WO2018124083A1 - Oil equalization control device, refrigerant circuit system, and oil equalization control method - Google Patents

Oil equalization control device, refrigerant circuit system, and oil equalization control method Download PDF

Info

Publication number
WO2018124083A1
WO2018124083A1 PCT/JP2017/046672 JP2017046672W WO2018124083A1 WO 2018124083 A1 WO2018124083 A1 WO 2018124083A1 JP 2017046672 W JP2017046672 W JP 2017046672W WO 2018124083 A1 WO2018124083 A1 WO 2018124083A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
control
compressor
compressors
order
Prior art date
Application number
PCT/JP2017/046672
Other languages
French (fr)
Japanese (ja)
Inventor
隆博 加藤
達弘 安田
正幸 瀧川
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP17885453.5A priority Critical patent/EP3537061A4/en
Priority to CN201780079111.8A priority patent/CN110114622A/en
Publication of WO2018124083A1 publication Critical patent/WO2018124083A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21155Temperatures of a compressor or the drive means therefor of the oil

Definitions

  • the present invention relates to an oil equalization control device, a refrigerant circuit system, and an oil equalization control method.
  • Priority is claimed on Japanese Patent Application No. 2016-256135, filed Dec. 28, 2016, the content of which is incorporated herein by reference.
  • the low pressure portion of each compressor is piped (even A configuration in which oil pipes are connected may be adopted.
  • oil equalization control may be performed to eliminate an imbalance in the amount of refrigeration oil of each compressor.
  • a typical oil equalizing control for example, for a plurality of compressors operating at the same rotational speed, a pressure difference between the compressor and another by increasing the rotational speed of a part of the compressors. And move the refrigerator oil through the oil equalizing pipe from high pressure to low pressure.
  • Patent Document 1 discloses that the liquid level position of refrigeration oil in each compressor is detected by a liquid level sensor or the like, and the rotational speed of the compressor is controlled to reduce the difference in liquid level position. A technology for eliminating the uneven distribution of refrigeration oil is described.
  • the present invention provides an oil equalization control device, a refrigerant circuit system, and an oil equalization control method that can solve the above-mentioned problems.
  • the oil equalization control device in a refrigerant circuit including a plurality of compressors connected in parallel with each other, relates to the amount of refrigeration oil in the compressor for each of the plurality of compressors.
  • a control information determining unit for acquiring a state quantity
  • a control order determining unit for determining a control order of the compressor in oil equalization control according to an amount of refrigeration oil in the compressor based on the state quantity
  • the oil equalizing control unit performs oil leveling control by changing the rotational speed of at least one of the plurality of compressors based on the order determined by the unit.
  • control order determination unit determines the control order as the order in which the amounts of refrigeration oil are arranged in ascending order
  • oil equalizing control unit determines the control order as follows: The rotational speed of the compressor after changing the order is changed so that the pressure of the compressor after changing the order becomes relatively low.
  • the sensor information acquisition unit acquires, for each of the plurality of compressors, a measurement value of the pressure on the low pressure side, and the control order determination unit relatively The order of the compressors to lower the pressure is set in order from the one with the highest measurement value of the pressure.
  • the sensor information acquisition unit acquires the measurement value of the temperature below the dome for each of the plurality of compressors, and the control order determination unit relatively increases the pressure The order of the compressors to be reduced is set in order from the lower one of the measured temperature values.
  • the oil equalizing control section increases the rotational speed for each of the plurality of compressors in the order of the control for a predetermined time.
  • the refrigerant circuit system includes: a plurality of compressors connected in parallel to each other; an oil equalizing pipe connecting the plurality of compressors to each other; And an oil control device.
  • an oil equalizing control method is provided in a refrigerant circuit in which the oil equalizing control device includes a plurality of compressors connected in parallel with one another, wherein each of the plurality of compressors Based on the steps of acquiring a state quantity related to the amount of refrigeration oil, determining the control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressor based on the state amount, and based on the control order
  • the oil equalizing control is performed by changing the rotational speed of at least one of the plurality of compressors.
  • the oil equalizing control device According to the oil equalizing control device, the refrigerant circuit system, and the oil equalizing control method described above, it is possible to eliminate the imbalance of the refrigerator oil among the plurality of compressors and to improve the reliability of the system.
  • the refrigerant circuit system 100 is, for example, a refrigerant circuit system used for an air conditioner. As shown in FIG. 1, the refrigerant circuit system 100 includes compressors 1A and 1B, oil separators 2A and 2B, discharge pipes 3A and 3B, oil return pipes 4A and 4B, solenoid valves 5A and 5B, suction pipes 6A and 6B, and the like.
  • the refrigerant circuit system 100 shown in FIG. 1 schematically shows a basic configuration, and may further include other components.
  • the compressors 1A and 1B compress the refrigerant and supply the compressed high-pressure refrigerant to the refrigerant circuit.
  • the compressors 1A and 1B are connected in parallel to each other, and are controlled to operate with equal displacement during normal operation. For example, when the compressors 1A and 1B are the same model, the compressors 1A and 1B are operated at the same rotational speed.
  • the oil separators 2A and 2B are provided on the discharge side of the compressors 1A and 1B, respectively, and are devices for separating the refrigerator oil from the refrigerant mixed with the refrigerator oil fed through the discharge pipes 3A and 3B.
  • the oil separators 2A and 2B have, for example, a cylindrical shape in which the upper and lower sides are closed, and store the separated refrigeration oil.
  • each of the oil return pipes 4A and 4B is connected to the lower portion of the container of each of the oil separators 2A and 2B.
  • the opposite ends of the oil return pipes 4A, 4B are connected to the compressors 1A, 1B, respectively.
  • the oil return pipe 4A is provided with a solenoid valve 5A. By adjusting the opening degree of the solenoid valve 5A, the amount of refrigeration oil returned from the oil separator 2A to the compressor 1A can be adjusted.
  • the oil return pipe 4B is provided with a solenoid valve 5B, and by adjusting the opening degree of the solenoid valve 5B, it is possible to adjust the amount of refrigeration oil returned from the oil separator 2B to the compressor 1B.
  • the oil equalizing pipe 7 communicates the compressors 1A and 1B, and averages refrigerator oil stored in the two compressors.
  • the four-way valve 8 switches the flow direction of the refrigerant between the heating operation and the cooling operation.
  • the high pressure refrigerant discharged by the compressors 1A and 1B is guided to the gas pipe 15 by the four-way valve 8, and the indoor heat exchanger 13 (condenser) dissipates the heat of the refrigerant into the room .
  • the refrigerant liquefied by passing through the indoor heat exchanger 13 is reduced in pressure by the expansion valve 12, passes through the liquid pipe 14, and is supplied to the outdoor heat exchanger 10 (evaporator).
  • the receiver 11 provided in the liquid pipe 14 stores the liquefied liquid refrigerant.
  • the refrigerant vaporized in the outdoor heat exchanger 10 passes through the gas pipe 17, reaches the four-way valve 8, passes through the gas pipe 16, and is supplied to the accumulator 9.
  • the accumulator 9 is a pressure vessel provided on the upstream side of the compressors 1A and 1B.
  • the accumulator 9 performs gas-liquid separation of the refrigerant supplied to the compressors 1A and 1B.
  • the refrigerant gas separated by the accumulator 9 passes through the suction pipes 6A, 6B and is sucked into the compressors 1A, 1B, respectively.
  • the refrigerant circulates in the opposite direction to that during the heating operation. That is, the high-pressure refrigerant discharged by the compressors 1A and 1B is guided to the gas pipe 17 by the four-way valve 8, and the outdoor heat exchanger 10 (condenser), the liquid pipe 14, the expansion valve 12, the indoor heat exchanger It is supplied to 13 (evaporator).
  • the refrigerant that has exchanged heat with the air in the room by the indoor heat exchanger 13 passes through the gas pipe 15, is led to the gas pipe 16 by the four-way valve 8, and passes through the accumulator 9 to the compressors 1A and 1B. It is inhaled.
  • the refrigerant discharged from the compressors 1A and 1B includes refrigerator oil. Most of the refrigeration oil discharged by the compressors 1A, 1B is captured by the oil separators 2A, 2B and returned to the compressors 1A, 1B via the oil return pipes 4A, 4B. The other refrigeration oil circulates the refrigeration cycle formed as described above and flows into the accumulator 9. Part of the refrigeration oil flowing into the accumulator 9 is returned to the compressors 1A and 1B together with the vaporized refrigerant, and the remainder is stored in the accumulator 9.
  • the control device 20 freezes an appropriate amount of refrigeration oil every fixed operation time. Execute oil return control to recover the machine oil.
  • control is performed to recover refrigeration oil to the accumulator 9. Thereafter, the control device 20 performs control to gradually return the refrigeration oil collected by the accumulator 9 to the compressors 1A and 1B over time. At this time, as a result of performing control of returning refrigeration oil from the accumulator 9 to the compressors 1A and 1B, the control device 20 performs oil equalization control so that imbalance does not occur in refrigeration oil stored in the compressors 1A and 1B. .
  • a pressure sensor PA is provided on the suction side of the compressor 1A, and a pressure sensor PB is provided on the suction side of the compressor 1B.
  • a temperature sensor TA is provided below the dome of the compressor 1A, and a temperature sensor TB is provided below the dome of the compressor 1B.
  • a liquid level detection sensor LA for detecting the height of the oil level of the refrigerating machine oil is provided inside the compressor 1A, and a liquid level detection sensor LB is similarly provided inside the compressor 1B.
  • the control device 20 of the refrigerant circuit system 100 measures the pressure on the suction side (low pressure side) of the compressors 1A and 1B measured by the pressure sensors PA and PB, or the domes of the compressors 1A and 1B measured by the temperature sensors TA and TB. Based on the lower temperature or the height of the oil level measured by the liquid level detection sensors LA and LB, the oil leveling control is performed so that the compressor oil returns to the compressor preferentially from the compressor lacking the refrigerator oil in order Do.
  • the control device 20 will be described in detail with reference to FIG.
  • FIG. 2 is a schematic block diagram of an oil equalization control device in an embodiment of the present invention.
  • the control device 20 is, for example, a computer device such as a microcomputer.
  • the control device 20 is connected to pressure sensors PA, PB, temperature sensors TA, TB, liquid level detection sensors LA, LB, and compressors 1A, 1B.
  • the control device 20 includes a sensor information acquisition unit 21, a control order determination unit 22, an oil equalization control unit 23, and a storage unit 24.
  • the control device 20 performs various controls of the refrigerant circuit system 100 in addition to the oil equalization control, but in the present specification, the description of functions relating to other controls is omitted.
  • the sensor information acquisition unit 21 acquires, for each of the compressors 1A and 1B, a state quantity relating to the amount of refrigeration oil in the compressor. For example, the sensor information acquisition unit 21 acquires the pressure of the refrigerant on the suction side of the compressors 1A and 1B measured by the pressure sensors PA and PB. The sensor information acquisition unit 21 acquires the temperature below the dome of the compressors 1A and 1B measured by the temperature sensors TA and TB. The sensor information acquisition unit 21 acquires the liquid level heights of the compressors 1A and 1B measured by the liquid level detection sensors LA and LB.
  • the control order determination unit 22 determines the control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressors 1A and 1B based on the state quantities acquired by the sensor information acquisition unit 21. Specifically, the control order determination unit 22 determines to increase the rotational speed in order from the compressor in which the amount of refrigeration oil is small.
  • the control order the order of increasing the rotational speed of the compressor will be referred to as the control order.
  • the control order determination unit 22 arranges the pressure on the suction side in order from the highest pressure, and sets this as the control order.
  • the control order determination unit 22 arranges in order from the one where the temperature below the dome is low, and sets this as the control order.
  • the control order determination unit 22 arranges the oil levels of the refrigeration oil in order from the lower one and sets this as the control order.
  • the oil equalization control unit 23 performs oil equalization control by changing the rotational speed of at least one of the plurality of compressors 1A and the like based on the control order determined by the control order determination unit 22. More specifically, the oil equalizing control unit 23, in order of control, sets the rotational speed of the compressor for a predetermined time so that the pressure of the compressor in the order becomes relatively low compared to the remaining compressors. Raise it.
  • the storage unit 24 stores various information such as various measurement values acquired by the sensor information acquisition unit 21 and control parameters such as the rotational speed of the compressor after the increase.
  • the storage unit 24 stores a program for realizing the function of the control device 20.
  • the control order determination unit 22 and the oil equalization control unit 23 are functions implemented by a CPU (Central Processing Unit) included in the control device 20 reading and executing a program from the storage unit 24.
  • CPU Central Processing Unit
  • FIG. 3 is a diagram for explaining the control order of the compressor in the embodiment of the present invention.
  • FIG. 3 shows the control order of the suction side pressure of the compressor, the temperature below the dome, the position of the oil surface of the refrigerator oil, the amount of the refrigerator oil, and the rotational speed of the compressor.
  • the number of compressors is two
  • three compressions are shown in the table of FIG. 3 in order to more clearly explain the oil equalization control feature of the present embodiment.
  • the above relationship in the case of a system in which machines 1 to 3 are connected in parallel to one another is illustrated. In the case of the example shown in FIG.
  • the suction side pressure of the compressor 1, the temperature below the dome, and the position of the oil level of the refrigerator oil are respectively medium pressure, medium temperature, and medium among three compressors. Indicates that the oil level of the.
  • compressor 2 shows the highest pressure, lowest temperature, lowest oil level, among three
  • compressor 3 has the lowest pressure, highest temperature, highest oil level among three. Show that.
  • the pressure "high" of the compressor 2 indicates that the amount of refrigerator oil of the compressor 2 is the smallest among the three.
