
 前記活性化は、マクロファージの存在下でなされる、項目bA1に記載の組成物。
(項目bA3)
 δイヌリンまたはその機能等価物を含む、前記組成物は、マクロファージの増強剤とともに投与されることを特徴とする、項目bA1またはA2に記載の組成物。
<Th指向性>
(項目bB1)
 δイヌリンまたはその機能等価物を含む、Th1型抗原のTh1応答を増強し、かつ、Th2型抗原のTh2応答を増強するための組成物。
<TNFα>
(項目bC1)
 δイヌリンまたはその機能等価物を含む、アジュバント組成物であって、該組成物はTNFαが正常または増強された状態で投与されることを特徴とする、組成物。
<同様のアジュバント・アジュバントの判定法+製造法>
(項目bD1)
 候補アジュバントが抗原のアジュバント性を惹起または増強するかどうかを判定する方法であって、該方法は:(a)候補アジュバントを提供する工程;(b)δイヌリンまたはその機能等価物を評価基準アジュバントとして提供する工程;(c)該候補アジュバントおよび該評価基準アジュバントのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補アジュバントが該評価基準アジュバントと同一のクラスターに属すると判定された場合、該候補アジュバントを抗原のアジュバント性を惹起または増強するものであると判定する工程、を包含する方法。
(項目bE1)
 抗原のアジュバント性を惹起または増強するアジュバントを含む組成物を製造する方法であって、該方法は:(a)1または複数の候補アジュバントを提供する工程;(b)δイヌリンまたはその機能等価物を評価基準アジュバントとして提供する工程;(c)該候補アジュバントおよび該評価基準アジュバントのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補アジュバントのうち、該評価基準アジュバントと同一のクラスターに属するアジュバントが存在する場合該アジュバントを抗原のアジュバント性を惹起または増強するアジュバントとして選択し、存在しない場合は(a)~(c)を繰り返す工程;および(e)(d)で得られた抗原のアジュバント性を惹起または増強するアジュバントを含む組成物を製造する工程を包含する、方法。
(項目c1)
 トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法。
(項目c2)
 前記分類する工程は、a)前記トランスクリプトームクラスタリングに基づいて基準成分を生成する工程と、b)該基準成分に基づいて候補医薬成分を分類する工程とを含む、項目c1に記載の方法。
(項目c3)
 前記医薬成分は、有効成分、添加成分およびアジュバントからなる群より選択される、項目c1または2に記載の方法。
(項目c4)
 前記医薬成分は、アジュバントである、項目c1~3のいずれか一項に記載の方法。
(項目c5)
 前記分類は、宿主応答に基づく分類、メカニズムに基づく分類、細胞(肝臓、リンパ節、脾臓)、メカニズムに基づく用途別の分類、およびモジュール分類からなる群より選択される少なくとも1つの特徴による分類をさらに含む、項目c1~4のいずれか一項に記載の方法。
(項目c6)
前記分類は、G1~G6:
(1)G1(インターフェロンシグナリング);
(2)G2(脂質およびリポタンパク質代謝性);
(3)G3(ストレス応答性);
(4)G4(創傷応答性);
(5)G5(リン酸含有化合物代謝プロセス性);および
(6)G6(ファゴソーム性):
からなる群より選択される少なくとも1つの分類を含む、項目c1~5のいずれか一項に記載の方法。
(項目c7)
前記医薬成分はアジュバントであり、前記G1~G6の分類は、基準医薬成分のトランスクリプトームクラスタリングとの比較で行われ、
G1の基準医薬成分は、STINGリガンドであり、
G2の基準医薬成分は、シクロデキストリン類であり、
G3の基準医薬成分は、免疫反応性ペプチド類であり、
G4の基準アジュバントは、TLR2リガンドであり、
G5の基準医薬成分は、CpGオリゴヌクレオチドであり、および/または
G6の基準医薬成分は、スクアレン水中油型エマルジョンアジュバントである、
項目c6に記載の方法。
(項目c8)
前記G1~G6の分類は、基準医薬成分のトランスクリプトームクラスタリングとの比較で行われ、
G1の基準成分は、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、
G2の基準医薬成分は、bCD(βシクロデキストリン)であり、
G3の基準医薬成分は、FK565であり、
G4の基準医薬成分は、MALP2sであり、
G5の基準医薬成分は、D35,K3およびK3SPGからなる群より選択され、および/または
G6の基準医薬成分は、AddaVaxである、
項目c6または7に記載の方法。
(項目c9)
前記G1~G6の分類は、トランスクリプトーム分析において発現に有意差がある遺伝子(識別マーカー遺伝子;DEG)の発現プロファイルに基づいて行われ、
前記G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
前記G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
前記G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
前記G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
前記G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
前記G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む、
項目c6~8のいずれか一項に記載の方法。
(項目c10)
医薬成分を分類する方法であって、該方法は:
(a)候補医薬成分を提供する工程;
(b)基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、該基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する方法。
(項目c11)
医薬成分を分類する方法であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)項目c6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する項目c10に記載の方法。
(項目c12)
 所望の機能を有する組成物の製造方法であって、
(A)候補医薬成分を提供する工程、
(B)所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分を選択する工程、および
(C)選択された候補医薬成分を用いて組成物を製造する工程を包含する、組成物の製造方法。
(項目c13)
 所望の機能を有する組成物のスクリーニング方法であって、
(A)候補医薬成分を提供する工程、および
(B)所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分を選択する工程を包含する、組成物の製造方法。
(項目c14)
前記所望の機能は、項目c6~8のいずれか一項に記載のG1~G6のいずれか1つまたは複数を含む、項目c12または13に記載の方法。
(項目c15)
 所望の機能を発揮するための組成物であって、該所望の機能を発揮する医薬成分を含み、該所望の機能は、項目c1~11のいずれか一項に記載の方法によって特定される分類の1つまたは複数を含む、組成物。
(項目c16)
 所望の機能を発揮するための組成物であって、該所望の機能を発揮する医薬成分を含み、該所望の機能は、項目c6~8のいずれか一項に記載のG1~G6のいずれか1つまたは複数を含む、項目c15に記載の組成物。
(項目c17)
項目c1~11のいずれか一項一項に記載の方法を用いて、医薬成分の品質管理を行う方法。
(項目c18)
項目c1~11のいずれか一項一項に記載の方法を用いて、医薬成分の安全性を試験する方法。
(項目c19)
項目c1~11のいずれか一項一項に記載の方法を用いて、毒性ボトルネック遺伝子の候補を特定する工程と、
該毒性遺伝子を他の動物種において欠損させてノックアウト動物を作製する工程と、
該ノックアウト動物において毒性が減少または消失するかを決定し、減少または消失があった遺伝子を毒性ボトルネット遺伝子として選択する工程と
を含む、毒性ボトルネック遺伝子を提供する方法。
(項目c20)
アジュバント等の候補医薬成分について、毒性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の活性化が観察されるかを決定する工程と、
該活性化が観察された候補医薬成分を毒性有として判断する工程とを
含む、薬剤の毒性判定方法。
(項目c21)
項目c1~11のいずれ一項一項に記載の方法を用いて、医薬成分の効果を判定する方法。
(項目c22)
項目c1~11のいずれか一項一項に記載の方法を用いて、有効性判定遺伝子を特定する工程と、
該毒性遺伝子を他の動物種において欠損させてノックアウト動物を作製する工程と、
該ノックアウト動物において有効性が減少または消失するかを決定し、減少または消失があった遺伝子を有効性ボトルネット遺伝子として選択する工程と
を含む、有効性ボトルネック遺伝子を提供する方法。
(項目c23)
アジュバント等の候補医薬成分について、有効性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の活性化が観察されるかを決定する工程と、
該活性化が観察された候補薬剤を有効性有として判断する工程とを
含む、薬剤の有効性判定方法。
(項目c24)
 トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法をコンピュータに実装させるプログラム。
(項目c25)
 トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法をコンピュータに実装させるプログラムを格納した記録媒体。
(項目c26)
 トランスクリプトームクラスタリングに基づいて、医薬成分を分類する分類部を包含する医薬成分分類するためのシステム。
(項目c27)
医薬成分を分類する方法をコンピュータに実装させるプログラムであって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)基準医薬成分セットを計算する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含するプログラム。
(項目c28)
医薬成分を分類する方法をコンピュータに実装させるプログラムであって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)項目c6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する項目c27に記載のプログラム。
(項目c29)
医薬成分を分類する方法をコンピュータに実装させるプログラムを格納した記録媒体であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)基準医薬成分セットを計算する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する、記録媒体。
(項目c30)
医薬成分を分類する方法をコンピュータに実装させるプログラムを格納した記録媒体であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)項目c6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する、項目c29に記載の記録媒体。
(項目c31)
医薬成分を分類するシステムであって、該システムは:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;
(b)基準医薬成分セットを計算する基準医薬成分計算部;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および
(d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、
を包含するシステム。
(項目c32)
医薬成分を分類するシステムであって、該システムは:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;
(b)項目c6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する基準医薬成分格納部;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および
(d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、
を包含する項目c31に記載のシステム。
(項目c33)
医薬成分を、項目c1~11のいずれか一項に記載の方法で特定される分類に使用するための遺伝子分析パネル。
(項目c34)
アジュバントを項目c6~8のいずれか一項に記載のG1~G6またはそれ以外への分類に使用するための遺伝子分析パネルであって、該遺伝子分析パネルは、G1のDEG,G2のDEG、G3のDEG、G4のDEG、G5のDEGおよびG6のDEGからなる群より選択される少なくとも1つのDEGを検出する手段を含み、
該G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
該G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
該G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
該G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
該G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
該G6のDEGは、Atp6v0d2,Atp6v1c1,およびClec7aからなる群より選択される少なくとも1つを含む、
遺伝子分析パネル。
(項目c35)
前記遺伝子分析パネルは、少なくともG1のDEGの検出手段、少なくともG2のDEGの検出手段、少なくともG3のDEGの検出手段、少なくともG4のDEGの検出手段、少なくともG5のDEGの検出手段および少なくともG6のDEGの検出手段を含む、項目c34に記載の遺伝子分析パネル。
(項目c36)
医薬成分の器官トランスクリプトームプロファイルを生成する方法であって、該方法は:
2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
該発現データについて、該医薬成分をクラスタリングする工程;および
該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
を包含する方法。
(項目c37)
前記トランスクリプトーム分析は、前記医薬成分を前記対象生物に投与し、投与後一定時間で前記器官におけるトランスクリプトームを該医薬成分の投与前の該器官におけるトランスクリプトームと比較する工程、および該比較の結果発現が変動した遺伝子(DEG)のセットを特定する工程を包含する、項目c36に記載の方法。
(項目c38)
前記DEGのセットを2つ以上の医薬成分において統合し、共通して変動するDEGのセットを生成する工程を包含する、項目c37に記載の方法。
(項目c39)
前記比較の結果、前記共通して変動するDEGのうち、発現が所定の閾値を超えて変動したDEGを選択し、有意DEGのセットを生成する工程を包含する、項目c37または38に記載の方法。
(項目c40)
前記所定の閾値は、所定の倍数の相違および所定の統計学的有意(p値)で特定される、項目c39に記載の方法。
(項目c41)
少なくとも2つ以上の器官について、前記トランスクリプトーム分析を行い、特定の器官でのみ発現が変動した遺伝子(DEG)のセットを特定し、該セットを該器官特異的DEGセットとする工程を包含する、項目c38~41のいずれか一項に記載の方法。
(項目c42)
前記トランスクリプトーム分析は、肝臓、脾臓およびリンパ節からなる群より選択される少なくとも1つの器官におけるトランスクリプトームに対してなされる、項目c36~41のいずれか一項に記載の方法。
(項目c43)
前記医薬成分医薬成分の種類の数は、統計学的に有意なクラスタリング分析を可能とする数である、項目c36~42のいずれか一項に記載の方法。
(項目c44)
前記プロファイルのうち、特定の医薬成分または医薬成分クラスターおよび特定の器官に特有の遺伝子マーカーの1または複数を医薬成分評価マーカーとして提供する工程を包含する、項目c36~43のいずれか一項に記載の方法。
(項目c45)
前記医薬成分について、生物学的指標を分析し、クラスターと相関づける工程をさらに包含する、項目c36~44のいずれか一項に記載の方法。
(項目c46)
前記生物学的指標は、創傷、細胞死、アポトーシス、NFκBシグナル経路、炎症応答、TNFシグナル経路、サイトカイン類、遊走、ケモカイン、化学走性、ストレス、防御応答、免疫応答、生来免疫応答、適合性免疫応答、インターフェロン類およびインターロイキン類からなる群より選択される少なくとも1つの指標を含む、項目c45に記載の方法。
(項目c47)
前記生物学的指標は、血液学的指標を含む、項目c46に記載の方法。
(項目c48)
前記血液学的指標は、白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)および血小板分布幅(PDW)からなる群より選択される少なくとも1つを含む、項目c47に記載の方法。
(項目c49)
前記生物学的指標は、サイトカインプロファイルを含む、項目c45に記載の方法。
(項目c50)
医薬成分の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムであって、該方法は:
(A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
(B)該発現データについて、該医薬成分医薬成分をクラスタリングする工程;
(C)該クラスタリングに基づいて、該医薬成分医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
を包含する、プログラム。
(項目c51)
医薬成分の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムを格納した記録媒体であって、該方法は:
(A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
(B)該発現データについて、該医薬成分をクラスタリングする工程;
(C)該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
を包含する、記録媒体。
(項目c52)
医薬成分の器官トランスクリプトームプロファイルを生成するためのシステムであって、該システムは:
(A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得るまたは入力する発現データ獲得部;
(B)該発現データについて、該医薬成分をクラスタリングするクラスタリング演算部;
(C)該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成するプロファイリング部
を包含する、システム。
(項目c53)
医薬成分の特徴情報を提供する方法であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)機能が既知の基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
(d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
を包含する方法。
(項目c54)
項目c36~49のいずれか一項に記載の特徴をさらに含む、項目c53に記載の方法。
(項目c55)
医薬成分の特徴情報を提供する方法をコンピュータに実装させるプログラムであって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)機能が既知の基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
(d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
を包含する、プログラム。
(項目c56)
医薬成分の特徴情報を提供する方法をコンピュータに実装させるプログラムを格納する記録媒体であって、該方法は:
(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
(b)機能が既知の基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
(d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
を包含する、記録媒体。
(項目c57)
医薬成分の特徴情報を提供するシステムであって、該システムは:
(a)候補医薬成分を提供する候補医薬成分提供部;
(b)機能が既知の基準医薬成分セットを提供する基準医薬成分提供部;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング解析部;
(d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する特徴分析部、
を包含する、システム。
(項目c58)
項目c36~49または項目c53に記載の方法を用いて、医薬成分の品質管理を行う方法。
(項目c59)
項目c36~49または項目c53に記載の方法を用いて、医薬成分の安全性を試験する方法。
(項目c60)
項目c36~49または項目c53に記載の方法を用いて、医薬成分の効果を判定する方法。
 本発明において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。本発明のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本発明は、医薬成分(有効成分、添加成分、アジュバントなど)を系統的に分類し、そして未知の機能の医薬成分(例えば、有効成分、添加成分、アジュバント)でも、詳細な実験を行うことなくその機能(例えば、有効成分、添加成分、アジュバントの詳細な性質、安全性、有効性等)を分析し正確に予測することができる技術を提供する。また、本発明は、医薬成分(有効成分、添加成分、アジュバントなど)を系統的に分類し、そして未知の機能の医薬成分(例えば、有効成分、添加成分、アジュバント)でも、既存の基準医薬成分(例えば、本明細書に例示されるアジュバントのG1~G6の基準アジュバント)いずれかと同じであるかまたはそれ以外のものであるかについて、その機能を分析することができる技術を提供する。
図1はそれぞれの器官からの有意に差示的に発現された遺伝子(sDEG)を構成するアジュバント遺伝子空間を示す。それぞれの遺伝子についてのsDEGをベン図で表示している。リンパ節(LN)、肝臓(LV)および脾臓(SP)における固有のセットを、p値とともにTargetMine経路アノテーションを使用して解析した。同様に、3つの器官(LV、SPおよびLN)全てに共有される遺伝子セットをp値とともに経路解析によってアノテーションした。 図1はそれぞれの器官からの有意に差示的に発現された遺伝子(sDEG)を構成するアジュバント遺伝子空間を示す。それぞれの遺伝子についてのsDEGをベン図で表示している。リンパ節(LN)、肝臓(LV)および脾臓(SP)における固有のセットを、p値とともにTargetMine経路アノテーションを使用して解析した。同様に、3つの器官(LV、SPおよびLN)全てに共有される遺伝子セットをp値とともに経路解析によってアノテーションした。 図2Aは3つの器官の間で一貫したアジュバントを示す。RのWard D2法によって決定した場合の肝臓(LV、上)、脾臓(SP、左)およびリンパ節(LN、右)におけるアジュバントクラスター。クラスターの詳細については、図14参照。参照アジュバントは、色付きのフォントで示す。バッチ効果および弱いアジュバント(バッチ効果を超えるが、基準ラインよりは下)を灰色で示す。3つの器官の間のアジュバントクラスター関係性を線で示す。 図2Bは3つの器官の間で一貫したアジュバントを示す。RのWard D2法によって決定した場合の肝臓(LV)におけるアジュバントクラスター。参照アジュバントは、色付きのフォントで示す。バッチ効果および弱いアジュバント(バッチ効果を超えるが、基準ラインよりは下)を灰色で示す。 図2Cは3つの器官の間で一貫したアジュバントを示す。RのWard D2法によって決定した場合の脾臓(SP)におけるアジュバントクラスター。参照アジュバントは、色付きのフォントで示す。バッチ効果および弱いアジュバント(バッチ効果を超えるが、基準ラインよりは下)を灰色で示す。 図2Dは3つの器官の間で一貫したアジュバントを示す。RのWard D2法によって決定した場合のリンパ節(LN)におけるアジュバントクラスター。参照アジュバントは、色付きのフォントで示す。バッチ効果および弱いアジュバント(バッチ効果を超えるが、基準ラインよりは下)を灰色で示す。 図2Bのマウス肝臓(LV)のクラスターの左側の拡大図である。 図2Bのマウス肝臓(LV)のクラスターの右側の拡大図である。 図2Cのマウス脾臓(SP)のクラスターの左側の拡大図である。 図2Cのマウス脾臓(SP)のクラスターの右側の拡大図である。 図2Dのマウスリンパ節(LN)のクラスターの左側の拡大図である。 図2Dのマウスリンパ節(LN)のクラスターの右側の拡大図である。 図2Kは、ラットにおいて3つの器官の間で一貫したアジュバントを示す。マウスと同様の傾向が観察された。図2Aと同様、RのWard D2法によって決定した場合の肝臓(上)、脾臓(右)および肺(左)におけるアジュバントクラスター。 図2Eのラットの肝臓クラスターの拡大図である。 図2Eのラットの脾臓クラスターの拡大図である。 図2Eのラットの肺クラスターの拡大図である。 図2Lのラット肝臓クラスターの左側の拡大図である。 図2Lのラット肝臓クラスターの右側の拡大図である。 図2Mのラット脾臓クラスターの左側の拡大図である。 図2Mのラット脾臓クラスターの右側の拡大図である。 図2Nのラット肺クラスターの左側の拡大図である。 図2Nのラット肺クラスターの右側の拡大図である。 図3はアジュバントグループの生物学的アノテーションおよびサイトカインアノテーションを示す。zスコア(表17)を使用して選択したアジュバントグループ関連遺伝子を、TargetMineを用いて生物学的プロセスにアノテーションした(a)、またはIPAを用いた上流解析でサイトカインアノテーションを推測した(b)。代表的なアノテーション、遺伝子(表18)およびIPA上流解析(表19)を表示する。 図3はアジュバントグループの生物学的アノテーションおよびサイトカインアノテーションを示す。zスコア(表17)を使用して選択したアジュバントグループ関連遺伝子を、TargetMineを用いて生物学的プロセスにアノテーションした(a)、またはIPAを用いた上流解析でサイトカインアノテーションを推測した(b)。代表的なアノテーション、遺伝子(表18)およびIPA上流解析(表19)を表示する。 図4はリンパ節において同じ受容体を標的とするアジュバントの相対比較を示す。35/K3/K3SPG(表20)またはcdiGMP/cGAMP/DMXAA(表21)などの同じ受容体を標的とするアジュバント間の倍数変化の値をzスコア化することで優先的に誘導される遺伝子を選択した。ベン図(a,d)、優先的にアップレギュレーションされた上位10遺伝子(b,e)および選択した遺伝子の40モジュールに対するマッピング(c,f)を示す。 図4はリンパ節において同じ受容体を標的とするアジュバントの相対比較を示す。35/K3/K3SPG(表20)またはcdiGMP/cGAMP/DMXAA(表21)などの同じ受容体を標的とするアジュバント間の倍数変化の値をzスコア化することで優先的に誘導される遺伝子を選択した。ベン図(a,d)、優先的にアップレギュレーションされた上位10遺伝子(b,e)および選択した遺伝子の40モジュールに対するマッピング(c,f)を示す。図4Bのbのグラフでは、左欄上段、中欄中段および右欄下段が、アジュバントと優先的にアップレギュレーションされた上位10遺伝子との関係に対応する。 図4はリンパ節において同じ受容体を標的とするアジュバントの相対比較を示す。35/K3/K3SPG(表20)またはcdiGMP/cGAMP/DMXAA(表21)などの同じ受容体を標的とするアジュバント間の倍数変化の値をzスコア化することで優先的に誘導される遺伝子を選択した。ベン図(a,d)、優先的にアップレギュレーションされた上位10遺伝子(b,e)および選択した遺伝子の40モジュールに対するマッピング(c,f)を示す。 図4はリンパ節において同じ受容体を標的とするアジュバントの相対比較を示す。35/K3/K3SPG(表20)またはcdiGMP/cGAMP/DMXAA(表21)などの同じ受容体を標的とするアジュバント間の倍数変化の値をzスコア化することで優先的に誘導される遺伝子を選択した。ベン図(a,d)、優先的にアップレギュレーションされた上位10遺伝子(b,e)および選択した遺伝子の40モジュールに対するマッピング(c,f)を示す。図4Bのeのグラフでは、左欄上段、中欄中段および右欄下段が、アジュバントと優先的にアップレギュレーションされた上位10遺伝子との関係に対応する。 図5はアジュバント誘導性血液学的変化を示す。アジュバント注射後の末梢血の血液学的変化(a)。黒の実線、その外側の2つの灰色の破線、さらにその外側の2つの赤色の破線は、それぞれ、バッファー対照で処置したマウスの平均ならびに、1SDの標準偏差(SD)レベルおよび2SDのSDレベルを示す。1SDを超えるパラメータ変化を赤色のバーで示し(1SD、薄い赤色;2SD、濃い赤色)、その他のパラメータ変化を黒色のバーで示す。相関する遺伝子の数およびその代表的なリストを示す(b)。血液中の白血球(WBC)数と、肝臓(LV)におけるCXCL9発現レベルとに関する相関プロット(c)。赤色の傾いた線は線形フィッティングの線を示す。WBC数を1SDより大きく変化させたアジュバントを赤色(薄い色)のフォントで示す。Exp5(bCD_ID、D35_ID、K3SPG_ID)およびExp10(DMXAA_ID、MALP2s_ID、MPLA_ID、R848_ID)からの試料についての血液学的データは、独立の実験によって取得したことに留意されたい。そのため、それらは、器官の遺伝子発現データ(プロットにおいて黒の×で示す)と物理的な関連はないが、依然として良好な相関を示した(図7を参照)。 図5はアジュバント誘導性血液学的変化を示す。アジュバント注射後の末梢血の血液学的変化(a)。黒の実線、その外側の2つの灰色の破線、さらにその外側の2つの赤色の破線は、それぞれ、バッファー対照で処置したマウスの平均ならびに、1SDの標準偏差(SD)レベルおよび2SDのSDレベルを示す。1SDを超えるパラメータ変化を赤色のバーで示し(1SD、薄い赤色;2SD、濃い赤色)、その他のパラメータ変化を黒色のバーで示す。相関する遺伝子の数およびその代表的なリストを示す(b)。血液中の白血球(WBC)数と、肝臓(LV)におけるCXCL9発現レベルとに関する相関プロット(c)。赤色の傾いた線は線形フィッティングの線を示す。WBC数を1SDより大きく変化させたアジュバントを赤色(薄い色)のフォントで示す。Exp5(bCD_ID、D35_ID、K3SPG_ID)およびExp10(DMXAA_ID、MALP2s_ID、MPLA_ID、R848_ID)からの試料についての血液学的データは、独立の実験によって取得したことに留意されたい。そのため、それらは、器官の遺伝子発現データ(プロットにおいて黒の×で示す)と物理的な関連はないが、依然として良好な相関を示した(図7を参照)。 図6は、本発明のシステムを実施するための構成を示した模式図である。 試料のVolcanoプロット。遺伝子プローブ発現の倍数変化(FC)のLog2(横軸)と、対応のあるt検定の結果(縦軸)とを試料(アジュバント、投与経路、器官)ごとのVolcanoプロットで示す。有意な変化を示したもの((FC>1.5またはFC<0.667)かつ(p値<0.01)かつ(カスタマイズPAコール=1))を赤(アップレギュレート)または青(ダウンレギュレート)のドットで示す。赤矢印で示したMPLA_ID_LNおよびPam3CSK4_ID_LNでは、多数のプローブがアップレギュレートされた(平均的に)が、MPLAまたはPam3CSK4で処置したマウスのLNにおける遺伝子発現はばらついたので、p値は<0.01に達しなかった。 個々のマウスでアップレギュレートされた遺伝子プローブのベン図を示し、マウスはそれぞれ示したアジュバントによって処置されたマウスである。円の相対的な大きさは、それぞれのアジュバントが個々のマウスにおいてどの程度遺伝子プローブをアップレギュレートさせたかを示す。円の重なる部分は、マウス間で共通してアップレギュレートされた遺伝子プローブを示す。MPLA_ID_LNおよびPam3CSK4_ID_LNには下線を付しているが、これら2種類のアジュバント処置による3試料のうちの1つ(緑、右上)は、他の2つの試料と比較してほとんど応答を示さなかったか、僅かな応答しか示さなかった。MPLA_ID_LNおよびPam3CSK4_ID_LNに関しては、その中の1つの試料のデータが解析に適さないと考えられたので(詳細は標準手順3を参照のこと)、2つの試料についての結果のみを示している。この解析においてベン図の重なりが大きいことは、同じアジュバント処置群において個々のマウス間の遺伝子応答が一貫していることを示す。 アップレギュレートされた遺伝子プローブの数と、アジュバント処置マウス間の一貫性(ベン図における重なり合う部分)との間の相関。横軸は、重複を除いた遺伝子プローブの合計数のうちの重なり合った部分に存在するプローブ(一部のアジュバントについては2つの試料間の重なり)の百分率を示す(図8を参照)。縦軸は、アップレギュレートされた(平均FC>2)遺伝子プローブの数を示す。赤線(傾いた線)は線形フィッティングを示す。灰色の領域は、99%信頼領域を示す。99%信頼領域の外に現れたアジュバントはその名称を示した。この解析は、各器官においてアジュバントで誘導される強力な遺伝子応答が個々のマウス間の遺伝子応答の一貫性と正に相関することを示す。 各アジュバントについての生物学的プロセスアノテーションを示す。それぞれの器官(LV、a;SP、b;LN、c)について、各アジュバントについてFC>2の遺伝子プローブセットを、TargetMineによってその生物学アノテーションにしたがってアノテーションした。得られたアノテーション(アノテーションp値<0.05、選択したキーワード(例えば、創傷、死、サイトカイン)を含む)を、キーワードを含むアノテーションのLogP値を合計することによって統合した(詳細は表12を参照のこと)。ヒートマップ(赤と緑のグラデーション)は-LogPを示す。赤が濃くなる(最も濃い領域よりは薄いが、その他の領域の中では比較的に濃い)とスコアが高いことを示す。緑(最も濃い領域)は、p値が<0.05に達したアノテーションがなかったことを示す。鼻内経路を使用したので、LNにおけるENDCNのデータ(c)は空欄である。 各アジュバントについての生物学的プロセスアノテーションを示す。それぞれの器官(LV、a;SP、b;LN、c)について、各アジュバントについてFC>2の遺伝子プローブセットを、TargetMineによってその生物学アノテーションにしたがってアノテーションした。得られたアノテーション(アノテーションp値<0.05、選択したキーワード(例えば、創傷、死、サイトカイン)を含む)を、キーワードを含むアノテーションのLogP値を合計することによって統合した(詳細は表12を参照のこと)。ヒートマップ(赤と緑のグラデーション)は-LogPを示す。赤が濃くなる(最も濃い領域よりは薄いが、その他の領域の中では比較的に濃い)とスコアが高いことを示す。緑(最も濃い領域)は、p値が<0.05に達したアノテーションがなかったことを示す。鼻内経路を使用したので、LNにおけるENDCNのデータ(c)は空欄である。 各アジュバントについての生物学的プロセスアノテーションを示す。それぞれの器官(LV、a;SP、b;LN、c)について、各アジュバントについてFC>2の遺伝子プローブセットを、TargetMineによってその生物学アノテーションにしたがってアノテーションした。得られたアノテーション(アノテーションp値<0.05、選択したキーワード(例えば、創傷、死、サイトカイン)を含む)を、キーワードを含むアノテーションのLogP値を合計することによって統合した(詳細は表12を参照のこと)。ヒートマップ(赤と緑のグラデーション)は-LogPを示す。赤が濃くなる(最も濃い領域よりは薄いが、その他の領域の中では比較的に濃い)とスコアが高いことを示す。緑(最も濃い領域)は、p値が<0.05に達したアノテーションがなかったことを示す。鼻内経路を使用したので、LNにおけるENDCNのデータ(c)は空欄である。 遺伝子プローブおよびアジュバントの階層的クラスタリングを示す。有意に差示的に発現された遺伝子を、LV(a)、SP(b)およびLN(c)においてアジュバント(横軸)および遺伝子プローブ(縦軸)について逐次的にクラスタリングした。各遺伝子プローブの倍数変化発現値を、図に示す色の尺度でヒートマップとして示す。遺伝子プローブは、示した最も高いスコアで関連付けられたアノテーションで40個のモジュールに分割した。TargetMineによる各モジュールのアノテーション、プローブ数およびp値を、右側に示す。 遺伝子プローブおよびアジュバントの階層的クラスタリングを示す。有意に差示的に発現された遺伝子を、LV(a)、SP(b)およびLN(c)においてアジュバント(横軸)および遺伝子プローブ(縦軸)について逐次的にクラスタリングした。各遺伝子プローブの倍数変化発現値を、図に示す色の尺度でヒートマップとして示す。遺伝子プローブは、示した最も高いスコアで関連付けられたアノテーションで40個のモジュールに分割した。TargetMineによる各モジュールのアノテーション、プローブ数およびp値を、右側に示す。 遺伝子プローブおよびアジュバントの階層的クラスタリングを示す。有意に差示的に発現された遺伝子を、LV(a)、SP(b)およびLN(c)においてアジュバント(横軸)および遺伝子プローブ(縦軸)について逐次的にクラスタリングした。各遺伝子プローブの倍数変化発現値を、図に示す色の尺度でヒートマップとして示す。遺伝子プローブは、示した最も高いスコアで関連付けられたアノテーションで40個のモジュールに分割した。TargetMineによる各モジュールのアノテーション、プローブ数およびp値を、右側に示す。 それぞれの器官におけるアジュバントに応答した細胞集団の解析。それぞれの器官におけるアジュバントに応答した細胞集団を、個々のアジュバントについて平均FC>2を満たす遺伝子プローブによって予測した。プローブのIDおよびそのFC発現値を、ImmGenデータベースに基づく10種類の免疫細胞タイプの予測マトリックスを使用して処理した。細胞タイプスコアおよび試料を縦横両軸でクラスタリングし、zスコアのヒートマップとして示す。 それぞれの器官におけるアジュバントに応答した細胞集団の解析。それぞれの器官におけるアジュバントに応答した細胞集団を、個々のアジュバントについて平均FC>2を満たす遺伝子プローブによって予測した。プローブのIDおよびそのFC発現値を、ImmGenデータベースに基づく10種類の免疫細胞タイプの予測マトリックスを使用して処理した。細胞タイプスコアおよび試料を縦横両軸でクラスタリングし、zスコアのヒートマップとして示す。 それぞれの器官におけるアジュバントに応答した細胞集団の解析。それぞれの器官におけるアジュバントに応答した細胞集団を、個々のアジュバントについて平均FC>2を満たす遺伝子プローブによって予測した。プローブのIDおよびそのFC発現値を、ImmGenデータベースに基づく10種類の免疫細胞タイプの予測マトリックスを使用して処理した。細胞タイプスコアおよび試料を縦横両軸でクラスタリングし、zスコアのヒートマップとして示す。 それぞれの器官における40モジュールの免疫細胞タイプ解析。それぞれの器官(LV、a;SP、b;LN、c)における40モジュールを、その応答性の免疫細胞集団についてImmGenデータベースを参照として使用して解析した。モジュールに関連付けられた細胞集団をヒートマップとして示す。 それぞれの器官における40モジュールの免疫細胞タイプ解析。それぞれの器官(LV、a;SP、b;LN、c)における40モジュールを、その応答性の免疫細胞集団についてImmGenデータベースを参照として使用して解析した。モジュールに関連付けられた細胞集団をヒートマップとして示す。 それぞれの器官における40モジュールの免疫細胞タイプ解析。それぞれの器官(LV、a;SP、b;LN、c)における40モジュールを、その応答性の免疫細胞集団についてImmGenデータベースを参照として使用して解析した。モジュールに関連付けられた細胞集団をヒートマップとして示す。 アジュバントのクラスター解析。アジュバント投与マウス由来の各試料を、RのWard D2法によって、それぞれの器官(LV、a;SP、b;LN、c)について個別にクラスタリングした。LVおよびSPについては高さ閾値1.0で、LNについては高さ閾値1.5でアジュバントをグルーピングし、閾値線を赤で示す。3つの器官の間で一貫したアジュバントのグループメンバーは色を付けて示す。バッチ効果および弱いアジュバント(バッチ効果は上回るが、閾値線を下回る)のグループを、灰色で示す。D35_ID_x2およびK3_ID_x3(非常に強い遺伝子応答を示した2つの試料)は、ALM、bCD、ENDCNおよびFCAなどの他のDAMP関連アジュバントと一緒にG2LVにクラスタリングされた。 アジュバントのクラスター解析。アジュバント投与マウス由来の各試料を、RのWard D2法によって、それぞれの器官(LV、a;SP、b;LN、c)について個別にクラスタリングした。LVおよびSPについては高さ閾値1.0で、LNについては高さ閾値1.5でアジュバントをグルーピングし、閾値線を赤で示す。3つの器官の間で一貫したアジュバントのグループメンバーは色を付けて示す。バッチ効果および弱いアジュバント(バッチ効果は上回るが、閾値線を下回る)のグループを、灰色で示す。D35_ID_x2およびK3_ID_x3(非常に強い遺伝子応答を示した2つの試料)は、ALM、bCD、ENDCNおよびFCAなどの他のDAMP関連アジュバントと一緒にG2LVにクラスタリングされた。 アジュバントのクラスター解析。アジュバント投与マウス由来の各試料を、RのWard D2法によって、それぞれの器官(LV、a;SP、b;LN、c)について個別にクラスタリングした。LVおよびSPについては高さ閾値1.0で、LNについては高さ閾値1.5でアジュバントをグルーピングし、閾値線を赤で示す。3つの器官の間で一貫したアジュバントのグループメンバーは色を付けて示す。バッチ効果および弱いアジュバント(バッチ効果は上回るが、閾値線を下回る)のグループを、灰色で示す。D35_ID_x2およびK3_ID_x3(非常に強い遺伝子応答を示した2つの試料)は、ALM、bCD、ENDCNおよびFCAなどの他のDAMP関連アジュバントと一緒にG2LVにクラスタリングされた。 図14AのLVクラスターの左側の拡大図である。 図14AのLVクラスターの右側の拡大図である。 図14BのSPクラスターの左側の拡大図である。 図14BのSPクラスターの右側の拡大図である。 図14CのLNクラスターの左側の拡大図である。 図14CのLNクラスターの右側の拡大図である。 アジュバントで関連付けられたグループ内の上位10遺伝子。アジュバントグループ関連遺伝子のzスコアヒートマップ。アジュバントグループ関連遺伝子をzスコアから選択した。上位30遺伝子のリストをまずこのzスコアにしたがって選択し、その後上位10遺伝子を実際の遺伝子発現値にしたがって選択した。 アジュバントで関連付けられたグループ内の上位10遺伝子。アジュバントグループ関連遺伝子のzスコアヒートマップ。アジュバントグループ関連遺伝子をzスコアから選択した。上位30遺伝子のリストをまずこのzスコアにしたがって選択し、その後上位10遺伝子を実際の遺伝子発現値にしたがって選択した。 アジュバントで関連付けられたグループ内の上位10遺伝子。アジュバントグループ関連遺伝子のzスコアヒートマップ。アジュバントグループ関連遺伝子をzスコアから選択した。上位30遺伝子のリストをまずこのzスコアにしたがって選択し、その後上位10遺伝子を実際の遺伝子発現値にしたがって選択した。 アジュバントグループ関連遺伝子間の異なる関係性および共通の関係性ならびにそれぞれの器官からの40モジュール。アジュバントグループ関連のアップレギュレートされた遺伝子を、遺伝子発現値のzスコアに基づいて選択した(表17)。選択したプローブを、それぞれの器官についての40モジュール内の分布について解析した。G1関連遺伝子は、単一のインターフェロン関連モジュールに分布した(表17および表18)。他のグループ関連の遺伝子は、それぞれの器官についていくつかのモジュールに広く異なって分布した。LNにおけるG1(アジュバント5種類)は、5種類のアジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)に関連する遺伝子の分布の結果を示す。バーおよび数字は、各グループ内の遺伝子プローブの百分率を示す。LVにおけるG4ならびにLNにおけるG3およびG6は、それぞれ、1種類のアジュバントのみを含む(それぞれ、MALP2s、FK565およびAddaVax)。これらの結果は、利用できるデータが限定的であるので、解釈には注意を要する。 アジュバントグループ関連遺伝子間の異なる関係性および共通の関係性ならびにそれぞれの器官からの40モジュール。アジュバントグループ関連のアップレギュレートされた遺伝子を、遺伝子発現値のzスコアに基づいて選択した(表17)。選択したプローブを、それぞれの器官についての40モジュール内の分布について解析した。G1関連遺伝子は、単一のインターフェロン関連モジュールに分布した(表17および表18)。他のグループ関連の遺伝子は、それぞれの器官についていくつかのモジュールに広く異なって分布した。LNにおけるG1(アジュバント5種類)は、5種類のアジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)に関連する遺伝子の分布の結果を示す。バーおよび数字は、各グループ内の遺伝子プローブの百分率を示す。LVにおけるG4ならびにLNにおけるG3およびG6は、それぞれ、1種類のアジュバントのみを含む(それぞれ、MALP2s、FK565およびAddaVax)。これらの結果は、利用できるデータが限定的であるので、解釈には注意を要する。 アジュバントグループ関連遺伝子間の異なる関係性および共通の関係性ならびにそれぞれの器官からの40モジュール。アジュバントグループ関連のアップレギュレートされた遺伝子を、遺伝子発現値のzスコアに基づいて選択した(表17)。選択したプローブを、それぞれの器官についての40モジュール内の分布について解析した。G1関連遺伝子は、単一のインターフェロン関連モジュールに分布した(表17および表18)。他のグループ関連の遺伝子は、それぞれの器官についていくつかのモジュールに広く異なって分布した。LNにおけるG1(アジュバント5種類)は、5種類のアジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)に関連する遺伝子の分布の結果を示す。バーおよび数字は、各グループ内の遺伝子プローブの百分率を示す。LVにおけるG4ならびにLNにおけるG3およびG6は、それぞれ、1種類のアジュバントのみを含む(それぞれ、MALP2s、FK565およびAddaVax)。これらの結果は、利用できるデータが限定的であるので、解釈には注意を要する。 CpGアジュバントによって有意にアップレギュレートされた遺伝子のベン図およびアノテーション解析。有意に差示的に発現された遺伝子をベン図で解析し、示した遺伝子セットを、TargetMineによる生物学的アノテーションのためにさらに解析した。D35_K3_K3SPGの共通遺伝子(75の遺伝子プローブを含む)はインターフェロン関連の生物学的プロセスに強く関連付けられた。 stingリガンドアジュバントによって有意にアップレギュレートされた遺伝子のベン図およびアノテーション解析。有意に差示的に発現された遺伝子をベン図で解析し、示した遺伝子セットを、TargetMineによる生物学的アノテーションのためにさらに解析した。cdiGMP_cGAMP_DMXAAの共通遺伝子(1491の遺伝子プローブを含む)はインターフェロン関連の生物学的プロセスに強く関連付けられた。 血液学的データと遺伝子発現との代表的な相関プロット。示した器官におけるCxcl(a)、Il7(b)およびS1pr5(c)についての血液学的データと遺伝子発現との代表的な相関プロットを示す。上のパネルは白血球(WBC)のデータを示す。下のパネルはリンパ球(LYM)を示す。(a)LVのWBC_Cxcl9において高い相関が観察された。LNでは、Cxcl9は、cdiGMP、cGAMPおよびDMXAAによって誘導されたが、これら3種類のアジュバントは白血病を引き起こさなかった。(b)SPにおけるIl7の低減は、アジュバント誘導性のリンパ球欠乏症と強度に相関した。(c)SPにおけるS1pr5の低減もまた、リンパ球欠乏症と強度に相関した。興味深いことに、S1pr5とLYMとの相関はSPにおいてのみ観察された。 血液学的データと遺伝子発現との代表的な相関プロット。示した器官におけるCxcl(a)、Il7(b)およびS1pr5(c)についての血液学的データと遺伝子発現との代表的な相関プロットを示す。上のパネルは白血球(WBC)のデータを示す。下のパネルはリンパ球(LYM)を示す。(a)LVのWBC_Cxcl9において高い相関が観察された。LNでは、Cxcl9は、cdiGMP、cGAMPおよびDMXAAによって誘導されたが、これら3種類のアジュバントは白血病を引き起こさなかった。(b)SPにおけるIl7の低減は、アジュバント誘導性のリンパ球欠乏症と強度に相関した。(c)SPにおけるS1pr5の低減もまた、リンパ球欠乏症と強度に相関した。興味深いことに、S1pr5とLYMとの相関はSPにおいてのみ観察された。 血液学的データと遺伝子発現との代表的な相関プロット。示した器官におけるCxcl(a)、Il7(b)およびS1pr5(c)についての血液学的データと遺伝子発現との代表的な相関プロットを示す。上のパネルは白血球(WBC)のデータを示す。下のパネルはリンパ球(LYM)を示す。(a)LVのWBC_Cxcl9において高い相関が観察された。LNでは、Cxcl9は、cdiGMP、cGAMPおよびDMXAAによって誘導されたが、これら3種類のアジュバントは白血病を引き起こさなかった。(b)SPにおけるIl7の低減は、アジュバント誘導性のリンパ球欠乏症と強度に相関した。(c)SPにおけるS1pr5の低減もまた、リンパ球欠乏症と強度に相関した。興味深いことに、S1pr5とLYMとの相関はSPにおいてのみ観察された。 AS04のクラスター解析。AS04およびalum(ALM_gsk)対照試料についてのデータを、それぞれの器官(LV、a;SP、b;LN、c)について処理して解析した。全体として、クラスター構造は、図2および図14に示されるものと同様となった。対照のalum(ALM_gsk)はバッチ効果閾値を下回り、これはLVおよびSPにおけるALMでも同様であった。LNにおけるALM_gskのうちの1つの試料は、バッチ効果の閾値を上回り、LNにおいてG2に分類された。 AS04のクラスター解析。AS04およびalum(ALM_gsk)対照試料についてのデータを、それぞれの器官(LV、a;SP、b;LN、c)について処理して解析した。全体として、クラスター構造は、図2および図14に示されるものと同様となった。対照のalum(ALM_gsk)はバッチ効果閾値を下回り、これはLVおよびSPにおけるALMでも同様であった。LNにおけるALM_gskのうちの1つの試料は、バッチ効果の閾値を上回り、LNにおいてG2に分類された。 AS04のクラスター解析。AS04およびalum(ALM_gsk)対照試料についてのデータを、それぞれの器官(LV、a;SP、b;LN、c)について処理して解析した。全体として、クラスター構造は、図2および図14に示されるものと同様となった。対照のalum(ALM_gsk)はバッチ効果閾値を下回り、これはLVおよびSPにおけるALMでも同様であった。LNにおけるALM_gskのうちの1つの試料は、バッチ効果の閾値を上回り、LNにおいてG2に分類された。 図20AのLVクラスターの左側の拡大図である。 図20AのLVクラスターの右側の拡大図である。 図20BのSPクラスターの左側の拡大図である。 図20BのSPクラスターの右側の拡大図である。 図20CのLNクラスターの左側の拡大図である。 図20CのLNクラスターの右側の拡大図である。 図21は複数の器官のクラスター解析によって決定した場合のアジュバントのグループ化を示す。図2、図14および図20に示されるデータを一つの表にまとめた。AS04はLNにおいてG1であり、LVにおいてG2であった。SPにおいてG2は固有のグループとなった。AS04のデータを追加しても、図2および図14に示されるアジュバントクラスター構造は全体として変化しなかった。 図22では、Advax(商標)が、Th2型抗原と組み合わせた場合にはTh2応答を誘導することを示す。(A~D)0日目および14日目に、C57BL/6Jマウス(n=3)にSVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgEを14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのSVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはIIの核タンパク質エピトープペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05、†††P<0.001で示す。 図22では、Advax(商標)が、Th2型抗原と組み合わせた場合にはTh2応答を誘導することを示す。(A~D)0日目および14日目に、C57BL/6Jマウス(n=3)にSVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgEを14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのSVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはIIの核タンパク質エピトープペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05、†††P<0.001で示す。 図22では、Advax(商標)が、Th2型抗原と組み合わせた場合にはTh2応答を誘導することを示す。(A~D)0日目および14日目に、C57BL/6Jマウス(n=3)にSVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgEを14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのSVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはIIの核タンパク質エピトープペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05、†††P<0.001で示す。 図23では、Advax(商標)が、Th1型抗原と組み合わせた場合にはTh1応答を呈することを示す。(A-D)0日目および14日目に、C57BL/6Jマウス(n=3)に、WVおよびアジュバントをi.m.投与することで免疫化した。15μgのSVを、アラムとともに用いて0日目および14日目に免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgE力価を14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのWVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはII特異的な核タンパク質ペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05で示す。 図23では、Advax(商標)が、Th1型抗原と組み合わせた場合にはTh1応答を呈することを示す。(A-D)0日目および14日目に、C57BL/6Jマウス(n=3)に、WVおよびアジュバントをi.m.投与することで免疫化した。15μgのSVを、アラムとともに用いて0日目および14日目に免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgE力価を14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのWVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはII特異的な核タンパク質ペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05で示す。 図23では、Advax(商標)が、Th1型抗原と組み合わせた場合にはTh1応答を呈することを示す。(A-D)0日目および14日目に、C57BL/6Jマウス(n=3)に、WVおよびアジュバントをi.m.投与することで免疫化した。15μgのSVを、アラムとともに用いて0日目および14日目に免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2cならびに全IgE力価を14日目および28日目にELISAで測定した。(E-G)28日目に、脾細胞を、15μgのWVおよびアジュバントで免疫化したマウスから調製し、MHCクラスIまたはII特異的な核タンパク質ペプチドで刺激した。刺激後、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01、***P<0.001、P<0.05で示す。 図24では、Advax(商標)が、Th0型抗原と組み合わせた場合またはTlr7-/-マウスにおいては免疫応答を誘導しないことを示す。0日目および14日目に、(A)C57BL/6Jマウス(n=4または5)または(B)Tlr7-/-マウス(n=5)に、それぞれ、100μgのOVAおよびアジュバント、または1.5μgのWV単独もしくは1.5μgのWVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG力価を14日目および28日目にELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnett多重比較検定における*P<0.05、**P<0.01で示す。 図25では、Advax(商標)がインビボでDCを活性化するが、インビトロでは活性化しないことを示す。(A~C)骨髄由来DCを、インビトロで24時間1mg/mlアラム、1mg/mlAdvax(商標)または50ng/mlLPSで刺激し、その後、pDC上のCD40発現を評価した。(D-F)C57BL/6Jマウスの尾基底に0.67mgアラム、1mg Advax(商標)または50ng LPSを注射した。注射の24時間後に、鼠径部リンパ節を採取し、DNaseIおよびコラゲナーゼで処理した。その後、細胞を染色し、FACSによって分析した。結果は3つの別個の実験を表す。生理食塩水の結果を線とともに灰色の領域で示し、アジュバントの結果をさらなる塗りつぶしを行わず線のみで示す。 図26では、マクロファージがAdvax(商標)のアジュバント効果に必要とされることを示す。Brilliant Violet 421標識Advaxデルタイヌリン粒子のi.d.投与の(A-C)1時間後および(D-F)24時間後のリンパ節の2光子励起顕微鏡分析。Advax(商標)投与の30分前に抗CD169-FITCおよび抗MARCO-フィコエリトリン抗体をi.d.注射することでCD169およびMARCO マクロファージを染色した。(A,D)青(左)はAdvax(商標)を示し、(B,E)緑(中央)はCD169マクロファージを示し、(C,F)赤(右)はMARCO マクロファージを示す。(G,H)リンパ節における貪食細胞を、示した日(-2日目および-7日目)にクロドロン酸リポソーム注射することで枯渇させ、その後WV+Advax(商標)を0日目にi.d.投与することで免疫化した。血清中の抗原-特異的全IgGまたはIgG2c力価を14日目および28日目にELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Studentのt検定における*P<0.05、**P<0.01、***P<0.001で示す。 図26では、マクロファージがAdvax(商標)のアジュバント効果に必要とされることを示す。Brilliant Violet 421標識Advaxデルタイヌリン粒子のi.d.投与の(A-C)1時間後および(D-F)24時間後のリンパ節の2光子励起顕微鏡分析。Advax(商標)投与の30分前に抗CD169-FITCおよび抗MARCO-フィコエリトリン抗体をi.d.注射することでCD169およびMARCO マクロファージを染色した。(A,D)青(左)はAdvax(商標)を示し、(B,E)緑(中央)はCD169マクロファージを示し、(C,F)赤(右)はMARCOマクロファージを示す。(G,H)リンパ節における貪食細胞を、示した日(-2日目および-7日目)にクロドロン酸リポソーム注射することで枯渇させ、その後WV+Advax(商標)を0日目にi.d.投与することで免疫化した。血清中の抗原-特異的全IgGまたはIgG2c力価を14日目および28日目にELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Studentのt検定における*P<0.05、**P<0.01、***P<0.001で示す。 図27では、Advax(商標)が、IL-1β、CLRおよびTNF-αシグナル伝達経路の遺伝子発現を変化させることを示す。Advax(商標)単独投与(i.d.またはi.p.)6時間後の全器官(肺;LG、肝臓;LV、脾臓;SP、腎臓;KD、リンパ節;LN)のトランスクリプトームをAffimetrix Gene Chip(n=3)によって取得した。(A)選択した遺伝子プローブ(FC>2かつPA=1)のみを示す。(B)Advax(商標)応答細胞集団解析を行った。図の左半分は、10種の免疫細胞型を示し、右半分は試料を示す。内側の円内のribbonは、それぞれの試料の細胞型スコアを表す。中間層の環の色は細胞型または試料を表す。最外層の環は、合計寄与のうちの、対抗する因子から見たときのそれぞれの因子(細胞型または試料)についての%を表す。例えば、SP.ipにおいて、好中球は、その細胞集団の約30%を占める。(C)SPにおいてAdvax(商標)誘導性遺伝子のIPA上流レギュレーター解析を行った。 図27では、Advax(商標)が、IL-1β、CLRおよびTNF-αシグナル伝達経路の遺伝子発現を変化させることを示す。Advax(商標)単独投与(i.d.またはi.p.)6時間後の全器官(肺;LG、肝臓;LV、脾臓;SP、腎臓;KD、リンパ節;LN)のトランスクリプトームをAffimetrix Gene Chip(n=3)によって取得した。(A)選択した遺伝子プローブ(FC>2かつPA=1)のみを示す。(B)Advax(商標)応答細胞集団解析を行った。図の左半分は、10種の免疫細胞型を示し、右半分は試料を示す。内側の円内のribbonは、それぞれの試料の細胞型スコアを表す。中間層の環の色は細胞型または試料を表す。最外層の環は、合計寄与のうちの、対抗する因子から見たときのそれぞれの因子(細胞型または試料)についての%を表す。例えば、SP.ipにおいて、好中球は、その細胞集団の約30%を占める。(C)SPにおいてAdvax(商標)誘導性遺伝子のIPA上流レギュレーター解析を行った。 図27では、Advax(商標)が、IL-1β、CLRおよびTNF-αシグナル伝達経路の遺伝子発現を変化させることを示す。Advax(商標)単独投与(i.d.またはi.p.)6時間後の全器官(肺;LG、肝臓;LV、脾臓;SP、腎臓;KD、リンパ節;LN)のトランスクリプトームをAffimetrix Gene Chip(n=3)によって取得した。(A)選択した遺伝子プローブ(FC>2かつPA=1)のみを示す。(B)Advax(商標)応答細胞集団解析を行った。図の左半分は、10種の免疫細胞型を示し、右半分は試料を示す。内側の円内のribbonは、それぞれの試料の細胞型スコアを表す。中間層の環の色は細胞型または試料を表す。最外層の環は、合計寄与のうちの、対抗する因子から見たときのそれぞれの因子(細胞型または試料)についての%を表す。例えば、SP.ipにおいて、好中球は、その細胞集団の約30%を占める。(C)SPにおいてAdvax(商標)誘導性遺伝子のIPA上流レギュレーター解析を行った。 図27CのSPにおけるAdvax(商標)誘導性遺伝子のIPA上流レギュレーター解析の符号の説明の拡大図である。 図27CのSPにおけるAdvax(商標)誘導性遺伝子のIPA上流レギュレーター解析による相関図の拡大図である。 図28では、TNF-αが、Advax(商標)のアジュバント効果に必要とされることを示す。(A)腹腔マクロファージをAdvax(商標)またはアラムで8時間刺激し、上清中のTNF-αをELISAで測定した。(B)1mg Advax(商標)または0.67mgアラムをi.p.注射した1時間後に、血清および腹腔洗浄液を収集し、血清および洗浄液中のTNF-αレベルをELISAで測定した。(C-E)0日目および14日目に、ヘテロ接合またはTnfa-/-マウス(n=5)に、1.5μgのWVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2c力価を、14日目および28日目にELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnettの多重比較検定またはStudentのt検定における*P<0.05,**P<0.01,***P<0.001で示す。 図28では、TNF-αが、Advax(商標)のアジュバント効果に必要とされることを示す。(A)腹腔マクロファージをAdvax(商標)またはアラムで8時間刺激し、上清中のTNF-αをELISAで測定した。(B)1mg Advax(商標)または0.67mgアラムをi.p.注射した1時間後に、血清および腹腔洗浄液を収集し、血清および洗浄液中のTNF-αレベルをELISAで測定した。(C-E)0日目および14日目に、ヘテロ接合またはTnfa-/-マウス(n=5)に、1.5μgのWVおよびアジュバントをi.m.投与することで免疫化した。血清中の抗原特異的全IgG、IgG1およびIgG2c力価を、14日目および28日目にELISAで測定した。結果は3つの別個の実験を表す。中央値およびSEMをそれぞれの群について示している。統計的有意を、Dunnettの多重比較検定またはStudentのt検定における*P<0.05,**P<0.01,***P<0.001で示す。 毒性ゲノム学データベースに基づく「毒性」群および「非毒性」群の作成の概略図を示す。 ネクローシス予測モデルのために選択したプローブ(遺伝子)について、免疫応答(1)および代謝(4)に関連する5つの経路に濃縮されたことを示す。 各アジュバント投与の6時間および24時間後時点の遺伝子変動パターンを、毒性ゲノム学データベースの6時間および24時間後時点の「毒性」遺伝子パターンおよび「非毒性」遺伝子パターンと比較してそれぞれのアジュバントについての「毒性」スコアを計算した。上は、6時間後(左)または24時間後(右)の比較結果において高い毒性スコアを示したアジュバントを示す。下は、24時間後の比較結果における各アジュバントの毒性スコアを示す。 実際に各アジュバントを投与して6時間後(上)および24時間後(下)時点のALTの活性を示す。 マウスにFK565を腹腔内投与した1日目、2日目、3日目および5日目に収集した肝臓をヘマトキシリン・エオジン染色し、組織学的解析を行った結果を示す。矢印は、肝損傷を示す。スケールバーは100μmを示す。 マウスにFK565を腹腔内投与した後に収集した肝臓をTUNEL染色し、アポトーシスを確認した結果を示す。左は対称のPBS投与の結果を示し、右はFK565投与の結果を示す。 マウスにPBS、FK565(1μg/kg、10μg/kgまたは100μg/kg)またはLPS(1mg/kg)を腹腔内投与した3時間後、1日目および2日目に血液を収集した。これらの血液を使用してアスパラギン酸トランスアミナーゼ(AST)およびアラニントランスアミナーゼ(ALT)の血清レベルについて、生化学的解析を行った結果を示す。 データベースを解析した結果得られたOsmrを中心とした遺伝子クラスターを示す。 上段は、各アジュバントをラットに投与した6時間後の肝臓における遺伝子Yの発現変化(倍数変化)を示す。下段は、FK565を野生型(左)またはOsmr欠失(右)マウスに投与して収集した肝臓をTUNEL染色した結果を示す。 野生型またはOsmr欠失マウスにPBS、FK565(1μg/kg、10μg/kgまたは100μg/kg)またはLPS(1mg/kg)を腹腔内投与した1日後に血液を収集した。これらの血液を使用してアスパラギン酸トランスアミナーゼ(AST)およびアラニントランスアミナーゼ(ALT)の血清レベルについて、生化学的解析を行った結果を示す。 アジュバント性予測モデルの作成の概略図を示す。 アジュバント性予測モデルのために選択したプローブ(遺伝子)は、細胞死(4)、免疫応答(2)および代謝(36)に関連する42の経路に濃縮されたことを示す(左)。細胞死(4)および免疫応答(2)に関する経路を構成する遺伝子のベン図を示す(右)。 アジュバント性予測モデルによって計算された、薬物、免疫刺激剤、LPSおよびTNFのスコアを示す(上)。PO;経口投与、IV;静脈内投与、IP;腹腔内投与をそれぞれ示す。アジュバント性予測モデルのROC曲線を示す(下)。 マウスに、オボアルブミンとともにalum、CpGk3または5種類の薬物(ACAP、BOR、CHX、COL、PHA)を2~3種類の用量で0日目および14日目に皮内投与し、21日目に血液および脾臓を収集した。抗オボアルブミン(ova)抗体価(IgG1、IgG2および全IgG)を21日目に測定した結果を示す。Y軸は、log10の尺度で抗体価の増大を示す。括弧内の数は投与用量(μg/1回/マウス)を示す。オボアルブミンは10μg/1回/マウスで投与した。 脾臓細胞に対して、インビトロで、各薬物に加えて、オボアルブミン(ova)257~264ペプチド(OVA-MHC1)、ova 323~339ペプチド(OVA-MHC2)またはovaタンパク質(OVA-whole)を添加して刺激するか、または追加の刺激なしで処理して上清を収集した。上清におけるTh1型(IL-2およびIFN-γ)のサイトカインをELISAで測定した結果を示す。括弧内の数は投与用量(μg/1回/マウス)を示す。オボアルブミンは10μg/1回/マウスで投与した。 脾臓細胞に対して、インビトロで、各薬物に加えて、オボアルブミン(ova)257~264ペプチド(OVA-MHC1)、ova 323~339ペプチド(OVA-MHC2)またはovaタンパク質(OVA-whole)を添加して刺激するか、または追加の刺激なしで処理して上清を収集した。上清におけるTh2型(IL-4およびIL-5)のサイトカインをELISAで測定した結果を示す。括弧内の数は投与用量(μg/1回/マウス)を示す。オボアルブミンは10μg/1回/マウスで投与した。 マウスに、オボアルブミンとともにalum、CpGk3または5種類の薬物(ACAP、BOR、CHX、COL、PHA)を投与し、3時間後(0日目)に血液を収集し、アスパラギン酸トランスアミナーゼ(AST)およびアラニントランスアミナーゼ(ALT)の血清レベルについて生化学的解析を行った結果を示す。括弧内の数は投与用量(μg/1回/マウス)を示す。オボアルブミンは10μg/1回/マウスで投与した。 マウスに各薬物を腹腔内投与して6時間および24時間後に血液を収集し、循環血液中のmiRNAを分析した結果を示す。縦軸は-log10(p値)を示し、横軸は-log(miRNA量)を示す。 マウスにAlumおよびAS04を投与した6時間および24時間後の循環血液中のmiRNAを分析した結果を示す。縦軸は-log10(p値)を示し、横軸は-log(miRNA量)を示す。
 以下、本発明を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本発明の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 (医薬成分の分類)
 医薬成分は、作用効果が分かっているものであっても、系統立てて分類されていないものも多い。例えば、免疫アジュバントはワクチンの効力の向上に重要な働きをする。広範な物質が免疫アジュバントとして機能することが報告されているが、その作用様式および安全性プロファイルは完全には理解されているというものではない。本発明は、多数の(実施例では、21種類)の異なる医薬成分(例えば、アジュバント)を用いた動物(例えば、マウス)における臓器・器官全体のトランスクリプトーム分析を行い、これらの医薬成分誘導性応答(アジュバントの場合、アジュバント誘導性応答)の統合データを作成し、医薬成分(例えば、アジュバント)の詳細な特徴を解明し(抽出し)、その作用メカニズムおよび潜在的な安全性プロファイルを予測し分類することができることを見出し、具体的にグループ分けができること、およびその各々に標準的な医薬成分(例えば、アジュバント)を設定することができることを見出した。本発明は、任意の医薬成分(例えば、アジュバント)を網羅的かつ体系的に評価するための柔軟性のある標準化する方法およびその枠組み(分類方法)を提供する。本発明では、例えば、少なくともG1~G6と命名された特徴のあるアジュバント群またはそれ以外の群に各アジュバントに分類することができることが示された。このような分類には、医薬成分の機能(例えば、アジュバント機能)が未知の物質または新規物質などの対象物質のトランスクリプトーム分析を行い、機能が確認された基準医薬成分(例えば、基準アジュバント)のトランスクリプトーム分析データを含めてクラスタリング分析を行い、対象物質がどの基準医薬成分と同様のクラスターに分類されるかを判断することで、対象物質の属性を特定または特定の予測をすることができる。本発明は、任意の医薬成分(有効成分、添加成分、アジュバントなど)を網羅的かつ体系的に評価するための柔軟性のある標準化する方法およびその枠組みを提供する。
 本発明の例示的な分類対象であるアジュバントは、伝統的には、ワクチンにおける添加剤として使用されてきた。種々の物質、例えば、油エマルジョン、アルミニウム塩またはナノ粒子としてしばしば製剤化される小分子、脂質および核酸が、多くのワクチン抗原とともにアジュバントとして機能することが知られている(Coffman,R.L.,Sher,A. & Seder, R.A. Immunity 33,492-503(2010);Reed, S.G., Orr, M.T. & Fox, C.B. Nat Med 19, 1597-1608(2013)およびDesmet,C.J. & Ishii, K.J. Nature reviews. Immunology 12, 479-491(2012))。アジュバントの作用様式は、経験的に2つのクラス(免疫刺激剤および抗原送達システム)にカテゴリー化されているが、体系的な分類はなされていない。免疫刺激剤は、その外因性起源または内因性起源にしたがって、病原体関連分子パターン(PAMPs)(Janeway,C.A., Jr. Cold Spring Harbor symposia on quantitative biology 54 Pt 1, 1-13(1989))または傷害関連分子パターン(DAMPs)(Matzinger, P. Annu Rev Immunol 12, 991-1045(1994))にさらに分類することが提唱されており、生殖系列コード化パターン認識受容体によって認識され、これによってインターフェロンおよび炎症促進性サイトカインの分泌が誘導される(Kawai,T. & Akira, S. Nature immunology 11, 373-384(2010);Matzinger, P. Annu RevImmunol 12, 991-1045(1994))。しかし、多くのアジュバントは、レシピエントにおける複数のシグナル伝達経路に影響を及ぼすと考えられていたため、それぞれのアジュバントがインビボで免疫応答を増強するまたは方向付ける根底にあるメカニズムは従来の技術では分類不明であったが、本発明では、これらの分類が可能となった。本発明は、宿主応答について、全てのアジュバントをカテゴリー化することができる。
 新しい医薬成分を使用するためには、適切な製剤化、GMP生産法をクリアすることが必要である。例えば、新しいアジュバントを臨床用のワクチンに使用するためには、適切な製剤化、GMP生産法をクリアすることが必要であり、そしてより重要なことは、そのアジュバントの使用によるリスクおよびベネフィット(安全性および有効性)の確立を含め複数のステップをクリアする必要がある(Shoenfeld, Y. & Agmon-Levin, N. Journal of autoimmunity 36, 4-8(2011);Batista-Duharte, A., Lindblad, E.B. & Oviedo-Orta, E. Toxicologyletters 203, 97-105(2011);Zaitseva, M. et al. Vaccine 30, 4859-4865(2012).;Stassijns,J., Bollaerts, K., Baay, M. & Verstraeten, T. Vaccine 34, 714-722(2016))。動物実験の結果は、ある程度ヒトに外挿することができることから、前臨床動物研究がワクチンの開発のために必要とされている(Batista-Duharte,A., Lindblad, E.B. & Oviedo-Orta, Toxicology letters 203, 97-105(2011);Sun,Y., Gruber, M. & Matsumoto,M. Journal of pharmacological and toxicologicalmethods 65, 49-57(2012))。実際、新しいアジュバント化ワクチンの開発のためには、動物における生物学的影響および免疫病理学的影響の慎重な評価が必須となる(Mastelic,B. et al. Biologicals 41, 115-124(2013))。現在承認されているアジュバント化ワクチンは、ヒトに使用する前に前臨床毒性評価をクリアしており、市販後その安全性が市販後調査等の副作用調査モニタリングによって追跡調査されている。しかし、大きく異なる物理化学的性質を備えた種々の物質がアジュバントとして機能することの合理的な説明はこれまでなされておらず、ワクチンアジュバントの作用様式および安全性リスクについて動物モデルで評価するための単純かつ直截な方法は存在していなかったが、本発明の手法を用いることによりこれが可能となった。
 システムワクチン学の手法(Pulendran, B. Proc Natl Acad Sci U S A 111, 12300-12306(2014))は、保護作用の相関関係を特定することによってワクチン科学の研究手法であり、(特にヒトワクチンについて)比較的新しい手法である(Ravindran,R. et al. Science 343, 313-317(2014);Tsang, J.S. et al. Cell 157, 499-513(2014);Nakaya, H.I. et al. Immunity 43, 1186-1198(2015);Sobolev, O. et al.Nature immunology 17, 204-213(2016))。ワクチン接種後の早期に誘導される遺伝子発現プロファイルを調査することによって、これらの手法は、その後の適応免疫応答を予測することができる。
 本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)に対して、体系的で網羅的な研究手法を提供するものである。例えば、アジュバント分野では、種々の分析方法がワクチンアジュバントについて研究されており、分子シグネチャが報告されているが、体系的な解決には至っておらず、むしろ、種々の既知の分類方法では、分類ができないと報告されている(Olafsdottir, T., Lindqvist, M. & Harandi, A.M. Vaccine 33,5302-5307(2015))。したがって、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を体系的網羅的に分類し、新規医薬成分(例えば、有効成分、添加成分、アジュバント)の有効性および安全性について信頼性のおける予測手段を提供するものである。さらに、本発明は、医薬成分の機能(例えば、有効成分の薬効、添加成分の補助機能、アジュバント機能)が未知または未確定の物質について、その機能の特定について信頼性のおける予測手段を提供するものであり、さらに、また、機能が既知のものでも、その品質管理に役立てることができ、安全性管理の一環として活用することもできる。また、新規医薬成分(例えば、アジュバント)の有効性および安全性の確認の一環として利用することができる。
 本発明者らは、広範な異なるアジュバントの投与後に、マウスの肝臓(LV)、脾臓(SP)および流入領域鼠径リンパ節(LN)からおよそ330のマイクロアレイの遺伝子発現データを取得した。データを統合することで、アジュバント誘導遺伝子(トランスクプトーム)パネルを規定することができた。本明細書ではこれを「アジュバント遺伝子空間(スペース)」とも称する。この空間内のアジュバント誘導遺伝子の発現データ(トランスクプトーム)を解析することで、インビボにおけるそれぞれのアジュバントの性質を明らかにした。この手法を使用して、2つの比較的新しいアジュバントについてその未知の作用メカニズムを予測した。この予測の1つは、独立して研究された結果と一致しており、本発明の手法が正しい予測結果を与えることが確認された(Hayashi, M. et al.. Scientific Reports 6: 29165.doi:10.1038/srep29165.)。そして、この考え方は、アジュバントに限られることなく、有効成分、添加成分などの医薬成分一般に適用し得ることが想定される。すなわち、本発明者らは、広範な異なる医薬成分の投与後に、遺伝子発現データを取得し、データを統合することで、医薬成分誘導遺伝子(トランスクプトーム)パネルを規定することができる。本明細書ではこれを「医薬成分遺伝子空間(スペース)」とも称する。この空間内の医薬成分誘導遺伝子の発現データ(トランスクプトーム)を解析することで、インビボにおけるそれぞれの医薬成分の性質を明らかにすることができる。このような方法は、機械学習などを活用した人工知能(AI)を利用して実施することができる。
 (定義)
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。
 本明細書において「医薬成分」とは、医薬を構成し得る任意の成分を意味し、例えば、有効成分(それ自体が薬効を示すもの)、添加成分(それ自体は、薬効を期待されていないが、医薬として含まれる場合一定の役割(例えば、賦形剤、滑沢剤、界面活性剤等)を果たすことが期待される成分)、アジュバント(主薬(例えば、ワクチンなどの場合抗原)の薬効(例えば免疫応答惹起能力)を増強するもの)等を例示することができる。医薬成分としては、薬学的に受容可能なキャリア、希釈剤、賦形剤、緩衝剤、結合剤、爆破剤、希釈剤、香味料、潤滑剤などを例示することができる。医薬成分は、単独の物質であってもよく、複数の物質や剤の組合せであってもよい。有効成分と添加成分との組み合わせ、アジュバントと有効成分との組み合わせなどの任意の組合せも含まれ得る。
 本明細書では、「有効成分」は、意図される薬効を発揮する成分をいい、単独または複数の成分が該当し得る。
 本明細書において「添加成分」とは、薬効を期待されていないが、医薬として含まれる場合一定の役割を果たす任意の成分をいい、例えば、薬学的に受容可能なキャリア、希釈剤、賦形剤、緩衝剤、結合剤、爆破剤、希釈剤、香味料、潤滑剤を挙げることがができる。本明細書では、βシクロデキストリンなども添加成分として包含されるところ、このような成分はアジュバントとしても有効であると判明することがある。この場合、目的によりアジュバントというか添加成分というかを当業者が決定する。
 本明細書において「アジュバント」とは、本明細書で使用される場合、抗原(ワクチンなどが例示される。)と共同して投与される場合に、その抗原に対する被験体の免疫応答を増強する化合物をいう。免疫応答のアジュバント媒介性の増強は、代表的に、(i)上記抗原単独での免疫に応じて生成された抗体の数に対して、上記アジュバント/抗原組み合わせでの免疫に応じて生成された抗体の数の増加;(ii)上記抗原もしくは上記アジュバントを認識するT細胞の数の増加;(iii)1種以上のI型サイトカインのレベルの増加;ならびに(iv)生のチャレンジ後のインビボ防御のうちの1つ以上が挙げられるが、それらに限定されない、当該分野で公知の任意の方法によって評価され得る。
 本明細書において「トランスクリプトーム」とは、特定の状況下において細胞(1個の細胞または細胞の集団)中に存在する全ての転写産物(例えば、mRNAまたは一次転写産物(mRNA、rRNA、tRNAおよび他の非コードRNAを含む、すべてのRNA分子のセット)、transcripts)の総体を指す呼称である。本発明に関連してトランスクリプトームは、特定の時点で所与の個体の1個の細胞、細胞の集団、好ましくは癌細胞の集団、またはすべての細胞において産生されるすべてのRNA分子のセットを意味する。
 本明細書において「エクソーム」とは、ヒトゲノム中の全エクソンの集合体をいい、発現される遺伝子のコード部分であるエクソンによって形成される生物のゲノムの部分の全体をいう。エクソームは、タンパク質および他の機能的遺伝子産物の合成において使用される遺伝的青写真を提供する。これは、ゲノムの機能的に最も重要な部分であり、それゆえ、生物の表現型に寄与する可能性が最も高いとされてきた。
 本明細書において「トランスクリプトーム分析」のために、任意の適切な配列決定法を本発明に従って使用することができる。次世代シークエンシング(NGS)技術が好ましい。本明細書において「次世代シークエンシング」または「NGS」という用語は、サンガー化学として公知の「従来の」シークエンシング法に対して、ゲノム全体を小片に分割することによって核酸鋳型をゲノム全体に沿って並行してランダムに読み取る、すべての新規ハイスループットシークエンシング技術を意味する。NGS技術(超並列シークエンシング技術とも称する)は、全ゲノム、エクソーム、トランスクリプトーム(ゲノムのすべての転写配列)またはメチローム(ゲノムのすべてのメチル化配列)の核酸配列情報を非常に短期間、例えば1~2週間以内、好ましくは1~7日間以内、または最も好ましくは24時間未満内に送達することができ、原理上は、単一細胞シークエンシングアプローチを可能にする。市販されているかまたは文献中で言及されている任意のNGSプラットフォームを本発明の実施のために使用することができる。本明細書において「トランスクリプト―ム発現プロファイル」とは、ある因子についてトランスクリプトーム分析を行った際の各遺伝子の発現状況のプロファイルをいう。
 本明細書において「…と等価のトランスクリプト―ム発現プロファイル」は、「トランスクリプト―ム発現プロファイル」が実質的に同一または同一であるか、ある目的のために実質的に類似していることをいい、発現プロファイルの同一性は、医薬成分(例えば、アジュバント)等の分子またはその一部について、発現プロファイルが類似しているかどうかで判定することができる。ここで、類似するかどうかは、本明細書中で定義されるsDEGなどの遺伝子発現の程度によって規定され得、発現の程度、量、活性量などに基づいて決定することができる。理論に束縛されることを望まないが、本発明の一部の実施形態では、この類似度に基づいて医薬成分(例えば、アジュバント)の分類することによって、同一のクラスターに属する医薬成分(例えば、アジュバント)は、同一のカテゴリーに入る医薬成分(例えば、アジュバント)と同様の特徴を有すると理解される。従って、本発明の手法を用いて同じ医薬成分クラスター(例えば、アジュバントクラスター)に属するかどうかを調べることによって、新規医薬成分(例えば、アジュバント)または未知の機能の医薬成分(例えば、アジュバント)の特徴分析を行うことができる。本明細書において類似度を調査するために、「類似性スコア」を使用することがありうる。この「類似性スコア」とは、類似度を示す具体的な数値をいい、例えば、トランスクリプトームの発現パターン等を計算した場合に使用される技法に応じて、適宜適切なスコアが採用されうる。類似性スコアは、例えば、回帰的な手法、ニューラルネットワーク法や、サポートベクトルマシン、ランダムフォレストといった機械学習アルゴリズムなどを用いて算出することができる。
 本明細書において「クラスタリング」または「クラスター分析」あるいは「クラスタリング分析」とは、交換可能に用いられ、異なる性質のものが混在している集団(対象)の中から互いに類似するものを集めて集落(クラスター)を作り(分割し)、対象を分類する方法をいい、分割後の各部分集合はクラスターという。分割の方法にも幾つかの種類があり,全ての分類対象が各々、一つずつのクラスターの要素となる場合(ハード,または,クリスプなクラスターという。)、および一つのクラスターが複数のクラスターに同時に部分的に所属する場合(ソフト,または,ファジィなクラスターという。)がある。本明細書では、通常ハードなクラスター分析を利用する。代表的なクラスター分析としては、階層クラスター分析、非階層クラスター分析等がある。通常階層クラスター分析が使用されるがそれに限定されない。本明細書において「トランスクリプトームクラスタリング」とは、トランスクリプトーム分析の結果に基づいてクラスタリングを行うことをいう。
 本明細書において「クラスター」とは、概して、ある集団の要素(例えば、医薬成分(例えば、アジュバント))を,外的基準や群の数の指定なしに,多次元空間における要素の分布から,類似したものを集めたものをいい、本明細書では、医薬成分(例えば、アジュバント)の「クラスター」という場合、多数の医薬成分(例えば、アジュバント)のうち類似したものを集めたものをいう。同一のクラスターに属する医薬成分(例えば、アジュバント)は、同様の(すなわち、同一または類似の)作用効果(例えば、アジュバント機能(例えば、サイトカイン刺激等))を有する。多変量解析によって分類することができ、種々のクラスター分析手法を用いてクラスターを構成することができる。本発明が提供する医薬成分(例えば、アジュバント)のクラスターは、そのクラスターへ属していることを示すことにより、医薬成分(例えば、アジュバント)の機能により分類を行うことが可能である。また、分類された後の同一クラスターに属する医薬成分(例えば、アジュバント)は、そのクラスターに特徴的な特性を有すると、精度よく、合理的な確率を以て予測することができる。合理的な確率は、クラスター分析に用いるパラメータによって、例えば、99%、98%、97%、96%、95%、90%。85%、80%、75%、70%等に適切に設定することができる。
 本明細書において機能が「同一」または「類似する」とは、クラスター分析後の結果について用いられ、ある性質について、実質的に同程度の活性を有する場合同一といい、ある性質について質的には同じ活性であるが、量が異なる場合に「類似する」という。このような類似する程度は、例えば、99%、98%、97%、96%、95%、90%。85%、80%、75%、70%等に適宜決定することができる。本明細書において「同一のクラスター」とは、クラスター分析に同じクラスターに入ることをいう。同じクラスターに入れるかどうかは、類似度によって決定することができる。
 本明細書において「類似度」とは、有効成分、添加成分、アジュバント等の医薬成分などの分子またはその一部について、発現プロファイルが類似している度合いをいう。類似度は、本明細書中で定義されるsDEGなどの遺伝子発現の程度によって規定され得、発現の程度、量、活性量などに基づいて決定することができる。理論に束縛されることを望まないが、本発明の一部の実施形態では、この類似度に基づいて医薬成分(例えば、有効成分、添加成分、アジュバント)を分類することによって、同一のクラスターに属する医薬成分(例えば、有効成分、添加成分、アジュバント)は、同一のカテゴリーに入る医薬成分(例えば、有効成分、添加成分、アジュバント)と同様の特徴を有すると理解される。従って、本発明の手法を用いて同じ医薬成分クラスター(例えば、アジュバントクラスター)に属するかどうかを調べることによって、新規医薬成分(例えば、有効成分、添加成分、アジュバント)または未知の機能の医薬成分(例えば、有効成分、添加成分、アジュバント)医薬成分の特徴分析を行うことができる。本明細書において類似度を調査するために、「類似性スコア」を使用することがありうる。この「類似性スコア」とは、類似度を示す具体的な数値をいい、例えば、トランスクリプトームの発現パターン等を計算した場合に使用される技法に応じて、適宜適切なスコアが採用されうる。類似性スコアは、例えば、回帰的な手法、ニューラルネットワーク法や、サポートベクトルマシン、ランダムフォレストといった機械学習アルゴリズムなどの人工知能(AI)で用いられる技術を用いて算出することができる。クラスター分析を行った例は図20にも例示されている。
 重要な指標として、機能が同一または類似していることが知られる医薬成分(例えば、有効成分、添加成分、アジュバント)同士の発現パターンとよく合うように閾値を決めるのが適切であるが、統計学的有意性を重視する場合、他の閾値を採用することもあり得、当業者は状況に応じて本明細書の記載を参考に適宜閾値を設定することができる。例えば、階層的クラスタリング手法(例えば、群平均法(average linkage clustering)、最短距離法(NN法)、K-NN法、Ward法、再長距離法、重心法)を用いてクラスタリング分析をした場合に求められる最大距離が特定の値未満のものを同一クラスターとみなすことができる。このような値としては、1未満、0.95未満、0.9未満、0.85未満、0.8未満、0.75未満、0.7未満、0.65未満、0.6未満、0.55未満、0.5未満、0.45未満、0.4未満、0.35未満、0.3未満、0.25未満、0.2未満、0.15未満、0.1未満、0.05未満などを挙げることができるがこれらに限定されない。クラスタリング手法としては階層的手法(例えば、最短距離法)に限られず、非階層的手法(例えば、k-means法)を用いてもよい。階層的クラスタリングが好ましくありうる。
 クラスタリングにおいて、分類される要素間の距離(類似度)を当業者は適宜設定することができる。一般的に用いられる要素間の距離としては、ユークリッド距離、マハラノビス距離、またはコサイン類似度(距離)等を挙げることができる。
 階層的クラスタリングを行うソフトウェアとしては、限定されるものではないが、例えば、Java(登録商標)-based free software, Clustering Calculator(Brzustowski, J.)(http://www2.biology.ualberta.ca/jbrzusto/cluster.php/)が挙げられる。
 このようなソフトウェアに、ベクトルのデータを入力して、以下のような出力:
Treeの結合位置の高さ(arbitrary unit)
Treeのトポロジー
Treeの各ノード間の距離(arbitrary unit)
各結合のブートストラップの値(例えば、1000回試行)
を得ることができる。それ以外にも、任意選択での出力を得ることもできる。
 このような出力データから、適切なソフトウェアを利用して樹形図を描くことができる(Phylip/DRAWTREE formatや、(hierarchical trees) using Tree Explorer software、Tamura, K., available at http://www.evolgen.biol.が挙げられるが限定されるものではない)。
 ブートストラップ値(bootstrap値、bpとも称される)のほかに、p-value of multiscale bootstrap(Au)といった値を出力することができる。これらの値は、クラスタリングの数学的な安定性を示す値である。AUは、配列解析などで用いられることが多く、系統樹の安定性を示すのに適した場合があるパラメータである。
 階層的クラスタリングは、分枝型(divisive)と凝集型(agglomerative)に分類される。代表的に用いられる凝集型では、N個の対象からなるデータが与えられたとき、まず、1個の対象だけを含むN個のクラスターがある初期状態を作成する。この状態から始めて,対象x1とx2の間の距離d(x1,x2)(非類似度)からクラスター間の距離d(C1,C2)を計算し,最もこの距離の近い二つのクラスターを逐次的に併合していく。そして、この併合を、全ての対象が一つのクラスターに併合されるまで繰り返すことで階層構造を獲得する。この階層構造はデンドログラム(樹状図)によって表示される。デンドログラムとは、各終端ノードが各対象を表し、併合されてできたクラスターを非終端ノードで表した二分木である。非終端ノードの横軸は併合されたときのクラスター間の距離を表す。クラスターC1とC2の距離関数d(C1,C2)の違いによりいくつか手法があり、最短距離法(nearest neighbor method)または単連結法(single linkage method);最長距離法(furthest neighbor method)または完全連結法(complete linkage method);群平均法(group average method);ウォード法(Ward’s method)(Ward法は、各対象から、その対象を含むクラスターのセントロイドまでの距離の二乗の総和を最小化する)などを挙げることができる。最短距離法、最長距離法、及び、群平均法は任意の対象間の距離d(xi,xj)が与えられている場合に適用でき、クラスターを併合した後の距離の更新はLance-Williamsの更新式(G.N.Lance and W.T.Williams, The Computer Journal, vol.9, pp.373-380(1967))により定数時間で可能である。対象が数値ベクトルで記述されている場合は、ベクトル間のユークリッド距離などを求めて適用することができる。Ward法は対象が数値ベクトルで与えられている場合には所定の式が直接適用でき、対象間の距離のみが与えられている場合ではLance-Williamsの更新式を使って距離の更新することによって適用することができる。Lance-Williamsの更新式で定数時間で距離の更新が可能な一般の場合の計算量はO(N2logN)で求められるが、上記の距離更新手法には可約性(reducibility)という性質があり、再近隣グラフの性質を活用することでO(N2)の時間で計算可能なアルゴリズム(F.Murtagh, The Computer Journal, vol.26,pp.354-359(1983))が知られている。また、カラー・並列計算機上での計算量についてはOlson文献(C.F.Olson: Parallel Computing, Vol.21, pp.1313-1325(1995))等の公知の情報を用いて実施することができる。本発明の階層型クラスタリングの分析例は実施例に例示されており、例えば図14において例示されている。
 階層型クラスタリングは、医薬成分(例えば、有効成分、添加成分、アジュバント)ごとにおよび遺伝子プローブごとに各器官において行うことができる(図11)。この分析では、医薬成分(例えば、アジュバント)に応答する細胞集団の割合も分析することができる(図12)。細胞については、免疫細胞のタイプ別の分析を行うこともできる(図13)。
 本明細書において、本発明の1つの実施形態では、トランスクリプトーム分析は、対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)を対象生物に投与し、投与後一定時間で対象となる器官(臓器)におけるトランスクリプトームをその医薬成分(例えば、アジュバント)の投与前の同一のまたは対応する器官におけるトランスクリプトームと比較する工程、およびこの比較の結果発現が変動した遺伝子(DEG)のセットを特定することによって実施することができる。
 本明細書において、「差次的に発現される遺伝子」または「発現が変動した遺伝子(DEG;differentiently expressed gene)」とは、医薬成分(例えば、有効成分、添加成分、アジュバント)を前記対象生物に投与し、投与後一定時間で前記器官におけるトランスクリプトームを該医薬成分(例えば、有効成分、添加成分、アジュバント)の投与前の該器官におけるトランスクリプトームと比較する工程、および該比較の結果、発現が変動(例えば、増加、減少、発生または消失)する遺伝子をいう。そして、その変動が「有意」である場合、「有意DEG」または「sDEG」と称する。ここで、有意に変動とは、通常、統計学的に有意な変動をいうが、これに限定されず、本発明の目的において適切であれば、適宜の基準を用いて有意性を判断することができる。DEGの判定方法は、実施例において例示されており、代表的には以下のとおりである:以下の条件を全て満たす統計的に有意な変化(アップレギュレーションまたはダウンレギュレーション)として定義することができる:有意DEGを設定する場合の所定の閾値は、所定の倍数の相違および所定の統計学的有意(p値)での特定;代表的には、平均倍数変化(FC)が>1.5または<0.667であること、関連付けられたt検定のp値が多重検定補正無しで<0.01であること、およびカスタマイズPAコールが1であることが挙げられるが、これに限定されず、他の特定方法を用いてもよい。好ましい実施形態では、比較の結果、発現が所定の閾値を超えて変動した遺伝子を特定し、特定された遺伝子のうち前記共通して変動する遺伝子を選択し有意DEGのセットを生成する。DEGの分析は、差次的発現を分析し得る任意の手法を用いることができる。実施例で使用されるVolcanoプロットは、すべての個体/特性マトリックスで、統計的効果をy軸に、生物学的効果をx軸に配した散布図である。唯一の制約は、2水準の質的説明変数の水準間の差を検討することだけが実行できる。Volcanoプロットでは、通常、y軸の座標は、図を読みやすくするために-log10(p値)で尺度化され、高い値は最も有意な効果を反映しており、一方、低い値はほとんど有意でない効果に対応する。統計的に有意な効果が、生物学的な尺度で興味深いとは限らないため、Volcanoプロット用いると、多数の反復によるとても正確な測定が関与する実験は、生物学的にとても弱い差で関連づけられる低いp値を提供するかもしれないというリスクを低減することができ、したがって、p値のみならず、生物学的効果に注目した解析を行うことができる。
 DEGを解析する際に、複数のサンプルを処理することが通常であり、これらの複数のサンプルにおいて応答が異なることがありうる。このような場合、反応の様子をベン図として表し(例えば、図8)、これの重複が多いことは、一貫して発現がなされていると判断できるものであり、普遍性が高いと判断することができる。ベン図の重複割合は、アップレギュレートする遺伝子プローブ数と相関関係にあることが本発明において見出されている。このようなプロットを行うと、医薬成分誘導性(例えば、有効成分の薬効、添加成分の補助機能、アジュバント誘導性)の強力な遺伝子応答は、ベン図分析を行うことで判断することができる。CpGアジュバントで有意にアップレギュレートされた遺伝子のベン図およびアノテーション分析を行った例が図17に例示されている。同様にcdiGMPについて行ったものが図18に例示されている。
 明細書において、医薬成分およびそれぞれの器官についての全てのsDEGの集合を、「医薬成分遺伝子空間(スペース)」と称する。本明細書において、アジュバントおよびそれぞれの器官についての全てのsDEGの集合を、「アジュバント遺伝子空間(スペース)」と称する。同様に有効成分の場合は「有効成分遺伝子空間(スペース)」、添加成分の場合は「添加成分遺伝子空間(スペース)」と称され得る。
 本明細書において、DEGのセットを2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)において統合し、共通して変動する遺伝子(DEG)のセットを生成することを、共通DEGセット生成ということがある。ここでは、1つの実施形態では、少なくとも2つ以上の器官について、前記トランスクリプトーム分析を行い、特定の器官(例えば、肝臓、脾臓およびリンパ節)でのみ発現が変動する遺伝子のセットを特定し、該セットを該器官特異的遺伝子セットとすることができる。したがって、本明細書では「器官特異的遺伝子セット」とは、ある器官に特異的に発現が変動する遺伝子のセットのことをいう。
 本明細書において使用され得る「器官」とは「臓器」とも称し、生物のうち、動物や植物などの多細胞生物の体を構成する単位で、形態的に周囲と区別され、それ全体としてひとまとまりの機能を担うもののことをいう。例えば、代表的には、肝臓、脾臓およびリンパ節が挙げられ、このほか、腎臓、肺、副腎、膵臓、心臓等の他の臓器などを挙げることができるがそれらに限定されない。
 本明細書において「統計学的に有意なクラスタリング分析を可能とする数」とは、アジュバントに関する数であり、クラスタリング分析を行った際に、統計学的に有意差が検出できる標本数をいう。検出力などを適宜設定し、統計学分野の慣用技術に基づいて当業者は適宜設定することができる。
 本明細書において「遺伝子マーカー」、ある対象物の状態又は作用の評価の指標となるものであって、ここではある遺伝子の発現量と相関するときの遺伝子関連物質をいう。本明細書において特に断らない限り、「遺伝子マーカー」は「マーカー」と称することがある。
 医薬成分(例えば、有効成分、添加成分、アジュバント)に関連する遺伝子(マーカー)群は、zスコアヒートマップ手法を用いて表すことができるがこれに限定されない(図15)。
 本明細書において「医薬成分評価マーカー」とは、特定の医薬成分または医薬成分クラスターおよび特定の器官に特有の、または特異的な遺伝子マーカーをいう。医薬成分評価マーカーは複数の器官または医薬成分もしくは医薬成分クラスターに特有または特異的であってもよいが、その場合、他のマーカーと組み合わせて使用することによって、特定の器官または医薬成分もしくは医薬成分クラスターを同定することができる。このような関係性に関連して、医薬成分関連遺伝子中で共有される顕著な関係を有する遺伝子を選択する。アップレギュレートされた遺伝子の医薬成分群は、その発現のzスコアに基づいて選択することができる(図16参照)。
 医薬成分が、アジュバントの場合、医薬成分評価マーカーは「アジュバント評価マーカー」とも呼ばれる。すなわち、本明細書において「アジュバント評価マーカー」とは、特定のアジュバントまたはアジュバントクラスターおよび特定の器官に特有の、または特異的な遺伝子マーカーをいう。アジュバント評価マーカーは複数の器官またはアジュバントもしくはアジュバントクラスターに特有または特異的であってもよいが、その場合、他のマーカーと組み合わせて使用することによって、特定の器官またはアジュバントもしくはアジュバントクラスターを同定することができる。このような関係性に関連して、アジュバント関連遺伝子中で共有される顕著な関係を有する遺伝子を選択する。アップレギュレートされた遺伝子のアジュバント群は、その発現のzスコアに基づいて選択することができる(図16参照)。医薬成分が有効成分の場合は「有効成分評価マーカー」と称され得、添加成分の場合は「添加成分評価マーカー」と称され得る。
 トランスクリプトームプロファイルデータを分析することによって、生物学的プロセスのアノテーションを行うことができる。このようなアノテーションは、TargetMineなどのソフトウェアを用いることで実行することができる。アノテーションは、キーワードで表すことができ、創傷、細胞死、アポトーシス、NFκBシグナル経路、炎症応答、TNFシグナル経路、サイトカイン類、遊走、ケモカイン、化学走性、ストレス、防御応答、免疫応答、生来免疫応答、適合性免疫応答、インターフェロン類、インターロイキン類などを宛がうことができる。これは器官ごと、投与経路ごとなどに分けることができる(図10参照)。創傷のアノテーションとしては、regulation of response to wounding;response to wounding;positive regulation of response to wounding;を挙げることができる。;細胞死のアノテーションとしては、cell death;death;programmed cell death;regulation of cell death;regulation of programmed cell death;positive regulation of programmed cell death;positive regulation of cell death;negative regulation of cell death;negative regulation of programmed cell deathを挙げることができる。アポトーシスのアノテーションとしては、apoptotic process;regulation of apoptotic process;apoptotic signaling pathway;intrinsic apoptotic signaling pathway;positive regulation of apoptotic process;regulation of apoptotic signaling pathway;negative regulation of apoptotic process;regulation of intrinsic apoptotic signaling pathwayを挙げることができる。NFκBシグナル経路のアノテーションとしては、NF-kappa B signaling pathway;I-kappa B kinase/NF-kappa B signaling;positive regulation of I-kappa B kinase/NF-kappa B signaling;regulation of I-kappa B kinase/NF-kappa B signalingを挙げることができる。炎症応答のアノテーションとしては、inflammatory response;regulation of inflammatory response;positive regulation of inflammatory response;acute inflammatory response;leukocyte migration involved in inflammatory responseを挙げることができる。TNFシグナル経路のアノテーションとしては、TNF signaling pathwayを挙げることができる。サイトカイン類のアノテーションとしては、response to cytokine;Cytokine-cytokine receptor interaction|Endocytosis;cellular response to cytokine stimulus;Cytokine-cytokine receptor interaction;cytokine production;regulation of cytokine production;cytokine-mediated signaling pathway;cytokine biosynthetic process;cytokine metabolic process;positive regulation of cytokine production;negative regulation of cytokine production;regulation of cytokine biosynthetic process;regulation of tumor necrosis factor superfamily cytokine production;tumor necrosis factor superfamily cytokine production;positive regulation of cytokine biosynthetic process;cytokine secretion;positive regulation of tumor necrosis factor superfamily cytokine productionを挙げることができる。遊走のアノテーションとしては、positive regulation of leukocyte migration;cell migration;leukocyte migration;regulation of leukocyte migration;neutrophil migration;positive regulation of cell migration;granulocyte migration;myeloid leukocyte migration;regulation of cell migration;lymphocyte migrationを挙げることができる。ケモカインのアノテーションとしては、chemokine-mediated signaling pathway;chemokine production;regulation of chemokine production;positive regulation of chemokine productionを挙げることができる。化学走性のアノテーションとしては、cell chemotaxis;chemotaxis;leukocyte chemotaxis;positive regulation of leukocyte chemotaxis;taxis;granulocyte chemotaxis;neutrophil chemotaxis;positive regulation of chemotaxis;regulation of leukocyte chemotaxis;regulation of chemotaxis;lymphocyte chemotaxisを挙げることができる。ストレスのアノテーションとしては、response to stress;regulation of response to stress;cellular response to stressを挙げることができる。防御応答のアノテーションとしては、defense response;regulation of defense response;positive regulation of defense response;defense response to other organism;defense response to bacterium;defense response to Gram-positive bacterium;defense response to protozoan;defense response to virus;regulation of defense response to virus;regulation of defense response to virus by host;negative regulation of defense responseを挙げることができる。免疫応答のアノテーションとしては、immune response;positive regulation of immune response;regulation of immune response;activation of immune response;immune response-activating signal transduction;immune response-regulating signaling pathway;negative regulation of immune response;production of molecular mediator of immune responseを挙げることができる。生来免疫応答のアノテーションとしては、innate immune response;regulation of innate immune response;positive regulation of innate immune response;activation of innate immune response;innate immune response-activating signal transduction;negative regulation of innate immune responseを挙げることができる。適合性免疫応答のアノテーションとしては、adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains;adaptive immune response;positive regulation of adaptive immune response;regulation of adaptive immune response;regulation of adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domainsを挙げることができる。インターフェロン類のアノテーションとしては、response to interferon-alpha;interferon-alpha production;cellular response to interferon-alpha;positive regulation of interferon-alpha production;regulation of interferon-alpha production;cellular response to interferon-beta;response to interferon-beta;positive regulation of interferon-beta production;regulation ofinterferon-beta production;interferon-beta production;response to interferon-gamma;cellular response to interferon-gamma;interferon-gamma production;regulation of interferon-gamma productionを挙げることができる。;インターロイキン類のアノテーションとしては、interleukin-6 production;regulation of interleukin-6 production;positive regulation of interleukin-6 production;interleukin-12 production;regulation of interleukin-12 production;positive regulation of interleukin-12 productionを挙げることができる。生物学的指標としては、サイトカインプロファイルも挙げられる。サイトカインプロファイルは、IFNA2;IFNB1;IFNG;IFNL1;IFNA1/IFNA13;IL15;IL4;IL1RN;IFNK;IFNA4;IL1B;IL12B;TNFSF10;TNF;IFNA10;IFNA21;IFNA5;IFNA7;IFNA14;IFNA6;IFNE;IFNA8;IFNA16;CD40LG;IL6;IL2;IL12A;IL27;OSM;IFNA17;EBI3;IL10;IFNW1;TNFSF11;IL7などを含むがこれらに限定されない。
 分析項目としては、例えば、血液学的指標と遺伝子発現のプロットを応用することもできる(図19)。ここで、血液学的指標は、白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)、血小板分布幅(PDW)などを挙げることができるがこれらに限定されない。
 本発明を用いると、医薬成分(例えば、有効成分、添加成分、アジュバント)は、クラスター分析を行うことによってグループ分けすることができる(図21)。
 生物学的活性は例えば、抗原抗体反応の結合定数や解離定数、結合アッセイ等の2つ以上の抗体を用いたときの各々の抗体の抗原に対する結合定数や解離定数を用いたデータや、ELISA等のデータの場合は吸光度の絶対値または相対値等で表すこともできる。
 本発明の分析において使用される検出剤または検出手段は、遺伝子またはその発現を検出することができる限りどのような手段であってもよい。
 本発明の検出剤または検出手段は、検出可能とする部分(例えば、抗体等)に他の物質(例えば、標識等)を結合させた複合体または複合分子であってもよい。本明細書において使用される場合、「複合体」または「複合分子」とは、2以上の部分を含む任意の構成体を意味する。例えば、一方の部分がポリペプチドである場合は、他方の部分は、ポリペプチドであってもよく、それ以外の物質(例えば、糖、脂質、核酸、他の炭化水素等)であってもよい。本明細書において複合体を構成する2以上の部分は、共有結合で結合されていてもよくそれ以外の結合(例えば、水素結合、イオン結合、疎水性相互作用、ファンデルワールス力等)で結合されていてもよい。2以上の部分がポリペプチドの場合は、キメラポリペプチドとも称しうる。従って、本明細書において「複合体」は、ポリペプチド、ポリヌクレオチド、脂質、糖、低分子などの分子が複数種連結してできた分子を含む。
 本明細書においてポリヌクレオチドまたはポリペプチド発現の「検出」または「定量」は、例えば、マーカー検出剤への結合または相互作用を含む、mRNAの測定および免疫学的測定方法を含む適切な方法を用いて達成され得るが、本発明では、PCR産物の量をもって測定することができる。分子生物学的測定方法としては、例えば、ノーザンブロット法、ドットブロット法またはPCR法などが例示される。免疫学的測定方法としては、例えば、方法としては、マイクロタイタープレートを用いるELISA法、RIA法、蛍光抗体法、発光イムノアッセイ(LIA)、免疫沈降法(IP)、免疫拡散法(SRID)、免疫比濁法(TIA)、ウェスタンブロット法、免疫組織染色法などが例示される。また、定量方法としては、ELISA法またはRIA法などが例示される。アレイ(例えば、DNAアレイ、プロテインアレイ)を用いた遺伝子解析方法によっても行われ得る。DNAアレイについては、(秀潤社編、細胞工学別冊「DNAマイクロアレイと最新PCR法」)に広く概説されている。プロテインアレイについては、Nat Genet.2002 Dec;32 Suppl:526-32に詳述されている。遺伝子発現の分析法としては、上述に加えて、RT-PCR、RACE法、SSCP法、免疫沈降法、two-hybridシステム、in vitro翻訳などが挙げられるがそれらに限定されない。そのようなさらなる分析方法は、例えば、ゲノム解析実験法・中村祐輔ラボ・マニュアル、編集・中村祐輔羊土社(2002)などに記載されており、本明細書においてそれらの記載はすべて参考として援用される。
 本明細書において「手段」とは、ある目的(例えば、検出、診断、治療)を達成する任意の道具となり得るものをいい、特に、本明細書では、「選択的に認識(検出)する手段」とは、ある対象を他のものとは異なって認識(検出)することができる手段をいう。
 本明細書において「(核酸)プライマー」とは、高分子合成酵素反応において、合成される高分子化合物の反応の開始に必要な物質をいう。核酸分子の合成反応では、合成されるべき高分子化合物の一部の配列に相補的な核酸分子(例えば、DNAまたはRNAなど)が用いられ得る。本明細書においてプライマーはマーカー検出手段として使用され得る。
 通常プライマーとして用いられる核酸分子としては、目的とする遺伝子(例えば、本発明のマーカー)の核酸配列と相補的な、少なくとも8の連続するヌクレオチド長の核酸配列を有するものが挙げられる。そのような核酸配列は、好ましくは、少なくとも9の連続するヌクレオチド長の、より好ましくは少なくとも10の連続するヌクレオチド長の、さらに好ましくは少なくとも11の連続するヌクレオチド長の、少なくとも12の連続するヌクレオチド長の、少なくとも13の連続するヌクレオチド長の、少なくとも14の連続するヌクレオチド長の、少なくとも15の連続するヌクレオチド長の、少なくとも16の連続するヌクレオチド長の、少なくとも17の連続するヌクレオチド長の、少なくとも18の連続するヌクレオチド長の、少なくとも19の連続するヌクレオチド長の、少なくとも20の連続するヌクレオチド長の、少なくとも25の連続するヌクレオチド長の、少なくとも30の連続するヌクレオチド長の、少なくとも40の連続するヌクレオチド長の、少なくとも50の連続するヌクレオチド長の、核酸配列であり得る。プローブとして使用される核酸配列には、上述の配列に対して、少なくとも70%相同な、より好ましくは、少なくとも80%相同な、さらに好ましくは、少なくとも90%相同な、少なくとも95%相同な核酸配列が含まれる。プライマーとして適切な配列は、合成(増幅)が意図される配列の性質によって変動し得るが、当業者は、意図される配列に応じて適宜プライマーを設計することができる。そのようなプライマーの設計は当該分野において周知であり、手動でおこなってもよくコンピュータプログラム(例えば、LASERGENE,PrimerSelect,DNAStar)を用いて行ってもよい。
 本明細書において「プローブ」とは、インビトロおよび/またはインビボなどのスクリーニングなどの生物学的実験において用いられる、検索の手段となる物質をいい、例えば、特定の塩基配列を含む核酸分子または特定のアミノ酸配列を含むペプチド、特異的抗体またはそのフラグメントなどが挙げられるがそれに限定されない。本明細書においてプローブは、マーカー検出手段として用いられる。
 本明細書において、医薬成分がアジュバントである場合、そのアジュバントの分類は、例えば、G1(インターフェロンシグナリング);G2(脂質およびリポタンパク質代謝性);G3(ストレス応答性);G4(創傷応答性);G5(リン酸含有化合物代謝プロセス性);およびG6(ファゴソーム性)などを挙げることができるがこれらに限定されない(図2、図14、図21参照)。このような分類は、本発明の医薬成分(例えば、アジュバント)の器官トランスクリプトームプロファイルを生成する方法を実行することによってはじめて見いだされたものである。
 本発明を用いることによって、医薬成分分類のための基準医薬製品(標準医薬成分ともいう)を定めることができ、これは本明細書において例示されている。医薬成分がアジュバントである場合、アジュバント分類の基準アジュバント(標準アジュバント)を同定することができ、例えば、上記G1~G6についていえば、G1の基準アジュバント(標準アジュバント)は、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、G2の基準アジュバント(標準アジュバント)は、bCDであり、G3の基準アジュバント(標準アジュバント)は、FK565であり、G4の基準アジュバント(標準アジュバント)は、MALP2sであり、G5の基準アジュバント(標準アジュバント)は、D35,K3およびK3SPGからなる群より選択され、および/またはG6の基準アジュバント(標準アジュバント)は、AddaVaxである。cdiGMP、cGAMP、DMXAA、PolyICおよびR848は、RNA関連アジュバント(STINGリガンド)であり、cdiGMPはTh1応答、DMXAAはTh2応答を惹起するとされる。G1は、生物機能:インターフェロン応答(タイプI,タイプII)、ストレス系の医薬成分(例えば、有効成分、添加成分、アジュバント)ということができる。G2は、脂質およびリポタンパク質代謝性であり、bCDが代表医薬成分(例えば、有効成分、添加成分、アジュバント)であるが、ALMも似た作用を有し、生物機能としては、炎症サイトカイン、脂質代謝、DAMP(宿主由来dsDNAとの作用)の作用を挙げることができる。G3は、ストレス応答性のクラスターであり、代表医薬成分(例えば、アジュバント)としてはFK565が挙げられ、生物機能としては、T細胞サイトカイン、NK細胞サイトカイン、ストレス応答、創傷応答、PAMPなどを挙げることができる。G4は、創傷応答性であり、代表医薬成分(例えば、アジュバント)としては、MALP2sを挙げることができ、生物機能としては、TNF応答、ストレス応答、創傷応答、PAMPを挙げることができる。G5は、リン酸含有化合物代謝プロセス性であり、CpG(D35、K3、K3SPG)が代表医薬成分(例えば、有効成分、添加成分、アジュバント)であり、TLR9リガンドなども代表例であり、生物機能としては、核酸代謝、リン酸含有化合物代謝を挙げることができる。G6は、ファゴソーム性であり、AddaVax(MF59)が代表医薬成分(例えば、アジュバント)であり、生物機能としては、ファゴソーム(食作用)、ATPなどを挙げることができる。医薬成分が有効成分の場合、上記用語は代表有効成分、基準(標準)有効成分などと称され得、添加成分の場合は、上記用語は代表添加成分、基準(標準)添加成分などと称され得る。
 G1(インターフェロンシグナリング性)は、代表的にSTINGリガンドが基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)、代表的な例としてはcdiGMP、cGAMP、DMXAA、PolyICおよびR848、はRNA関連アジュバント(STINGリガンド)を含み、cdiGMPはTh1応答、DMXAAはTh2応答を惹起するとされる。G1は、生物機能:インターフェロン応答(タイプI,タイプII)、ストレス系の医薬成分(例えば、有効成分、添加成分、アジュバント)ということができる。「STING」(stimulator of interferon genes)とは、小胞体に局在する膜タンパク質として同定されたものであり、dsDNAの刺激によりTBK1とIRF3を活性化しI型インターフェロンの発現を誘導するアダプタータンパク質である。STINGリガンドとは、STINGに対するリガンドであり、STINGの刺激によりインターフェロンが分泌される。STINGとしては、例えば、cdiGMP、cGAMP、DMXAA、PolyIC、R848、2’3’-cGAMPなどを挙げることができる。cdiGMPはサイクリックジGMPである。cGAMPはサイクリックAMP-AMPである。DMXAAは、5,6-ジメチルキサンテノンー4-酢酸である。PolyICはPoly I:Cとも称する。R848はレシキモド(resiquimod)である。
 G1のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1,Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含む。
 G2(脂質およびリポタンパク質代謝性)は、脂質およびリポタンパク質代謝性であり、βシクロデキストリン(bCD)が代表医薬成分(例えば、代表有効成分、代表添加成分、代表アジュバント)であり基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)であるが、ALM(D35、K3(LV)も似た作用を有し、生物機能としては、炎症サイトカイン、脂質代謝、DAMP(宿主由来dsDNAとの作用)の作用を挙げることができる。bCDとは、βシクロデキストリンの略称であり、アジュバントとして用いられる代表例である。
 G2のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含む。
 G3(ストレス応答性)は、ストレス応答性のクラスターであり、代表アジュバントとしてはFK565(ヘプタノイル-γ-D-グルタミル-(L)-メソ-ジアミノピメリル-(D)-アラニン)が挙げられ、これは、免疫反応性ペプチドであり、生物機能としては、T細胞サイトカイン、NK細胞サイトカイン、ストレス応答、創傷応答、PAMPなどを挙げることができる。
 G3のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a,およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3,およびTrem1からなる群より選択される少なくとも1つを含む。
 G4(創傷応答性)は、創傷応答性の医薬成分(例えば、有効成分、添加成分、アジュバント)であり、Toll様リガンド(TLR)2リガンドと表現することができ、代表医薬成分(例えば、アジュバント)としては、MALP2s(マクロファージ活性化リポペプチド2または)を挙げることができ、生物機能としては、TNF応答、ストレス応答、創傷応答、PAMPを挙げることができる。
 G4のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含む。
 G5(リン酸含有化合物代謝プロセス性)は、リン酸含有化合物代謝プロセス性の医薬成分(例えば、有効成分、添加成分、アジュバント)、CpG(D35,K3,K3SPG等)が代表医薬成分(例えば、代表アジュバント)であり基準医薬成分(例えば、基準アジュバント)であり、TLR9リガンドなども代表例であり、生物機能としては、核酸代謝、リン酸含有化合物代謝を挙げることができる。
 G5のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含む。
 G6(ファゴソーム性)は、ファゴソーム性のアジュバントであり、スクアレン水中油型エマルジョン、例えば、AddaVaxおよびMF59が代表医薬成分(例えば、代表有効成分、代表添加成分、代表アジュバント)、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)であり、生物機能としては、ファゴソーム(食作用)、ATPなどを挙げることができる。
 G6のトランスクリプトーム分析において発現に有意差がある遺伝子(有意DEG)は、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む。
 上述した医薬成分(例えば、有効成分、添加成分、アジュバント)は、略称で示している場合もあるが、(存在する場合)そのフルネーム、代表的入手先、物理的性質、(存在する場合)受容体、参考論文等をまとめた表を以下に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 bCDとは、βシクロデキストリンの略称であり、アジュバントとして用いられる代表例である。bCDは添加成分でもありうる。
 FK565とは、免疫反応性ペプチドの一種であり、化学名はヘプタノイル-γ-D-グルタミル-(L)-メソ-ジアミノピメリル-(D)-アラニン(heptanoyl-gamma-D-glutamyl-(L)-meso-diaminopimelyl-(D)-alanine)であり、J Antibiot(Tokyo). 1983 Aug;36(8):1045-50に詳説されている。
 MALP2sとは、マクロファージ活性化リポペプチド2(Macrophage-activating lipopeptide-2)の略であり、BCG-CWSに類似したToll様リガンド(TLR)2リガンドであり、詳細には、[S-(2,3)-ビスパルミトイルオキシプロピルCys(P2C)-GNNDESNISFKEKで表され、Akazawa T. et al., CancerSci 2010; 101:1596-1603等に詳述されている。
 本明細書中で使用される「CpGモチーフ」とは、シトシンヌクレオチドと、それに続くグアノシンヌクレオチドを含む、オリゴヌクレオチドのメチル化されていないジヌクレオチド部分をいい、アジュバントの代表例として用いられる。本発明の解析結果、G5すなわち核酸代謝、リン酸含有化合物代謝に属することが判明した。5-メチルシトシンもまた、シトシンの代わりに使用され得る。CpGオリゴヌクレオチド(CpG ODN)は、免疫賦活性のCpGモチーフを含有する、短い(約20塩基対)、一本鎖の合成DNA断片であって、Toll様受容体9(TLR9)の強力なアゴニストであり、樹状細胞(DCs)およびB細胞を活性化して、I型インターフェロン(IFNs)および炎症性サイトカインを産生させ(Hemmi, H., et al. Nature 408, 740-745(2000);Krieg, A.M. Nature reviews. Drug discovery 5, 471-484(2006))、細胞傷害性Tリンパ球(CTL)反応を含む、Th1型の液性および細胞性免疫反応のアジュバントとして作用する(Brazolot Millan, C.L., Weeratna, R., Krieg, A.M., Siegrist, C.A. & Davis, H.L. Proceedings of the National Academy of Sciences of the United States of America 95, 15553-15558(1998).;Chu, R.S., Targoni, O.S., Krieg, A.M., Lehmann, P.V. & Harding, C.V. The Journal of experimental medicine 186, 1623-1631(1997))。そこで、CpG ODNは、感染症、癌、喘息および花粉症に対して可能性のある免疫療法剤とみなされてきた(Krieg, A.M. Nature reviews. Drug discovery 5, 471-484(2006);Klinman, D.M. Nature reviews. Immunology 4, 249-258(2004))。CpGオリゴデオキシヌクレオチド(CpG ODN)は、免疫賦活性の非メチル化CpGモチーフを含有する一本鎖DNAであり、TLR9のアゴニストである。CpG ODNには、骨格配列及び免疫賦活特性がそれぞれ異なる、K型(B型とも呼ばれる)、D型(A型とも呼ばれる)、C型及びP型の4つの型がある(Advanced drug delivery reviews 61, 195-204(2009))。
 免疫賦活化CpG ODNの4種類の異なるタイプ(A/D、B/K、CおよびPタイプ)が報告されている。A/Dタイプは、5’および3’末端にホスホロチオエート(PS)結合を、およびホスホジエステル(PO)のパリンドローム(回文構造)CpG含有配列を中心に有するポリGモチーフを特徴とするオリゴヌクレオチドであり、形質細胞様樹状細胞(pDC)からの高いインターフェロン(IFN)-α産生によって特徴付けられる。A/Dタイプ以外はPS骨格からなる。B/Kタイプは、典型的には非回文構造の、複数の非メチル化CpGモチーフを含有し、主に、インターロイキン(IL)-6やIL-12などの炎症性サイトカインを誘導するが、IFN-αの産生は低い。B/KタイプのODNは、生理食塩水を用いて容易に製剤化され、その一部は臨床試験中である。D35-dAs40およびD35core-dAs40を含む2つの修飾ODNは、本発明者らが見出したものであり、ヒトのPBMCにおいて元のD35と同様に免疫賦活性であり、用量依存性の様式で高いIFN-α分泌をもたらすものである。CタイプおよびPタイプのCpG ODNはそれぞれ1つおよび2つの回文構造CpG配列を含有する。双方ともK型の様にB細胞を活性化させ、D型の様にpDCsを活性化させることができるが、P型CpG ODNと比較して、C型CpG ODNは、IFN-α産生をより弱く誘導する(Hartmann, G., et al. European journal of immunology 33, 1633-1641(2003);Marshall, J.D., et al. Journal of leukocyte biology 73, 781-792(2003).;およびSamulowitz, U., et al. Oligonucleotides 20, 93-101(2010))。
 AddaVaxとは、スクワレンベースの水中油アジュバントを指す。MF59も類似した構造を示す。本明細書において「スクワレンベース水中油アジュバント」とは、スクワレンを含む水中油型の構造をしているエマルジョンであるアジュバントを言う。
 本明細書において、使用される医薬成分(例えば、有効成分、添加成分、アジュバント)は単離されたものまたは精製されたものでありうる。本明細書において「精製された」物質または生物学的因子(例えば、遺伝子マーカー等の核酸またはタンパク質など)とは、その生物学的因子に天然に随伴する因子の少なくとも一部が除去されたものをいう。従って、通常、精製された生物学的因子におけるその生物学的因子の純度は、その生物学的因子が通常存在する状態よりも高い(すなわち濃縮されている)。本明細書中で使用される用語「精製された」は、好ましくは少なくとも75重量%、より好ましくは少なくとも85重量%、よりさらに好ましくは少なくとも95重量%、そして最も好ましくは少なくとも98重量%の、同型の生物学的因子が存在することを意味する。本発明で用いられる物質は、好ましくは「精製された」物質である。本明細書において「単離」されたとは、天然に存在する状態で付随する任意のものを少なくとも1つ除去したものをいい、例えば、ゲノム配列からその特定の遺伝子配列を取り出した場合も単離といいうる。従って、本明細書において使用される遺伝子は、単離されたものでありうる。
 本明細書において「被験体(者)」とは、本発明の診断または検出、あるいは治療等の対象となる対象(例えば、ヒト等の生物または生物から取り出した細胞、血液、血清等)をいう。
 本明細書において「薬剤」、「剤」または「因子」(いずれも英語ではagentに相当する)は、広義には、交換可能に使用され、意図する目的を達成することができる限りどのような物質または他の要素(例えば、光、放射能、熱、電気などのエネルギー)でもあってもよい。そのような物質としては、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸(例えば、cDNA、ゲノムDNAのようなDNA、mRNAのようなRNAを含む)、ポリサッカリド、オリゴサッカリド、脂質、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品として利用され得る低分子(例えば、低分子リガンドなど)など)、これらの複合分子が挙げられるがそれらに限定されない。
 本明細書において「治療」とは、ある疾患または障害(例えば、がん、アレルギー)について、そのような状態になった場合に、そのような疾患または障害の悪化を防止、好ましくは、現状維持、より好ましくは、軽減、さらに好ましくは消退させることをいい、患者の疾患、もしくは疾患に伴う1つ以上の症状の、症状改善効果あるいは予防効果を発揮しうることを含む。事前に診断を行って適切な治療を行うことは「コンパニオン治療」といい、そのための診断薬を「コンパニオン診断薬」ということがある。
 本明細書において「治療薬(剤)」とは、広義には、目的の状態(例えば、がん、アレルギー等の疾患など)を治療できるあらゆる薬剤をいう。本発明の一実施形態において「治療薬」は、有効成分と、薬理学的に許容される1つもしくはそれ以上の担体とを含む医薬組成物であってもよい。医薬組成物は、例えば有効成分と上記担体とを混合し、製剤学の技術分野において知られる任意の方法により製造できる。また治療薬は、治療のために用いられる物であれば使用形態は限定されず、有効成分単独であってもよいし、有効成分と任意の成分との混合物であってもよい。また上記担体の形状は特に限定されず、例えば、固体または液体(例えば、緩衝液)であってもよい。なおがん、アレルギー等の治療薬は、がん、アレルギー等の予防のために用いられる薬物(予防薬)、またはがん、アレルギー等の抑制剤を含む。
 本明細書において「予防」とは、ある疾患または障害(例えば、がん、アレルギー等の疾患など)について、そのような状態になる前に、そのような状態にならないようにすることをいう。本発明の薬剤を用いて、診断を行い、必要に応じて本発明の薬剤を用いて例えば、アレルギー等の予防をするか、あるいは予防のための対策を講じることができる。
 本明細書において「予防薬(剤)」とは、広義には、目的の状態(例えば、がん、アレルギー等の疾患など)を予防できるあらゆる薬剤をいう。
 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、検査薬、診断薬、治療薬、抗体、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、検査薬、診断薬、治療薬、抗体等の使い方などを記載した指示書などが含まれる。
 本明細書において「指示書」は、本発明を使用する方法を医師または他の使用者に対する説明を記載したものである。この指示書は、本発明の検出方法、診断薬の使い方、または医薬などを投与することを指示する文言が記載されている。また、指示書には、投与部位として、経口、食道への投与(例えば、注射などによる)することを指示する文言が記載されていてもよい。この指示書は、本発明が実施される国の監督官庁(例えば、日本であれば厚生労働省、米国であれば食品医薬品局(FDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、いわゆる添付文書(package insert)であり、通常は紙媒体で提供されるが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
 本明細書において「診断」とは、被験体における疾患、障害、状態などに関連する種々のパラメータを同定し、そのような疾患、障害、状態の現状または未来を判定することをいう。本発明の方法、装置、システムを用いることによって、体内の状態を調べることができ、そのような情報を用いて、被験体における疾患、障害、状態、投与すべき処置または予防のための処方物または方法などの種々のパラメータを選定することができる。本明細書において、狭義には、「診断」は、現状を診断することをいうが、広義には「早期診断」、「予測診断」、「事前診断」等を含む。本発明の診断方法は、原則として、身体から出たものを利用することができ、医師などの医療従事者の手を離れて実施することができることから、産業上有用である。本明細書において、医師などの医療従事者の手を離れて実施することができることを明確にするために、特に「予測診断、事前診断もしくは診断」を「支援」すると称することがある。
 本発明の医薬等としての処方手順は、当該分野において公知であり、例えば、日本薬局方、米国薬局方、他の国の薬局方などに記載されている。従って、当業者は、本明細書の記載があれば、過度な実験を行うことなく、使用すべき量を決定することができる。
 本明細書において「プログラム」は、当該分野で使用される通常の意味で用いられ、コンピュータが行うべき処理を順序立てて記述したものであり、法律上「物」として扱われるものである。すべてのコンピュータはプログラムに従って動作している。現代のコンピュータではプログラムはデータとして表現され、記録媒体または記憶装置に格納される。
 本明細書において「記録媒体」は、本発明を実行させるプログラムを格納した記録媒体であり、記録媒体は、プログラムを記録できる限り、どのようなものであってもよい。例えば、内部に格納され得るROMやHDD、磁気ディスク、USBメモリ等のフラッシュメモリなどの外部記憶装置でありうるがこれらに限定されない。
 本明細書において「システム」とは、本発明の方法またはプログラムを実行する構成をいい、本来的には、目的を遂行するための体系や組織を意味し、複数の要素が体系的に構成され、相互に影響するものであり、コンピュータの分野では、ハードウェア、ソフトウェア、OS、ネットワークなどの、全体の構成をいう。
 (好ましい実施形態の説明)
 以下に本発明の好ましい実施形態を説明する。以下に提供される実施形態は、本発明のよりよい理解のために提供されるものであり、本発明の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本発明の範囲内で適宜改変を行うことができることは明らかである。これらの実施形態について、当業者は適宜、任意の実施形態を組み合わせ得る。
 <医薬成分のトランスクリプトーム分析>
 本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成する方法を提供する。この方法は:(A)2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該医薬成分(例えば、有効成分、添加成分、アジュバント)をクラスタリングする工程;(C)該クラスタリングに基づいて、該医薬成分(例えば、有効成分、添加成分、アジュバント)の該器官のトランスクリプトームプロファイルを生成する工程を包含する。
 本発明の方法で用いられるトランスクリプトーム分析は、どのような手法を用いても実現することができる。トランスクリプトーム分析は、医薬成分(例えば、有効成分、添加成分、アジュバント)を投与せずに対象生物の器官のトランスクリプトーム分析を行い、コントロールトランスクリプトームを入手し、候補となる医薬成分(例えば、有効成分、添加成分、アジュバント)を投与した後に対象生物の同じ器官のトランスクリプトーム分析を行い、コントロールトランスクリプトームを用いて必要に応じて正規化して、その医薬成分(例えば、有効成分、添加成分、アジュバント)の器官のトランスクリプトーム分析とすることができる。同様の手順を第二以降の別の医薬成分(例えば、有効成分、添加成分、アジュバント)に対しても行うことができる。2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)についてトランスクリプトーム分析を行って得られた発現データを用いて、各医薬成分(例えば、有効成分、添加成分、アジュバント)のクラスタリング分析を行うことができる。クラスタリング分析された結果である遺伝子発現データに基づいて得られた医薬成分(例えば、有効成分、添加成分、アジュバント)のクラスター情報に基づいて、各医薬成分(例えば、有効成分、添加成分、アジュバント)を分析することができる。特に、標準医薬成分(例えば、有効成分、添加成分、アジュバント)または基準医薬成分(本明細書において基準医薬成分と標準医薬成分は同じものをさす。)と同じクラスターに属している医薬成分(例えば、有効成分、添加成分、アジュバント)は、その基準医薬成分(標準医薬成分)と同様の機能を有していると推定することができる。該クラスタリングに基づいて、該アジュバントの該器官のトランスクリプトームプロファイルを生成することは、当該分野で公知の任意の手法を用いて実現することができる。プロファイルは、例えば、図2のようなデンドログラムを用いてもよく、Excel(登録商標)などの表計算ソフトを用いて表現してもよいが、これらに限定されるものではない。
 (医薬成分(例えば、有効成分、添加成分、アジュバント)の機能分類)
 1つの局面において、本発明は、トランスクリプトームクラスタリングに基づいて、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する工程を包含するアジュバント分類方法を提供する。本発明において、トランスクリプトームクラスタリングに基づく分類は、対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)を基準医薬成分(例えば、有効成分、添加成分、アジュバント)のトランスクリプトームクラスタリングの結果に基づいて分類する工程を含みうる。医薬成分(例えば、有効成分、添加成分、アジュバント)の分類は、種々挙げられるが、例えば、分類は、宿主応答に基づく分類、メカニズムに基づく分類、細胞(肝臓、リンパ節、脾臓)、メカニズムに基づく用途別の分類、およびモジュール分類からなる群より選択される少なくとも1つの特徴による分類を含みうる。
 代表的な実施形態では、本発明が提供する医薬成分(例えば、有効成分、添加成分、アジュバント)の分類は、(1)G1(インターフェロンシグナリング);(2)G2(脂質およびリポタンパク質代謝性);(3)G3(ストレス応答性);(4)G4(創傷応答性);(5)G5(リン酸含有化合物代謝プロセス性);および(6)G6(ファゴソーム性)からなる群より選択される少なくとも1つの分類を含む。なお、G1~G6については、アジュバントについていえばその相当部分を分類することができるが、少数ではあるものの、これらに分類されないものがある。これらは、G1~G6に分類されないものとして扱うことができる。必要に応じて、さらにトランスクリプトーム分析を行って、さらなる分類を行うことができる。
 本発明の好ましい実施形態では、分類がまだの対象物質について分類する場合、G1~G6の各基準医薬成分(例えば、有効成分、添加成分、アジュバント)を用いてトランスクリプトーム分析の結果をクラスタリングし、これらを比較することで分類を実施することができる。ここで、G1の基準医薬成分は、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、G2の基準医薬成分は、bCDであり、G3の基準医薬成分は、FK565であり、G4の基準医薬成分は、MALP2sであり、G5の基準医薬成分は、D35,K3およびK3SPGからなる群より選択され、および/またはG6の基準医薬成分は、AddaVaxである。これらの基準医薬成分は、代表的なものであり、G1~G6に属すると判断された他の医薬成分(例えば、有効成分、添加成分、アジュバント)を代替的に使用することができる。
 1つの実施形態では、G1~G6の分類は、トランスクリプトーム分析において発現に有意差がある遺伝子(識別マーカー遺伝子;DEG)の発現プロファイルに基づいて行われ、前記G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1,Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、前記G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、前記G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a,およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek,Tbx3,およびTrem1からなる群より選択される少なくとも1つを含み、前記G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、前記G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、前記G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む。
 これらのDEGは、基準医薬成分(例えば、有効成分、添加成分、アジュバント)の代替を特定する際にも利用することができ、上記DEGのパターンが実質的に同一の医薬成分(例えば、有効成分、添加成分、アジュバント)を基準医薬成分(例えば、有効成分、添加成分、アジュバント)として用いることができる。
 したがって、ある局面では、本発明は、アジュバントをG1~G6またはそれ以外への分類に使用するための遺伝子分析パネルを提供する。この遺伝子分析パネルは、G1のDEG、G2のDEG、G3のDEG、G4のDEG、G5のDEGおよびG6のDEGからなる群より選択される少なくとも1つのDEGの検出剤または検出手段を含み、該G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1,Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、該G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、該G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a,およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3およびTrem1からなる群より選択される少なくとも1つを含み、該G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、該G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、該G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む。
 好ましくは、本発明の遺伝子分析パネルは、少なくともG1のDEGの検出剤または検出手段、少なくともG2のDEGの検出剤または検出手段、少なくともG3のDEGの検出剤または検出手段、少なくともG4のDEGの検出剤または検出手段、少なくともG5のDEGの検出剤または検出手段および少なくともG6のDEGの検出剤または検出手段を含む。
 本発明の遺伝子分析パネルに含まれる検出剤または検出手段は、遺伝子を検出することができる限りどのような手段であってもよい。
 1つの局面において、本発明は、医薬成分を分類する方法であって、該方法は:
(a)候補医薬成分を提供する工程;
(b)基準医薬成分セットを提供する工程;
(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
(d)該候補医薬成分が属するクラスターが、該基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
を包含する方法を提供する。医薬成分は、例えば、有効成分、添加成分、アジュバントなどであり得る。
 1つの実施形態では、本発明は、アジュバントを分類する方法を提供する。この方法は:(a)対象生物の少なくとも1つの器官において候補医薬成分(候補アジュバント)を提供する工程;(b)G1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分(基準アジュバント)セットを提供する工程;(c)該候補医薬成分(候補アジュバント)および該基準医薬成分(基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補医薬成分(候補アジュバント)が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分(候補アジュバント)を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、を包含する。
 本発明において、(a)対象生物の少なくとも1つの器官において候補医薬成分(例えば、候補アジュバント)を提供する工程は、任意の手法で、実行することができる。例えば、新規物質を入手または合成してもよいし、すでに市販されている物質を入手し、候補医薬成分(例えば、候補アジュバント)として提供してもよい。候補医薬成分(例えば、候補アジュバント)としては、例えば、例えば、タンパク質、ポリペプチド、オリゴペプチド、ペプチド、ポリヌクレオチド、オリゴヌクレオチド、ヌクレオチド、核酸、ポリサッカリド、オリゴサッカリド、脂質、リポソーム、水中油分子、油中水分子、有機低分子(例えば、ホルモン、リガンド、情報伝達物質、有機低分子、コンビナトリアルケミストリで合成された分子、医薬品あるいは添加成分として利用され得る低分子など)、これらの複合分子、が挙げられるがそれらに限定されない。
 本発明において、(b)基準医薬成分セット(例えば、G1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセット)を提供する工程は、任意の手法で、実行することができる。ここで、例示されるG1~G6の特徴については、本明細書の他の箇所に記載されたとおりであり、その基準医薬成分(基準アジュバントなど)としては、任意のものを利用することができるが、代表的には、G1の基準医薬成分(例えば、基準アジュバント)は、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、G2の基準医薬成分(例えば、基準アジュバント)は、bCDであり、G3の基準医薬成分(例えば、基準アジュバント)は、FK565であり、G4の基準医薬成分(例えば、基準アジュバント)は、MALP2sであり、G5の基準医薬成分(例えば、基準アジュバント)は、D35,K3およびK3SPGからなる群より選択され、および/またはG6の基準医薬成分(例えば、基準アジュバント)は、AddaVaxである。これらの医薬成分(例えば、基準アジュバント)は、市販されているものを利用してもよく、新たに合成または製造してもよい。
 本発明において、(c)該候補医薬成分(例えば、候補アジュバント)および該基準医薬成分(例えば、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程は、任意の手法で、実行することができる。トランスクリプトーム分析およびクラスタリングは当該分野で公知の手法を適宜組み合わせて実施することができる。
 1つの実施形態では、本発明で実施されるトランスクリプトーム分析は、医薬成分(例えば、アジュバント)を前記対象生物に投与し、投与後一定時間で前記器官におけるトランスクリプトームを該医薬成分(例えば、アジュバント)の投与前の該器官におけるトランスクリプトームと比較し、その比較の結果発現が変動した遺伝子(DEG)(好ましくは統計学的に有意に変動する遺伝子、すなわち有意DEG)のセットを特定する。これらの一連の操作は標準化されたものであってもよく、このような標準化手続は、例えば、http://sysimg.ifrec.osaka-u.ac.jp/adjvdb/に記載されたものでもよい。医薬成分(例えば、アジュバント)の投与および器官の採取、RNA抽出およびGeneChipデータ取得は、このようにして、当該分野で公知の技術を適宜応用することができることが理解される。また、当局の規制および倫理的基準を満たすために、法令およびガイドラインに適合し、適宜施設内の基準を満たし、施設の適宜の委員会によって承認されたものであって良い。
 医薬成分(例えば、アジュバント)の投与は、例えば、尾基底等の刺激の少ない部位への投与が例示されるが、それらに限定されない。投与方法は、尾基底への皮内投与(id)の他、例えば、腹腔内(ip)、i.n.(鼻内)投与、経口投与などであってもよい。医薬成分(例えば、アジュバント)の投与量は、当該分野での公知の情報または実施例の情報を参酌しながら、対象動物において重篤な反応原性なく良好な作用効果(例えば、アジュバント機能)を誘起するような用量を選択する。医薬成分(例えば、アジュバント)の投与群の他、適切なバッファー対象群を用いてネガティブコントロール実験を行う。
 また、必要に応じて、予備実験を行い医薬成分(例えば、アジュバント)の投与後に器官において発現が変動する遺伝子を調べておき、大幅に変動するものや適宜の時間経過後に正常に戻るものなどを調べることができる。実施例で例示されるように投与後6時間での遺伝子発現を見ることが好ましい一例であることが判明し、24時間後には正常に戻るものが多いことから、遺伝子発現の変動は、例えば、投与後1~20時間後、好ましくは3~12時間後、例えば、4~8時間後、約6時間後の任意の時点での投与を行うことが好ましくありうる。遺伝子発現は、ここに調べてもよく遺伝子チップ(例えば、Affimetrix Gene Chipマイクロアレイシステム(Affymetrix))などを用いて調べてもよい。遺伝子チップでの試験用のサンプルの調製は、例えば、適宜のキットでTotal RNAを調製することで行うことができる。
 発現の解析は、当該分野で公知の任意の手法を用いて行うことができる。例えば、Affimetrix GeneChipマイクロアレイシステム(Affymetrix)などのシステムに付属するソフトウェアを用いてもよく、自作してもよく、インターネット等で入手可能な他のプログラムを用いてもよい。
 1つの実施形態では、本発明において、トランスクリプトーム分析について、本発明の方法は、前記DEGのセットを2つ以上の医薬成分(例えば、アジュバント)において統合し、共通して変動する遺伝子(DEG)のセットを生成する工程を包含する。ここで、DEGは好ましくは有意DEGでありうる。有意DEGは任意の閾値の設定により抽出し得るが、具体的な実施形態では、本発明において利用される所定の閾値は、所定の倍数の相違および所定の統計学的有意(p値)で特定されうる。例えば、以下の条件を全て満たす統計的に有意な変化(アップレギュレーションまたはダウンレギュレーション)として定義することができる:平均倍数変化(FC)が>1.5または<0.667であること、関連付けられたt検定のp値が多重検定補正無しで<0.01であること、およびカスタマイズPAコールが1であること。ここで、FCは、他の値を設定することもでき、1倍より多く10倍以下(他方はその逆数)であればよい。例えば、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍(および他方はその逆数)などであってもよい。この値の組は通常逆数の関係にあるが、逆数の関係にない組み合わせを用いてもよい。p値もまた、<0.01以外の基準を用いることもできる。例えば、<0.05、<0.04、<0.03、<0.02などであってもよく、<0.009、<0.008、<0.007、<0.006、<0.005、<0.004、<0.003、<0.002、<0.001などであってもよい。
 1つの実施形態では、本発明の方法は、医薬成分(例えば、アジュバント)の投与前後での比較の結果、発現が所定の閾値を超えて変動した遺伝子を特定し、特定された遺伝子のうち共通して変動する遺伝子を選択し有意DEGのセットを生成する工程を包含する。ここで利用される所定の閾値は、本明細書において他の箇所に説明される任意の閾値を用いることができる。本発明において共通して変動するとして選択された遺伝子は、有意DEGのセットとして使用される。このような有意DEGのセットは、医薬成分(例えば、アジュバント)の分類に利用することができる。
 1つの実施形態では、本発明の方法は、少なくとも2つ以上の器官について、トランスクリプトーム分析を行い、特定の器官でのみ発現が変動する遺伝子のセットを特定し、該セットを該器官特異的遺伝子セットとする工程を包含する。このような器官特異的遺伝子セットを用いれば、特定の器官におけるトランスクリプトーム分析を行うだけで医薬成分(例えば、アジュバント)を分類することが可能である。医薬成分(例えば、アジュバント)の分類は、基準医薬成分(例えば、基準アジュバント)または標準医薬成分(例えば、標準アジュバント)との比較等を利用して行うことができる。
 別の実施形態では、本発明で実施されるトランスクリプトーム分析は、多数の器官に対してなされ、好ましくは、例えば、肝臓、脾臓およびリンパ節からなる群より選択される少なくとも1つの器官におけるトランスクリプトームに対してなされる。理論に束縛されることを望まないが、これらの器官では、実施例で示されるように、アジュバントの性質の特定をより明確に可能にする結果を示しているからであるが、これに限定されず、アジュバント以外の医薬成分(例えば、有効成分、添加成分など)、他の器官(例えば、腎臓、肺、副腎、膵臓、心臓等)も選択することができる。
 1つの実施形態では、本発明が分析する医薬成分(例えば、アジュバント)の数は、統計学的に有意なクラスタリング分析を可能とする数である。このような数は統計学に関する技術常識を用いて特定することができ、数を特定することは本発明の本質ではない。
 1つの実施形態では、本発明の方法は、決定したプロファイルのうち、特定の医薬成分(例えば、アジュバント)および特定の器官に特有の遺伝子マーカーの1または複数を医薬成分(例えば、アジュバント)評価マーカーとして提供する工程を包含する。本発明の医薬成分(例えば、アジュバント)評価マーカーを用いることにより、従来では達成することができなかったアッセイ、例えば、未知の医薬成分(例えば、アジュバント)または既知の医薬成分(例えば、アジュバント)であっても解析が進んでいない医薬成分(例えば、アジュバント)について、多数の実験をしなくても評価することができる。本発明において、(d)該候補医薬成分(例えば、候補アジュバント)が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分(例えば、候補アジュバント)を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程もまた、当該分野で(c)で説明したクラスターを分析して判定することができる。理論に束縛されることを望まないが、実施例で実証されているように、本発明により特定された特定の医薬成分(例えば、アジュバント)および特定の器官に特有の遺伝子は、クラスター分析に利用することができ、その結果、基準医薬成分(例えば、基準アジュバント)または標準医薬成分(例えば、標準アジュバント)と対比するなどして医薬成分(例えば、アジュバント)を評価することができる。
 1つの実施形態では、本発明の方法は、医薬成分(例えば、アジュバント)について、生物学的指標を分析し、クラスターと相関づける工程をさらに包含する。分析される生物学的指標は、分析ができるものであれば、どのようなものでも利用することができる。生物学的指標は、正常なプロセスや病的プロセス、あるいは治療に対する薬理学的な反応の指標として客観的に測定・評価される項目であり、バイオマーカーなどで測定することができる。生物学的指標としては、代表的には、例えば、創傷、細胞死、アポトーシス、NFκBシグナル経路、炎症応答、TNFシグナル経路、サイトカイン類、遊走、ケモカイン、化学走性、ストレス、防御応答、免疫応答、生来免疫応答、適合性免疫応答、インターフェロン類およびインターロイキン類からなる群より選択される少なくとも1つの指標などを含むがこれらに限定されない。疾患の状態や変化、治癒の程度を特徴づけるバイオマーカーは、新薬の臨床試験での有効性を確認するためのサロゲートマーカー(代用マーカー)として使われる。血糖値やコレステロール値などは、生活習慣病の指標として代表的なバイオマーカーである。尿や血液中に含まれる生体由来の物質だけでなく、心電図、血圧、PET画像、骨密度、肺機能、SNPsも含まれる。またゲノム解析やプロテオーム解析が進んできたことによって、DNAやRNA、生体タンパク質等に関連したさまざまなバイオマーカーが見出されている。
 1つの代表的な実施形態では、前記生物学的指標は、血液学的指標を含む。
 このような血液学的指標としては、白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)および血小板分布幅(PDW)などを挙げることができるがこれらに限定されない。血液学的指標は、これらの1つまたは複数、あるいはすべてを測定してもよい。
 1つの実施形態では、本発明に置いて分析される生物学的指標は、サイトカインプロファイルを含む。「サイトカインプロファイル」という用語は、ある時刻に、患者の中で産生されたサイトカインの種類および各種サイトカインの量を意味する。サイトカインは白血球によって放出され、免疫効果を有するタンパク質である。サイトカインの例には、(γ-インターフェロンのような)インターフェロン、腫瘍壌死因子、インターロイキン(IL)1、IL-2、IL-4、IL-6、およびIL-10が含まれるが、これらには限定されない。サイトカインの例には、(γ-インターフェロンのような)インターフェロン、腫瘍壌死因子、インターロイキン(IL)1、IL-2、IL-4、IL-6、およびIL-10が含まれるが、これらには限定されない。例えば、心臓循環器系のサイトカインとしては、、CCL2 (MCP-1)、CCL3(MIP-1α)、CCL4(MIP-1β)、CRP、CSF、CXCL16、Erythropoietin(EPO)、FGF、Fractalkine (CXC3L1)、G-CSF、GM-CSF、IFNγ、IL-1、IL-2、IL-5、IL-6、IL-8、IL-8(CXCL8)、IL-10、IL-15、IL-18、M-CSF、PDGF、RANTES (CCL5)、TNFα、VEGFなどを挙げることができるがそれらに限定されない。別の局面では、本発明は、医薬成分(例えば、アジュバント)の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムを提供する。このプログラムが実装する法は:(A)2つ以上の医薬成分(例えば、アジュバント)を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該医薬成分(例えば、アジュバント)をクラスタリングする工程;(C)該クラスタリングに基づいて、該医薬成分(例えば、アジュバント)の該器官のトランスクリプトームプロファイルを生成する工程を包含する。ここで使用される各工程は、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。
 別の局面において、本発明は、所望の機能を有する組成物の製造方法を提供する。この方法は、(A)候補医薬成分を提供する工程、(B)所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分を選択する工程、および(C)選択された候補医薬成分を用いて組成物を製造する工程を包含する。ここで、(A)および(B)は、本明細書において上述した本発明の医薬成分(例えば、アジュバント)を分類する方法における医薬成分(例えば、アジュバント)の候補の提供、トランスクリプトーム分析およびクラスタリングなどの任意の特徴を採用することができる。
 本発明において、(C)選択された医薬成分(例えば、候補アジュバント)を用いて組成物を製造する工程もまた、当該分野で公知の任意の手法を用いて実施することができる。このような組成物の製造は、好ましくは薬学的に受容可能なキャリア、希釈剤、賦形剤等および/または有効成分(アジュバント、ワクチンの場合抗原等)を、選択された候補医薬成分(例えば、候補アジュバント)を混合することによって達成することができる。賦形剤としては、緩衝剤、結合剤、爆破剤、希釈剤、香味料、潤滑剤などを含み得る。
 具体的な実施形態では、本発明の所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分(例えば、候補アジュバント)を選択する工程において、所望の機能は、G1~G6のいずれか1つまたは複数を含む。
 別の局面において、本発明は、所望の機能を発揮するための組成物であって、該所望の機能を発揮する医薬成分(例えば、アジュバント)を含み、好ましくは、該所望の機能は、G1~G6のいずれか1つまたは複数を含む、組成物を提供する。本発明の組成物に含まれる医薬成分(例えば、アジュバント)に含まれる所望の機能を発揮する医薬成分(例えば、アジュバント)は、本発明の方法で特定されたものでありうる。好ましくは、本発明の組成物に含まれる医薬成分(例えば、アジュバント)に含まれる所望の機能を発揮する医薬成分(例えば、アジュバント)は、基準医薬成分(例えば、基準アジュバント)ではなく、新たにその機能(G1~G6またはそれ以外)が同定されたものでありうる。
 本発明はまた、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の品質管理を行う方法を提供する。品質管理は、医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法で用いられるトランスクリプトームクラスタリングの分析結果を見て、基準となる動物等において、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)と同様の遺伝子発現パターンがみられるかどうかを判定することによって判断することができる。対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)が属するグループの基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)またはその代替物と実質的に同様の遺伝子発現パターンが見られれば、その対象医薬成分(例えば、対象有効成分、対象添加成分、対象アジュバント)は品質が良いものとして判断することができ、遺伝子発現パターンの相違が見られれば、その程度に従って、品質のレベルを特定することができる。
 本発明はまた、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の安全性を試験する方法を提供する。安全性試験は、本明細書に記載される医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法で用いられるトランスクリプトームクラスタリングの分析結果を見て、基準となる動物等において、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)と同様の遺伝子発現パターンがみられるかどうかを判定することによって判断することができる。対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)が属するグループの基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)またはその代替物と実質的に同様の遺伝子発現パターンが見られれば、その対象医薬成分(例えば、対象有効成分、対象添加成分、対象アジュバント)は安全性が高いものとして判断することができ、遺伝子発現パターンの相違が見られれば、その程度に従って、安全性のレベルを特定することができる。
 本発明はまた、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の効果(有効性)を試験する方法を提供する。効果試験(有効性試験)は、医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法で用いられるトランスクリプトームクラスタリングの分析結果を見て、基準となる動物等において、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)と同様の遺伝子発現パターンがみられるかどうかを判定することによって判断することができる。対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)が属するグループの基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)またはその代替物と実質的に同様の遺伝子発現パターンが見られれば、その対象医薬成分(例えば、対象有効成分、対象添加成分、対象アジュバント)は効果がその医薬成分(例えば、有効成分、添加成分、アジュバント)と同程度に高いものとして判断することができ、遺伝子発現パターンの相違が見られれば、その程度に従って、効果のレベルを特定することができる。
 1つの局面では、本発明は、有効性または毒性(安全性)についてのボトルネック遺伝子を特定し得ることを特徴とする。
 本明細書において「ボトルネック遺伝子」とは、ある現象(例えば、有効性がみられること、あるいは毒性がみられること)について、その現象の帰趨に本質的な影響を与える遺伝子をいう。
 例えば、その現象が安全性または毒性の場合、毒性ボトルネック遺伝子が特定され得る。毒性ボトルネック遺伝子は、その遺伝子の発現に変動がみられる(例えば、発現が無から有になる、有から無になる、あるいは増加するまたは減少する)場合、対象(例えば、医薬成分)に毒性があるあるいはないと判断し得るものをいう。代表的には、毒性ボトルネック遺伝子は、対象が投与された後に検査され、その遺伝子の発現がみられるあるいは増加すると、その対象は毒性があると判断され得るものである。
 本発明の手法を用いると、毒性ボトルネック遺伝子を特定することができる。例えば、本発明の方法を用いて、毒性があるとわかっている物質について、トランスクリプトーム分析を行って、そのパターンを特定し、対象物質について少なくとも一部同様のパターンを取る遺伝子を特定し、毒性ボトルネック遺伝子の候補遺伝子とすることができる。その候補遺伝子に関し他の動物種において相当する遺伝子を当該他の動物種において欠損させてノックアウト動物を作製し、該ノックアウト動物において、ノックアウトしていない動物に比較して毒性が減少または消失するかを決定し、減少または消失があった遺伝子を毒性ボトルネット遺伝子として選択することができる。減少または消失は、統計学的に有意であることが好ましい。本発明は、このような毒性ボトルネック遺伝子を提供または同定する方法をも提供する。
 1つの局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の毒性判定方法を提供する。この方法は、候補アジュバント等の候補医薬成分について、毒性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の変動(例えば、活性化)が観察されるかを決定する工程と、該変動(例えば、活性化)が観察された候補医薬成分を毒性有として判断する工程とを
含む。毒性の判定において、医薬成分個々の成分について試験することのほか、複数の成分の組合せあるいは最終の製剤における組み合わせについても試験することができる。場合によっては、最終の組合せでの毒性試験が重要であり得る。
 別の例では、対象となる現象が有効性の場合、有効性ボトルネック遺伝子が特定され得る。有効性ボトルネック遺伝子は、その遺伝子の発現に変動がみられる(例えば、発現が無から有になる、有から無になる、あるいは増加するまたは減少する)場合、対象(例えば、医薬成分)に有効性があるあるいはないと判断し得るものをいう。代表的には、有効性ボトルネック遺伝子は、対象が投与された後に検査され、その遺伝子の発現がみられるあるいは増加すると、その対象は有効性があると判断され得るものである。有効性ボトルネック遺伝子は少なくとも1つ特定され得るが、セットで提供されることもある。
 本発明の手法を用いると、有効性ボトルネック遺伝子を特定することができる。例えば、本発明の方法を用いて、有効性があるとわかっている物質について、トランスクリプトーム分析を行って、そのパターンを特定し、対象物質について少なくとも一部同様のパターンを取る遺伝子を特定し、有効性ボトルネック遺伝子の候補遺伝子とすることができる。その候補遺伝子に関し他の動物種において相当する遺伝子を当該他の動物種において欠損させてノックアウト動物を作製し、該ノックアウト動物において、ノックアウトしていない動物に比較して有効性が増加または発現するかを決定し、増加または発現があった遺伝子を有効性ボトルネット遺伝子として選択することができる。増加または発現は、統計学的に有意であることが好ましい。本発明は、このような有効性ボトルネック遺伝子を提供または同定する方法をも提供する。
 1つの局面において、本発明は、医薬成分(例えば、有効成分、アジュバント)の有効性判定方法を提供する。この方法は、候補アジュバント等の候補医薬成分について、有効性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の変動(例えば、活性化)が観察されるかを決定する工程と、該変動(例えば、活性化)が観察された候補医薬成分を有効性有として判断する工程とを含む。添加成分についても有効性を定義することができる場合は、同様に有効性ボトルネック遺伝子を用いた有効性の判定を行うことができる。アジュバントの場合は、主薬(例えば、ワクチンの場合の抗原)とともに試験することが想定される。
 (コンピュータプログラム、システム、記録媒体)
 さらに別の局面では、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムを格納した記録媒体を提供する。この記録媒体に格納されるプログラムが実行する方法は:(A)2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;(B)該発現データについて、該医薬成分(例えば、有効成分、添加成分、アジュバント)をクラスタリングする工程;(C)該クラスタリングに基づいて、該医薬成分(例えば、有効成分、添加成分、アジュバント)の該器官のトランスクリプトームプロファイルを生成する工程を包含する。ここで使用される各工程は、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。
 さらに別の局面では、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成するためのシステムを提供する。このシステムは:(A)2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得るまたは入力する発現データ獲得部;(B)該発現データについて、該医薬成分(例えば、有効成分、添加成分、アジュバント)をクラスタリングするクラスタリング演算部;(C)該クラスタリングに基づいて、該医薬成分(例えば、有効成分、添加成分、アジュバント)の該器官のトランスクリプトームプロファイルを生成するプロファイリング部を包含する本発明のシステムの各部(発現データ獲得部、クラスタリング演算部、プロファイリング部等)は、本発明の方法で採用され得る任意の実施形態またはその組み合わせを実現する任意の構成を採用することができ、任意の実施形態で実施することができる。
 ここで、本発明のシステムの発現データ獲得部では、医薬成分(例えば、有効成分、添加成分、アジュバント)を用いたトランスクリプトーム分析を行ってデータを生成するか、行った結果を入手することができるように構成される。
 1つの局面において、本発明は、トランスクリプトームクラスタリングに基づいて、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する工程を包含する医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法をコンピュータに実装させるプログラムを提供する。ここで使用される各工程は、本明細書に記載されている、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。
 別の局面において、本発明は、トランスクリプトームクラスタリングに基づいて、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する工程を包含する医薬成分(例えば、有効成分、添加成分、アジュバント)の分類方法をコンピュータに実装させるプログラムを格納した記録媒体を提供する。ここで使用される各工程は、本明細書に記載されている、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。
 別の局面において、本発明は、トランスクリプトームクラスタリングに基づいて、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する分類部を包含する医薬成分(例えば、有効成分、添加成分、アジュバント)を分類するためのシステムを提供する。本発明のシステムの各部(分類部等)は、本明細書に記載されている、本発明の方法で採用され得る任意の実施形態またはその組み合わせを実現する任意の構成を採用することができ、任意の実施形態で実施することができる。
 ここで、本発明のシステムの分類部では、医薬成分(例えば、有効成分、添加成分、アジュバント)を用いたトランスクリプトーム分析を行ってデータを生成するか、行った結果を入手することができるように構成される。
 次に、図6の機能ブロック図を参照して、本発明のシステムの構成を説明する。なお、本図においては、単一のシステムで実現した場合を示しているが、複数のシステムで実現される場合も本発明の範囲に包含されることが理解される。このシステムで実現される方法は、プログラム(例えば、医薬成分(例えば、有効成分、添加成分、アジュバント)の分類をコンピュータに実装するためのプログラム)として記載することができる。このようなプログラムは記録媒体に記録することができ、方法として実現することができる。
 本発明のシステム1000は、コンピュータシステムに内蔵されたCPU1001にシステムバス1020を介してRAM1003、ROM、SSDやHDD、磁気ディスク、USBメモリ等のフラッシュメモリなどの外部記憶装置1005及び入出力インターフェース(I/F)1025が接続されて構成される。入出力I/F1025には、キーボードやマウスなどの入力装置1009、ディスプレイなどの出力装置1007、及びモデムなどの通信デバイス1011がそれぞれ接続されている。外部記憶装置1005は、情報データベース格納部1030とプログラム格納部1040とを備えている。何れも、外部記憶装置1005内に確保された一定の記憶領域である。
 このようなハードウェア構成において、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムがCPU1001によってRAM1003上に呼び出されて展開され実行されることで、OS(オペレーションシステム)と協働して本発明の機能を奏するようになっている。もちろん、このような協働する場合以外の仕組みでも本発明を実装することは可能である。
 本発明の実装において、トランスクリプトームクラスタリングとして用いるためのデータ、例えば、医薬成分(例えば、有効成分、添加成分、アジュバント)に関する対象生物の少なくとも1つの器官のトランスクリプトーム分析の結果、このトランスクリプトーム分析を行って得られた発現データまたはこれと同等の情報(例えば、シミュレーションを行って得られたデータ)は、入力装置1009を介して入力され、あるいは、通信I/Fや通信デバイス1011等を介して入力されるか、あるいは、データベース格納部1030に格納されたものであってもよい。2つ以上の医薬成分(例えば、有効成分、添加成分、アジュバント)を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得るステップおよび/または分類のためのトランスクリプトームクラスタリングの実施は、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この外部記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。このようなトランスクリプトーム分析を行うソフトウェアは、実施例に例示されるものを使用してよいが、これに限定されず、当該分野で公知の任意のソフトウェアを利用することができる。分析が行われたデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。発現データについて、該医薬成分(例えば、有効成分、添加成分、アジュバント)をクラスタリングするステップもまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。作成されたクラスタリング分析のデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。クラスタリングに基づいて、医薬成分(例えば、有効成分、添加成分、アジュバント)の器官のトランスクリプトームプロファイルを生成するステップもまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。作成されたトランスクリプトームプロファイルデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。トランスクリプトームプロファイルデータについて種々の特徴に関するデータ処理や格納もまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。プロファイルの特徴や情報は、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。
 データベース格納部1030には、これらのデータや計算結果、もしくは通信デバイス1011等を介して取得した情報が随時書き込まれ、更新される。各入力配列セット中の各々の配列、参照データベースの各遺伝子情報ID等の情報を各マスタテーブルで管理することにより、蓄積対象となるサンプルに帰属する情報を、各マスタテーブルにおいて定義されたIDにより管理することが可能となる。
 データベース格納部1030には、上記計算結果は、医薬成分(例えば、有効成分、添加成分、アジュバント)の各種情報、生体情報等の既知の情報と関連付けて格納されてもよい。このような関連付けは、ネットワーク(インターネット、イントラネット等)を通じて入手可能なデータをそのまままたはネットワークのリンクとしてなされてもよい。
 また、プログラム格納部1040に格納されるコンピュータプログラムは、コンピュータを、上記した処理システム、例えば、データ提供、トランスクリプトーム分析、発現データ分析、クラスタリング、プロファイリング、その他の処理等を行う処理を実施するシステムとして構成するものである。これらの各機能は、それぞれが独立したコンピュータプログラムやそのモジュール、ルーチンなどであり、上記CPU1001によって実行されることでコンピュータを各システムや装置として構成させるものである。なお、以下においては、それぞれのシステムにおける各機能が協働してそれぞれのシステムを構成しているものとする。
 <機能未知医薬成分の解析方法>
 別の局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法を提供する。この方法は:(a)候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を提供する工程;(b)機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットを提供する工程;(c)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供する工程、を包含する。本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報の提供は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)のトランスクリプトーム分析技術を用いるものであり、本明細書に記載される<医薬成分のトランスクリプトーム分析>の任意の特徴を1つまたはそれらを組み合わせて含みうる。
 ここで、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)は、新規物質でもよく、既知物質でもよい。従来医薬成分(例えば、有効成分、添加成分、アジュバント)としての性質が公知であっても未知のものであってもよい。候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)は、対象生物の少なくとも1つの器官に提供されることが意図される。このような器官としては、肝臓、脾臓およびリンパ節などを挙げることができるが、それらに限定されない。
 機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットの提供は、<医薬成分のトランスクリプトーム分析>で言及した具体的なG1~G6に属する任意のアジュバントを用いてもよく、<医薬成分のトランスクリプトーム分析>で記載される手法を用いて別途同定された医薬成分(例えば、有効成分、添加成分、アジュバント)またはそのセットを用いてもよい。
 候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得ることは、当該分野で公知の任意の手法を用いることができ、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットについては、すでに分析されたデータを用いることもできるし、新たにデータを取り直してもよい。すでに分析されたデータを用いる場合は、好ましくは候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)のトランスクリプトーム分析は、このすでに分析されたデータで利用された条件(例えば、投与形態、用法用量等)でトランスクリプトーム分析を行うことが好ましくありうるが、必ずしもこれに限定されない。遺伝子発現データが得られたら、クラスタリングする。クラスタリングは、任意の手法を用いることができ、本明細書に記載される<医薬成分のトランスクリプトーム分析>で言及した方法を利用することができる。
 トランスクリプトーム分析後、遺伝子発現データのクラスタリング分析結果が得られたら、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)がどの医薬成分(例えば、有効成分、添加成分、アジュバント)クラスター(グループ)に属するかを判定し、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供することができる。このような特徴情報の提供方法により提供された情報は、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が実際に有する特徴である蓋然性が高く、新規物質もしくは医薬成分(例えば、有効成分、添加成分、アジュバント)としての機能が未知の既知物質の特性を予測する極めて有用性の高い方法であるといえる。
 1つの局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法をコンピュータに実装させるプログラムを提供する。このプログラムが実装する方法は:(a)候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を提供する工程;(b)機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットを提供する工程;(c)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバントセット)のトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供する工程、を包含する。本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報の提供は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)のトランスクリプトーム分析技術を用いるものであり、本明細書に記載される<医薬成分のトランスクリプトーム分析>の任意の特徴を1つまたはそれらを組み合わせて含みうる。
 1つの局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法をコンピュータに実装させるプログラムを格納する記録媒体を提供する。この記録媒体が格納するプログラムが実行する方法は:(a)候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を提供する工程;(b)機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットを提供する工程;(c)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供する工程、を包含する。本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報の提供は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)のトランスクリプトーム分析技術を用いるものであり、本明細書に記載される<医薬成分のトランスクリプトーム分析>の任意の特徴を1つまたはそれらを組み合わせて含みうる。
 1つの局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供するシステムを提供する。このシステムは:(a)候補医薬成分(例えば、有効成分、添加成分、アジュバント)を提供する候補医薬成分提供部;(b)機能が既知の基準医薬成分(例えば、有効成分、添加成分、アジュバント)セットを提供する基準医薬成分提供部;(c)該候補医薬成分(例えば、有効成分、添加成分、アジュバント)および該基準医薬成分(例えば、有効成分、添加成分、アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング解析部;(d)該候補医薬成分(例えば、有効成分、添加成分、アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、有効成分、添加成分、アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴として提供する特徴分析部、を包含する。本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報の提供は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)のトランスクリプトーム分析技術を用いるものであり、本明細書に記載される<医薬成分のトランスクリプトーム分析>の任意の特徴を1つまたはそれらを組み合わせて含みうる。本発明のシステムの各部(候補医薬成分提供部、基準医薬成分提供部、トランスクリプトームクラスタリング解析部、特徴分析部等)は、本発明の方法で採用され得る任意の実施形態またはその組み合わせを実現する任意の構成を採用することができ、任意の実施形態で実施することができる。
 1つの実施形態では、候補医薬成分提供部は、候補医薬成分(例えば、有効成分、添加成分、アジュバント)を提供する機能及び配置を有する限り、どのような構成をとっていてもよい。解析部やプロファイリング部とは同一または異なる構造物として提供され得る。候補医薬成分(例えば、有効成分、添加成分、アジュバント)は、対象生物の少なくとも1つの器官に提供されることが意図される。
 1つの実施形態では、基準医薬成分(例えば、有効成分、添加成分、アジュバント)提供部は、機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットを提供する。基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)提供部では、基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)があらかじめ格納されていてもよく、あるいは別途基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)が外部より提供され受け入れられるような構成となっていてもよい。候補医薬成分提供部と基準医薬成分提供部とは、異なっていても同一であってもよい。同一である場合は候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)と基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)が混入しないような構成または機能が付与され得る。
 1つの実施形態では、トランスクリプトームクラスタリング解析部は、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする。候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析は、トランスクリプトームクラスタリング解析部自体がその機能のすべてを備えていてもよいし、外部で遺伝子発現データを入手し、そのデータが入力され、トランスクリプトームクラスタリング解析部がその結果をトランスクリプトーム分析する機能を有するように構成されていてもよい。
 1つの実施形態では、特徴分析部は、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供する。
 次に、医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供するシステムについても、医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成するためのシステムと同様の処理が可能であり(図6の機能ブロック図を参照のこと)。
 別の局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する方法をコンピュータに実装させるプログラムを提供する。該方法は:(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;(b)基準医薬成分セットを計算する工程;(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、を包含する。この方法において、医薬成分は、有効成分、添加成分、アジュバント、またはその組み合わせなどであり得る。別の局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する上記方法をコンピュータに実装させるプログラムを格納した記録媒体を提供する。
 1つの実施形態では、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する方法をコンピュータに実装させるプログラムであって、該方法は:(a)対象生物の少なくとも1つの器官において候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を提供する工程;(b)G1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する工程;(c)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、を包含するプログラムを提供する。ここで使用される各工程は、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。別の局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類する上記方法をコンピュータに実装させるプログラムを格納した記録媒体を提供する。
 別の実施形態において、本発明は、アジュバントを分類する方法をコンピュータに実装させるプログラムおよび該プログラムを格納した記録媒体を提供する。ここで、該方法は:(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する工程;(b)G1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する工程;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、を包含する。ここで使用される各工程は、本発明の方法で採用され得る任意の実施形態またはその組み合わせで実施することができる。
 さらなる局面において、本発明は、医薬成分(例えば、有効成分、添加成分、アジュバント)を分類するシステムを提供する。このシステムは:(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;(b)基準医薬成分セットを計算する基準医薬成分計算部;(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および(d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、を包含する。このシステムにおいて、医薬成分は、有効成分、添加成分、アジュバント、またはその組み合わせなどであり得る。
 1つの実施形態において、本発明は、医薬成分を分類するシステムを提供する。このシステムは:(a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;(b)本発明のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する基準医薬成分格納部;(c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および(d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、を包含する。
 別の実施形態において、本発明は、アジュバントを分類するシステムであって、該システムは:(a)対象生物の少なくとも1つの器官において候補アジュバントを提供する候補アジュバント提供部;(b)G1~G6からなる群より選択される少なくとも1つに分類される基準アジュバントセットを提供する基準アジュバント格納部;(c)該候補アジュバントおよび該基準アジュバントセットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および(d)該候補アジュバントが属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補アジュバントを同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、を包含するシステムを提供する。本発明のシステムの各部(候補アジュバント提供部、基準アジュバント格納部、トランスクリプトームクラスタリング分析部、判定部等)は、本発明の方法で採用され得る任意の実施形態またはその組み合わせを実現する任意の構成を採用することができ、任意の実施形態で実施することができる。
 ここで、本発明のシステムの分類部では、医薬成分(例えば、有効成分、添加成分、アジュバント)を用いたトランスクリプトーム分析を行ってデータを生成するか、行った結果を入手することができるように構成される。
 次に、図6の機能ブロック図を参照して、本発明のシステムの構成を説明する。なお、本図においては、単一のシステムで実現した場合を示しているが、複数のシステムで実現される場合も本発明の範囲に包含されることが理解される。このシステムで実現される方法は、プログラムとして記載することができる。このようなプログラムは記録媒体に記録することができ、方法として実現することができる。
 本発明のシステム1000は、コンピュータシステムに内蔵されたCPU1001にシステムバス1020を介してRAM1003、ROM、SSDやHDD、磁気ディスク、USBメモリ等のフラッシュメモリなどの外部記憶装置1005及び入出力インターフェース(I/F)1025が接続されて構成される。入出力I/F1025には、キーボードやマウスなどの入力装置1009、ディスプレイなどの出力装置1007、及びモデムなどの通信デバイス1011がそれぞれ接続されている。外部記憶装置1005は、情報データベース格納部1030とプログラム格納部1040とを備えている。何れも、外部記憶装置1005内に確保された一定の記憶領域である。
 このようなハードウェア構成において、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムがCPU1001によってRAM1003上に呼び出されて展開され実行されることで、OS(オペレーションシステム)と協働して本発明の機能を奏するようになっている。もちろん、このような協働する場合以外の仕組みでも本発明を実装することは可能である。
 本発明の実装において、候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および機能が既知の基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得た場合、このトランスクリプトーム分析を行って得られた発現データまたはこれと同等の情報(例えば、シミュレーションを行って得られたデータ)は、入力装置1009を介して入力され、あるいは、通信I/Fや通信デバイス1011等を介して入力されるか、あるいは、データベース格納部1030に格納されたものであってもよい。該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするステップは、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この外部記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。このようなトランスクリプトーム分析や発現分析を行うソフトウェアは、実施例に例示されるものを使用してよいが、これに限定されず、当該分野で公知の任意のソフトウェアを利用することができる。分析が行われたデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するのと同一のクラスターに属する該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのメンバーの特徴を、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴として提供するステップもまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。作成された候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)の特徴のデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。トランスクリプトームプロファイルデータについて種々の特徴に関するデータ処理や格納もまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。プロファイルの特徴や情報は、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。
 また、本発明の別の実装において、対象生物の少なくとも1つの器官において候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を提供する工程によって提供される候補アジュバントに関するデータは、入力装置1009を介して入力され、あるいは、通信I/Fや通信デバイス1011等を介して入力されるか、あるいは、データベース格納部1030に格納されたものであってもよい。G1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットを提供する工程によって提供される基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのデータもまた、同様に格納または入力され得る。あるいは基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのデータは、データベース格納部1030からまたは通信I/Fや通信デバイス1011等を介してデータを呼び出して利用してもよい。該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)および該基準医薬成分(例えば、基準有効成分、基準添加成分、基準アジュバント)セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程は、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この外部記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。このようなトランスクリプトーム分析および/またはクラスタリングを行うソフトウェアは、実施例に例示されるものを使用してよいが、これに限定されず、当該分野で公知の任意のソフトウェアを利用することができる。分析が行われたデータは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分(例えば、候補有効成分、候補添加成分、候補アジュバント)を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程もまた、プログラム格納部1040に格納されたプログラム、または、入力装置1009を介して各種の指令(コマンド)が入力されることで、又は通信I/Fや通信デバイス1011等を介してコマンドを受信することで、この記憶装置1005にインストールされたソフトウェアプログラムによって実行することができる。判定データは、出力装置1007を通じて出力されるかまたは情報データベース格納部1030等の外部記憶装置1005に格納されてもよい。
 データベース格納部1030には、これらのデータや計算結果、もしくは通信デバイス1011等を介して取得した情報が随時書き込まれ、更新される。各入力配列セット中の各々の配列、参照データベースの各遺伝子情報ID等の情報を各マスタテーブルで管理することにより、蓄積対象となるサンプルに帰属する情報を、各マスタテーブルにおいて定義されたIDにより管理することが可能となる。
 データベース格納部1030には、上記計算結果は、医薬成分(例えば、有効成分、添加成分、アジュバント)の各種情報、生体情報等の既知の情報と関連付けて格納されてもよい。このような関連付けは、ネットワーク(インターネット、イントラネット等)を通じて入手可能なデータをそのまままたはネットワークのリンクとしてなされてもよい。
 また、プログラム格納部1040に格納されるコンピュータプログラムは、コンピュータを、上記した処理システム、例えば、データ提供、トランスクリプトーム分析、発現データ分析、クラスタリング、プロファイリング、その他の処理等を行う処理を実施するシステムとして構成するものである。これらの各機能は、それぞれが独立したコンピュータプログラムやそのモジュール、ルーチンなどであり、上記CPU1001によって実行されることでコンピュータを各システムや装置として構成させるものである。なお、以下においては、それぞれのシステムにおける各機能が協働してそれぞれのシステムを構成しているものとする。
 <品質管理、安全性試験、効果判定応用>
 1つの局面において、本発明は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成する方法および/または本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の品質管理を行う方法を提供する。医薬成分(例えば、有効成分、添加成分、アジュバント)の品質管理は、特に医薬品として出荷される際の、各ロットの医薬成分(例えば、有効成分、添加成分、アジュバント)の品質が適切なものかをあらかじめ試験することによって品質を一定のレベル以上に保つものである。医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルは、種々の医薬成分(例えば、有効成分、添加成分、アジュバント)の特性を有意DEGを用いて分析することができるため、実際に複雑な試験を行わなくても品質を一定程度に保つことができる。
 品質管理の具体的手法としては、例えば、品質管理の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)について、上記分析を行い、その器官トランスクリプトームプロファイルを得る。その医薬成分(例えば、有効成分、添加成分、アジュバント)について想定される標準的な器官トランスクリプトームプロファイル(基準トランスクリプトームプロファイルともいう。)と品質管理の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルとを比較して、有意な相違がなければ、想定された品質が保持されていると判定することなどが挙げられるが、これらに限定されない。あるいは、有意な相違がある場合に品質基準を満たしていないとして判定し、有意な相違がみられない場合に品質基準を満たすかどうかをさらなる試験することで決定してもよい。
 別の局面において、本発明は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成する方法および/または本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の安全性を試験する方法を提供する。新規医薬成分(例えば、有効成分、添加成分、アジュバント)自体は毒性評価が必要であり、アジュバントの場合は、新規アジュバントと抗原とを含む製剤での毒性評価も必要であり、さらに既存の医薬成分(例えば、有効成分、添加成分、アジュバント)、抗原であってもその組み合わせによっては、毒性評価が必要である。このような毒性評価の一部または全部として、このような器官トランスクリプトームプロファイルまたは医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を活用することができる。ヒト摂取後の安全性を外挿するために有用である。
 安全性の判断の具体的手法としては、例えば、安全性判断の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)について、上記分析を行い、その器官トランスクリプトームプロファイルを得る。その医薬成分(例えば、有効成分、添加成分、アジュバント)について想定される標準的な器官トランスクリプトームプロファイル(基準トランスクリプトームプロファイルともいう。)と安全性判断の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルとを比較して、有意な相違がなければ、想定された安全性が保持されていると判定することなどが挙げられるが、これらに限定されない。あるいは、有意な相違がある場合に安全性基準を満たしていないとして判定し、有意な相違がみられない場合に安全性基準を満たすかどうかをさらなる試験することで決定してもよい。
 別の局面において、本発明は、本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルを生成する方法および/または本発明の医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を提供する方法を用いて、医薬成分(例えば、有効成分、添加成分、アジュバント)の効果を判定する方法を提供する。新規医薬成分(例えば、有効成分、添加成分、アジュバント)自体は有効性評価が必要であり、アジュバントの場合、新規アジュバントと抗原とを含む製剤での有効性評価も必要であり、さらに既存のアジュバント、抗原であってもその組み合わせによっては、有効性評価が必要である。このような有効性評価の一部または全部として、このような器官トランスクリプトームプロファイルまたは医薬成分(例えば、有効成分、添加成分、アジュバント)の特徴情報を活用することができる。ヒト摂取後の有効性評価を外挿するために有用である。
 有効性評価の判断の具体的手法としては、例えば、有効性判断の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)について、上記トランスクリプトーム分析を行い、その器官トランスクリプトームプロファイルを得る。その医薬成分(例えば、有効成分、添加成分、アジュバント)について想定される標準的な器官トランスクリプトームプロファイル(基準トランスクリプトームプロファイルともいう。)と有効性判断の対象となる医薬成分(例えば、有効成分、添加成分、アジュバント)の器官トランスクリプトームプロファイルとを比較して、有意な相違がなければ、想定された有効性が達成されていると判定することなどが挙げられるが、これらに限定されない。あるいは、有意な相違がある場合に有効性の基準を満たしていないとして判定し、有意な相違がみられない場合に有効性の基準を満たすかどうかをさらなる試験することで決定してもよい。
 本発明では、アジュバントデータベースに加えて毒性ゲノムデータベース(ゲート)等を用いて、データベース間分析を行うことができる。例えば、アジュバントデータベースはヒト、サル、マウス、ラットなどで実証されており、使用し得ることが実証されているほか、このほかの動物でも同様に利用可能であることが理解される。また毒性ゲノムデータベースは、ヒトやラットで公開されており、これ以外に入手可能なデータベースを用いてデータベース間分析を行うことができる。これらは、単剤投与で6時間および24時間のデータがあり、遺伝子発現プロファイル(肝臓、腎臓、リンパ節および脾臓など)、血液学(白血球、赤血球、血小板など)、生化学試験(アスパラギン酸アミノ基転移酵素(AST)、アラニンアミノ基転移酵素(ALT)、クレアチニン(CRE)、などのほか、血清miRNAプロファイルなどを試験することができ、これらのデータベースも入手可能である。
 本発明では、トランスクリプトームベースで毒性予測および有効性予測が可能であるが、その際機械学習(例えば、サポートベクターマシン)を用いて予測モデルを生成し予測することも可能である。
 例えば、公開の毒性ゲノムゲート(150)について、毒性グループ(10)および非毒性グループ(10)について、例えば、4回の投与の間に病理的知見が得られたグループと毒性関連の特徴が観察されていないものとを特定する。毒性グループについて、これと似た発現パターンなどを示したサンプルについては、毒性と予測することができ、非毒性グループに類似したパターンを示したサンプルは非毒性と判定することができる。この場合、機械学習によって予測モデルを生成することができ、これらのモデルおよびモデルに基づく予測方法もまた本発明の範囲内にある。
 アジュバントデータベースなどの有効性に関連するアジュバントデータベースを用いると有効性を判定することができる。粒子、エマルジョン、DNA/RNA、TLRリガンドなどのデータベースを利用することができる。
 本発明は、機械学習を利用した人工知能(AI)を用いて実施することができる。本明細書において「機械学習」とは、明示的にプログラミングすることなく、コンピュータに学ぶ能力を与えるような技術をいう。機能単位が新しい知識・技能を獲得すること,又は既存の知識・技能を再構成することによって、自身の性能を向上させる過程である。経験から学ぶように計算機をプログラミングすることで、細部をプログラミングするのに必要になる手間の多くは減らせ、機械学習分野では、経験から自動的に改善を図れるようなコンピュータプログラムを構築する方法について議論している。データ分析・機械学習の役割としては、アルゴリズム分野と並んで知的処理の基盤になる要素技術であり、通常他の技術と連携して利用され、連携する分野の知識(ドメイン知識;例えば、医学分野)が必要である。その応用範囲としては、予測(データを集め,これから起こることを予測する)、探索(集めたデータの中から,何か目立つ特徴を見つける)、検定・記述(データの中のいろいろな要素の関係を調べる)などの役割がある。機械学習は,実世界の目標の達成度を示す指標に基づくものであり、機械学習の利用者が、実世界での目標を把握していなければならない。そして、目的が達成されたときに,良くなるような指標を定式化する必要がある。機械学習としては、線形回帰、ロジスティック回帰、サポートベクターマシンなどが用いられ得、および交差検証(交差検定、交差確認ともいう。Cross Validation)を行うことで、各モデルの判別精度を算出することができる。ランキングした後、1つずつ特徴量を増やして機械学習(線形回帰、ロジスティック回帰、サポートベクターマシンなど)と交差検証を行い、各モデルの判別精度を算出することができる。それにより、最も高い精度のモデルを選択することができる。本発明において、機械学習は、任意のものを使用することができ、教師付き機械学習として、線形、ロジスティック、サポートベクターマシン(SVM)などを利用することができる。
 機械学習では論理的推論を行う。論理的推論にはおおまかに3種類あり、演繹(deduction)、帰納(induction)、アブダクション(abduction)がある。演繹は、ソクラテスは人間、すべての人間は死ぬとの仮説があったときにソクラテスは死ぬとの結論を導き出すもので特殊な結論といえる。帰納は、ソクラテスは死ぬ、ソクラテスは人間との仮説があったときにすべての人間は死ぬとの結論を導き出すもので一般的な規則を導くものである。アブダクションは、ソクラテスは死ぬ、すべての人間は死ぬとの仮定があった時にソクラテスは人間であると導き出すものであり、仮説・説明にあたる。とはいえ、帰納にしてもどう一般化するかは前提によるため、客観的であるとは言えない可能性があることに留意する。
 不可能性には、不可能、非常に困難、未解決の3種類の基本原理がある。また、不可能性には、汎化誤差、ノ―フリーランチ定理、醜いアヒルの子定理があり、真のモデルの観測は不可能なので検証できないという不良設定問題に留意する必要がある。
 機械学習において、特徴(feature)・属性(attribute)とは、予測対象をある側面で見たときに,どのような状態にあるのかを表すものである。特徴ベクトル・属性ベクトルとは、予測対象を記述する特徴(属性)をベクトルの形式にまとめたものである。
 本明細書において、「モデル(model)」または「仮説(hypothesis)」とは、同義に用いられ、入力される予測対象から,予測結果への対象対応を記述する写像,もしくはそれらの候補集合で、数学的な関数か論理式を用いて表現する。機械学習での学習では、訓練データを参照して、モデル集合から真のモデルを最もよく近似すると思われるモデルが選択される。
 モデルとしては、生成モデル、識別モデル、関数モデルなどが挙げられる。入力(予測対象)xと出力(予測結果)yとの写像関係の分類モデル表現する方針の違いを示すものである。生成モデルは、入力xが与えられたときの出力yの条件付分布を表現する。識別モデルは、入力xと出力yの同時分布を表現する。識別モデルと生成モデルは写像関係が確率的である。関数モデルは、写像関係が確定的なもので、入力xと出力yの確定的な関数関係を表現する。識別モデルと生成モデルでは識別の方がやや高精度といわれることもあるが,ノーフリーランチ定理により基本的には優劣はない。
 機械学習での学習では、訓練データを参照して、モデル集合から真のモデルを最もよく近似すると思われるモデルを選択する。どのような「近似」をするかで、いろいろな学習方法がある。代表的には、最尤推定があり、確率的なモデル集合の中から、訓練データが発生する確率が最も高いモデルを選択する学習の基準である。最尤推定で、真のモデルを最も近似するモデルが選択できる。KLダイバージェンスは、尤度が大きくなると真の分布へのKLダイバージェンスは小さくなる。推定の種類は種々あり、推定した予測値やパラメータを求める形式の種類によって異なる。点推定は、最も確実性の高い値を一つだけ求めるもので、最尤推定やMAP推定など、分布や関数の最頻値を使うもので、最もよく利用される。他方、区間推定では、推定値が存在する範囲を求めるこの範囲に推定値が存在する確率が95%といった形で統計分野でよく利用される。分布推定では、推定値が存在する分布を求める事前分布を導入した生成モデルと組み合わせてベイズ推定などで利用される。
 (アジュバントのアジュバント)
 ワクチンアジュバントは、多くのワクチンの免疫原性、そしてその効力を開始させ、最大化し、延長させるのに非常に重要である。80年以上にわたって、アルミニウム塩(アラム、alum)が、ヒトに慣用的に使用される唯一のアジュバントであった。近年、アラムをモノホスホリルリピドAおよびスクアレンオイルエマルジョンと組み合わせたものなど、限定的であるがさらなるアジュバントが、ヒトへの使用について承認されている。適当なアジュバントは、理想的には、免疫応答の型を含め、最良の病原体保護を提供するようなワクチン特性に基づいて選択されるべきである。残念ながら、現在ヒトに使用することが承認されているアジュバントの種類が不足しているため、免疫応答の誘導の精密な調整には制限がかかり、異なるタイプのアジュバントの開発が急がれている。
 最もよく知られたアジュバントは、病原体認識受容体(PRR)、例えば、TLR、NODまたはインフラマソーム受容体を標的とし、炎症性サイトカインおよびI型インターフェロン(IFN)の産生および抗原提示細胞(APC)上での共刺激分子のアップレギュレーションを引き起こす(Olive, 2012, Expert review of vaccines 11, 237-256)。ワクチンに含まれる病原体関連分子パターン(PAMPs)、例えば、微生物の核酸、糖脂質またはタンパク質は、内因性の元々備わったアジュバントとして機能し、先天性免疫応答を惹起し、その後、特異的抗原によって誘導される適応免疫応答が起こる(Desmet, C.J., and Ishii, K.J. (2012). Nature reviews Immunology 12, 479-491)。例えば、インフルエンザWVワクチン中のウイルスRNAは、TLR7を活性化し、そうすることでWV 抗原に対してTh1にバイアスした応答を誘導する(Koyama, S., Aoshi, T., Tanimoto, T., Kumagai, Y., Kobiyama, K., Tougan, T., Sakurai, K., Coban, C., Horii, T., Akira, S., et al.(2010). Science translational medicine 2, 25ra24.)。
 しかしながら、アジュバント活性を誘発または増強するメカニズムは何ら知られていない。
 したがって、別の局面において、本発明はワクチン用アジュバントとして開発されているイヌリンから誘導した微粒子であるデルタイヌリンであるAdvax(商標)の免疫学的特徴および作用機構を研究した成果に基づくものである。ここで、デルタイヌリンは、Th2型抗原であるインフルエンザスプリットワクチンと組み合わせた場合には2型アジュバントとなるが、Th1型抗原であるインフルエンザ不活化全ビリオン(WV)と組み合わせた場合には1型アジュバントとして挙動することを示す。さらに、WVの元々備わったRNAアジュバント効果が発揮されないTLR7欠損マウスにおいて、デルタイヌリンのWVに対するアジュバント効果は失われ、中立的な(neutral)Th0型抗原であるオボアルブミンに対するアジュバント効果は示されなかった。したがって、他のアジュバントとは異なり、デルタイヌリンは共投与した抗原の本来の特性を強化し、そのアジュバント機能には、樹状細胞だけでなく貪食マクロファージおよびTNF-αも必ず必要である。これらの結果から、デルタイヌリンは、いまだに完全には解明されていない固有の作用機構を介してワクチンの内因性のアジュバント効果を強化することができる固有のクラスのアジュバントであることが示された。新規アジュバントの性質の解析の結果から、アジュバントのアジュバント活性が見いだされ、これに基づく種々の医療応用が企図される。
 本明細書において用いられるとき、「イヌリン」という用語は、直鎖状にフルクトースが側鎖なく結合し末端に1つのグルコースが結合したβ-D-(2→1)ポリフルクトフラノシルα-D-グルコースファミリーから成る単純で不活性な多糖類であり、イヌリン、β-D-[2→1]-ポリフルクトフラノシルα-D-グルコースだけでなく、例えばこの末端のグルコースを除くことが可能であるインベルターゼまたはイヌラーゼ酵素を用いて、イヌリンからの末端グルコースの酵素的除去によって得られる可能性があるβ-D-[2→1]ポリフルクトースを含む、イヌリンの誘導体も含む(場合によって機能的等価物に含まれる。)と理解されるべきである。この用語または機能的等価物の範囲内に含まれる他の誘導体は、例えば公知の方法によるアルキル、アリール、またはアシル基での化学的置換によって、遊離の水酸基がエーテル化またはエステル化されたイヌリンの誘導体である。イヌリン組成物は、単純で中性の多糖から成る公知の組成であるが、分子量は多様であり16キロダルトン(kD)以下またはそれを超える範囲に及ぶ。イヌリンは、キク科(Compositae)の貯蔵炭水化物であり、ダリアの球根から安価に得られる。イヌリンは比較的疎水性のポリオキシエチレン様の骨格を有し、この珍しい構造に加えてイオン化されない性質が、再結晶による容易に、非常に純粋なイヌリンの調製を可能にしている。自然界ではイヌリンは重合度(DP)60程度あるいはそれ以上のフルクトースから成り、様々な溶解度や特性等を持つ。
 イヌリンの分子組成は周知であるが、報告されている溶解性は様々である。現在、イヌリンは少なくとも5種類知られており、アルファイヌリン(aIN;Phelps,CF.The physical properties of inulin solutions.Biochem J95:41-47(1965)参照)、ベータイヌリン(bIN;Phelps,CF.The physical properties of inulin solutions.Biochem J95:41-47(1965)参照)、ガンマイヌリン(gIN)、デルタイヌリン(dIN、デルティンとも称される。)、エプシロンイヌリン(eIN)が知られている。aIN~dINは、23℃で急速に溶解する形態(ベータイヌリン;β23°イヌリン)から、37℃で8分の半減期で可溶性の形態(アルファイヌリン;α37 イヌリン)を経て、37℃で実質的に不溶性の形態(ガンマイヌリン)さらに50℃で実質的に不溶性の形態(デルタイヌリン)という水性媒体における異なった溶解率によって特徴付けられる(ガンマイヌリンについては、WO87/02679およびCooper,P.D.and Carter,M.,1986およびCooper,P.D.and Steele,E.J.,1988)を参照。)。eINは後述するようにaIN~dINとは異なる性質を有するとして同定されたものである。デルタイヌリンは、Advax(商標)として販売されるアジュバント製品が知られている。デルタイヌリンは50℃で水に不溶性であり、WO2006/024100において開示されており、その内容は本明細書において参考として援用される。デルタイヌリンは、濃縮された溶液(例えば50mg/ml)において、70-80℃に加熱された場合にのみ可溶性であり、薄い溶液の50%OD700熱転移点が53-58℃である。デルタイヌリンは、濃縮されたガンマイヌリン溶液を55℃以上に加熱することにより容易に調製される。アルファイヌリン(aIN)は水からの沈殿によって得られ、ベータイヌリンはエタノールからの沈殿によって得られる。エプシロンイヌリンは、希薄懸濁液(<0.5mg/ml)の50%OD700熱転移点が好ましくは、約58℃から約80℃の範囲にあり、59℃以下では水溶媒に溶解度が低く、より好ましくは、75℃以下で水溶媒に溶解度が低い。eIN粒子の単一分子は、約5から約50キロダルトン(kD)の範囲の分子量を持つ。eIN粒子の単一分子の重合度(DP)は、多くの場合高い(即ちフルクトースの重合度25以上、好ましくはフルクトースの重合度35以上)。eINはジメチルスルホキシド(水素結合を中和する事が知られている溶媒)に対しaIN、bIN、gINおよびdINのそれぞれと比較してより低い溶解度示す。
 ガンマイヌリンは、37℃で水に実質的に不溶性であるが、濃縮された溶液(例えば50mg/ml)において、45℃以上の温度でのみ、αおよびβ多形形態のように可溶性である。デルタイヌリンは、粒子状であり、50%OD700熱転移点(薄い溶液の溶解相転移)が47±1℃というシャープな溶解点を持つ。デルタイヌリンは、50℃で水に不溶性でありWO2006/024100号にあるように、濃縮された溶液(例えば50mg/ml)において、70-80℃に加熱された場合にのみ可溶性である。dINは、薄い溶液の50%OD700熱転移点が53-58℃ということで特徴づけられる。dINは、濃縮されたgIN溶液を55℃以上に加熱することにより簡便に調製することができる。デルタイヌリン(dIN)およびガンマイヌリン(gIN)は、37℃で不溶性であり、もしこの温度を持つ人間のような生物体に導入されてもそれぞれの粒子形態を維持でき、免疫学的に活性であり、単独あるいは水酸化アルミニウムのような抗原結合担体材料と共に、特にワクチンのアジュバントとして有効であることがすでに解っている(Cooper,PD and EJ Steele,1991,Cooper,PD et al.,1991a,Cooper,PD et al.,1991b.WO90/01949およびWO2006/024100)。エプシロンイヌリンもまた免疫学的に活性であり、また、ガンマイヌリンおよびデルタイヌリンに匹敵するかまたはより高い免疫活性を有し得る。エプシロンイヌリンは、5つのイヌリンの多形形態の中で最も熱安定的であり、その粒子の懸濁液が他の多形形態が溶解する温度においても不溶性のままである。エプシロンイヌリンは85℃に加熱しても最も熱安定的に有利であるとされており、熱安定性が要求されるアジュバントとして用いられる場合、エプシロンイヌリン粒子が高い温度でも安定でありうる。
 本明細書において「δイヌリン(β-D-[2→1]ポリ(フルクト-フラノシル)α-D-グルコース)」とは、アジュバントを構成する物質であり、これに構成される微粒子からなるアジュバントは、代表的には、Advax(商標)として知られるアジュバント製品として入手可能である。デルタイヌリン型アジュバントであるAdvax(商標)は、微粒子アジュバントであり、その微粒子はポリフルクトフラノシル-d-グルコース(デルタイヌリン)の微粒子に由来する。これによって、インフルエンザ、B型肝炎、日本脳炎、ウエストナイルウイルス、HIV、炭疽菌およびリステリアに対するワクチンを含め様々なワクチンの免疫原性および効力が改善されることが示されている (Dolter et al.,2011;Feinen et al.,2014;Honda-Okubo et al.,2012;Larena et al.,2013;Petrovsky et al.,2013;Rodriguez-Del Rio et al.,2015;Saade et al.,2013)。B型肝炎、インフルエンザおよび虫刺されによるアレルギーのワクチンなどのAdvax(商標)アジュバントを含む ワクチンが、ヒト臨床試験において評価されている(Gordon et al.,2014;Heddle et al.,2013;Nolan et al.,2008)。
 これらの臨床試験によって優れた免疫原性および優れた忍容性が示されているが、Advax(商標)の作用機構はいまだに知られていない。本発明において、デルタイヌリンのアジュバント効果を様々なタイプのワクチン抗原を用いて試験した。予想外に、デルタイヌリンは、TLRアゴニストとは異なり、共投与された抗原に対して免疫応答のバイアスをかけなかった。代わりに、興味深いことに、デルタイヌリンは、ワクチン抗原自体の免疫バイアスを増強した。このことから、デルタイヌリンが、「アジュバントのアジュバント」という新しい様式で機能し、抗原それ自体が備える元々備わったアジュバント活性を増幅させる作用があることが示唆される。
 本明細書において「抗原のアジュバント性を惹起または増強する」とは、ある抗原について抗原自体が持つアジュバント性を惹起(すなわち、ないところから発生させる)または増強(すなわち、すでに存在している活性を増大させる)ことを意味する。
  本明細書において「樹状細胞を活性化する」とは、樹状細胞がその本来の機能を発揮し得る状態になるか、その状態の度合いが増すことを言い、例えば、補助シグナル分子の発現等が上昇し、まだ一度も抗原に出会ったことのないナイーブT細胞へと抗原を提示し、ナイーブT細胞を活性化する機能を有するまたは増強されることなどが挙げられる。外来異物と遭遇したことのない樹状細胞は未熟樹状細胞と呼ばれ、活性化された樹状細胞とは細胞表面分子の発現なども含めて大きく異なる。未熟樹状細胞は貪食能は高いが、MHCクラスII分子やCD80、CD86、CD40などの補助シグナル分子の発現レベルは低い。樹状細胞は感染などが生じていない状況でも抗原を取り込んでいるが、MHCクラスIIや補助シグナル分子の発現が低いことから、ナイーブT細胞を活性化することはできない。細菌やウイルス等の感染が生じると、樹状細胞に劇的な変化が誘導される。感染に伴う様々な刺激により活性化され成熟した樹状細胞は、細菌やウイルス由来の抗原ペプチドを提示したMHCクラスIIを大量に発現するようになり、また補助シグナル分子の発現が上昇し、ケモカイン受容体であるCCR7依存性にリンパ管を通り所属リンパ節のT細胞領域へと移動する。リンパ節のT細胞領域でナイーブT細胞に抗原を提示し、同時に様々なサイトカインを放出することで、ナイーブT細胞からエフェクターT細胞への分化を誘導する。感染にともなう樹状細胞の活性化には以下の3種類のシグナルが関与していると考えられる。一番目は感染局所に浸潤してきた好中球やマクロファージなどの放出するTNFαなどのサイトカイン、2番目は感染に伴い死んだ好中球やマクロファージ等由来の死細胞由来成分、3番目が細菌やウイルス由来の成分(例えばグラム陰性菌由来のリポポリサッカライドなど)を認識するToll様受容体(TLR)(詳細は第7回のマクロファージの項参照)からの活性化シグナルである。樹状細胞は感染が起こった局所に数時間とどまり十分に抗原を取り込み活性化され、その後にリンパ管を伝わって所属リンパ節に移行し、そこでナイーブT細胞を活性化し、約1週間で寿命を終える。樹状細胞が移動していなくなった感染局所には骨髄から新たな樹状細胞が供給され、感染が継続する限り、感染巣における樹状細胞の活性化→所属リンパ節への移行というステップを繰り返す。
 本明細書において「マクロファージの存在下」とは、生来のまたは外来のマクロファージが存在する任意の環境をいう。
 本明細書において「マクロファージの増強剤」とは、マクロファージの機能または活性を付与または増強する任意の薬剤を言う。マクロファージの増強剤としては、例えば、ピコリン酸、結晶シリカ、アルミニウム塩等の従来型アジュバント、などを挙げることができる。
 本明細書において「Th1型抗原」とはTh1細胞に関連する抗原をいい、好ましくはTh1免疫応答を惹起または増強する任意の抗原をいう。下記に説明するように特に、細胞性免疫(病原体の菌体を貪食する)が強化されるものをいう。
 本明細書において「Th2型抗原」とはTh2細胞に関連する抗原をいい、好ましくはTh2免疫応答を惹起または増強する任意の抗原をいう。下記に説明するように特に、液性免疫(病原体の毒素を中和する)が強化されるものをいう。
 Th1細胞およびTh2細胞については当該分野で公知の任意の性質や機能を有することを前提に本発明が説明されるべきであるが、本明細書においてTh1細胞およびTh2細胞について特に言及すべき性質や機能について以下にさらに説明する。リンパ球には、T細胞と、抗体(免疫グロブリン)を産生するB細胞とがあり、T細胞には、さらに、単球・マクロファージから抗原を提示され、免疫反応を調節する、ヘルパーT細胞(CD4抗原陽性)と、ウイルス感染細胞などを傷害する、キラーT細胞(CD8抗原陽性)があり、ヘルパーT細胞には、Th1細胞(Tヘルパー1細胞)とTh2細胞(Tヘルパー2細胞)とがある。抗原提示細胞が、インターロイキン(IL)-12を産生するか、またはプロスタグランジン(PG)E2を産生するかが、Th1細胞(細胞性免疫を担う)と、Th2細胞(液性免疫を担う)のどちらが優位になるのかを決定する。
 抗原提示細胞であるマクロファージが、抗原をT細胞に提示する際に分泌するIL-12は、Th0細胞(ナイーブTh細胞)を、Th1細胞に分化させる。Th1細胞は、IL-2、インターフェロン(IFN)-γ(IgE抗体の産生を抑制する)、腫瘍壊死因子(TNF)-α、TNF-β、顆粒球単球コロニー刺激因子(GM-CSF)、IL-3を産生し、T細胞や、単球など貪食細胞の活性を高め、細胞性免疫(ツベルクリン反応等)に関与する。Th1細胞が産生するIFN-γは、Th0細胞のTh1細胞への分化を、促進させる。マクロファージが、抗原をT細胞に提示する際に分泌するPGE2は、Th0細胞を、Th2細胞に分化させる。Th2細胞は、IL-3、IL-4(免疫グロブリン(Ig)E抗体の産生を増加させるサイトカインで、肥満細胞や、ナチュラルキラー(NK)T細胞からも産生される)、IL-5、IL-6、IL-10、IL-13を産生し、液性免疫(抗体産生等)に関与する。IL-10は、Th1細胞からのIFN-γの産生、IL-12の産生を抑制する。Th2細胞が産生するIL-4や、IL-6は、Th0細胞のTh2細胞への分化を、促進させる。Th0細胞が、Th2細胞に分化するには、IL-4より、アラキドン酸から生成されるPGE2の方が、重要と考えられている。Th2細胞は、抗原提示細胞として、B細胞(IL-12を産生しない)から抗原刺激を受けても増殖する。
 Th1細胞による免疫応答では、細胞性免疫が働いて、リンパ球やマクロファージなど単核細胞中心の炎症反応が起る。例えば、真菌であるクリプトコッカスに対する免疫応答では、Th1細胞が優位に働くと、強固な肉芽腫が形成され、感染が局所に封じ込められる。他方、Th2細胞が優位に働くと、炎症性細胞浸潤が極めて乏しい。例えば、液性免疫では、クリプトコッカスなどの細胞内寄生菌を殺傷しない。その為、肺胞腔にクリプトコッカスが充満して、感染が、容易に血行性に広がって、髄膜炎などを発症する。Th1細胞より、Th2細胞が優位に働いている状態では、IgE抗体産生が増加し、アレルギー体質に陥りやすいと考えられる。
 菌体成分(Pathogen-associated molecular pattern:PAMP)は、樹状細胞に作用し、Th0細胞のTh1細胞への分化を促進し、Th1細胞優位の状態にし、アレルギー体質を改善する。いわゆる衛生仮説では、納豆、ヨーグルトなどの食材を摂取すると、アレルギー体質が改善されるとされる根拠となる。ウイルス感染では、1型インターフェロン(IFN-αおよびIFN-β)が産生される。1型インターフェロンは、T細胞に作用し、IFN-γまたはIL-10を産生させる。
 細菌感染では、2型インターフェロンであるIFN-γが産生され、Th1細胞が誘導される。細胞内寄生性細菌(結核菌、サルモネラ菌、リステリア菌など)による感染症では、主に、Th1細胞が誘導され、Th1細胞から産生されるIFN-αにより食細胞(マクロファージ)が活性化され、また、Th1細胞から産生されるIL-2によりCD8陽性キラーT細胞が活性化され、殺菌等が行われる。
 細胞外で増殖する細菌(Staphylococcus等のグラム陽性球菌等)による感染症では、主に、Th2細胞が誘導され、Th2細胞から産生されるサイトカインにより、抗体が産生され、殺菌等が行われる。Th1細胞は、IL-2を産生し、キラーT細胞やNK細胞などを活性化させ、細胞性免疫を活性化させる。Th2細胞は、IL-4を産生し、CD40リガンド(CD40L、gp39)を介して、B細胞を活性化させ、I型アレルギーを引き起こすIgE抗体の産生を促進させ、液性免疫を活性化させる。Th1細胞は、IFN-γも産生するが、IFN-γは、Th2細胞のCD40リガンド(CD40L)発現を抑制し、IgE抗体産生を抑制する。また、Th2細胞の産生するIL-4や、IL-10は、Th1細胞の反応を抑制する。
 抗原提示細胞(樹状細胞)は、表面のTLRsにより、生体に侵入したのが、病原体なのか(細菌なのか、ウイルスなのか)、毒素なのかなどを識別し、それに応じて、炎症性サイトカイン、インターフェロン等を産生する。その結果、Th0細胞は、Th1細胞またはTh2細胞に分化することになる。
 細胞性免疫では、Th1細胞が産生するIFN-γにより、マクロファージが活性化され、細胞内寄生菌が、殺菌される。また、Th1細胞が産生するIL-2により、キラーT細胞が活性化され、ウイルス感染細胞が、障害される。
 液性免疫では、Th2細胞が産生するIL-4、IL-5、IL-6、IL-13により、B細胞が分化・増殖し、抗体(免疫グロブリン)が、産生される。抗体は、病原体が産生する菌体外毒素を中和し、細胞外寄生菌をオプソニン化しマクロファージなどによる貪食を促進し、補体系を活性化し溶菌する。
 本明細書において「Th1応答」とは、上述したようなTh1細胞による免疫応答をいい、Th1細胞による免疫応答では、上記に詳述するように、細胞性免疫が働いて、リンパ球やマクロファージなど単核細胞中心の炎症反応が起る。真菌のクリプトコッカスに対する免疫応答では、Th1細胞が優位に働くと、強固な肉芽腫が形成され、感染が局所に封じ込められる。本明細書において「Th2応答」とは、Th2細胞が優位に働く場合を言い、上記に詳述するように、炎症性細胞浸潤が極めて乏しい。例えば、液性免疫では、クリプトコッカスなどの細胞内寄生菌を、殺せない。その為、肺胞腔にクリプトコッカスが充満して、感染が、容易に血行性に広がって、髄膜炎などを発症する。
 本明細書において「TNFαが正常または増強された状態」とは、生体内で腫瘍壊死因子α(TNFα)が正常レベルで維持されているか、または生体内での正常レベルのTNFαが再現された状態をいい、「増強」とは、生体内で通常存在するTNFαよりも多いレベルのTNFαが存在するか、または生体内での正常レベルより高いTNFαが再現された状態をいう。
 本明細書では「アジュバントのアジュバント」とは、すでにアジュバントであることが判明している化合物のアジュバント活性を増強する活性を含むほか、他の物質についてアジュバントかどうか不明であるか保有していない物質について、その物質にアジュバント活性を付与することも包含する概念であることが理解される。
 本明細書において「候補アジュバント」とは、候補医薬成分の一種であり、アジュバントとして考慮される任意の物質またはその組み合わせを言う。候補アジュバントとしては、以下のような、TLR非依存的アジュバント、TLR依存的アジュバントなどのアジュバントであることができるが、これら以外のアジュバントとしての機能や特性が未知の化合物や他の物質、それらの組合せを用いることもできる。TLR非依存的アジュバントとしては、以下を挙げることができるがこれらに限定されない:ミョウバン(リン酸アルミニウム/水酸化アルミニウム;様々な適応を示す無機塩);AS03(GSK;スクアレン)(10.68mg)、DL-α-トコフェロール(11.86mg)、およびポリソルベート80(4.85mg)、パンデミックインフルエンザに使用される水中油型エマルジョン);MF59(Novartis;4~5%(w/v)スクアレン、0.5%(w/v)Tween 80、0.5%Span 85、任意で可変量のムラムルトリペプチドホスファチジル-エタノールアミン(MTP-PE))、インフルエンザに使用される水中油型エマルジョン):プロバックス(Biogen Idec;スクアレン+プルロニックL121)、水中油型エマルジョン);モンタニド(Seppic SA;Bioven;Cancervax;オレイン酸マンニドおよび鉱油)、マラリアおよび癌の治療において使用される油中水型エマルジョン);TiterMax(CytRx;スクアレン+CRL-8941)、油中水型エマルジョンで);QS21(Antigenics;Quil Aの画分)、黒色腫、マラリア、HIV、およびインフルエンザの治療において使用される植物由来組成物);Quil A(Statens Serum Institute;キラヤの精製画分)、様々な治療において使用される植物由来組成物);ISCOM(CSL;Isconova;サポニン+ステロール+場合により、リン脂質)、インフルエンザをはじめとする様々な治療において使用される植物由来組成物);リポソーム(Crucell;Nasvax;脂質からなる合成リン脂質球)は様々な疾患の治療において使用される)など。
 TLR依存的アジュバントとしては、以下のようなアジュバントを挙げることができるがこれらに限定されない:Ampligen(Hemispherx;規則的に現われるミスマッチ領域を含む特異的に構成された合成二本鎖RNA)、TLR3の活性化により作用し、パンデミックインフルエンザに対するワクチンとして使用される);AS01(GSK;MPL、リポソーム、およびQS-21)、TLR4のMPL活性化により作用し、リポソームは、APCへの抗原送達の促進をもたらし、QS-21は、APCへの抗原提示の増強および細胞傷害性T細胞の誘導をもたらし、また、これは、マラリアおよび結核に対するワクチンとして使用される。);AS02(GSK;MPL、o/wエマルジョン、およびQS-21)は、TLR4のMPL活性化により作用し、o/wエマルジョンは、自然炎症応答、APCの動員および活性化、注射部位における抗原持続の増強、免疫適格細胞への提示、様々なパターンのサイトカインの誘発をもたらし、QS-21は、APCへの抗原提示の増強および細胞傷害性T細胞の誘導をもたらし、また、これは、マラリア、結核、HBV、およびHIVに対するワクチンとして使用される。);AS04(GSK;MPL、水酸化アルミニウム/リン酸アルミニウム)は、TLR4のMPL活性化により作用し、ミョウバンは、デポ効果、局所炎症、およびAPCによる抗原取込みの増加をもたらし、また、これは、HBV、HPV、HSV、RSV、およびEBVに対するワクチンとして使用される。);MPL RC-529(Dynavax;MPL)は、TLR4の活性化により作用し、HBVに対するワクチンとして使用される。);E6020(Eisa/Sanofi Pasteur;合成リン脂質二量体)は、TLR4の活性化により作用する。);TLR-テクノロジー(Vaxinnate;抗原およびフラジェリン、TLR5の活性化により作用し、インフルエンザに対するワクチンにおいて使用される。);PF-3512676(CpG 7909)(Coley/Pfizer/Novartis;免疫調節合成オリゴヌクレオチド)、TLR9の活性化により作用し、HBV、インフルエンザ、マラリア、および炭疽菌に対するワクチンにおいて使用される。);ISS(Dynavax;短いDNA配列)、TLR9の活性化により作用し、HBVおよびインフルエンザに対するワクチンにおいて使用される。);IC31(Intercell;ペプチドおよびオリゴヌクレオチド)、TLR9の活性化、注射部位でのデポの形成、およびAPCへの抗原取込みの増強により作用し、インフルエンザ、結核、マラリア、髄膜炎、アレルギー、および癌適応症に対するワクチンとして使用される。)など。
 本明細書において「評価基準アジュバント」とは、「基準アジュバント」または「標準アジュバント」とも呼ばれ、基準医薬成分の一つであり、機能が既知のアジュバントをいう。このようなアジュバントは、当該分野で公知の方法でその性質や機能が決定されている。例示的に、本発明では、δイヌリン(β-D-[2→1]ポリ(フルクト-フラノシル)α-D-グルコース)またはその機能等価物について、そのアジュバントとしての機能が判明しているため、それを基準とすることができる。
 本明細書において「遺伝子発現データ」とは、各種遺伝子の任意の発現データを言う。
 <「アジュバント」のアジュバントであるδイヌリン類>
 1つの局面において、本発明はδイヌリン(β-D-[2→1]ポリ(フルクト-フラノシル)α-D-グルコース)またはその機能等価物を含む、抗原のアジュバント性を惹起または増強するための組成物を提供する。ここで、δイヌリン(β-D-[2→1]ポリ(フルクト-フラノシル)α-D-グルコース)またはその機能等価物のAdvax(商標)として知られるアジュバント製品を挙げることができるがそれに限定されない。
 1つの実施形態では、本発明において使用されるδイヌリンの等価物は、δイヌリンと等価のトランスクリプト―ム発現プロファイルを有する。このようなトランスクリプト―ム発現プロファイルは、トランスクリプトーム分析を行って、遺伝子の発現プロファイルの分析を行うことによって実施することができる。トランスクリプトーム分析は、本明細書に記載される任意の手法によって実施することができる。
 <樹状細胞活性化>
 別の局面では、本発明はδイヌリンまたはその機能等価物を含む、樹状細胞を活性化するための組成物を提供する。ここで、例えば、活性化は、マクロファージの存在下でなされてもよい。あるいは、δイヌリンまたはその機能等価物を含む、前記組成物は、マクロファージの増強剤とともに投与されてもよい。マクロファージが正常又は強化されている状態下でδイヌリンまたはその機能等価物が樹状細胞を活性化することを本発明で見出したことによるものである。したがって、本発明はアジュバントとしてδイヌリンまたはその機能等価物を利用する場合の一つの指標または活性化の根拠とすることができる。ここで利用されるδイヌリンまたはその機能等価物は、<「アジュバント」のアジュバント>の項で説明される任意の物質またはその組み合わせを利用することができる。また、<「アジュバント」のアジュバント>または<同様のアジュバント・アジュバントの判定法および製造法>で説明されるトランスクリプトーム分析を用いて、δイヌリンまたはその機能等価物と同様の樹状細胞活性化を有するアジュバントを同定することができる。
 <Th指向性>
 別の局面において、本発明は、δイヌリンまたはその機能等価物を含む、Th1型抗原のTh1応答を増強し、かつ、Th2型抗原のTh2応答を増強するための組成物を提供する。ここで利用されるδイヌリンまたはその機能等価物は、<「アジュバント」のアジュバント>の項で説明される任意の物質またはその組み合わせを利用することができる。また、<「アジュバント」のアジュバント>または<同様のアジュバント・アジュバントの判定法および製造法>で説明されるトランスクリプトーム分析を用いて、δイヌリンまたはその機能等価物と同様のTh指向性を有するアジュバントを同定することができる。
 <TNFαKOマウスに基づく技術>
 さらなる局面において、本発明は、δイヌリンまたはその機能等価物を含む、アジュバント組成物であって、該組成物はTNFαが正常または増強された状態で投与されることを特徴とする、組成物を提供する。ここで利用されるδイヌリンまたはその機能等価物は、<「アジュバント」のアジュバント>の項で説明される任意の物質またはその組み合わせを利用することができる。また、<「アジュバント」のアジュバント>または<同様のアジュバント・アジュバントの判定法および製造法>で説明されるトランスクリプトーム分析を用いて、δイヌリンまたはその機能等価物と同様のTNFαが正常または増強された状態での特質を有するアジュバントを同定することができる。
 <同様のアジュバント・アジュバントの判定法および製造法>
 1つの局面において、本発明は、候補アジュバントが抗原のアジュバント性を惹起または増強するかどうかを判定する方法を提供する。この方法は、(a)候補アジュバントを提供する工程;(b)δイヌリンまたはその機能等価物を評価基準アジュバントとして提供する工程;(c)該候補アジュバントおよび該評価基準アジュバントのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および(d)該候補アジュバントが該評価基準アジュバントと同一のクラスターに属すると判定された場合、該候補アジュバントを抗原のアジュバント性を惹起または増強するものであると判定する工程、を包含する。ここで利用されるδイヌリンまたはその機能等価物は、<「アジュバント」のアジュバント>の項で説明される任意の物質またはその組み合わせを利用することができる。
 本発明の方法において、候補アジュバントの提供は任意の形態で実施することができる。δイヌリンまたはその機能等価物の評価基準アジュバントとしての提供も任意の形態で実施することができる。例えば、Advax(商標)などのデルタイヌリンを評価基準アジュバントとして用いてもよい。Advax(商標)はイヌリンの名の結晶粒子であり、B型肝炎(予防的および治療的)、インフルエンザ、炭疽菌、赤痢菌、日本脳炎、狂犬病、ハチ毒、アレルギーに対するワクチン、および癌免疫療法において使用される生体ポリマーである(Vaxine Ptyから販売されている。)。
 別の局面において、本発明は、抗原のアジュバント性を惹起または増強するアジュバントを含む組成物を製造する方法を提供する。この方法は、(a)1または複数の候補アジュバントを提供する工程;(b)δイヌリンまたはその機能等価物を評価基準アジュバントとして提供する工程;(c)該候補アジュバントおよび該評価基準アジュバントのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;(d)該候補アジュバントのうち、該評価基準アジュバントと同一のクラスターに属するアジュバントが存在する場合該アジュバントを抗原のアジュバント性を惹起または増強するアジュバントとして選択し、存在しない場合は(a)~(c)を繰り返す工程;および(e)(d)で得られた抗原のアジュバント性を惹起または増強するアジュバントを含む組成物を製造する工程を包含する。ここで利用されるδイヌリンまたはその機能等価物は、<「アジュバント」のアジュバント>の項で説明される任意の物質またはその組み合わせを利用することができる。
 <アジュバントのアジュバントを用いた医薬>
 本発明で使用されるアジュバントまたは「アジュバントのアジュバント」は、医薬品または医薬組成物として提供される。
 本発明の組成物は、薬学的に許容される担体、希釈剤、または賦形剤と共に、注射剤あるいは経口、経腸、経膣、経皮または経眼剤として調製され得る。組成物はまた、活性成分が例えばワクチン抗原(遺伝子組換え抗原を含む)、抗原ペプチドまたは抗イディオタイプ抗体を含むものとも成り得る。追加的または代替的に活性成分は、リンフォカイン、サイトカイン、胸腺細胞刺激因子、マクロファージ刺激因子、エンドトキシン、ポリヌクレチド分子(例えばワクチン抗原をコードしているもの)あるいは組換えウイルスベクター、微生物(例えば微生物の抽出物)またはウイルス(例えば不活化または弱毒化されたウイルス)でもあり得る。実際、本発明の組成物は、不活化または弱毒化されたウイルスが活性成分である場合に使用される事に特に適している。
 本発明がアジュバント組成物として用いられる場合、対象となる好ましいワクチン抗原は、細菌、ウイルス、酵母菌、カビ、原虫および他の微生物の抗原の一部またはすべて、あるいはヒト、動物または植物由来の病原体および花粉やその他のアレルゲン、特に毒素(例えばミツバチやスズメバチの毒)およびハウスダストダニや犬猫のフケのような喘息を引き起こすアレルゲンを含む。
 特に好ましいワクチン抗原は、インフルエンザウイルスのHA蛋白(例えば不活化された季節性インフルエンザウイルスおよび季節性のH1、H3、B株またはパンデミックH5株の組換えHA抗原)、インフルエンザ核蛋白、ロタウイルスの外層カプシド蛋白、gp120のごときヒト免疫不全ウイルス(HIV)抗原、RSウイルス(RSV)表面抗原、ヒトパピローマウイルスE7抗原、単純ヘルペスウイルス抗原、B型肝炎ウイルス抗原(例えばHBs抗原)、C型肝炎ウイルス(HCV)表面抗原、不活化日本脳炎ウイルス、(狂犬病を引き起こす)リッサウイルス表面抗原等のウイルス抗原、および赤痢菌、ポルフィロモナス・ジンジバリス(例えばプロテアーゼおよびアドヘジン蛋白)、ヘリコバクター・ピロリ(例えばウレアーゼ)、リステリア・モノサイトゲネシス、結核菌(例えばBCG)、マイコバクテリア・アビウム(例えばhsp65)、クラミジア・トラコマチス、カンジダ・アルビカンス(例えば外膜蛋白)、肺炎球菌、髄膜炎菌(例えばクラス1外膜蛋白)、炭疽菌(炭疽の原因菌)、コクシエラ・ブルネッティ(Q熱の原因菌であるが自己免疫型糖尿病(即ち1型糖尿病)に対し長期にわたる防御反応を誘導できる)等の微生物由来の抗原およびマラリアを引き起こす原虫(特にプラスモディウム・ファルシパラムおよびプラスモディウム・バイバックス)である。他に特に好まれる抗原は、癌抗原(即ち一つあるいはそれ以上の癌に付随する抗原)例えば癌胎児性抗原(CEA)、ムチン-1(MUC-1)、上皮腫瘍抗原(ETA)、p53およびrasの異常産物およびメラノーマ抗原(MAGE)である。
 本発明の組成物がワクチン抗原である場合、その組成物は好ましくは抗原結合担体材料を含むものである。抗原結合担体材料は、例えばマグネシウム、カルシウム、またはアルミニウムのリン酸塩、硫酸塩、水酸化物(例えば水酸化アルミニウムおよび/または硫酸アルミニウム)の様な金属塩または沈殿物のうち一つまたはそれ以上、および/または蛋白質、脂質、硫酸化またはリン酸化多糖(例えばヘパリン、デキストラン、もしくはセルロース誘導体)を含む有機酸およびキチン(ポリN-アセチルグルコサミン)もしくはそれらの脱アセチル化誘導体、または塩基性セルロース誘導体のような有機塩基、および/または他の抗原のうち一つまたはそれ以上である。抗原結合担体材料は、溶解性の乏しい任意の材料(水酸化アルミニウム(アラム)ゲルまたはその水和塩複合体)の粒子でもよい。典型的には、抗原結合担体材料は凝集する傾向は無く、または凝集を避けるように処理される。最も好ましくは、抗原結合担体材料は、水酸化アルミニウム(アラム)ゲル、リン酸アルミニウムゲルまたはリン酸カルシウムゲルである。
 本発明はキットとして提供されることができる。本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、検査薬、診断薬、治療薬、抗体、標識、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、検査薬、診断薬、治療薬をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、検査薬、診断薬、治療薬、抗体等の使い方などを記載した指示書などが含まれる。
 このように、本発明のさらなる局面では、本発明はキットに関するものであり、このキットは、(a)本発明の医薬組成物を溶液形状または凍結乾燥形状で包含する容器と、(b)選択的に、該凍結乾燥製剤用の希釈剤または再構成液を包含する第2の容器と、(c)選択的に、(i)該溶液の使用または(ii)該凍結乾燥製剤の再構成および/または使用に関する説明書とを有する。該キットは、1もしくはそれ以上の(iii)緩衝剤、(iv)希釈剤、(v)フィルター、(vi)針、または(v)シリンジをさらに有する。該容器は、好ましくは瓶、バイアル瓶、シリンジ、または試験管であり、多用途容器でよい。該医薬組成物は、好ましくは乾燥凍結される。
 本発明のキットは、好ましくは、本発明の乾燥凍結製剤およびその再構成および/または使用に関する説明書を、適切な容器内に有する。適切な容器として含まれるのは、例えば、瓶、バイアル瓶(例えばデュアルチャンババイアル)、シリンジ(デュアルチャンパシリンジなど)、および試験管である。該容器は、ガラスまたはプラスチックのような様々な材料から形成することができる。好ましくは、該キットおよび/または容器は、該容器上にある、あるいは該容器に伴う、再構成および/または使用の方法を示す説明書を包含する。例えば、そのラベルは、該乾燥凍結製剤を再構成して上記のペプチド濃度にするという説明を示すことができる。該ラベルは、さらに、該製剤が皮下注射に有用であるもしくは皮下注射のためのものであるという説明を示すことができる。本発明のキットは、他の構成要素(例えば他の化合物またはこれら他の化合物の医薬組成物)と共に、もしくはそれらなしに、本発明の医薬組成物の製剤を包含する単一の容器を有すること、または各構成要素によって別の容器を有することができる。
 本発明の医薬組成物は、経口(経腸)、経鼻腔、経眼、皮下、皮内、筋内、静脈内、または経皮のような任意の許容される経路によって該ペプチドを投与するのに適したものである。好ましくは、該投与は皮下投与であり、最も好ましくは皮内投与である。投与は注入ポンプによって行うことができる。したがって、本発明の医薬は、治療法または予防法として提供することができる。このような疾患を治療または予防するための方法は、有効量の本発明の組成物、アジュバントまたは医薬を、有効量のワクチン抗原などとともに、治療または予防を必要とする被検体に投与する工程を包含する。
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法、バイオインフォマティクスは、当該分野において公知であり、周知でありまたは慣用される任意のものが使用され得る。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本発明を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本発明を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本発明を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 以下に実施例を記載する。必要な場合、以下の実施例において、全ての実験は、大阪大学倫理委員会で承認されたガイドラインに従って実施した。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ、R&D Systems、USCN Life Science INC等)の同等品でも代用可能である。対照試薬として用いたPBSはナカライテスクから入手しDMSOもナカライテスクから入手した。また、Tris-HClは和光純薬から入手した。
 (方法)
 標準的な操作プロトコル
 全ての手順は、以下のそれぞれの標準的な操作プロトコルに従った(標準手順):アジュバント投与および器官の採取(標準手順1)、RNA抽出およびGeneChipデータ取得(標準手順2)、品質管理およびデータベースへの最終的なデータの編入(標準手順3)。これらのプロトコルの詳細情報は、以下にまとめる。全ての実験は、適切な法律、ガイドラインの下で行われ、国立研究開発法人医薬基盤・栄養・健康研究所によって承認された。
 (標準手順1)
 (アジュバント投与およびサンプリング)
C57BL/6マウス(雄性、5週齢、C57BL/6JJc1)は、CLEAJapanから購入し、少なくとも1週間順応させた(-7日目~-10日目)。1日目AM10時:バッファーまたはアジュバント溶液の投与を開始する(30分以内に投与を完了する)。
i.d.:合計100μLを尾基底に投与する(左側50μL+右側50μL)。
*bCDは合計200μLをi.d.投与した。
i.p.:合計200μLを腹部の下部4分の1の箇所に投与する。
i.n.:50μLのケタミン/キシラジン混合物(ケタミン90mg/kgおよびキシラジン10mg/kg)を皮下注射して麻酔し、P20ピペットマンで10μL(それぞれの鼻孔に5μL)の溶液をゆっくり鼻に滴下する。PM4時:器官のサンプリングを開始する(30分以内に全てのマウスのサンプリングを完了する)。
 (血液採取)
 血液学的試験のために約200μLの血液を非ヘパリン化キャピラリー管で後眼窩静脈叢から取得し、2μLの10%EDTA-2Kを含む1.5mLチューブに入れる。穏やかにタップして十分に混合する。血液学的試験まで室温で保存する。
 (器官のサンプリング)
LN:鼠径部リンパ節(両側)を露出させ、取り出す。約1mLのRNAlaterを含む35mmディッシュ中、立体顕微鏡下で脂肪組織のコンタミネーションをできるだけ低減するために、脂肪組織を取り除く。クリーニング後、両側のリンパ節を、1mLのRNAlaterを入れた2.0mLEppendorf Protein LoBindチューブに移す。
SP:脾臓を露出させ、取り出す。脂肪組織および膵臓組織をできるだけ取り除く。クリーニング後、かみそりで脾臓を3つの部分に分ける。それぞれの部分を、別々に1mLのRNAlaterを入れた2.0mLEppendorf Protein LoBindチューブに移す(全部で3チューブ)。
LN:肝臓の左葉を露出させ、取り出す。生検パンチ(φ5mm)で3か所くり抜く。それぞれの部分を、別々に1mLのRNAlaterを入れた2.0mLEppendorf ProteinLoBindチューブに移す(全部で3チューブ)。採取した器官は、それぞれRNAlaterを含むチューブに入れ、このチューブを一晩4℃で維持し、その後使用するまで-80℃で保存した。
 (血液学的細胞カウント)
 血液学的細胞カウントは、VetScan HMII(Abaxis)を使用して実施した。50ulのEDTA-2K血液試料に、250ulの生理食塩水を添加することで希釈し、説明書に従ってVetScanHMIIで測定した。
 (標準手順2)
 (RNA抽出およびGeneChipデータの取得)
 このプロトコルは、Molecular Toxicology, Biological Safety Research Center, NationalInstitute of Health Sciences and Toxicogenomics informatics project (TGP2)、NationalInstitutes of Biomedical Innovation, Health and Nutrition and Division of Cellularが製造元のマニュアルを参照して確立したものである。
 (1.動物組織のホモジネート)
・1.1.試薬および機器
・1.1.1.試薬
1) RNeasy(登録商標)Mini Kit(QIAGEN、カタログ番号74106)
2) Buffer RLT*
3) 2-メルカプトエタノール(β-ME)
1.1.2. 機器
1) ジルコニウムビーズ(直径5mm、Tosoh、カタログ番号YTZ-5)
2) 電子はかり
3)アスピレーター
4) Mixer MillMM300(QIAGEN)
5) マイクロ遠心分離機
・1.2. 試薬の調製
・1.2.1. BufferRLT*
1)使用前に1mLのBufferRLTあたり10μLの2-メルカプトエタノールを添加する。
・室温で最大1か月保存
・1.3. 動物組織をホモジネートする手順
1)室温で試料を溶解する。
結晶も沈殿物もRNAlater中に存在しないことを確認する。
・一般的に、これはその後のRNA精製に影響を及ぼさないが、稀に、RNAの不安定化を引き起こす場合がある。
2)器官の重量を測定する。
・試料の重量が約30~100mgになるようにする。
・筋組織の重量は約30~50mgになるようにする。筋肉試料は量が多すぎるとホモジネートの凝集が起こる。
3)アスピレーションでRNAlater試薬を除去する。形成された場合には、結晶はここで全て取り除く。
4)火炎滅菌したピンセットを使用してジルコニウムビーズをチューブに入れる(チューブあたり1ビーズ)。
5)400μLのBufferRLTを添加する。
・筋肉試料の場合、ホモジネートの凝集を防ぐため、600μLのBuffer RLTを添加する。
6)Mixer Millアダプターにチューブを載せる。TGP2研究室では、MixerMillアダプターの端の列にのみチューブを載せていた。Mixer Millアダプターの中央にチューブを載せると破壊が不完全となる場合がある。
7)器官切片を最適な条件下でMixerMillにより破壊しホモジネートする。
・TGP2研究室では、破壊は、室温で3分間25Hzで行った。最初の破壊ステップの後、Mixer Millアダプターを回転させ、各チューブが均等にホモジネートされるようにする。第2の破壊ステップも、室温で3分間25Hzで行った。
8)室温で1分間300xgで遠心分離することでホモジネート中に生じる泡を除去する。
9)ホモジネートを-80℃で保存する。
 (2.動物組織からの全RNAの精製(TRI-easy法))
この節では、動物組織からの全RNAの抽出および精製について記載する。「TRI-easy法」は、酸グアニジニン-フェノール-クロロホルム(AGPC)抽出とRNeasy技術とを組み合わせたものである。
・2.1. 試薬および機器
・2.1.1. 試薬
1) TRIzol(登録商標)LS試薬(Invitrogen,カタログ番号10296-028)
2) RNeasy(登録商標)MiniKit(QIAGEN,カタログ番号74106)
 BufferRLT*
 BufferRW1*
 BufferRPE
 RNase非含有水
 RNeasyミニスピンカラム
 収集チューブ(1.5mL)
 収集チューブ(2mL)
3) DNase(QIAGEN,カタログ番号79254)
 DNase I、RNase非含有(凍結乾燥)
 BufferRDD
 DNase-RNase非含有水
4) 2-メルカプトエタノール(β-ME)
5) エタノール
6) クロロホルム
7) DEPC処理水(Ambion,カタログ番号9920)
・2.1.2. 機器
1) 電子はかり
2) アスピレーター
3) Mixer Mill
4)マイクロ遠心分離機(2mlチューブ用のローター)
5) Multiskan Spectrum(Themo Labsystems)
6) Gene Quantpro(Amersham Pharmacia Biotech)
・2.2.試薬の調製
・2.2.1. BufferRLT*
1)使用前に1mLのBuffer RLTあたり10μLのβ-MEを添加する。
・室温で最大1か月保存する。
・2.2.2. BufferRPE
1)初回に使用する前に、4体積分のエタノールを添加する。
・室温で保存する。
・2.2.3. 50% エタノール
1) 1体積分のDEPC処理水をエタノールに添加する。
*漂白剤溶液または酸性溶液をBufferRLT、Buffer RW1および試料調製廃棄液に直接加えないこと。
・2.2.4. DNase
1)凍結乾燥DNase I(1500 Kunitz単位)を560μLのDNase-RNase非含有水に溶解する。
・融解したアリコートは最大6週間2~8℃で保存できる。
・長期保存については、アリコート最大9か月間-20℃で保存できる。
・再構成したDNaseIはボルテックスしないこと。
・融解後はアリコートを再凍結させないこと。
2) 10μlのDNaseIストック溶液(上述)を70μLのBuffer RDDに添加する。チューブをゆっくりひっくり返して混合し、チューブの側面に残った液を短時間遠心分離することで回収する。
Figure JPOXMLDOC01-appb-T000003

