WO2018123530A1 - Electric booster - Google Patents

Electric booster Download PDF

Info

Publication number
WO2018123530A1
WO2018123530A1 PCT/JP2017/044310 JP2017044310W WO2018123530A1 WO 2018123530 A1 WO2018123530 A1 WO 2018123530A1 JP 2017044310 W JP2017044310 W JP 2017044310W WO 2018123530 A1 WO2018123530 A1 WO 2018123530A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake pedal
input member
input
clevis
moves
Prior art date
Application number
PCT/JP2017/044310
Other languages
French (fr)
Japanese (ja)
Inventor
厚志 小平
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018558987A priority Critical patent/JP6715955B2/en
Priority to CN201780075353.XA priority patent/CN110035933B/en
Publication of WO2018123530A1 publication Critical patent/WO2018123530A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/06Disposition of pedal

Definitions

  • the present invention relates to an electric booster that uses a thrust generated by an electric actuator as a boost source.
  • Patent Document 1 discloses an automatic brake device configured such that a brake pedal is not retracted when an automatic brake is operated.
  • An object of the present invention is to provide an electric booster that does not hinder the operation of an automatic brake even if the movement of a brake pedal is inhibited.
  • the input member in the electric booster that moves the input member when hydraulic pressure is generated by the electric motor regardless of the operation of the brake pedal, the input member is connected to the brake pedal, When the input member moves in the hydraulic pressure generation direction, the input member moves in conjunction with the brake pedal. When the operating resistance of the brake pedal becomes greater than a predetermined value, the input member moves without interlocking with the brake pedal.
  • the brake pedal and the input member are connected to each other.
  • the abutting portion of the input member and the abutting portion of the brake pedal are relatively movable at the connecting portion between the brake pedal and the input member, and together with the brake pedal during operation of the brake pedal.
  • a biasing member that biases the contact portion of the input member is provided at a contact position of the contact portion of the moving brake pedal.
  • the automatic brake can be operated even if the movement of the brake pedal is inhibited.
  • connection mechanism of 3rd Embodiment It is a disassembled perspective view which shows the structure of the connection mechanism of 3rd Embodiment. It is explanatory drawing of 3rd Embodiment, Comprising: It is sectional drawing which shows the connection mechanism in the state in which the load exceeding a set load is not added to the compression coil spring.
  • FIG. 1 is a cross-sectional view of the electric booster 1 according to the first embodiment and a master cylinder 15 connected to the electric booster 1 when not energized.
  • the left direction and the right direction in FIG. 1 are the front direction (front side) and the rear direction (rear side) in the electric booster 1, and the upper direction and the lower direction in FIG. Downward.
  • the electric booster 1 includes an electric motor 2, a housing 3, an input member 4, a resistance applying mechanism 5, a ball screw mechanism 6, a stroke detection device (not shown), and a controller 7. .
  • the electric motor 2 is accommodated in the housing 3.
  • the input member 4 includes an input rod 10 and an input plunger 11.
  • the input rod 10 has a front portion extending in the housing 3 toward the master cylinder 15 and a rear end portion connected to the brake pedal 13 via a connecting mechanism 51 described later.
  • the input rod 10 has a front end ball joint 85 connected to the input plunger 11. A part of the reaction force from the primary piston 31 and the secondary piston 32 of the master cylinder 15 is transmitted to the input plunger 11 via the reaction disk 135.
  • the resistance applying mechanism 5 has a resistance to the input member 4 when the input member 4 (input rod 10 and input plunger 11) moves forward (when the brake pedal 13 is depressed) and when it moves backward (when the brake pedal 13 is returned).
  • a so-called hysteresis characteristic that changes the force (reaction force) is generated.
