WO2018124080A1 - Light control film - Google Patents

Light control film Download PDF

Info

Publication number
WO2018124080A1
WO2018124080A1 PCT/JP2017/046669 JP2017046669W WO2018124080A1 WO 2018124080 A1 WO2018124080 A1 WO 2018124080A1 JP 2017046669 W JP2017046669 W JP 2017046669W WO 2018124080 A1 WO2018124080 A1 WO 2018124080A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
light control
liquid crystal
control film
film
Prior art date
Application number
PCT/JP2017/046669
Other languages
French (fr)
Japanese (ja)
Inventor
久美子 神原
川島 朋也
誠 山木
真一朗 高野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2018559521A priority Critical patent/JP7074071B2/en
Publication of WO2018124080A1 publication Critical patent/WO2018124080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a light control film that can be used for, for example, an electronic blind that is attached to a window to control the transmission of extraneous light.
  • Patent Documents 1 and 2 various devices relating to a light control member that is attached to a window to control the transmission of extraneous light have been proposed (Patent Documents 1 and 2).
  • One such light control member uses liquid crystal.
  • the liquid crystal material is sandwiched by the transparent film material on which the transparent electrode is produced. Then, the orientation of the liquid crystal is changed by changing the electric field applied to the liquid crystal, and the amount of transmitted extraneous light is controlled.
  • JP 03-47392 A Japanese Patent Laid-Open No. 08-184273
  • This type of light control film is generally attached to a wide area, it is not easy to replace the film, and high durability is desired.
  • This invention is made
  • the present invention provides the following.
  • a light control film for controlling light wherein the slow axis of the first substrate and the slow axis of the second substrate are parallel.
  • the first base material and the second base material have a thermal expansion coefficient of 7.0 ⁇ 10 ⁇ 5 / ° C. or less.
  • the in-plane retardation of each of the first base material and the second base material is 15 nm or less.
  • the first base material and the second base material are any of a polycarbonate film, a COP film, and a PET film.
  • a dichroic dye may be mixed in the liquid crystal.
  • a light control member comprising a transparent member and the light control film according to any one of (1) to (5) disposed on the transparent member.
  • the durability of the light control film can be improved.
  • the terms “plate”, “sheet”, “film” and the like are used, but these are generally used in the order of “thickness”, “plate”, “sheet”, “film”. It is used in the book as well. However, there is no technical meaning in such proper use, so these terms can be replaced as appropriate.
  • the term “transparent” refers to a material that transmits at least light having a wavelength to be used. For example, even if it does not transmit visible light, as long as it transmits infrared light, it is handled as transparent when used for infrared applications. It should be noted that the specific numerical values defined in the present specification and claims should be treated as including a general error range. That is, a difference of about ⁇ 10% is substantially the same, and a value that is set in a range slightly exceeding the numerical range of the present invention is substantially the same as that of the present invention. It should be construed as within the scope.
  • FIG. 1 is a cross-sectional view showing a light control film 1 according to an embodiment of the present invention.
  • This light control film 1 is a part of a building window glass, a showcase, an indoor transparent partition, a vehicle window, or the like (part where external light is incident, such as front, side, rear, roof, etc.) Window) or by using a transparent member (for example, glass) in combination with a transparent member (for example, glass) and arranging it as a dimming member, and changing the applied voltage to reduce the amount of transmitted light. Control.
  • the light control film 1 is a light control film 1 that controls the transmission of incident light using liquid crystal, and includes a liquid crystal cell 4 that sandwiches the liquid crystal layer 8 between the second stacked body 5D and the first stacked body 5U. Yes.
  • a spacer 12 for keeping the thickness of the liquid crystal layer 8 constant is provided in the first stacked body 5U and / or the second stacked body 5D.
  • the first stacked body 5U is formed by sequentially forming the first transparent electrode 16 and the first alignment layer 17 on the first base material 15.
  • the second stacked body 5D is formed by sequentially forming the second transparent electrode 11 and the second alignment layer 13 on the second substrate 6.
  • the first transparent electrode 16 and the second transparent electrode 11 are manufactured together on the first alignment layer 17 or the second alignment layer 13 side.
  • the light control film 1 is configured to control the transmission of extraneous light by changing the potential difference between the first transparent electrode 16 and the second transparent electrode 11, and to switch the state between a transparent state and a non-transparent state.
  • the first base material 15 and the second base material 6 are flexible TAC (triacetyl cellulose), polycarbonate, COP (cycloolefin polymer), acrylic, PET (polyethylene terephthalate) and the like that can be applied to the liquid crystal cell 4.
  • Various transparent film materials can be applied.
  • a polycarbonate film material having hard coat layers on both sides is used.
  • the slow axis of the upper and lower substrates will be described later.
  • the slow axis is described as an example.
  • the slow axis is an axis that faces the direction in which the refractive index of a material having refractive index anisotropy is maximized.
  • the direction of refractive index anisotropy is defined using the slow axis, but the direction of refractive index anisotropy may be defined using the fast axis.
  • Such a configuration is also within the scope of the present invention.
  • the first transparent electrode 16 and the second transparent electrode 11 can apply an electric field to the liquid crystal layer 8 and can be applied with various configurations that are perceived as transparent.
  • a transparent conductive film made of certain ITO (Indium Tin Oxide) is manufactured and formed on the entire surface of the first base material 15 and the second base material 6. In the IPS method or the like, the electrode is manufactured by patterning with a desired shape.
  • the first alignment layer 17 and the second alignment layer 13 are manufactured by a rubbing process.
  • the first alignment layer 17 and the second alignment layer 13 are manufactured by manufacturing various material layers applicable to the alignment layer such as polyimide, fine lines are formed by rubbing treatment using a rubbing roll on the surface of the material layer. It is formed by manufacturing a concavo-convex shape.
  • the first alignment layer 17 and the second alignment layer 13 may be acrylic or polyester resin layers in addition to the polyimide resin layer.
  • the alignment layer may be manufactured by manufacturing a fine line-shaped uneven shape manufactured by the rubbing process by a shaping process.
  • the rubbing process is performed to produce the alignment layer, but the rubbing process may not be performed.
  • the first alignment layer 17 and the second alignment layer 13 may be formed of a photo-alignment layer.
  • the photo-alignment material applicable to the photo-alignment layer various materials to which the photo-alignment technique can be applied can be widely applied. In this embodiment, for example, a photodimerization type material is used. The photodimerization type material is described in “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt, H. Seiberle and A. Schuster: Nature, 381, 212 (1996).
  • the spacer 12 is provided to define the thickness of the liquid crystal layer 8 and various resin materials can be widely applied.
  • the spacer 12 is manufactured by a photoresist.
  • the spacer 12 is manufactured by applying a photoresist on the base material 6 on which the second transparent electrode 11 is manufactured, and exposing and developing.
  • the spacer 12 may be provided in the first stacked body 5U, or may be provided in both the first stacked body 5U and the second stacked body 5D.
  • the spacer 12 may be provided on the second alignment layer 13. Further, a so-called bead spacer may be applied as the spacer.
  • the liquid crystal layer 8 is a guest-host type liquid crystal 8a mixed with a dichroic dye.
  • the guest-host type liquid crystal layer 8 can control light transmission and light shielding by moving the dichroic dye with the movement of the liquid crystal molecules.
  • a TN liquid crystal twisted liquid crystal
  • a dichroic dye is used as a guest
  • the light control film has a liquid crystal molecule and a dichroic dye aligned horizontally when no voltage is applied. It is a so-called normally black type in which the screen becomes “black” by blocking.
  • the liquid crystal molecules rise vertically and the dichroic dye rises, and light is transmitted.
  • VA liquid crystal Very alignment liquid crystal
  • the light control film has a liquid crystal molecule and a dichroic dye aligned vertically when no voltage is applied. Also rises and transmits light. It is a so-called normally white type.
  • the liquid crystal molecules become horizontal and the light is blocked, and the screen becomes “black”.
  • the present invention is not limited thereto, and as a liquid crystal material and a dye used for the guest-host method, a mixture of a liquid crystal material and a dye proposed for the guest-host method can be widely applied.
  • VA Virtual Alignment
  • the VA method is a method of controlling transmitted light by changing the alignment of liquid crystal between vertical alignment and horizontal alignment. When no electric field is applied, the liquid crystal layer 8 is sandwiched between the vertical alignment layers by vertically aligning the liquid crystal.
  • a liquid crystal cell 4 is configured and configured to horizontally align the liquid crystal material by applying an electric field.
  • the VA system is a so-called normally black type in which the screen is generally “black” when no voltage is applied.
  • an IPS (In-Plane-Switching) method may be used.
  • a driving electrode is collectively produced on one of a pair of substrates sandwiching a liquid crystal layer, and a so-called transverse electric field which is an electric field in the in-plane direction of the substrate surface is formed by this electrode.
  • This is a driving method for controlling the alignment of the liquid crystal by forming the.
  • a sealing material 19 is arranged in a frame shape so as to surround the liquid crystal layer 8.
  • the sealing material 19 is fixed to the first stacked body 5U and the second stacked body 5D, and the leakage of liquid crystal is prevented by the sealing material 19.
  • an epoxy resin, an ultraviolet curable resin, or the like can be applied to the sealing material 19.
  • FIG. 2 is a view for explaining the arrangement of the first base material 15 and the second base material 6 in the light control film 1.
  • the light control film 1 uses the same material and transparent film material having the same thickness as the first base material 15 and the second base material 6 so that the slow axes L1 are parallel to each other.
  • a substrate 6 is disposed.
  • the reason why the slow axis L1 between the first base material 15 and the second base material 6 is parallel is as follows. Film members such as the first base material 15 and the second base material 6 used in the present embodiment are generally manufactured through a stretching process. And if a film member is extended