  • the refrigeration oil in the compressor has the property of absorbing heat generated by the motor of the compressor, so the temperature below the dome increases as the amount of refrigeration oil increases, and the temperature below the dome decreases as the amount of refrigeration oil decreases. Therefore, for example, the temperature “low” of the compressor 2 indicates that the amount of the refrigerator oil of the compressor 2 is the smallest among the three.
  • the value of "oil level” indicates that the amount of refrigerator oil in the compressor is high if it is high and low if it is low.
  • the oil level "low” of the compressor indicates that the amount of refrigerating machine oil of the compressor 2 is the smallest among the three.
  • the amount of refrigeration oil of the compressor 2 is the smallest, and then the amount of refrigeration oil of the compressor 1 is the smallest, and the amount of refrigeration oil of the compressor 3 Will be the most common.
  • the control order determination unit 22 determines the compressor as described above based on the state quantities (pressure, temperature, oil level height) related to the amount of refrigeration oil in the compressors 1 to 3 acquired by the sensor information acquisition unit 21.
  • the amount of refrigeration oil in 1 to 3 is determined, and it is decided to increase the rotational speed in order from the compressor with the smaller amount of refrigeration oil.
  • the control order determination unit 22 first increases the rotational speed of the compressor 2 with the least amount of refrigeration oil, and then the compressor 1 with the least amount of refrigeration oil and finally compression with the most amount of refrigeration oil It is decided to increase the rotational speed of the machine 3. Then, based on the order determined by the control order determination unit 22, the oil equalizing control unit 23 first increases the rotational speed of the compressor 2 for a predetermined time. As a result, the pressure of the compressor 2 decreases, and the refrigerator oil moves from the other compressors 1 and 3 having a high pressure to the compressor 2 via the oil equalizing pipe 7.
  • the oil equalizing control unit 23 When the predetermined time has elapsed, the oil equalizing control unit 23 returns the rotational speed of the compressor 2 to the original speed, and then increases the rotational speed of the compressor 1 for a predetermined time. When the predetermined time further elapses, the oil equalizing control unit 23 returns the rotational speed of the compressor 1 to the original speed, and finally raises the rotational speed of the compressor 3 for a predetermined time.
  • oil equalization control is performed in which the rotational speed is increased for a predetermined time in order from the compressor with the smaller amount of refrigeration oil.
  • FIG. 4 is a diagram for explaining rotational speed control of a compressor according to an embodiment of the present invention.
  • FIG. 4 shows an example of oil equalization control according to the present embodiment that is performed at two different times during operation of the refrigerant circuit system 100.
  • FIG. 4A and FIG. 4B show correspondence tables of the state quantities of the compressors 1A and 1B and the speed-up order at two time points (start timings 1 and 2).
  • FIG. 4C shows the transition of the rotational speed of the compressor 1A.
  • FIG. 4 (d) shows the transition of the rotational speed of the compressor 1B.
  • the pressure of the compressor 1A is "high", the pressure of the compressor 1B is "low”, etc. There is. That is, at the start timing 1, the amount of refrigeration oil of the compressor 1A is smaller than that of the compressor 1B.
  • the control order determination unit 22 determines to increase the rotational speed by a predetermined time in the order of the compressor 1A and the compressor 1B. Based on this determination, the oil equalizing control unit 23 first operates the compressor 1A by increasing the rotational speed to a predetermined rotational speed for a predetermined time H1.
  • the rotational speed of the compressor 1B may be unchanged as it is, or the rotational speed may be reduced to a predetermined rotational speed for a predetermined time H1 as illustrated in FIG.
  • the pressure difference between the compressors 1A and 1B can be further increased.
  • the degree of increase in the rotational speed of the compressor 1A can be suppressed, and the operation stop of the compressor 1A due to the operation of the protection control can be prevented.
  • the oil equalizing control unit 23 replaces the compressors 1A and 1B, increases the rotational speed to a predetermined value for the predetermined time H1, and operates the compressor 1B for the predetermined time H1.
  • the rotational speed is reduced to a predetermined value to operate the compressor 1A.
  • the oil equalizing control unit 23 restores the rotational speeds of the compressors 1A and 1B and ends the oil equalization control. After that, for a while, the control device 20 normally operates the compressors 1A and 1B at the rotational speed according to the load.
  • FIG. 4B shows state quantities of the compressors 1A and 1B at the start timing 2 acquired by the sensor information acquisition unit 21.
  • the refrigeration oil of the compressor 1A is larger than the refrigeration oil of the compressor 1B.
  • the control order determination unit 22 determines to perform control to increase the rotational speed in the order of the compressor 1B and the compressor 1A as the control order of the compressor 1A and the compressor 1B in oil equalization control.
  • the oil equalizing control unit 23 first operates to increase the rotational speed of the compressor 2 to a predetermined value for a predetermined time H1 and reduces the rotational speed to a predetermined value for a predetermined time H1 for one compressor 1A. Let me drive. If these operations are continued for a predetermined time H1, then the oil equalizing control unit 23 switches the compressors 1A and 1B, raises the rotational speed to a predetermined value for a predetermined time H1, and operates the compressor 1A. The compressor 1B is operated with the rotational speed reduced to a predetermined value for a time H1. When these operations are continued for a predetermined time H1, the oil equalizing control unit 23 restores the rotational speeds of the compressors 1A and 1B, and ends the second oil equalizing control.
  • the rotational speed is often increased according to a predetermined order without considering the amount of refrigeration oil in the compressor.
  • control to distribute the refrigeration oil to the compressor having a relatively large amount of refrigeration oil is executed first, and an imbalance may occur, or the protection function is activated in that state to equalize.
  • the imbalance of the refrigerator oil may be further aggravated by the execution of the oil equalization control.
  • the rotational speed is set to return the refrigeration oil to the compressor in order from the one with the smallest amount of refrigeration oil. Control to raise. Since the control is performed in the direction in which the refrigeration oil becomes uniform, the imbalance does not increase during oil equalization control, and even if the oil equalization control is not completed due to the activation of the protective function, etc. It does not become worse than before the start of control.
  • FIG. 5 is a flowchart showing an example of oil equalization control according to an embodiment of the present invention.
  • the flow of oil equalization processing will be described using the refrigerant circuit system 100 of FIG. 1 as an example, with reference to FIG. 5.
  • the sensor information acquisition unit 21 acquires sensor information on all the compressors (1A, 1B) (step S11). Specifically, the sensor information acquisition unit 21 acquires measurement values of the pressure on the suction side of the compressors 1A and 1B by the pressure sensors PA and PB.
  • the sensor information acquisition part 21 acquires the measured value of the temperature under the domes of the compressors 1A and 1B by the temperature sensors TA and TB.
  • the sensor information acquisition part 21 acquires the measured value of the height of the oil level of compressors 1A, 1B by liquid level detection sensor LA, LB.
  • the sensor information acquisition unit 21 outputs the acquired various measurement values to the control order determination unit 22.
  • the control order determination unit 22 determines the control order of all the compressors 1A and 1B in ascending order of the amount of refrigeration oil in the compressors (step S12). ). For example, when the control order determination unit 22 determines the control order based on the measurement values of the pressure sensors PA and PB, the control order determination unit 22 determines that the measurement value of the pressure sensor PA ⁇ the measurement value of the pressure sensor PB. The order of the compressor 1B and the compressor 1A is set in ascending order of the amount of. The control order determination unit 22 determines to increase the rotational speed in the order of the compressor 1B and the compressor 1A.
  • the control order determination unit 22 sets the control order of the compressor 1A and the compressor 1B in ascending order of the amount of refrigeration oil, and the compressor 1A, the compressor It is decided to increase the rotational speed in the order of 1B.
  • the control order determination unit 22 determines the control order based on the measurement values of the temperature sensors TA and TB, if the measurement order determination unit 22 determines that the measurement value of the temperature sensor TA ⁇ the measurement value of the temperature sensor TB, the refrigerator oil
  • the control order of the compressor 1A and the compressor 1B is set in the ascending order of the amount of d, and it is decided to increase the rotational speed in the order of the compressor 1A and the compressor 1B.
  • the control order determination unit 22 determines the control order based on the measurement values of the liquid level detection sensors LA and LB, if the measurement value of the liquid level detection sensor LA ⁇ the measurement value of the liquid level detection sensor LB, the control order is determined.
  • the section 22 sets the control order such as the compressor 1A and the compressor 1B in ascending order of the amount of refrigerating machine oil, and decides to increase the rotational speed of the compressor in the order of the compressor 1A and the compressor 1B.
  • the refrigerant circuit system 100 illustrated in FIG. 1 includes three types of sensors such as the pressure sensor PA, the temperature sensor TA, and the liquid level detection sensor LA, etc. It is sufficient if at least one type of sensor is provided.
  • the control order determination unit 22 determines the control order of all the compressors 1A and 1B based on the measurement values measured by at least one type of measurement values among the measurement values measured by the various sensors.
  • the control order determination unit 22 outputs the determined control order to the oil equalization control unit 23.
  • the oil equalizing control unit 23 increases the rotational speed of the compressor in the control order determined by the control order determination unit 22 (step S13). For example, when the control order is the order of the compressor 1A and the compressor 1B, the oil equalizing control unit 23 increases the rotational speed of the compressor 1A for a predetermined time, and then returns the rotational speed to the original rotational speed. At this time, while increasing the rotational speed of the compressor 1A, the oil equalizing control unit 23 may perform control to reduce the rotational speed of the compressor 1B for a predetermined time, and then return it to the original state. Information on the rotational speed after rising and the rotational speed after decreasing is recorded in the storage unit 24.
  • the oil equalizing control unit 23 controls the rotational speeds of the compressors 1A and 1B based on the information.
  • the oil equalizing control unit 23 increases the rotational speed of the compressor 1B for a predetermined time, and then performs control to restore the original rotational speed.
  • the oil equalizing control unit 23 may perform control to reduce the rotational speed of the compressor 1A by a predetermined time, and then return it to the original state.
  • 1 time oil equalization control is complete
  • the control of increasing the rotational speed of all the compressors may be repeated not only once but a plurality of times in the control order determined by the control order determination unit 22 in one oil equalization control.
  • the control device 20 controls the rotational speed of the compressors 1A and 1B in the same procedure.
  • the control device 20 controls the rotational speed of the compressors 1A and 1B in the same procedure.
  • FIG. 6 is a second schematic diagram showing an example of a refrigerant circuit system in an embodiment of the present invention.
  • the refrigerant circuit system 100 ′ includes two outdoor units 30A and 30B.
  • the outdoor unit 30A includes a compressor 1A, an oil separator 2A, a discharge pipe 3A, an oil return pipe 4A, a suction pipe 6A, a four-way valve 8A, an accumulator 9A, an outdoor heat exchanger 10A, and the like.
  • the outdoor unit 30B includes a compressor 1B, an oil separator 2B, a discharge pipe 3B, an oil return pipe 4B, a suction pipe 6B, a four-way valve 8B, an accumulator 9B, an outdoor heat exchanger 10B and the like.
  • the compressors 1A and 1B of the outdoor unit 30A and the outdoor unit 30B are connected by an oil equalizing pipe 7, respectively.
  • the outdoor units 30A and 30B, the expansion valve 12, and the indoor heat exchanger 13 are connected by a liquid pipe 14 and a gas pipe 15.
  • a pressure sensor PA is provided on the suction side of the compressor 1A, a temperature sensor TA is provided below the dome, and a liquid level detection sensor LA is provided inside the compressor 1A. The same applies to the compressor 1B.
  • the refrigerant circuit system 100 ′ shown in FIG. 6 schematically shows a basic configuration, and may further include other components.
  • two or more indoor units 40 including the expansion valve 12 and the indoor heat exchanger 13 may be provided.
  • the compressors 1A and 1B are connected in parallel, and are operated at the same rotational speed during normal operation.
  • the control device 20 executes the oil return operation every predetermined time, and thereafter executes oil equalization control after the predetermined time has elapsed. It is possible to apply the oil equalization control of the present embodiment to the refrigerant circuit system 100 'including the plurality of outdoor units 30A and 30B as described above.
  • the oil pressure control will be described by taking the refrigerant circuit system 100 'as an example.
  • the sensor information acquisition unit 21 acquires measurement values of the pressure sensor PA of the outdoor unit 30A and the pressure sensor PB of the outdoor unit 30B (step S11).
  • the control order determination unit 22 acquires those measurement values and determines the control order (step S12). For example, in the case where the measurement value of pressure sensor PA> the measurement value of pressure sensor PB, control order determination unit 22 first determines compressor rotation speed of compressor 1A of outdoor unit 30A and then compressor 1B of outdoor unit 30B. Decide to raise it.
  • the oil equalizing control unit 23 first increases the rotational speed of the compressor 1A for a predetermined time in the control order determined by the control order determination unit 22, and then returns the rotational speed to the original rotational speed.
  • the oil equalizing control unit 23 increases the rotational speed of the compressor 1B for a predetermined time, and then performs control to restore the original rotational speed (step S13). Thereby, the imbalance of the quantity of refrigeration oil of compressor 1A of outdoor unit 30A and compressor 1B of outdoor unit 30B is canceled.
  • the number of compressors connected in parallel with each other in the configuration of FIG. 1 may be three or more.
  • the number of outdoor units 30A and the like may be three or more.
  • control may be performed to reduce the rotational speed of the compressor in descending order of the amount of refrigeration oil in the compressor.
  • the oil equalizing control device According to the oil equalizing control device, the refrigerant circuit system, and the oil equalizing control method described above, it is possible to eliminate the imbalance of the refrigerator oil among the plurality of compressors and to improve the reliability of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

