WO2018123563A1 - Polyamide resin composition, method for producing same and molded body formed from same - Google Patents

Polyamide resin composition, method for producing same and molded body formed from same Download PDF

Info

Publication number
WO2018123563A1
WO2018123563A1 PCT/JP2017/044572 JP2017044572W WO2018123563A1 WO 2018123563 A1 WO2018123563 A1 WO 2018123563A1 JP 2017044572 W JP2017044572 W JP 2017044572W WO 2018123563 A1 WO2018123563 A1 WO 2018123563A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyamide
polyamide resin
group
flame retardant
Prior art date
Application number
PCT/JP2017/044572
Other languages
French (fr)
Japanese (ja)
Inventor
辰典 正木
太陽 甘利
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to CN201780074795.2A priority Critical patent/CN110036074A/en
Priority to JP2018559005A priority patent/JPWO2018123563A1/en
Publication of WO2018123563A1 publication Critical patent/WO2018123563A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide resin composition, a method for producing the same, and a molded body comprising the same.
  • Polyamide is excellent in heat resistance and mechanical properties, and is used as a constituent material for many electric / electronic parts and parts around automobile engines. Among these parts, polyamides constituting electric / electronic parts are required to have high flame retardancy. As a method for imparting flame retardancy to the resin, it is usual to use a flame retardant. In recent years, due to the increase in environmental awareness, halogen-based flame retardants have been avoided, and the use of non-halogen-based flame retardants is common.
  • Patent Document 1 discloses a mixture of a reaction product of melamine and phosphoric acid, a zinc compound, and a phosphinate
  • Patent Document 2 discloses a reaction of melamine and phosphoric acid. Mixtures of products, phosphinates and metal compounds are disclosed, all of which are disclosed to satisfy the flame retardant standard UL94V-0 standard in 1/16 inch molded articles.
  • the phosphinic acid salt may be decomposed when it is melt-kneaded with polyamide to produce a resin composition, and the gas generated at that time also decomposes the polyamide, resulting in a decrease in the molecular weight of the polyamide.
  • the obtained resin composition has a problem that heat resistance, mechanical properties, flame retardancy, and the like are deteriorated. Further, the polyamide is thermally deteriorated and oxidized to be thermally discolored, and yellowness (yellow index, YI). ) May have risen.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a polyamide resin composition that is excellent in heat resistance, mechanical properties, and flame retardancy and in which an increase in yellowness is suppressed.
  • the present inventors have found that a polyamide resin composition produced under specific conditions can solve the above problems, and have reached the present invention. That is, the gist of the present invention is as follows. (1) It contains 100 parts by mass of polyamide (A) having a melting point of 270 to 350 ° C. and 10 to 80 parts by mass of a phosphorus-based flame retardant (B), and has a yellowness (YI 0 ) of 3.0 or less. A polyamide resin composition characterized by the above. (2) The polyamide resin composition according to (1), wherein the yellowness change value ( ⁇ YI) after reflow treatment at 265 ° C. is 12.0 or less.
  • the chain represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkylalkylene group, or an alkylarylene group, and M represents a calcium ion, an aluminum ion, a magnesium ion, or a zinc ion.
  • C fibrous reinforcing material
  • F 0.1 to 20 parts by mass of talc
  • a method for producing a polyamide resin composition comprising adding a flame retardant (B) from a side feeder.
  • a method for producing a polyamide resin composition (9) The method for producing a polyamide resin composition according to (7) or (8), wherein the polyamide (A) is polymerized before melt kneading and the polymerization is carried out in an inert gas atmosphere. . (10) The polyamide resin composition according to any one of (7) to (9), wherein the melt kneading of the polyamide (A) and the phosphorus-based flame retardant (B) is performed in an inert gas atmosphere. Manufacturing method. (11) A molded article obtained by molding the polyamide resin composition according to any one of (1) to (6) above.
  • a polyamide resin composition in which thermal deterioration during melt kneading and thermal discoloration due to oxidative deterioration are greatly suppressed, and decomposition of polyamide is suppressed, and mechanical properties and flame retardancy are maintained at a high level.
  • molding the polyamide resin composition of this invention can suppress the raise of yellowness, even if the reflow process from which the maximum temperature will be about 260 degreeC is carried out.
  • the polyamide resin composition of the present invention contains polyamide (A) and a phosphorus-based flame retardant (B).
  • the polyamide (A) constituting the polyamide resin composition of the present invention needs to have a melting point of 270 ° C. to 350 ° C. Since the polyamide (A) has a melting point of 270 ° C. or higher, it has heat resistance and can withstand a reflow process in which the maximum temperature is about 260 ° C. On the other hand, when the melting point of the polyamide (A) exceeds 350 ° C., the decomposition temperature of the amide bond is about 350 ° C., so that carbonization and decomposition may proceed during melt processing.
  • polyamide (A) examples include aliphatic polyamides, semi-aromatic polyamides, alicyclic polyamides, and copolymers thereof from the classification of monomer components.
  • aliphatic polyamide examples include polyamide 46 and the like.
  • Semi-aromatic polyamides include polyamides composed of an aromatic dicarboxylic acid component and an aliphatic diamine component. Specific examples include polyamide 4I (I: isophthalic acid), polyamide 6I, polyamide 7T (T: terephthalic acid). ), Polyamide 8T, polyamide 9T, polyamide 10T, polyamide 11T, polyamide 12T, and the like.
  • alicyclic polyamide examples include polyamide 6C (C: 1,4-cyclohexanedicarboxylic acid), polyamide 7C, polyamide 8C, polyamide 9C, polyamide 10C, polyamide 11C, and polyamide 12C.
  • the copolymer for example, when the diamine has 6 carbon atoms, PA6T / 6, PA6T / 12, PA6T / 66, PA6T / 610, PA6T / 612, PA6T / 6I, PA6T / 6I / 66, PA6T / M5T (M5: methylpentadiamine), PA6T / TM6T (TM6: 2,2,4- or 2,4,4-trimethylhexamethylenediamine), PA6T / MMCT (MMC: 4,4'-methylenebis (2-methyl) Cyclohexylamine)) and the like.
  • M5T methylpentadiamine
  • PA6T / TM6T TM6: 2,2,4- or 2,4,4-trimethylhexamethylenediamine
  • PA6T / MMCT MMC: 4,4'-methylenebis (2-methyl) Cyclohexylamine
  • polyamide (A) these polyamides may be used alone, or a copolymer or a mixture of two or more kinds of polyamides may be used.
  • polyamide (A) because of its high industrial versatility, polyamide 46, polyamide 6T, polyamide 9T, polyamide 10T, and copolymers thereof are preferred examples. Further, polyamide 6T, polyamide 9T, polyamide 10T, and copolymers thereof are more preferable because they are particularly excellent in reflow resistance from the viewpoint of high heat resistance and low water absorption, and polyamide 10T and copolymers thereof are particularly preferable. preferable.
  • the polyamide (A) preferably contains a monocarboxylic acid component as a constituent component.
  • the polyamide (A) can keep the amount of free amino groups at the terminal low, and can suppress degradation and discoloration of the polyamide due to thermal degradation and oxidative degradation when receiving heat. . As a result, the mechanical properties and flame retardancy are highly maintained.
  • the content of the monocarboxylic acid component is preferably 0.3 to 4.0 mol%, and preferably 0.3 to 3.0 mol%, based on all monomer components constituting the polyamide (A). More preferably, it is 0.3 to 2.5 mol%, more preferably 0.8 to 2.5 mol%.
  • a monocarboxylic acid component within the above range, the polyamide (A) can be prevented from being decomposed or discolored due to thermal deterioration or oxidative deterioration when subjected to heat, and the molecular weight distribution during polymerization can be reduced.
  • the mold releasability is improved during the molding process, and the amount of gas generated can be suppressed during the molding process.
  • the content of the monocarboxylic acid component refers to the proportion of the monocarboxylic acid residue in the polyamide (A), that is, the proportion of the monocarboxylic acid from which the terminal hydroxyl group is eliminated.
  • the molecular weight of the monocarboxylic acid component is preferably 140 or more, and more preferably 170 or more.
  • the polyamide (A) can be prevented from being decomposed or discolored due to thermal degradation or oxidative degradation when receiving heat, and improved in mold release properties. The amount of gas generated can be suppressed at the temperature, and the molding fluidity can be improved.
  • the monocarboxylic acid component include aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and aromatic monocarboxylic acids, and among them, aliphatic monocarboxylic acids are preferable.
  • Examples of the aliphatic monocarboxylic acid having a molecular weight of 140 or more include caprylic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. Of these, stearic acid is preferred because of its high versatility.
  • Examples of the alicyclic monocarboxylic acid having a molecular weight of 140 or more include 4-ethylcyclohexanecarboxylic acid, 4-hexylcyclohexanecarboxylic acid, and 4-laurylcyclohexanecarboxylic acid.
  • Examples of the aromatic monocarboxylic acid having a molecular weight of 140 or more include 4-ethylbenzoic acid, 4-hexylbenzoic acid, 4-laurylbenzoic acid, 1-naphthoic acid, 2-naphthoic acid and derivatives thereof. .
  • the monocarboxylic acid component may be used alone or in combination.
  • a monocarboxylic acid having a molecular weight of 140 or more and a monocarboxylic acid having a molecular weight of less than 140 may be used in combination.
  • the molecular weight of the monocarboxylic acid refers to the molecular weight of the starting monocarboxylic acid.
  • a polymer has a crystalline phase and an amorphous phase, and crystal characteristics such as a melting point are determined solely by the state of the crystalline phase. Since the terminal group in the polymer exists in an amorphous phase, the melting point of the polyamide does not change depending on the presence / absence and type of the terminal group. Since the monocarboxylic acid bonded to the end of the polyamide chain is also present in the amorphous phase, the melting point of the polyamide is not lowered by the inclusion of the monocarboxylic acid.
  • the polyamide (A) has a melt flow rate (MFR) at 340 ° C. and a load of 1.2 kg of preferably 1 to 200 g / 10 minutes, more preferably 10 to 150 g / 10 minutes. More preferably, it is 20 to 100 g / 10 minutes.
  • MFR can be used as an index of molding fluidity, and the higher the MFR value, the higher the fluidity.
  • the MFR of the polyamide (A) exceeds 200 g / 10 minutes, the mechanical properties of the resulting resin composition may be deteriorated.
  • the MFR of the polyamide (A) is less than 1 g / 10 minutes, the fluidity may be reduced. It is extremely low and may not be melt processed.
  • the polyamide (A) can be produced using a conventionally known method such as a heat polymerization method or a solution polymerization method. Of these, the heat polymerization method is preferably used because it is industrially advantageous.
  • the polymerization of the polyamide (A) is preferably carried out in an inert gas atmosphere with an inert gas such as nitrogen, carbon dioxide, or argon sealed in a polymerization vessel. Thereby, discoloration due to oxidative degradation of the polyamide during polymerization can be suppressed, and at the same time, discoloration in the process after polymerization can be suppressed.
  • a polymerization catalyst may be used to increase the efficiency of polymerization.
  • the polymerization catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof, and the addition amount of the polymerization catalyst is usually 2 mol% or less based on the total mol of dicarboxylic acid and diamine. It is preferable that
  • Examples of the phosphorus-based flame retardant (B) constituting the polyamide resin composition of the present invention include phosphate ester compounds, phosphinates, diphosphinates, phosphazene compounds, and the like.
  • Examples of phosphoric acid ester compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl).
  • Phosphate diisopropylphenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, or these Examples include substitution products and condensates .
  • a phosphoric acid ester compound is preferable because it hardly adheres to the mold and is excellent in heat resistance and moisture resistance of the molded body.
  • the phosphate ester compound may be a monomer, an oligomer, a polymer, or a mixture thereof.
  • Specific product names of the phosphate ester compounds include, for example, “TPP” [triphenyl phosphate], “TXP” [trixylenyl phosphate], “CR-733S” [resorcinol bis ( Diphenyl phosphate)], “PX200” [1,3-phenylene-teslakis (2,6-dimethylphenyl) phosphate], “PX201” [1,4-phenylene-tetrakis (2,6-dimethylphenyl) phosphate Ester], “PX202” [4,4′-biphenylene-teslakis (2,6-dimethylphenyl) phosphate]. These may be used alone or in combination.
  • Examples of the phosphinate and diphosphinate include compounds represented by the following general formula (I) and general formula (II), respectively.
  • each of R 1 , R 2 , R 4 and R 5 independently needs to be a linear or branched alkyl group having 1 to 16 carbon atoms or a phenyl group, and has 1 to 8 carbon atoms.
  • R 1 and R 2 and R 4 and R 5 may form a ring with each other.
  • R 3 must be a linear or branched alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkyl alkylene group, or an alkyl arylene group.
  • Examples of the linear or branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, n-propylene group, isopropylene group, isopropylidene group, n-butylene group, tert-butylene group, n- A pentylene group, an n-octylene group, and an n-dodecylene group may be mentioned.
  • Examples of the arylene group having 6 to 10 carbon atoms include a phenylene group and a naphthylene group.
  • Examples of the alkylarylene group include a methylphenylene group, an ethylphenylene group, a tert-butylphenylene group, a methylnaphthylene group, an ethylnaphthylene group, and a tert-butylnaphthylene group.
  • Examples of the arylalkylene group include a phenylmethylene group, a phenylethylene group, a phenylpropylene group, and a phenylbutylene group.
  • M represents a metal ion.
  • Examples of the metal ions include calcium ions, aluminum ions, magnesium ions, and zinc ions. Aluminum ions and zinc ions are preferable, and aluminum ions are more preferable.
  • m and n represent the valence of the metal ion. m is 2 or 3.
  • a represents the number of metal ions, and b represents the number of diphosphinic acid ions.
  • Phosphinates and diphosphinates are produced in aqueous solutions using the corresponding phosphinic acid or diphosphinic acid salt and metal carbonate, metal hydroxide or metal oxide, respectively, and usually exist as monomers, Depending on the reaction conditions, it may be present in the form of a polymeric phosphinate having a degree of condensation of 1 to 3.
  • Examples of the phosphinic acid used for producing the phosphinic acid salt include dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, methyl-n-propylphosphinic acid, isobutylmethylphosphinic acid, octylmethylphosphinic acid, methylphenylphosphinic acid, Examples thereof include diphenylphosphinic acid, among which diethylphosphinic acid is preferable.
  • phosphinic acid salt represented by the general formula (I) include, for example, calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, ethylmethylphosphine.
  • aluminum diethylphosphinate and zinc diethylphosphinate are preferable, and aluminum diethylphos
  • diphosphinic acid used in the production of diphosphinic acid salts include methanodi (methylphosphinic acid) and benzene-1,4-di (methylphosphinic acid).
  • diphosphinic acid salt represented by the general formula (II) include, for example, calcium methanedi (methylphosphinate), methanedi (methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, and methanedi (methylphosphinic acid).
  • Zinc Zinc, benzene-1,4-di (methylphosphinic acid) calcium, benzene-1,4-di (methylphosphinic acid) magnesium, benzene-1,4-di (methylphosphinic acid) aluminum, benzene-1,4 -Di (methylphosphinic acid) zinc.
  • methanedi (methylphosphinic acid) aluminum and methanedi (methylphosphinic acid) zinc are preferable because of excellent balance between flame retardancy and electrical characteristics.
  • a phosphinic acid salt or a diphosphinic acid salt is preferable because it is excellent in miscibility with the polyamide (A) and can effectively impart flame retardancy with a small amount of addition. Furthermore, mixtures of phosphinates or diphosphinates are particularly preferred. Examples of combinations of phosphinic acid salts and diphosphinic acid salts include phosphinic acid salts such as aluminum diethylphosphinate and zinc diethylphosphinate, and diphosphinic acid salts such as methanedi (methylphosphinic acid) aluminum and methanedi (methylphosphinic acid) zinc. Is mentioned.
  • phosphinates diphosphinates, and mixtures thereof include, for example, “Exolit OP1230”, “Exolit OP1240”, “Exolit OP1312”, “Exolit OP1314”, “Exolit OP1400” manufactured by Clariant. Is mentioned.
  • Examples of the phosphazene compound include cyclic phosphazene compounds represented by the following general formula (III).
  • R 6 and R 7 each independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, and c represents an integer of 3 to 15;
  • Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various butyl groups, various hexyl groups, various octyl groups, a cyclopentyl group, and a cyclohexyl group.
  • R 6 and R 7 may be linear, branched or cyclic.
  • aryl group having 6 to 15 carbon atoms examples include a phenyl group into which a substituent such as an alkyl group, an aryl group, or an alkoxy group may be introduced on the ring.
  • R 6 and R 7 are preferably both aryl groups, and particularly preferably both phenyl groups.
  • Specific trade names of phosphazene compounds include, for example, “Ravitor FP-100” and “Ravitor FP-110” manufactured by Fushimi Pharmaceutical Co., Ltd., “SPS-100” and “SPB-100” manufactured by Otsuka Chemical Co., Ltd. .
  • the phosphorus-based flame retardant (B) may be used in combination with the flame retardant aid (D).
  • the flame retardant aid (D) include nitrogen-based flame retardants and inorganic flame retardants, among which nitrogen-based flame retardants are preferable.
  • Nitrogen flame retardants include, for example, melamine cyanurate, melamine polyphosphate, melamine pyrophosphate, melamine phosphate, dimelamine pyrophosphate, melam polyphosphate, melem polyphosphate, among which phosphinates and diphosphinates Because of its high combined effect, melamine polyphosphate is preferred.
  • the number of phosphorus is preferably 2 or more, and more preferably 10.
  • the content ratio of the phosphinate or diphosphinate to the melamine polyphosphate is preferably 1: 1 to 8: 1, more preferably 2: 1 to 4: 1 in terms of mass ratio.
  • the inorganic flame retardant examples include metal hydroxides such as magnesium hydroxide, calcium hydroxide and calcium aluminate, and other zinc salts such as zinc borate and zinc phosphate.
  • metal hydroxides such as magnesium hydroxide, calcium hydroxide and calcium aluminate
  • other zinc salts such as zinc borate and zinc phosphate.
  • a mixture of two or more of zinc borate and other zinc salts is preferable, and a mixture of magnesium hydroxide, zinc borate, and zinc phosphate is more preferable.
  • the zinc borate for example, 2ZnO ⁇ 3B 2 O 3, 4ZnO ⁇ B 2 O 3 ⁇ H 2 O, include 2ZnO ⁇ 3B 2 O 3 ⁇ 3.5H 2 O.
  • Examples of other zinc salts include zinc phosphates such as Zn 3 (PO 4 ) 2 .ZnO, zinc stannates such as ZnSn (OH) 6 and ZnSnO 3 , and other calcium zinc molybdates.