  • FIG. 3 is a view for explaining the arrangement of the second base material 6 ′ and the first base material 15 ′ in the comparative light control film 1 ′.
  • the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are orthogonal to each other.
  • the edge part between 2nd base material 6 'and 1st base material 15' In this case, peeling from the sealing material tends to occur.
  • the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are the same. Therefore, the difference in expansion and contraction between the second base material 6 and the first base material 15 is small, and the peeling between the second base material 6 and the first base material 15 at the end portion between the second base material 6 and the first base material 15 is suppressed. And the durability of the light control film can be improved.
  • the parallel range of the slow axis L1 is that the angle formed by the two slow axes L1 including the measurement error, the manufacturing error, etc. is within ⁇ 20 degrees. Is preferably within ⁇ 10 degrees, and more preferably within ⁇ 5 degrees.
  • the thickness ⁇ 10 ⁇ m of the base material 6 is the thickness of the base material 15.
  • the thickness of the base 6 is preferably ⁇ 10 ⁇ m, and the thickness of the base 6 is preferably ⁇ 5 ⁇ m. More preferred is the thickness.
  • the thermal expansion coefficients of the first base material 15 and the second base material 6 are preferably 7.0 ⁇ 10 ⁇ 5 / ° C. or less. This is because when the thermal expansion coefficient is large, when the light control film 1 is adhered to an adherend having a relatively small thermal expansion coefficient such as glass, the sealing material is easily peeled off due to the difference in thermal expansion coefficient.
  • FIG. 4 is a flowchart showing the manufacturing process of the light control film.
  • transparent electrodes 11 and 16 are respectively formed on the second base material 6 and the first base material 15 by applying a photolithography technique in the electrode manufacturing process SP2.
  • a photoresist film is prepared on the substrate 6, and then exposed and developed, whereby the spacer 12 is prepared.
  • a bead spacer may be used.
  • the alignment layer manufacturing step SP4 a polyimide resin layer coating solution is applied on the base material 6 on which the spacer 12 is manufactured and on the base material 15 on which the transparent electrode 16 is manufactured, and then dried.
  • heat treatment is carried out to produce a polyimide film.
  • the polyimide film is rubbed to produce the alignment layers 13 and 17. As described above, the rubbing process is not essential and may not be performed.
  • the manufacturing process is performed by applying a sealing material in a frame shape using a dispenser to the base material 6 on which the alignment layer 13 is manufactured, and then in a predetermined position surrounded by the frame shape.
  • the liquid crystal material related to the liquid crystal layer 8 is dropped using a dispenser.
  • the sealing material is not limited to the dispenser, and may be formed by screen printing.
  • the first base material 15 and the second base material 6 are laminated, the first laminated body 5U and the second laminated body are pressed so that the liquid crystal layer 8 is sandwiched by pressing and heating.
  • the body 5 ⁇ / b> D is bonded and integrated by the sealing material 19 to produce the light control film 1.
  • the second base 6 and the slow axis of the first base 15 are made parallel.
  • Example 1 The light control film 1 was produced using the film material by the polycarbonate by which the hard-coat layer was produced on both surfaces as a base material so that the slow axis L1 of the 1st base material 15 and the 2nd base material 6 might become parallel.
  • the thermal expansion coefficients of the first base material 15 and the second base material 6 are 7.0 ⁇ 10 ⁇ 5 / ° C. or less. Note that other materials may be used for the first base material 15 and the second base material 6 as described above. For example, when PET is used as a material, the first base material 15 and the second base material 6 are used.
  • the coefficient of thermal expansion of the material 6 is 2.0 ⁇ 10 ⁇ 5 / ° C.
  • FIG. 3 is a diagram illustrating the arrangement of the second base material 6 ′ and the first base material 15 ′ in the light control film 1 ′ of the comparative example.
  • a polycarbonate film material having hard coat layers formed on both sides is used as a base material, and light control is performed so that the slow axes L1 of the second base material 6 ′ and the first base material 15 ′ are orthogonal to each other.
  • Film 1 ′ was produced.
  • the thermal expansion coefficients of the second substrate 6 ′ and the first substrate 15 ′ are 7.0 ⁇ 10 ⁇ 5 / ° C. or less in the comparative example.
  • the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are the same. Therefore, the difference in expansion and contraction between the second base material 6 and the first base material 15 is small, and the peeling between the second base material 6 and the first base material 15 at the end portion between the second base material 6 and the first base material 15 is suppressed. And the durability of the light control film can be improved.
  • the liquid crystal layer 8 in this embodiment is a guest-host type liquid crystal layer 8.
  • the guest host method does not require a polarizing plate.
  • the polarizing plate has a very large thermal shrinkage.
  • the polarizing plate since the polarizing plate is not used by the guest-host method, the overall thermal distortion is remarkably suppressed, and the sealing material 19 can be prevented from being broken.
  • the first base material 15 and the second base material 6 are thin, such as 500 ⁇ m or less, 300 ⁇ m or less, or 200 ⁇ m or less, the first base material 15 and the second base material 6 are destroyed by thermal contraction when a polarizing plate is used. In this embodiment, such a possibility is reduced.
  • FIG. 5 is a cross-sectional view showing the light control film of the second embodiment.
  • the second base material 6 and the first base material 15 are made of a material having in-plane refractive index anisotropy significantly smaller than that of the first embodiment. This configuration is significantly different from that of the first embodiment.
  • symbol is attached
  • Unstretched polycarbonate is used for the second base material 6 and the first base material 15 of the second embodiment, and the in-plane retardation of the second base material 6 and the first base material 15 is It is 15 nm or less.
  • stretched polycarbonate is used in the first embodiment described above.
  • the in-plane retardation of the second substrate 6 and the first substrate 15 is a very large value of about 100 nm to 600 nm.
  • the phase difference in the surface of the 2nd base material 6 and the 1st base material 15 is 15 nm or less.
  • a measuring device for measuring the slow axis and phase difference of the base material there is an ellipsometer using a unique parallel Nicol rotation method with the candidates of Otsuka Electronics 'RETS-100 and Oji Scientific Instruments' KOBRA-WR. Use. Then, when polarizing plates (polarizer / analyzer) are placed on the top and bottom of the sample, a single wavelength light beam is irradiated from the polarizer side, and the polarizer / analyzer is rotated once around the beam axis while maintaining parallel Nicols. The phase difference of the sample is obtained from the angle dependence of the transmitted light intensity.
  • polarizing plates polarizer / analyzer
  • the second base material 6 and the first base material 15 of the second embodiment have a smaller in-plane retardation than the first embodiment, but the slow axis has a refractive index similar to the first embodiment. Can be defined as the axis that points in the direction that maximizes.
  • a transparent electrode or an alignment layer may be formed on each substrate as described above. However, since the alignment layer has no retardation, it is provided on the substrate. The above measurement does not affect the measurement result. However, since the transparent electrode may have a phase difference, when measuring in a state where the transparent electrode is provided on the substrate, the retardation Re of the transparent electrode is preferably Re ⁇ 10 nm, and Re ⁇ More desirably, it is 5 nm.
  • the thermal expansion coefficient (linear expansion coefficient) in the stretching direction becomes small, and the slow axis faces the stretching direction.
  • the in-plane retardation is greatly influenced by whether or not the material is stretched, and the retardation tends to increase as the material is stretched.
  • a force acts in one direction, resulting in anisotropy of the refractive index and a phase difference. It has been confirmed that this occurs.
  • unstretched polycarbonate is used for the second base material 6 and the first base material 15, but also in this case, the second base material 6 and the first base material 15 are used.
  • the slow axis directions were arranged in parallel. Thereby, the difference in expansion and contraction between the second base material 6 and the first base material 15 is further reduced, and the end portion between the second base material 6 and the first base material 15 is peeled off from the sealing material. Can be suppressed, and the durability of the light control film can be further improved.
  • the direction of the 2nd base material 6 and the 1st base material 15 is match
  • the in-plane expansion / contraction anisotropy at the time of thermal expansion is smaller than that in the first embodiment. Therefore, in 2nd Embodiment, the dispersion
  • the range in which the direction of the slow axis in the present invention is “parallel” includes the range of parallelism (strictly, non-parallel relationship) allowed in the range in which the effects of the present invention described above can be obtained. Is.
  • the light control film of the second embodiment is different from the first embodiment.
  • the second alignment layer 13 and the first alignment layer 17 of the second embodiment are configured such that no rubbing treatment is performed.
  • the spacer 12 of 2nd Embodiment was comprised by the bead spacer.
  • the second alignment layer 13 and the first alignment layer 17 may be manufactured by performing a rubbing process, and the spacer 12 of the second embodiment is manufactured using a photoresist. May be.
  • the unstretched polycarbonate was used for the base material of 2nd Embodiment, you may use unstretched PET for a base material, for example.
  • the present invention is not limited to this, and can be widely applied to the case of driving by the IPS method.
  • the spacer is manufactured using the photoresist.
  • the present invention is not limited to this, and a so-called bead spacer may be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)

Abstract

The present invention addresses the problem of improving the durability of a light control film. A light control film 1 includes: a first laminated body 5U at least having a first substrate 15 that has a film shape and that is transparent; a second laminated body at least having a second substrate 6 that has a film shape and that is transparent; a liquid crystal 8a sandwiched between the first laminated body 5U and the second laminated body 5D; and transparent electrodes 11, 16 provided on at least one of the first laminated body 5U and the second laminated body 5D. Transmitted light is controlled by controlling the alignment of the liquid crystal 8a by driving the transparent electrodes 11, 16. The slow axis of the first substrate 15 and the slow axis of the second substrate 6 are parallel to each other.