An oil equalization control device, provided with: a sensor information acquisition unit for acquiring, in a refrigerant circuit provided with a plurality of compressors, a state quantity relating to the amount of refrigerating machine oil in a compressor, for each of the plurality of compressors; a control sequence determination unit for determining the control sequence for the compressors in oil equalization control in accordance with the amounts of the refrigerating machine oil in the compressors based on the state quantities; and an oil equalization control unit for varying the rotation speed of at least one of the plurality of compressors and performing oil equalization control on the basis of the order determined by the control sequence determination unit.

Description

均油制御装置、冷媒回路システム、及び均油制御方法Oil equalization control device, refrigerant circuit system, and oil equalization control method
 本発明は、均油制御装置、冷媒回路システム、及び均油制御方法に関する。
 本願は、2016年12月28日に、日本に出願された特願2016-256135号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an oil equalization control device, a refrigerant circuit system, and an oil equalization control method.
Priority is claimed on Japanese Patent Application No. 2016-256135, filed Dec. 28, 2016, the content of which is incorporated herein by reference.
 1台の室外機に複数の圧縮機を備える空調機や、複数の室外機を備える空調システムにおいて、圧縮機間の冷凍機油の不均衡を回避するため、各圧縮機の低圧部分を配管(均油管)で接続する構成が採用される場合がある。さらに、各圧縮機の冷凍機油の量の不均衡を解消するために均油制御を行う場合がある。一般的な均油制御では、例えば、通常は同じ回転速度で運転を行う複数の圧縮機について、その一部の圧縮機の回転速度を上昇させることで、他の圧縮機との間の圧力差を生じさせ、圧力の高い方から低い方へと均油管を通じて冷凍機油を移動させる。 In an air conditioner including a plurality of compressors in one outdoor unit, or in an air conditioning system including a plurality of outdoor units, the low pressure portion of each compressor is piped (even A configuration in which oil pipes are connected may be adopted. Furthermore, oil equalization control may be performed to eliminate an imbalance in the amount of refrigeration oil of each compressor. In a typical oil equalizing control, for example, for a plurality of compressors operating at the same rotational speed, a pressure difference between the compressor and another by increasing the rotational speed of a part of the compressors. And move the refrigerator oil through the oil equalizing pipe from high pressure to low pressure.
 関連する技術として、特許文献1には、各圧縮機内の冷凍機油の液面位置を液面センサ等で検出し、液面位置の差が減少するように圧縮機の回転速度を制御することにより、冷凍機油の偏在を解消する技術が記載されている。 As a related technology, Patent Document 1 discloses that the liquid level position of refrigeration oil in each compressor is detected by a liquid level sensor or the like, and the rotational speed of the compressor is controlled to reduce the difference in liquid level position. A technology for eliminating the uneven distribution of refrigeration oil is described.
特開2005-241070号公報JP 2005-241070 A
 ところで、上述の一般的な均油制御では、圧縮機ごとに予め順番を割り当て、この順番に沿って、回転速度を上昇させる制御を行うことが多い。均油制御の本来の目的を考えると、冷凍機油の量が少ない圧縮機から順に冷凍機油を回復させることが望ましい。その場合、冷凍機油の量が少ない圧縮機の回転速度を上昇させることによってこの圧縮機の圧力を低下させ、相対的に圧力の高い他の圧縮機から冷凍機油を呼び込む必要がある。ところが、上記した一般的な均油制御では、個々の圧縮機の冷凍機油の量を考慮せず、予め定めた番号順に回転速度の上昇を行うため、例えば、一番目の圧縮機に貯留されている冷凍機油の量が元々多い場合など、さらにその冷凍機油の量を増加させ、結果として不均衡をより悪化させる可能性がある。 By the way, in the above-mentioned general oil equalization control, order is allocated beforehand for every compressor, and control which raises a rotational speed in this order is performed in many cases. Considering the original purpose of oil equalization control, it is desirable to recover refrigeration oil in order from a compressor with a smaller amount of refrigeration oil. In that case, it is necessary to reduce the pressure of the compressor by increasing the rotational speed of the compressor with a small amount of refrigeration oil, and to draw the refrigeration oil from another relatively high pressure compressor. However, in the above-described general oil equalization control, the rotational speed is increased in the order of a predetermined number without considering the amount of refrigeration oil of each compressor, for example, it is stored in the first compressor. If the amount of existing refrigeration oil is originally large, the amount of refrigeration oil may be further increased, resulting in further worsening the imbalance.
 本発明は、上述の課題を解決することのできる均油制御装置、冷媒回路システム、及び均油制御方法を提供する。 The present invention provides an oil equalization control device, a refrigerant circuit system, and an oil equalization control method that can solve the above-mentioned problems.
 本発明の第1の態様によれば、均油制御装置は、互いに並列に接続された複数の圧縮機を備える冷媒回路において、前記複数の圧縮機の各々について、圧縮機内の冷凍機油の量に関する状態量を取得するセンサ情報取得部と、前記状態量に基づく前記圧縮機内の冷凍機油の量に応じて、均油制御における圧縮機の制御順を決定する制御順決定部と、前記制御順決定部が決定した順番に基づいて、前記複数の圧縮機のうち少なくとも一つの回転速度を変化させて均油制御を行う均油制御部と、を備える。 According to a first aspect of the present invention, in a refrigerant circuit including a plurality of compressors connected in parallel with each other, the oil equalization control device relates to the amount of refrigeration oil in the compressor for each of the plurality of compressors. A control information determining unit for acquiring a state quantity, a control order determining unit for determining a control order of the compressor in oil equalization control according to an amount of refrigeration oil in the compressor based on the state quantity, and the control order determination The oil equalizing control unit performs oil leveling control by changing the rotational speed of at least one of the plurality of compressors based on the order determined by the unit.
 本発明の第2の態様によれば、前記制御順決定部は、前記制御順を、冷凍機油の量が少ない方から順に並べた順番として決定し、前記均油制御部は、前記制御順に、順番をむかえた圧縮機の圧力が相対的に低圧となるように当該順番をむかえた圧縮機の回転速度を変化させる。 According to the second aspect of the present invention, the control order determination unit determines the control order as the order in which the amounts of refrigeration oil are arranged in ascending order, and the oil equalizing control unit determines the control order as follows: The rotational speed of the compressor after changing the order is changed so that the pressure of the compressor after changing the order becomes relatively low.
 本発明の第3の態様によれば、前記センサ情報取得部は、前記複数の圧縮機の各々について、その低圧側の圧力の計測値を取得し、前記制御順決定部は、相対的に圧力を低下させる圧縮機の順番を、前記圧力の計測値が高い方から順に設定する。 According to the third aspect of the present invention, the sensor information acquisition unit acquires, for each of the plurality of compressors, a measurement value of the pressure on the low pressure side, and the control order determination unit relatively The order of the compressors to lower the pressure is set in order from the one with the highest measurement value of the pressure.
 本発明の第4の態様によれば、前記センサ情報取得部は、前記複数の圧縮機の各々について、ドーム下の温度の計測値を取得し、前記制御順決定部は、相対的に圧力を低下させる圧縮機の順番を、前記温度の計測値が低い方から順に設定する。 According to the fourth aspect of the present invention, the sensor information acquisition unit acquires the measurement value of the temperature below the dome for each of the plurality of compressors, and the control order determination unit relatively increases the pressure The order of the compressors to be reduced is set in order from the lower one of the measured temperature values.
 本発明の第5の態様によれば、前記均油制御部は、前記複数の圧縮機の全てについて、前記制御順に所定時間ずつ回転速度を上昇させる。 According to the fifth aspect of the present invention, the oil equalizing control section increases the rotational speed for each of the plurality of compressors in the order of the control for a predetermined time.
 本発明の第6の態様によれば冷媒回路システムは、互いに並列に接続された複数の圧縮機と、前記複数の圧縮機を互いに接続する均油管と、上述の何れか一つに記載の均油制御装置と、を備える。 According to a sixth aspect of the present invention, the refrigerant circuit system includes: a plurality of compressors connected in parallel to each other; an oil equalizing pipe connecting the plurality of compressors to each other; And an oil control device.
 本発明の第7の態様よれば、均油制御方法は、均油制御装置が、互いに並列に接続された複数の圧縮機を備える冷媒回路において、前記複数の圧縮機の各々について、圧縮機内の冷凍機油の量に関する状態量を取得する工程と、前記状態量に基づく前記圧縮機内の冷凍機油の量に応じて、均油制御における圧縮機の制御順を決定する工程と、前記制御順に基づいて、前記複数の圧縮機のうち少なくとも一つの回転速度を変化させて均油制御を行う。 According to a seventh aspect of the present invention, an oil equalizing control method is provided in a refrigerant circuit in which the oil equalizing control device includes a plurality of compressors connected in parallel with one another, wherein each of the plurality of compressors Based on the steps of acquiring a state quantity related to the amount of refrigeration oil, determining the control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressor based on the state amount, and based on the control order The oil equalizing control is performed by changing the rotational speed of at least one of the plurality of compressors.
 上記した均油制御装置、冷媒回路システム、及び均油制御方法によれば、複数の圧縮機間の冷凍機油の不均衡を解消し、システムの信頼性を向上させることができる。 According to the oil equalizing control device, the refrigerant circuit system, and the oil equalizing control method described above, it is possible to eliminate the imbalance of the refrigerator oil among the plurality of compressors and to improve the reliability of the system.
本発明の一実施形態における冷媒回路システムの一例を示す第1の概略図である。It is a 1st schematic which shows an example of the refrigerant circuit system in one Embodiment of this invention. 本発明の一実施形態における制御装置の概略ブロック図である。It is a schematic block diagram of a control device in one embodiment of the present invention. 本発明の一実施形態における圧縮機の制御順を説明する図である。It is a figure explaining the control order of the compressor in one embodiment of the present invention. 本発明の一実施形態における圧縮機の回転速度制御の一例を説明する図である。It is a figure explaining an example of rotation speed control of a compressor in one embodiment of the present invention. 本発明の一実施形態における均油制御の一例を示すフローチャートである。It is a flow chart which shows an example of oil equivalent control in one embodiment of the present invention. 本発明の一実施形態における冷媒回路システムの一例を示す第2の概略図である。It is a 2nd schematic diagram showing an example of the refrigerant circuit system in one embodiment of the present invention.
<実施形態>
 以下、本発明の一実施形態による冷媒回路システムを図1~図6を参照して説明する。
 本発明の一実施形態における冷媒回路システムの一例を示す第1の概略図である。
 冷媒回路システム100は、例えば、空気調和機に用いられる冷媒回路システムである。図1に示すように冷媒回路システム100は、圧縮機1A,1B、オイルセパレータ2A,2B、吐出管3A,3B、油戻し管4A,4B、電磁弁5A,5B、吸入管6A,6B、均油管7、四方弁8、アキュムレータ9、室外熱交換器10、レシーバ11、膨張弁12、室内熱交換器13、液管14、ガス管15,16,17、制御装置20を含んで構成される。図1に示す冷媒回路システム100は、基本的な構成を模式的に示したものであって、さらに他の構成要素が含まれていてもよい。
Embodiment
Hereinafter, a refrigerant circuit system according to an embodiment of the present invention will be described with reference to FIGS. 1 to 6.
It is a 1st schematic which shows an example of the refrigerant circuit system in one Embodiment of this invention.
The refrigerant circuit system 100 is, for example, a refrigerant circuit system used for an air conditioner. As shown in FIG. 1, the refrigerant circuit system 100 includes compressors 1A and 1B, oil separators 2A and 2B, discharge pipes 3A and 3B, oil return pipes 4A and 4B, solenoid valves 5A and 5B, suction pipes 6A and 6B, and the like. An oil pipe 7, a four-way valve 8, an accumulator 9, an outdoor heat exchanger 10, a receiver 11, an expansion valve 12, an indoor heat exchanger 13, a liquid pipe 14, gas pipes 15, 16 and 17, and a control device 20 are included. . The refrigerant circuit system 100 shown in FIG. 1 schematically shows a basic configuration, and may further include other components.
 圧縮機1A,1Bは、冷媒を圧縮し、圧縮した高圧冷媒を冷媒回路に供給する。圧縮機1A,1Bは、互いに並列に接続されており、通常運転時において、同等の押しのけ量で運転するように制御される。例えば、圧縮機1A,1Bが同じ機種の場合、圧縮機1A,1Bは、同じ回転速度で運転される。
 オイルセパレータ2A,2Bは、それぞれ圧縮機1A,1Bの吐出側に設けられ、吐出管3A,3Bを通って送り込まれる冷凍機油が混在した冷媒から、冷凍機油を分離する装置である。オイルセパレータ2A,2Bは、例えば、上下が封鎖された円筒形状を有しており、分離された冷凍機油を貯留する。
 油戻し管4A,4Bの一端は、それぞれオイルセパレータ2A,2Bの容器の下部に接続されている。油戻し管4A,4Bの反対側の端部は、それぞれ圧縮機1A,1Bに接続されている。油戻し管4Aには、電磁弁5Aが設けられており、電磁弁5Aの開度を調節することにより、オイルセパレータ2Aから圧縮機1Aに戻る冷凍機油の量を調整することができる。同様に油戻し管4Bには、電磁弁5Bが設けられており、電磁弁5Bの開度を調節することにより、オイルセパレータ2Bから圧縮機1Bに戻る冷凍機油の量を調整することができる。
 均油管7は、圧縮機1A、1Bを連通し、2つの圧縮機が貯留する冷凍機油を平均化する。
The compressors 1A and 1B compress the refrigerant and supply the compressed high-pressure refrigerant to the refrigerant circuit. The compressors 1A and 1B are connected in parallel to each other, and are controlled to operate with equal displacement during normal operation. For example, when the compressors 1A and 1B are the same model, the compressors 1A and 1B are operated at the same rotational speed.
The oil separators 2A and 2B are provided on the discharge side of the compressors 1A and 1B, respectively, and are devices for separating the refrigerator oil from the refrigerant mixed with the refrigerator oil fed through the discharge pipes 3A and 3B. The oil separators 2A and 2B have, for example, a cylindrical shape in which the upper and lower sides are closed, and store the separated refrigeration oil.
One end of each of the oil return pipes 4A and 4B is connected to the lower portion of the container of each of the oil separators 2A and 2B. The opposite ends of the oil return pipes 4A, 4B are connected to the compressors 1A, 1B, respectively. The oil return pipe 4A is provided with a solenoid valve 5A. By adjusting the opening degree of the solenoid valve 5A, the amount of refrigeration oil returned from the oil separator 2A to the compressor 1A can be adjusted. Similarly, the oil return pipe 4B is provided with a solenoid valve 5B, and by adjusting the opening degree of the solenoid valve 5B, it is possible to adjust the amount of refrigeration oil returned from the oil separator 2B to the compressor 1B.
The oil equalizing pipe 7 communicates the compressors 1A and 1B, and averages refrigerator oil stored in the two compressors.