  • Zinc phosphate is preferred.
  • the content ratio of zinc borate and zinc phosphate is preferably 1: 0.1 to 1: 5 by mass ratio, and 1: 2 to 1: 4. It is more preferable that the ratio is 1: 2.5 to 1: 3.5.
  • the metal hydroxide may be granular, plate-like or needle-like.
  • the average particle size is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the average diameter is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and the average length is preferably 5 to 2000 ⁇ m. More preferably, it is ⁇ 1000 ⁇ m.
  • the metal hydroxide is preferably a metal hydroxide having a low content of other metals and impurities such as chlorine and sulfur from the viewpoint of heat resistance.
  • the surface of the metal hydroxide is preferably surface-treated with a surface treatment agent, a solid solution, or the like, since dispersibility in the polyamide resin composition can be improved and thermal stability can be improved.
  • a surface treatment agent examples include silane coupling agents, titanium coupling agents, fatty acids and derivatives thereof.
  • the solid solution examples include metals such as nickel.
  • the flame retardant aid (D) may be used alone or in combination.
  • the content of the phosphorus-based flame retardant (B) in the polyamide resin composition needs to be 10 to 80 parts by mass, and 20 to 40 parts by mass with respect to 100 parts by mass of the polyamide (A). preferable.
  • the content of the phosphorus-based flame retardant (B) is less than 10 parts by mass, it becomes difficult to impart flame retardancy.
  • the content of the phosphorus-based flame retardant (B) exceeds 80 parts by mass, it becomes difficult to melt and knead the resin composition, and the obtained resin composition is excellent in flame retardancy but has mechanical characteristics. It becomes insufficient.
  • the polyamide resin composition of the present invention is one in which thermal deterioration during melt-kneading and thermal discoloration due to oxidative deterioration is greatly suppressed, and the yellowness (YI 0 ) needs to be 3.0 or less, It is preferably -10.0 to -1.0, and more preferably -10.0 to -5.0.
  • the polyamide resin composition in which the thermal discoloration during melt-kneading is greatly suppressed and the yellowness (YI 0 ) is 3.0 or less is composed of polyamide (A) and phosphorus flame retardant (B).
  • the molded product obtained by molding the polyamide resin composition of the present invention has excellent heat discoloration, and since the decomposition of the polyamide is suppressed even when the molded product is heated, yellowing is suppressed.
  • the yellowness change value ( ⁇ YI) after the reflow treatment at 265 ° C. is preferably 12.0 or less.
  • the resin composition can suppress discoloration during the mounting process of the electric / electronic component.
  • the polyamide resin composition of the present invention preferably further contains a fibrous reinforcing material (C).
  • the fibrous reinforcing material (C) is not particularly limited.
  • glass fiber, carbon fiber, and metal fiber are preferable because they have a high effect of improving mechanical properties, have heat resistance that can withstand the heating temperature during melt kneading with a polyamide resin, and are easily available.
  • the fibrous reinforcing material (C) may be used alone or in combination.
  • the glass fiber and carbon fiber are preferably surface-treated with a silane coupling agent.
  • the silane coupling agent may be dispersed in the sizing agent.
  • examples of the silane coupling agent include vinyl silanes, acrylic silanes, epoxy silanes, and amino silanes. Among them, since the adhesion effect between polyamide and glass fibers or carbon fibers is high, amino silane coupling agents are used. preferable.
  • the fiber length and fiber diameter of the fibrous reinforcing material are not particularly limited, but the fiber length is preferably 0.1 to 7 mm, more preferably 0.5 to 6 mm. Since the fibrous reinforcing material has a fiber length of 0.1 to 7 mm, the resin composition can be reinforced without adversely affecting the moldability.
  • the fiber diameter is preferably 3 to 20 ⁇ m, more preferably 5 to 13 ⁇ m. Since the fibrous reinforcing material has a fiber diameter of 3 to 20 ⁇ m, the resin composition can be reinforced without breaking during melt-kneading.
  • Examples of the cross-sectional shape of the fibrous reinforcing material include a circular shape, a rectangular shape, an oval shape, and other irregular cross-sections. Among them, a circular shape is preferable.
  • the content of the fibrous reinforcing material (C) in the polyamide resin composition is preferably 5 to 140 parts by mass and more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the polyamide (A). If the content of the fibrous reinforcing material is less than 10 parts by mass, the effect of improving the mechanical properties may be small. On the other hand, when the content of the fibrous reinforcing material exceeds 140 parts by mass, the polyamide resin composition is saturated with the improvement effect of mechanical properties, and not only the improvement effect can be expected, but also the work at the time of melt kneading It may be difficult to obtain pellets due to a decrease in properties.
  • the polyamide resin composition of the present invention can be further improved in stability and moldability by containing a phosphorus-based antioxidant (E).
  • the phosphorus antioxidant may be an inorganic compound or an organic compound.
  • examples of the phosphorus antioxidant include inorganic phosphates such as monosodium phosphate, disodium phosphate, trisodium phosphate, sodium phosphite, calcium phosphite, magnesium phosphite, manganese phosphite, Phenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite (" ADEKA STAB PEP-36 "), bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite (" ADEKA STAB PEP-36 "),
  • the phosphorus-based antioxidant (E) is easily mixed with the phosphorus-based flame retardant (B) uniformly and can prevent the decomposition of the flame retardant, thereby improving the flame retardancy. Moreover, the molecular weight fall of a polyamide (A) can be prevented and the operativity at the time of an extrusion process, a moldability, and a mechanical characteristic can be improved. In particular, a remarkable effect can be exhibited in reducing the degree of discoloration during the reflow process.
  • the content of the phosphorus-based antioxidant (E) is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the polyamide (A).
  • the molded body formed by molding the polyamide resin composition of the present invention can suppress an increase in yellowness even after reflow treatment in which the maximum temperature is about 260 ° C.
  • talc (F) By containing talc (F), it is possible to suppress the generation of blisters during the reflow process.
  • Talc (F) is not particularly limited, but the average particle size is preferably 10 to 30 ⁇ m.
  • talc (F) may be surface-treated with an organic compound such as a silane coupling agent, and the surface treatment improves the adhesion with polyamide (A), thereby improving strength and suppressing blistering. effective.
  • the average particle diameter of talc (F) in the present invention refers to the median diameter (D50) obtained by the laser diffraction method.
  • the polyamide resin composition of the present invention may further contain additives such as other fillers and stabilizers as necessary.
  • additives include swellable clay minerals, silica, alumina, glass beads, graphite and other fillers, pigments such as titanium oxide and carbon black, hindered phenol antioxidants, sulfur antioxidants, and light stabilizers. Agents and antistatic agents.
  • the method for producing the polyamide resin composition of the present invention by mixing the polyamide (A) and the phosphorus-based flame retardant (B) and further blending the fibrous reinforcing material (C) and other additives, etc.
  • the method is not particularly limited as long as the effect is not impaired, but a melt-kneading method is preferable.
  • the melt-kneading method include a method using a batch kneader such as Brabender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single screw extruder, a twin screw extruder and the like.
  • the melt kneading temperature is selected from a region where the polyamide resin melts and does not decompose. If the kneading temperature is too high, not only the polyamide (A) is decomposed but also the phosphorus-based flame retardant (B) may be decomposed, so that the melting point (Tm) of the polyamide (A) is (Tm). It is preferably ⁇ 20 ° C.) to (Tm + 50 ° C.).
  • the resin composition of the present invention When producing the resin composition of the present invention by melt-kneading, it is necessary to limit the amount of the phosphorus-based flame retardant (B) added to the polyamide (A).
  • the temperature of the resin composition temporarily decreases rapidly.
  • the viscosity increases rapidly, and a large shear is applied.
  • the actual temperature of the resin composition becomes higher than the set temperature of the apparatus, and there is a possibility that organic components such as the phosphorus-based flame retardant (B) are decomposed or thermally discolored.
  • the phosphorus-based flame retardant (B) supplied to the polyamide (A) for example, when using a continuous melt kneader, one or more side feeders are installed in the melt kneader, The method of restrict
  • the phosphorus-based flame retardant (B) is added so that the addition amount of the phosphorus-based flame retardant (B) per one side feeder is 20 parts by mass or less with respect to 100 parts by mass of the polyamide (A). It is necessary to add from the side feeder.
  • the addition amount of the phosphorus-based flame retardant (B) per one time is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyamide (A). Also in the production of the resin composition containing the fibrous reinforcing material (C), it is preferable to add the fibrous reinforcing material (C) in a plurality of times in the melt-kneading of the resin composition.
  • the amount of the reinforcing material (C) added is preferably 30 parts by mass or less with respect to 100 parts by mass of the polyamide (A).
  • the amount of phosphorus flame retardant (B) or fibrous reinforcing material (C) to be added to the polyamide (A) an excessive increase in the actual temperature of the resin composition is suppressed, and heat during melt kneading is suppressed. Discoloration due to deterioration and oxidative deterioration can be suppressed, and discoloration due to thermal deterioration and oxidative deterioration can also be suppressed in a molded body obtained from a resin composition.
  • an inert gas such as nitrogen, carbon dioxide, or argon can be enclosed in the whole from the raw material supply unit to the heating unit of the machine base and melt-kneaded in an inert gas atmosphere.
  • an inert gas such as nitrogen, carbon dioxide, or argon
  • discoloration due to oxidative deterioration of organic components such as polyamide (A) and various surface treatment agents during melt-kneading can be suppressed, and at the same time, discoloration in the process after melt-kneading can be suppressed.
  • the resin composition can be processed into various shapes by extruding the molten mixture into strands to form pellets, hot-cutting or underwater cutting the molten mixture into pellets, or extruding into sheets. Examples include a cutting method and a method of extruding and pulverizing into a block shape to form a powder.
  • the molded article of the present invention is formed by molding the polyamide resin composition of the present invention.
  • the molding method of the polyamide resin composition of the present invention include an injection molding method, an extrusion molding method, a blow molding method, and a sintering molding method.
  • a molding method is preferred.
  • it does not specifically limit as an injection molding machine For example, a screw in-line type injection molding machine or a plunger type injection molding machine is mentioned.
  • the polyamide resin composition heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled to a predetermined shape and solidified, and then as a molded body from the mold. It is taken out.
  • the resin temperature at the time of injection molding is preferably not less than the melting point (Tm) of the polyamide resin (A) and less than (Tm + 50 ° C.).
  • Tm melting point
  • an inert gas such as nitrogen, carbon dioxide, or argon is enclosed in the entire part from the raw material supply unit to the heating unit of the machine base and molded in an inert gas atmosphere. Is preferred. Thereby, discoloration due to oxidative degradation of organic components such as polyamide (A) and various surface treatment agents during molding can be suppressed, and at the same time, discoloration can be suppressed in the steps after the molding step.
  • the polyamide resin composition when heated and melted, it is preferable to use a sufficiently dried polyamide resin composition pellet. If the water content is large, the resin foams in the cylinder of the injection molding machine, and it may be difficult to obtain an optimal molded body.
  • the moisture content of the polyamide resin composition pellets used for injection molding is preferably less than 0.3 parts by mass and more preferably less than 0.1 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
  • the polyamide resin composition of the present invention is excellent in heat discoloration in addition to mechanical properties, heat resistance and flame retardancy, the molded product has a wide range of applications such as automobile parts, electric / electronic parts, sundries, civil engineering and building supplies. Can be used for various purposes.
  • the polyamide resin composition of this invention is excellent in a flame retardance, it can be used suitably for an electrical / electronic component.
  • the electrical / electronic components include connectors, LED reflectors, switches, sensors, sockets, capacitors, jacks, fuse holders, relays, coil bobbins, breakers, electromagnetic switches, holders, and plugs.
  • it can be used suitably also for the housing
  • MFR Melt flow rate
  • the polyamide resin composition is injection molded using an injection molding machine (S2000i-100B type manufactured by FANUC) under conditions of cylinder temperature (melting point + 25 ° C.) and mold temperature (melting point-185 ° C.). Thus, a test piece (dumbbell piece) was produced. Using the obtained test piece, bending strength and bending elastic modulus were measured according to ISO178. Bending strength and bending elastic modulus indicate that the larger the value, the better the mechanical properties.
  • Polyamide (A) Polyamide (A-1) 4.70 kg of powdered terephthalic acid (TPA) as a dicarboxylic acid component, 0.32 kg of stearic acid (STA) as a monocarboxylic acid component, and 9.3 g of sodium hypophosphite monohydrate as a polymerization catalyst,
  • TPA powdered terephthalic acid
  • STA stearic acid
  • 9.3 g of sodium hypophosphite monohydrate as a polymerization catalyst
  • the reactor was placed in a ribbon blender reactor and heated to 170 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Thereafter, while maintaining the temperature at 170 ° C. and maintaining the rotation speed at 30 rpm, 2.98 kg of 1,10-decanediamine (DDA) (2.98 kg) heated to 100 ° C. as a diamine component was added using a liquid injection device.
  • DDA 1,10-decanediamine
  • reaction product was polymerized by heating at 250 ° C. and a rotation speed of 30 rpm for 8 hours under a nitrogen stream in the same reaction apparatus to produce a polyamide powder.
  • the obtained polyamide powder was made into a strand using a twin-screw kneader, and the strand was cooled and solidified by passing it through a water tank, and was cut with a pelletizer to obtain polyamide (A-1) pellets.
  • Polyamides (A-2) to (A-4) were obtained in the same manner as polyamide (A-1) except that the resin composition was changed as shown in Table 2.
  • Table 2 shows the resin compositions and characteristic values of the polyamides (A-1) to (A-4).
  • B-1 Phosphorus flame retardant
  • B-2 Hexaphenoxycyclotriphosphazene (Ravitor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd.)
  • Fibrous reinforcement (C) C-1 Glass fiber (03JAFT692 manufactured by Asahi Fiber Glass Co., Ltd.), average fiber diameter 10 ⁇ m, average fiber length 3 mm
  • D-1 Melamine polyphosphate (Melpur 200/70 manufactured by BASF)
  • D-2 zinc borate 4ZnO.B 2 O 3 .H 2 O (Firebrake 415, manufactured by Borax)
  • E-1 Tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylene-di-phosphonite (Clariant's Hostanox P-EPQ)
  • Example 1 100 parts by mass of polyamide (A-1), 3 parts by mass of melamine polyphosphate (D-1), 3 parts by mass of zinc borate (D-2), 0.4 parts by mass of phosphorous antioxidant (E-1) Dry blended, weighed using a loss-in-weight continuous quantitative supply device (CE-W-1 type manufactured by Kubota), and a twin screw extruder with a screw diameter of 26 mm and L / C50 (TEM26SS type manufactured by Toshiba Machine Co., Ltd.) ) To the main supply port (base part) and melt-kneaded.
  • CE-W-1 type manufactured by Kubota
  • L / C50 TEM26SS type manufactured by Toshiba Machine Co., Ltd.
  • 17.0 parts by mass of the phosphorus-based flame retardant (B-1) and 30 parts by mass of the glass fiber (C-1) are supplied from the side feeder 1 and further kneaded, and then further from the side feeder 1. From the side feeder 2 installed on the downstream side, 17.0 parts by mass of the phosphorus-based flame retardant (B-1) and 30 parts by mass of the glass fiber (C-1) were supplied. All the side feeders were installed on the downstream side of the first kneading part for melting the polyamide (A-1) in the same-direction twin-screw extruder. Further, nitrogen gas was passed through the quantitative supply device, the main supply port of the extruder, and the side feeder, and the oxygen concentration was maintained at 1% or less.
  • the polyamide resin composition was taken up from the die in a strand shape, the polyamide resin composition was cooled and solidified through a water tank, and was cut with a pelletizer to obtain polyamide resin composition pellets.
  • the barrel temperature setting of the extruder was (melting point ⁇ 5 ° C.) to (melting point + 15 ° C.), the screw rotation speed was 250 rpm, and the discharge amount was 25 kg / h.
  • the resin compositions of the examples had low yellowness, excellent heat resistance, mechanical properties, and flame retardancy, excellent heat resistance discoloration, and low yellowness change values after reflow treatment. Since the resin compositions of Examples 1 and 2 have a higher melting point of polyamide (A) than Examples 3 and Comparative Example 1, they have excellent reflow resistance, no blistering, and after the reflow process. Also maintained the shape of the molded body. In Example 4 in which talc (F) was added to the resin composition of Example 3, the generation of blisters was suppressed and the shape of the molded product was maintained after the reflow process.
  • the phosphorus-based flame retardant (B) was a phosphinate, and was excellent in flame retardancy as compared with Example 8 (phosphazene compound). Since the resin composition of Comparative Example 2 did not contain the phosphorus-based flame retardant (B), it was poor in flame retardancy. Since the resin compositions of Comparative Examples 3 to 6 were produced in such a manner that the amount of the phosphorus flame retardant (B) added per one side feeder exceeded 20 parts by mass with respect to 100 parts by mass of the polyamide (A), the polyamide Deterioration was caused, the yellowness was high, the heat discoloration was inferior, and the yellowness change value after the reflow treatment was large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A polyamide resin composition which is characterized by containing 100 parts by mass of a polyamide (A) that has a melting point of 270-350°C and 10-80 parts by mass of a phosphorus flame retardant (B), and which is also characterized by having a degree of yellowing (YI0) of 3.0 or less.