Description

調光フィルムLight control film
 本発明は、例えば窓に貼り付けて外来光の透過を制御する電子ブラインド等に利用可能な調光フィルムに関する。 The present invention relates to a light control film that can be used for, for example, an electronic blind that is attached to a window to control the transmission of extraneous light.
 従来、例えば窓に貼り付けて外来光の透過を制御する調光部材に関する工夫が種々に提案されている(特許文献1、2)。このような調光部材の1つに、液晶を利用したものがある。この液晶を利用した調光フィルムは、透明電極を作製した透明フィルム材により液晶材料を挟持する。そして、液晶に印加する電界を変えることにより液晶の配向を変更し、外来光の透過量を制御する。 Conventionally, various devices relating to a light control member that is attached to a window to control the transmission of extraneous light have been proposed (Patent Documents 1 and 2). One such light control member uses liquid crystal. In the light control film using the liquid crystal, the liquid crystal material is sandwiched by the transparent film material on which the transparent electrode is produced. Then, the orientation of the liquid crystal is changed by changing the electric field applied to the liquid crystal, and the amount of transmitted extraneous light is controlled.
特開平03-47392号公報JP 03-47392 A 特開平08-184273号公報Japanese Patent Laid-Open No. 08-184273
 この種の調光フィルムは、一般的に広い面積に貼着されるため、張り替え等が容易でなく、高い耐久性が望まれている。
 本発明はこのような状況に鑑みてなされたものであり、調光フィルムの耐久性を向上することを目的とする。
Since this type of light control film is generally attached to a wide area, it is not easy to replace the film, and high durability is desired.
This invention is made | formed in view of such a condition, and it aims at improving the durability of a light control film.
 具体的には、本発明では、以下のようなものを提供する。 Specifically, the present invention provides the following.
(1) フィルム状の透明な第1基材を少なくとも有する第1積層体と、フィルム状の透明な第2基材を少なくとも有する第2積層体と、前記第1積層体と前記第2積層体との間に挟持された液晶と、前記第1積層体及び前記第2積層体の少なくとも一方に設けられた透明電極と、を備え、前記透明電極の駆動により前記液晶の配向を制御して透過光を制御する調光フィルムにおいて、前記第1基材の遅相軸と前記第2基材の遅相軸とが平行である調光フィルム。 (1) A first laminate having at least a film-like transparent first substrate, a second laminate having at least a film-like transparent second substrate, the first laminate, and the second laminate. And a transparent electrode provided on at least one of the first stacked body and the second stacked body, and controlling the alignment of the liquid crystal by driving the transparent electrode to transmit the liquid crystal A light control film for controlling light, wherein the slow axis of the first substrate and the slow axis of the second substrate are parallel.
(2) (1)において、前記第1基材及び前記第2基材の熱膨張係数が7.0×10-5/℃以下である。 (2) In (1), the first base material and the second base material have a thermal expansion coefficient of 7.0 × 10 −5 / ° C. or less.
(3) (1)又は(2)において、前記第1基材及び前記第2基材それぞれの面内位相差は、15nm以下である。 (3) In (1) or (2), the in-plane retardation of each of the first base material and the second base material is 15 nm or less.
(4) (1)から(3)のいずれかにおいて、前記第1基材及び前記第2基材が、ポリカーボネートフィルム、COPフィルム、PETフィルムのいずれかである。 (4) In any one of (1) to (3), the first base material and the second base material are any of a polycarbonate film, a COP film, and a PET film.
(5) (1)から(4)のいずれかにおいて、前記液晶に、二色性色素が混合されていてもよい。 (5) In any one of (1) to (4), a dichroic dye may be mixed in the liquid crystal.
(6) 透明部材と、前記透明部材に配置される(1)から(5)までのいずれかに記載の調光フィルムと、を備える調光部材。 (6) A light control member comprising a transparent member and the light control film according to any one of (1) to (5) disposed on the transparent member.
(7) (1)から(5)までのいずれかに記載の調光フィルムが、外光が入射する部位に配置された車両。 (7) A vehicle in which the light control film according to any one of (1) to (5) is disposed at a site where external light is incident.
 本発明によれば、調光フィルムの耐久性を向上することができる。 According to the present invention, the durability of the light control film can be improved.
実施形態の調光フィルムを示す断面図である。It is sectional drawing which shows the light control film of embodiment. 実施形態の調光フィルムにおける第1基材、第2基材の配置を説明する図である。It is a figure explaining arrangement of the 1st substrate and the 2nd substrate in the light control film of an embodiment. 比較形態の調光フィルムにおける第1基材、第2基材の配置を説明する図である。It is a figure explaining arrangement | positioning of the 1st base material in the light control film of a comparison form, and a 2nd base material. 実施形態の調光フィルムの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the light control film of embodiment. 第2実施形態の調光フィルムを示す断面図である。It is sectional drawing which shows the light control film of 2nd Embodiment.
[第1実施形態]
 以下、本発明を実施するための最良の形態について図面等を参照して説明する。
 なお、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張して示している。
 また、以下の説明では、具体的な数値、形状、材料等を示して説明を行うが、これらは、適宜変更することができる。
 本明細書において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
 本明細書において、板、シート、フィルム等の言葉を使用しているが、これらは、一般的な使い方として、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、これらの文言は、適宜置き換えることができるものとする。
 また、本発明において透明とは、少なくとも利用する波長の光を透過するものをいう。例えば、仮に可視光を透過しないものであっても、赤外線を透過するものであれば、赤外線用途に用いる場合においては、透明として取り扱うものとする。
 なお、本明細書及び特許請求の範囲において規定する具体的な数値には、一般的な誤差範囲は含むものとして扱うべきものである。すなわち、±10%程度の差異は、実質的には違いがないものであって、本件の数値範囲をわずかに超えた範囲に数値が設定されているものは、実質的には、本件発明の範囲内のものと解釈すべきである。
[First Embodiment]
The best mode for carrying out the present invention will be described below with reference to the drawings.
In addition, each figure shown below is the figure shown typically, and in order to make an understanding easy, the magnitude | size and shape of each part are exaggerated suitably.
In the following description, specific numerical values, shapes, materials, and the like are shown and described, but these can be changed as appropriate.
In this specification, terms that specify shape and geometric conditions, for example, terms such as parallel and orthogonal, in addition to strictly meaning, have the same function and have errors that can be regarded as parallel and orthogonal. It also includes the state that it has.
In this specification, the terms “plate”, “sheet”, “film” and the like are used, but these are generally used in the order of “thickness”, “plate”, “sheet”, “film”. It is used in the book as well. However, there is no technical meaning in such proper use, so these terms can be replaced as appropriate.
In the present invention, the term “transparent” refers to a material that transmits at least light having a wavelength to be used. For example, even if it does not transmit visible light, as long as it transmits infrared light, it is handled as transparent when used for infrared applications.
It should be noted that the specific numerical values defined in the present specification and claims should be treated as including a general error range. That is, a difference of about ± 10% is substantially the same, and a value that is set in a range slightly exceeding the numerical range of the present invention is substantially the same as that of the present invention. It should be construed as within the scope.
 (調光フィルム)
 図1は、本発明の実施形態に係る調光フィルム1を示す断面図である。この調光フィルム1は、建築物の窓ガラス、ショーケース、屋内の透明パーテーション、車両のウインドウ等の調光を図る部位(外光が入射する部位、例えば、フロントや、サイド、リア、ルーフ等のウインドウ)に、粘着剤層等により貼り付けたり、透明部材(例えば、ガラス)と組み合わせて調光部材の形態として配置したりして使用され、印加電圧を変更することにより透過光の光量を制御する。
(Light control film)
FIG. 1 is a cross-sectional view showing a light control film 1 according to an embodiment of the present invention. This light control film 1 is a part of a building window glass, a showcase, an indoor transparent partition, a vehicle window, or the like (part where external light is incident, such as front, side, rear, roof, etc.) Window) or by using a transparent member (for example, glass) in combination with a transparent member (for example, glass) and arranging it as a dimming member, and changing the applied voltage to reduce the amount of transmitted light. Control.
 調光フィルム1は、液晶を利用して入射光の透過を制御する調光フィルム1であり、第2積層体5D及び第1積層体5Uにより液晶層8を挟持する液晶セル4により構成されている。 The light control film 1 is a light control film 1 that controls the transmission of incident light using liquid crystal, and includes a liquid crystal cell 4 that sandwiches the liquid crystal layer 8 between the second stacked body 5D and the first stacked body 5U. Yes.
 調光フィルム1には、液晶層8の厚みを一定に保持するためのスペーサ12が第1積層体5U及び又は第2積層体5Dに設けられている。第1積層体5Uは、第1基材15に第1透明電極16、第1配向層17を順次作成して形成される。第2積層体5Dは、第2基材6に第2透明電極11、第2配向層13を順次作成して形成される。
 なお、IPS方式による場合、第1透明電極16、第2透明電極11は、第1配向層17又は第2配向層13側に纏めて製造される。
In the light control film 1, a spacer 12 for keeping the thickness of the liquid crystal layer 8 constant is provided in the first stacked body 5U and / or the second stacked body 5D. The first stacked body 5U is formed by sequentially forming the first transparent electrode 16 and the first alignment layer 17 on the first base material 15. The second stacked body 5D is formed by sequentially forming the second transparent electrode 11 and the second alignment layer 13 on the second substrate 6.
In the case of the IPS method, the first transparent electrode 16 and the second transparent electrode 11 are manufactured together on the first alignment layer 17 or the second alignment layer 13 side.
 調光フィルム1は、第1透明電極16、第2透明電極11との間の電位差を変化させることにより外来光の透過を制御し、透明状態と非透明状態とで状態を切り替えるように構成される。 The light control film 1 is configured to control the transmission of extraneous light by changing the potential difference between the first transparent electrode 16 and the second transparent electrode 11, and to switch the state between a transparent state and a non-transparent state. The
 (基材)
 第1基材15、第2基材6は、液晶セル4に適用可能な可撓性を有するTAC(トリアセチルセルロース)、ポリカーボネート、COP(シクロオレフィンポリマー)、アクリル、PET(ポリエチレンテレフタラート)など各種の透明フィルム材を適用することができる。本実施形態では、両面にハードコート層が作製されたポリカーボネート製のフィルム材を用いる。上下基板の遅相軸については後述する。
 本実施形態では遅相軸を例にして説明するが、遅相軸とは、屈折率異方性を有する材料における屈折率が最大となる方向を向いた軸である。
 なお、本実施形態では遅相軸を用いて屈折率異方性の方向を規定して説明を行うが、進相軸を用いて屈折率異方性の方向を規定してもよく、そのような構成についても本発明の範囲内である。
(Base material)
The first base material 15 and the second base material 6 are flexible TAC (triacetyl cellulose), polycarbonate, COP (cycloolefin polymer), acrylic, PET (polyethylene terephthalate) and the like that can be applied to the liquid crystal cell 4. Various transparent film materials can be applied. In the present embodiment, a polycarbonate film material having hard coat layers on both sides is used. The slow axis of the upper and lower substrates will be described later.
In the present embodiment, the slow axis is described as an example. The slow axis is an axis that faces the direction in which the refractive index of a material having refractive index anisotropy is maximized.