・DNase Iは特に物理的変性を起こしやすい。混合は、チューブをゆっくりひっくり返すことで行わなければならない。ボルテックスしてはいけない。
・2.3. (任意選択)スパイクRNAの体積を計算する
・2.4.全RNA精製の手順(TRI-easy法)
1)組織ホモジネートを室温で溶解する。
2) RLT Bufferで体積を150μLに調整して適切な濃度の試料ホモジネートを収集チューブ(2mL)中で調製する。
3) 3体積分のTRIzolLS試薬(450μL)を添加し、ボルテックスで混合した後、室温で5分間インキュベートする。
4) 1体積分のクロロホルム(150μL)を添加し、30秒間手で激しく振り混ぜた後、室温で2~15分間インキュベートする。
5) 室温において12000xg以下で15分間遠心分離する。
6)上層の水相を注意深く分離し、新しい1.5mLチューブに移す。
7) 1体積分の50% エタノールを添加し、ピペッティングで混合する。
・50% エタノール(70%エタノールの代わりとして)を使用すると、肝臓試料からのRNA回収量が増加し得る。
8)上清を、2mL収集チューブにセットしたRNeasyミニスピンカラムに移す。
9)蓋をゆっくり閉め、室温で15秒間8,000xg以下で遠心分離する。
10)フロースルーを捨て、カラムを再度セットする。
11) 350μLのBufferRW1をRNeasyスピンカラムに添加してスピンカラムのメンブレンを洗浄する。
12)蓋をゆっくり閉め、室温で15秒間8,000xg以下で遠心分離する。
13)フロースルーを捨て、カラムを再度セットする。
14)(任意選択)80μLのDNase溶液をカラムに添加し、室温で15分間インキュベートする。
15) 350μLのBufferRW1をカラムに添加する。
16) 蓋をゆっくり閉め、室温で15秒間8,000xg以下で遠心分離してスピンカラムのメンブレンを洗浄する。
17)カラムを新しい収集チューブにセットする。
18) 500μLのRPEをRNeasyスピンカラムに添加する。
19) 蓋をゆっくり閉め、室温で15秒間8,000xg以下で遠心分離する。
20)フロースルーを捨てカラムを再度セットする。
21) 500μLのRPEをRNeasyスピンカラムに添加する。
22) 蓋をゆっくり閉め、室温で2分間8,000xg以下で遠心分離する。
23) カラムを新しい収集チューブにセットする。
24) 蓋をゆっくり閉め、室温で1分間15,000xg以下で遠心分離
25) カラムを新しい1.5mL収集チューブにセットする。
26) 40μLのDNase-RNase非含有水を溶出したRNAに添加する。
27)チューブを室温で3分間インキュベートする。
28) 蓋をゆっくり閉め、室温で1分間15,000xg以下で遠心分離する。
29)高RNA回収率のためにカラムに溶出物全量を添加してRNAを再溶出する。
30)チューブを室温で3分間インキュベートする。
31) 蓋をゆっくり閉め、室温で1分間15,000xg以下で遠心分離する。
・溶出物のRNA濃度が必要な濃度に満たない場合ステップ29~31を繰り返す。
32)溶出物のOD260、OD280、OD975、OD900をMultiskan Spectrumで測定する。全RNAは500ng/μLより高い濃度である必要がある。
33) [QC]読み取ったOD値、変動およびOD260/OD280。
34) [QC]電気泳動による28Sリボソームおよび18SリボソームRNA。
 (3. cDNAの合成)
・3.1. 試薬および機器
・3.1.1. 試薬
1) One-Cycle cDNASynthesis Kit(Affymetrix,カタログ番号900431、-20℃保存)
 T7-オリゴ(dT)プライマー、50μM
 5X 1stStrand Reaction Mix
 DTT,0.1M
 dNTP,10mM
 SuperScript II, 200U/μL
 5X 2ndStrand Reaction Mix
 大腸菌DNAリガーゼ、10U/μL
 大腸菌DNAポリメラーゼI、10U/μL
 RNaseH, 2U/μL
 T4 DNAポリメラーゼ、5U/μL
 EDTA、0.5M(室温で保存)
 RNase非含有水(室温で保存)
・Affymetrix One-Cycle Assaysで使用するためのOne-Cycle cDNAキット用のSuperScriptおよび/またはInvitrogenからの同様のものを使用することができる。
2) SampleCleanup Module(Affymetrix、カタログ番号900371)
 cDNABinding Buffer
 cDNAWash Buffer、6mL濃縮物
 cDNAElution Buffer
3) DEPC処理水(Ambion,カタログ番号9915G)
4) 0.5M EDTA二ナトリウム塩(Sigma,カタログ番号E-7889)
5) エタノール
・3.1.2. 機器
1) SampleCleanup Module(Affymetrix、カタログ番号900371)
 cDNAクリーンアップスピンカラム
 2mL収集チューブ
 1.5mLマイクロチューブ、DNase/RNase/パイロジェン非含有
・蓋が稀に壊れるので、キット中の1.5mL収集チューブは使用しない。
2)ヒートブロック
3)マイクロ遠心分離機
・3.2.試薬の調製
・3.2.1.First-Strand Master Mix
1)十分量のFirst-StrandMaster Mixを1.5mLチューブ中に調製する。以下の表を参照。
2) チューブを振り混ぜ、溶解させた後、短時間遠心分離する。
3) First-StrandMaster Mixを使用直前に調製し、氷上に静置する。
Figure JPOXMLDOC01-appb-T000004
・3.2.2. Second-StrandMaster Mix
1) 十分量のSecond-StrandMaster Mixを15mLチューブ中に調製する。以下の表を参照。
2) チューブを振り混ぜ、溶解させた後、短時間遠心分離する。
3) チューブをゆっくり十分に振り混ぜ、短時間遠心分離する。
4)Second-Strand Master Mixを使用直前に調製し、氷上に静置する。
Figure JPOXMLDOC01-appb-T000005