Description

ポリアミド樹脂組成物、その製造方法およびそれからなる成形体Polyamide resin composition, method for producing the same, and molded article comprising the same
 本発明は、ポリアミド樹脂組成物、その製造方法およびそれからなる成形体に関するものである。 The present invention relates to a polyamide resin composition, a method for producing the same, and a molded body comprising the same.
 ポリアミドは、耐熱性、機械的特性に優れており、多くの電気・電子部品、自動車のエンジン周りの部品の構成材料として使用されている。
 これらの部品の中でも、電気・電子部品を構成するポリアミドには、高度な難燃性が要求される。樹脂に難燃性を付与する方法としては、難燃剤を用いることが通常である。近年は、環境意識の高まりから、ハロゲン系難燃剤が避けられ、非ハロゲン系難燃剤の使用が一般的である。
Polyamide is excellent in heat resistance and mechanical properties, and is used as a constituent material for many electric / electronic parts and parts around automobile engines.
Among these parts, polyamides constituting electric / electronic parts are required to have high flame retardancy. As a method for imparting flame retardancy to the resin, it is usual to use a flame retardant. In recent years, due to the increase in environmental awareness, halogen-based flame retardants have been avoided, and the use of non-halogen-based flame retardants is common.
 非ハロゲン系難燃剤としては、例えば、特許文献1に、メラミンとリン酸の反応生成物と、亜鉛化合物と、ホスフィン酸塩との混合物が開示され、特許文献2に、メラミンとリン酸の反応生成物と、ホスフィン酸塩と、金属化合物との混合物が開示されており、いずれも、1/16インチの成形品において難燃規格UL94V-0規格を満足することが開示されている。
 しかしながら、ホスフィン酸塩は、ポリアミドと溶融混練して樹脂組成物を製造する際に、分解することがあり、その際に発生するガスによって、ポリアミドも分解し、ポリアミドの分子量が低下することで、得られる樹脂組成物は、耐熱性や機械的特性、難燃性などが低下するという問題があり、また、ポリアミドが熱劣化、酸化劣化することで、熱変色し、黄色度(イエローインデックス、YI)が上昇することがあった。
As the non-halogen flame retardant, for example, Patent Document 1 discloses a mixture of a reaction product of melamine and phosphoric acid, a zinc compound, and a phosphinate, and Patent Document 2 discloses a reaction of melamine and phosphoric acid. Mixtures of products, phosphinates and metal compounds are disclosed, all of which are disclosed to satisfy the flame retardant standard UL94V-0 standard in 1/16 inch molded articles.
However, the phosphinic acid salt may be decomposed when it is melt-kneaded with polyamide to produce a resin composition, and the gas generated at that time also decomposes the polyamide, resulting in a decrease in the molecular weight of the polyamide. The obtained resin composition has a problem that heat resistance, mechanical properties, flame retardancy, and the like are deteriorated. Further, the polyamide is thermally deteriorated and oxidized to be thermally discolored, and yellowness (yellow index, YI). ) May have risen.
特開2004-263188号公報JP 2004-263188 A 特開2007-023206号公報JP 2007-023206 A
 本発明は、上記課題を解決するものであって、耐熱性や機械的特性、難燃性に優れるとともに、黄色度の上昇が抑制されたポリアミド樹脂組成物を提供することを目的とする。 The present invention solves the above-described problems, and an object of the present invention is to provide a polyamide resin composition that is excellent in heat resistance, mechanical properties, and flame retardancy and in which an increase in yellowness is suppressed.
 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、特定の条件で製造したポリアミド樹脂組成物が、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明の要旨は下記の通りである。
(1)融点が270~350℃のポリアミド(A)100質量部と、リン系難燃剤(B)10~80質量部とを含有し、黄色度(YI)が3.0以下であることを特徴とするポリアミド樹脂組成物。
(2)265℃でのリフロー処理後の黄色度変化値(ΔYI)が12.0以下であることを特徴とする(1)記載のポリアミド樹脂組成物。
(3)リン系難燃剤(B)が、ホスフィン酸塩および/またはジホスフィン酸塩であることを特徴とする(1)または(2)記載のポリアミド樹脂組成物。
(4)ホスフィン酸塩が下記一般式(I)で表される化合物であり、ジホスフィン酸塩が下記一般式(II)で表される化合物であることを特徴とする(3)記載のポリアミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基を表す。Rは、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アルキルアルキレン基、または、アルキルアリーレン基を表す。Mは、カルシウムイオン、アルミニウムイオン、マグネシウムイオンまたは亜鉛イオンを表す。mは、1または3である。n、a、bは、2×b=n×aの関係式を満たす整数である。)
(5)さらに繊維状強化材(C)5~140質量部を含有することを特徴とする(1)~(4)のいずれかに記載のポリアミド樹脂組成物。
(6)さらにタルク(F)0.1~20質量部を含有することを特徴とする(1)~(5)のいずれかに記載のポリアミド樹脂組成物。
(7)上記(1)~(6)のいずれかに記載のポリアミド樹脂組成物を製造するための方法であって、ポリアミド(A)とリン系難燃剤(B)の溶融混練において、溶融混練機に1以上のサイドフィーダーを設置し、サイドフィーダー1箇所あたりのリン系難燃剤(B)の添加量が、ポリアミド(A)100質量部に対して20質量部以下となるように、リン系難燃剤(B)をサイドフィーダーから添加することを特徴とするポリアミド樹脂組成物の製造方法。
(8)上記(5)記載のポリアミド樹脂組成物を製造するための方法であって、樹脂組成物の溶融混練において、繊維状強化材(C)を複数回に分けて添加することを特徴とするポリアミド樹脂組成物の製造方法。
(9)溶融混練の前にポリアミド(A)を重合し、その重合を、不活性ガス雰囲気下にて実施することを特徴とする(7)または(8)記載のポリアミド樹脂組成物の製造方法。
(10)ポリアミド(A)とリン系難燃剤(B)の溶融混練を、不活性ガス雰囲気下にて実施することを特徴とする(7)~(9)のいずれかに記載のポリアミド樹脂組成物の製造方法。
(11)上記(1)~(6)のいずれかに記載のポリアミド樹脂組成物を成形してなることを特徴とする成形体。
As a result of intensive studies to solve the above problems, the present inventors have found that a polyamide resin composition produced under specific conditions can solve the above problems, and have reached the present invention.
That is, the gist of the present invention is as follows.
(1) It contains 100 parts by mass of polyamide (A) having a melting point of 270 to 350 ° C. and 10 to 80 parts by mass of a phosphorus-based flame retardant (B), and has a yellowness (YI 0 ) of 3.0 or less. A polyamide resin composition characterized by the above.
(2) The polyamide resin composition according to (1), wherein the yellowness change value (ΔYI) after reflow treatment at 265 ° C. is 12.0 or less.
(3) The polyamide resin composition according to (1) or (2), wherein the phosphorus-based flame retardant (B) is a phosphinate and / or a diphosphinate.
(4) The polyamide resin according to (3), wherein the phosphinic acid salt is a compound represented by the following general formula (I) and the diphosphinic acid salt is a compound represented by the following general formula (II): Composition.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 , R 2 , R 4 and R 5 each independently represents a linear or branched alkyl group having 1 to 16 carbon atoms or a phenyl group. R 3 represents a linear or branched group. The chain represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkylalkylene group, or an alkylarylene group, and M represents a calcium ion, an aluminum ion, a magnesium ion, or a zinc ion. Is 1 or 3. n, a, and b are integers satisfying the relational expression 2 × b = n × a.)
(5) The polyamide resin composition according to any one of (1) to (4), further comprising 5 to 140 parts by mass of a fibrous reinforcing material (C).
(6) The polyamide resin composition according to any one of (1) to (5), further containing 0.1 to 20 parts by mass of talc (F).
(7) A method for producing the polyamide resin composition according to any one of (1) to (6) above, wherein in the melt-kneading of polyamide (A) and phosphorus flame retardant (B), melt-kneading One or more side feeders are installed in the machine, and the phosphorus-based flame retardant (B) is added in an amount of 20 parts by mass or less per 100 parts by mass of the polyamide (A) per side feeder. A method for producing a polyamide resin composition, comprising adding a flame retardant (B) from a side feeder.
(8) A method for producing the polyamide resin composition as described in (5) above, wherein the fibrous reinforcing material (C) is added in a plurality of times in the melt-kneading of the resin composition. A method for producing a polyamide resin composition.
(9) The method for producing a polyamide resin composition according to (7) or (8), wherein the polyamide (A) is polymerized before melt kneading and the polymerization is carried out in an inert gas atmosphere. .
(10) The polyamide resin composition according to any one of (7) to (9), wherein the melt kneading of the polyamide (A) and the phosphorus-based flame retardant (B) is performed in an inert gas atmosphere. Manufacturing method.
(11) A molded article obtained by molding the polyamide resin composition according to any one of (1) to (6) above.
 本発明によれば、溶融混練中の熱劣化、酸化劣化による熱変色が大幅に抑制され、またポリアミドの分解が抑制され、機械的特性、難燃性が高度に維持されたポリアミド樹脂組成物を提供することができる。また、本発明のポリアミド樹脂組成物を成形してなる成形体は、最高温度が260℃程度となるリフロー処理しても、黄色度の上昇を抑制することができる。 According to the present invention, there is provided a polyamide resin composition in which thermal deterioration during melt kneading and thermal discoloration due to oxidative deterioration are greatly suppressed, and decomposition of polyamide is suppressed, and mechanical properties and flame retardancy are maintained at a high level. Can be provided. Moreover, the molded object formed by shape | molding the polyamide resin composition of this invention can suppress the raise of yellowness, even if the reflow process from which the maximum temperature will be about 260 degreeC is carried out.
 以下、本発明を詳細に説明する。
 本発明のポリアミド樹脂組成物は、ポリアミド(A)およびリン系難燃剤(B)を含有する。
Hereinafter, the present invention will be described in detail.
The polyamide resin composition of the present invention contains polyamide (A) and a phosphorus-based flame retardant (B).
 本発明のポリアミド樹脂組成物を構成するポリアミド(A)は、融点が270℃~350℃であることが必要である。ポリアミド(A)は、融点が270℃以上であることにより、耐熱性を有し、最高温度が260℃程度となるリフロー工程に耐えることができる。一方、ポリアミド(A)は、融点が350℃を超えると、アミド結合の分解温度が約350℃であるため、溶融加工時に炭化や分解が進行することがある。 The polyamide (A) constituting the polyamide resin composition of the present invention needs to have a melting point of 270 ° C. to 350 ° C. Since the polyamide (A) has a melting point of 270 ° C. or higher, it has heat resistance and can withstand a reflow process in which the maximum temperature is about 260 ° C. On the other hand, when the melting point of the polyamide (A) exceeds 350 ° C., the decomposition temperature of the amide bond is about 350 ° C., so that carbonization and decomposition may proceed during melt processing.
 ポリアミド(A)は、モノマー成分の分類から、脂肪族ポリアミド、半芳香族ポリアミド、脂環族ポリアミド、およびそれらの共重合体が挙げられる。
 脂肪族ポリアミドの具体例としては、ポリアミド46などが挙げられる。
 半芳香族ポリアミドとしては、芳香族ジカルボン酸成分と脂肪族ジアミン成分とから構成されるポリアミドが挙げられ、具体例として、ポリアミド4I(I:イソフタル酸)、ポリアミド6I、ポリアミド7T(T:テレフタル酸)、ポリアミド8T、ポリアミド9T、ポリアミド10T、ポリアミド11T、ポリアミド12Tなどが挙げられる。
 脂環族ポリアミドの具体例として、ポリアミド6C(C:1,4-シクロヘキサンジカルボン酸)、ポリアミド7C、ポリアミド8C、ポリアミド9C、ポリアミド10C、ポリアミド11C、ポリアミド12Cなどが挙げられる。
 さらに、共重合体としては、例えばジアミンの炭素数が6の場合、PA6T/6、PA6T/12、PA6T/66、PA6T/610、PA6T/612、PA6T/6I、PA6T/6I/66、PA6T/M5T(M5:メチルペンタジアミン)、PA6T/TM6T(TM6:2,2,4-または2,4,4-トリメチルヘキサメチレンジアミン)、PA6T/MMCT(MMC:4,4′-メチレンビス(2-メチルシクロヘキシルアミン))などが挙げられる。
 ポリアミド(A)として、これらポリアミドを単独で使用してもよいし、共重合体や2種類以上のポリアミドの混合物を使用してもよい。
 本発明において、ポリアミド(A)としては、工業的な汎用性が高いことから、ポリアミド46、ポリアミド6T、ポリアミド9T、ポリアミド10T、およびそれらの共重合体が好適な例として挙げられる。さらに、ポリアミド6T、ポリアミド9T、ポリアミド10T、およびそれらの共重合体は、高耐熱性や低吸水率の観点から、耐リフロー性に特に優れるためさらに好ましく、中でもポリアミド10Tおよびその共重合体が特に好ましい。
Examples of the polyamide (A) include aliphatic polyamides, semi-aromatic polyamides, alicyclic polyamides, and copolymers thereof from the classification of monomer components.
Specific examples of the aliphatic polyamide include polyamide 46 and the like.
Semi-aromatic polyamides include polyamides composed of an aromatic dicarboxylic acid component and an aliphatic diamine component. Specific examples include polyamide 4I (I: isophthalic acid), polyamide 6I, polyamide 7T (T: terephthalic acid). ), Polyamide 8T, polyamide 9T, polyamide 10T, polyamide 11T, polyamide 12T, and the like.
Specific examples of the alicyclic polyamide include polyamide 6C (C: 1,4-cyclohexanedicarboxylic acid), polyamide 7C, polyamide 8C, polyamide 9C, polyamide 10C, polyamide 11C, and polyamide 12C.
Further, as the copolymer, for example, when the diamine has 6 carbon atoms, PA6T / 6, PA6T / 12, PA6T / 66, PA6T / 610, PA6T / 612, PA6T / 6I, PA6T / 6I / 66, PA6T / M5T (M5: methylpentadiamine), PA6T / TM6T (TM6: 2,2,4- or 2,4,4-trimethylhexamethylenediamine), PA6T / MMCT (MMC: 4,4'-methylenebis (2-methyl) Cyclohexylamine)) and the like.
As the polyamide (A), these polyamides may be used alone, or a copolymer or a mixture of two or more kinds of polyamides may be used.
In the present invention, as polyamide (A), because of its high industrial versatility, polyamide 46, polyamide 6T, polyamide 9T, polyamide 10T, and copolymers thereof are preferred examples. Further, polyamide 6T, polyamide 9T, polyamide 10T, and copolymers thereof are more preferable because they are particularly excellent in reflow resistance from the viewpoint of high heat resistance and low water absorption, and polyamide 10T and copolymers thereof are particularly preferable. preferable.
 本発明において、ポリアミド(A)は、モノカルボン酸成分を構成成分とすることが好ましい。モノカルボン酸を含有することにより、ポリアミド(A)は、末端の遊離アミノ基量を低く保つことが可能となり、熱を受けた際の、熱劣化や酸化劣化によるポリアミドの分解や変色が抑えられる。その結果、機械的特性、難燃性が高度に維持される効果がある。 In the present invention, the polyamide (A) preferably contains a monocarboxylic acid component as a constituent component. By containing a monocarboxylic acid, the polyamide (A) can keep the amount of free amino groups at the terminal low, and can suppress degradation and discoloration of the polyamide due to thermal degradation and oxidative degradation when receiving heat. . As a result, the mechanical properties and flame retardancy are highly maintained.
 モノカルボン酸成分の含有量は、ポリアミド(A)を構成する全モノマー成分に対して0.3~4.0モル%であることが好ましく、0.3~3.0モル%であることがさらに好ましく、0.3~2.5モル%であることがより好ましく、0.8~2.5モル%であることが特に好ましい。上記範囲内でモノカルボン酸成分を含有することにより、ポリアミド(A)は、熱を受けた際の、熱劣化や酸化劣化による分解や変色が抑えられるとともに、重合時の分子量分布を小さくできたり、成形加工時の離型性の向上がみられたり、成形加工時においてガスの発生量を抑制することができたりする。一方、ポリアミド(A)は、モノカルボン酸成分の含有量が上記範囲を超えると、機械的特性が低下することがある。なお、本発明において、モノカルボン酸の含有量は、ポリアミド(A)中のモノカルボン酸の残基、すなわち、モノカルボン酸から末端の水酸基が脱離したものが占める割合をいう。 The content of the monocarboxylic acid component is preferably 0.3 to 4.0 mol%, and preferably 0.3 to 3.0 mol%, based on all monomer components constituting the polyamide (A). More preferably, it is 0.3 to 2.5 mol%, more preferably 0.8 to 2.5 mol%. By containing a monocarboxylic acid component within the above range, the polyamide (A) can be prevented from being decomposed or discolored due to thermal deterioration or oxidative deterioration when subjected to heat, and the molecular weight distribution during polymerization can be reduced. In addition, the mold releasability is improved during the molding process, and the amount of gas generated can be suppressed during the molding process. On the other hand, when the content of the monocarboxylic acid component exceeds the above range, the mechanical properties of the polyamide (A) may deteriorate. In the present invention, the content of the monocarboxylic acid refers to the proportion of the monocarboxylic acid residue in the polyamide (A), that is, the proportion of the monocarboxylic acid from which the terminal hydroxyl group is eliminated.