 四方弁8は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。例えば、暖房運転時には、圧縮機1A,1Bが吐出した高圧の冷媒は、四方弁8によって、ガス管15へと導かれ、室内熱交換器13(凝縮器)が冷媒の熱を室内へ放熱する。室内熱交換器13を通過して液化した冷媒は、膨張弁12によって低圧化され、液管14を通過して室外熱交換器10(蒸発器)へと供給される。液管14に設けられたレシーバ11は、液化された液体の冷媒を貯留する。室外熱交換器10にて気化した冷媒は、ガス管17を通過して、四方弁8へ至り、ガス管16を通過してアキュムレータ9へ供給される。アキュムレータ9は、圧縮機1A,1Bの上流側に設けられている圧力容器である。アキュムレータ9は、圧縮機1A,1Bに供給される冷媒の気液分離を行う。アキュムレータ9で分離された冷媒ガスは、吸入管6A,6Bを通過してそれぞれ圧縮機1A,1Bへと吸入される。 The four-way valve 8 switches the flow direction of the refrigerant between the heating operation and the cooling operation. For example, in the heating operation, the high pressure refrigerant discharged by the compressors 1A and 1B is guided to the gas pipe 15 by the four-way valve 8, and the indoor heat exchanger 13 (condenser) dissipates the heat of the refrigerant into the room . The refrigerant liquefied by passing through the indoor heat exchanger 13 is reduced in pressure by the expansion valve 12, passes through the liquid pipe 14, and is supplied to the outdoor heat exchanger 10 (evaporator). The receiver 11 provided in the liquid pipe 14 stores the liquefied liquid refrigerant. The refrigerant vaporized in the outdoor heat exchanger 10 passes through the gas pipe 17, reaches the four-way valve 8, passes through the gas pipe 16, and is supplied to the accumulator 9. The accumulator 9 is a pressure vessel provided on the upstream side of the compressors 1A and 1B. The accumulator 9 performs gas-liquid separation of the refrigerant supplied to the compressors 1A and 1B. The refrigerant gas separated by the accumulator 9 passes through the suction pipes 6A, 6B and is sucked into the compressors 1A, 1B, respectively.
 冷房運転時には、冷媒は、暖房運転時とは逆方向に循環する。つまり、圧縮機1A,1Bが吐出した高圧の冷媒は、四方弁8によって、ガス管17へと導かれ、室外熱交換器10(凝縮器)、液管14、膨張弁12、室内熱交換器13(蒸発器)へと供給される。室内熱交換器13にて室内の空気と熱交換を行った冷媒は、ガス管15を通過して、四方弁8によってガス管16へと導かれ、アキュムレータ9を介して、圧縮機1A,1Bへと吸入される。 During the cooling operation, the refrigerant circulates in the opposite direction to that during the heating operation. That is, the high-pressure refrigerant discharged by the compressors 1A and 1B is guided to the gas pipe 17 by the four-way valve 8, and the outdoor heat exchanger 10 (condenser), the liquid pipe 14, the expansion valve 12, the indoor heat exchanger It is supplied to 13 (evaporator). The refrigerant that has exchanged heat with the air in the room by the indoor heat exchanger 13 passes through the gas pipe 15, is led to the gas pipe 16 by the four-way valve 8, and passes through the accumulator 9 to the compressors 1A and 1B. It is inhaled.
 ところで、圧縮機1A,1Bが吐出した冷媒には冷凍機油が含まれる。圧縮機1A,1Bが吐出した冷凍機油の多くは、オイルセパレータ2A,2Bにて捕捉され、油戻し管4A,4Bを経由して圧縮機1A,1Bに戻される。それ以外の冷凍機油は、上記のように形成された冷凍サイクルを循環し、アキュムレータ9に流入する。アキュムレータ9に流入した冷凍機油の一部は、気化した冷媒とともに圧縮機1A,1Bへと戻り、残りはアキュムレータ9にて貯留される。 The refrigerant discharged from the compressors 1A and 1B includes refrigerator oil. Most of the refrigeration oil discharged by the compressors 1A, 1B is captured by the oil separators 2A, 2B and returned to the compressors 1A, 1B via the oil return pipes 4A, 4B. The other refrigeration oil circulates the refrigeration cycle formed as described above and flows into the accumulator 9. Part of the refrigeration oil flowing into the accumulator 9 is returned to the compressors 1A and 1B together with the vaporized refrigerant, and the remainder is stored in the accumulator 9.
 圧縮機1A,1Bへ回収される冷凍機油の量が足りなくなると、圧縮機1A,1Bに焼き付き等の不具合が生じるため、制御装置20は、例えば一定の運転時間ごとに、適切な量の冷凍機油が回収されるよう油戻し制御を実行する。油戻し制御には様々な方法が存在するが、冷媒回路システム100では、例えば、冷凍機油をアキュムレータ9に回収する制御を行う。その後、制御装置20は、アキュムレータ9に回収された冷凍機油を、時間をかけて徐々に圧縮機1A,1Bへ戻す制御を行う。このとき、アキュムレータ9から圧縮機1A,1Bへ冷凍機油を戻す制御を行った結果、圧縮機1A,1Bが貯留する冷凍機油に不均衡が生じないように制御装置20は、均油制御を行う。 If the amount of refrigeration oil recovered to the compressors 1A and 1B is insufficient, problems such as burn-in occur in the compressors 1A and 1B. Therefore, for example, the control device 20 freezes an appropriate amount of refrigeration oil every fixed operation time. Execute oil return control to recover the machine oil. Although various methods exist for oil return control, in the refrigerant circuit system 100, for example, control is performed to recover refrigeration oil to the accumulator 9. Thereafter, the control device 20 performs control to gradually return the refrigeration oil collected by the accumulator 9 to the compressors 1A and 1B over time. At this time, as a result of performing control of returning refrigeration oil from the accumulator 9 to the compressors 1A and 1B, the control device 20 performs oil equalization control so that imbalance does not occur in refrigeration oil stored in the compressors 1A and 1B. .
 圧縮機1Aの吸入側には圧力センサPA、圧縮機1Bの吸入側には圧力センサPBが設けられている。圧縮機1Aのドーム下には温度センサTA、圧縮機1Bのドーム下には温度センサTBが設けられている。さらに、圧縮機1Aの内部には冷凍機油の油面の高さを検出する液面検出センサLAが設けられ、同様に圧縮機1Bの内部には液面検出センサLBが設けられている。これらのセンサは、全て設けられている必要は無く、例えば、圧力センサPA、PBのみが設けられていてもよいし、温度センサTA、TBのみが設けられていてもよい。
 冷媒回路システム100の制御装置20は、圧力センサPA、PBが計測した圧縮機1A,1Bの吸入側(低圧側)の圧力、または、温度センサTA、TBが計測した圧縮機1A,1Bのドーム下温度、または、液面検出センサLA、LBが計測した油面の高さに基づいて、冷凍機油の足りない圧縮機から順に優先的にその圧縮機に冷凍機油が戻るように均油制御を行う。制御装置20については、図2を用いて詳しく説明する。
A pressure sensor PA is provided on the suction side of the compressor 1A, and a pressure sensor PB is provided on the suction side of the compressor 1B. A temperature sensor TA is provided below the dome of the compressor 1A, and a temperature sensor TB is provided below the dome of the compressor 1B. Further, a liquid level detection sensor LA for detecting the height of the oil level of the refrigerating machine oil is provided inside the compressor 1A, and a liquid level detection sensor LB is similarly provided inside the compressor 1B. These sensors do not have to be all provided. For example, only the pressure sensors PA and PB may be provided, or only the temperature sensors TA and TB may be provided.
The control device 20 of the refrigerant circuit system 100 measures the pressure on the suction side (low pressure side) of the compressors 1A and 1B measured by the pressure sensors PA and PB, or the domes of the compressors 1A and 1B measured by the temperature sensors TA and TB. Based on the lower temperature or the height of the oil level measured by the liquid level detection sensors LA and LB, the oil leveling control is performed so that the compressor oil returns to the compressor preferentially from the compressor lacking the refrigerator oil in order Do. The control device 20 will be described in detail with reference to FIG.
 図2は、本発明の一実施形態における均油制御装置の概略ブロック図である。
 制御装置20は、例えばマイコン等のコンピュータ装置である。制御装置20は、圧力センサPA,PB、温度センサTA,TB、液面検出センサLA,LB、圧縮機1A,1Bと接続されている。図2に示すように制御装置20は、センサ情報取得部21と、制御順決定部22と、均油制御部23と、記憶部24と、を備えている。制御装置20は、均油制御以外にも冷媒回路システム100の種々の制御を行うが、本明細書では他の制御に関する機能の説明を省略する。
FIG. 2 is a schematic block diagram of an oil equalization control device in an embodiment of the present invention.
The control device 20 is, for example, a computer device such as a microcomputer. The control device 20 is connected to pressure sensors PA, PB, temperature sensors TA, TB, liquid level detection sensors LA, LB, and compressors 1A, 1B. As shown in FIG. 2, the control device 20 includes a sensor information acquisition unit 21, a control order determination unit 22, an oil equalization control unit 23, and a storage unit 24. The control device 20 performs various controls of the refrigerant circuit system 100 in addition to the oil equalization control, but in the present specification, the description of functions relating to other controls is omitted.
 センサ情報取得部21は、圧縮機1A,1Bの各々について、圧縮機内の冷凍機油の量に関する状態量を取得する。例えば、センサ情報取得部21は、圧力センサPA,PBが計測した圧縮機1A,1Bの吸入側での冷媒の圧力を取得する。センサ情報取得部21は、温度センサTA,TBが計測した圧縮機1A,1Bのドーム下温度を取得する。センサ情報取得部21は、液面検出センサLA,LBが計測した圧縮機1A,1Bの液面の高さを取得する。 The sensor information acquisition unit 21 acquires, for each of the compressors 1A and 1B, a state quantity relating to the amount of refrigeration oil in the compressor. For example, the sensor information acquisition unit 21 acquires the pressure of the refrigerant on the suction side of the compressors 1A and 1B measured by the pressure sensors PA and PB. The sensor information acquisition unit 21 acquires the temperature below the dome of the compressors 1A and 1B measured by the temperature sensors TA and TB. The sensor information acquisition unit 21 acquires the liquid level heights of the compressors 1A and 1B measured by the liquid level detection sensors LA and LB.
 制御順決定部22は、センサ情報取得部21が取得した状態量に基づく圧縮機1A,1B内の冷凍機油の量に応じて、均油制御における圧縮機の制御順を決定する。具体的には、制御順決定部22は、冷凍機油の量が少ない圧縮機から順に回転速度を上昇させることを決定する。以下、圧縮機の回転速度を上昇させる順番を制御順と記載する。例えば、制御順決定部22は、圧縮機1A等について、吸入側の圧力が高い方から順に並べてこれを制御順とする。例えば、制御順決定部22は、ドーム下温度が低い方から順に並べてこれを制御順とする。例えば、制御順決定部22は、冷凍機油の油面が低い方から順に並べてこれを制御順とする。 The control order determination unit 22 determines the control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressors 1A and 1B based on the state quantities acquired by the sensor information acquisition unit 21. Specifically, the control order determination unit 22 determines to increase the rotational speed in order from the compressor in which the amount of refrigeration oil is small. Hereinafter, the order of increasing the rotational speed of the compressor will be referred to as the control order. For example, with respect to the compressors 1A and the like, the control order determination unit 22 arranges the pressure on the suction side in order from the highest pressure, and sets this as the control order. For example, the control order determination unit 22 arranges in order from the one where the temperature below the dome is low, and sets this as the control order. For example, the control order determination unit 22 arranges the oil levels of the refrigeration oil in order from the lower one and sets this as the control order.
 均油制御部23は、制御順決定部22が決定した制御順に基づいて、複数の圧縮機1A等のうち少なくとも一つの回転速度を変化させ、均油制御を行う。より具体的には、均油制御部23は、制御順に、その順番をむかえた圧縮機の圧力が残りの圧縮機と比べて相対的に低圧となるように所定時間ずつ圧縮機の回転速度を上昇させる。 The oil equalization control unit 23 performs oil equalization control by changing the rotational speed of at least one of the plurality of compressors 1A and the like based on the control order determined by the control order determination unit 22. More specifically, the oil equalizing control unit 23, in order of control, sets the rotational speed of the compressor for a predetermined time so that the pressure of the compressor in the order becomes relatively low compared to the remaining compressors. Raise it.
 記憶部24は、センサ情報取得部21が取得した各種計測値や、上昇後の圧縮機の回転速度などの制御パラメータ等、種々の情報を記憶する。記憶部24は、制御装置20の機能を実現するプログラムを記憶する。
 制御順決定部22、均油制御部23は、制御装置20が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部24からプログラムを読み出して実行することで実現される機能である。
The storage unit 24 stores various information such as various measurement values acquired by the sensor information acquisition unit 21 and control parameters such as the rotational speed of the compressor after the increase. The storage unit 24 stores a program for realizing the function of the control device 20.
The control order determination unit 22 and the oil equalization control unit 23 are functions implemented by a CPU (Central Processing Unit) included in the control device 20 reading and executing a program from the storage unit 24.
 次に図3を用いて本実施形態の均油制御について説明する。
 図3は、本発明の一実施形態における圧縮機の制御順を説明する図である。
 図3に圧縮機の吸入側圧力、ドーム下温度、冷凍機油の油面の位置、冷凍機油の量、圧縮機の回転速度の制御順の関係を示す。図1に例示した冷媒回路システム100においては、圧縮機の台数が2台であるが、本実施形態の均油制御の特徴をより明確に説明するため、図3の表には3台の圧縮機1~3が互いに並列に接続されたシステムの場合の上記関係を例示する。
 図3に示す例の場合、圧縮機1の吸入側圧力、ドーム下温度、冷凍機油の油面の位置はそれぞれ、3台の圧縮機のうち、中程度の圧力、中程度の温度、中程度の油面高さ、であることを示している。同様に圧縮機2は、3台中最も高い圧力、最も低い温度、最も低い油面高さ、であることを示し、圧縮機3は、3台中最も低い圧力、最も高い温度、最も高い油面高さ、であることを示している。
 吸入側圧力は、高い程、その圧縮機が貯留する冷凍機油の量が少ないことを示す。従って、例えば圧縮機2の圧力「高」は、圧縮機2の冷凍機油の量が3台の中で最も少ないことを示している。
 圧縮機内の冷凍機油は圧縮機のモータの発熱を吸熱する性質があるため、冷凍機油の量が多い程ドーム下温度は高くなり、冷凍機油の量が低い程ドーム下温度は低くなる。従って、例えば、圧縮機2の温度「低」は、圧縮機2の冷凍機油の量が3台の中で最も少ないことを示している。
 「油面」の値は、高ければその圧縮機内の冷凍機油の量が多く、低ければ少ないことを示す。例えば、圧縮機の油面「低」は、圧縮機2の冷凍機油の量が3台の中で最も少ないことを示している。
Next, oil equalization control of the present embodiment will be described using FIG. 3.
FIG. 3 is a diagram for explaining the control order of the compressor in the embodiment of the present invention.
FIG. 3 shows the control order of the suction side pressure of the compressor, the temperature below the dome, the position of the oil surface of the refrigerator oil, the amount of the refrigerator oil, and the rotational speed of the compressor. In the refrigerant circuit system 100 illustrated in FIG. 1, although the number of compressors is two, three compressions are shown in the table of FIG. 3 in order to more clearly explain the oil equalization control feature of the present embodiment. The above relationship in the case of a system in which machines 1 to 3 are connected in parallel to one another is illustrated.
In the case of the example shown in FIG. 3, the suction side pressure of the compressor 1, the temperature below the dome, and the position of the oil level of the refrigerator oil are respectively medium pressure, medium temperature, and medium among three compressors. Indicates that the oil level of the. Similarly, compressor 2 shows the highest pressure, lowest temperature, lowest oil level, among three, and compressor 3 has the lowest pressure, highest temperature, highest oil level among three. Show that.
The higher the suction side pressure, the lower the amount of refrigeration oil stored by the compressor. Thus, for example, the pressure "high" of the compressor 2 indicates that the amount of refrigerator oil of the compressor 2 is the smallest among the three.
The refrigeration oil in the compressor has the property of absorbing heat generated by the motor of the compressor, so the temperature below the dome increases as the amount of refrigeration oil increases, and the temperature below the dome decreases as the amount of refrigeration oil decreases. Therefore, for example, the temperature “low” of the compressor 2 indicates that the amount of the refrigerator oil of the compressor 2 is the smallest among the three.