・3.2.3. cDNAWash Buffer
1) 24mLのエタノールを添加して作業溶液を得て、混同を避けるためチェックボックスにチェックを入れる。
・室温で保存する。
・バッファー全量を1か月以内に使用しない場合には、必要量のバッファーをDNase/RNase非含有チューブ中に調製する。
・3.3.cDNA合成手順
・3.3.1. 第1鎖cDNAの合成
1) 5μg/10μLのRNA試料を、RNase非含有水を使用して調製する。
2) -80℃で保存していたRNA試料を溶解した後、チューブをゆっくり十分に振り混ぜ、短時間遠心分離する。
3) 2μLの50μM T7-オリゴ(dT)プライマーを添加する。チューブをゆっくり十分に振り混ぜ、短時間遠心分離する。
4)チューブを70℃で10分間インキュベートする。
5)試料を4℃で2分間冷却し、短時間遠心分離する。
6) 7μLのFirst-StrandMaster Mixをそれぞれの反応混合物に添加して最終体積が19μLになるようにする。チューブをよく振り混ぜ、短時間遠心分離して、チューブの底の反応混合物を回収する。
7)すぐにチューブを42℃で2分間インキュベートする。
8)1μLのSuperScriptIIを反応混合物に添加する。チューブをよく振り混ぜ、短時間遠心分離する。
9)チューブを42℃で1時間インキュベートする。
10)試料を4℃で2分間冷却する。
11) チューブを短時間(約5秒)遠心分離してチューブの底の反応混合物を回収し、すぐに次のステップに進む。
・3.3.2. 第2鎖cDNAの合成
1) 130μLのSecond-StrandMaster Mixを各第1鎖合成試料に添加し、チューブをよく振り混ぜ、短時間遠心分離する。
2)チューブを16℃で2時間インキュベートする。
3) 2μLのT4 DNAポリメラーゼを添加する。チューブをよく振り混ぜ、短時間遠心分離する。
4)チューブを16℃で5分間インキュベートする。
5) 10μLのEDTA、0.5Mを添加する。ボルテックスで十分に混合し、短時間遠心分離する。
・2本鎖cDNA試料は-20℃で保存することができる。
・3.3.3.二本鎖cDNAのクリーンアップ
・このプロトコルの全ステップは室温で行うこと。
2) 600μLのcDNABinding Bufferを2本鎖cDNA試料に添加する。3分間ボルテックスで
混合し、短時間遠心分離する。
・混合物の色が黄色であることを確認する(cDNA合成反応を起こしていない場合のcDNA Binding Bufferの色)。
・混合物の色がオレンジまたは紫である場合、10μLの3M酢酸ナトリウム、pH 5.0を添加し、混合し、混合物の色が黄色であることを確認する。
3) cDNAクリーンアップスピンカラムを2mL収集チューブにセットする。
4)試料の混同を防ぐためにスピンカラムの蓋に試料番号を記入する。
5) 500μLの試料をcDNAクリーンアップスピンカラムに載せ、カラムの蓋を閉める。その後、室温で1分間8,000xg(10,500rpm)で遠心分離する。
6)遠心分離後、フロースルーを捨て、再度cDNAクリーンアップカラムを2mL 収集チューブにセットする。
7)スピンカラムに残りの混合物(262μL)を載せ、カラムの蓋を閉める。その後、室温で1分間8,000xg(10,500rpm)で遠心分離する。
8)遠心分離後、フロースルーおよび収集チューブを捨てる。
9)スピンカラムを新しい2mL収集チューブに移す。
10) 700μLのcDNAWash Bufferをスピンカラムに入れ、カラムの蓋を閉め、室温で1分間8,000xg(10,500rpm)で遠心分離する。
11)遠心分離後、フロースルーおよび収集チューブを捨て、スピンカラムを新しい2mL収集チューブに移す。
12)スピンカラムのキャップを開け、室温で5分間10,000xg(15,000rpm)で遠心分離する。13)遠心分離後、フロースルーおよび収集チューブを捨てる。
14)スピンカラムを1.5mL収集チューブに移す。
15) 14μLのcDNAElution Bufferをスピンカラムのメンブレン上に直接載せる。
16)室温で1分間インキュベートし、1分間10,000xg(15,000rpm)で遠心分離して溶出させる。
・ 溶出物の平均体積は12μLである。
 (4. cRNAの合成)
・4.1. 試薬および機器
・4.1.1. 試薬
1) IVT labeling Kit(Affymetrix、カタログ番号900449、-20℃保存)
 10X IVTLabeling Buffer
 IVT LabelingEnzyme Mix
 IVTLabeling NTP Mix
 3'-標識対照(0.5μg/μL)
 RNase非含有水
2) GeneChipSample Cleanup Module(Affymetrix、カタログ番号900371)
 IVTcRNA Binding Buffer
 IVTcRNA Wash Buffer、5mL濃縮物
 RNase非含有水
 5XFragmentation Buffer
 cDNABinding Buffer
 cDNAWash Buffer、6mL濃縮物
 cDNAElution Buffer
3) DEPC処理水(Ambion、カタログ番号9920、室温で保存)
4) エタノール
・4.1.2. 機器
1) GeneChipSample Cleanup Module(Affymetrix、カタログ番号900371)
 IVTcRNAクリーンアップスピンカラム
 1.5mL収集チューブ(溶出用)
 2mL収集チューブ
 1.5mLマイクロチューブ、DNase/RNase/パイロジェン非含有
・cRNAクリーンアップスピンカラムをcDNAクリーンアップスピンカラムと混同しないように注意する。
2) ヒートブロック
3)マイクロ遠心分離機
・4.2.試薬の調製
・4.2.1. IVTReaction Mix
1) 十分量のIVTReaction Mixを1.5mLチューブ中に調製する。以下の表を参照。
2) チューブを振り混ぜ、それぞれを溶解させた後、短時間遠心分離する。
・First-Strand Master Mixは使用直前に調製し氷上に静置する。
Figure JPOXMLDOC01-appb-T000006