 本発明において、モノカルボン酸成分の分子量は、140以上であることが好ましく、170以上であることがさらに好ましい。ポリアミド(A)は、モノカルボン酸の分子量が140以上であると、熱を受けた際の、熱劣化や酸化劣化による分解や変色が抑えられるとともに、離型性が向上し、成形加工時の温度においてガスの発生量を抑制することができ、また成形流動性も向上することができる。
 モノカルボン酸成分としては、脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸が挙げられ、中でも、脂肪族モノカルボン酸が好ましい。
 分子量が140以上の脂肪族モノカルボン酸としては、例えば、カプリル酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸が挙げられる。中でも、汎用性が高いことから、ステアリン酸が好ましい。
 分子量が140以上の脂環族モノカルボン酸としては、例えば、4-エチルシクロヘキサンカルボン酸、4-へキシルシクロヘキサンカルボン酸、4-ラウリルシクロヘキサンカルボン酸が挙げられる。
 分子量が140以上の芳香族モノカルボン酸としては、例えば、4-エチル安息香酸、4-へキシル安息香酸、4-ラウリル安息香酸、1-ナフトエ酸、2-ナフトエ酸およびそれらの誘導体が挙げられる。
 モノカルボン酸成分は、単独で用いてもよいし、併用してもよい。また、分子量が140以上のモノカルボン酸と分子量が140未満のモノカルボン酸を併用してもよい。
 なお、本発明において、モノカルボン酸の分子量は、原料のモノカルボン酸の分子量を指す。
In the present invention, the molecular weight of the monocarboxylic acid component is preferably 140 or more, and more preferably 170 or more. When the molecular weight of the monocarboxylic acid is 140 or more, the polyamide (A) can be prevented from being decomposed or discolored due to thermal degradation or oxidative degradation when receiving heat, and improved in mold release properties. The amount of gas generated can be suppressed at the temperature, and the molding fluidity can be improved.
Examples of the monocarboxylic acid component include aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, and aromatic monocarboxylic acids, and among them, aliphatic monocarboxylic acids are preferable.
Examples of the aliphatic monocarboxylic acid having a molecular weight of 140 or more include caprylic acid, nonanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, and behenic acid. Of these, stearic acid is preferred because of its high versatility.
Examples of the alicyclic monocarboxylic acid having a molecular weight of 140 or more include 4-ethylcyclohexanecarboxylic acid, 4-hexylcyclohexanecarboxylic acid, and 4-laurylcyclohexanecarboxylic acid.
Examples of the aromatic monocarboxylic acid having a molecular weight of 140 or more include 4-ethylbenzoic acid, 4-hexylbenzoic acid, 4-laurylbenzoic acid, 1-naphthoic acid, 2-naphthoic acid and derivatives thereof. .
The monocarboxylic acid component may be used alone or in combination. A monocarboxylic acid having a molecular weight of 140 or more and a monocarboxylic acid having a molecular weight of less than 140 may be used in combination.
In the present invention, the molecular weight of the monocarboxylic acid refers to the molecular weight of the starting monocarboxylic acid.
 一般に、ポリマーには結晶相と非晶相が存在し、融点等の結晶特性はもっぱら結晶相の状態によって定まることが知られている。ポリマー中の末端基は非晶相に存在するので、末端基の有無、種類によってポリアミドの融点が変化することはない。そして、ポリアミド鎖の末端に結合しているモノカルボン酸も非晶相に存在するので、モノカルボン酸の含有によってポリアミドの融点が下がることはない。 Generally, it is known that a polymer has a crystalline phase and an amorphous phase, and crystal characteristics such as a melting point are determined solely by the state of the crystalline phase. Since the terminal group in the polymer exists in an amorphous phase, the melting point of the polyamide does not change depending on the presence / absence and type of the terminal group. Since the monocarboxylic acid bonded to the end of the polyamide chain is also present in the amorphous phase, the melting point of the polyamide is not lowered by the inclusion of the monocarboxylic acid.
 本発明において、ポリアミド(A)は、340℃、1.2kg荷重におけるメルトフローレート(MFR)が1~200g/10分であることが好ましく、10~150g/10分であることがより好ましく、20~100g/10分であることがさらに好ましい。MFRは、成形流動性の指標とすることができ、MFRの値が高いほど流動性が高いことを示す。ポリアミド(A)のMFRが200g/10分を超えると、得られる樹脂組成物の機械的特性が低下する場合があり、ポリアミド(A)のMFRが1g/10分未満であると、流動性が著しく低く、溶融加工できない場合がある。 In the present invention, the polyamide (A) has a melt flow rate (MFR) at 340 ° C. and a load of 1.2 kg of preferably 1 to 200 g / 10 minutes, more preferably 10 to 150 g / 10 minutes. More preferably, it is 20 to 100 g / 10 minutes. MFR can be used as an index of molding fluidity, and the higher the MFR value, the higher the fluidity. When the MFR of the polyamide (A) exceeds 200 g / 10 minutes, the mechanical properties of the resulting resin composition may be deteriorated. When the MFR of the polyamide (A) is less than 1 g / 10 minutes, the fluidity may be reduced. It is extremely low and may not be melt processed.
 ポリアミド(A)は、従来から知られている加熱重合法や溶液重合法の方法を用いて製造することができる。中でも、工業的に有利である点から、加熱重合法が好ましく用いられる。ポリアミド(A)の重合は、窒素、二酸化炭素、アルゴンなどの不活性ガスを重合釜中に封入して、不活性ガス雰囲気下で実施することが好ましい。それにより、重合中のポリアミドの酸化劣化による変色が抑えられると同時に、重合以後の工程における変色も抑えられる効果がある。 The polyamide (A) can be produced using a conventionally known method such as a heat polymerization method or a solution polymerization method. Of these, the heat polymerization method is preferably used because it is industrially advantageous. The polymerization of the polyamide (A) is preferably carried out in an inert gas atmosphere with an inert gas such as nitrogen, carbon dioxide, or argon sealed in a polymerization vessel. Thereby, discoloration due to oxidative degradation of the polyamide during polymerization can be suppressed, and at the same time, discoloration in the process after polymerization can be suppressed.
 ポリアミド(A)の製造において、重合の効率を高めるため重合触媒を用いてもよい。重合触媒としては、例えば、リン酸、亜リン酸、次亜リン酸またはそれらの塩が挙げられ、重合触媒の添加量は、通常、ジカルボン酸とジアミンの総モルに対して、2モル%以下であることが好ましい。 In the production of polyamide (A), a polymerization catalyst may be used to increase the efficiency of polymerization. Examples of the polymerization catalyst include phosphoric acid, phosphorous acid, hypophosphorous acid or salts thereof, and the addition amount of the polymerization catalyst is usually 2 mol% or less based on the total mol of dicarboxylic acid and diamine. It is preferable that
 本発明のポリアミド樹脂組成物を構成するリン系難燃剤(B)としては、リン酸エステル化合物、ホスフィン酸塩、ジホスフィン酸塩、ホスファゼン化合物等が挙げられる。 Examples of the phosphorus-based flame retardant (B) constituting the polyamide resin composition of the present invention include phosphate ester compounds, phosphinates, diphosphinates, phosphazene compounds, and the like.
 リン酸エステル化合物としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(2-エチルヘキシル)ホスフェート、ジイソプロピルフェニルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリナフチルホスフェート、ビスフェノールAビスホスフェート、ヒドロキノンビスホスフェート、レゾルシンビスホスフェート、レゾルシノール-ジフェニルホスフェート、トリオキシベンゼントリホスフェート、またはこれらの置換体、縮合物が挙げられる。中でも、金型に付着しにくく、成形体の耐熱性、耐湿性に優れることから、リン酸エステル化合物が好ましい。リン酸エステル化合物は、モノマー、オリゴマー、ポリマーまたはこれらの混合物であってもよい。リン酸エステル化合物の具体的な商品名としては、例えば、大八化学工業株式会社製「TPP」〔トリフェニルホスフェート〕、「TXP」〔トリキシレニルホスフェート〕、「CR-733S」〔レゾルシノールビス(ジフェニルホスフェート)〕、「PX200」〔1,3-フェニレン-テスラキス(2,6-ジメチルフェニル)リン酸エステル〕、「PX201」〔1,4-フェニレン-テトラキス(2,6-ジメチルフェニル)リン酸エステル〕、「PX202」〔4,4′-ビフェニレン-テスラキス(2,6-ジメチルフェニル)リン酸エステル〕が挙げられる。これらは、単独で用いてもよいし、併用してもよい。 Examples of phosphoric acid ester compounds include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, tri (2-ethylhexyl). ) Phosphate, diisopropylphenyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate, trinaphthyl phosphate, bisphenol A bisphosphate, hydroquinone bisphosphate, resorcin bisphosphate, resorcinol-diphenyl phosphate, trioxybenzene triphosphate, or these Examples include substitution products and condensates . Among these, a phosphoric acid ester compound is preferable because it hardly adheres to the mold and is excellent in heat resistance and moisture resistance of the molded body. The phosphate ester compound may be a monomer, an oligomer, a polymer, or a mixture thereof. Specific product names of the phosphate ester compounds include, for example, “TPP” [triphenyl phosphate], “TXP” [trixylenyl phosphate], “CR-733S” [resorcinol bis ( Diphenyl phosphate)], “PX200” [1,3-phenylene-teslakis (2,6-dimethylphenyl) phosphate], “PX201” [1,4-phenylene-tetrakis (2,6-dimethylphenyl) phosphate Ester], “PX202” [4,4′-biphenylene-teslakis (2,6-dimethylphenyl) phosphate]. These may be used alone or in combination.
 ホスフィン酸塩およびジホスフィン酸塩としては、それぞれ下記一般式(I)および一般式(II)で表される化合物が挙げられる。 Examples of the phosphinate and diphosphinate include compounds represented by the following general formula (I) and general formula (II), respectively.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基であることが必要で、炭素数1~8のアルキル基またはフェニル基であることが好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、n-オクチル基、フェニル基であることがより好ましく、エチル基であることがさらに好ましい。RとRおよびRとRは互いに環を形成してもよい。
 Rは、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アルキルアルキレン基、または、アルキルアリーレン基であることが必要である。直鎖もしくは分岐鎖の炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、イソプロピリデン基、n-ブチレン基、tert-ブチレン基、n-ペンチレン基、n-オクチレン基、n-ドデシレン基が挙げられる。炭素数6~10のアリーレン基としては、例えば、フェニレン基、ナフチレン基が挙げられる。アルキルアリーレン基としては、例えば、メチルフェニレン基、エチルフェニレン基、tert-ブチルフェニレン基、メチルナフチレン基、エチルナフチレン基、tert-ブチルナフチレン基が挙げられる。アリールアルキレン基としては、例えば、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基が挙げられる。
 Mは、金属イオンを表す。金属イオンとしては、例えば、カルシウムイオン、アルミニウムイオン、マグネシウムイオン、亜鉛イオンが挙げられ、アルミニウムイオン、亜鉛イオンが好ましく、アルミニウムイオンがより好ましい。
 m、nは、金属イオンの価数を表す。mは、2または3である。aは、金属イオンの個数を表し、bは、ジホスフィン酸イオンの個数を表す。n、a、bは、「2×b=n×a」を満たす整数である。
In the formula, each of R 1 , R 2 , R 4 and R 5 independently needs to be a linear or branched alkyl group having 1 to 16 carbon atoms or a phenyl group, and has 1 to 8 carbon atoms. Are preferably an alkyl group or a phenyl group, and are a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, an n-octyl group, or a phenyl group. More preferred is an ethyl group. R 1 and R 2 and R 4 and R 5 may form a ring with each other.
R 3 must be a linear or branched alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkyl alkylene group, or an alkyl arylene group. Examples of the linear or branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, n-propylene group, isopropylene group, isopropylidene group, n-butylene group, tert-butylene group, n- A pentylene group, an n-octylene group, and an n-dodecylene group may be mentioned. Examples of the arylene group having 6 to 10 carbon atoms include a phenylene group and a naphthylene group. Examples of the alkylarylene group include a methylphenylene group, an ethylphenylene group, a tert-butylphenylene group, a methylnaphthylene group, an ethylnaphthylene group, and a tert-butylnaphthylene group. Examples of the arylalkylene group include a phenylmethylene group, a phenylethylene group, a phenylpropylene group, and a phenylbutylene group.
M represents a metal ion. Examples of the metal ions include calcium ions, aluminum ions, magnesium ions, and zinc ions. Aluminum ions and zinc ions are preferable, and aluminum ions are more preferable.
m and n represent the valence of the metal ion. m is 2 or 3. a represents the number of metal ions, and b represents the number of diphosphinic acid ions. n, a, and b are integers satisfying “2 × b = n × a”.
 ホスフィン酸塩やジホスフィン酸塩は、それぞれ、対応するホスフィン酸やジホスフィン酸塩と、金属炭酸塩、金属水酸化物または金属酸化物を用いて水溶液中で製造され、通常、モノマーとして存在するが、反応条件に依存して、縮合度が1~3のポリマー性ホスフィン酸塩の形として存在する場合もある。 Phosphinates and diphosphinates are produced in aqueous solutions using the corresponding phosphinic acid or diphosphinic acid salt and metal carbonate, metal hydroxide or metal oxide, respectively, and usually exist as monomers, Depending on the reaction conditions, it may be present in the form of a polymeric phosphinate having a degree of condensation of 1 to 3.
 ホスフィン酸塩の製造に用いるホスフィン酸としては、例えば、ジメチルホスフィン酸、エチルメチルホスフィン酸、ジエチルホスフィン酸、メチル-n-プロピルホスフィン酸、イソブチルメチルホスフィン酸、オクチルメチルホスフィン酸、メチルフェニルホスフィン酸、ジフェニルホスフィン酸が挙げられ、中でもジエチルホスフィン酸が好ましい。 Examples of the phosphinic acid used for producing the phosphinic acid salt include dimethylphosphinic acid, ethylmethylphosphinic acid, diethylphosphinic acid, methyl-n-propylphosphinic acid, isobutylmethylphosphinic acid, octylmethylphosphinic acid, methylphenylphosphinic acid, Examples thereof include diphenylphosphinic acid, among which diethylphosphinic acid is preferable.
 上記一般式(I)で表されるホスフィン酸塩の具体例としては、例えば、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸アルミニウム、ジメチルホスフィン酸亜鉛、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸アルミニウム、エチルメチルホスフィン酸亜鉛、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸アルミニウム、メチル-n-プロピルホスフィン酸亜鉛、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸アルミニウム、メチルフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸アルミニウム、ジフェニルホスフィン酸亜鉛が挙げられる。中でも、難燃性、電気特性のバランスに優れることから、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛が好ましく、ジエチルホスフィン酸アルミニウムがより好ましい。 Specific examples of the phosphinic acid salt represented by the general formula (I) include, for example, calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate, ethylmethylphosphine. Magnesium oxide, aluminum ethylmethylphosphinate, zinc ethylmethylphosphinate, calcium diethylphosphinate, magnesium diethylphosphinate, aluminum diethylphosphinate, zinc diethylphosphinate, calcium methyl-n-propylphosphinate, methyl-n-propylphosphine Magnesium acetate, aluminum methyl-n-propylphosphinate, zinc methyl-n-propylphosphinate, methylphenylphosphinic acid calcium , Magnesium methylphenylphosphinate, aluminum methylphenylphosphinate, zinc methylphenylphosphinate, calcium diphenylphosphinate, magnesium diphenylphosphinate, aluminum diphenylphosphinate, and zinc diphenylphosphinate. Of these, aluminum diethylphosphinate and zinc diethylphosphinate are preferable, and aluminum diethylphosphinate is more preferable because of excellent balance between flame retardancy and electrical characteristics.
 また、ジホスフィン酸塩の製造に用いるジホスフィン酸としては、例えば、メタンジ(メチルホスフィン酸)、ベンゼン-1,4-ジ(メチルホスフィン酸)が挙げられる。 In addition, examples of diphosphinic acid used in the production of diphosphinic acid salts include methanodi (methylphosphinic acid) and benzene-1,4-di (methylphosphinic acid).