The value of "oil level" indicates that the amount of refrigerator oil in the compressor is high if it is high and low if it is low. For example, the oil level "low" of the compressor indicates that the amount of refrigerating machine oil of the compressor 2 is the smallest among the three.
 以上のことから、図3に例示した圧縮機1~3の場合、圧縮機2の冷凍機油の量が最も少なく、次いで圧縮機1の冷凍機油の量が少なく、圧縮機3の冷凍機油の量が最も多いことになる。制御順決定部22は、センサ情報取得部21が取得した圧縮機1~3の中の冷凍機油の量に関する状態量(圧力、温度、油面高さ)に基づいて、上記のように圧縮機1~3内の冷凍機油の量を判定し、冷凍機油の量の少ない圧縮機から順に回転速度を高速化することを決定する。つまり、上記例の場合、制御順決定部22は、まず、最も冷凍機油の少ない圧縮機2の回転速度を上昇させ、次いで次に冷凍機油の少ない圧縮機1、最後に最も冷凍機油の多い圧縮機3の回転速度を上昇することを決定する。すると、均油制御部23は、制御順決定部22が決定した順番に基づいて、まず、圧縮機2の回転速度を所定時間だけ上昇させる。これにより、圧縮機2の圧力が低下し、均油管7を経由して圧力が高い他の圧縮機1、3から圧縮機2へと冷凍機油が移動する。所定時間が経過すると、均油制御部23は、圧縮機2の回転速度を元の速度に戻し、次に圧縮機1の回転速度を所定時間だけ上昇させる。さらに所定時間が経過すると、均油制御部23は、圧縮機1の回転速度を元の速度に戻し、最後に圧縮機3の回転速度を所定時間だけ上昇させる。このように本実施形態では、冷凍機油の量が少ない圧縮機から順番に回転速度を所定時間だけ上昇させる均油制御を行う。これにより、複数の圧縮機1~3間の冷凍機油の不均衡を解消し、冷凍機油の不足等による圧縮機1~3の停止を防止し、システムの信頼性を向上させることができる。 From the above, in the case of the compressors 1 to 3 illustrated in FIG. 3, the amount of refrigeration oil of the compressor 2 is the smallest, and then the amount of refrigeration oil of the compressor 1 is the smallest, and the amount of refrigeration oil of the compressor 3 Will be the most common. The control order determination unit 22 determines the compressor as described above based on the state quantities (pressure, temperature, oil level height) related to the amount of refrigeration oil in the compressors 1 to 3 acquired by the sensor information acquisition unit 21. The amount of refrigeration oil in 1 to 3 is determined, and it is decided to increase the rotational speed in order from the compressor with the smaller amount of refrigeration oil. That is, in the case of the above example, the control order determination unit 22 first increases the rotational speed of the compressor 2 with the least amount of refrigeration oil, and then the compressor 1 with the least amount of refrigeration oil and finally compression with the most amount of refrigeration oil It is decided to increase the rotational speed of the machine 3. Then, based on the order determined by the control order determination unit 22, the oil equalizing control unit 23 first increases the rotational speed of the compressor 2 for a predetermined time. As a result, the pressure of the compressor 2 decreases, and the refrigerator oil moves from the other compressors 1 and 3 having a high pressure to the compressor 2 via the oil equalizing pipe 7. When the predetermined time has elapsed, the oil equalizing control unit 23 returns the rotational speed of the compressor 2 to the original speed, and then increases the rotational speed of the compressor 1 for a predetermined time. When the predetermined time further elapses, the oil equalizing control unit 23 returns the rotational speed of the compressor 1 to the original speed, and finally raises the rotational speed of the compressor 3 for a predetermined time. As described above, in the present embodiment, oil equalization control is performed in which the rotational speed is increased for a predetermined time in order from the compressor with the smaller amount of refrigeration oil. As a result, the imbalance of refrigeration oil among the plurality of compressors 1 to 3 can be eliminated, the shutdown of the compressors 1 to 3 due to the shortage of refrigeration oil or the like can be prevented, and the reliability of the system can be improved.
 次に図4を用いて、図1に例示した冷媒回路システム100における均油制御について説明する。
 図4は、本発明の一実施形態における圧縮機の回転速度制御を説明する図である。
 図4に冷媒回路システム100の運転中における2つの異なる時点で実施される本実施形態による均油制御の例を示す。
 図4(a)、図4(b)に2つの時点(開始タイミング1、2)での圧縮機1Aおよび1Bの状態量と高速化順の対応表を示す。図4(c)に圧縮機1Aの回転速度の推移を示す。図4(d)に圧縮機1Bの回転速度の推移を示す。
 図4(a)に示す均油制御の開始タイミング1における圧縮機1Aおよび1Bの状態量を参照すると、圧縮機1Aの圧力が「高」、圧縮機1Bの圧力が「低」などとなっている。つまり、開始タイミング1では、圧縮機1Aの冷凍機油の量が圧縮機1Bよりも少ない状態である。この場合、制御順決定部22は、圧縮機1A、圧縮機1Bの順に所定時間ずつ回転速度を上昇させることを決定する。均油制御部23は、この決定に基づいて、まず、所定の時間H1だけ回転速度を所定の回転速度に上昇させて圧縮機1Aを運転する。一方、圧縮機1Bの回転速度についてはそのまま不変としてもよいし、図4に例示するように所定の時間H1の間だけ回転速度を所定の回転速度まで低下させて運転してもよい。圧縮機1Bの回転速度を低下させることで、圧縮機1A,1Bの圧力差をより大きくすることができる。これにより、例えば、圧縮機1Aの回転速度の上昇度合いを抑制し、保護制御の作動による圧縮機1Aの運転停止などを防ぐことができる。次に、所定時間H1が経過すると、均油制御部23は、圧縮機1A、1Bを入れ替えて、所定時間H1だけ回転速度を所定値に上昇させて圧縮機1Bを運転し、所定時間H1だけ回転速度を所定値に低下させて圧縮機1Aを運転する。圧縮機1A、1Bの回転速度を上昇させた運転を1回ずつ行うと、均油制御部23は、圧縮機1A、1Bの回転速度を元に戻し、均油制御を終了する。その後、しばらくの間、制御装置20は、圧縮機1A、1Bを負荷に応じた回転速度で通常運転する。
Next, oil equalization control in the refrigerant circuit system 100 illustrated in FIG. 1 will be described using FIG. 4.
FIG. 4 is a diagram for explaining rotational speed control of a compressor according to an embodiment of the present invention.
FIG. 4 shows an example of oil equalization control according to the present embodiment that is performed at two different times during operation of the refrigerant circuit system 100.
FIG. 4A and FIG. 4B show correspondence tables of the state quantities of the compressors 1A and 1B and the speed-up order at two time points (start timings 1 and 2). FIG. 4C shows the transition of the rotational speed of the compressor 1A. FIG. 4 (d) shows the transition of the rotational speed of the compressor 1B.
Referring to the state quantities of the compressors 1A and 1B at the start timing 1 of oil equalization control shown in FIG. 4A, the pressure of the compressor 1A is "high", the pressure of the compressor 1B is "low", etc. There is. That is, at the start timing 1, the amount of refrigeration oil of the compressor 1A is smaller than that of the compressor 1B. In this case, the control order determination unit 22 determines to increase the rotational speed by a predetermined time in the order of the compressor 1A and the compressor 1B. Based on this determination, the oil equalizing control unit 23 first operates the compressor 1A by increasing the rotational speed to a predetermined rotational speed for a predetermined time H1. On the other hand, the rotational speed of the compressor 1B may be unchanged as it is, or the rotational speed may be reduced to a predetermined rotational speed for a predetermined time H1 as illustrated in FIG. By reducing the rotational speed of the compressor 1B, the pressure difference between the compressors 1A and 1B can be further increased. Thus, for example, the degree of increase in the rotational speed of the compressor 1A can be suppressed, and the operation stop of the compressor 1A due to the operation of the protection control can be prevented. Next, when the predetermined time H1 has elapsed, the oil equalizing control unit 23 replaces the compressors 1A and 1B, increases the rotational speed to a predetermined value for the predetermined time H1, and operates the compressor 1B for the predetermined time H1. The rotational speed is reduced to a predetermined value to operate the compressor 1A. When the operation to increase the rotational speed of the compressors 1A and 1B is performed one time each, the oil equalizing control unit 23 restores the rotational speeds of the compressors 1A and 1B and ends the oil equalization control. After that, for a while, the control device 20 normally operates the compressors 1A and 1B at the rotational speed according to the load.
 そして、通常運転が所定の時間継続すると、制御装置20は、油戻し制御を実行し、その後、所定時間の経過後にアキュムレータ9から圧縮機1A、1Bへと冷凍機油を戻す制御を行う。それと並行して制御装置20は、均油制御を開始する(開始タイミング2)。
図4(b)にセンサ情報取得部21が取得した開始タイミング2での圧縮機1A、1Bの状態量を示す。開始タイミング2では、開始タイミング1と異なり、圧縮機1Aの冷凍機油が圧縮機1Bの冷凍機油よりも多い状態である。制御順決定部22は、均油制御における圧縮機1A、圧縮機1Bの制御順として、圧縮機1B、圧縮機1Aの順に回転速度を上昇させる制御を行うことを決定する。すると、均油制御部23は、最初に所定時間H1だけ圧縮機2の回転速度を所定値に上昇させて運転し、一方の圧縮機1Aについては、所定時間H1だけ回転速度を所定値に低下させて運転する。これらの運転を所定時間H1だけ継続すると、次に均油制御部23は、圧縮機1A、1Bを入れ替えて、所定時間H1だけ回転速度を所定値に上昇させて圧縮機1Aを運転し、所定時間H1だけ回転速度を所定値に低下させて圧縮機1Bを運転する。所定時間H1だけこれらの運転を継続すると、均油制御部23は、圧縮機1A、1Bの回転速度を元に戻し、2回目の均油制御を終了する。
Then, when the normal operation continues for a predetermined time, the control device 20 executes the oil return control, and thereafter performs control for returning the refrigerator oil from the accumulator 9 to the compressors 1A and 1B after the predetermined time has elapsed. At the same time, the control device 20 starts oil equalization control (start timing 2).
FIG. 4B shows state quantities of the compressors 1A and 1B at the start timing 2 acquired by the sensor information acquisition unit 21. At the start timing 2, unlike the start timing 1, the refrigeration oil of the compressor 1A is larger than the refrigeration oil of the compressor 1B. The control order determination unit 22 determines to perform control to increase the rotational speed in the order of the compressor 1B and the compressor 1A as the control order of the compressor 1A and the compressor 1B in oil equalization control. Then, the oil equalizing control unit 23 first operates to increase the rotational speed of the compressor 2 to a predetermined value for a predetermined time H1 and reduces the rotational speed to a predetermined value for a predetermined time H1 for one compressor 1A. Let me drive. If these operations are continued for a predetermined time H1, then the oil equalizing control unit 23 switches the compressors 1A and 1B, raises the rotational speed to a predetermined value for a predetermined time H1, and operates the compressor 1A. The compressor 1B is operated with the rotational speed reduced to a predetermined value for a time H1. When these operations are continued for a predetermined time H1, the oil equalizing control unit 23 restores the rotational speeds of the compressors 1A and 1B, and ends the second oil equalizing control.
 従来の均油制御では、圧縮機内の冷凍機油の量を考慮せず、予め定められた順番に従って回転速度を上昇させることが多かった。このような場合、例えば、冷凍機油の量が比較的多い圧縮機に冷凍機油を振り分けるような制御が先に実行されてしまい、かえって不均衡が生じたり、その状態で保護機能が作動して均油制御が途中終了してしまった場合などには冷凍機油の不均衡が均油制御の実行によってより悪化する可能性がある。これに対し本実施形態では、均油制御開始時における各圧縮機の冷凍機油の量に応じて、最も冷凍機油の量が少ないものから順に、その圧縮機に冷凍機油が戻るように回転速度を上昇させる制御を行う。冷凍機油が均一化する方向で制御を行うので、均油制御中に不均衡が増大することがなく、保護機能の作動等により、均油制御が完了しない場合でも冷凍機油の不均衡が均油制御の開始前より悪化した状態となることがない。 In the conventional oil equalization control, the rotational speed is often increased according to a predetermined order without considering the amount of refrigeration oil in the compressor. In such a case, for example, control to distribute the refrigeration oil to the compressor having a relatively large amount of refrigeration oil is executed first, and an imbalance may occur, or the protection function is activated in that state to equalize. In the case where the oil control ends halfway, the imbalance of the refrigerator oil may be further aggravated by the execution of the oil equalization control. On the other hand, in the present embodiment, according to the amount of refrigeration oil of each compressor at the start of oil equalization control, the rotational speed is set to return the refrigeration oil to the compressor in order from the one with the smallest amount of refrigeration oil. Control to raise. Since the control is performed in the direction in which the refrigeration oil becomes uniform, the imbalance does not increase during oil equalization control, and even if the oil equalization control is not completed due to the activation of the protective function, etc. It does not become worse than before the start of control.
 図5は、本発明の一実施形態における均油制御の一例を示すフローチャートである。
 図5を用いて、図1の冷媒回路システム100を例に均油処理の流れについて説明する。前提として、例えば油戻し運転が実行されて所定時間が経過し、均油制御の開始タイミングが到来したとする。
 まず、センサ情報取得部21が、全ての圧縮機(1A,1B)についてのセンサ情報を取得する(ステップS11)。具体的には、センサ情報取得部21が、圧力センサPA,PBによる圧縮機1A,1Bの吸入側の圧力の計測値を取得する。センサ情報取得部21が、温度センサTA,TBによる圧縮機1A,1Bのドーム下の温度の計測値を取得する。センサ情報取得部21が、液面検出センサLA,LBによる圧縮機1A,1Bの油面の高さの計測値を取得する。センサ情報取得部21は、取得した各種の計測値を制御順決定部22へ出力する。
FIG. 5 is a flowchart showing an example of oil equalization control according to an embodiment of the present invention.
The flow of oil equalization processing will be described using the refrigerant circuit system 100 of FIG. 1 as an example, with reference to FIG. 5. As a premise, for example, it is assumed that the oil return operation is performed, a predetermined time has elapsed, and the oil buildup control start timing has come.
First, the sensor information acquisition unit 21 acquires sensor information on all the compressors (1A, 1B) (step S11). Specifically, the sensor information acquisition unit 21 acquires measurement values of the pressure on the suction side of the compressors 1A and 1B by the pressure sensors PA and PB. The sensor information acquisition part 21 acquires the measured value of the temperature under the domes of the compressors 1A and 1B by the temperature sensors TA and TB. The sensor information acquisition part 21 acquires the measured value of the height of the oil level of compressors 1A, 1B by liquid level detection sensor LA, LB. The sensor information acquisition unit 21 outputs the acquired various measurement values to the control order determination unit 22.