In this embodiment, the direction of refractive index anisotropy is defined using the slow axis, but the direction of refractive index anisotropy may be defined using the fast axis. Such a configuration is also within the scope of the present invention.
 (電極)
 第1透明電極16、第2透明電極11は、液晶層8に電界を印加可能であって、透明と知覚される種々の構成を適用することができるが、本実施形態では、透明電極材であるITO(Indium Tin Oxide)による透明導電膜を第1基材15、第2基材6の全面に製造して形成される。なお、IPS方式等においては、電極は所望の形状によりパターンニングされて製造される。
(electrode)
The first transparent electrode 16 and the second transparent electrode 11 can apply an electric field to the liquid crystal layer 8 and can be applied with various configurations that are perceived as transparent. A transparent conductive film made of certain ITO (Indium Tin Oxide) is manufactured and formed on the entire surface of the first base material 15 and the second base material 6. In the IPS method or the like, the electrode is manufactured by patterning with a desired shape.
 (配向層)
 第1配向層17、第2配向層13は、ラビング処理により製造される。この場合、第1配向層17、第2配向層13は、ポリイミド等の配向層に適用可能な各種材料層を製造した後、この材料層の表面にラビングロールを使用したラビング処理により微細なライン状凹凸形状を製造して形成される。第1配向層17、第2配向層13は、ポリイミド樹脂層の他にアクリル、ポリエステル樹脂層であってもよい。
(Orientation layer)
The first alignment layer 17 and the second alignment layer 13 are manufactured by a rubbing process. In this case, after the first alignment layer 17 and the second alignment layer 13 are manufactured by manufacturing various material layers applicable to the alignment layer such as polyimide, fine lines are formed by rubbing treatment using a rubbing roll on the surface of the material layer. It is formed by manufacturing a concavo-convex shape. The first alignment layer 17 and the second alignment layer 13 may be acrylic or polyester resin layers in addition to the polyimide resin layer.
 このようなラビング処理による配向層に代えて、ラビング処理により製造した微細なライン状凹凸形状を賦型処理により製造して配向層を製造してもよい。
 また、上述の例では、ラビング処理を行い配向層を作製したが、ラビング処理を行わなくてもよい。
 また、第1配向層17、第2配向層13は、光配向層により形成してもよい。光配向層に適用可能な光配向材料は、光配向の手法を適用可能な各種の材料を広く適用することができるが、本実施形態では、例えば光二量化型の材料を使用する。この光二量化型の材料については、「M.Schadt, K.Schmitt, V. Kozinkov and V. Chigrinov : Jpn. J. Appl.Phys., 31, 2155 (1992)」、「M. Schadt, H. Seiberle and A. Schuster : Nature, 381, 212(1996)」等に開示されている。
Instead of the alignment layer formed by the rubbing process, the alignment layer may be manufactured by manufacturing a fine line-shaped uneven shape manufactured by the rubbing process by a shaping process.
In the above example, the rubbing process is performed to produce the alignment layer, but the rubbing process may not be performed.
Further, the first alignment layer 17 and the second alignment layer 13 may be formed of a photo-alignment layer. As the photo-alignment material applicable to the photo-alignment layer, various materials to which the photo-alignment technique can be applied can be widely applied. In this embodiment, for example, a photodimerization type material is used. The photodimerization type material is described in “M. Schadt, K. Schmitt, V. Kozinkov and V. Chigrinov: Jpn. J. Appl. Phys., 31, 2155 (1992)”, “M. Schadt, H. Seiberle and A. Schuster: Nature, 381, 212 (1996).
 (スペーサ)
 スペーサ12は、液晶層8の厚みを規定するために設けられ、各種の樹脂材料を広く適用することができるが、本実施形態ではフォトレジストにより製造される。スペーサ12は、第2透明電極11を製造した基材6の上に、フォトレジストを塗工して露光、現像することにより製造される。
 なお、スペーサ12は、第1積層体5Uに設けるようにしてもよく、第1積層体5U及び第2積層体5Dの双方に設けるようにしてもよい。またスペーサ12は、第2配向層13の上に設けるようにしてもよい。さらに、スペーサは、いわゆるビーズスペーサを適用してもよい。
(Spacer)
The spacer 12 is provided to define the thickness of the liquid crystal layer 8 and various resin materials can be widely applied. In the present embodiment, the spacer 12 is manufactured by a photoresist. The spacer 12 is manufactured by applying a photoresist on the base material 6 on which the second transparent electrode 11 is manufactured, and exposing and developing.
The spacer 12 may be provided in the first stacked body 5U, or may be provided in both the first stacked body 5U and the second stacked body 5D. The spacer 12 may be provided on the second alignment layer 13. Further, a so-called bead spacer may be applied as the spacer.
 (液晶層)
 液晶層8は、この種の調光フィルムに適用可能な各種の液晶材料を広く適用することができる。本実施形態では、液晶層8は、二色性色素が混合されたゲストホスト方式の液晶8aである。ゲストホスト方式の液晶層8は、液晶分子の移動に伴い、二色性色素を移動させることで、光の透光及び遮光を制御することができる。
 ホストとして、TN液晶(twisted Nematic liquid crystal)を用い、二色性色素をゲストとした場合、調光フィルムは、電圧が印加されていないときは液晶分子及び二色性色素が水平に並び、光をさえぎって画面が「黒」になる、いわゆるノーマリブラック型である。徐々に電圧を印加していくと、液晶分子が垂直に立ち上がるとともに二色性色素も立ち上がり、光が透過する。
 またVA液晶(Vertical aligntment liquid crystal)用い、二色性色素をゲストとした場合、調光フィルムは、電圧が印加されていないときは液晶分子及び二色性色素が垂直に並び、二色性色素も立ち上がり光が透過する。いわゆるノーマリホワイト型である。徐々に電圧を印加していくと、液晶分子が水平になるとともに光をさえぎって画面が「黒」になる。
(Liquid crystal layer)
Various liquid crystal materials applicable to this type of light control film can be widely applied to the liquid crystal layer 8. In the present embodiment, the liquid crystal layer 8 is a guest-host type liquid crystal 8a mixed with a dichroic dye. The guest-host type liquid crystal layer 8 can control light transmission and light shielding by moving the dichroic dye with the movement of the liquid crystal molecules.
When a TN liquid crystal (twisted liquid crystal) is used as a host and a dichroic dye is used as a guest, the light control film has a liquid crystal molecule and a dichroic dye aligned horizontally when no voltage is applied. It is a so-called normally black type in which the screen becomes “black” by blocking. When a voltage is gradually applied, the liquid crystal molecules rise vertically and the dichroic dye rises, and light is transmitted.
In addition, when VA liquid crystal (Vertical alignment liquid crystal) is used and a dichroic dye is used as a guest, the light control film has a liquid crystal molecule and a dichroic dye aligned vertically when no voltage is applied. Also rises and transmits light. It is a so-called normally white type. When voltage is gradually applied, the liquid crystal molecules become horizontal and the light is blocked, and the screen becomes “black”.
 ただし、これに限らず、ゲストホスト方式に用いられる液晶材料と色素としては、ゲストホスト方式について提案されている液晶材料と色素との混合物を広く適用することができる。 However, the present invention is not limited thereto, and as a liquid crystal material and a dye used for the guest-host method, a mixture of a liquid crystal material and a dye proposed for the guest-host method can be widely applied.
 さらに、ゲストホスト方式に限らず、液晶層8の駆動に、VA(Virtical Alignment)方式を用いてもよい。VA方式は、液晶の配向を垂直配向と水平配向とで変化させて透過光を制御する方式であり、無電界時、液晶を垂直配向させることにより、液晶層8を垂直配向層により挟持して液晶セル4が構成され、電界の印加により液晶材料を水平配向させるように構成される。VA方式の場合、一般に電圧が印加されていないときに画面が「黒」になる、いわゆるノーマリブラック型である。 Furthermore, not only the guest-host method but also a VA (Virtual Alignment) method may be used for driving the liquid crystal layer 8. The VA method is a method of controlling transmitted light by changing the alignment of liquid crystal between vertical alignment and horizontal alignment. When no electric field is applied, the liquid crystal layer 8 is sandwiched between the vertical alignment layers by vertically aligning the liquid crystal. A liquid crystal cell 4 is configured and configured to horizontally align the liquid crystal material by applying an electric field. The VA system is a so-called normally black type in which the screen is generally “black” when no voltage is applied.
 また、IPS(In-Plane-Switching)方式を用いてもよい。IPS方式は、液晶層を挟持する1対の基材のうちの一方の基材に駆動用の電極をまとめて作製して、この電極により基材表面の面内方向の電界であるいわゆる横電界を形成して液晶の配向を制御する駆動方式である。 Also, an IPS (In-Plane-Switching) method may be used. In the IPS system, a driving electrode is collectively produced on one of a pair of substrates sandwiching a liquid crystal layer, and a so-called transverse electric field which is an electric field in the in-plane direction of the substrate surface is formed by this electrode. This is a driving method for controlling the alignment of the liquid crystal by forming the.
 液晶層8を囲むように、枠状にシール材19が配置されている。シール材19は第1積層体5Uと第2積層体5Dとに固定され、このシール材19により液晶の漏出が防止されている。ここでシール材19は、例えばエポキシ樹脂、紫外線硬化性樹脂等を適用することができる。 A sealing material 19 is arranged in a frame shape so as to surround the liquid crystal layer 8. The sealing material 19 is fixed to the first stacked body 5U and the second stacked body 5D, and the leakage of liquid crystal is prevented by the sealing material 19. Here, for example, an epoxy resin, an ultraviolet curable resin, or the like can be applied to the sealing material 19.
 (基材の配置)
 図2は、調光フィルム1における第1基材15、第2基材6の配置を説明する図である。調光フィルム1は、同一の材料、厚みによる透明フィルム材が第1基材15、第2基材6に用いられて、遅相軸L1が平行となるように第1基材15、第2基材6が配置される。
(Substrate arrangement)
FIG. 2 is a view for explaining the arrangement of the first base material 15 and the second base material 6 in the light control film 1. The light control film 1 uses the same material and transparent film material having the same thickness as the first base material 15 and the second base material 6 so that the slow axes L1 are parallel to each other. A substrate 6 is disposed.
 第1基材15、第2基材6との遅相軸L1を平行にする理由は以下の通りである。
 本実施形態で用いる第1基材15や第2基材6のようなフィルム部材は、一般に延伸工程を経て製造される。そして、フィルム部材は、延伸されると、その延伸方向の熱膨張係数(線膨張係数)が小さくなり、遅相軸は延伸方向を向く。
The reason why the slow axis L1 between the first base material 15 and the second base material 6 is parallel is as follows.
Film members such as the first base material 15 and the second base material 6 used in the present embodiment are generally manufactured through a stretching process. And if a film member is extended | stretched, the thermal expansion coefficient (linear expansion coefficient) of the extending | stretching direction will become small, and a slow axis will face the extending | stretching direction.
 図3は比較形態の調光フィルム1’における第2基材6’、第1基材15’の配置を説明する図である。比較形態では液晶層8を挟んで上下に配置された第2基材6と第1基材15との遅相軸方向が直交している。このように第2基材6と第1基材15との遅相軸方向を直交させると、伸縮方向が異なるので、第2基材6’と第1基材15’との間の端部において、シール材との剥離が生じやすい。 FIG. 3 is a view for explaining the arrangement of the second base material 6 ′ and the first base material 15 ′ in the comparative light control film 1 ′. In the comparative form, the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are orthogonal to each other. Thus, when the slow axis direction of the 2nd base material 6 and the 1st base material 15 is made orthogonal, since the expansion-contraction direction differs, the edge part between 2nd base material 6 'and 1st base material 15' In this case, peeling from the sealing material tends to occur.