 上記一般式(II)で表されるジホスフィン酸塩の具体例としては、例えば、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-ジ(メチルホスフィン酸)カルシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)マグネシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)アルミニウム、ベンゼン-1,4-ジ(メチルホスフィン酸)亜鉛が挙げられる。中でも、難燃性、電気特性のバランスに優れることから、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛が好ましい。 Specific examples of the diphosphinic acid salt represented by the general formula (II) include, for example, calcium methanedi (methylphosphinate), methanedi (methylphosphinic acid) magnesium, methanedi (methylphosphinic acid) aluminum, and methanedi (methylphosphinic acid). ) Zinc, benzene-1,4-di (methylphosphinic acid) calcium, benzene-1,4-di (methylphosphinic acid) magnesium, benzene-1,4-di (methylphosphinic acid) aluminum, benzene-1,4 -Di (methylphosphinic acid) zinc. Among these, methanedi (methylphosphinic acid) aluminum and methanedi (methylphosphinic acid) zinc are preferable because of excellent balance between flame retardancy and electrical characteristics.
 リン系難燃剤(B)としては、ポリアミド(A)との混合性に優れ、少量の添加で効果的に難燃性を付与できることから、ホスフィン酸塩またはジホスフィン酸塩が好ましい。さらにはホスフィン酸塩またはジホスフィン酸塩の混合物が特に好ましい。ホスフィン酸塩とジホスフィン酸塩の組み合わせとしては、例えば、ジエチルホスフィン酸アルミニウム、ジエチルホスフィン酸亜鉛等のホスフィン酸塩と、メタンジ(メチルホスフィン酸)アルミニウム、メタンジ(メチルホスフィン酸)亜鉛等のジホスフィン酸塩が挙げられる。ホスフィン酸塩、ジホスフィン酸塩、またそれらの混合物の具体的な商品名としては、例えば、クラリアント社製「Exolit OP1230」、「Exolit OP1240」、「Exolit OP1312」、「Exolit OP1314」、「Exolit OP1400」が挙げられる。 As the phosphorus-based flame retardant (B), a phosphinic acid salt or a diphosphinic acid salt is preferable because it is excellent in miscibility with the polyamide (A) and can effectively impart flame retardancy with a small amount of addition. Furthermore, mixtures of phosphinates or diphosphinates are particularly preferred. Examples of combinations of phosphinic acid salts and diphosphinic acid salts include phosphinic acid salts such as aluminum diethylphosphinate and zinc diethylphosphinate, and diphosphinic acid salts such as methanedi (methylphosphinic acid) aluminum and methanedi (methylphosphinic acid) zinc. Is mentioned. Specific product names of phosphinates, diphosphinates, and mixtures thereof include, for example, “Exolit OP1230”, “Exolit OP1240”, “Exolit OP1312”, “Exolit OP1314”, “Exolit OP1400” manufactured by Clariant. Is mentioned.
 ホスファゼン化合物としては、例えば、下記一般式(III)で表される環状ホスファゼン化合物が挙げられる。 Examples of the phosphazene compound include cyclic phosphazene compounds represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式中、R、Rは、それぞれ独立に炭素数1~10のアルキル基、炭素数6~15のアリール基、cは、3~15の整数を表す。炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ヘキシル基、各種オクチル基、シクロペンチル基、シクロヘキシル基が挙げられる。R、Rは、直鎖状、分岐状、環状のいずれでもよい。また、炭素数6~15のアリール基としては、例えば、環上にアルキル基、アリール基、アルコキシ基等の置換基が導入されていてもよいフェニル基が挙げられる。R、Rとしては、共にアリール基であることが好ましく、中でも、共にフェニル基であることが好ましい。ホスファゼン化合物の具体的な商品名としては、例えば、伏見製薬所社製「ラビトルFP-100」、「ラビトルFP-110」、大塚化学社製「SPS-100」、「SPB-100」が挙げられる。 In the formula, R 6 and R 7 each independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, and c represents an integer of 3 to 15; Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various butyl groups, various hexyl groups, various octyl groups, a cyclopentyl group, and a cyclohexyl group. R 6 and R 7 may be linear, branched or cyclic. Examples of the aryl group having 6 to 15 carbon atoms include a phenyl group into which a substituent such as an alkyl group, an aryl group, or an alkoxy group may be introduced on the ring. R 6 and R 7 are preferably both aryl groups, and particularly preferably both phenyl groups. Specific trade names of phosphazene compounds include, for example, “Ravitor FP-100” and “Ravitor FP-110” manufactured by Fushimi Pharmaceutical Co., Ltd., “SPS-100” and “SPB-100” manufactured by Otsuka Chemical Co., Ltd. .
 リン系難燃剤(B)は、難燃助剤(D)と併用してもよい。難燃助剤(D)としては、例えば、窒素系難燃剤、無機系難燃剤が挙げられ、中でも、窒素系難燃剤が好ましい。 The phosphorus-based flame retardant (B) may be used in combination with the flame retardant aid (D). Examples of the flame retardant aid (D) include nitrogen-based flame retardants and inorganic flame retardants, among which nitrogen-based flame retardants are preferable.
 窒素系難燃剤としては、例えば、シアヌル酸メラミン、ポリリン酸メラミン、ピロリン酸メラミン、リン酸メラミン、ピロリン酸ジメラミン、ポリリン酸メラム、ポリリン酸メレムが挙げられ、中でも、ホスフィン酸塩やジホスフィン酸塩との併用効果の高いことからポリリン酸メラミンが好ましい。リンの数は、2以上であることが好ましく、10であることがより好ましい。ホスフィン酸塩やジホスフィン酸塩と、ポリリン酸メラミンとの含有割合は、質量比で、1:1~8:1であることが好ましく、2:1~4:1であることがより好ましい。 Nitrogen flame retardants include, for example, melamine cyanurate, melamine polyphosphate, melamine pyrophosphate, melamine phosphate, dimelamine pyrophosphate, melam polyphosphate, melem polyphosphate, among which phosphinates and diphosphinates Because of its high combined effect, melamine polyphosphate is preferred. The number of phosphorus is preferably 2 or more, and more preferably 10. The content ratio of the phosphinate or diphosphinate to the melamine polyphosphate is preferably 1: 1 to 8: 1, more preferably 2: 1 to 4: 1 in terms of mass ratio.
 無機系難燃剤としては、例えば、水酸化マグネシウム、水酸化カルシウム、アルミン酸カルシウム等の金属水酸化物、ホウ酸亜鉛、リン酸亜鉛等の他の亜鉛塩などが挙げられる。中でも、ホウ酸亜鉛と他の亜鉛塩の2種以上の混合物が好ましく、さらには、水酸化マグネシウムとホウ酸亜鉛とリン酸亜鉛との混合物が好ましい。 Examples of the inorganic flame retardant include metal hydroxides such as magnesium hydroxide, calcium hydroxide and calcium aluminate, and other zinc salts such as zinc borate and zinc phosphate. Among these, a mixture of two or more of zinc borate and other zinc salts is preferable, and a mixture of magnesium hydroxide, zinc borate, and zinc phosphate is more preferable.
 ホウ酸亜鉛としては、例えば、2ZnO・3B、4ZnO・B・HO、2ZnO・3B・3.5HOが挙げられる。
 他の亜鉛の塩としては、例えば、Zn(PO・ZnO等のリン酸亜鉛、ZnSn(OH)、ZnSnO等のスズ酸亜鉛、その他モリブデン酸カルシウム亜鉛が挙げられ、中でも、リン酸亜鉛が好ましい。
 ホウ酸亜鉛とリン酸亜鉛を併用する場合、ホウ酸亜鉛とリン酸亜鉛の含有割合は、質量比で、1:0.1~1:5であることが好ましく、1:2~1:4であることがより好ましく、1:2.5~1:3.5であることがさらに好ましい。
The zinc borate, for example, 2ZnO · 3B 2 O 3, 4ZnO · B 2 O 3 · H 2 O, include 2ZnO · 3B 2 O 3 · 3.5H 2 O.
Examples of other zinc salts include zinc phosphates such as Zn 3 (PO 4 ) 2 .ZnO, zinc stannates such as ZnSn (OH) 6 and ZnSnO 3 , and other calcium zinc molybdates. Zinc phosphate is preferred.
When zinc borate and zinc phosphate are used in combination, the content ratio of zinc borate and zinc phosphate is preferably 1: 0.1 to 1: 5 by mass ratio, and 1: 2 to 1: 4. It is more preferable that the ratio is 1: 2.5 to 1: 3.5.
 金属水酸化物は、粒状、板状、針状いずれでもよい。粒状または板状のものを用いる場合には、その平均粒径は0.05~10μmであることが好ましく、0.1~5μmであることがより好ましい。針状のものを用いる場合には、その平均径は0.01~10μmであることが好ましく、0.1~5μmであることがより好ましく、平均長は5~2000μmであることが好ましく、10~1000μmであることがより好ましい。金属水酸化物は、耐熱性の観点から、ほかの金属や、塩素、イオウ等の不純物の含有量が少ないものが好ましい。また、金属水酸化物の表面は、ポリアミド樹脂組成物中での分散性を高め、熱安定性を向上させることができることから、表面処理剤、固溶体等で表面処理されていることが好ましい。表面処理剤としては、例えば、シランカップリング剤、チタンカップリング剤、脂肪酸やその誘導体が挙げられる。固溶体としては、例えば、ニッケル等の金属が挙げられる。 The metal hydroxide may be granular, plate-like or needle-like. When a granular or plate-like material is used, the average particle size is preferably 0.05 to 10 μm, more preferably 0.1 to 5 μm. When a needle-shaped material is used, the average diameter is preferably 0.01 to 10 μm, more preferably 0.1 to 5 μm, and the average length is preferably 5 to 2000 μm. More preferably, it is ˜1000 μm. The metal hydroxide is preferably a metal hydroxide having a low content of other metals and impurities such as chlorine and sulfur from the viewpoint of heat resistance. In addition, the surface of the metal hydroxide is preferably surface-treated with a surface treatment agent, a solid solution, or the like, since dispersibility in the polyamide resin composition can be improved and thermal stability can be improved. Examples of the surface treating agent include silane coupling agents, titanium coupling agents, fatty acids and derivatives thereof. Examples of the solid solution include metals such as nickel.
 本発明のポリアミド樹脂組成物において、難燃助剤(D)は、単独で用いてもよいし、併用してもよい。 In the polyamide resin composition of the present invention, the flame retardant aid (D) may be used alone or in combination.
 ポリアミド樹脂組成物におけるリン系難燃剤(B)の含有量は、ポリアミド(A)100質量部に対して、10~80質量部であることが必要であり、20~40質量部であることが好ましい。リン系難燃剤(B)は、含有量が10質量部未満であると、難燃性の付与が困難となる。一方、リン系難燃剤(B)の含有量が80質量部を超えると、樹脂組成物を溶融混練することが困難となり、得られる樹脂組成物は、難燃性に優れる反面、機械的特性が不十分となる。 The content of the phosphorus-based flame retardant (B) in the polyamide resin composition needs to be 10 to 80 parts by mass, and 20 to 40 parts by mass with respect to 100 parts by mass of the polyamide (A). preferable. When the content of the phosphorus-based flame retardant (B) is less than 10 parts by mass, it becomes difficult to impart flame retardancy. On the other hand, when the content of the phosphorus-based flame retardant (B) exceeds 80 parts by mass, it becomes difficult to melt and knead the resin composition, and the obtained resin composition is excellent in flame retardancy but has mechanical characteristics. It becomes insufficient.
 本発明のポリアミド樹脂組成物は、溶融混練中の熱劣化、酸化劣化による熱変色が大幅に抑制されたものであり、黄色度(YI)が3.0以下であることが必要であり、-10.0~-1.0であることが好ましく、-10.0~-5.0であることがより好ましい。溶融混練中の熱変色が大幅に抑制され、黄色度(YI)が3.0以下であるポリアミド樹脂組成物は、後述するように、ポリアミド(A)とリン系難燃剤(B)との溶融混練において、ポリアミド(A)に添加するリン系難燃剤(B)の量を制限することによって製造することができる。
 また本発明のポリアミド樹脂組成物を成形して得られた成形体は、優れた耐熱変色性を有し、成形体を加熱してもポリアミドの分解が抑制されるので、黄変が抑制されたものであり、265℃でのリフロー処理後の黄色度変化値(ΔYI)は12.0以下であることが好ましい。樹脂組成物は、265℃でのリフロー処理後の黄色度変化値(ΔYI)が12.0以下であると、電気・電子部品の実装工程中における変色を抑制することが可能となる。
The polyamide resin composition of the present invention is one in which thermal deterioration during melt-kneading and thermal discoloration due to oxidative deterioration is greatly suppressed, and the yellowness (YI 0 ) needs to be 3.0 or less, It is preferably -10.0 to -1.0, and more preferably -10.0 to -5.0. As will be described later, the polyamide resin composition in which the thermal discoloration during melt-kneading is greatly suppressed and the yellowness (YI 0 ) is 3.0 or less is composed of polyamide (A) and phosphorus flame retardant (B). In melt-kneading, it can be produced by limiting the amount of the phosphorus-based flame retardant (B) added to the polyamide (A).
In addition, the molded product obtained by molding the polyamide resin composition of the present invention has excellent heat discoloration, and since the decomposition of the polyamide is suppressed even when the molded product is heated, yellowing is suppressed. The yellowness change value (ΔYI) after the reflow treatment at 265 ° C. is preferably 12.0 or less. When the yellowness change value (ΔYI) after the reflow treatment at 265 ° C. is 12.0 or less, the resin composition can suppress discoloration during the mounting process of the electric / electronic component.
 本発明のポリアミド樹脂組成物は、さらに、繊維状強化材(C)を含有することが好ましい。繊維状強化材(C)は、特に限定されないが、例えば、ガラス繊維、炭素繊維、ボロン繊維、アスベスト繊維、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維、全芳香族ポリアミド繊維、ポリベンズオキサゾール繊維、ポリテトラフルオロエチレン繊維、ケナフ繊維、竹繊維、麻繊維、バガス繊維、高強度ポリエチレン繊維、アルミナ繊維、炭化ケイ素繊維、チタン酸カリウム繊維、黄銅繊維、ステンレス繊維、スチール繊維、セラミックス繊維、玄武岩繊維などが挙げられる。中でも、機械的特性の向上効果が高く、ポリアミド樹脂との溶融混練時の加熱温度に耐え得る耐熱性を有し、入手しやすいことから、ガラス繊維、炭素繊維、金属繊維が好ましい。繊維状強化材(C)は、単独で用いてもよいし、併用してもよい。 The polyamide resin composition of the present invention preferably further contains a fibrous reinforcing material (C). The fibrous reinforcing material (C) is not particularly limited. For example, glass fiber, carbon fiber, boron fiber, asbestos fiber, polyvinyl alcohol fiber, polyester fiber, acrylic fiber, wholly aromatic polyamide fiber, polybenzoxazole fiber, poly Tetrafluoroethylene fiber, kenaf fiber, bamboo fiber, hemp fiber, bagasse fiber, high strength polyethylene fiber, alumina fiber, silicon carbide fiber, potassium titanate fiber, brass fiber, stainless steel fiber, steel fiber, ceramic fiber, basalt fiber, etc. Can be mentioned. Among these, glass fiber, carbon fiber, and metal fiber are preferable because they have a high effect of improving mechanical properties, have heat resistance that can withstand the heating temperature during melt kneading with a polyamide resin, and are easily available. The fibrous reinforcing material (C) may be used alone or in combination.
 ガラス繊維、炭素繊維は、シランカップリング剤で表面処理されていることが好ましい。シランカップリング剤は、収束剤に分散されていてもよい。シランカップリング剤としては、例えば、ビニルシラン系、アクリルシラン系、エポキシシラン系、アミノシラン系が挙げられ、中でも、ポリアミドとガラス繊維または炭素繊維との密着効果が高いことから、アミノシラン系カップリング剤が好ましい。 The glass fiber and carbon fiber are preferably surface-treated with a silane coupling agent. The silane coupling agent may be dispersed in the sizing agent. Examples of the silane coupling agent include vinyl silanes, acrylic silanes, epoxy silanes, and amino silanes. Among them, since the adhesion effect between polyamide and glass fibers or carbon fibers is high, amino silane coupling agents are used. preferable.
 繊維状強化材の繊維長、繊維径は、特に限定されないが、繊維長は0.1~7mmであることが好ましく、0.5~6mmであることがより好ましい。繊維状強化材は、繊維長が0.1~7mmであることにより、成形性に悪影響を及ぼすことなく、樹脂組成物を補強することができる。また、繊維径は3~20μmであることが好ましく、5~13μmであることがより好ましい。繊維状強化材は、繊維径が3~20μmであることにより、溶融混練時に折損することなく、樹脂組成物を補強することができる。繊維状強化材の断面形状としては、円形、長方形、楕円、それ以外の異形断面等が挙げられ、中でも円形であることが好ましい。 The fiber length and fiber diameter of the fibrous reinforcing material are not particularly limited, but the fiber length is preferably 0.1 to 7 mm, more preferably 0.5 to 6 mm. Since the fibrous reinforcing material has a fiber length of 0.1 to 7 mm, the resin composition can be reinforced without adversely affecting the moldability. The fiber diameter is preferably 3 to 20 μm, more preferably 5 to 13 μm. Since the fibrous reinforcing material has a fiber diameter of 3 to 20 μm, the resin composition can be reinforced without breaking during melt-kneading. Examples of the cross-sectional shape of the fibrous reinforcing material include a circular shape, a rectangular shape, an oval shape, and other irregular cross-sections. Among them, a circular shape is preferable.
 ポリアミド樹脂組成物における繊維状強化材(C)の含有量は、ポリアミド(A)100質量部に対し、5~140質量部であることが好ましく、40~80質量部であることがより好ましい。繊維状強化材の含有量が10質量部未満であると、機械的特性の向上効果が小さい場合がある。一方、繊維状強化材の含有量が140質量部を超えると、ポリアミド樹脂組成物は、機械的特性の向上効果が飽和し、それ以上の向上効果が見込めないばかりでなく、溶融混練時の作業性が低下し、ペレットを得ることが困難になる場合がある。 The content of the fibrous reinforcing material (C) in the polyamide resin composition is preferably 5 to 140 parts by mass and more preferably 40 to 80 parts by mass with respect to 100 parts by mass of the polyamide (A). If the content of the fibrous reinforcing material is less than 10 parts by mass, the effect of improving the mechanical properties may be small. On the other hand, when the content of the fibrous reinforcing material exceeds 140 parts by mass, the polyamide resin composition is saturated with the improvement effect of mechanical properties, and not only the improvement effect can be expected, but also the work at the time of melt kneading It may be difficult to obtain pellets due to a decrease in properties.