 次に制御順決定部22が、センサ情報取得部21が取得した計測値に基づいて、全ての圧縮機1A,1Bについて、圧縮機内の冷凍機油の量の少ない順に制御順を決定する(ステップS12)。例えば、制御順決定部22が圧力センサPA,PBの計測値によって制御順を決定する場合、制御順決定部22は、圧力センサPAの計測値<圧力センサPBの計測値であれば、冷凍機油の量の少ない順に圧縮機1B,圧縮機1Aとの順番を設定する。制御順決定部22は、圧縮機1B,圧縮機1Aの順に回転速度を上昇させることを決定する。圧力センサPAの計測値>圧力センサPBの計測値の場合、制御順決定部22は、冷凍機油の量の少ない順に圧縮機1A,圧縮機1Bと制御順を設定し、圧縮機1A,圧縮機1Bの順に回転速度を上昇させることを決定する。 Next, based on the measurement values acquired by the sensor information acquisition unit 21, the control order determination unit 22 determines the control order of all the compressors 1A and 1B in ascending order of the amount of refrigeration oil in the compressors (step S12). ). For example, when the control order determination unit 22 determines the control order based on the measurement values of the pressure sensors PA and PB, the control order determination unit 22 determines that the measurement value of the pressure sensor PA <the measurement value of the pressure sensor PB. The order of the compressor 1B and the compressor 1A is set in ascending order of the amount of. The control order determination unit 22 determines to increase the rotational speed in the order of the compressor 1B and the compressor 1A. When the measured value of the pressure sensor PA> the measured value of the pressure sensor PB, the control order determination unit 22 sets the control order of the compressor 1A and the compressor 1B in ascending order of the amount of refrigeration oil, and the compressor 1A, the compressor It is decided to increase the rotational speed in the order of 1B.
 例えば、制御順決定部22が温度センサTA,TBの計測値によって制御順を決定する場合、制御順決定部22は、温度センサTAの計測値<温度センサTBの計測値であれば、冷凍機油の量の少ない順に圧縮機1A,圧縮機1Bと制御順を設定し、圧縮機1A,圧縮機1Bの順に回転速度を上昇させることを決定する。例えば、制御順決定部22が液面検出センサLA,LBの計測値によって制御順を決定する場合、液面検出センサLAの計測値<液面検出センサLBの計測値であれば、制御順決定部22は、冷凍機油の量の少ない順に圧縮機1A,圧縮機1Bと制御順を設定し、圧縮機1A,圧縮機1Bの順に圧縮機の回転速度を上昇させることを決定する。
 図1に例示した冷媒回路システム100は、圧力センサPA等、温度センサTA等、液面検出センサLA等の3種類のセンサを備えるが、本実施形態の均油制御を行うに当たり、これらのうち少なくとも1種類のセンサを備えていればよい。制御順決定部22は、各種センサの計測した計測値のうち、少なくとも1種類のセンサによって計測された計測値に基づいて、全ての圧縮機1A,1Bについての制御順を決定する。制御順決定部22は、決定した制御順を均油制御部23に出力する。
For example, when the control order determination unit 22 determines the control order based on the measurement values of the temperature sensors TA and TB, if the measurement order determination unit 22 determines that the measurement value of the temperature sensor TA <the measurement value of the temperature sensor TB, the refrigerator oil The control order of the compressor 1A and the compressor 1B is set in the ascending order of the amount of d, and it is decided to increase the rotational speed in the order of the compressor 1A and the compressor 1B. For example, when the control order determination unit 22 determines the control order based on the measurement values of the liquid level detection sensors LA and LB, if the measurement value of the liquid level detection sensor LA <the measurement value of the liquid level detection sensor LB, the control order is determined. The section 22 sets the control order such as the compressor 1A and the compressor 1B in ascending order of the amount of refrigerating machine oil, and decides to increase the rotational speed of the compressor in the order of the compressor 1A and the compressor 1B.
The refrigerant circuit system 100 illustrated in FIG. 1 includes three types of sensors such as the pressure sensor PA, the temperature sensor TA, and the liquid level detection sensor LA, etc. It is sufficient if at least one type of sensor is provided. The control order determination unit 22 determines the control order of all the compressors 1A and 1B based on the measurement values measured by at least one type of measurement values among the measurement values measured by the various sensors. The control order determination unit 22 outputs the determined control order to the oil equalization control unit 23.
 次に均油制御部23は、制御順決定部22が決定した制御順に圧縮機の回転速度を上昇させる(ステップS13)。例えば、制御順が圧縮機1A,圧縮機1Bの順番の場合、均油制御部23は、所定時間だけ圧縮機1Aの回転速度を上昇させ、その後、元の回転速度へ戻す。このとき、均油制御部23は、圧縮機1Aの回転速度を上昇させる一方で、圧縮機1Bの回転速度を所定時間だけ低下させ、その後元に戻す制御を行ってもよい。記憶部24には上昇後の回転速度、低下後の回転速度の情報が記録されており、均油制御部23は、この情報に基づいて、圧縮機1A,1Bの回転速度の制御を行う。
 圧縮機1Aの回転速度を元の回転速度へ戻すと、均油制御部23は、今度は、所定時間だけ圧縮機1Bの回転速度を上昇させ、その後、元の回転速度へ戻す制御を行う。このとき、均油制御部23は、圧縮機1Bの回転速度を上昇させる一方で、圧縮機1Aの回転速度を所定時間だけ低下させ、その後元に戻す制御を行ってもよい。以上で、1回の均油制御を終了する。1回の均油制御において、制御順決定部22が決定した制御順に全ての圧縮機について一通り回転速度を上昇させる制御を1回だけでなく、複数回繰り返すようにしてもよい。
Next, the oil equalizing control unit 23 increases the rotational speed of the compressor in the control order determined by the control order determination unit 22 (step S13). For example, when the control order is the order of the compressor 1A and the compressor 1B, the oil equalizing control unit 23 increases the rotational speed of the compressor 1A for a predetermined time, and then returns the rotational speed to the original rotational speed. At this time, while increasing the rotational speed of the compressor 1A, the oil equalizing control unit 23 may perform control to reduce the rotational speed of the compressor 1B for a predetermined time, and then return it to the original state. Information on the rotational speed after rising and the rotational speed after decreasing is recorded in the storage unit 24. The oil equalizing control unit 23 controls the rotational speeds of the compressors 1A and 1B based on the information.
When the rotational speed of the compressor 1A is returned to the original rotational speed, the oil equalizing control unit 23 increases the rotational speed of the compressor 1B for a predetermined time, and then performs control to restore the original rotational speed. At this time, while increasing the rotational speed of the compressor 1B, the oil equalizing control unit 23 may perform control to reduce the rotational speed of the compressor 1A by a predetermined time, and then return it to the original state. Above, 1 time oil equalization control is complete | finished. The control of increasing the rotational speed of all the compressors may be repeated not only once but a plurality of times in the control order determined by the control order determination unit 22 in one oil equalization control.
 次に均油制御の開始タイミングを迎えたときにも、制御装置20は、同様の手順で圧縮機1A,1Bの回転速度の制御を行う。このように均油制御の開始時における圧縮機1A,1Bに貯留された冷凍機油量の実態に合わせた制御を行うことにより、均油制御によってかえって冷凍機油の量が不均衡な状態となるリスクを低減することができる。制御順決定部22が決定した制御順に全ての圧縮機1A,1Bについて一通り回転速度を上昇させる制御を行うことにより、全ての圧縮機1A,1Bにより均等に冷凍機油を振り分けた状態とすることができる。 Next, also when the start timing of oil equalization control is reached, the control device 20 controls the rotational speed of the compressors 1A and 1B in the same procedure. By performing control according to the actual state of the amount of refrigerating machine oil stored in the compressors 1A and 1B at the start of oil equalization control in this way, the risk of the amount of refrigerating machine oil becoming unbalanced due to oil equalization control Can be reduced. A state in which refrigerator oil is distributed equally to all the compressors 1A and 1B by performing control to increase the rotational speed of all the compressors 1A and 1B in a control order determined by the control order determination unit 22 Can.
 次に複数の圧縮機を備える冷媒回路の他の構成例について説明する。
 図6は、本発明の一実施形態における冷媒回路システムの一例を示す第2の概略図である。
 冷媒回路システム100´は、2つの室外機30A,30Bを備えている。室外機30Aは、圧縮機1A、オイルセパレータ2A、吐出管3A、油戻し管4A、吸入管6A、四方弁8A、アキュムレータ9A、室外熱交換器10A等を備える。室外機30Bは、圧縮機1B、オイルセパレータ2B、吐出管3B、油戻し管4B、吸入管6B、四方弁8B、アキュムレータ9B、室外熱交換器10B等を備える。室外機30Aと室外機30Bとが備える1つずつの圧縮機1A,1Bは均油管7で接続されている。室外機30A,30B、膨張弁12、室内熱交換器13は、液管14、ガス管15で接続される。圧縮機1Aの吸入側には圧力センサPA、ドーム下には温度センサTA、圧縮機1Aの内部には液面検出センサLAが設けられている。圧縮機1Bについても同様である。これらのセンサは、全て設けられている必要は無く、室外機30Aと室外機30Bに同種類の何れか1種類のセンサだけが設けられていてもよい。図6に示す冷媒回路システム100´は、基本的な構成を模式的に示したものであって、さらに他の構成要素が含まれていてもよい。例えば、膨張弁12、室内熱交換器13を含む室内機40は、2台以上設けられていてもよい。
Next, another configuration example of the refrigerant circuit provided with a plurality of compressors will be described.
FIG. 6 is a second schematic diagram showing an example of a refrigerant circuit system in an embodiment of the present invention.
The refrigerant circuit system 100 ′ includes two outdoor units 30A and 30B. The outdoor unit 30A includes a compressor 1A, an oil separator 2A, a discharge pipe 3A, an oil return pipe 4A, a suction pipe 6A, a four-way valve 8A, an accumulator 9A, an outdoor heat exchanger 10A, and the like. The outdoor unit 30B includes a compressor 1B, an oil separator 2B, a discharge pipe 3B, an oil return pipe 4B, a suction pipe 6B, a four-way valve 8B, an accumulator 9B, an outdoor heat exchanger 10B and the like. The compressors 1A and 1B of the outdoor unit 30A and the outdoor unit 30B are connected by an oil equalizing pipe 7, respectively. The outdoor units 30A and 30B, the expansion valve 12, and the indoor heat exchanger 13 are connected by a liquid pipe 14 and a gas pipe 15. A pressure sensor PA is provided on the suction side of the compressor 1A, a temperature sensor TA is provided below the dome, and a liquid level detection sensor LA is provided inside the compressor 1A. The same applies to the compressor 1B. These sensors do not need to be all provided, and only one kind of sensor of the same type may be provided in the outdoor unit 30A and the outdoor unit 30B. The refrigerant circuit system 100 ′ shown in FIG. 6 schematically shows a basic configuration, and may further include other components. For example, two or more indoor units 40 including the expansion valve 12 and the indoor heat exchanger 13 may be provided.
 冷媒回路システム100´においても圧縮機1A,1Bは、並列に接続されており、通常運転時において、同じ回転速度で運転される。所定時間ごとに制御装置20が、油戻し運転を実行し、その後、所定時間が経過後、均油制御を実行する。このように複数の室外機30A,30Bを備える冷媒回路システム100´に対しても、本実施形態の均油制御を適用することが可能である。 Also in the refrigerant circuit system 100 ', the compressors 1A and 1B are connected in parallel, and are operated at the same rotational speed during normal operation. The control device 20 executes the oil return operation every predetermined time, and thereafter executes oil equalization control after the predetermined time has elapsed. It is possible to apply the oil equalization control of the present embodiment to the refrigerant circuit system 100 'including the plurality of outdoor units 30A and 30B as described above.
 冷媒回路システム100´を例に均油制御の説明を行う。例えば、センサ情報取得部21は、室外機30Aの圧力センサPA、室外機30Bの圧力センサPBの計測値を取得する(ステップS11)。制御順決定部22が、それらの計測値を取得し、制御順を決定する(ステップS12)。例えば、圧力センサPAの計測値>圧力センサPBの計測値の場合、制御順決定部22は、最初に室外機30Aの圧縮機1A、次いで室外機30Bの圧縮機1Bの順に圧縮機の回転速度を上昇させることを決定する。次に均油制御部23は、制御順決定部22が決定した制御順にまず所定時間だけ圧縮機1Aの回転速度を上昇させ、その後、元の回転速度へ戻す。次に均油制御部23は、所定時間だけ圧縮機1Bの回転速度を上昇させ、その後、元の回転速度へ戻す制御を行う(ステップS13)。これにより、室外機30Aの圧縮機1A、室外機30Bの圧縮機1Bの冷凍機油の量の不均衡が解消される。 The oil pressure control will be described by taking the refrigerant circuit system 100 'as an example. For example, the sensor information acquisition unit 21 acquires measurement values of the pressure sensor PA of the outdoor unit 30A and the pressure sensor PB of the outdoor unit 30B (step S11). The control order determination unit 22 acquires those measurement values and determines the control order (step S12). For example, in the case where the measurement value of pressure sensor PA> the measurement value of pressure sensor PB, control order determination unit 22 first determines compressor rotation speed of compressor 1A of outdoor unit 30A and then compressor 1B of outdoor unit 30B. Decide to raise it. Next, the oil equalizing control unit 23 first increases the rotational speed of the compressor 1A for a predetermined time in the control order determined by the control order determination unit 22, and then returns the rotational speed to the original rotational speed. Next, the oil equalizing control unit 23 increases the rotational speed of the compressor 1B for a predetermined time, and then performs control to restore the original rotational speed (step S13). Thereby, the imbalance of the quantity of refrigeration oil of compressor 1A of outdoor unit 30A and compressor 1B of outdoor unit 30B is canceled.
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、図1の構成において互いに並列に接続された圧縮機の数は、3台以上であってもよい。例えば、図6の構成において室外機30A等の数は3基以上であってもよい。均油制御時の圧縮機の回転速度の制御において、圧縮機内の冷凍機油の量が多い順にその圧縮機の回転速度を低下させるような制御を行ってもよい。 In addition, without departing from the spirit of the present invention, it is possible to replace components in the above-described embodiment with known components as appropriate. The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. For example, the number of compressors connected in parallel with each other in the configuration of FIG. 1 may be three or more. For example, in the configuration of FIG. 6, the number of outdoor units 30A and the like may be three or more. In the control of the rotational speed of the compressor at the time of oil equalization control, control may be performed to reduce the rotational speed of the compressor in descending order of the amount of refrigeration oil in the compressor.
 上記した均油制御装置、冷媒回路システム、及び均油制御方法によれば、複数の圧縮機間の冷凍機油の不均衡を解消し、システムの信頼性を向上させることができる。 According to the oil equalizing control device, the refrigerant circuit system, and the oil equalizing control method described above, it is possible to eliminate the imbalance of the refrigerator oil among the plurality of compressors and to improve the reliability of the system.
 100、100´   冷媒回路システム
 1A、1B   圧縮機
 2A、2B   オイルセパレータ
 3A、3B   吐出管
 4A、4B   油戻し管
 5A、5B   電磁弁
 6A、6B   吸入管
 7   均油管
 8、8A、8B   四方弁
 9、9A、9B   アキュムレータ
 10、10A、10B   室外熱交換器
 11、11A、11B   レシーバ
 12、12A、12B   膨張弁
 13   室内熱交換器
 14   液管
 15、16、16A、16B、17、17A、17B   ガス管
 20   制御装置
 21   センサ情報取得部
 22   制御順決定部
 23   均油制御部
 24   記憶部
 PA、PB   圧力センサ
 TA、TB   温度センサ
 LA、LB   液面検出センサ
100, 100 ' refrigerant circuit system 1A, 1B compressor 2A, 2B oil separator 3A, 3B discharge pipe 4A, 4B oil return pipe 5A, 5B solenoid valve 6A, 6B suction pipe 7 oil equalization pipe 8, 8A, 8B four- way valve 9, 9A, 9B Accumulator 10, 10A, 10B Outdoor heat exchanger 11, 11A, 11B Receiver 12, 12A, 12B Expansion valve 13 Indoor heat exchanger 14 Liquid pipe 15, 16, 16A, 16B, 17, 17A, 17B Gas pipe 20 Control device 21 Sensor information acquisition unit 22 Control order determination unit 23 Oil equalization control unit 24 Storage unit PA, PB Pressure sensor TA, TB Temperature sensor LA, LB Liquid level detection sensor