 これに対して本実施形態によると、液晶層8を挟んで上下に配置された第2基材6と第1基材15との遅相軸方向が同じである。したがって、第2基材6と第1基材15との間の伸縮の差が小さく、第2基材6と第1基材15との間の端部における、シール材との剥離を抑制することができ、調光フィルムの耐久性を向上することができる。 On the other hand, according to the present embodiment, the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are the same. Therefore, the difference in expansion and contraction between the second base material 6 and the first base material 15 is small, and the peeling between the second base material 6 and the first base material 15 at the end portion between the second base material 6 and the first base material 15 is suppressed. And the durability of the light control film can be improved.
 なお、この遅相軸L1の平行の範囲は、計測誤差、製造誤差等をも含めて2つの遅相軸L1の成す角度が±20度以内ではあるが、はがれを実用上充分に抑圧する観点からは、±10度以内であることが好ましく、さらには±5度以内であることがより好ましい。 The parallel range of the slow axis L1 is that the angle formed by the two slow axes L1 including the measurement error, the manufacturing error, etc. is within ± 20 degrees. Is preferably within ± 10 degrees, and more preferably within ± 5 degrees.
 また基材の厚みは、バラツキがあることにより、同一のフィルム材を第1基材15、第2基材6に適用した場合、基材6の厚み±10μmが基材15の厚みであるが、遮光時における透過率を実用上充分に抑圧する観点からは、基材6の厚み±10μmが基材15の厚みであることが好ましく、さらには基材6の厚み±5μmが基材15の厚みであることがより好ましい。 Moreover, when the same film material is applied to the first base material 15 and the second base material 6 due to the variation in the thickness of the base material, the thickness ± 10 μm of the base material 6 is the thickness of the base material 15. From the viewpoint of sufficiently suppressing the transmittance at the time of light shielding, the thickness of the base 6 is preferably ± 10 μm, and the thickness of the base 6 is preferably ± 5 μm. More preferred is the thickness.
 また、本実施形態において、第1基材15、第2基材6の熱膨張係数は、7.0×10-5/℃以下が好ましい。熱膨張係数が大きいと、調光フィルム1をガラス等の比較的熱膨張係数の小さな被貼着物に貼着した際に、熱膨張係数の差によってシール材が剥がれやすくなるからである。 In the present embodiment, the thermal expansion coefficients of the first base material 15 and the second base material 6 are preferably 7.0 × 10 −5 / ° C. or less. This is because when the thermal expansion coefficient is large, when the light control film 1 is adhered to an adherend having a relatively small thermal expansion coefficient such as glass, the sealing material is easily peeled off due to the difference in thermal expansion coefficient.
 (製造工程)
 図4は、調光フィルムの製造工程を示すフローチャートである。この製造工程は、電極作製工程SP2おいて、フォトリソグラフィーの手法を適用して、第2基材6、第1基材15の上に透明電極11、16をそれぞれ作成する。
 さらに続いてスペーサ作製工程SP3において、基材6にフォトレジスト膜を作製した後、露光、現像処理し、これによりスペーサ12を作製する。なお、上述したように、ビーズスペーサを用いてもよい。
 続いて、配向層作製工程SP4において、スペーサ12を作製した基材6の上に、また透明電極16を作製した基材15の上に、ポリイミド樹脂層の塗工液を塗工した後、乾燥、加熱処理し、これによりポリイミド膜を作製する。またこのポリイミド膜をラビング処理し、これにより配向層13、17を作製する。なお、上述したように、ラビング処理は、必須ではなく、行わなくてもよい。
(Manufacturing process)
FIG. 4 is a flowchart showing the manufacturing process of the light control film. In the manufacturing process, transparent electrodes 11 and 16 are respectively formed on the second base material 6 and the first base material 15 by applying a photolithography technique in the electrode manufacturing process SP2.
Subsequently, in the spacer preparation step SP3, a photoresist film is prepared on the substrate 6, and then exposed and developed, whereby the spacer 12 is prepared. As described above, a bead spacer may be used.
Subsequently, in the alignment layer manufacturing step SP4, a polyimide resin layer coating solution is applied on the base material 6 on which the spacer 12 is manufactured and on the base material 15 on which the transparent electrode 16 is manufactured, and then dried. Then, heat treatment is carried out to produce a polyimide film. In addition, the polyimide film is rubbed to produce the alignment layers 13 and 17. As described above, the rubbing process is not essential and may not be performed.
 また続いてこの製造工程は、封止工程SP5において、配向層13を作製した基材6に、ディスペンサーを使用して枠形状によりシール材を塗布した後、この枠形状により囲まれる所定位置に、ディスペンサーを使用して液晶層8に係る液晶材料を滴下する。なお、シール材はディスペンサーに限らず、スクリーン印刷で形成してもよい。
 その後、この製造工程は、第1基材15、第2基材6を積層した後、押圧して加熱し、これにより液晶層8を挟持するようにして、第1積層体5U及び第2積層体5Dをシール材19により貼り合せて一体化し、調光フィルム1を作製する。このとき、第2基材6と第1基材15の遅相軸とが平行となるようにする。
Subsequently, in the sealing step SP5, the manufacturing process is performed by applying a sealing material in a frame shape using a dispenser to the base material 6 on which the alignment layer 13 is manufactured, and then in a predetermined position surrounded by the frame shape. The liquid crystal material related to the liquid crystal layer 8 is dropped using a dispenser. The sealing material is not limited to the dispenser, and may be formed by screen printing.
Thereafter, in this manufacturing process, after the first base material 15 and the second base material 6 are laminated, the first laminated body 5U and the second laminated body are pressed so that the liquid crystal layer 8 is sandwiched by pressing and heating. The body 5 </ b> D is bonded and integrated by the sealing material 19 to produce the light control film 1. At this time, the second base 6 and the slow axis of the first base 15 are made parallel.
 (実施例1)
 両面にハードコート層が作製されたポリカーボネートによるフィルム材を基材として用い、第1基材15、第2基材6の遅相軸L1が平行となるように調光フィルム1を作製した。第1基材15、第2基材6の熱膨張係数は7.0×10-5/℃以下である。なお、第1基材15、第2基材6には、上述したように他の材料を用いてもよく、例えば、PETを素材として用いた場合には、第1基材15、第2基材6の熱膨張係数は2.0×10-5/℃である。
 そしてその調光フィルム1を、-40℃と80℃との間で冷却加熱するヒートサイクル試験を行った。ヒートサイクルの回数は30回である。
 その結果、調光フィルム1において、第2基材6と第1基材15の端部において剥離が生じないことを確認した。すなわち、シール材19と第2基材6との間、シール材19と配向層13、17との間の剥がれや、シール材19の破損等は観察されなかった。
Example 1
The light control film 1 was produced using the film material by the polycarbonate by which the hard-coat layer was produced on both surfaces as a base material so that the slow axis L1 of the 1st base material 15 and the 2nd base material 6 might become parallel. The thermal expansion coefficients of the first base material 15 and the second base material 6 are 7.0 × 10 −5 / ° C. or less. Note that other materials may be used for the first base material 15 and the second base material 6 as described above. For example, when PET is used as a material, the first base material 15 and the second base material 6 are used. The coefficient of thermal expansion of the material 6 is 2.0 × 10 −5 / ° C.
Then, a heat cycle test was performed in which the light control film 1 was cooled and heated between −40 ° C. and 80 ° C. The number of heat cycles is 30.
As a result, in the light control film 1, it confirmed that peeling did not arise in the edge part of the 2nd base material 6 and the 1st base material 15. FIG. That is, peeling between the sealing material 19 and the second base material 6, between the sealing material 19 and the alignment layers 13 and 17, damage to the sealing material 19, and the like were not observed.
 (比較例)
 図3は比較例の調光フィルム1’における第2基材6’、第1基材15’の配置を説明する図である。
 実施例と同様に両面にハードコート層が作製されてなるポリカーボネートによるフィルム材を基材として用い、第2基材6’、第1基材15’の遅相軸L1が直交するように調光フィルム1’を作製した。第2基材6’、第1基材15’の熱膨張係数は、比較例においても7.0×10-5/℃以下である。
 そしてその調光フィルム1’を、実施例と同様に、-40℃と80℃との間で冷却加熱するヒートサイクル試験を行った。ヒートサイクルの回数は30回である。
 その結果、調光フィルム1’において、第2基材6’と第1基材15’の端部において剥離が生じることを確認した。すなわち、シール材と第2基材6’との間、シール材と配向層13、17との間の剥がれが観察された。
(Comparative example)
FIG. 3 is a diagram illustrating the arrangement of the second base material 6 ′ and the first base material 15 ′ in the light control film 1 ′ of the comparative example.
As in the example, a polycarbonate film material having hard coat layers formed on both sides is used as a base material, and light control is performed so that the slow axes L1 of the second base material 6 ′ and the first base material 15 ′ are orthogonal to each other. Film 1 ′ was produced. The thermal expansion coefficients of the second substrate 6 ′ and the first substrate 15 ′ are 7.0 × 10 −5 / ° C. or less in the comparative example.
Then, a heat cycle test was performed in which the light control film 1 ′ was cooled and heated between −40 ° C. and 80 ° C. in the same manner as in the example. The number of heat cycles is 30.
As a result, it was confirmed that peeling occurred at the end portions of the second base material 6 ′ and the first base material 15 ′ in the light control film 1 ′. That is, peeling between the sealing material and the second base material 6 ′ and between the sealing material and the alignment layers 13 and 17 was observed.
 以上、本実施形態によると、液晶層8を挟んで上下に配置された第2基材6と第1基材15との遅相軸方向が同じである。したがって、第2基材6と第1基材15との間の伸縮の差が小さく、第2基材6と第1基材15との間の端部における、シール材との剥離を抑制することができ、調光フィルムの耐久性を向上することができる。
 特に、本実施形態で液晶層8は、ゲストホスト方式の液晶層8である。ゲストホスト方式は、偏光板が不要である。偏光板は、熱収縮が非常に大きい。
 本実施形態によると、ゲストホスト方式により偏光板を使用しないので、全体の熱的なゆがみが格段に抑えられ、シール材19の決壊を抑えることができる。
 特に、第1基材15及び第2基材6が500μm以下、300μm以下、200μm以下など薄い場合には、偏光板を用いると熱収縮により第1基材15及び第2基材6が破壊される可能性があるが、本実施形態の場合、そのような可能性が低減される。
As described above, according to the present embodiment, the slow axis directions of the second base material 6 and the first base material 15 arranged above and below the liquid crystal layer 8 are the same. Therefore, the difference in expansion and contraction between the second base material 6 and the first base material 15 is small, and the peeling between the second base material 6 and the first base material 15 at the end portion between the second base material 6 and the first base material 15 is suppressed. And the durability of the light control film can be improved.
In particular, the liquid crystal layer 8 in this embodiment is a guest-host type liquid crystal layer 8. The guest host method does not require a polarizing plate. The polarizing plate has a very large thermal shrinkage.
According to the present embodiment, since the polarizing plate is not used by the guest-host method, the overall thermal distortion is remarkably suppressed, and the sealing material 19 can be prevented from being broken.
In particular, when the first base material 15 and the second base material 6 are thin, such as 500 μm or less, 300 μm or less, or 200 μm or less, the first base material 15 and the second base material 6 are destroyed by thermal contraction when a polarizing plate is used. In this embodiment, such a possibility is reduced.
[第2実施形態]
 次に、本発明の第2実施形態について説明する。
 図5は、第2実施形態の調光フィルムを示す断面図である。
 第2実施形態は、第2基材6、及び、第1基材15の素材を、面内の屈折率異方性が第1実施形態よりも大幅に小さい材料を用いた点が、本発明の構成としては、第1実施形態と大きく異なる。なお、前述した第1実施形態と同様の機能を果たす部分には、同一の符号を付して、重複する説明を適宜省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
FIG. 5 is a cross-sectional view showing the light control film of the second embodiment.