  • the electric motor 2 operates in accordance with the forward movement of the input rod 10 due to the operation (depression) of the brake pedal 13, and assists the thrust to the primary piston 31 and the secondary piston 32 of the master cylinder 15.
  • the stroke detection device detects the stroke amount of the input member 4 with respect to the housing 3.
  • the controller 7 controls the operation of the electric motor 2 based on the detection result of the stroke detection device.
  • a tandem master cylinder 15 is connected to the front side of the housing 3.
  • a reservoir 16 for supplying hydraulic fluid to the master cylinder 15 is provided at the upper part of the master cylinder 15.
  • the housing 3 includes a front housing 20 that houses the electric motor 2, the ball screw mechanism 6, and the like, and a rear housing 21 that closes a rear end opening of the front housing 20.
  • the rear housing 21 has a cylindrical portion 22 that extends to the opposite side (rear side) to the master cylinder 15 and is coaxial with the master cylinder 15.
  • a stopper member 25 is provided inside the rear end portion of the cylindrical portion 22.
  • the stopper member 25 is abutted against an inner flange portion 23 formed at the rear end of the cylindrical portion 22.
  • a mounting plate 27 is provided on the rear side surface of the rear housing 21 so as to surround the front end portion of the cylindrical portion 22.
  • a plurality of stud bolts 28 (only one is shown in FIG. 1) extending in the rearward direction are joined to the mounting plate 27.
  • the electric booster 1 has a plurality of stud bolts 28 (shown in FIG.
  • the master cylinder 15 is provided on the front side surface of the front housing 20, and the rear end portion is inserted into the housing 3 from the opening 29 of the front housing 20.
  • the master cylinder 15 has a bottomed cylindrical cylinder bore 30 whose rear end is open.
  • the primary piston 31 has a front portion inserted into the cylinder bore 30 and a rear portion extending into the housing 3.
  • the front and rear portions of the primary piston 31 are formed in a cup shape having an H-shaped cross section by an axial plane.
  • the primary piston 31 has a spherical recess 35 provided on the rear side surface of the partition wall 34.
  • the secondary piston 32 is inserted into the bottom side (front side) of the cylinder bore 30. Thereby, a primary chamber 37 and a secondary chamber 38 are formed in the cylinder bore 30.
  • the primary chamber 37 is formed between the primary piston 31 and the secondary piston 32.
  • the secondary chamber 38 is formed between the bottom of the cylinder bore 30 and the secondary piston 38.
  • the master cylinder 15 has two hydraulic ports (not shown).
  • the primary chamber 37 is connected from one hydraulic port of the master cylinder 15 to a wheel cylinder (not shown) of a corresponding wheel via one of two hydraulic circuits controlled by a hydraulic control unit (not shown). Is done.
  • the secondary chamber 38 is connected from the other hydraulic pressure port to the wheel cylinder of the corresponding wheel via the other of the two hydraulic circuits.
  • the master cylinder 15 has a reservoir port 44 that connects the primary chamber 37 to the reservoir 16 and a reservoir port 45 that connects the secondary chamber 38 to the reservoir 16.
  • Seal rings 47 and 48 are provided on the inner peripheral surface of the cylinder bore 30 so as to be spaced apart in the front-rear direction across the reservoir port 44.
  • the primary chamber 37 communicates with the reservoir port 44 via a piston port 62 provided on the side wall of the primary piston 31 when the primary piston 31 is located at the non-braking position.
  • the primary piston 31 moves forward from the non-braking position and the piston port 62 reaches the seal ring 48, the primary chamber 37 is blocked from the reservoir port 44 by the seal ring 48, and hydraulic pressure is generated.
  • Seal rings 49 and 50 are provided on the inner peripheral surface of the cylinder bore 30 with a space in the front-rear direction with the reservoir port 45 interposed therebetween.
  • the secondary chamber 38 communicates with the reservoir port 45 via a piston port 63 provided on the side wall of the secondary piston 32 when the secondary piston 32 is located at the non-braking position.