Claims (7)

  1.  互いに並列に接続された複数の圧縮機を備える冷媒回路において、
     前記複数の圧縮機の各々について、圧縮機内の冷凍機油の量に関する状態量を取得するセンサ情報取得部と、
     前記状態量に基づく前記圧縮機内の冷凍機油の量に応じて、均油制御における圧縮機の制御順を決定する制御順決定部と、
     前記制御順決定部が決定した順番に基づいて、前記複数の圧縮機のうち少なくとも一つの回転速度を変化させて均油制御を行う均油制御部と、
     を備える均油制御装置。
    In a refrigerant circuit comprising a plurality of compressors connected in parallel with one another:
    A sensor information acquisition unit configured to acquire a state quantity related to the amount of refrigeration oil in the compressor for each of the plurality of compressors;
    A control order determination unit configured to determine a control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressor based on the state quantity;
    An oil equalizing control unit that performs oil equalizing control by changing the rotational speed of at least one of the plurality of compressors based on the order determined by the control order determining unit;
    Oil equalizing control device comprising:
  2.  前記制御順決定部は、前記制御順を、冷凍機油の量が少ない方から順に並べた順番として決定し、
     前記均油制御部は、前記制御順に、順番をむかえた圧縮機の圧力が相対的に低圧となるように当該順番をむかえた圧縮機の回転速度を変化させる、
     請求項1に記載の均油制御装置。
    The control order determination unit determines the control order as the order in which the amount of refrigeration oil is smaller in order.
    The oil equalizing control unit changes the rotational speed of the compressor having the order so that the pressure of the compressor having the order becomes relatively low in the control order.
    The oil equalization control device according to claim 1.
  3.  前記センサ情報取得部は、前記複数の圧縮機の各々について、その低圧側の圧力の計測値を取得し、
     前記制御順決定部は、相対的に圧力を低下させる圧縮機の順番を、前記圧力の計測値が高い方から順に設定する、
     請求項2に記載の均油制御装置。
    The sensor information acquisition unit acquires, for each of the plurality of compressors, a measurement value of pressure on the low pressure side thereof;
    The control order determination unit sets the order of the compressors for which the pressure is relatively reduced, in order from the one with the highest measurement value of the pressure.
    The oil equalization control device according to claim 2.
  4.  前記センサ情報取得部は、前記複数の圧縮機の各々について、ドーム下の温度の計測値を取得し、
     前記制御順決定部は、相対的に圧力を低下させる圧縮機の順番を、前記温度の計測値が低い方から順に設定する、
     請求項2に記載の均油制御装置。
    The sensor information acquisition unit acquires a measurement value of the temperature below the dome for each of the plurality of compressors,
    The control order determination unit sets the order of the compressors for which the pressure is relatively reduced, in order from the one where the measured value of the temperature is low.
    The oil equalization control device according to claim 2.
  5.  前記均油制御部は、前記複数の圧縮機の全てについて、前記制御順に所定時間ずつ回転速度を上昇させる
     請求項1から請求項4の何れか1項に記載の均油制御装置。
    The oil equalizing control device according to any one of claims 1 to 4, wherein the oil equalizing control unit increases the rotational speed for each of the plurality of compressors in the order of the control by a predetermined time.
  6.  互いに並列に接続された複数の圧縮機と、
     前記複数の圧縮機を互いに接続する均油管と、
     請求項1から請求項5の何れか1項に記載の均油制御装置と、
     を備える冷媒回路システム。
    A plurality of compressors connected in parallel with one another,
    An oil equalizing pipe connecting the plurality of compressors to each other;
    The oil equalizing control device according to any one of claims 1 to 5,
    Refrigerant circuit system provided with
  7.  均油制御装置が、
     互いに並列に接続された複数の圧縮機を備える冷媒回路において、前記複数の圧縮機の各々について、圧縮機内の冷凍機油の量に関する状態量を取得する工程と、
     前記状態量に基づく前記圧縮機内の冷凍機油の量に応じて、均油制御における圧縮機の制御順を決定する工程と、
     前記制御順に基づいて、前記複数の圧縮機のうち少なくとも一つの回転速度を変化させて均油制御を行う、
     均油制御方法。
    The oil pressure control system
    Obtaining a state quantity related to the amount of refrigeration oil in the compressor for each of the plurality of compressors in a refrigerant circuit including a plurality of compressors connected in parallel with each other;
    Determining the control order of the compressor in oil equalization control according to the amount of refrigeration oil in the compressor based on the state quantity;
    The oil equalizing control is performed by changing the rotational speed of at least one of the plurality of compressors based on the control order.
    Oil equalization control method.
PCT/JP2017/046672 2016-12-28 2017-12-26 Oil equalization control device, refrigerant circuit system, and oil equalization control method WO2018124083A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17885453.5A EP3537061A4 (en) 2016-12-28 2017-12-26 Oil equalization control device, refrigerant circuit system, and oil equalization control method
CN201780079111.8A CN110114622A (en) 2016-12-28 2017-12-26 Oil control device, refrigerant circuit systems and oily control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256135 2016-12-28
JP2016256135A JP2018109452A (en) 2016-12-28 2016-12-28 Oil equalization control device, refrigerant circuit system, and oil equalization control method