・4.2.2. IVT cRNAWash Buffer(室温で保存)
1)20mLのエタノールを添加して作業溶液を得て、混同を避けるためにボトルラベルのチェックボックスにチェックを入れる。
・必要に応じて、30℃の水浴中で温めることで沈殿物を溶解させ、その後バッファーを室温に置く。
・4.2.3. 80%エタノール(室温で保存)
1) RNase/DNase非含有チューブ中でエタノールおよびDEPC処理水を4:1の比率で混合する。
・4.3. IVT反応の手順
・4.3.1. IVT反応
1) 30μLのIVTReaction Mixを1.5mLチューブ中に調製する。
2) 10μLの2本鎖cDNA試料を添加する。チューブを振り混ぜ、それぞれを溶解させた後、短時間遠心分離する。
3)チューブを300 rpmで混合しながら16時間37℃でインキュベートする。
4)すぐに精製しない場合、標識cRNAを-80℃で保存する。
・4.3.2.cRNAのクリーンアップ
1) 60μLのRNase非含有水を試料(40μL)に添加して3秒間ボルテックスする。
2) 350μLのIVTcRNA Binding Bufferを混合物に添加して3秒間ボルテックスする。
・コンタミネーションの可能性がある場合には、チップを交換する。
3) 250μLの100%エタノールを混合物に添加し、ピペッティングによって十分に混合する。
・コンタミネーションの可能性がある場合には、チップを交換する。
4)混合物(700μL)を、2mL収集チューブにセットしたIVT cRNAクリーンアップスピンカラムに載せる。
5) 15秒間8,000xg(10,500rpm)で遠心分離する。
6)フロースルーおよび収集チューブを捨てる。
7)スピンカラムを新しい2mL収集チューブに移す。
8) 500μLのIVTcRNA Wash Bufferをスピンカラムに載せる。
・コンタミネーションの可能性がある場合には、チップを交換する。
9) 15秒間8,000xg(10,500rpm)で遠心分離し、フロースルーを捨てる。
10) 500μLの80%(v/v)エタノールをスピンカラムに載せる。
・コンタミネーションの可能性がある場合には、チップを交換する。
11) 15秒間8,000xg(10,500rpm)で遠心分離し、フロースルーを捨てる。
12)キャップを開け、5分間8,000xg(10,500rpm)で遠心分離し、フロースルーおよび収集チューブを捨てる。
13)スピンカラムを新しい1.5mL収集チューブに移し、11μLのRNase非含有水を直接スピンカラムのメンブレン上に載せる。
・コンタミネーションの可能性がある場合には、チップを交換する。
14) キャップを閉め、1分間10,000xg(15,000rpm)で遠心分離して溶出させる。
15) 10μLのRNase非含有水を直接スピンカラムのメンブレン上に載せる。
・コンタミネーションの可能性がある場合には、チップを交換する。
16)キャップを閉め、1分間10,000xg(15,000rpm)で遠心分離して溶出させる。
17) O.D.を測定することでRNA濃度を決定する。
・4.3.3.cRNAの断片化
1) cRNAおよびRNase非含有水の量を計算してcRNA濃度を20μg/μLに調整する。
・ 全血液試料の場合、cRNA濃度は10μg/μLである。
・ TGPでは、全RNAのキャリーオーバーをなくすため、cRNAの量を以下の式にしたがって計算した。
[cRNA量]=RNAm-全RNAi*Y
RNAm:IVT反応後に測定したcRNAのみかけの量
全RNAi1):出発試料の全RNA量
Y:[IVT反応に使用したcDNA溶液の量]2)/[cDNA溶液の量]3)
1)TGP中5μg、2)TGP中10μL、3)TGP中12μL
2) ステップ1)で計算したRNase非含有水およびcRNAを1.5mLマイクロチューブに分注する。
3)チューブの蓋に試料番号を記す。
・コンタミネーションの可能性がある場合には、チップを交換する。
・TGPでは、残りのcRNA試料はバーコードラベルを付けて-80℃で保存した。
4) 8μLの5xfragmentation bufferを添加する。
・コンタミネーションの可能性がある場合には、チップを交換する。
5) チューブをタップして混合し、短時間遠心分離する。
6) cRNAの定量のため(反応前)、1μLのこれらの反応混合物を電気泳動用の8連PCR反応チューブに分注する。
7) チューブを35分間94℃でインキュベートする。
8) cRNAの定量のために(反応後)、1μLのこれらの断片化した反応混合物を電気泳動用の8連PCR反応チューブに分注する。
9) [QC]変性アガロースゲル上での電気泳動によるcRNAの断片化パターン。
・一般に、断片化cRNA試料は保存しない。必要であれば、-80℃で保存する。
・4.3.4.cRNAおよびその断片化の簡単な確認
1) cRNAの品質確認のための基準
 cRNA電気泳動パターンが全体に汚れがなく、1kbp付近のバンドが強く染色されること(レーン1)。
 cRNA電気泳動パターンが全体に汚れがなく、1kbp付近のバンドが強く染色されないこと(レーン3)。
 cRNAのサイズ分布が1kbp(レーン7)未満であること。これらの試料は、高いバックグランドを示すことになるので、その後の反応に不適切である。
2) 断片化cRNAの確認
・断片化cRNAのサイズ分布が35~200bp(ゲル電気泳動の先端)を示す(レーン2、4)。
(5. ハイブリダイゼーション)
・5.1. 試薬および機器
・5.1.1. 試薬
1) GeneChipEukaryotic Hybridization対照キット(Affymetrix、カタログ番号900454または900457)
 20xEukaryotic Hybridization対照
 対照オリゴヌクレオチドB2
・対照オリゴヌクレオチドB2(150μL)は3つのチューブに分注し、-20℃で保存した。
2) MES非含有酸一水和物(Sigma,カタログ番号M5287、250g、室温で保存)
3) MESナトリウム塩 (Sigma,カタログ番号M5057、100g、室温で保存)
4) 5M NaCl(Ambion、カタログ番号9760、100mL、室温で保存)
5) 0.5M EDTA(Sigma、カタログ番号E7889、100mL、室温で保存)
6) 10% Tween20(Surfact-Amps 20、PIERCE、カタログ番号9005-64-5、10mL、最大1年間室温で保存)
7) 10mg/mL Herring Sperm DNA(Promega、カタログ番号D1811、最大1年間-20℃で保存または最大1か月間4℃で保存)
8) 50mg/mLウシ血清アルブミン(Invitrogen、カタログ番号15561-020、3mL、最大1年間-20℃で保存または最大1か月間4℃で保存)
9) DEPC処理水(Ambion、カタログ番号9920、室温で保存)
10) 20x SSPEBuffer(Invitrogen、カタログ番号15591-043、1L、室温で保存)
・5.1.2. 機器
1) 50mLチューブ、DNase/RNase/パイロジェン非含有
2) 15mLチューブ、DNase/RNase/パイロジェン非含有
3) 1.5mLマイクロチューブ、DNase/RNase/パイロジェン非含有
4) Bottle TopVacuum Filter(Iwaki、カタログ番号8024-045)
5) Storage Bottle(Iwaki、カタログ番号8930-001)
6) タフスポット(Toho、直径1/2インチ、白色、T-SPOTS-50)
7) Gene Chip Hybridization Oven 640(Affymetrix)
8) クールインキュベータ(Mitsubishi Electronic Engineering、CN-25A)
・5.2.試薬の調製
・5.2.1. 12xMESストックバッファー(遮光、最大3か月間4℃で保存)
1)混合して体積を1,000mLに調製する。pHは6.5~6.7になるようにする。
2) 0.22μmフィルターを通す。
・この操作は、滅菌のためというより脱気およびダストの除去のためである。
・MESバッファーをオートクレーブしない。
・MESバッファーが黄色くなっている場合には使用しない。
Figure JPOXMLDOC01-appb-T000007
・5.2.2. 2xHybridization Buffer(遮光、最大1か月間4℃で保存)
最終1x濃度のバッファーは100mM MES、1M[Na+]、20mM EDTA、0.01%Tween-20である。
1) 50mLチューブ中に調製し、ひっくり返しながら混合する。
Figure JPOXMLDOC01-appb-T000008
・5.2.3. 1xHybridization Buffer(遮光、最大1か月間4℃で保存)
1) 50mLチューブ中に調製し、ひっくり返しながら混合する。
Figure JPOXMLDOC01-appb-T000009
・5.2.4. Wash Asolution(ストリンジェントでない洗浄バッファー、最大1か月間室温で保存)
1)メスシリンダーを使用してビーカー中に調製し、スターラーで十分に混合する。
2)調整したWash Asolutionを清浄な専用容器に移す。
・この操作は、滅菌のためというより脱気およびダストの除去のためである。
Figure JPOXMLDOC01-appb-T000010
・4.1. ハイブリダイゼーション
1) 結露およびゴムセプタムのひび割れを防ぐため使用30分前にGeneChipを室温に平衡化する。
・GeneChipをチェックする(ガラス表面の疵など)。
2) 30μLの各断片化標識cRNA試料を1.5mLマイクロチューブに移す。
3) 十分量のHybridization Mixを15mLチューブ中に調製する。以下を参照。
Figure JPOXMLDOC01-appb-T000011