In the second embodiment, the second base material 6 and the first base material 15 are made of a material having in-plane refractive index anisotropy significantly smaller than that of the first embodiment. This configuration is significantly different from that of the first embodiment. In addition, the same code | symbol is attached | subjected to the part which fulfill | performs the same function as 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted suitably.
 第2実施形態の第2基材6、及び、第1基材15には、無延伸のポリカーボネートを用いており、第2基材6、及び、第1基材15の面内の位相差は15nm以下となっている。
 先に説明した第1実施形態では、延伸されたポリカーボネートを用いている。延伸の程度にもよるが、延伸されたポリカーボネートでは、第2基材6、及び、第1基材15の面内の位相差は100nm~600nm程度と非常に大きな値である。これに対して、第2実施形態では、上述したように、第2基材6、及び、第1基材15の面内の位相差は15nm以下となっている。
Unstretched polycarbonate is used for the second base material 6 and the first base material 15 of the second embodiment, and the in-plane retardation of the second base material 6 and the first base material 15 is It is 15 nm or less.
In the first embodiment described above, stretched polycarbonate is used. Although depending on the degree of stretching, in the stretched polycarbonate, the in-plane retardation of the second substrate 6 and the first substrate 15 is a very large value of about 100 nm to 600 nm. On the other hand, in 2nd Embodiment, as above-mentioned, the phase difference in the surface of the 2nd base material 6 and the 1st base material 15 is 15 nm or less.
 基材の遅相軸及び位相差を測定する測定装置としては、大塚電子製のRETS-100、王子計測機器製のKOBRA-WRが候補としてある独自の平行ニコル回転法を用いた偏光解析装置を用いる。そして、試料の上下に偏光板(偏光子・検光子)をおき、単一波長光束を偏光子側から照射し、偏光子・検光子を平行ニコルに保ちながら光線軸回りに一回転したときの、透過光強度の角度依存性から試料の位相差を求める。
 第2実施形態の第2基材6、及び、第1基材15は、第1実施形態よりも面内の位相差が小さいが、遅相軸は、第1実施形態と同様に、屈折率が最大となる方向を向いた軸として定義できる。
 なお、実際には、上述のように各基材上には、透明電極や、配向層が形成されている場合があるが、配向層は位相差を有さないため基材上に設けた状態で上記測定をしても測定結果に影響はない。しかし、透明電極は位相差を有する場合があるため、基材上に透明電極が設けられている状態で測定するときは、透明電極のリタデーションReが、Re<10nmであることが望ましく、Re<5nmであることがより望ましい。
As a measuring device for measuring the slow axis and phase difference of the base material, there is an ellipsometer using a unique parallel Nicol rotation method with the candidates of Otsuka Electronics 'RETS-100 and Oji Scientific Instruments' KOBRA-WR. Use. Then, when polarizing plates (polarizer / analyzer) are placed on the top and bottom of the sample, a single wavelength light beam is irradiated from the polarizer side, and the polarizer / analyzer is rotated once around the beam axis while maintaining parallel Nicols. The phase difference of the sample is obtained from the angle dependence of the transmitted light intensity.
The second base material 6 and the first base material 15 of the second embodiment have a smaller in-plane retardation than the first embodiment, but the slow axis has a refractive index similar to the first embodiment. Can be defined as the axis that points in the direction that maximizes.
In addition, in practice, a transparent electrode or an alignment layer may be formed on each substrate as described above. However, since the alignment layer has no retardation, it is provided on the substrate. The above measurement does not affect the measurement result. However, since the transparent electrode may have a phase difference, when measuring in a state where the transparent electrode is provided on the substrate, the retardation Re of the transparent electrode is preferably Re <10 nm, and Re < More desirably, it is 5 nm.
 材料が延伸されると、物理的特性に異方性が顕著に現われ、本発明で着目している熱膨張係数についても、異方性が顕著に発現する。具体的には、第1実施形態においても説明したように、延伸方向の熱膨張係数(線膨張係数)が小さくなり、遅相軸は延伸方向を向く。
 ここで、面内の位相差は、材料が延伸されたか否かによって大きな影響を受け、延伸されるほど位相差が大きくなる傾向にある。さらに、無延伸であるとして作製された素材であっても、例えば、製造過程における搬送装置による搬送時等に、一方向に力が作用することにより屈折率の異方性が生じ、位相差が生じることが確認されている。一方で、材料が延伸されたか否かは、材料単体を観察しても容易には判別が困難である。
When the material is stretched, the anisotropy appears remarkably in the physical properties, and the anisotropy also appears remarkably for the thermal expansion coefficient focused in the present invention. Specifically, as described in the first embodiment, the thermal expansion coefficient (linear expansion coefficient) in the stretching direction becomes small, and the slow axis faces the stretching direction.
Here, the in-plane retardation is greatly influenced by whether or not the material is stretched, and the retardation tends to increase as the material is stretched. Furthermore, even if the material is manufactured as non-stretched, for example, when transported by a transport device in the manufacturing process, a force acts in one direction, resulting in anisotropy of the refractive index and a phase difference. It has been confirmed that this occurs. On the other hand, it is difficult to easily determine whether or not the material has been stretched even by observing the material alone.
 第2実施形態では、第2基材6、及び、第1基材15には、無延伸のポリカーボネートを用いているが、その場合においても、第2基材6、及び、第1基材15の遅相軸の方向を平行に揃えて配置することとした。これにより、第2基材6と第1基材15との間の伸縮の差がさらに小さくなり、第2基材6と第1基材15との間の端部における、シール材との剥離を抑制することができ、調光フィルムの耐久性を、さらに向上することができる。また、遅相軸を用いて第2基材6、及び、第1基材15の向きを合せるので、見た目では判別不可能な位相差の面内異方性の方向を一致させることが可能である。なお、第2実施形態では、無延伸のポリカーボネートを用いていることから、熱膨張時の面内の伸縮の異方性は、第1実施形態の場合と比べると小さい。よって、第2実施形態では、第2基材6、及び、第1基材15の遅相軸の方向を平行に揃えて配置するときの許容されるばらつき、すなわち、第2基材6、及び、第1基材15の遅相軸の方向が厳密な平行とならずに平行とみなせる範囲を広げることが可能である。よって、第1実施形態に比べ、第2基材6、及び、第1基材15の遅相軸の方向が厳密に平行でなくても、シール材の剥離を抑制するという効果を奏することが可能である。なお、この許容範囲については、要求される耐久性によって適宜増減可能な設計事項である。よって、本発明における遅相軸の方向を「平行」とする範囲には、上述した本願発明の効果を得られる範囲において許容される範囲の平行(厳密には、非平行な関係)も含まれるものである。 In the second embodiment, unstretched polycarbonate is used for the second base material 6 and the first base material 15, but also in this case, the second base material 6 and the first base material 15 are used. The slow axis directions were arranged in parallel. Thereby, the difference in expansion and contraction between the second base material 6 and the first base material 15 is further reduced, and the end portion between the second base material 6 and the first base material 15 is peeled off from the sealing material. Can be suppressed, and the durability of the light control film can be further improved. Moreover, since the direction of the 2nd base material 6 and the 1st base material 15 is match | combined using a slow axis, it is possible to make the direction of the in-plane anisotropy of the phase difference which cannot be discerned visually. is there. In the second embodiment, since non-stretched polycarbonate is used, the in-plane expansion / contraction anisotropy at the time of thermal expansion is smaller than that in the first embodiment. Therefore, in 2nd Embodiment, the dispersion | variation accept | permitted when arranging the direction of the slow axis of the 2nd base material 6 and the 1st base material 15 in parallel, ie, the 2nd base material 6, and It is possible to widen the range in which the direction of the slow axis of the first base material 15 can be regarded as parallel without being strictly parallel. Therefore, compared with 1st Embodiment, even if the direction of the slow axis of the 2nd base material 6 and the 1st base material 15 is not strictly parallel, there exists an effect of suppressing peeling of a sealing material. Is possible. This allowable range is a design matter that can be appropriately increased or decreased depending on the required durability. Therefore, the range in which the direction of the slow axis in the present invention is “parallel” includes the range of parallelism (strictly, non-parallel relationship) allowed in the range in which the effects of the present invention described above can be obtained. Is.
 なお、基材の他にも、第2実施形態の調光フィルムについては、第1実施形態と異なる点がある。
 第2実施形態の第2配向層13及び第1配向層17は、ラビング処理を一切行っていない構成とした。
 また、第2実施形態のスペーサ12は、ビーズスペーサにより構成した。
 なお、これらの点については、第1実施形態でも説明したように、他の構成としてもよい。すなわち、第2実施形態においても、第2配向層13及び第1配向層17は、ラビング処理を行って作製してもよいし、第2実施形態のスペーサ12は、フォトレジストを用いて作製してもよい。
 また、第2実施形態の基材は、無延伸のポリカーボネートを用いたが、例えば、無延伸のPETを基材に用いてもよい。
In addition to the base material, the light control film of the second embodiment is different from the first embodiment.
The second alignment layer 13 and the first alignment layer 17 of the second embodiment are configured such that no rubbing treatment is performed.
Moreover, the spacer 12 of 2nd Embodiment was comprised by the bead spacer.
In addition, about these points, as demonstrated also in 1st Embodiment, it is good also as another structure. That is, also in the second embodiment, the second alignment layer 13 and the first alignment layer 17 may be manufactured by performing a rubbing process, and the spacer 12 of the second embodiment is manufactured using a photoresist. May be.
Moreover, although the unstretched polycarbonate was used for the base material of 2nd Embodiment, you may use unstretched PET for a base material, for example.
 (他の実施形態)
 以上、本発明の実施に好適な具体的な構成を詳述したが、本発明は、本発明の趣旨を逸脱しない範囲で、上述の実施形態を種々に変更することができる。
(Other embodiments)
As mentioned above, although the specific structure suitable for implementation of this invention was explained in full detail, this invention can be variously changed in the range which does not deviate from the meaning of this invention.
 すなわち上述の実施形態では、TN方式、VA方式により液晶材料を駆動する場合について述べたが、本発明はこれに限らず、IPS方式により駆動する場合にも広く適用することができる。 That is, in the above-described embodiment, the case where the liquid crystal material is driven by the TN method and the VA method has been described. However, the present invention is not limited to this, and can be widely applied to the case of driving by the IPS method.
 また上述の第1実施形態では、フォトレジストによりスペーサを作製する場合について述べたが、本発明はこれに限らず、いわゆるビーズスペーサを適用するようにしてもよい。 Further, in the first embodiment described above, the case where the spacer is manufactured using the photoresist has been described. However, the present invention is not limited to this, and a so-called bead spacer may be applied.
 なお、各実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した各実施形態によって限定されることはない。 In addition, although each embodiment and modification can also be used in combination suitably, detailed description is abbreviate | omitted. Further, the present invention is not limited by the embodiments described above.
 1 調光フィルム
 4 液晶セル
 5D 第2積層体
 5U 第1積層体
 6 第2基材
 8 液晶層
 11 第2透明電極
 12 スペーサ
 13 第2配向層
 15 第1基材
 16 第1透明電極
 17 第1配向層
 19 シール材
DESCRIPTION OF SYMBOLS 1 Light control film 4 Liquid crystal cell 5D 2nd laminated body 5U 1st laminated body 6 2nd base material 8 Liquid crystal layer 11 2nd transparent electrode 12 Spacer 13 2nd orientation layer 15 1st base material 16 1st transparent electrode 17 1st Alignment layer 19 Sealing material