Publications (1)

Publication Number Publication Date
WO2018124083A1 true WO2018124083A1 (en) 2018-07-05

Family

ID=62709456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046672 WO2018124083A1 (en) 2016-12-28 2017-12-26 Oil equalization control device, refrigerant circuit system, and oil equalization control method

Country Status (4)

Country Link
EP (1) EP3537061A4 (en)
JP (1) JP2018109452A (en)
CN (1) CN110114622A (en)
WO (1) WO2018124083A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229766A1 (en) * 2020-05-14 2021-11-18 三菱電機株式会社 Refrigerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318175A (en) * 1994-05-20 1995-12-08 Mitsubishi Electric Corp Freezing apparatus
JP2005241070A (en) 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Method of controlling operation of compressor, and air conditioner having the same
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215866B (en) * 1988-02-09 1992-06-24 Toshiba Kk Multi-type air conditioner system with oil level control for parallel operated compressor therein
JP2656285B2 (en) * 1988-02-09 1997-09-24 株式会社東芝 Air conditioner
JPH01219372A (en) * 1988-02-26 1989-09-01 Toshiba Corp Equalized oiling control method for refrigerator
ES2199995T3 (en) * 1994-06-29 2004-03-01 Daikin Industries, Ltd. OIL DISTRIBUTION OPERATION CONTROL DEVICE FOR AN AIR CONDITIONER.
CN1188218A (en) * 1996-10-28 1998-07-22 松下冷机株式会社 Oil level equalizing system for plural compressors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318175A (en) * 1994-05-20 1995-12-08 Mitsubishi Electric Corp Freezing apparatus
JP2005241070A (en) 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd Method of controlling operation of compressor, and air conditioner having the same
JP2013253714A (en) * 2012-06-05 2013-12-19 Mitsubishi Electric Corp Refrigeration system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3537061A4

Also Published As

Publication number Publication date
EP3537061A4 (en) 2019-10-16
CN110114622A (en) 2019-08-09
EP3537061A1 (en) 2019-09-11
JP2018109452A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
KR100878819B1 (en) Air conditioner and control method for the same
US9488396B2 (en) Air-conditioning apparatus
JP6366742B2 (en) Air conditioner
US20150114013A1 (en) Air conditioner and method for controlling an air conditioner
EP3885670B1 (en) Refrigeration cycle apparatus
JP6327558B2 (en) Air conditioner
EP2587193A2 (en) Air conditioner
US8820103B2 (en) Air conditioner having plural compressors with oil bypass unit
JP4323484B2 (en) Refrigeration cycle equipment
EP2515053A2 (en) Multi type air conditioner and operating method
CN110186149B (en) Operation control method, control device, air conditioner, and computer-readable storage medium
CN103671044B (en) Method and device for controlling frequency of compressor
JP2011047552A (en) Refrigerating cycle device and air conditioner
WO2020241622A1 (en) Refrigeration device
WO2018124083A1 (en) Oil equalization control device, refrigerant circuit system, and oil equalization control method
JP7005172B2 (en) Air conditioner
JP2006242392A (en) Flow controller and air conditioner
US20190301778A1 (en) Refrigeration cycle apparatus
KR101240765B1 (en) Multi type air conditioner
WO2018123927A1 (en) Refrigerant circuit system and oil equalization control method
JP2001324236A (en) Air conditioner
KR101977984B1 (en) Air conditioner and method for controlling the same
JP4270765B2 (en) Air conditioner
WO2018073881A1 (en) Refrigeration cycle system
JP3197768B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017885453

Country of ref document: EP

Effective date: 20190607

NENP Non-entry into the national phase

Ref country code: DE