 本発明のポリアミド樹脂組成物は、リン系酸化防止剤(E)を含有することにより、さらに安定性、成形性に優れたものとすることができる。 The polyamide resin composition of the present invention can be further improved in stability and moldability by containing a phosphorus-based antioxidant (E).
 リン系酸化防止剤は、無機化合物、有機化合物のいずれでもよい。リン系酸化防止剤としては、例えば、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カルシウム、亜リン酸マグネシウム、亜リン酸マンガン等の無機リン酸塩、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-36」)、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-24G」)、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト(「アデカスタブPEP-8」)、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト(「アデカスタブPEP-4C」)、1,1′-ビフェニル-4,4′-ジイルビス[亜ホスホン酸ビス(2,4-ジ-tert-ブチルフェニル)]、テトラキス(2,4-ジ-tert-ブチルフェニル)4,4′-ビフェニレン-ジ-ホスホナイト(「ホスタノックスP-EPQ」)、テトラ(トリデシル-4,4′-イソプロピリデンジフェニルジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機リン化合物が挙げられる。リン系酸化防止剤は、単独で用いてもよいし、併用してもよい。 The phosphorus antioxidant may be an inorganic compound or an organic compound. Examples of the phosphorus antioxidant include inorganic phosphates such as monosodium phosphate, disodium phosphate, trisodium phosphate, sodium phosphite, calcium phosphite, magnesium phosphite, manganese phosphite, Phenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite (" ADEKA STAB PEP-36 "), bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite (" ADEKA STAB PEP-24G "), tris (2,4-di-tert-butylphenyl) phosphite, Distearyl pentaerythritol Phosphite (“Adekastab PEP-8”), bis (nonylphenyl) pentaerythritol diphosphite (“Adekastab PEP-4C”), 1,1′-biphenyl-4,4′-diylbis [bisphosphonite (2 , 4-di-tert-butylphenyl)], tetrakis (2,4-di-tert-butylphenyl) 4,4'-biphenylene-di-phosphonite ("Hostanox P-EPQ"), tetra (tridecyl-4 Organic phosphorus compounds such as 2,4'-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, etc. It may be used in combination.
 リン系酸化防止剤(E)は、リン系難燃剤(B)と均一に混ざりやすく、難燃剤の分解を防ぐため、難燃性を向上させることができる。また、ポリアミド(A)の分子量低下を防ぎ、押出加工時の操業性、成形性、機械的特性を向上させることができる。特にリフロー処理時の変色度の減少に顕著な効果を発揮することができる。 The phosphorus-based antioxidant (E) is easily mixed with the phosphorus-based flame retardant (B) uniformly and can prevent the decomposition of the flame retardant, thereby improving the flame retardancy. Moreover, the molecular weight fall of a polyamide (A) can be prevented and the operativity at the time of an extrusion process, a moldability, and a mechanical characteristic can be improved. In particular, a remarkable effect can be exhibited in reducing the degree of discoloration during the reflow process.
 リン系酸化防止剤(E)の含有量は、ポリアミド(A)100質量部に対し、0.1~3質量部であることが好ましく、0.1~1質量部であることがさらに好ましい。リン系酸化防止剤(E)の含有量を0.1~3質量部とすることにより、押出加工時の安定性、成形性、機械的特性を低下させることなく、成形時の金型からの離型性を向上させ、金型ガスベント口の詰まりを抑制し、連続射出成形性を向上させることができる。 The content of the phosphorus-based antioxidant (E) is preferably 0.1 to 3 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the polyamide (A). By setting the content of the phosphorus-based antioxidant (E) to 0.1 to 3 parts by mass, the stability from the extrusion process, the moldability, and the mechanical properties can be reduced without deteriorating the mold during molding. The mold release property can be improved, clogging of the mold gas vent port can be suppressed, and the continuous injection moldability can be improved.
 本発明のポリアミド樹脂組成物を成形してなる成形体は、最高温度が260℃程度となるリフロー処理しても、黄色度の上昇を抑制することができるものであり、ポリアミド樹脂組成物がさらにタルク(F)を含有することにより、リフロー処理の際にブリスターの発生を抑制することができる。タルク(F)は、特に限定されないが、平均粒径が10~30μmであることが好ましい。また、タルク(F)は、シランカップリング剤などの有機化合物で表面処理されていてもよく、表面処理されることにより、ポリアミド(A)との密着性が改善され、強度向上やブリスター抑制に効果がある。本発明におけるタルク(F)の平均粒径とは、レーザー回折法により得られるメジアン径(D50)を指す。 The molded body formed by molding the polyamide resin composition of the present invention can suppress an increase in yellowness even after reflow treatment in which the maximum temperature is about 260 ° C. By containing talc (F), it is possible to suppress the generation of blisters during the reflow process. Talc (F) is not particularly limited, but the average particle size is preferably 10 to 30 μm. In addition, talc (F) may be surface-treated with an organic compound such as a silane coupling agent, and the surface treatment improves the adhesion with polyamide (A), thereby improving strength and suppressing blistering. effective. The average particle diameter of talc (F) in the present invention refers to the median diameter (D50) obtained by the laser diffraction method.
 本発明のポリアミド樹脂組成物は、必要に応じてその他の充填材、安定剤等の添加剤をさらに含有してもよい。添加剤としては、例えば、膨潤性粘土鉱物、シリカ、アルミナ、ガラスビーズ、グラファイト等の充填材、酸化チタン、カーボンブラック等の顔料、ヒンダートフェノール系酸化防止剤、硫黄系酸化防止剤、光安定剤、帯電防止剤が挙げられる。 The polyamide resin composition of the present invention may further contain additives such as other fillers and stabilizers as necessary. Examples of additives include swellable clay minerals, silica, alumina, glass beads, graphite and other fillers, pigments such as titanium oxide and carbon black, hindered phenol antioxidants, sulfur antioxidants, and light stabilizers. Agents and antistatic agents.
 ポリアミド(A)とリン系難燃剤(B)とを混合して、また、さらに繊維状強化材(C)やその他添加剤等を配合して、本発明のポリアミド樹脂組成物を製造する方法は、その効果が損なわれなければ特に限定されないが、溶融混練法が好ましい。溶融混練法としては、ブラベンダー等のバッチ式ニーダー、バンバリーミキサー、ヘンシェルミキサー、ヘリカルローター、ロール、一軸押出機、二軸押出機等を用いる方法が挙げられる。溶融混練温度は、ポリアミド樹脂が溶融し、分解しない領域から選ばれる。混練温度は、高すぎると、ポリアミド(A)が分解するだけでなく、リン系難燃剤(B)も分解するおそれがあることから、ポリアミド(A)の融点(Tm)に対して、(Tm-20℃)~(Tm+50℃)であることが好ましい。 The method for producing the polyamide resin composition of the present invention by mixing the polyamide (A) and the phosphorus-based flame retardant (B) and further blending the fibrous reinforcing material (C) and other additives, etc. The method is not particularly limited as long as the effect is not impaired, but a melt-kneading method is preferable. Examples of the melt-kneading method include a method using a batch kneader such as Brabender, a Banbury mixer, a Henschel mixer, a helical rotor, a roll, a single screw extruder, a twin screw extruder and the like. The melt kneading temperature is selected from a region where the polyamide resin melts and does not decompose. If the kneading temperature is too high, not only the polyamide (A) is decomposed but also the phosphorus-based flame retardant (B) may be decomposed, so that the melting point (Tm) of the polyamide (A) is (Tm). It is preferably −20 ° C.) to (Tm + 50 ° C.).
 本発明の樹脂組成物を溶融混練で製造する際には、ポリアミド(A)に添加するリン系難燃剤(B)の量を制限することが必要である。ポリアミド(A)とリン系難燃剤(B)の溶融混練時に、多量のリン系難燃剤(B)をポリアミド(A)に添加すると、樹脂組成物は、温度が一時的に急激に低下するために、粘度が急上昇し、さらには大きなせん断がかかることとなる。その結果、樹脂組成物は、実温度が装置の設定温度よりも高温になり、リン系難燃剤(B)などの有機成分が分解したり熱変色したりするおそれがある。
 ポリアミド(A)に供給するリン系難燃剤(B)の量を制限する方法としては、例えば、連続式の溶融混練機を使用する場合、溶融混練機に1以上のサイドフィーダーを設置し、サイドフィーダー1箇所当たりのリン系難燃剤(B)の添加量を制限する方法が挙げられる。本発明においては、サイドフィーダー1箇所当たりのリン系難燃剤(B)の添加量が、ポリアミド(A)100質量部に対して20質量部以下となるように、リン系難燃剤(B)をサイドフィーダーから添加することが必要である。
 また、ポリアミド(A)に供給するリン系難燃剤(B)の量を制限する方法としては、溶融混練機としてバッチ式のミキサーを使用する場合は、複数回に分けて供給する方法が挙げられ、1回当たりのリン系難燃剤(B)の添加量は、ポリアミド(A)100質量部に対して20質量部以下であることが好ましい。
 繊維状強化材(C)を含有する樹脂組成物の製造においても、樹脂組成物の溶融混練において、繊維状強化材(C)を複数回に分けて添加することが好ましく、1回当たりの繊維状強化材(C)の添加量は、ポリアミド(A)100質量部に対して30質量部以下であることが好ましい。
 リン系難燃剤(B)あるいは繊維状強化材(C)の添加量を制限してポリアミド(A)に供給することにより、樹脂組成物の実温度の過度な上昇を抑え、溶融混練中の熱劣化、酸化劣化による変色を抑制することができ、また樹脂組成物から得られた成形体においても、熱劣化、酸化劣化による変色を抑制することができる。
When producing the resin composition of the present invention by melt-kneading, it is necessary to limit the amount of the phosphorus-based flame retardant (B) added to the polyamide (A). When a large amount of the phosphorus-based flame retardant (B) is added to the polyamide (A) during the melt-kneading of the polyamide (A) and the phosphorus-based flame retardant (B), the temperature of the resin composition temporarily decreases rapidly. In addition, the viscosity increases rapidly, and a large shear is applied. As a result, the actual temperature of the resin composition becomes higher than the set temperature of the apparatus, and there is a possibility that organic components such as the phosphorus-based flame retardant (B) are decomposed or thermally discolored.
As a method for limiting the amount of the phosphorus-based flame retardant (B) supplied to the polyamide (A), for example, when using a continuous melt kneader, one or more side feeders are installed in the melt kneader, The method of restrict | limiting the addition amount of the phosphorus flame retardant (B) per feeder place is mentioned. In the present invention, the phosphorus-based flame retardant (B) is added so that the addition amount of the phosphorus-based flame retardant (B) per one side feeder is 20 parts by mass or less with respect to 100 parts by mass of the polyamide (A). It is necessary to add from the side feeder.
In addition, as a method for limiting the amount of the phosphorus-based flame retardant (B) supplied to the polyamide (A), when a batch mixer is used as the melt-kneader, a method of supplying it in a plurality of times can be mentioned. The addition amount of the phosphorus-based flame retardant (B) per one time is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyamide (A).
Also in the production of the resin composition containing the fibrous reinforcing material (C), it is preferable to add the fibrous reinforcing material (C) in a plurality of times in the melt-kneading of the resin composition. The amount of the reinforcing material (C) added is preferably 30 parts by mass or less with respect to 100 parts by mass of the polyamide (A).
By limiting the amount of phosphorus flame retardant (B) or fibrous reinforcing material (C) to be added to the polyamide (A), an excessive increase in the actual temperature of the resin composition is suppressed, and heat during melt kneading is suppressed. Discoloration due to deterioration and oxidative deterioration can be suppressed, and discoloration due to thermal deterioration and oxidative deterioration can also be suppressed in a molded body obtained from a resin composition.
 樹脂組成物の溶融混練においては、窒素、二酸化炭素、アルゴンなどの不活性ガスを、機台の原料供給部から加熱部までの全体に封入して、不活性ガス雰囲気下で溶融混練することが好ましい。それにより、溶融混練中のポリアミド(A)および各種表面処理剤等の有機成分の酸化劣化による変色が抑えられると同時に、溶融混練以後の工程における変色も抑えられる効果がある。 In the melt-kneading of the resin composition, an inert gas such as nitrogen, carbon dioxide, or argon can be enclosed in the whole from the raw material supply unit to the heating unit of the machine base and melt-kneaded in an inert gas atmosphere. preferable. Thereby, discoloration due to oxidative deterioration of organic components such as polyamide (A) and various surface treatment agents during melt-kneading can be suppressed, and at the same time, discoloration in the process after melt-kneading can be suppressed.
 樹脂組成物を様々な形状に加工する方法としては、溶融混合物をストランド状に押出しペレット形状にする方法や、溶融混合物をホットカット、アンダーウォーターカットしてペレット形状にする方法や、シート状に押出しカッティングする方法や、ブロック状に押出し粉砕してパウダー形状にする方法が挙げられる。 The resin composition can be processed into various shapes by extruding the molten mixture into strands to form pellets, hot-cutting or underwater cutting the molten mixture into pellets, or extruding into sheets. Examples include a cutting method and a method of extruding and pulverizing into a block shape to form a powder.
 本発明の成形体は、本発明のポリアミド樹脂組成物を成形してなるものである。
 本発明のポリアミド樹脂組成物の成形方法としては、例えば、射出成形法、押出成形法、ブロー成形法、焼結成形法が挙げられ、機械的特性、成形性の向上効果が大きいことから、射出成形法が好ましい。
 射出成形機としては、特に限定されるものではないが、例えば、スクリューインライン式射出成形機またはプランジャ式射出成形機が挙げられる。射出成形機のシリンダー内で加熱溶融されたポリアミド樹脂組成物は、ショットごとに計量され、金型内に溶融状態で射出され、所定の形状で冷却、固化された後、成形体として金型から取り出される。射出成形時の樹脂温度は、ポリアミド樹脂(A)の融点(Tm)以上、(Tm+50℃)未満であることが好ましい。
 ポリアミド樹脂組成物を成形する時においても、窒素、二酸化炭素、アルゴンなどの不活性ガスを、機台の原料供給部から加熱部までの全体に封入して、不活性ガス雰囲気下で成形することが好ましい。それにより、成形中のポリアミド(A)および各種表面処理剤等の有機成分の酸化劣化による変色が抑えられると同時に、成形工程以後の工程においても変色を抑えることができる。
 なお、ポリアミド樹脂組成物の加熱溶融時には、用いるポリアミド樹脂組成物ペレットは十分に乾燥されたものを用いることが好ましい。含有する水分量が多いと、射出成形機のシリンダー内で樹脂が発泡し、最適な成形体を得ることが困難となることがある。射出成形に用いるポリアミド樹脂組成物ペレットの水分率は、ポリアミド樹脂組成物100質量部に対して、0.3質量部未満とすることが好ましく、0.1質量部未満とすることがより好ましい。
The molded article of the present invention is formed by molding the polyamide resin composition of the present invention.
Examples of the molding method of the polyamide resin composition of the present invention include an injection molding method, an extrusion molding method, a blow molding method, and a sintering molding method. A molding method is preferred.
Although it does not specifically limit as an injection molding machine, For example, a screw in-line type injection molding machine or a plunger type injection molding machine is mentioned. The polyamide resin composition heated and melted in the cylinder of the injection molding machine is weighed for each shot, injected into the mold in a molten state, cooled to a predetermined shape and solidified, and then as a molded body from the mold. It is taken out. The resin temperature at the time of injection molding is preferably not less than the melting point (Tm) of the polyamide resin (A) and less than (Tm + 50 ° C.).
Even when a polyamide resin composition is molded, an inert gas such as nitrogen, carbon dioxide, or argon is enclosed in the entire part from the raw material supply unit to the heating unit of the machine base and molded in an inert gas atmosphere. Is preferred. Thereby, discoloration due to oxidative degradation of organic components such as polyamide (A) and various surface treatment agents during molding can be suppressed, and at the same time, discoloration can be suppressed in the steps after the molding step.