4) 270μLのHybridization Mixを断片化標識cRNA試料に添加し、チューブを振り混ぜ、短時間遠心分離する。
・コンタミネーションの可能性がある場合には、チップを交換する。
5) ヒートブロックを使用してチューブを5分間99℃でインキュベートする。
6) ヒートブロックを使用してチューブを5分間45℃でインキュベートする。
7) 室温で5分間10,000xg(15,000rpm)で遠心分離してハイブリダイゼーションカクテル由来の全ての不溶性物質を収集する。
8) ハイブリダイゼーションカクテルを遠心分離している間、アレイを200μLの1xHybridization Mixで濡らしておく。
・清浄な未使用のRAININピペットチップを挿入することでGeneChipのセプタムの右上に孔を開ける。
・清浄な未使用のRAININピペットチップでセプタムの左下から1xHybridization Mix(事前ハイブリダイゼーションバッファー)を充填する。
9) 60rpmで回転させながらHybridization Ovenを使用してGeneChipを10分間45℃でインキュベートする(事前ハイブリダイゼーション)。
10) GeneChipからのバッファーの漏出をチェックする。
11)清浄な未使用のRAININピペットチップでアレイに孔を開け、1xHybridization MixをGeneChipから取り除く。
12) チューブの底に不溶性の物質が残るのを避けるため、清浄な未使用のRAININピペットチップで200μLの清澄なハイブリダイゼーションカクテルを再充填する。
13) 漏出を防ぐために1/2インチのタフスポットをセプタムに貼る。
14) 上清(約100μLのハイブリダイゼーションカクテルが残る)を取り出した後のマイクロチューブを-80℃で保存する。
・TGPでは、チューブに試料のIDバーコードを付した。
・GeneChipのガラス表面に触れないこと。
15) GeneChipをHybridization Ovenに入れ、60rpmで回転させながら18時間45℃でインキュベートする(ハイブリダイゼーション)。
・モーターに応力がかかるのを避けるために、軸を中心にバランスをとった配置でプローブアレイを設置する。
16) ハイブリダイゼーション後、ハイブリダイゼーションカクテルを清浄な未使用のRAININピペットチップでGeneChipから除去した。
・TGPでは、このカクテルを、残りのハイブリダイゼーションカクテルに加えて、再ハイブリダイゼーション用のハイブリダイゼーションカクテルとして-80℃で保存する。
17) GeneChipを適切な体積のWash Buffer Aで完全に充填する(約260μL)。
・TGPでは、次のステップまでGeneChipをクールインキュベータに入れておいた。
 (標準手順3)
 (品質管理(QC)およびデータベースへの最終的なデータ編入)
アジュバントデータベースプロジェクトにおける全ての遺伝子発現は品質管理(QC)を合格したものである。データ取得は、インハウスのGeneChip(登録商標)Scanner 3000 7G(Affymetrix)において実施した。取得したデータを、バックグランドのシグナル、角のシグナル、存在/非存在コールの数およびハウスキーピング遺伝子の発現値についてさらに解析した。次に、グループ内またはグループ間の再現性をスキャッタープロット分析によって確認した。X軸およびY軸は、同じ(グループ間)または異なる(グループ間)アジュバント処置マウスグループにおける2つの異なる試料由来の各遺伝子についての遺伝子発現値を示す。赤色のドットは、高い相関係数(CV)を示す遺伝子を表す。
 (代表的QC例)
以下は、本プロジェクトで観察された5種類の代表的なQC例である。
 1)不明な理由で失敗したQCの例(スペアの試料で再度アッセイを行った)
Figure JPOXMLDOC01-appb-C000012
 DMXAA_ID_SP_x1(a-1)は、不明な理由によりスキャッタープロットが大きく歪んだ。sHz_ID_LV_x3(a-2)およびMBT_ID_LV_x3(a-3)は、同じ器官由来で同じアジュバントで処置した別の試料に対して、異常な曲がったスキャッタープロットを示した。他の(スペアの)組織断片(同じ試料から同時にサンプリングしたがスペアとして別々に保存していたもの)を使用して再アッセイを行った。スペア断片からのデータも歪んだスキャッタープロットを示した場合、その試料はその後の解析から除外した。これら3つのケースにおいて、DMXAA_ID_SP_x1、sHz_ID_LV_x3およびMBT_ID_LV_x3の再アッセイデータはQCに合格し、その後の解析に使用した。
 2)他の組織が大きくコンタミネーションしたため失敗したQC試料(その後の解析から除外した)
 ADX_ID_LN_c1とADX_ID_LN_c3との間のスキャッタープロットは、片側の偏りを示した。CV分析によって、このADX_ID_LN_c1試料には鼠径リンパ節の周辺の脂肪組織による重度のコンタミネーションが起こっていることが分かった。CVフィルターを適用した場合でも、脂肪組織由来の遺伝子の除外は達成できなかった(中心線から大きく広がった黒のドットで示される)。そのため、これらのコンタミネーションによる強力な影響を避けるため、これらの試料はその後の解析から完全に除外した。
 3)他の組織による不可避的な弱いコンタミネーションがあるもののQCに合格したもの
 ADX_IP_SP_c2(c-1)およびcdiGMP_ID_SP_c1(c-2)は、脾臓における正常なスキャッタープロット(e-2)に対して膵臓のコンタミネーションを示した。脾臓と膵臓とは近傍に位置するので、注意深くクリーニングを行っても脾臓から膵臓組織を完全に取り除くことは技術的に困難である。そのため、CVフィルターを適用して、データ処理法によりこれらのコンタミネーション由来の遺伝子(通常高いCVを示す)を取り除いた。
 4)異なる大きさの宿主応答を示すもののQCに合格したもの
 マウスの個体間の差により、広い分布を示した試料(d-1,2)も検出することができたが、これは、アジュバント投与後の宿主応答の大きさが異なることを反映している。
 5)問題なくQCに合格したもの
 (合成仮想対照)
 実験3の試料の統計解析に少なくとも3つの対照試料を取得するために、「03PBS_LN_c1」合成仮想対照を「03PBS_LN_c1v」で置き換えた。合成仮想対照「03PBS_LN_c1v」は、合計10の実験からプールした対照試料の個々の遺伝子発現の平均を使用して作成した。それぞれのプローブセットについて、プールした対照試料の中の最高値のプローブおよび最低値のプローブを取り除いた後に平均値を計算した。
 (QC後のデータセットのさらなる評価に基づく試料の除外)
他の2匹のマウスと比較して強すぎる遺伝子応答を示したので、さらに2つの試料、K3SPG_IP_LV_x2およびK3SPG_IP_SP_x2(両試料は、実験2の#2マウスから取得)を除外した(図は示さず)。ADX_ID_LN、K3SPG_IP_LVおよびK3SPG_IP_SPについては、2つの処置試料だけを後の解析に使用した。他の試料は、3つの試料で解析した。
 (CVフィルタリング)
GeneChipデータのQC解析の間に、いくつかの試料には、他の組織由来の遺伝子のコンタミネーションが低レベルであるが、実質的なレベルで含まれていた(例えば、上記QC散乱図の赤)。注意深くクリーニングして器官を採取しても完全にマイクロコンタミネーション(QC例3)を除去することは技術的に困難であった。そのため、標的器官遺伝子解析からマイクロコンタミネーション由来の遺伝子を低減させるために変動係数(CV)フィルターを開発した。それぞれの遺伝子プローブのベースラインでの変動を、緩衝液を注射した合計33匹の対照マウスからのGeneChipデータを使用して計算した図は示さず)。それぞれの器官において大きなCVを示した遺伝子プローブについて、GeneExpression Barcode 3.0(http://barcode.luhs.org/)データベースを使用してその起源をさらに解析した。Barcode 3.0による解析によって、これらのCVの大きな遺伝子プローブは、LVにおける神経組織(図は示さず)、SPにおける膵臓組織(図は示さず)そしてLNにおける脂肪組織(図は示さず)に主に由来することが明らかになった。これらのマイクロコンタミネーションの影響を取り除くため、CV値<1でデータをフィルタリングし、このフィルタリングしたデータ(45037プローブのうちの43200)をさらなる解析のために使用した。
 (アジュバントの投与およびサンプリング)
 本実施例で使用したアジュバントの詳細情報は別途記載する。C57BL/6マウス(雄性、5週齢、C57BL/6JJc1)は、CLEA Japanから購入し、少なくとも1週間順応させた。それぞれのアジュバントを標準手順1に記載するように調製し、それぞれのアジュバントについて示した用量/体積(表11)を、マウス(グループごとにn=3)の、主に尾基底に投与した(皮内、i.d.)。5種類のアジュバント(ADX、ALM、bCD、K3およびK3SPG)はi.p.投与した。ENDCNはi.n.(鼻内)投与した。予備実験において、筋内投与を行うと非常にばらつきが大きく再現性の低い遺伝子プロファイルが得られたので、本実施例では筋内投与を行っていないが、条件を調整すれば筋肉内注射も利用可能である。それぞれのアジュバントの用量は、本発明者らの実験(ALM、K3およびK3SPG、bCD、cdiGMPおよびcGAMP、D35、DMXAA、FK565、sHZ)、以前の報告(AddaVax、ADX、ENDCN、PolyIC、Pam3CSK4、MPLA、MALP2s、R848)または下記の共通プロトコル(FCAおよびISA51VGの1:1混合物)(詳細は別途記載する)に基づいて、マウスにおいて重篤な反応原性なく良好なアジュバント機能を誘起するような用量を選択した。
 選択したMBTの用量は、FK565の用量と同じであったが、これに関しての実験は行っておらず、FK565および他のNODリガンドについての予備データ(データは示さず)に基づいて決定した。合計21種類の異なるアジュバントのうち、3~5種類の異なるアジュバントを1つの実験において使用し、適切なバッファー対照グループを使用した(大部分のアジュバントについてはPBS、ENDCNについてはTris-HCl、そしてDMXAA、MALP2s、MPLAおよびR848については5%DM標準手順BS)。この研究において、合計で10の独立した実験を行った(標準手順1を参照、例えば表11)。
Figure JPOXMLDOC01-appb-T000013
 予備実験において、FCAおよびALMについて72時間までの異なる時点で試験したところ、試験した用量範囲では、遺伝子発現の変化は多くの場合6時間時点でピークに達し、24時間時点では大部分の変化が収まっていた。予備実験によって、アジュバントの投与後に、器官における遺伝子発現の変化を、一定して投与後6時間の時点で調べ、24時間後にはマウスおよびラットにおいて概ね正常レベルに戻ったことが明らかになった。そのため、サンプリングには投与後6時間後の時点を選んだ。アジュバント投与6時間後に、LV、SPおよびLN(両側)を取り出し、その遺伝子発現をAffimetrixGeneChipマイクロアレイシステム(Affymetrix)を使用して調べた。採取した器官は、それぞれRNAlaterを含むチューブに入れ、このチューブを一晩4℃で維持し、その後使用するまで-80℃で保存した。一般血液学的試験のため、アジュバント投与6時間後に採血も実施した。血液学的試験のために約200μLの血液を非ヘパリン化キャピラリー管で後眼窩静脈叢から取得し、2μLの10%EDTA-2Kを含む1.5mLチューブに入れた。血液学的細胞カウントは、VetScanHMII(Abaxis)を使用して実施した。50ulのEDTA-2K血液試料に、250ulの生理食塩水を添加することで希釈し、説明書に従ってVetScanHMIIで測定した。
 (データ取得および品質管理)
 マイクロアレイのデータ取得はIgarashiら(Igarashi, Y. et al. Open TG-GATEs: a large-scaletoxicogenomics database. Nucleic acids research 43, D921-927(2015))に従った。簡潔に説明すると、RNAlaterに貯蔵された組織ブロックにRLTバッファー(QiagenGmbH., Germany)添加し、MixerMill 300(Qiagen, Germany)上で20Hzにおいて5分間、5mm径のジルコニウムビーズ(ASONE Corporation, Japan)とともに振盪することによってホモジネートした。全RNAをTrizol LS(LifeTechnologies, CA)およびRNeasy Mini Kit(Qiagen)を製造元の指示に従って使用してLV、SPおよびLNから単離した。GeneChip(登録商標)3’IVT Express Reagent KitまたはGeneChip(登録商標)3’IVT PLUS Reagent Kitを使用して試料調製を行い、遺伝子発現プロファイルは、製造元の指示に従ってGeneChip(登録商標)Mouse Genome 2.0 Array(Affymetrix, CA)を使用して決定した。洗浄ステップおよび染色ステップは、GeneChip(登録商標)Hybridization, Wash, and Stain kiton a fluidics station 450(Affymetrix)を使用して実施した。GeneChip(登録商標)アレイをGeneChip(登録商標)Scanner 3000 7G(Affymetrix)によってスキャンした。得られたデジタル画像ファイル(DATファイル)をAffymetrix(登録商標)GeneChip(登録商標)Command Console(登録商標)ソフトウェアによってCELファイルに変換した(標準手順2)。
 結局、別々に実施した10の実験から330の(99は対照、231は処置群) GeneChipデータファイルおよび血液学的パラメータを得た(表11)。実験3における1つのPBS対照および1つのADX_ID処置LN試料は、大量の脂肪組織由来の遺伝子発現のために取り除かなければならなかったことに留意されたい(see標準手順3)。結果的に、実験3のデータセットのさらなる解析のために、このADX_ID処置LN試料のデータは除外し、このPBS対照試料は合成した仮想の対照データで置き換えた(標準手順3)。さらに、K3SPG_IP処置#2マウス由来のLV試料およびSP試料は、K3-SPGのi.p.注射が適切になされなかったために解析から除外した(標準手順3)。非標的組織のマイクロコンタミネーションを含む実験全体の条件依存的要因を低減するために、対照のバッファー処置マウスにおいて大きな変動係数を示した全ての遺伝子プローブもまた除外した(標準手順3)。
 (遺伝子発現の存在または非存在の決定(カスタマイズPAコール))
 MAS5.0における存在または非存在(PA)コールを、以下のようにカスタマイズした。単一のアジュバントまたはその適切なベヒクル対照で処置した3匹のマウスの2つのグループのそれぞれから得た正規化したMAS5.0発現データを平均化し、それぞれのグループについて平均発現比を計算した。このプロセスにおいて、MAS5.0のPAコール(カスタマイズPAコール)も以下のように統合した。3つの対照試料からのPAコールが[「P」、「P」および「A」]である場合、優勢なPAコールとして「P]を選択した(半分より多くが「P」)。同じ戦略を3つのアジュバント処置試料に適用した。それぞれの遺伝子の発現比が>1.0であった場合、カスタマイズPAコールはその処置群の優勢なコールによって決定した。発現比が< 1.0であった場合、カスタマイズPAコールはベヒクル対照群の優勢なコールによって決定した。得られたカスタマイズPAコールは、「P」を「1」として、「A」を「0」として処理した。すなわち、発現比が1より大きく、処置試料のPAコールが「P]、「P]および「A]であった場合、この遺伝子セットのカスタマイズPAコールは「1」であった。2つの試料を解析する場合(ADX_ID_LN、K3SPG_IP_LVおよびK3SPG_IP_SP)には、[「P」、「A」]は「A」として処理した。
 (有意に差次的に発現される遺伝子(有意に発現が変動する遺伝子=sDEGまたは有意SEG))
 sDEGを、以下の条件を全て満たす統計的に有意な変化(アップレギュレーションまたはダウンレギュレーション)として定義した:平均倍数変化(FC)が>1.5または<0.667であること、関連付けられたt検定のp値が多重検定補正無しで<0.01であること、およびカスタマイズPAコールが1であること。
 (TargetMineによる生物学的テーマ濃縮解析)
 規定した遺伝子セットを特定の基準(例えば、FC、PAコール、閾値)にしたがって選択した。その後、その機能濃縮値を、APIインターフェースを使用してTargetMine(Chen,Y.A., Tripathi, L.P. & Mizuguchi, K. PloS one 6, e17844(2011))(http://targetmine.mizuguchilab.org/)から取得した。以下のリソース(GO、GOSlim、IntegratedPathway、KEGG、ReactomeおよびNCI pathway)を、TargetMine Interfaceによる解析全体を通して使用した。Holm-Bonferroni法を多重検定補正に使用した。
 (全器官トランスクリプトームを使用した個々のアジュバントの生物学的アノテーション解析(図10および表12))
Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016
 各マウスから取得した各器官についての全器官トランスクリプトームデータを、以下のように分析して、各アジュバントを投与した3匹のマウス群から取得した個々の試料について生物学的テーマを取得した。特定の実験条件(例えば、DMXAA, LV, i.d.)について、eijはj番目の試料(j=1, 2, 3)におけるi番目の遺伝子の発現値であり、ei(c)は対応する対照試料の平均発現値である。eij/ei(c)>2.0の場合のPj遺伝子のセットを初めに定義した。その後、TargetMine(Chen,Y.A. et al., PloS one 6, e17844(2011))(http://targetmine.mizuguchilab.org/)を使用してPj内で濃縮された生物学的テーマを特定した。Tjは生物学的テーマの得られたリストを示し、関連のp値はFischerの正確性検定により取得した。
 次に、グループ内の個々の試料全てによってコールされた生物学的テーマを以下のようにスコア付けした。所与の実験条件について3つのリスト(T1, T2, T3)が得られているので、テーマのコンセンサスリストTをT={(t1, p1), (t2, p2), ..}(tiは、T1、T2およびT3全てに出現する生物学的テーマであり、piは関連のp値の最小値である)として作成した。p値が<0.05であるテーマのみをTに含めた。
 Tにおける生物学的テーマをさらにまとめるために、一般にアジュバント活性に関連すると考えられるタームのリストを別個に作成した。AT={at1,at2, ..}(atiは、事前に選択したアジュバント関連タームである(例えば、「ストレス」や「サイトカイン」))を定義した。最後に、アジュバント関連タームatiについての濃縮スコアSを、S(ati)=Σ-log(pj)(Tにおけるtjの名称は、部分文字列としてタームatiを含み、pjは関連のp値である)と定義した。
 このスコアリングスキームによって、各器官における各アジュバントに応答する遺伝子における事前に選択したアジュバント関連タームの相対的濃縮をまとめた。
 (階層的クラスタリング)
 アジュバントおよびそれぞれの器官についての全てのsDEGの集合を、「アジュバント遺伝子空間」と定義した。アジュバントと、アジュバント遺伝子空間における遺伝子との階層的クラスタリングは、Rパッケージのhclust関数によって実施した(1-ピアソン相関係数を距離の尺度として用い、Ward D2アルゴリズムを用いた)。得られた遺伝子クラスター(「遺伝子モジュール」と定義)(Mixと表し、ここでiはモジュール番号を表し、xは器官を表す)では、同じモジュール内の遺伝子は、所定のアジュバントを投与すると同様の挙動を示すと想定している。本明細書において使用した21種類のアジュバントについてもまた階層的クラスタリングを行い、Gjy(jはグループ番号を表し、yは器官を表す)としてグループ化した。
 (ImmGenデータベースに基づく細胞集団のプロファイリング)
 ImmGenデータベース(Heng,T.S. et al., Nature immunology 9, 1091-1094(2008))(http://www.immgen.org/)は、定常状態における様々な免疫細胞タイプの遺伝子発現プロファイルを提供する。遺伝子がどの細胞タイプに由来するのかその起源を推測するためにこれらの発現プロファイルを使用した。最初に、ImmGen発現プロファイルから、10種類全ての免疫細胞タイプ(j)におけるそれぞれの遺伝子(i)を重み付けした。
Figure JPOXMLDOC01-appb-M000017