Claims (7)

  1.  透明なフィルム状の第1基材を少なくとも有する第1積層体と、
     透明なフィルム状の第2基材を少なくとも有する第2積層体と、
     前記第1積層体と前記第2積層体との間に挟持された液晶と、
     前記第1積層体及び前記第2積層体の少なくとも一方に設けられた透明電極と、を備え、
     前記透明電極の駆動により前記液晶の配向を制御して透過光を制御する調光フィルムにおいて、
     前記第1基材の遅相軸と前記第2基材の遅相軸とが平行である調光フィルム。
    A first laminate having at least a transparent film-like first substrate;
    A second laminate having at least a transparent film-like second substrate;
    A liquid crystal sandwiched between the first laminate and the second laminate;
    A transparent electrode provided on at least one of the first laminate and the second laminate,
    In a light control film for controlling transmitted light by controlling the orientation of the liquid crystal by driving the transparent electrode,
    The light control film in which the slow axis of a said 1st base material and the slow axis of a said 2nd base material are parallel.
  2.  前記第1基材及び前記第2基材の熱膨張係数が7.0×10-5/℃以下である、
     請求項1に記載の調光フィルム。
    The first base material and the second base material have a thermal expansion coefficient of 7.0 × 10 −5 / ° C. or less.
    The light control film of Claim 1.
  3.  前記第1基材及び前記第2基材それぞれの面内位相差は、15nm以下である、
     請求項1又は請求項2に記載の調光フィルム。
    The in-plane retardation of each of the first base material and the second base material is 15 nm or less.
    The light control film of Claim 1 or Claim 2.
  4.  前記第1基材及び前記第2基材が、
     ポリカーボネートフィルム、COPフィルム、PETフィルムのいずれかである、
     請求項1から請求項3までのいずれかに記載の調光フィルム。
    The first base material and the second base material are:
    Any of polycarbonate film, COP film, PET film,
    The light control film in any one of Claim 1- Claim 3.
  5.  前記液晶に、二色性色素が混合されている、
    請求項1から請求項4までのいずれかに記載の調光フィルム。
    A dichroic dye is mixed in the liquid crystal,
    The light control film in any one of Claim 1- Claim 4.
  6.  透明部材と、
     前記透明部材に配置される請求項1から請求項5までのいずれかに記載の調光フィルムと、
     を備える調光部材。
    A transparent member;
    The light control film in any one of Claim 1- Claim 5 arrange | positioned at the said transparent member,
    A light control member comprising:
  7.  請求項1から請求項5までのいずれかに記載の調光フィルムが、外光が入射する部位に配置された車両。 A vehicle in which the light control film according to any one of claims 1 to 5 is disposed at a site where external light is incident.
PCT/JP2017/046669 2016-12-27 2017-12-26 Light control film WO2018124080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018559521A JP7074071B2 (en) 2016-12-27 2017-12-26 Dimming film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016254353 2016-12-27
JP2016-254353 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018124080A1 true WO2018124080A1 (en) 2018-07-05