In addition, when the polyamide resin composition is heated and melted, it is preferable to use a sufficiently dried polyamide resin composition pellet. If the water content is large, the resin foams in the cylinder of the injection molding machine, and it may be difficult to obtain an optimal molded body. The moisture content of the polyamide resin composition pellets used for injection molding is preferably less than 0.3 parts by mass and more preferably less than 0.1 parts by mass with respect to 100 parts by mass of the polyamide resin composition.
 本発明のポリアミド樹脂組成物は、機械的特性、耐熱性、難燃性に加えて、耐熱変色性に優れるので、その成形体は、自動車部品、電気・電子部品、雑貨、土木建築用品等広範な用途に使用できる。中でも、本発明のポリアミド樹脂組成物は、特に難燃性に優れていることから、電気・電子部品に好適に用いることができる。電気・電子部品としては、例えば、コネクタ、LEDリフレクタ、スイッチ、センサー、ソケット、コンデンサー、ジャック、ヒューズホルダー、リレー、コイルボビン、ブレーカー、電磁開閉器、ホルダー、プラグが挙げられる。また、携帯用パソコン等のOA機器に代表される電気機器の筐体部品、抵抗器、IC、LEDのハウジング等にも好適に用いることができる。 Since the polyamide resin composition of the present invention is excellent in heat discoloration in addition to mechanical properties, heat resistance and flame retardancy, the molded product has a wide range of applications such as automobile parts, electric / electronic parts, sundries, civil engineering and building supplies. Can be used for various purposes. Especially, since the polyamide resin composition of this invention is excellent in a flame retardance, it can be used suitably for an electrical / electronic component. Examples of the electrical / electronic components include connectors, LED reflectors, switches, sensors, sockets, capacitors, jacks, fuse holders, relays, coil bobbins, breakers, electromagnetic switches, holders, and plugs. Moreover, it can be used suitably also for the housing | casing components of an electric equipment represented by OA apparatus, such as a portable personal computer, a resistor, IC, and the housing of LED.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
1.測定方法
 ポリアミド樹脂組成物の物性測定は以下の方法によりおこなった。
1. Measuring method The physical properties of the polyamide resin composition were measured by the following methods.
(1)融点
 示差走査熱量計(パーキンエルマー社製 DSC-7型)用い、昇温速度20℃/分で350℃まで昇温した後、350℃で5分間保持し、降温速度20℃/分で25℃まで降温し、さらに25℃で5分間保持後、再び昇温速度20℃/分で昇温測定した際の吸熱ピークのトップを融点(Tm)とした。
(1) Melting point Using a differential scanning calorimeter (DSC-7, manufactured by Perkin Elmer Co., Ltd.), the temperature was raised to 350 ° C. at a rate of temperature increase of 20 ° C./min, held at 350 ° C. for 5 minutes, and the rate of temperature decrease was 20 ° C./min. The temperature was lowered to 25 ° C., held at 25 ° C. for 5 minutes, and the top of the endothermic peak when the temperature was measured again at a temperature rising rate of 20 ° C./min was defined as the melting point (Tm).
(2)メルトフローレート(MFR)
 JIS K7210に従い、ポリアミド樹脂組成物ペレットを用い、340℃、1.2kgの荷重で測定した。
 MFRは、成形流動性の指標とすることができ、MFRの値が高いほど流動性が高いことを示す。
(2) Melt flow rate (MFR)
According to JIS K7210, the measurement was performed using a polyamide resin composition pellet at 340 ° C. and a load of 1.2 kg.
MFR can be used as an index of molding fluidity, and the higher the MFR value, the higher the fluidity.
(3)機械的特性
 ポリアミド樹脂組成物を、射出成形機(ファナック社製 S2000i-100B型)を用いて、シリンダー温度(融点+25℃)、金型温度(融点-185℃)の条件で射出成形し、試験片(ダンベル片)を作製した。
 得られた試験片を用いて、ISO178に準拠して曲げ強度や曲げ弾性率を測定した。
 曲げ強度や曲げ弾性率は、数値が大きいほど機械的特性が優れていることを示す。
(3) Mechanical properties The polyamide resin composition is injection molded using an injection molding machine (S2000i-100B type manufactured by FANUC) under conditions of cylinder temperature (melting point + 25 ° C.) and mold temperature (melting point-185 ° C.). Thus, a test piece (dumbbell piece) was produced.
Using the obtained test piece, bending strength and bending elastic modulus were measured according to ISO178.
Bending strength and bending elastic modulus indicate that the larger the value, the better the mechanical properties.
(4)難燃性
 射出成形機(ニイガタマシンテクノ社製 CND15)を用いて、シリンダー温度(融点+25℃)、金型温度(融点-185℃)の条件で、5インチ(127mm)×1/2インチ(12.7mm)×1/32インチ(0.79mm)の試験片を作製した。
 得られた試験片を用いて、表1に示すUL94(米国Under Writers Laboratories Inc.で定められた規格)の基準に従って評価した。いずれの基準にも満たない場合は、「not V-2」とした。
 総残炎時間が短い方が、難燃性が優れていることを示す。
(4) Flame retardancy Using an injection molding machine (CND15 manufactured by Niigata Machine Techno Co., Ltd.) under conditions of cylinder temperature (melting point + 25 ° C.) and mold temperature (melting point−185 ° C.), 5 inches (127 mm) × 1 / A 2 inch (12.7 mm) x 1/32 inch (0.79 mm) test piece was prepared.
Using the obtained test piece, evaluation was performed in accordance with the standards of UL94 shown in Table 1 (standards defined by Under Writers Laboratories Inc., USA). When not satisfying any of the standards, it was set as “not V-2”.
A shorter total afterflame time indicates better flame retardancy.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(5)黄色度(イエローインデックス、YI)、黄色度変化値(ΔYI)
 上記(4)と同じ方法で得られた試験片を、85℃×85%RHにて168時間吸湿処理を行った後、赤外線加熱式のリフロー炉中にて、150℃で1分間加熱し、100℃/分の速度で265℃まで昇温し、10秒間保持した。
 熱処理後の成形体の黄色度(YI)と、熱処理前の成形体の黄色度(YI)とを、分光色差計(日本電色社製 SE6000)により、C光源、2度視野における三刺激値XYZの値を求め、JIS K7313にしたがって、次式により算出した。
 YI=100(1.2769X-1.0592Z)/Y
 また、黄色度変化値(ΔYI)を、次式により算出した。
 ΔYI=YI-YI
(5) Yellowness (yellow index, YI), yellowness change value (ΔYI)
The test piece obtained by the same method as (4) above was subjected to moisture absorption treatment at 85 ° C. × 85% RH for 168 hours, and then heated at 150 ° C. for 1 minute in an infrared heating reflow oven, The temperature was raised to 265 ° C. at a rate of 100 ° C./min and held for 10 seconds.
The yellowness (YI 1 ) of the molded product after the heat treatment and the yellowness (YI 0 ) of the molded product before the heat treatment were measured using a spectrocolor difference meter (SE6000 manufactured by Nippon Denshoku Co., Ltd.), a C light source, The value of the stimulus value XYZ was determined and calculated according to the following formula according to JIS K7313.
YI = 100 (1.2769X−1.0592Z) / Y
Further, the yellowness change value (ΔYI) was calculated by the following equation.
ΔYI = YI 1 −YI 0
(6)耐リフロー性
 上記(5)で得られたリフロー処理後の試験片について、ブリスター(水ぶくれ)発生、溶融の有無などを観察し、以下の基準で評価した。
○:ブリスターの発生や試験片の溶融がなかった。
△:ブリスターが発生したが、その面積は、試験片の面積の50%以下であり、試験片の溶融がなかった。
×:試験片の面積の50%を超える面積のブリスターが発生するか、または、試験片が溶融した。
(6) Reflow resistance About the test piece after the reflow treatment obtained in the above (5), the occurrence of blister (blister), the presence or absence of melting, etc. were observed and evaluated according to the following criteria.
○: No occurrence of blister or melting of the test piece.
Δ: Blister occurred, but the area was 50% or less of the area of the test piece, and the test piece did not melt.
X: A blister having an area exceeding 50% of the area of the test piece was generated or the test piece was melted.
2.原料
 実施例および比較例で用いた原料を以下に示す。
2. Raw materials The raw materials used in Examples and Comparative Examples are shown below.
(1)ポリアミド(A)
・ポリアミド(A-1)
 ジカルボン酸成分として粉末状のテレフタル酸(TPA)4.70kgと、モノカルボン酸成分としてステアリン酸(STA)0.32kgと、重合触媒として次亜リン酸ナトリウム一水和物9.3gとを、リボンブレンダー式の反応装置に入れ、窒素密閉下、回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、ジアミン成分として100℃に加温した1,10-デカンジアミン(DDA)4.98kgを、2.5時間かけて連続的(連続液注方式)に添加し反応生成物を得た。なお、原料モノマーのモル比は、TPA:DDA:STA=48.5:49.6:1.9(原料モノマーの官能基の当量比率は、TPA:DDA:STA=49.0:50.0:1.0)であった。
 続いて、得られた反応生成物を、同じ反応装置で、窒素気流下、250℃、回転数30rpmで8時間加熱して重合し、ポリアミドの粉末を作製した。
 その後、得られたポリアミドの粉末を、二軸混練機を用いてストランド状とし、ストランドを水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド(A-1)ペレットを得た。
(1) Polyamide (A)
・ Polyamide (A-1)
4.70 kg of powdered terephthalic acid (TPA) as a dicarboxylic acid component, 0.32 kg of stearic acid (STA) as a monocarboxylic acid component, and 9.3 g of sodium hypophosphite monohydrate as a polymerization catalyst, The reactor was placed in a ribbon blender reactor and heated to 170 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Thereafter, while maintaining the temperature at 170 ° C. and maintaining the rotation speed at 30 rpm, 2.98 kg of 1,10-decanediamine (DDA) (2.98 kg) heated to 100 ° C. as a diamine component was added using a liquid injection device. Added continuously over 5 hours (continuous liquid injection method) to obtain a reaction product. The molar ratio of raw material monomers was TPA: DDA: STA = 48.5: 49.6: 1.9 (the equivalent ratio of functional groups of the raw material monomers was TPA: DDA: STA = 49.0: 50.0). : 1.0).
Subsequently, the obtained reaction product was polymerized by heating at 250 ° C. and a rotation speed of 30 rpm for 8 hours under a nitrogen stream in the same reaction apparatus to produce a polyamide powder.
Thereafter, the obtained polyamide powder was made into a strand using a twin-screw kneader, and the strand was cooled and solidified by passing it through a water tank, and was cut with a pelletizer to obtain polyamide (A-1) pellets.
・ポリアミド(A-2)~(A-4)
 樹脂組成を表2に示すように変更した以外は、ポリアミド(A-1)と同様にして、ポリアミド(A-2)~(A-4)を得た。
・ Polyamide (A-2) to (A-4)
Polyamides (A-2) to (A-4) were obtained in the same manner as polyamide (A-1) except that the resin composition was changed as shown in Table 2.
 上記ポリアミド(A-1)~(A-4)の樹脂組成と特性値を表2に示す。 Table 2 shows the resin compositions and characteristic values of the polyamides (A-1) to (A-4).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(2)リン系難燃剤(B)
・B-1:ホスフィン酸塩(クラリアント社製 Exolit OP1230)
・B-2:ヘキサフェノキシシクロトリホスファゼン(伏見製薬所社製 ラビトルFP-100)
(2) Phosphorus flame retardant (B)
B-1: Phosphinate (Exolit OP1230 manufactured by Clariant)
B-2: Hexaphenoxycyclotriphosphazene (Ravitor FP-100 manufactured by Fushimi Pharmaceutical Co., Ltd.)
(3)繊維状強化材(C)
・C-1:ガラス繊維(旭ファイバーグラス社製 03JAFT692)、平均繊維径10μm、平均繊維長3mm
(3) Fibrous reinforcement (C)
C-1: Glass fiber (03JAFT692 manufactured by Asahi Fiber Glass Co., Ltd.), average fiber diameter 10 μm, average fiber length 3 mm
(4)難燃助剤(D)
・D-1:ポリリン酸メラミン(BASF社製 Melapur 200/70)
・D-2:ホウ酸亜鉛 4ZnO・B・HO(Borax社製 Firebrake415)
(4) Flame retardant aid (D)
D-1: Melamine polyphosphate (Melpur 200/70 manufactured by BASF)
D-2: zinc borate 4ZnO.B 2 O 3 .H 2 O (Firebrake 415, manufactured by Borax)
(5)リン系酸化防止剤(E)
・E-1:テトラキス(2,4-ジ-tert-ブチルフェニル)4,4′-ビフェニレン-ジ-ホスホナイト(Clariant社製 ホスタノックスP-EPQ)
(5) Phosphorous antioxidant (E)
E-1: Tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylene-di-phosphonite (Clariant's Hostanox P-EPQ)
(6)タルク(F)
・F-1:タルク(日本タルク社製 MSZ-C、平均粒径11μm、表面処理品)
(6) Talc (F)
・ F-1: Talc (MSZ-C, manufactured by Nippon Talc Co., Ltd., average particle size 11 μm, surface-treated product)
実施例1
 ポリアミド(A-1)100質量部、ポリリン酸メラミン(D-1)3質量部、ホウ酸亜鉛(D-2)3質量部、リン系酸化防止剤(E-1)0.4質量部をドライブレンドし、ロスインウェイト式連続定量供給装置(クボタ社製 CE-W-1型)を用いて計量し、スクリュー径26mm、L/C50の同方向二軸押出機(東芝機械社製 TEM26SS型)の主供給口(基部)に供給して、溶融混練を行った。そして、サイドフィーダー1より、リン系難燃剤(B-1)17.0質量部、ガラス繊維(C-1)30質量部を供給し、さらに混練を行い、その後、さらに、サイドフィーダー1よりも下流側に設置したサイドフィーダー2より、リン系難燃剤(B-1)17.0質量部、ガラス繊維(C-1)30質量部を供給した。なお、いずれのサイドフィーダーも、同方向二軸押出機においてポリアミド(A-1)を溶融させる第一ニーディング部より下流側に設置した。また、定量供給装置、押出機の主供給口およびサイドフィーダーから窒素ガスを導通し、酸素濃度が1%以下となるように維持した。ダイスからポリアミド樹脂組成物をストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングして、ポリアミド樹脂組成物のペレットを得た。押出機のバレル温度設定は、(融点-5℃)~(融点+15℃)、スクリュー回転数250rpm、吐出量25kg/hとした。
Example 1
100 parts by mass of polyamide (A-1), 3 parts by mass of melamine polyphosphate (D-1), 3 parts by mass of zinc borate (D-2), 0.4 parts by mass of phosphorous antioxidant (E-1) Dry blended, weighed using a loss-in-weight continuous quantitative supply device (CE-W-1 type manufactured by Kubota), and a twin screw extruder with a screw diameter of 26 mm and L / C50 (TEM26SS type manufactured by Toshiba Machine Co., Ltd.) ) To the main supply port (base part) and melt-kneaded. Then, 17.0 parts by mass of the phosphorus-based flame retardant (B-1) and 30 parts by mass of the glass fiber (C-1) are supplied from the side feeder 1 and further kneaded, and then further from the side feeder 1. From the side feeder 2 installed on the downstream side, 17.0 parts by mass of the phosphorus-based flame retardant (B-1) and 30 parts by mass of the glass fiber (C-1) were supplied. All the side feeders were installed on the downstream side of the first kneading part for melting the polyamide (A-1) in the same-direction twin-screw extruder. Further, nitrogen gas was passed through the quantitative supply device, the main supply port of the extruder, and the side feeder, and the oxygen concentration was maintained at 1% or less. After the polyamide resin composition was taken up from the die in a strand shape, the polyamide resin composition was cooled and solidified through a water tank, and was cut with a pelletizer to obtain polyamide resin composition pellets. The barrel temperature setting of the extruder was (melting point−5 ° C.) to (melting point + 15 ° C.), the screw rotation speed was 250 rpm, and the discharge amount was 25 kg / h.
実施例2~11、比較例1~6
 樹脂組成物の組成、サイドフィーダーの設置数、1箇所当たりのリン系難燃剤(B)や繊維状強化材(C)の添加量を表3、4に示すように変更した以外は、実施例1と同様の操作をおこなってポリアミド樹脂組成物ペレットを得た。
Examples 2 to 11 and Comparative Examples 1 to 6
Except that the composition of the resin composition, the number of side feeders installed, and the addition amount of the phosphorus-based flame retardant (B) and the fibrous reinforcing material (C) per place were changed as shown in Tables 3 and 4, Examples The same operation as 1 was performed to obtain polyamide resin composition pellets.
 得られたポリアミド樹脂組成物ペレットを用い各種評価試験を行った。その結果を表3、4に示す。 Various evaluation tests were performed using the obtained polyamide resin composition pellets. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例の樹脂組成物は、黄色度が低く、耐熱性や機械的特性、難燃性に優れるとともに、耐熱変色性にも優れ、リフロー処理後の黄色度変化値が低いものであった。
 実施例1、2の樹脂組成物は、実施例3、比較例1に比較して、ポリアミド(A)の融点が高いため、耐リフロー性に優れ、ブリスターが発生することがなく、リフロー工程後も成形体形状を保っていた。
 実施例3の樹脂組成物にタルク(F)を含有させた実施例4では、ブリスターの発生が抑制され、リフロー工程後も成形体形状を保っていた.
 実施例1の樹脂組成物は、リン系難燃剤(B)が、ホスフィン酸塩であり、実施例8(ホスファゼン化合物)に比較して、難燃性に優れていた。
 比較例2の樹脂組成物は、リン系難燃剤(B)を含有しないため、難燃性に劣るものであった。
 比較例3~6の樹脂組成物は、サイドフィーダー1箇所当たりのリン系難燃剤(B)の添加量が、ポリアミド(A)100質量部に対して20質量部を超えて製造されたため、ポリアミドの劣化が引き起こされ、黄色度が高いものとなり、また耐熱変色性に劣り、リフロー処理後の黄色度変化値が大きいものであった。
 