ここで、所与の遺伝子についての細胞タイプ(例えば、好中球)の重みは、その特定の細胞タイプにおけるその遺伝子の発現レベルのみに依存し、他の細胞タイプ(例えば、マクロファージ、B細胞)における発現レベルには依存しないと仮定した。その後、それぞれのアジュバントの発現プロファイルについて、倍数変化、p値カットオフおよびPAコール基準に基づいて遺伝子を選択した。細胞タイプ(j)についてのそれぞれの試料(k)における細胞タイプの寄与を以下のように計算した:
Figure JPOXMLDOC01-appb-M000018

 ここで、(s)は遺伝子の差示的発現を表し、Gは所与のカットオフを満たす遺伝子の総数を表す。
 (Zスコアに基づく差示的遺伝子発現解析)
 それぞれの試料のFC値を、それぞれの器官についてのデータセット全体を使用することによって遺伝子ベースでzスコアに変換した。目的の3回反復試料のZスコアをそれぞれのアジュバントについて合計した。例えば、cdiGMP投与後のLV試料における3つの試料のzスコアを遺伝子ごとに合計して、その後、合計スコアが>3である遺伝子をcdiGMP投与後にLVにおいて比較的に優先的に発現する遺伝子として選択した。以下の基準を選択のために適用した。LVにおいて、G1LV関連遺伝子は、cdiGMP(z>3) & cGAMP(z>3) & DMXAA(z>3) & PolyIC(z>3) & R848(z>3)で選択した。G2LV:ALM_IP(z>1) & bCD(z>1) & ENDCN(z>1)& FCA(z>1)。G3LV:ADX(z>1) & Pam3CSK4(z>1) & FK565(z>1)。G4LV:MALP2s(z>3)。SPにおいて、G1SP: cdiGMP(z>3) & cGAMP(z>3) &DMXAA(z>3) & PolyIC(z>3) & R848(z>3)。G2SP: ENDCN_x2+ ENDCN_x3(z>2) & ALM_IP(z>3) & bCD(z>3)。G3SP:FCA(z>3) & FK565(z>3)& Pam3CSK4(z>3)。G4SP:ADX_ID_x2 + ADX_ID_x3(z>2) & ADX_IP(z>3) & MALP2s(z>3)。LNにおいて、G1LN(5adj):cdiGMP(z>3) & cGAMP(z>3) & DMXAA(z>3) & PolyIC(z>3)& R848(z>3)。G1LN(8adj): cdiGMP(z>0) & cGAMP(z>0) &DMXAA(z>0) &PolyIC(z>0) & R848(z>0) & MALP2s(z>575 0)& MPLA_x1 + MPLA_x3(z>0) & Pam3CSK4_x2 + Pam3CSK4_x3(z>0)。G2LN:bCD(z>3) & FCA(z>3)。G3LN: FK565(z>3)。G5LN:K3(z>1.5) & K3SPG_x1 + K3SPG_x2(z>1) & D35_x1 + D35_x3(z>1)。G6LN:AddaVax(z>3)。
 血液学的データおよび遺伝子発現相関の解析
 ピアソン相関解析を、それぞれの器官における血液学的データおよび遺伝子発現変化に適用した。解析に使用したデータは、以下の基準を使用して選択した。遺伝子はcPA=1でなければならず、血液学的データはプールした対照の平均から1標準偏差(1 SD)より大きくなければならない。得られた血液学的パラメータのペアおよび遺伝子をWelchのt検定によってさらに選択した。p値が<0.05であり、かつ相関係数の絶対値が<0.8であり、かつ勾配(傾き)の絶対値が< 1.2であるペアを選択した。実験5および実験10から得られた血液学的データおよび遺伝子データは、別々の実験から取得したので、これらの関連付けのないデータはこの分析に使用しなかった。重要なことに、これらの関連付けのない試料のデータをテスト試料としてプロットしたところ、これらのデータはまた相関直線に良好にフィッティングされた。
 表13 本実施例で使用したアジュバントまたはコントロール
Figure JPOXMLDOC01-appb-T000019
 次に、本実施例で使用したアジュバントと用量を示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
表15 アジュバント投与後に統計的に有意に変化した遺伝子プローブの数。有意に変化した遺伝子は、「有意に差次的に発現される遺伝子」(sDEG)と記載され、以下の基準によって定義される:倍数変化>1.5(上方)または<0.667(下方)、かつp値が<0.01、かつカスタマイズPAコール=1。肝臓はLV、脾臓はSP、リンパ節はLNと表す。空欄は試料が試験されなかったことを表す。
Figure JPOXMLDOC01-appb-T000022
表16 本実施例で言及された遺伝子の識別情報
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 (結果)
 アジュバント遺伝子空間-sDEGの集合によってアジュバントに対する器官の応答を特徴付ける
 合計21種類のアジュバント(表1)を、マウスの尾基底(皮内、i.d.)、腹腔内(i.p.)または経鼻的(i.n.)に投与した。アジュバント投与の6時間後に、LV、SP(全身性の器官として)およびLN(局所性のリンパ組織として)の器官全体のトランスクリプトームを取得し、それぞれの器官とアジュバントとのペアについての顕著に差示的に発現された遺伝子(sDEG)のセットを画定した(表15)。次に、アジュバント誘導性遺伝子応答を、器官ごとに全てのsDEGを合わせることによって統合した。LV、SPおよびLNからのsDEGの集合は、それぞれ合計で8049、8449および9451の遺伝子プローブであった(図1)。アジュバント遺伝子空間には、インビボで試験した21種類の異なるアジュバントのうち少なくとも1種類を投与したことによって有意に発現が変化した遺伝子が含まれていた。全体としては、3874遺伝子(LV誘導遺伝子のうちの48%)、2331遺伝子(SP誘導遺伝子のうちの28%)および2991遺伝子(LN誘導遺伝子のうちの31%)がそれぞれの器官に固有であった。TargetMine(Chen,Y.A. et al., PloS one 6, e17844(2011))による経路解析によって、これらの固有の遺伝子が、LV、SPおよびLNについて、それぞれ、脂質代謝、転写および免疫系に関連していることが示された(図1)。これら3つの器官は2299遺伝子を共有しており、これらの遺伝子はインターフェロン、サイトカイン、NF-κBおよびTNFシグナル伝達に関する経路に濃縮されていた(図1)。
 ボルカノプロットデータ(図S1)によって、アジュバントの半数(AddaVax、ADX、ALM、D35、ISA51VG、K3、K3SPG、MBT、MPLAおよびsHZ)は、局所的に投与した場合に穏和な応答(<100のsDEG)を誘導したが、これは、用量レベルを実際のワクチン接種の状況を模倣して選択したという事実と一貫している。bCD、ENDCNおよびPam3CSK4は中程度の応答(100~200のsDEG)を誘導した。対照的に、cdiGMP、cGAMP、DMXAA、FCA、FK565、MALP2s、PolyICおよびR848は、少なくとも1つの器官において強い遺伝子応答(>500のsDEG)を誘導した。これらのアジュバントは直接流入LNにおいてより大きな遺伝子応答を誘導し、全身性の器官(LVおよびSP)における応答は比較的に弱い傾向がみられた(表15および図S1)。興味深いことに、FK565(合成NOD1リガンド)は、i.d.投与後にLNよりもLVおよびSPにおいてより大きな応答を誘導した(表15および図S1)。ADXおよびALMは、LVおよびSPにおいて明白な遺伝子発現変化をもたらしたが、K3、K3SPGおよびbCDは比較的弱い応答を誘導した(表15および図S1)。MPLA、Pam3CSK4およびその他の比較的穏和なアジュバント個々のマウスおよび器官の間で遺伝子応答がばらつく傾向があった(図8および図9)。
 アジュバントの半数は、sDEGの数が限定的であったので、通常の遺伝子アノテーション解析で特徴付けることは困難であった。そのため、別の遺伝子選択基準(倍数変化>2)も試験して、それぞれのアジュバントについて意味のある生物学的アノテーションが抽出できるかどうかを調べた。実際、この分析によって、実践的なアジュバント用量(比較的少量)からでも十分な妥当なインビボの生物学的アノテーションが得られた(図10)。大部分のアジュバントが、炎症、サイトカイン/ケモカイン応答、化学走性/移動およびストレス/防御/免疫応答を誘導し、i.d.投与後にLVおよびSPよりLNにおいて比較的に強力であった(図10)。組織損傷に関するアノテーション(創傷、細胞死、アポトーシス、NFκBシグナル伝達経路)に関して、ADX、D35、K3、K3SPG、MBTおよびsHZはLNにおいて細胞死および創傷を誘導しなかったが、この知見は、ADXおよびsHZの良好な局所的耐容性プロファイルと一貫している。LNにおいて大部分のアジュバント(AddaVax、ADX、ISA51VG、MBTおよびsHZ以外)に対してインターフェロンおよびインターロイキン応答もまた検出された(図10)。LNにおける比較的強力な炎症およびストレス応答にかかわらず(図10)、ALM、K3SPGおよびMPLAは、LVおよびSPにおいて限定的な応答しか示さなかった。これは、これらのアジュバント効果が局所に留まることを示唆している(図10)。対照的に、ISA51VGおよびsHZを例外として、他のアジュバントは、i.d.局所的投与後であっても全身性の器官において検出可能なレベルの応答を誘導するようである(図10)。興味深いことに、MBT(NOD2リガンド)i.d.投与後にSPおよびLNよりもLVにおいてより多くの遺伝子応答を誘導するようであり、FK565でも同様の結果であった(図10)。ADX、ALMおよびK3SPGのi.p.投与によって、i.d.投与よりもLVおよびSPにおける炎症およびストレス関連応答が比較的強く誘導された(図10)。これらの結果は、p値による選択をしなくても本データセットはアジュバント誘導遺伝子応答についてかなりの情報を提供することを示し、これは、それぞれのアジュバントによって誘導されるインビボの生物学的応答を実質的な信頼性で引き出すのに十分なレベルである。したがって、本全器官トランスクリプトームのアプローチが支持される。
 アジュバント遺伝子空間により、3つの器官におけるアジュバント誘導性宿主応答が明らかになるアジュバント遺伝子空間についてのより詳細な情報を得るために、遺伝子とアジュバントとの階層的クラスタリングを実施した(図11;http://sysimg.ifrec.osaka-u.ac.jp/adjvdb/methodologies/adjv_space.htmlも参照)。この解析において、それぞれの器官についておよそ10,000の遺伝子プローブを合計40のクラスターに分ける(クラスターごとに数百遺伝子)と、TargetMineを使用してそれぞれのクラスターについての生物学的アノテーションを得るのに適切であることを見出した。ここから後では、遺伝子クラスターを後述のアジュバントクラスターと区別するために、それぞれの器官についてのこれら40のクラスターを「モジュール」と呼ぶ(図11)。これらのモジュールについてGene Ontology(GO)濃縮解析を行うことで、アジュバントの投与が、それぞれの器官において広範な生物学的プロセス、例えば、免疫関連プロセスおよびより基礎的な生物学的細胞プロセスを誘導することが明らかとなった(図11)。また、その遺伝子発現プロファイルを、ImmGendatabase(Heng, T.S. et al., Nature immunology 9, 1091-1094(2008))(https://www.immgen.org/)(方法に記載)から公衆的に利用可能な遺伝子発現プロファイルと比較することによってそれぞれのアジュバントに応答する細胞のタイプを同定した。この解析によって、LVおよびSPの応答は、好中球および間質細胞と顕著に関連付けられることが明らかになった(図12)。LNにおいては、好中球および間質細胞に加えて、その応答はマクロファージとも関連付けられた(図12)。興味深いことに、SPにおける3分の1の遺伝子がモジュール14~19にクラスタリングされ、これらは全てRNAプロセシングに関連しており(図11b)、B細胞に強固に関連付けられた(図13b)。他方、LVでは、T細胞との関連はほとんど観察されず、LVにはT細胞が比較的少ないという一般知識と一致する知見が得られた(図13a)。LNでは、非常に多くの種類の免疫細胞のタイプがそれぞれのモジュールに関連付けられた。Pam3CSK4、K3、K3SPGおよびFCAによってアップレギュレーションされた、LNのモジュール16における遺伝子(M16LN)はファゴソームに関連しており、対応してマクロファージ集団に関連付けられた(図13c)。同じ「免疫系プロセス」のアノテーションが3回現れ、モジュール(M)15LN、M27LNおよびM40LNは異なる細胞タイプに関連付けられた。M15LN(ALMおよびK3によって弱く誘導された)は、T細胞に関連付けられ、M27LN(これらのアジュバントによって最もよく誘導された)は、強く好中球に関連付けられ、M40LN(cdiGMP、cGAMP、DMXAA、PolyICおよびR848によって強く誘導された)は、樹状細胞、マクロファージ、好中球および間質細胞を含めより広範な免疫細胞に関連付けられた(図13c)。これらのデータは、アジュバント遺伝子空間の手法によって多層的な情報(それぞれのアジュバントの生物学的性質および異なる細胞タイプのアジュバントへの応答性を含む)を提供することができることを示す。
 アジュバントをアジュバント遺伝子空間内の6つのグループに分類する
 アジュバントを、その刺激特性(例えば、PAMPsまたはDAMPs)またはその物理化学的特性(例えば、溶質、粒子またはエマルジョン)にしたがってカテゴリー化した。これらの記述子では定性的な差異によって、バイアスなしでアジュバントをカテゴリー化することが困難になる。そのため、階層的クラスタリングを使用してアジュバントをカテゴリー化した。このクラスター解析によって、それぞれの器官についてのアジュバント遺伝子空間内で興味深く洞察にあふれたグループ化が示された。それぞれの器官は特徴的な遺伝子プロファイルを示すが(Fig1)、LV、SPおよびLN間でかなり一貫したアジュバントグループ化が観察された(図2(A~D)および図14)。クラスターツリーにおいて、同じアジュバントの3つの反復試料の大部分は緊密に結びついており(第1および第2の系統樹ノードを形成している)、これは、同じアジュバントが投与されたそれぞれのマウスが同様の遺伝子発現変化を示したことを示す(図14)。いくつかの興味深い例外は、LNにおけるD35_ID_x2およびK3_ID_x3であった(図14a)。より高レベルのクラスタリング閾値(カットオフ高さ=1.0)では、バッチ効果(Leek, J.T. et al., Nat Rev Genet 11, 733-739(2010))を除外して、4つの主要なグループがLVにおいて形成され(図14a)、SPにおいても同様であった(図14b)。LNでは、カットオフ高さ1.0で、10のグループが与えられ(図14c)、LNは、それぞれのアジュバントに対してLVまたはSPよりも強く、多様に反応することを示す(図14)。LNについてカットオフ高さ1.5では、バッチ効果を除外して合計5グループが得られた(図14c)。このカットオフの設定では、また、LVおよびSPにおいてより同等なグループ化がなされた(図14)。
 多くのクラスターは、器官の間で一貫していた。5種類のアジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)は、LV、SPおよびLNにおいて単一のクラスターとして固定され、これをグループ(G)1と呼んだ(図2(A~D)および図14)。同様にして、bCD、FK565およびMALP2sが、それぞれ、G2、G3およびG4についての参照として役立つことを見出した。なぜなら、これらは、別々のクラスターに一定して現れたからである(図2(A~D)および図14)。LNでは、2つのさらなるグループG5およびG6が観察された(図2(A~D)および図14c)。
 なお、同様の、トランスクリプトーム解析をラットに対して行ったところ、図2K~Nに示されるような結果が得られた。この結果は、マウスの結果である図2A~Dとほぼ同様のものであり、ラットにおいても同様に、アジュバントのグループ分けにトランスクリプトーム解析が有用であることが示されたといえる。
 (特徴的な生物学的応答に関連付けられるそれぞれのアジュバント)
 遺伝子レベルでそれぞれのアジュバントグループをさらに特徴付けるために、最初に、他のグループと比較して優先的にそれぞれのアジュバントグループ(G1~G6)においてアップレギュレーションされる遺伝子を、その発現倍数変化をzスコアに変換することによって同定した(表17(一部抜粋)および図15)。
Figure JPOXMLDOC01-appb-T000025