Family

ID=62709783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046669 WO2018124080A1 (en) 2016-12-27 2017-12-26 Light control film

Country Status (2)

Country Link
JP (1) JP7074071B2 (en)
WO (1) WO2018124080A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026931A (en) * 1983-07-23 1985-02-09 Ricoh Co Ltd Liquid crystal display element
JPH06160823A (en) * 1992-11-18 1994-06-07 Ricoh Co Ltd Light control element and light control system
JP2006513459A (en) * 2004-01-08 2006-04-20 エルジー・ケム・リミテッド Vertical alignment liquid crystal display device using polynorbornene polymer film
JP2010230759A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Liquid crystal sheet
US20150146142A1 (en) * 2013-11-22 2015-05-28 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical compensation film for liquid crystal display and liquid crystal display including the same
JP5950014B1 (en) * 2015-09-28 2016-07-13 大日本印刷株式会社 Light control film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887538A (en) * 1981-11-20 1983-05-25 Hitachi Ltd Liquid crystal display element
JPS59224826A (en) * 1983-06-03 1984-12-17 Nitto Electric Ind Co Ltd Liquid crystal display cell
JPS6021720U (en) * 1983-07-19 1985-02-14 シャープ株式会社 liquid crystal display element
JPS60100171A (en) * 1983-11-07 1985-06-04 株式会社日立製作所 Liquid crystal display unit
JP2663124B2 (en) * 1987-10-31 1997-10-15 藤森工業 株式会社 Liquid crystal display panel comprising a substrate having an optical phase function
JPH02236521A (en) * 1989-03-10 1990-09-19 Canon Inc Ferroelectric high-polymer liquid crystal element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026931A (en) * 1983-07-23 1985-02-09 Ricoh Co Ltd Liquid crystal display element
JPH06160823A (en) * 1992-11-18 1994-06-07 Ricoh Co Ltd Light control element and light control system
JP2006513459A (en) * 2004-01-08 2006-04-20 エルジー・ケム・リミテッド Vertical alignment liquid crystal display device using polynorbornene polymer film
JP2010230759A (en) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd Liquid crystal sheet
US20150146142A1 (en) * 2013-11-22 2015-05-28 Shenzhen China Star Optoelectronics Technology Co., Ltd. Optical compensation film for liquid crystal display and liquid crystal display including the same
JP5950014B1 (en) * 2015-09-28 2016-07-13 大日本印刷株式会社 Light control film

Also Published As

Publication number Publication date
JPWO2018124080A1 (en) 2019-10-31
JP7074071B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6128270B1 (en) Light control film
JP6317582B2 (en) Liquid crystal display and manufacturing method thereof
TWI592724B (en) Dimming film
WO2015146369A1 (en) Liquid crystal display device and production method for liquid crystal display device
KR20150144631A (en) Cotalable polarizer and liquid crystal display device having thereof
JP2017062361A (en) Lighting control film and method for manufacturing the lighting control film
JP2014206669A (en) Liquid crystal display device
KR100255058B1 (en) Liquid crystal display apparatus having high wide visual angle and high contrast
JP2021501366A (en) Laminated body and liquid crystal display device containing it
JP2017065945A (en) Laminated glass
JP6953739B2 (en) Dimming film and laminated glass
JP6156540B1 (en) Light control film and method of manufacturing light control film
JP2017062362A (en) Lighting control film
WO2018124080A1 (en) Light control film
JP7110547B2 (en) light control film
WO2017170070A1 (en) Method for producing liquid crystal panel
JP6057012B1 (en) Light control film
JP2018005187A (en) Lighting control film, laminate of lighting control film, and vehicle
JP6065144B1 (en) Light control film
Fujiwara et al. 4‐2: Thin Flexible Liquid Crystal Displays Using Dye‐Type In‐Cell Polarizer and PET Substrates
JP2017181825A (en) Light control film and window
JP2018180169A (en) Dimming film and production method of dimming film
JP6953750B2 (en) Dimming cell
JP2009282063A (en) Vertical alignment type liquid crystal display element and method for manufacturing the same
JP2017223809A (en) Production method of light control film and light control film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887080

Country of ref document: EP

Kind code of ref document: A1