 
 
 
 
The resin compositions of the examples had low yellowness, excellent heat resistance, mechanical properties, and flame retardancy, excellent heat resistance discoloration, and low yellowness change values after reflow treatment.
Since the resin compositions of Examples 1 and 2 have a higher melting point of polyamide (A) than Examples 3 and Comparative Example 1, they have excellent reflow resistance, no blistering, and after the reflow process. Also maintained the shape of the molded body.
In Example 4 in which talc (F) was added to the resin composition of Example 3, the generation of blisters was suppressed and the shape of the molded product was maintained after the reflow process.
In the resin composition of Example 1, the phosphorus-based flame retardant (B) was a phosphinate, and was excellent in flame retardancy as compared with Example 8 (phosphazene compound).
Since the resin composition of Comparative Example 2 did not contain the phosphorus-based flame retardant (B), it was poor in flame retardancy.
Since the resin compositions of Comparative Examples 3 to 6 were produced in such a manner that the amount of the phosphorus flame retardant (B) added per one side feeder exceeded 20 parts by mass with respect to 100 parts by mass of the polyamide (A), the polyamide Deterioration was caused, the yellowness was high, the heat discoloration was inferior, and the yellowness change value after the reflow treatment was large.




Claims (11)

  1.  融点が270~350℃のポリアミド(A)100質量部と、リン系難燃剤(B)10~80質量部とを含有し、黄色度(YI)が3.0以下であることを特徴とするポリアミド樹脂組成物。 It contains 100 parts by mass of a polyamide (A) having a melting point of 270 to 350 ° C. and 10 to 80 parts by mass of a phosphorus flame retardant (B), and has a yellowness (YI 0 ) of 3.0 or less. A polyamide resin composition.
  2.  265℃でのリフロー処理後の黄色度変化値(ΔYI)が12.0以下であることを特徴とする請求項1記載のポリアミド樹脂組成物。 2. The polyamide resin composition according to claim 1, wherein the yellowness change value (ΔYI) after reflow treatment at 265 ° C. is 12.0 or less.
  3.  リン系難燃剤(B)が、ホスフィン酸塩および/またはジホスフィン酸塩であることを特徴とする請求項1または2記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein the phosphorus-based flame retardant (B) is a phosphinate and / or a diphosphinate.
  4.  ホスフィン酸塩が下記一般式(I)で表される化合物であり、ジホスフィン酸塩が下記一般式(II)で表される化合物であることを特徴とする請求項3記載のポリアミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、RおよびRは、それぞれ独立して、直鎖または分岐鎖の炭素数1~16のアルキル基またはフェニル基を表す。Rは、直鎖もしくは分岐鎖の炭素数1~10のアルキレン基、炭素数6~10のアリーレン基、アルキルアルキレン基、または、アルキルアリーレン基を表す。Mは、カルシウムイオン、アルミニウムイオン、マグネシウムイオンまたは亜鉛イオンを表す。mは、1または3である。n、a、bは、2×b=n×aの関係式を満たす整数である。)
    4. The polyamide resin composition according to claim 3, wherein the phosphinate is a compound represented by the following general formula (I) and the diphosphinate is a compound represented by the following general formula (II).
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 , R 2 , R 4 and R 5 each independently represents a linear or branched alkyl group having 1 to 16 carbon atoms or a phenyl group. R 3 represents a linear or branched group. The chain represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, an alkylalkylene group, or an alkylarylene group, and M represents a calcium ion, an aluminum ion, a magnesium ion, or a zinc ion. Is 1 or 3. n, a, and b are integers satisfying the relational expression 2 × b = n × a.)
  5.  さらに繊維状強化材(C)5~140質量部を含有することを特徴とする請求項1~4のいずれかに記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 4, further comprising 5 to 140 parts by mass of a fibrous reinforcing material (C).
  6.  さらにタルク(F)0.1~20質量部を含有することを特徴とする請求項1~5のいずれかに記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 5, further comprising 0.1 to 20 parts by mass of talc (F).
  7.  請求項1~6のいずれかに記載のポリアミド樹脂組成物を製造するための方法であって、ポリアミド(A)とリン系難燃剤(B)の溶融混練において、溶融混練機に1以上のサイドフィーダーを設置し、サイドフィーダー1箇所当たりのリン系難燃剤(B)の添加量が、ポリアミド(A)100質量部に対して20質量部以下となるように、リン系難燃剤(B)をサイドフィーダーから添加することを特徴とするポリアミド樹脂組成物の製造方法。 A method for producing the polyamide resin composition according to any one of claims 1 to 6, wherein in the melt-kneading of the polyamide (A) and the phosphorus-based flame retardant (B), the melt kneader has at least one side. Install the feeder, and add the phosphorus-based flame retardant (B) so that the amount of the phosphorus-based flame retardant (B) added per side feeder is 20 parts by mass or less with respect to 100 parts by mass of the polyamide (A). It adds from a side feeder, The manufacturing method of the polyamide resin composition characterized by the above-mentioned.
  8.  請求項5記載のポリアミド樹脂組成物を製造するための方法であって、樹脂組成物の溶融混練において、繊維状強化材(C)を複数回に分けて添加することを特徴とするポリアミド樹脂組成物の製造方法。 A method for producing a polyamide resin composition according to claim 5, wherein the fibrous reinforcing material (C) is added in a plurality of times in the melt-kneading of the resin composition. Manufacturing method.
  9.  溶融混練の前にポリアミド(A)を重合し、その重合を、不活性ガス雰囲気下にて実施することを特徴とする請求項7または8記載のポリアミド樹脂組成物の製造方法。 The method for producing a polyamide resin composition according to claim 7 or 8, wherein the polyamide (A) is polymerized before melt kneading, and the polymerization is carried out in an inert gas atmosphere.
  10.  ポリアミド(A)とリン系難燃剤(B)の溶融混練を、不活性ガス雰囲気下にて実施することを特徴とする請求項7~9のいずれかに記載のポリアミド樹脂組成物の製造方法。 The method for producing a polyamide resin composition according to any one of claims 7 to 9, wherein the melt kneading of the polyamide (A) and the phosphorus flame retardant (B) is carried out in an inert gas atmosphere.
  11.  請求項1~6のいずれかに記載のポリアミド樹脂組成物を成形してなることを特徴とする成形体。
     
     
     
    A molded article obtained by molding the polyamide resin composition according to any one of claims 1 to 6.


PCT/JP2017/044572 2016-12-26 2017-12-12 Polyamide resin composition, method for producing same and molded body formed from same WO2018123563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780074795.2A CN110036074A (en) 2016-12-26 2017-12-12 Amilan polyamide resin composition, its manufacturing method and the formed body being made of the Amilan polyamide resin composition
JP2018559005A JPWO2018123563A1 (en) 2016-12-26 2017-12-12 Polyamide resin composition, method for producing the same, and molded article comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250318 2016-12-26
JP2016-250318 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123563A1 true WO2018123563A1 (en) 2018-07-05

Family

ID=62708040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044572 WO2018123563A1 (en) 2016-12-26 2017-12-12 Polyamide resin composition, method for producing same and molded body formed from same

Country Status (4)

Country Link
JP (1) JPWO2018123563A1 (en)
CN (1) CN110036074A (en)
TW (1) TW201835219A (en)
WO (1) WO2018123563A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111073269B (en) * 2019-12-03 2022-06-07 天津金发新材料有限公司 Flame-retardant polyamide composition and preparation method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586076A (en) * 1990-03-26 1993-04-06 Elf Atochem Sa Noncombustible polymer composition, process for producing same and application of same to noncombustible industrial product
JPH08134261A (en) * 1994-11-15 1996-05-28 Asahi Chem Ind Co Ltd Production of flame-retardant resin composition
JP2002284988A (en) * 2001-03-26 2002-10-03 Asahi Kasei Corp Method for producing flame-retardant reinforced polyamide resin composition
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for manufacturing the same
JP2004263188A (en) * 2003-03-03 2004-09-24 Clariant Gmbh Flame retarder-stabiliser-combination for thermoplastic polymer
JP2009091532A (en) * 2007-10-12 2009-04-30 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molded product
WO2009110480A1 (en) * 2008-03-03 2009-09-11 旭化成ケミカルズ株式会社 Flame-retardant resin composition
WO2011007687A1 (en) * 2009-07-17 2011-01-20 東レ株式会社 Flame-retardant thermoplastic resin composition and molded article
JP2011513540A (en) * 2008-03-03 2011-04-28 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for producing polyamide and polyester molding materials with flame resistance, non-corrosion and good flow
JP2012017362A (en) * 2010-07-06 2012-01-26 Asahi Kasei Chemicals Corp Method of manufacturing polyamide resin composition
WO2014200082A1 (en) * 2013-06-13 2014-12-18 株式会社クラレ Polyamide resin composition and molded article produced therefrom
JP2015048408A (en) * 2013-09-02 2015-03-16 東レ株式会社 Liquid crystalline polyester resin compositions and molded article thereof
WO2016104095A1 (en) * 2014-12-26 2016-06-30 三菱瓦斯化学株式会社 Multilayer hollow molded body
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
JP2016525166A (en) * 2013-07-17 2016-08-22 ディーエスエム アイピー アセッツ ビー.ブイ. Flame retardant thermoplastic molding composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800677B2 (en) * 2000-10-04 2004-10-05 Asahi Kasei Kabushiki Kaisha Flame retardant reinforced polyamide resin composition
US7026388B2 (en) * 2001-03-28 2006-04-11 Ube Industries, Ltd. Conductive resin composition and process for producing the same
DE10241126A1 (en) * 2002-09-03 2004-03-25 Clariant Gmbh Flame retardant-stabilizer combination for thermoplastic polymers
DE102007037019A1 (en) * 2007-08-06 2009-02-12 Clariant International Limited Flame retardant mixture for thermoplastic polymers and flame-retardant polymers
US20100025643A1 (en) * 2008-07-31 2010-02-04 Clariant International Ltd. Flame-retardant mixture for thermoplastic polymers, and flame-retardant polymers

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586076A (en) * 1990-03-26 1993-04-06 Elf Atochem Sa Noncombustible polymer composition, process for producing same and application of same to noncombustible industrial product
JPH08134261A (en) * 1994-11-15 1996-05-28 Asahi Chem Ind Co Ltd Production of flame-retardant resin composition
JP2002284988A (en) * 2001-03-26 2002-10-03 Asahi Kasei Corp Method for producing flame-retardant reinforced polyamide resin composition
JP2002371197A (en) * 2001-04-09 2002-12-26 Ube Ind Ltd Conductive resin composition and method for manufacturing the same
JP2004263188A (en) * 2003-03-03 2004-09-24 Clariant Gmbh Flame retarder-stabiliser-combination for thermoplastic polymer
JP2009091532A (en) * 2007-10-12 2009-04-30 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molded product
WO2009110480A1 (en) * 2008-03-03 2009-09-11 旭化成ケミカルズ株式会社 Flame-retardant resin composition
JP2011513540A (en) * 2008-03-03 2011-04-28 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for producing polyamide and polyester molding materials with flame resistance, non-corrosion and good flow
WO2011007687A1 (en) * 2009-07-17 2011-01-20 東レ株式会社 Flame-retardant thermoplastic resin composition and molded article
JP2012017362A (en) * 2010-07-06 2012-01-26 Asahi Kasei Chemicals Corp Method of manufacturing polyamide resin composition
WO2014200082A1 (en) * 2013-06-13 2014-12-18 株式会社クラレ Polyamide resin composition and molded article produced therefrom
JP2016525166A (en) * 2013-07-17 2016-08-22 ディーエスエム アイピー アセッツ ビー.ブイ. Flame retardant thermoplastic molding composition
JP2015048408A (en) * 2013-09-02 2015-03-16 東レ株式会社 Liquid crystalline polyester resin compositions and molded article thereof
JP2016121217A (en) * 2014-12-24 2016-07-07 宇部興産株式会社 Manufacturing method of polyoxamide resin
WO2016104095A1 (en) * 2014-12-26 2016-06-30 三菱瓦斯化学株式会社 Multilayer hollow molded body

Also Published As

Publication number Publication date
CN110036074A (en) 2019-07-19
TW201835219A (en) 2018-10-01
JPWO2018123563A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6889906B2 (en) Polyamide resin composition and molded article obtained by molding the polyamide resin composition
JP5686930B1 (en) Semi-aromatic polyamide resin composition and molded body formed by molding the same
JP7129086B2 (en) Polyamide resin composition and molded article obtained by molding the same
EP2186861A1 (en) Flame-retardant glass-fiber-reinforced polyamide resin composition
JP2013064032A (en) Polyamide resin composition, and molding thereof
CN109312153B (en) Thermoplastic resin composition and molded article obtained by molding same
JP2010254760A (en) Flame-retardancy strengthened polyamide resin composition
JP6955763B2 (en) Polyamide resin composition and molded article obtained by molding the polyamide resin composition
JP2013064091A (en) Polyamide resin composition and molding obtained by molding the same
KR101578604B1 (en) Color-resistance and high heat-resistance Polycyclohexylene-dimethyleneterephtalate resin composition containing non-halogen flame retardant and non-halogen flame retardant aid
JP2021167384A (en) Polyamide resin composition, and molded body obtained by molding the same
JP2010222486A (en) Flame-retardant glass fiber-reinforced polyamide resin composition
JP7093104B2 (en) A thermoplastic resin composition and a molded product obtained by molding the thermoplastic resin composition.
JP2017002146A (en) Fire retardant polyamide resin composition and molded body composed of the same
JP6138321B1 (en) Thermoplastic resin composition and molded body formed by molding the same
JP2010077194A (en) Flame-retardant, glass fiber-reinforced polyamide resin composition
WO2018123563A1 (en) Polyamide resin composition, method for producing same and molded body formed from same
JP2012051954A (en) Flame-retardant reinforced polyamide resin composition
JP7055365B2 (en) Polyamide resin composition and molded article formed by molding the polyamide resin composition
JP2018177874A (en) Polyamide resin composition and molded body obtained by molding the same
KR101466508B1 (en) Polycyclohexylenedimethyleneterephtalate resin composition containing non-halogen flame retardant
JP2013056969A (en) Polyamide resin composition and molded article molded from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018559005

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887616

Country of ref document: EP

Kind code of ref document: A1