Figure JPOXMLDOC01-appb-T000026

Figure JPOXMLDOC01-appb-T000027
 アジュバント遺伝子空間の40のモジュールにおいて、LVおよびSPからのG1において高いzスコアをつけられた遺伝子はほとんど、それぞれ、モジュールM20LV(「生物的刺激への応答」とアノテーションされた)およびM23SP(「ウイルスに対する応答」とアノテーションされた)において見出された(図15および図16)。同様に、LNでは、G1の5種類の参照アジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)において優先的にアップレギュレーションされた遺伝子は、M40LNモジュール(「免疫系プロセス」とアノテーションされた)において見出された(図15および図16)。他のグループ(G2、G3、G4、G5およびG6)由来の関連遺伝子は、いくつかのモジュールに分布しており、G1関連モジュールとは明らかに異なっていた(図16)。TargetMine(表18)およびIngenuity Pathways AnalysisTM(IPA)上流サイトカイン(表19)解析によって、アジュバントグループに関連付けられる生物学的特徴の詳細を得た。
Figure JPOXMLDOC01-appb-T000028

Figure JPOXMLDOC01-appb-T000029

Figure JPOXMLDOC01-appb-T000030

Figure JPOXMLDOC01-appb-T000031

Figure JPOXMLDOC01-appb-T000032

Figure JPOXMLDOC01-appb-T000033

Figure JPOXMLDOC01-appb-T000034

Figure JPOXMLDOC01-appb-T000035

Figure JPOXMLDOC01-appb-T000036

Figure JPOXMLDOC01-appb-T000037

Figure JPOXMLDOC01-appb-T000038

Figure JPOXMLDOC01-appb-T000039

Figure JPOXMLDOC01-appb-T000040

Figure JPOXMLDOC01-appb-T000041

Figure JPOXMLDOC01-appb-T000042

Figure JPOXMLDOC01-appb-T000043

Figure JPOXMLDOC01-appb-T000044

Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046

Figure JPOXMLDOC01-appb-T000047

Figure JPOXMLDOC01-appb-T000048

Figure JPOXMLDOC01-appb-T000049

Figure JPOXMLDOC01-appb-T000050

Figure JPOXMLDOC01-appb-T000051

 
 予想されたように、G1アジュバントは、インターフェロン応答として特徴付けられた(図3aおよび図3b)。G2~G6アジュバントは、IL6およびTNFなどの炎症性サイトカインに関連付けられた(図3b)。G2アジュバントは、脂質代謝との関連は弱く(図3a)、IPA解析によってオンコスタチンMおよびIL10との関連が示唆された(図3b)。G3~G5アジュバントでは、アジュバントおよび器官の数が限られていたので(図3a)、これらのグループについて優先的な関連を引き出すことは困難であった。限られた条件で解析を実施したが、G3アジュバントはT細胞およびNK細胞サイトカイン、例えばIL2、IL4およびIL15に関連付けられ得ることが示唆された(図3b)。G4アジュバントは、他のアジュバントより広いプロファイルを有し、多くのサイトカインが含まれた。しかし、M32SPモジュールが優先的に関連付けられたことから、G4はTNF応答によって特徴づけられ得ることが示唆された(図16b)。G5アジュバントは、代謝プロセスとともにリン酸含有化合物に関連付けられ、これはヌクレオチド代謝プロセスを示唆し、この知見は、G5がCpG核酸アジュバントグループであることと一貫している(図3a)。G6アジュバント、例えば、MF59と等価な油エマルジョンであるAddaVaxは、ファゴソームと関連付けられ(図3a)、IPA上流サイトカイン解析によってIL1AおよびIL33がそれらについてのサイトカインであると示唆された(図3b)。
 (アジュバントグループ解析によってADX、bCDおよびENDCNの作用様式を予測する)
 RNA関連アジュバントまたはSTINGリガンドであるG1アジュバント(cdiGMP、cGAMP、DMXAA、PolyICおよびR848)は、I型およびII型インターフェロン応答と強く関連付けられ、G2~G6アジュバントとは明らかに異なる。G2~G6アジュバントは、炎症応答に関連付けられるようである。G2には、ALMおよびbCDが含まれ、これらは両方ともDAMPsを介して機能すると予測されている(Marichal,T. et al., Nat Med 17, 996-1002(2011)およびOnishi, M. et al., Journal ofimmunology 194, 2673-2682(2015))。興味深いことに、LVにおいて強く応答したD35サンプルおよびK3サンプル、すなわち、D35_ID_x2およびK3_ID_x3(これらはクラスタリングの例外として上述、図14aで赤字で説明)は、両方ともG2LVにクラスタリングされた。したがって、ある状況下では、D35およびK3は、DNAが傷害された細胞から放出されて宿主の免疫応答を誘導することを模倣することができる(Marichal,T. et al., Nat Med 17, 996-1002(2011)およびOnishi, M. et al., Journal ofimmunology 194, 2673-2682(2015))。G3およびG4は、主に、細菌の細胞壁に由来するPAMPsから誘導されるアジュバントからなる。G5は、CpGアジュバントからなる。D35、K3およびK3SPGなどのG5アジュバントは、インビトロでは良好なインターフェロン誘導因子として認識されているが、本解析において、CpGアジュバントは、インビボでは典型的なG1型のTLRおよびRLRリガンドとは生物学的に異なることが示唆された。G6はAddaVax、すなわちMF59等価物からなる。MF59の作用メカニズムは、よく調べられており、筋肉から放出されたATP(別のDAMPs)がアジュバント効果のメディエーターとして働くことが示唆されている(Vono,M.et al., Proceedings of the National Academy of Sciences of the United Statesof America 110, 21095-21100(2013))。G2およびG6は、LN由来の試料において関連するが別個のクラスターを形成したので(図14c)、アジュバントクラスタリングの結果は、この解釈を支持する可能性がある。
 まとめると、得られたデータは、試験したアジュバントが、その作用様式の共通の類似性によってグループ化されたことを強く示唆する。したがって、新しいアジュバントの作用様式を、そのグループ化を知ることによって予測することができる。この仮説を検証するために、2種類のアジュバントを選択し試験した。ENDCNは、新規の脂質を基礎とする経鼻アジュバントであり、現在インフルエンザワクチンの一部として臨床試験の第I相/第II相段階にある(Falkeborn,T. et al., PloS one 8, e70527(2013)およびMaltais, A.K. et al., Vaccine 32,3307-3315(2014))。ENDCNは、G2(LVおよびSPの両方において、bCDのグループ)にカテゴリー化された。bCDは、そのアジュバント機能が、DAMPsを介した宿主由来のdsDNAと関連付けられる可能性が高いことが以前に示されている(Onishi,M. et al., Journal of immunology 194, 2673-2682(2015))。ENDCNのG2へのカテゴリー化は、ENDCNがアジュバントとして機能するために宿主由来の因子を利用することを強く示唆する。この仮説はさらに検討され、ENDCNのインビボにおける詳細な免疫学的解析によって、宿主細胞が放出したRNAおよびTBK1がそのアジュバント機能に関与することが明らかにされた(Hayashi,M. et al., Scientific Reports, 6, Article number: 29165(2016))。このことは、ENDCNがG2アジュバントであることをさらにサポートする。別の例はADX(Honda-Okubo,Y. et al., Vaccine 30, 5373-5381(2012)およびSaade, F. et al., Vaccine 31,1999-2007(2013))であり、これは作用様式が未知であるイヌリンを基礎とする粒子状のアジュバントである。G2ではなくG3LV/G4SPにクラスタリングされたことで、ADXはDAMPsメディエーターではなく、特定されていないPAMPs受容体を介して作用することが示唆される(図2および図14)。より詳細なADXの解析が現在進められている(Hayashi et al. Scientific Reports 6, Article number: 29165(2016))。
 (アジュバント遺伝子空間解析は、同じ受容体を標的とするアジュバント間の差異を明らかにする)
 D35、K3およびK3SPGは全てTLR9に作用し、cdiGMP、cGAMPおよびDMXAAはSTINGを標的とする(Gao,P. et al., Cell 154, 748-762(2013))。対応して、これらのアジュバントは、本発明の方法によって同じアジュバントグループにクラスタリングされ、全てのTLR9リガンドはG5に、全てのSTINGリガンドはG1にクラスタリングされた(図2および図14)。D35およびK3は、重複する部分があるが、実質的に異なる生物学的応答を誘導することが公知である(Steinhagen,F. et al., Journal of Leukocyte Biology 92, 775-785(2012))。STINGリガンドでは、直接的な比較は現在のところ報告されていないが、cdiGMPはTh1応答を誘導するようであり(Madhun,A.S. et al., Vaccine 29, 4973-4982(2011))、他方、DMXAAはTh2応答を誘導する(Tang, C.K. etal., PloS one 8, e60038(2013))。3種類のSTINGリガンド(cdiGMP、cGAMPおよびDMXAA)は類似の化学構造を共有するが、それぞれ、細菌、宿主細胞および合成化学物質から誘導されている(Gao,P. et al., Cell 154, 748-762(2013))。LNにおけるCpG(図17)およびSTINGリガンド(図18)からのsDEGの単純なベン図による解析からは、これらのアジュバントがインターフェロン応答を誘導するという周知の事実が確認されただけで、それらの個々の差異を引き出すことは困難であった。しかし、アジュバント遺伝子空間において、zスコア(図15)および40モジュールのマッピング(図16)解析を使用すると、それらの間のより詳細な差異を同定することができた。本実験条件において、D35は、インビボでK3やK3SPGよりも比較的強力なインターフェロン誘導因子であった(図4a-cおよび表20)。
Figure JPOXMLDOC01-appb-T000052

 
 K3は、D35またはK3SPGと比較して優先的にRNA生合成を誘導し、これはM26LNに濃縮された(図4c)。同様の解析(図4d-fおよび表21)によって、cdiGMPは最も強力なインターフェロン誘導因子であることが明らかになり、cGAMPおよびDMXAAよりもM37LNおよびM40LNにおける遺伝子マッピングに優先的に関連付けられた(図4f)。
Figure JPOXMLDOC01-appb-T000053
 DMXAAは、cdiGMPやcGAMPよりも優先的にRNAプロセシングおよび遺伝子発現応答を誘導した(図4f)。解析によって、cdiGMPは、インビボで他のstingリガンドよりもインターフェロン応答をよく誘導することが示唆された。これは、cdiGMPが病原菌によって生産されるという事実と関連し得る(Woodward,J.J. et al., Science 328, 1703-1705(2010))。
 (全身性の遺伝子応答はアジュバント誘導性の血液学的変化に関連付けられる)
 多くのアジュバントは、種々の循環血細胞の数に影響を及ぼす。顆粒球増加は、21種類のアジュバントのうちのいずれを投与した後でも最も一般的な事象であり(図5a)、この知見は、好中球がアジュバント投与に最も応答する細胞であるという事実と一貫している(図12)。単球増加は次に一般的な事象であり、bCD、cdiGMP、cGAMP、MPLAおよびPam3CSK4によって明確に誘導された(図5a)。リンパ球減少はあまり一般的ではなかったが、FK565、MALP2s、PolyICおよびR848によって強く誘導され(図5a)、これらのアジュバントは、白血球減少もまた引き起こした(図5a)。興味深いことに、FK565は顆粒球増加(以前の研究で観察されたように(Tanaka,M. et al., Bioscience, Biotechnology, and Biochemistry57, 1602-1603(1993))およびリンパ球減少を同時に引き起こした(図5a)。次に、線形モデルを使用して器官におけるこれらの血液学的パラメータと遺伝子発現変化との間の相関を調べた(スキームは、http://sysimg.ifrec.osaka324u.ac.jp/adjvdb/methodologies/hema.htmlを参照)。この手法によって、それぞれの器官におけるそれぞれの血液細胞タイプについて種々の遺伝子を取り出した(図5bおよび表22)。相関する遺伝子の数に基づいて、LVは最も大きな血液学的変化を示した(図5b)。代表的な例として、LVにおけるCxcl9のアップレギュレーション(インターフェロンによって強く誘導され、インフルエンザワクチンの安全性マーカーとして報告されている(Mizukami,T. et al., Vaccine 26, 2270-2283(2008)およびMizukami, T. et al., PloS one 9,e101835(2014)))は白血球減少と明らかに相関した(図19a)。ダウンレギュレーションされた例として、SPにおけるIl7およびS1pr5が挙げられ、これらはリンパ球減少にも相関した(図5bおよび図19b,c)。対照的に、単球増加および顆粒球増加に関する遺伝子については、何ら相関が見出されず(図5bおよび表22)、複数の遺伝子がこれらのプロセスに係ることが示唆された。これらの結果から、血液中の顆粒球、単球およびリンパ球の数は異なるメカニズムによって制御されていることが示唆され、全身性の器官における遺伝子変化によって、アジュバント誘導性の白血球減少およびリンパ球減少が、おそらくインターフェロン、Il7およびS1P関連のメカニズムによって引き起こされたと考えられる。
Figure JPOXMLDOC01-appb-T000054

 
 (アジュバント遺伝子空間におけるAS04の特徴付け)
 最後に、別の試験アジュバントAS04(Didierlaurent, A.M. et al., Journal of immunology 183,6186-6197(2009))を調べることによってアジュバント遺伝子空間の柔軟性を試験した。AS04はアルミニウムヒドロキシドおよび3-O-デスアシル-4’-モノホスホリルリピドAからなり、これはCervarix(ヒトパピローマウイルス16/18に対するワクチン)において使用されている。AS04、バッファー対照およびalumのみの対照をマウスにi.d.投与し、その血液学的パラメータおよび器官遺伝子発現を調べた(Experiment 11参照)。
 実験11(Experiment 11)は、以下の通りである。
Figure JPOXMLDOC01-appb-T000055

 
 (血液学(図5aに関連する))
 いくつかの血液学的パラメータの変化について、アジュバント投与の影響を調べた。以下のパラメータを調べた:白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)、血小板分布幅(PDW)。図5に示されるような項目のデータを得た。
 Volcanoプロット(図7に関連する):フォーマットについて説明すると、x軸およびy軸は、それぞれLog(変化倍数)およびLog(p値)に対応する。
 3匹のマウス間のベン図(図8に関連する)::フォーマットについて説明すると、3匹のそれぞれのマウスにおいてアップレギュレートされた遺伝子プローブを決定し、3匹それぞれの個体をx1、x2、x3と示す。sDEGを使用した解析(FC>1.5またはFC<0.67、p<0.01、cPA=1)
a.sDEGの数は以下のとおりである。
Figure JPOXMLDOC01-appb-T000056

b.sDEGの遺伝子群
遺伝子の差示的発現をlog2(倍数変化)で示す。0でない値を付けた遺伝子の数が上の表中の数に対応する。
 c.sDEGによって得られた生物学的プロセスのリスト
機能的解析を、-log(p値)でスコアリングして行った。そのため、高スコアの機能は、低スコアの機能より有意であると表示される。
 血液学的評価によって、AS04は血液中の単球および顆粒球のレベルを増大させることが示されたが、これはMPLAの血液学的プロファイルと同様である(図5a)。クラスター解析の結果、AS04からのそれぞれの試料は、bCD、ALM_IPおよびENDCNを含むグループであるG2LVにおけるFCA試料と密接に結びつけられた(図20a)。SPでは、AS04は、G2(ここでも、bCD、ALM_IPおよびENDCNを含んだ)の近傍に新しいクラスターを形成した(図20b)。AS04は、G1LN(CpGオリゴデオキシヌクレオチドからは外れてPAMPsリガンドの大部分を表すグループ)にカテゴリー化された。これらのデータから、AS04誘導性の局所応答はG1LNにカテゴリーされる多くのPAMPsリガンドと類似であることが示唆されるが、bCD、ALM_IPおよびENDCNを含むG2アジュバントと類似の比較的穏やかな全身性の応答が観察された(図20)。このことは、AS04がアルミニウムヒドロキシドと3-O-デスアシル-4’-モノホスホリルリピドAとの組み合わせアジュバントであるという事実と一貫している。AS04を含めたアジュバントのグループ化は図21にまとめられている。まとめると、これらの結果から、アジュバント遺伝子空間は、多くの異なるアジュバントについて、柔軟であるが、信頼でき洞察に富むプロファイルを提供することが示唆される。
 (考察)
 以上の結果をいかに考察する。本実施例ではマウスに投与した21種類の異なるアジュバントの網羅的な器官トランスクリプトーム解析について調べた。得られた結果から、アジュバント誘導性の遺伝子応答は、アジュバントのタイプ、投与経路および試験した器官を含め多くの要因の影響を受けることが示された。驚くべきことに、LVおよびSPのような、注射部位から離れた全身性の器官と考えられる器官もまた、所与のアジュバントの一般作用様式を特徴付けるのに有用な器官であった。LVおよびSPから収集したデータは、局所LNから得られた情報を増補するまたは補うものであった。現在、多くの臨床的なワクチンが、筋肉内または皮下投与されている。さらに、経鼻経路による粘膜投与も実践されている。非経口投与経路では、直接的に流入するリンパ様組織をサンプリングすることは困難な場合があり、このことはENDCN(Falkeborn,T. et al., PloS one 8, e70527(2013)およびMaltais, A.K. et al., Vaccine 32,3307-3315(2014))で示された。それにもかかわらず、LVおよびSPのトランスクリプトームによって、ENDCNは潜在的なDAMPs放出アジュバントであることが明らかされた。ENDCNは、その作用様式に関してbCD25(Onishi,M. et al., Journal of immunology 194, 2673-2682(2015))といくらか類似している。さらに、離れた器官におけるトランスクリプトーム試験によって、インビボの「アジュバント効果」の生体内分布が提供された(図21)。器官トランスクリプトームからは、アジュバント自体が器官に到達したのかどうかは分からないが、器官がアジュバントの投与に反応したことは確認される。結論としては、結果から、局所投与した多くのアジュバントが、注射部位から離れた全身性の器官における遺伝子発現変化を引き起こす可能性があることが示された。しかし、アジュバント投与後の離れた器官の遺伝子発現は必ずしも器官毒性を示すのではなく、マウスに使用した用量は、概して体重あたりの用量に基づくとヒトへの適用には過剰な用量であった。そのため、得られた結果をヒトに直接外挿するにはまた制限があり、これらの点については今後さらなる検討を要する。
 本手法の別の重要な知見は、バッチ効果に関する。アレイまたは次世代シークエンサーを使用した多くの網羅的遺伝子解析法は、バッチ効果によって妨害され得ることが報告されている(Leek, J.T. et al., Nat Rev Genet 11, 733-739(2010))。得られたデータにもバッチ効果が観察されたが、本手法の場合には、これは有益かつ有用な内部基準となった。バッチ効果によって、器官が、アジュバント投与に実質的に応答したか、それとも応答しなかったかが区別された。必要十分量のマイクロアレイデータが取得された場合には、バッチ効果によって、遺伝子発現のゆらぎなどの「背景ノイズ」を単純に低減することができる。しかし、本研究の330のマイクロアレイデータでも、依然としてバッチ効果シグネチャなしで背景ノイズレベルを決定するには十分でなかった。この意味で、1つの実験で3種類の異なるアジュバントを試験する本手法は、バッチ効果(遺伝子発現がアジュバント特異的であるかどうかを決定するための高感度な内部基準として機能した)をモニタリングするための単純で有効な方法である。試験したすべてのアジュバントの中で、ALMは、局所投与される場合には、最も弱く遺伝子応答を誘導するアジュバントの1つである。同様に、MPLA、D35、K3、K3SPGおよびAddaVaxは局所的なLNには作用したが、離れた全身性の器官には作用せず、その局所作用傾向が示唆される(図21)。他のアジュバントは、LVおよびSPにおいて検出可能なレベルの遺伝子応答を誘導した(図21)が、上述のように、これは、器官毒性を直接意味するのではなく、その解釈にはさらなる研究が必要である。
 アジュバント遺伝子空間を構築するために、厳しいデータ品質チェック(QC)プロトコルに従った(標準手順3)。この厳しいプロトコルによって、いくらかのデータは破棄され、QCを満たさない試料を置き換えるデータとして仮想対照を作製することが要求される。しかし、同時に、この厳しいデータ処理の方針によって、明確なバッチ効果を観察することができ、より重要なことに「自己組織化」アジュバントクラスター(タグ付けも主観的な指示も行っていない宿主応答に基づくクラスターおよびバッチ効果からなる)を観察することができた。さらに、データ解析に試験アジュバントとしてAS04を追加しても、アジュバントクラスター全体の構造は変化しなかったので、他のアジュバントとの相対比較が可能であり、本発明者らのデータベースが、新たな追加アジュバントを特徴付ける際に動的柔軟性を有することが確認された。
 まとめると、結果的に、本手法は、前臨床アジュバントおよび臨床アジュバントを、網羅的かつ客観的な様式で評価するための有用なプラットフォームを提供することができる。将来、本手法の柔軟性によって、新たなアジュバント、さらなる投与のバリエーションについてデータセットを蓄積するだけで、または抗原のデータを含めることによってさらなる改良が可能になる。本研究において、21種類のアジュバントを、抗原を用いずに6時間後の時点だけで調べた。他の時点および抗原を使用する今後の研究、ならびに一般に利用可能なワクチンアジュバントに関連した免疫学的シグネチャ(Knudsen,N.P. et al., Scientific reports 6, 19570(2016))をインシリコで組み込むことが、アジュバント化ワクチンのメカニズムをより詳細に理解するために必要である。並行して、本発明者らは、アジュバントの毒性学的特性を評価するためにラットにおいて類似のマイクロアレイデータを取得した(実施例4参照)。ラットのトランスクリプトームデータは、公開のTG-GATE(Igarashi,Y. et al., Nucleic acids research 43, D921-927(2015))(これは同様にラットに関するものである)の遺伝毒性学的データセットに直接組み込むことができる。さらに、本発明者らは、ヒト臨床試料からのマイクロRNA発現プロファイルを取集した(実施例4参照)。上述の全てのデータセットを統合したところ、これらのデータベースによって、異なる実験条件下における異なる種のアジュバント誘導性遺伝子発現シグネチャについてのより統合的で網羅的な解析を実施することができることが証明された。
 (実施例2)
 本実施例では、アジュバント機能が不明の物質を本発明の方法を用いて、分類する方法を実施する。
 物質としては、適宜の候補物質を提供する。
 アジュバントの投与、遺伝子マーカーの発現分析、クラスタリング等のデータ解析等は、実施例1に準じて実施する。
 候補物質と基準アジュバント(G1)dciGMP、cGAMP、DMXAA、PolyIC及びR848;(G2)bCD;(G3)FK565;(G4)MALP2s;(G5)D35,K3およびK3SPG;および(G6)AddaVax)とをクラスタリングする。
 (結果)
 マウス脾臓、肝臓等へ投与した際の、候補物質のトランスクリプトームとG1~G6の基準アジュバントのトランスクリプトームとを比較し、同じクラスターに分類されたものは、それぞれG1~G6に分類される。
 (実施例3:アジュバントのアジュバント)
 (材料および方法)
 (マウス)
6週齢の雌性C57BL/6JマウスをCLEA Japanから購入した。Tlr7-/- または Il-1r-/-マウスは、それぞれOriental BioServiceおよびJackson Laboratoryから購入した。Card9-/-(Hara et al., 2007, Nature immunology 8, 619-629.)、Fcrg-/-(Arase et al., 1997, J Exp Med 186, 1957-1963.)またはDap12-/-(Takai et al., 1994, Cell 76, 519-529.)。マウスは、それぞれDr.Hara、Dr.SaitoまたはDr.Takaiから譲り受けた。Tnfa-/-マウスは以前に記載されている(Marichal et al., 2011, Nature medicine 17, 996-1002.)。全ての動物実験は、Institutional Animal Care and Use Committeeに承認され、国立研究開発法人医薬基盤・健康・栄養研究所の動物施設の施設ガイドラインに則って実施した。
 (抗原、抗体、アジュバントおよびペプチド)
オボアルブミンは生化学工業から購入した。A/New Caledonia/20/99株由来のSVおよび不活化WVは、微生物化学研究所(Institute of Microbial Chemistry)(Osaka, Japan)から寄贈された。CpG-ODN(5’-ATCGACTCTCGAGCGTTCTC-3’=配列番号1)はGene Design(Osaka, Japan)による合成品であった。CpG-SPGは以前に報告された通りに調製した(Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.)。アラムはSigmaから購入し、Advax(商標)、B型肝炎表面抗原(HB)はVaxine Pty Ltdから提供された。LPSはSigmaから購入した。核タンパク質のMHCクラスI(ASNENMETM=配列番号2)およびMHCクラスII(ARSALILRGSVAHKSCLPACVYGP=配列番号3)のエピトープペプチドはOperon Biotechnologiesによる合成品であった。Cytokine ELISA kits for IFN-γ, IL-13, IL-17, TNF-α and IL-1βは、R&D Systemsから購入した。
 (免疫化)
 C57BL/6Jマウスを、2週間の間隔をおいて(0日目および14日目)、筋内(i.m.)またはi.d.のいずれかで2回免疫化した。抗原特異的ELISAのために、血液試料を14日目および28日目に採取した。ワクチン化および採血の間、マウスをケタミンで麻酔した。アラムアジュバント化抗原は、免疫化前に1時間より長く回転させた。Advax(商標)、アラムまたはCpG-SPGを、それぞれ、マウスごとに1mg、マウスごとに0.67mgまたはマウスごとに10μg使用して免疫化を行った。
 (抗体力価)
ELISAのために、炭酸緩衝液(pH9.6)中、SVワクチン化群およびWVワクチン化群については1μg/mlのSVを用いて、OVAワクチン化群については10μg/mlのOVAを用いて、およびHBワクチン化群については1μg/mlのHBを用いて、96ウェルプレートをコーティングした。1%ウシ血清アルブミンを含むPBSでウェルをブロッキングして、免疫化マウス由来の希釈血清を、抗原をコーティングしたプレート上でインキュベートした。洗浄した後、セイヨウワサビペルオキシダーゼとコンジュゲート化したヤギ抗マウス全IgG、IgG1またはIgG2c(Southern Biotech)を添加し、室温で1時間インキュベートした。さらに洗浄した後、プレートを30分間TMB基質とともにインキュベートし、反応を1N H2SO4で停止させ、その後、吸収を測定した。抗体力価を計算した。0.2のODを陽性試料のカットオフとして設定した。血清中の全IgEの濃度を全IgE ELISAキット(Bethyl)で測定した。
 (抗原特異的サイトカイン応答の測定)
二回目の免疫化の2週間後、マウスから脾臓を採取し、1×106個の脾細胞を96ウェルプレートに播種し、核タンパク質のMHCクラスIまたはIIエピトープペプチドで刺激した。刺激の二日後に、上清中のIFN-γ、IL-13およびIL-17をELISAで測定した。
 (サイトカイン産生プロファイル)
 アジュバントのi.p.注射後のいくつかの時点において、マウスを屠殺し、腹腔洗浄液を収集した。洗浄液中のサイトカインをBio-plex(BioRad)で測定した。
 (DCの活性化)
インビトロの実験に関して、10%ウシ胎児血清(FBS)、1%ペニシリン/ストレプトマイシン溶液(NaclaiTesque)および100ng/mlのヒトfms様チロシンキナーゼ3リガンド(Flt3L)(PeproTech)を補充したRPMI 1640中で骨髄細胞を7日間培養することによって骨髄由来DCを作製し、1mg/ml アラム、1mg/ml Advax(商標)または50ng/ml LPS(Sigma)で15時間刺激し、その後、形質細胞様DC(pDC)上のCD40発現をFACSによって評価した。pDCはCD11c+/SiglecH+細胞と定義した。
 インビボ実験は以前に記載された通りに実施した(Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.)。簡潔に述べると、C57BL/6Jマウスの尾基底に0.67mgアラム、1mg Advax(商標)または50ng LPSを注射した。注射の24時間後に、流入領域リンパ節を摘出し、DNaseIおよびコラゲナーゼで30分間処理し、その後、抗mCD11c(N418)抗体、抗mCD8α(56-6.7)抗体、抗mPDCA-1(JF05-1C2.4.1)抗体、抗mCD40(3/23)抗体および7AADで染色し、FACSで分析した。pDCはCD11c+/mPDCA-1+細胞と定義し、CD8α+DCはCD11c+/CD8α+細胞と定義し、CD8α-DCはCD11c+/CD8α-/mPDCA-1-細胞と定義した。
 (マクロファージおよびGM-DCのインビトロ刺激)
 マクロファージの調製のために、マウスに3mlの4%(w/v)チオグリコレート(Sigma)溶液をi.p.注射した。4日後、マクロファージを腹腔から収集し、96ウェルプレートに播種した。マクロファージを50ng/ml LPSで18時間プライミングし、アジュバントで8時間刺激した。上清中のIL-1βをELISAで測定した。LPSによるプライミングを行わずに、Advax(商標)またはアラムで刺激した後に上清中のTNF-αをELISAで測定した。GM-DCの調製のために、マウス骨髄細胞を、10% FBS、1% ペニシリン/ストレプトマイシン溶液および20ng/mlマウスGM-CSF(PeproTech)を補充したRPMI 1640中で7日間培養した。
GM-DCを収集し、96ウェルプレートに播種し、50ng/ml LPSで18時間プライミングし、アジュバントで8時間刺激した。上清中のIL-1βをELISAで測定した。
 (2光子励起顕微鏡分析)
 ビオチン化デルタイヌリン粒子(1mg)をBrilliant Violet 421ストレプトアビジン(BioLegend)と事前に混合し、その後マウスの尾基底にi.d.投与した。鼠径部LN摘出の30分前に、抗MARCO-フィコエリトリンまたは抗CD169-FITC抗体をマウスにi.d.投与した。鼠径部リンパ節中のAdvax(商標)粒子の分布を2光子励起顕微鏡(FV1000MPE; Olympus, Tokyo, Japan)で調べた。
 (クロドロン酸リポソーム注射)
 クロドロン酸リポソーム(FormMax)を、免疫化の7日前または2日前にマウスの尾基底に投与した。0日目および14日目に、マウスの尾基底にWV(1.5μg)+アジュバントを投与してマウスを免疫化した。-2日目におけるクロドロン酸処置によって、0日目においてマクロファージおよびDCは両方とも枯渇した。-7日目における処置によって、マクロファージは枯渇したが、DCは0日目にすでに回復していた。血液試料を14日目および28日目に採取し、血清抗体力価をELISAで測定した。
 (マイクロアレイ分析)
 アジュバント投与の6時間後に、脾臓、肺、腎臓および肝臓を摘出し(n=3)、全RNAを以前に記載された通りに抽出した(Onishi et al., 2015, Journal of immunology 194,2673-2682.)。全RNAを調製した後、遺伝子発現プロファイルを、3' IVT Express KitおよびGene Chip Mouse Genome 430 2.0 Array(Affymetrix)を使用して取得した。発現の値は、それぞれの遺伝子チップの中央値で基準化した。得られたデジタルイメージファイルは、Affymetrix Microarray Suite version 5.0アルゴリズム(MAS5.0)を使用して事前処理した。差示的発現を、処置試料および対照試料の平均間の比率として計算した。MAS 5.0における存在または非存在(PA)コールを、以下のようにさらにカスタマイズした。比率が>1である場合には、PAコールは処置試料に依存する。比率が<1または=1である場合には、コールは対照ベヒクル試料に依存する。優勢なコール(半分を上回る)を試料セットに適用した(例えば、比率が<1かつ対照試料のPAコールが「P」、「P」および「A」である場合、このセットのカスタマイズPAコールは「1」である)。MAS5.0およびPAコール解析は、RのためのBioconductor Affyパッケージ(http://www.bioconductor.org)を使用して実行した。差示的に発現した遺伝子の有意性についてのP値は、正規化した処置試料と正規化したベヒクル試料との間でt検定を使用することによって計算した。その後の解析については、対照と刺激試料との間の倍数変化が>2であったプローブのみを用いた。フラグのなかった、すなわち、PAコールが「0」であったプローブは除外した。
 (細胞集団分析)
 細胞集団分析を以下のように行った。ImmGen database(http://www.immgen.org/)から直接、定常状態条件の種々の免疫細胞型の遺伝子発現プロファイルを取得した。これらの発現プロファイルを使用して遺伝子がどの細胞型を起源とするのかを推定した。まず、以下のように、10種類の免疫細胞型(j)におけるそれぞれの遺伝子(i)を重み付けした:
Figure JPOXMLDOC01-appb-M000057

所与の遺伝子の細胞タイプの重みは、その特定の細胞タイプにおけるその遺伝子の発現レベルのみに依存し、他の細胞タイプにおける発現レベルには依存しないと仮定した。それぞれのアジュバント試料の発現プロファイルについて、倍数変化(FC>2)およびPAコール閾値(PA=1)に基づいて遺伝子を決定した。最後に、細胞型(j)の試料(k)についての細胞型の寄与を以下のように算出した:
Figure JPOXMLDOC01-appb-M000058

ここで、cは偽遺伝子を表す。図6bにおいて、このスコアはribbonの幅で表される。
 (IPAにおける上流レギュレーター解析)
 IPAレギュレーター効果特性を使用して上流解析を行った。主な目的は、上流の制御機構およびその下流機能への影響との関係性を解明することであった。この解析のために、倍数変化>2かつPAコール=1の遺伝子を選択した。最終的に報告したネットワークは、P値<0.001であった。
 (統計解析)
 群間の統計的有意(P<0.05)は、Dunnettの多重比較検定またはStudentのt検定によって決定した。
 (結果)
 (Advax(商標)アジュバントは、Th2型の抗原と組み合わせた場合にTh2応答を増強する)
 Advax(商標)のアジュバント効果を理解するため、初めに、Advax(商標)を添加したインフルエンザスプリットワクチン(SV)によって免疫化したマウスにおける免疫応答を試験した。インフルエンザスプリットワクチンは、Th2免疫応答を惹起することが以前に示されている(Kistner et al., 2010, PloS one 5, e9349.)。SVによる免疫化単独で、IgG1産生が惹起され(Th2型IgGサブクラス)、より高い免疫化用量では、IL-13(Th2型サイトカイン)産生が誘導された。このことはSVがTh2誘導性抗原であることと一致する(図22A-22C)。Advax(商標)をSVに添加すると、IgG1抗体産生が増強されるが、IgG2c抗体産生は増強されず、これは、より低い抗原用量(0.015および0.15)において顕著である(図22A-22C)。典型的なTh2型アジュバントであるアラム(Alum)は、ヒトのワクチン接種において一般に使用されるが、これもまた、IgG1優勢な抗体応答を増強する。Advax(商標)は、アラムと同様に、SV抗原に対するTh2応答を誘導した。また、アラムは、ワクチンアレルギーのリスクを潜在的に増大させるIgE産生を誘導することが公知である(Nordvall, 1982, Allergy 37, 259-264.)。そのため、Advax(商標)またはアラムのいずれかを用いてSV免疫化した後に血清中のIgEレベルを測定した。アラムによって、IgE産生は有意に用量依存的に増加したが、Advax(商標)では、IgE産生は誘導されなかった(図22D)。このことは、Advax(商標)がSV単独によって誘導される抗体サブタイプ応答を増幅するだけであるという観察と一致している。
 インフルエンザウイルス核タンパク質由来のMHCクラスI(CD8 T細胞)またはMHCクラスII(CD4 T細胞)ペプチドで免疫化したマウスから取得した脾細胞を刺激することによってT細胞応答を試験した。CD4 T細胞のIL-13産生は、SV+Advax(商標)で免疫化したマウスと対照との間で有意な差はなかったが、Advax(商標)は、SVによるIgG1サブクラス抗体の産生能を増強した。その後、アラムは、IL-13産生の有意な増大を示した(図22E-22G)。これらの結果は、Advax(商標)は、SVと組み合わせるとTh2型アジュバントとして機能するが、Advax(商標)は、アラムと比べてIL-13およびIgEの産生を増大させないことを示す。
 (Advax(商標)アジュバントは、Th1型の抗原と組み合わせた場合にTh1 応答を増強する)
 次に、Advax(商標)またはアラムのいずれかを添加した不活化全ビリオンインフルエンザワクチン(WV)によって免疫化したマウスにおける免疫応答を調べた。このWVには、ウイルスRNAが含まれ、これによって、TLR7活性化が誘導され、そうすることでウイルスRNAはTh1応答を誘導する内因性のアジュバントとして働く(Koyama et al., 2010, Science translational medicine 2, 25ra24.)。Advax(商標)アジュバントは、IgG2c(Th1型のサブクラス)産生を増強しただけで、IgG1産生に対する影響は最小限であったが、アラム(alum)は、WV誘導性のIgG2c応答を抑制し、IgG1レベルを有意に増大させた(図23A-23D)。サイトカインレベルにおいて、Advax(商標)は、WV単独で免疫化したマウスと比較してCD4およびCD8 T細胞によるIFN-γ(Th1型のサイトカイン)産生を増強した。対照的に、アラムは、IFN-γ産生を抑制したが、CD4 T細胞によるIL-13産生を有意に増大させた(図23E-23G)。これらの結果は、Advax(商標)はWVと組み合わせるとTh1型アジュバントとして機能するが、アラムはSVおよびWVのどちらと組み合わせてもTh2型アジュバントとして機能することを示す。
 (Advax(商標)のアジュバント効果はワクチン抗原中の内因性アジュバントによって形成される)
 上記の知見から、Advax(商標)をTh2型抗原と組み合わせると、Th2免疫が増強されるが、Th1型抗原と組み合わせるとTh1免疫が増強されることが理解される。これをうけて、Advax(商標)のアジュバント効果は、それぞれの抗原に含まれる内在する固有のアジュバント特性を強化するように作用することで媒介されるという仮説を立てた。対照的に、他のアジュバントは固定の免疫バイアス効果を有し、それによって例えば、アラム(alum)は常にTh2応答のバイアスを示すが、CpG-ODNは常にTh1応答のバイアスを示し、これは共投与する抗原の本来の特性によらない。この仮説を検証するために、オボアルブミン(OVA)抗原(中立(ニュートラル)なTh0型の抗原と考えられている)に対するAdvax(商標)のアジュバント効果を試験した。Advax(商標)ではOVA特異的抗体応答の増強は起こらなかったが、予測通り、アラム(alum)ではIgG1産生の増強のみが起こった(図24A)。
 WVの元々備わった内因性のアジュバント効果はTlr7欠損マウスにおいて失われることを以前に示し、WVの免疫原性におけるTLR7シグナル伝達の重要性を確立した(Koyama et al., 2010, Science translational medicine 2, 25ra24.)。最後に、Tlr7欠損マウスにおけるWVに対するAdvax(商標)のアジュバント効果を試験した。特筆すべきことに、野生型マウスにおいてAdvax(商標)で見られたWV抗体応答の増強は、Tlr7欠損マウスにおいて見られなかったが、アラムによって誘導されたIgG1応答の増強はTlr7欠損マウスにおいても保存された(図24B)。まとめると、これらの知見から、Advax(商標)が、新規の追加的なアジュバントのクラスに属し、固有の免疫極性化特性を変化させることなくワクチン抗原内に含まれる内因性の元々備わったアジュバントを増幅させるように機能することが示唆される。
 (Advaxアジュバントは、樹状細胞をインビボで活性化するが、インビトロでは活性化しない)
 樹状細胞(DC)は、アジュバント誘導性免疫応答において中心的な役割を果たすので、Advax(商標)がDCをインビトロおよびインビボで活性化できるかどうかを調べた。マウス骨髄由来DCを、Advax(商標)、アラム(alum)またはリポ多糖(LPS)によって15時間インビトロで刺激し、CD40(DCの活性化マーカー)の発現を、フローサイトメトリーによって評価した。LPSは、予想通りインビトロでDC上のCD40発現を増大させたが、Advax(商標)およびアラムはいずれもDC上のCD40発現に影響を及ぼさなかった(図25A-25C)。次に、アジュバント投与後に流入領域リンパ節から取得したDC上のCD40発現を測定することによって、Advax(商標)またはアラムがインビボでDC上のCD40発現を活性化することができるかどうかを調べた。インビトロの知見とは対照的に、Advax(商標)およびアラムは両方とも、インビボ投与時には、流入リンパ節における活性化DCの頻度を増大させた(図25D-12F)。アラムは、注射部位において死細胞からの細胞外DNA放出を誘導するので(Marichal et al., 2011, Nature medicine 17, 996-1002.)、DAMP受容体への結合を介したこの細胞外DNAによって、アラムがなぜインビボではDCの活性化を誘導したのに、インビトロでは誘導しなかったのかが説明され得る。Advax(商標)も同様に、注射部位で細胞死を誘導して、DAMP受容体を介して間接的にDCを活性化するのかどうかを調べた。この可能性を検証するため、Advax(商標)またはアラムの注射部位における細胞傷害性および宿主DNA/RNA放出をインビボで評価した。Advax(商標)またはアラムを腹腔内(i.p.)投与した後、腹腔洗浄液を採取し、洗浄液中の死細胞の数およびDNA/RNA濃度を測定した。アラムは、予想通りに細胞死および核酸放出を誘導したが、Advax(商標)の注射は、細胞死も核酸放出も誘導しなかった。これは、DAMPシグナル伝達経路は、DC活性化およびCD40発現をインビボで誘導するAdvax(商標)の作用に関与しないことを示す。
 (貪食マクロファージはAdvax(商標)のアジュバント効果を媒介する細胞である)
 免疫複合体および不活化インフルエンザウイルスは、流入領域リンパ節(DLN)においてCD169+ (Siglec-1またはMOMA-1とも呼ばれる)マクロファージに捕捉されて、体液性免疫応答を誘導し(Gonzalez et al., 2010, Nature immunology 11, 427-434.; Suzuki et al., 2009, J Exp Med 206, 1485-1493.)、ある種の粒子状アジュバントは、MARCO+ マクロファージに効率よく取り込まれる(Aoshi et al., 2009, European journal of immunology 39, 417-425.; Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.)。そのため、DLNにおけるAdvax(商標)の挙動を、蛍光標識Advax(商標)粒子を使用してインビボで解析した。皮内(i.d.)投与1時間後に、弱いAdvax(商標)シグナルが、DLNにおいてMARCO+マクロファージと共局在しており、この共局在シグナルは、24時間後においてさらに大きかった。Advax(商標)とCD169+マクロファージとの共局在はDLNにおいてほとんど観察されなかった(図26A-26F)。このことは、i.d.投与したAdvax(商標)が、MARCO+マクロファージに取り込まれたことを示唆する。次に、アジュバント効果のためにAdvax(商標)がマクロファージに取り込まれることが必要かどうかを調べるために、クロドロン酸リポソーム注射後のマクロファージおよびDCの回復動態の差を利用した。クロドロン酸リポソームは、マクロファージおよびDCを両方とも2日目までに完全に枯渇させるが、その後、マクロファージは少なくとも7日間回復しないのに対して、DCの大部分はこの期間で回復する(Aoshi et al., 2008, Immunity 29, 476-486.; Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.)。興味深いことに、Advax(商標)のアジュバント効果は、試験した時点(2日目または7日目)によらず、クロドロン酸リポソーム処置によって有意に減少した(図26Gおよび26H)。これは、Advax(商標)のアジュバント機能がマクロファージの存在に依存することを示唆している。対照的に、CpG-SPGのアジュバント機能は、クロドロン酸処置後2日目には有意に減少したが、7日目には減少しなかった。これは、以前に報告されるように、CpG-SPGのアジュバント機能の大部分はDCに依存しており、マクロファージに依存しないことを示唆している(Kobiyama et al., 2014, Proceedings of the National Academy of Sciences of the United States of America 111, 3086.)。
 (Advax(商標)はIL-1β-、C型レクチン受容体およびTNF-α関連のシグナル伝達経路の遺伝子発現を変化させる)
 Advax(商標)の生物学的特性を理解するために、サイトカイン産生に対するその効果を調べた。Advax(商標)またはアラムをi.p.投与した後のいくつかの時点で、腹腔洗浄液を採取し、洗浄液中のサイトカインを分析した。アラムは、インターロイキン(IL)-5、IL-10、IL-12、腫瘍壊死因子(TNF)-αおよび顆粒球コロニー刺激因子(G-CSF)を含め様々なサイトカインの産生を誘導したが、Advax(商標)投与ではIL-10、G-CSFやマクロファージ炎症性タンパク質(MIP)-1などの限られたサイトカイン応答が観察された。
 Advax(商標)のインビボにおける主要な生物学的効果をさらに調べるために、Advax(商標)の局所(i.d.)投与または全身性(i.p.)投与後の各組織における遺伝子発現プロファイルを試験した。Advax(商標)のi.d.投与では、遺伝子発現の変化は限定的であったが、i.p.投与では、いくつかの組織において遺伝子発現が変化した(図27A)。i.p.投与では、急性期応答、炎症、ケモカイン、補体/血小板、およびC型レクチン受容体(CLR)関連の応答に関連する遺伝子が差示的に制御された。さらに、応答細胞集団を解析したところ、Advax(商標)が好中球およびマクロファージの応答をインビボで誘導したことが明らかになった(図27B)。さらに、Ingenuity経路解析(IPA)における上流レギュレーター解析を行うと、4つの上流レギュレーター:NF-κB(複合体)、IL-1β、IFN-γおよびTNF-αがAdvax(商標)のi.p.投与による影響を受けることが示唆された。これは、貪食細胞接着、好中球の化学走性ならびに造血幹細胞およびナチュラルキラー細胞の移動を増強する遺伝子の発現を駆動する(図27C)。
 Advax(商標)のアジュバント機能にこれらの生物学的因子がどのように寄与しているのかを調べるために、まず、Advax(商標)がIL-1β産生を誘導することができるかどうかを試験した。腹腔マクロファージまたは顆粒球-マクロファージコロニー刺激因子(GM-CSF)で誘導された骨髄由来DC(GM-DC)を、LPSによるプライミングの後Advax(商標)またはアラムで刺激し、その後、IL-1β産生を試験した。しかし、インビトロにおいてAdvax(商標)で刺激したこれらの細胞においてIL-1β産生は検出されなかった。他方、アラムはIL-1β産生を有意に誘導した。ある種の粒子状アジュバントはアジュバント機能を発揮するためにNLRP3インフラマソームの活性化およびその後のIL-1β産生を必要とするので(Eisenbarth et al., 2008, Nature 453, 1122-1126.; Kuroda et al., 2013, Int Rev Immunol 32, 209-220.)、NLPR3インフラマソームの構成要素である、Nlrp3、Caspase1またはIL-1rの非存在条件がAdvax(商標)のアジュバント機能に及ぼす影響をインビボで試験した。これらのNLPR3インフラマソームが欠損したそれぞれのマウスにおいてAdvax(商標)は、有意なアジュバント効果を示した。これは、Advax(商標)のアジュバント効果が、NLPR3インフラマソーム/IL-1βシグナル伝達経路に依存しないことを示唆する。次に、Advax(商標)のアジュバント機能におけるCLR関連シグナル伝達経路の関与を調べるために、CLRシグナル伝達経路関連遺伝子(Fcrg-/-、Card9-/-またはDap12-/-)を欠失したマウスにおいてそのアジュバント効果を試験した。これらの遺伝子が存在しなくても、Advax(商標)が抗体応答を増強する能力に影響はなかった。これは、Advax(商標)のアジュバント効果が、これらのCLR関連シグナル伝達経路に依存しないことを示唆する。
 (TNF-αはAdvax(商標)のアジュバント効果に必須である)
 また、遺伝子発現解析によって、i.p.投与したAdvax(商標)がTNF-α関連シグナル伝達経路に影響を及ぼすことが示唆された(図27C)。そのため、Advax(商標)がTNF-α産生を誘導できるかどうかを調べた。マクロファージをインビトロでAdvax(商標)で刺激し、培養上清中のTNF-αを測定した。Advax(商標)はTNF-α産生を誘導しなかったが、アラムによる刺激は、インビトロで有意にマクロファージのTNF-α産生を誘導した(図28A)。しかし、i.p.注射したAdvax(商標)は、血清中のTNF-αレベルの有意な増大を引き起こした(図28B)。他方、逆説的に、i.p.投与したアラムは血清中のTNF-αレベルに影響を及ぼさなかった。i.p.注射したAdvax(商標)は、肺や脾臓などの遠隔の組織においてTNF-α-シグナル伝達経路関連遺伝子を含む遺伝子発現に影響を及ぼしたため(図27Aおよび27B)、血清中のTNF-αはこれらの組織に由来するものと考えられる。最後に、Advax(商標)のアジュバント効果におけるTNF-αの役割を調べるため、Tnfa-/-マウスを、Advax(商標)アジュバント化したWVまたはB型肝炎表面抗原で免疫化し、得られる抗体応答を試験した(それぞれ図28C-28E)。Tnfaの欠失はAdvax(商標)の抗体応答に対するアジュバント効果を有意に低減させた。これは、完全なTNF-αシグナル伝達が、抗体応答に対するAdvax(商標)のアジュバント効果に重要であることを示唆している。
 (実施例4:安全性および有効性のモデル構築)
 次に、本実施例は、本発明を用いて安全性および有効性のデータベースおよびモデルを構築することができることを実証した。
 実施例1-2で示されるようなアジュバントデータベースに加え、毒性ゲノム学データベース(ゲート)を用いると、機械学習などにより、トランスクリプトームベースの毒性および安全性の予測が可能となる。
 (ラット肝臓トランスクリプトーム6時間および24時間での毒性予測)
 毒性ゲノム学データベースから、10の化合物を含む「毒性」群および10の化合物を含む「非毒性」群をそれぞれ作成した。「毒性」群の化合物は、4回の投与内で病理学的知見を示した化合物であった。「非毒性」群の化合物は、毒性に関連する特徴が観察されなかった化合物であった(図29)。(これらのデータは、公開のTG-GATE(Igarashi,Y. et al., Nucleic acids research 43, D921-927(2015))から入手可能である))。
 これら「毒性」群の化合物および「非毒性」群の化合物を投与して6時間後および24時間後のトランスクリプトーム解析結果に基づいて、「毒性」群の化合物の投与によって発現が変化した遺伝子のパターンと、「非毒性」群の化合物の投与によって発現が変化した遺伝子のパターンとを取得した。(これらのデータは、公開のTG-GATE(Igarashi,Y. et al., Nucleic acids research 43, D921-927(2015))から入手可能である))。ネクローシス予測モデルのために選択したプローブ(遺伝子)は、免疫応答(1)および代謝(4)に関連する5つの経路に濃縮された(図30A)。
 実施例1-2で示されるようなアジュバントデータベースにおける各アジュバント投与の6時間および24時間後時点の遺伝子変動パターンを、これら公知の化合物についての投与の6時間および24時間後時点の「毒性」遺伝子パターンおよび「非毒性」遺伝子パターンと比較して、それぞれのアジュバントがどの程度の「毒性」スコアとなるかを計算した(図30B)。「毒性」スコア算出方法は例えば、Igarashi,Y. et al., Nucleic acids research 43, D921-927(2015)およびUehara,T. et al., Toxicol Appl Pharmacol 2011 Sep 15;255(3):297-306を参照。
 実際に各アジュバントを投与して6時間および24時間後時点のALTの活性を測定した(図31)。ASTおよびALT活性測定は、当該分野で公知の手法(例えば、カイネティクスアッセイまたはエンドポイントアッセイによって比色測定)で行われ、このデータは、LSIメディエンス社に委託して測定した。
 高い毒性が予測されたアジュバントX(FK565)の毒性を、実際にマウスで確認した。
 マウスにPBS、FK565(1μg/kg、10μg/kgまたは100μg/kg)またはLPS(1mg/kg)を腹腔内投与し、3時間/6時間後、1日目、2日目、3日目および5日目に血液および肝臓を収集した。収集した肝臓をヘマトキシリン・エオジン染色し、組織学的解析を行った(図32)。また、肝臓をTUNEL染色し、アポトーシスを確認した(図33)。また、アスパラギン酸トランスアミナーゼ(AST)およびアラニントランスアミナーゼ(ALT)の血清レベルについて、生化学的解析を行った(図34)。
 ROC曲線から毒性予測モデルの妥当性が示された。アジュバント性予測モデルについて選択されたプローブのPCA解析からも妥当性が示された(アジュバントデータベース+毒性ゲノム学データベース(ゲート))。Osmrを中心とした経路のヒートマップが作成された(データ示さず)。
 上記のデータベースの解析からOsmrを中心とした遺伝子クラスターが得られた(図35)。この毒性と関連が深いと予測された遺伝子Y(Osmr)について調査した。各アジュバントをラットに投与した6時間後の肝臓における遺伝子Yの発現変化(倍数変化)を図36の上段に示す。Osmr欠失マウスは、Jackson Laboratoriesから入手したものをベースに用いた。
 野生型およびOsmr欠失マウスにPBS、FK565(1μg/kg、10μg/kgまたは100μg/kg)またはLPS(1mg/kg)を腹腔内投与し、1日後に血液および肝臓を収集した。DRI-CHEM 7000V(富士フィルム、東京、日本)を使用してASTおよびALTの血清レベルを解析した(図37)。また、肝臓をTUNEL染色し、アポトーシスを確認した(図36の下段)。ASTおよびALT活性測定は、当該分野で公知の手法(例えば、カイネティクスアッセイまたはエンドポイントアッセイによって比色測定)で行われ、
 (マウスにおける肝臓毒性遺伝子の確認)
 たとえば、下記表を参照して、ラットで毒性との関連が示唆された遺伝子をマウスにおいてノックアウトさせる候補として選択することができる(例えば、NOD1リガンドに対するNOD1)。本実施例では、Osmrをノックアウトさせた。
Figure JPOXMLDOC01-appb-T000059
 (ラット肝臓モデルでのアジュバント特性の予測)
 図38に示すように、安全なアジュバントについてアジュバントデータベースから特徴を探索し、公開毒性ゲノム学データベースからアジュバントとして作用する化合物を探索する。
 アジュバント性予測モデルによって、多くの薬物がアジュバントである可能性が示唆された。これをマウスを用いた実験によって確認した。
 アジュバント性予測モデルのために選択したプローブ(遺伝子)は、細胞死(4)、免疫応答(2)および代謝(36)に関連する42の経路に濃縮された。細胞死(4)および免疫応答(2)に関する経路を構成する遺伝子のベン図では、7つの遺伝子が両者に共通した(図39)。
 アジュバント性予測モデルによって、多くの薬物、免疫刺激剤、LPSおよびTNFが高いスコアとなり(図40上)、色付きの文字で示した薬物を、購入し、次にマウスで試験した。ROC曲線によりアジュバント性予測モデルの妥当性が確認された(図40下)。
 マウスに、オボアルブミンとともにalum、CpGk3または5種類の薬物(ACAP、BOR、CHX、COL、PHA)を2~3種類の用量で0日目および14日目に皮内投与した。21日目に血液および脾臓を収集した。抗オボアルブミン(ova)抗体価(IgG1およびIgG2)を21日目に測定した。薬物によってIgG1およびIgG2価の異なるアジュバント特性が観察された(図41)。上記例で各薬物、オボアルブミンなどは日本生化学またはWAKOから入手したものを用いた。これらの薬物はこれらの供給先の他、他の供給先から得られるものも利用可能である。
 さらに、脾臓細胞(免疫したマウスから採取した臓器に由来する細胞である)に対して、インビトロで、各薬物に加えて、オボアルブミン(ova)257~264ペプチド(OVA-MHC1)、ova 323~339ペプチド(OVA-MHC2)またはovaタンパク質(OVA-whole)を添加して刺激するか、または追加の刺激なしでで処理して上清を収集した。上清におけるTh1型(IL-2およびIFN-γ)(図42)およびTh2型(IL-4およびIL-5)(図43)のサイトカインをELISAで測定した。
 マウスにオボアルブミンとともにalum、CpGk3または5種類の薬物(ACAP、BOR、CHX、COL、PHA)を投与し、3時間後(0日目)に血液を収集し、DRI-CHEM 7000V(富士フィルム、東京、日本)を使用してアスパラギン酸トランスアミナーゼ(AST)およびアラニントランスアミナーゼ(ALT)の血清レベルについて生化学的解析を行った(図44)。
 マウスに各薬物を腹腔内投与して6時間および24時間後に血液を収集し、循環血液中のmiRNAを分析した(図45)。AlumおよびAS04の投与6時間および24時間後の循環血液中のmiRNAを分析した結果を示す(図46)。
 (結果)
 以上の結果から、本発明のトランスクリプトーム分析によって、アジュバントなどの医薬成分を分類することができる上に、有効性および安全性を試験することができることが理解される。
 本実施例では、本発明者らは、アジュバントの毒性学的特性を評価するために、本実施例において、ラットに関して実施例1と同様のマイクロアレイデータを取得した。ラットのトランスクリプトームデータは、公開のTG-GATE(Igarashi,Y. et al., Nucleic acids research 43, D921-927(2015))(これは同様にラットに関するものである)の遺伝毒性学的データセットに直接組み込むことができることから、これに基づき解析を実施したところ、毒性の解析を行うことができることが実証され、さらに、トランスクリプトーム解析で得られた知見に基づきマウスでノックアウト実験を行ったところ、毒性に関与する遺伝子であることが証明された。従って、本実施例での結果は種を超えて実証可能であることが証明され、動物モデルでの毒性実験の検証に本発明および本発明で得られた知見を利用することが可能であることが証明された。さらに、本発明者らは、ヒト臨床試料からのマイクロRNA発現プロファイルを取集し、これを用いてmiRNAの解析を行った。上述の全てのデータセットを統合したところ、これらのデータベースによって、異なる実験条件下における異なる種のアジュバント誘導性遺伝子発現シグネチャについてのより統合的で網羅的な解析を実施することができ、有効性についてもトランスクリプトーム解析で得られた知見に基づく試験を行うことができることが証明された。
 毒性および有効性に関しては、アジュバントのみならず、原理的に、医薬成分一般において同様の分析が可能であることが当業者には理解される。特に毒性については、有効成分のみならず添加成分(賦形剤、キャリアなど)についても同様の試験を行うことができ、あるいは複数の同種または異種の医薬成分を混合した混合物や最終の製剤についても同様の試験を行うことができる。有効成分についても、同様に有効成分の指標をもとに同様のトランスクリプトーム解析の試験が可能であると当業者に理解される。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、日本国に2016年12月28日に出願された特願2016-256270および特願2016-256278に対して優先権主張を伴う出願である。その内容はその全体が、具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 免疫関連の疾患について、アジュバントの分類を含む精確度が高い、臨床応用が可能である。
配列番号1 CpG-ODN (5’-ATCGACTCTCGAGCGTTCTC-3’)
配列番号2 MHCクラスI (ASNENMETM)
配列番号3 MHCクラスII (ARSALILRGSVAHKSCLPACVYGP)

Claims (60)

  1.  トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法。
  2.  前記分類する工程は、a)前記トランスクリプトームクラスタリングに基づいて基準成分を生成する工程と、b)該基準成分に基づいて候補医薬成分を分類する工程とを含む、請求項1に記載の方法。
  3.  前記医薬成分は、有効成分、添加成分およびアジュバントからなる群より選択される、請求項1または2に記載の方法。
  4.  前記医薬成分は、アジュバントである、請求項1~3のいずれか一項に記載の方法。
  5.  前記分類は、宿主応答に基づく分類、メカニズムに基づく分類、細胞(肝臓、リンパ節、脾臓)、メカニズムに基づく用途別の分類、およびモジュール分類からなる群より選択される少なくとも1つの特徴による分類をさらに含む、請求項1~4のいずれか一項に記載の方法。
  6. 前記分類は、G1~G6:
    (1)G1(インターフェロンシグナリング);
    (2)G2(脂質およびリポタンパク質代謝性);
    (3)G3(ストレス応答性);
    (4)G4(創傷応答性);
    (5)G5(リン酸含有化合物代謝プロセス性);および
    (6)G6(ファゴソーム性):
    からなる群より選択される少なくとも1つの分類を含む、請求項1~5のいずれか一項に記載の方法。
  7. 前記医薬成分はアジュバントであり、前記G1~G6の分類は、基準医薬成分のトランスクリプトームクラスタリングとの比較で行われ、
    G1の基準医薬成分は、STINGリガンドであり、
    G2の基準医薬成分は、シクロデキストリン類であり、
    G3の基準医薬成分は、免疫反応性ペプチド類であり、
    G4の基準アジュバントは、TLR2リガンドであり、
    G5の基準医薬成分は、CpGオリゴヌクレオチドであり、および/または
    G6の基準医薬成分は、スクアレン水中油型エマルジョンアジュバントである、
    請求項6に記載の方法。
  8. 前記G1~G6の分類は、基準医薬成分のトランスクリプトームクラスタリングとの比較で行われ、
    G1の基準成分は、cdiGMP、cGAMP、DMXAA、PolyICおよびR848からなる群より選択され、
    G2の基準医薬成分は、bCD(βシクロデキストリン)であり、
    G3の基準医薬成分は、FK565であり、
    G4の基準医薬成分は、MALP2sであり、
    G5の基準医薬成分は、D35,K3およびK3SPGからなる群より選択され、および/または
    G6の基準医薬成分は、AddaVaxである、
    請求項6または7に記載の方法。
  9. 前記G1~G6の分類は、トランスクリプトーム分析において発現に有意差がある遺伝子(識別マーカー遺伝子;DEG)の発現プロファイルに基づいて行われ、
    前記G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
    前記G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
    前記G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
    前記G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
    前記G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
    前記G6のDEGは、Atp6v0d2、Atp6v1c1、およびClec7aからなる群より選択される少なくとも1つを含む、
    請求項6~8のいずれか一項に記載の方法。
  10. 医薬成分を分類する方法であって、該方法は:
    (a)候補医薬成分を提供する工程;
    (b)基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、該基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含する方法。
  11. 医薬成分を分類する方法であって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)請求項6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含する請求項10に記載の方法。
  12.  所望の機能を有する組成物の製造方法であって、
    (A)候補医薬成分を提供する工程、
    (B)所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分を選択する工程、および
    (C)選択された候補医薬成分を用いて組成物を製造する工程を包含する、組成物の製造方法。
  13.  所望の機能を有する組成物のスクリーニング方法であって、
    (A)候補医薬成分を提供する工程、および
    (B)所望の機能に対応するトランスクリプトーム発現パターンを有する候補医薬成分を選択する工程を包含する、組成物の製造方法。
  14. 前記所望の機能は、請求項6~8のいずれか一項に記載のG1~G6のいずれか1つまたは複数を含む、請求項12または13に記載の方法。
  15.  所望の機能を発揮するための組成物であって、該所望の機能を発揮する医薬成分を含み、該所望の機能は、請求項1~11のいずれか一項に記載の方法によって特定される分類の1つまたは複数を含む、組成物。
  16.  所望の機能を発揮するための組成物であって、該所望の機能を発揮する医薬成分を含み、該所望の機能は、請求項6~8のいずれか一項に記載のG1~G6のいずれか1つまたは複数を含む、請求項15に記載の組成物。
  17. 請求項1~11のいずれか一項一項に記載の方法を用いて、医薬成分の品質管理を行う方法。
  18. 請求項1~11のいずれか一項一項に記載の方法を用いて、医薬成分の安全性を試験する方法。
  19. 請求項1~11のいずれか一項一項に記載の方法を用いて、毒性ボトルネック遺伝子の候補を特定する工程と、
    該毒性遺伝子を他の動物種において欠損させてノックアウト動物を作製する工程と、
    該ノックアウト動物において毒性が減少または消失するかを決定し、減少または消失があった遺伝子を毒性ボトルネット遺伝子として選択する工程と
    を含む、毒性ボトルネック遺伝子を提供する方法。
  20. アジュバント等の候補医薬成分について、毒性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の活性化が観察されるかを決定する工程と、
    該活性化が観察された候補医薬成分を毒性有として判断する工程とを
    含む、薬剤の毒性判定方法。
  21. 請求項1~11のいずれ一項一項に記載の方法を用いて、医薬成分の効果を判定する方法。
  22. 請求項1~11のいずれか一項一項に記載の方法を用いて、有効性判定遺伝子を特定する工程と、
    該毒性遺伝子を他の動物種において欠損させてノックアウト動物を作製する工程と、
    該ノックアウト動物において有効性が減少または消失するかを決定し、減少または消失があった遺伝子を有効性ボトルネット遺伝子として選択する工程と
    を含む、有効性ボトルネック遺伝子を提供する方法。
  23. アジュバント等の候補医薬成分について、有効性ボトルネック遺伝子のうち少なくとも1つについて遺伝子発現の活性化が観察されるかを決定する工程と、
    該活性化が観察された候補薬剤を有効性有として判断する工程とを
    含む、薬剤の有効性判定方法。
  24.  トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法をコンピュータに実装させるプログラム。
  25.  トランスクリプトームクラスタリングに基づいて、医薬成分を分類する工程を包含する医薬成分分類方法をコンピュータに実装させるプログラムを格納した記録媒体。
  26.  トランスクリプトームクラスタリングに基づいて、医薬成分を分類する分類部を包含する医薬成分分類するためのシステム。
  27. 医薬成分を分類する方法をコンピュータに実装させるプログラムであって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)基準医薬成分セットを計算する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含するプログラム。
  28. 医薬成分を分類する方法をコンピュータに実装させるプログラムであって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)請求項6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含する請求項27に記載のプログラム。
  29. 医薬成分を分類する方法をコンピュータに実装させるプログラムを格納した記録媒体であって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)基準医薬成分セットを計算する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含する、記録媒体。
  30. 医薬成分を分類する方法をコンピュータに実装させるプログラムを格納した記録媒体であって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)請求項6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;および
    (d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する工程、
    を包含する、請求項29に記載の記録媒体。
  31. 医薬成分を分類するシステムであって、該システムは:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;
    (b)基準医薬成分セットを計算する基準医薬成分計算部;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および
    (d)該候補医薬成分が属するクラスターが、基準医薬成分セットの少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、
    を包含するシステム。
  32. 医薬成分を分類するシステムであって、該システムは:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する候補医薬成分提供部;
    (b)請求項6~8のいずれか一項に記載のG1~G6からなる群より選択される少なくとも1つに分類される基準医薬成分セットを提供する基準医薬成分格納部;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング分析部;および
    (d)該候補医薬成分が属するクラスターが、グループG1~G6の少なくとも1つと同じクラスターに分類される場合、該候補医薬成分を同一のグループに属すると判定し、どこにも属しない場合、分類不能と判定する判定部、
    を包含する請求項31に記載のシステム。
  33. 医薬成分を、請求項1~11のいずれか一項に記載の方法で特定される分類に使用するための遺伝子分析パネル。
  34. アジュバントを請求項6~8のいずれか一項に記載のG1~G6またはそれ以外への分類に使用するための遺伝子分析パネルであって、該遺伝子分析パネルは、G1のDEG,G2のDEG、G3のDEG、G4のDEG、G5のDEGおよびG6のDEGからなる群より選択される少なくとも1つのDEGを検出する手段を含み、
    該G1のDEGは、Gm14446、Pml、H2-T22、Ifit1、Irf7、Isg15、Stat1、Fcgr1、Oas1a、Oas2、Trim12a、Trim12c、Uba7およびUbe2l6からなる群より選択される少なくとも1つを含み、
    該G2のDEGは、Elovl6、Gpam、Hsd3b7、Acer2、Acox1、Tbl1xr1、Alox5apおよびGgt5からなる群より選択される少なくとも1つを含み、
    該G3のDEGは、Bbc3、Pdk4、Cd55、Cd93、Clec4e、Coro1a、およびTraf3、Trem3、C5ar1、Clec4n、Ier3、Il1r1、Plek、Tbx3、およびTrem1からなる群より選択される少なくとも1つを含み、
    該G4のDEGは、Ccl3、Myof、Papss2、Slc7a11、およびTnfrsf1bからなる群より選択される少なくとも1つを含み、
    該G5のDEGは、Ak3、Insm1、Nek1、Pik3r2、およびTtnからなる群より選択される少なくとも1つを含み、
    該G6のDEGは、Atp6v0d2,Atp6v1c1,およびClec7aからなる群より選択される少なくとも1つを含む、
    遺伝子分析パネル。
  35. 前記遺伝子分析パネルは、少なくともG1のDEGの検出手段、少なくともG2のDEGの検出手段、少なくともG3のDEGの検出手段、少なくともG4のDEGの検出手段、少なくともG5のDEGの検出手段および少なくともG6のDEGの検出手段を含む、請求項34に記載の遺伝子分析パネル。
  36. 医薬成分の器官トランスクリプトームプロファイルを生成する方法であって、該方法は:
    2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
    該発現データについて、該医薬成分をクラスタリングする工程;および
    該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
    を包含する方法。
  37. 前記トランスクリプトーム分析は、前記医薬成分を前記対象生物に投与し、投与後一定時間で前記器官におけるトランスクリプトームを該医薬成分の投与前の該器官におけるトランスクリプトームと比較する工程、および該比較の結果発現が変動した遺伝子(DEG)のセットを特定する工程を包含する、請求項36に記載の方法。
  38. 前記DEGのセットを2つ以上の医薬成分において統合し、共通して変動するDEGのセットを生成する工程を包含する、請求項37に記載の方法。
  39. 前記比較の結果、前記共通して変動するDEGのうち、発現が所定の閾値を超えて変動したDEGを選択し、有意DEGのセットを生成する工程を包含する、請求項38に記載の方法。
  40. 前記所定の閾値は、所定の倍数の相違および所定の統計学的有意(p値)で特定される、請求項39に記載の方法。
  41. 少なくとも2つ以上の器官について、前記トランスクリプトーム分析を行い、特定の器官でのみ発現が変動した遺伝子(DEG)のセットを特定し、該セットを該器官特異的DEGセットとする工程を包含する、請求項38~41のいずれか一項に記載の方法。
  42. 前記トランスクリプトーム分析は、肝臓、脾臓およびリンパ節からなる群より選択される少なくとも1つの器官におけるトランスクリプトームに対してなされる、請求項36~41のいずれか一項に記載の方法。
  43. 前記医薬成分医薬成分の種類の数は、統計学的に有意なクラスタリング分析を可能とする数である、請求項36~42のいずれか一項に記載の方法。
  44. 前記プロファイルのうち、特定の医薬成分または医薬成分クラスターおよび特定の器官に特有の遺伝子マーカーの1または複数を医薬成分評価マーカーとして提供する工程を包含する、請求項36~43のいずれか一項に記載の方法。
  45. 前記医薬成分について、生物学的指標を分析し、クラスターと相関づける工程をさらに包含する、請求項36~44のいずれか一項に記載の方法。
  46. 前記生物学的指標は、創傷、細胞死、アポトーシス、NFκBシグナル経路、炎症応答、TNFシグナル経路、サイトカイン類、遊走、ケモカイン、化学走性、ストレス、防御応答、免疫応答、生来免疫応答、適合性免疫応答、インターフェロン類およびインターロイキン類からなる群より選択される少なくとも1つの指標を含む、請求項45に記載の方法。
  47. 前記生物学的指標は、血液学的指標を含む、請求項46に記載の方法。
  48. 前記血液学的指標は、白血球(WBC)、リンパ球(LYM)、単球(MON)、顆粒球(GRA)、リンパ球の相対含有率%(LY%)、単球の相対含有率%(MO%)、顆粒球の相対含有率%(GR%)、赤血球(RBC)、ヘモグロビン(Hb、HGB)、ヘマトクリット(HCT)、平均赤血球容積(MCV)、平均赤血球ヘモグロビン(MCH)、平均赤血球ヘモグロビン濃度(MCHC)、赤血球分布幅(RDW)、血小板(PLT)、血小板濃度(PCT)、平均血小板容積(MPV)および血小板分布幅(PDW)からなる群より選択される少なくとも1つを含む、請求項47に記載の方法。
  49. 前記生物学的指標は、サイトカインプロファイルを含む、請求項45に記載の方法。
  50. 医薬成分の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムであって、該方法は:
    (A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
    (B)該発現データについて、該医薬成分医薬成分をクラスタリングする工程;
    (C)該クラスタリングに基づいて、該医薬成分医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
    を包含する、プログラム。
  51. 医薬成分の器官トランスクリプトームプロファイルを生成する方法をコンピュータに実装するプログラムを格納した記録媒体であって、該方法は:
    (A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得る工程;
    (B)該発現データについて、該医薬成分をクラスタリングする工程;
    (C)該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成する工程
    を包含する、記録媒体。
  52. 医薬成分の器官トランスクリプトームプロファイルを生成するためのシステムであって、該システムは:
    (A)2つ以上の医薬成分を用いて対象生物の少なくとも1つの器官のトランスクリプトーム分析を行って発現データを得るまたは入力する発現データ獲得部;
    (B)該発現データについて、該医薬成分をクラスタリングするクラスタリング演算部;
    (C)該クラスタリングに基づいて、該医薬成分の該器官のトランスクリプトームプロファイルを生成するプロファイリング部
    を包含する、システム。
  53. 医薬成分の特徴情報を提供する方法であって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)機能が既知の基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
    (d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
    を包含する方法。
  54. 請求項36~49のいずれか一項に記載の特徴をさらに含む、請求項53に記載の方法。
  55. 医薬成分の特徴情報を提供する方法をコンピュータに実装させるプログラムであって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)機能が既知の基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
    (d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
    を包含する、プログラム。
  56. 医薬成分の特徴情報を提供する方法をコンピュータに実装させるプログラムを格納する記録媒体であって、該方法は:
    (a)対象生物の少なくとも1つの器官において候補医薬成分を提供する工程;
    (b)機能が既知の基準医薬成分セットを提供する工程;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングする工程;
    (d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する工程、
    を包含する、記録媒体。
  57. 医薬成分の特徴情報を提供するシステムであって、該システムは:
    (a)候補医薬成分を提供する候補医薬成分提供部;
    (b)機能が既知の基準医薬成分セットを提供する基準医薬成分提供部;
    (c)該候補医薬成分および該基準医薬成分セットのトランスクリプトーム分析を行って遺伝子発現データを得て、該遺伝子発現データをクラスタリングするトランスクリプトームクラスタリング解析部;
    (d)該候補医薬成分が属するのと同一のクラスターに属する該基準医薬成分セットのメンバーの特徴を、該候補医薬成分の特徴として提供する特徴分析部、
    を包含する、システム。
  58. 請求項36~49または請求項53に記載の方法を用いて、医薬成分の品質管理を行う方法。
  59. 請求項36~49または請求項53に記載の方法を用いて、医薬成分の安全性を試験する方法。
  60. 請求項36~49または請求項53に記載の方法を用いて、医薬成分の効果を判定する方法。

     
PCT/JP2017/047319 2016-12-28 2017-12-28 トランスクリプトームによる医薬成分の特徴分析法および分類 WO2018124293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/475,038 US20190325991A1 (en) 2016-12-28 2017-12-28 Characteristic analysis method and classification of pharmaceutical components by using transcriptomes
EP22204376.2A EP4194853A1 (en) 2016-12-28 2017-12-28 Characteristic analysis method and classification of pharmaceutical components by using transcriptomes
JP2018559642A JPWO2018124293A1 (ja) 2016-12-28 2017-12-28 トランスクリプトームによる医薬成分の特徴分析法および分類
EP17886714.9A EP3598128A4 (en) 2016-12-28 2017-12-28 CHARACTERISTICS ANALYSIS PROCEDURES AND CLASSIFICATION OF PHARMACEUTICAL COMPONENTS USING TRANSCRIPTOMS
JP2022003612A JP2022068141A (ja) 2016-12-28 2022-01-13 トランスクリプトームによる医薬成分の特徴分析法および分類

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016256278 2016-12-28
JP2016256270 2016-12-28
JP2016-256278 2016-12-28
JP2016-256270 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124293A1 true WO2018124293A1 (ja) 2018-07-05

Family

ID=62709429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047319 WO2018124293A1 (ja) 2016-12-28 2017-12-28 トランスクリプトームによる医薬成分の特徴分析法および分類

Country Status (4)

Country Link
US (1) US20190325991A1 (ja)
EP (2) EP4194853A1 (ja)
JP (2) JPWO2018124293A1 (ja)
WO (1) WO2018124293A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017239A (ja) * 2018-07-27 2020-01-30 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
WO2021132547A1 (ja) * 2019-12-25 2021-07-01 東レ株式会社 検査方法、検査装置、学習方法、学習装置、検査プログラムおよび学習プログラム
JP2022518283A (ja) * 2019-11-18 2022-03-14 ベイジン センスタイム テクノロジー デベロップメント カンパニー, リミテッド 予測方法及び装置、電子機器並びに記憶媒体
CN114429785A (zh) * 2022-04-01 2022-05-03 普瑞基准生物医药(苏州)有限公司 一种基因变异的自动分类方法、装置和电子设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019173283A1 (en) 2018-03-05 2019-09-12 Marquette University Method and apparatus for non-invasive hemoglobin level prediction
EP4313065A2 (en) * 2021-04-02 2024-02-07 Matrivax, Inc. Methods and compositions for treating clostridiodes difficile infections
CN115881218B (zh) * 2022-12-15 2023-06-09 哈尔滨星云医学检验所有限公司 用于全基因组关联分析的基因自动选择方法
US20240304325A1 (en) * 2023-03-07 2024-09-12 Merck Sharp & Dohme Llc Static Multiomic Seed Approach for Identifying Molecular Signatures

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002679A1 (en) 1985-10-31 1987-05-07 The Australian National University Immunotherapeutic treatment
WO1990001949A1 (en) 1988-08-18 1990-03-08 The Australian National University Gamma inulin compositions
JP2002372532A (ja) * 2001-05-08 2002-12-26 Japan Science & Technology Corp Htlv−i腫瘍に対する抗腫瘍抗原又はその抗原エピトープ
WO2006024100A1 (en) 2004-09-02 2006-03-09 Vaxine Pty Ltd New polymorphic form of inulin and uses thereof
JP2006174827A (ja) * 2004-11-12 2006-07-06 Eppendorf Ag マイクロアレイ上で多数の遺伝子発現を分析することにより、siRNAを細胞にトランスフェクトした効果を調べる方法と装置
JP2012515533A (ja) * 2009-01-20 2012-07-12 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 診断、予後診断、および創薬ターゲットの同定のための単細胞遺伝子発現の方法
US20120178646A1 (en) * 2009-07-08 2012-07-12 Zf Screens B.V. High throughput method and system for in vivo screening
JP2013523154A (ja) * 2010-04-06 2013-06-17 マサチューセッツ・インスティトュート・オブ・テクノロジー 転写物測定値数が減少した、遺伝子発現プロファイリング
US20150051086A1 (en) * 2010-08-02 2015-02-19 Population Diagnostics, Inc. Compositions and methods for discovery of causative mutations in genetic disorders
JP2016506408A (ja) * 2012-12-19 2016-03-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 哺乳動物の環状ジヌクレオチドシグナル伝達経路の薬学的標的化
WO2016079899A1 (ja) * 2014-11-20 2016-05-26 国立研究開発法人医薬基盤・健康・栄養研究所 異なる核酸アジュバントの組み合わせによる、新規Th1誘導性アジュバントおよびその用途
JP2016515383A (ja) * 2013-03-15 2016-05-30 ザ・ブロード・インスティテュート・インコーポレイテッド 樹状細胞応答遺伝子発現、組成物およびその使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2458968A1 (en) * 2001-08-31 2003-03-13 The Rockefeller University Method for classification of anti-psychotic drugs
EP1807539A2 (en) * 2004-10-29 2007-07-18 Novartis AG Evaluation of the toxicity of pharmaceutical agents
DE102010024898B4 (de) * 2010-06-24 2012-10-25 Merck Patent Gmbh Genexpressionsanalysen zur Charakterisierung und Identifizierung genotoxischer Verbindungen
US20120258125A1 (en) * 2011-04-06 2012-10-11 Lancell, L.L.C. Method to identify a novel class of immunologic adjuvants
US20140037685A1 (en) * 2012-08-06 2014-02-06 Albert Einstein College Of Medicine Of Yeshiva University Adjuvants that activate adaptive immune system by stimulating nlrp3
WO2015183173A1 (en) * 2014-05-28 2015-12-03 Grafström Roland In vitro toxicogenomics for toxicity prediction

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987002679A1 (en) 1985-10-31 1987-05-07 The Australian National University Immunotherapeutic treatment
WO1990001949A1 (en) 1988-08-18 1990-03-08 The Australian National University Gamma inulin compositions
JP2002372532A (ja) * 2001-05-08 2002-12-26 Japan Science & Technology Corp Htlv−i腫瘍に対する抗腫瘍抗原又はその抗原エピトープ
WO2006024100A1 (en) 2004-09-02 2006-03-09 Vaxine Pty Ltd New polymorphic form of inulin and uses thereof
JP2006174827A (ja) * 2004-11-12 2006-07-06 Eppendorf Ag マイクロアレイ上で多数の遺伝子発現を分析することにより、siRNAを細胞にトランスフェクトした効果を調べる方法と装置
JP2012515533A (ja) * 2009-01-20 2012-07-12 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 診断、予後診断、および創薬ターゲットの同定のための単細胞遺伝子発現の方法
US20120178646A1 (en) * 2009-07-08 2012-07-12 Zf Screens B.V. High throughput method and system for in vivo screening
JP2013523154A (ja) * 2010-04-06 2013-06-17 マサチューセッツ・インスティトュート・オブ・テクノロジー 転写物測定値数が減少した、遺伝子発現プロファイリング
US20150051086A1 (en) * 2010-08-02 2015-02-19 Population Diagnostics, Inc. Compositions and methods for discovery of causative mutations in genetic disorders
JP2016506408A (ja) * 2012-12-19 2016-03-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 哺乳動物の環状ジヌクレオチドシグナル伝達経路の薬学的標的化
JP2016515383A (ja) * 2013-03-15 2016-05-30 ザ・ブロード・インスティテュート・インコーポレイテッド 樹状細胞応答遺伝子発現、組成物およびその使用方法
WO2016079899A1 (ja) * 2014-11-20 2016-05-26 国立研究開発法人医薬基盤・健康・栄養研究所 異なる核酸アジュバントの組み合わせによる、新規Th1誘導性アジュバントおよびその用途

Non-Patent Citations (73)

* Cited by examiner, † Cited by third party
Title
"DNA Maikuroarei to Saishin PCR ho'' [Cellular engineering, Extra issue, ''DNA Microarrays and Latest PCR Methods", article "DNA array, protein array). DNA arrays are outlined extensively"
"Genomu Kaiseki Jikkenho Nakamura Yusuke Labo Manyuaru [Genome analysis experimental method Yusuke Nakamura Lab Manual", 2002, YODOSHA
ADVANCED DRUG DELIVERY REVIEWS, vol. 61, 2009, pages 195 - 204
AKAZAWA T. ET AL., CANCERSCI, vol. 101, 2010, pages 1596 - 1603
AOSHI ET AL., EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 39, 2009, pages 417 - 425
AOSHI ET AL., IMMUNITY, vol. 29, 2008, pages 476 - 486
ARASE ET AL., J EXP MED, vol. 186, 1997, pages 1957 - 1963
BATISTA-DUHARTE, A.LINDBLAD, E.B.OVIEDO-ORTA, E., TOXICOLOGY LETTERS, vol. 203, 2011, pages 97 - 105
BRAZOLOT MILLAN, C.L.WEERATNA, R.KRIEG, A.M.SIEGRIST, C.A.DAVIS, H.L., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 95, 1998, pages 15553 - 15558
C.F.OLSON, PARALLEL COMPUTING, vol. 21, 1995, pages 1313 - 1325
CHEN, Y.A.TRIPATHI, L.P.MIZUGUCHI, K., PLOS ONE, vol. 6, 2011, pages el7844
CHU, R.S.TARGONI, O.S.KRIEG, A.M.LEHMANN, P.V.HARDING, C.V., THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 186, 1997, pages 1623 - 1631
COFFMAN, R.L.SHER, A.SEDER, R.A., IMMUNITY, vol. 33, 2010, pages 492 - 503
DESMET, C.J.ISHII, K.J.: "Nature reviews", IMMUNOLOGY, vol. 12, 2012, pages 479 - 491
DIDIERLAURENT, A.M. ET AL., JOURNAL OF IMMUNOLOGY, vol. 183, 2009, pages 6186 - 6197
EISENBARTH ET AL., NATURE, vol. 453, 2008, pages 1122 - 1126
F.MURTAGH, THE COMPUTER JOURNAL, vol. 26, 1983, pages 354 - 359
FALKEBORN, T. ET AL., PLOS ONE, vol. 8, 2013, pages e60038
G.N.LANCEW.T.WILLIAMS, THE COMPUTER JOURNAL, vol. 9, 1967, pages 373 - 380
GAO, P. ET AL., CELL, vol. 154, 2013, pages 748 - 762
HARA ET AL., NATURE IMMUNOLOGY, vol. 8, 2007, pages 619 - 629
HARTMANN, G. ET AL., EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 33, 2003, pages 1633 - 1641
HAYASHI, M. ET AL., SCIENTIFIC REPORTS, vol. 6, 2016
HEMMI, H. ET AL., NATURE, vol. 408, 2000, pages 740 - 745
HENG, T.S. ET AL., NATURE IMMUNOLOGY, vol. 9, 2008, pages 1091 - 1094
HONDA-OKUBO, Y. ET AL., VACCINE, vol. 30, 2012, pages 5373 - 5381
IGARASHI, Y. ET AL., NUCLEIC ACIDS RESEARCH, vol. 43, 2015, pages 921 - 927
IGARASHI, Y. ET AL.: "Open TG-GATEs: a large-scale toxicogenomics database", NUCLEIC ACIDS RESEARCH, vol. 43, 2015, pages 921 - 927
J ANTIBIOT (TOKYO, vol. 36, no. 8, August 1983 (1983-08-01), pages 1045 - 50
JANEWAY, C.A., JR., COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, vol. 54, 1989, pages 1 - 13
KAWAI, T.AKIRA, S., NATURE IMMUNOLOGY, vol. 11, 2010, pages 427 - 434
KISTNER ET AL., PLOS ONE, vol. 5, 2010, pages e9349
KLINMAN, D.M.: "Nature reviews", IMMUNOLOGY, vol. 4, 2004, pages 249 - 258
KNUDSEN, N.P. ET AL., SCIENTIFIC REPORTS, vol. 6, 2016, pages 19570
KOBIYAMA ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 111, 2014, pages 3086
KOYAMA, S.AOSHI, T.TANIMOTO, T.KUMAGAI, Y.KOBIYAMA, K.TOUGAN, T.SAKURAI, K.COBAN, C.HORII, T.AKIRA, S. ET AL., SCIENCE TRANSLATIONAL MEDICINE, vol. 2, 2010, pages 25ra24
KRIEG, A.M.: "Nature reviews", DRUG DISCOVERY, vol. 5, 2006, pages 471 - 484
KURODA ET AL., INT REV IMMUNOL, vol. 32, 2013, pages 209 - 220
LEEK, J.T. ET AL., NAT REV GENET, vol. 11, 2010, pages 733 - 739
MADHUN, A.S. ET AL., VACCINE, vol. 29, 2011, pages 4973 - 4982
MALTAIS, A.K. ET AL., VACCINE, vol. 32, 2014, pages 3307 - 3315
MARICHAL ET AL., NATURE MEDICINE, vol. 17, 2011, pages 996 - 1002
MARICHAL, T. ET AL., NAT MED, vol. 17, 2011, pages 996 - 1002
MARSHALL, J.D. ET AL., JOURNAL OF LEUKOCYTE BIOLOGY, vol. 73, 2003, pages 781 - 792
MASTELIC, B. ET AL., BIOLOGICALS, vol. 41, 2013, pages 115 - 124
MATZINGER, P., ANNU REV IMMUNOL, vol. 12, 1994, pages 991 - 1045
MATZINGER, P., ANNU REVIMMUNOL, vol. 12, 1994, pages 991 - 1045
MIZUKAMI, T. ET AL., PLOS ONE, vol. 9, 2014, pages el01835
MIZUKAMI, T. ET AL., VACCINE, vol. 26, 2008, pages 2270 - 2283
NAKAYA, H.I. ET AL., IMMUNITY, vol. 43, 2015, pages 1186 - 1198
NAT GENET., vol. 32, December 2002 (2002-12-01), pages 526 - 32
NORDVALL, ALLERGY, vol. 37, 1982, pages 259 - 264
OLAFSDOTTIR, T.LINDQVIST, M.HARANDI, A.M., VACCINE, vol. 33, 2015, pages 5302 - 5307
OLIVE, EXPERT REVIEW OF VACCINES, vol. 11, 2012, pages 237 - 256
ONISHI, M. ET AL., JOURNAL OF IMMUNOLOGY, vol. 194, 2015, pages 2673 - 2682
PHELPS, CF: "The physical properties of inulin solutions", BIOCHEM J, vol. 95, 1965, pages 41 - 47, XP055405018, doi:10.1042/bj0950041
PULENDRAN, B., PROC NATL ACAD SCI U S A, vol. 111, 2014, pages 12300 - 12306
RAVINDRAN, R. ET AL., SCIENCE, vol. 343, 2014, pages 313 - 317
REED, S.G.ORR, M.T.FOX, C.B., NAT MED, vol. 19, 2013, pages 1597 - 1608
SAADE, F. ET AL., VACCINE, vol. 31, 2013, pages 1999 - 2007
SAMULOWITZ, U. ET AL., OLIGONUCLEOTIDES, vol. 20, 2010, pages 93 - 101
SHOENFELD, Y.AGMON-LEVIN, N., JOURNAL OF AUTOIMMUNITY, vol. 36, 2011, pages 4 - 8
SOBOLEV, O. ET AL., NATURE IMMUNOLOGY, vol. 17, 2016, pages 204 - 213
STASSIJNS, J.BOLLAERTS, K.BAAY, M.VERSTRAETEN, T., VACCINE, vol. 34, 2016, pages 714 - 722
STEINHAGEN, F. ET AL., JOURNAL OF LEUKOCYTE BIOLOGY, vol. 92, 2012, pages 775 - 785
SUN, Y.GRUBER, M.MATSUMOTO, M., JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, vol. 65, 2012, pages 49 - 57
SUZUKI ET AL., J EXP MED, vol. 206, 2009, pages 1485 - 1493
TAKAI ET AL., CELL, vol. 76, 1994, pages 519 - 529
TANAKA, M. ET AL., BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 57, 1993, pages 1602 - 1603
TSANG, J.S. ET AL., CELL, vol. 157, 2014, pages 499 - 513
UEHARA, T. ET AL., TOXICOL APPL PHARMACOL, vol. 255, no. 3, 15 September 2011 (2011-09-15), pages 297 - 306
VONO, M. ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 110, 2013, pages 21095 - 21100
WOODWARD, J.J. ET AL., SCIENCE, vol. 328, 2010, pages 1703 - 1705

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017239A (ja) * 2018-07-27 2020-01-30 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
WO2020021857A1 (ja) * 2018-07-27 2020-01-30 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
CN112368774A (zh) * 2018-07-27 2021-02-12 无限生物制药公司 用于预测受试物质在人类中作用的人工智能模型
JPWO2020021857A1 (ja) * 2018-07-27 2021-08-26 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
JP7266899B2 (ja) 2018-07-27 2023-05-01 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
US11676684B2 (en) 2018-07-27 2023-06-13 Karydo Therapeutix, Inc. Artificial intelligence model for predicting actions of test substance in humans
JP2022518283A (ja) * 2019-11-18 2022-03-14 ベイジン センスタイム テクノロジー デベロップメント カンパニー, リミテッド 予測方法及び装置、電子機器並びに記憶媒体
WO2021132547A1 (ja) * 2019-12-25 2021-07-01 東レ株式会社 検査方法、検査装置、学習方法、学習装置、検査プログラムおよび学習プログラム
CN114429785A (zh) * 2022-04-01 2022-05-03 普瑞基准生物医药(苏州)有限公司 一种基因变异的自动分类方法、装置和电子设备

Also Published As

Publication number Publication date
JP2022068141A (ja) 2022-05-09
JPWO2018124293A1 (ja) 2019-12-12
EP4194853A1 (en) 2023-06-14
EP3598128A1 (en) 2020-01-22
US20190325991A1 (en) 2019-10-24
EP3598128A4 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2018124293A1 (ja) トランスクリプトームによる医薬成分の特徴分析法および分類
Unger et al. CD8+ T-cells infiltrate Alzheimer’s disease brains and regulate neuronal-and synapse-related gene expression in APP-PS1 transgenic mice
Edwards et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response
Qi et al. RNA origami nanostructures for potent and safe anticancer immunotherapy
US10870885B2 (en) Dendritic cell response gene expression, compositions of matters and methods of use thereof
US11427869B2 (en) T cell balance gene expression, compositions of matters and methods of use thereof
Naqvi et al. DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists
CN103153346A (zh) 使用tlr7和/或tlr9抑制剂的治疗方法
Neerukonda et al. Comparison of the transcriptomes and proteomes of serum exosomes from Marek’s disease virus-vaccinated and protected and lymphoma-bearing chickens
Zhu et al. Deciphering transcriptome profile of the yellow catfish (Pelteobagrus fulvidraco) in response to Edwardsiella ictaluri
Goonewardene et al. Mucosal delivery of CpG-ODN mimicking bacterial DNA via the intrapulmonary route induces systemic antimicrobial immune responses in neonatal chicks
Solbakken et al. Disentangling the immune response and host-pathogen interactions in Francisella noatunensis infected Atlantic cod
Meka et al. Porphyromonas gingivalis infection‐induced tissue and bone transcriptional profiles
Sheshe et al. Mechanism of antiviral immune response and COVID-19 infection
Zarski et al. Transcriptomic profiling of equine and viral genes in peripheral blood mononuclear cells in horses during equine herpesvirus 1 infection
Ahlberg et al. Global transcriptional response to ISCOM-Matrix adjuvant at the site of administration and in the draining lymph node early after intramuscular injection in pigs
Hieber et al. Counteracting Immunosenescence—Which Therapeutic Strategies Are Promising?
Martin et al. CD115+ monocytes protect microbially experienced mice against E. coli-induced sepsis
Sasaki et al. Pharmacodynamic and safety considerations for influenza vaccine and adjuvant design
Wu et al. Gene expression profiles identify both MyD88-independent and MyD88-dependent pathways involved in the maturation of dendritic cells mediated by heparan sulfate: a novel adjuvant
Chuwatthanakhajorn et al. Comparison of immune-related gene expression in two chicken breeds following infectious bronchitis virus vaccination
US20230021483A1 (en) Characteristic analysis method and classification of pharmaceutical components by using transcriptomes
US20210100897A1 (en) Methods for the stimulation of dendritic cell (dc) precursor population &#34;pre-dc&#34; and their uses thereof
Sommerfeld et al. Single cell RNA-seq in regenerative and fibrotic biomaterial environments defines new macrophage subsets
Paßlick et al. Nanovaccine impact on dendritic cells: transcriptome analysis enables new insights into antigen and adjuvant effects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886714

Country of ref document: EP

Effective date: 20190729