  • the secondary piston 32 moves forward from the non-braking position and the piston port 63 reaches the seal ring 50, the secondary chamber 38 is blocked from the reservoir port 45 by the seal ring 50, and hydraulic pressure is generated.
  • the master cylinder 15 has compression coil springs 65 and 71 provided in the cylinder bore 30.
  • the compression coil spring 65 is interposed between the primary piston 31 and the secondary piston 32 and biases the primary piston 31 and the secondary piston 32 in the opposite direction.
  • Inside the compression coil spring 65 is provided a regulating mechanism 66 that can be expanded and contracted in a certain range in the front-rear direction and regulates the distance between the primary piston 31 and the secondary piston 32.
  • the restriction mechanism 66 includes a retainer guide 67 whose rear end is connected to the partition wall 34 of the primary piston 31, and a retainer rod 68 whose front end is connected to the secondary piston 32 and which can move in the retainer guide 67 in the front-rear direction. Have.
  • the retainer guide 67 is formed in a substantially cylindrical shape.
  • An inner flange portion 67 ⁇ / b> A is provided at the front end of the retainer guide 67.
  • An outer flange portion 68 ⁇ / b> A is provided at the rear end of the retainer rod 68.
  • the restriction mechanism 66 allows the retainer guide 67 and the retainer rod 68 to move relative to each other in the front-rear direction, and causes the outer flange portion 68A of the retainer rod 68 to abut the inner flange portion 67A of the retainer guide 67 so that the shaft length is increased. At this time, the distance between the primary piston 31 and the secondary piston 32 is maximized.
  • the compression coil spring 71 is interposed between the bottom of the cylinder bore 30 and the secondary piston 32, and biases the secondary piston 32 in a direction away from the bottom of the cylinder bore 30 (rearward direction).
  • a regulation mechanism 72 that can be expanded and contracted in a predetermined range in the front-rear direction and regulates the space between the bottom of the cylinder bore 30 and the secondary piston 32 at a predetermined interval.
  • the restriction mechanism 72 includes a retainer guide 73 whose front end is connected to the bottom of the cylinder bore 30, and a retainer rod 74 whose rear end is connected to the secondary piston 32 and is movable in the retainer guide 73 in the front-rear direction.
  • the retainer guide 73 is formed in a substantially cylindrical shape.
  • An inner flange portion 73 ⁇ / b> A is provided at the rear end of the retainer guide 73.
  • An outer flange portion 74 ⁇ / b> A is provided at the front end of the retainer rod 74.
  • the restricting mechanism 72 allows relative movement of the retainer guide 73 and the retainer rod 74 in the front-rear direction.
  • the front portion of the input rod 10 is accommodated in the cylindrical portion 22 of the rear housing 21 and is disposed coaxially with the cylindrical portion 22.
  • the input rod 10 includes a small-diameter portion 80 having a ball joint 85 formed at the front end, and a large-diameter portion 81 continuous to the rear end of the small-diameter portion 80 via a flange-shaped stopper contact portion 82.
  • the rear side surface of the stopper contact portion 82 is covered with an elastic member 86.
  • the rear end position of the input rod 10 is determined by contacting the stopper abutting portion 82 with the stopper member 25 provided in the cylindrical portion 22 of the rear housing 21 via the elastic member 86.
  • the input plunger 11 is disposed coaxially with the input rod 10 and is accommodated in a large-diameter shaft hole 115 of a booster member 110 described later.
  • the input plunger 11 has a small-diameter portion 95 in the front portion and a large-diameter portion 96 in the rear portion.
  • the input plunger 11 is slidably brought into contact with the inner peripheral surface of the large-diameter shaft hole 115 on the outer peripheral surface of the large-diameter portion 96.
  • a cylindrical caulking portion 98 having a conical opening 102 formed inside is provided at the rear end portion of the large diameter portion 96.
  • a spherical concave portion 100 that is continuous with the conical opening 102 is formed at the inner center of the large diameter portion 96.
  • a ball joint 85 of the input rod 10 is connected to the recess 100.
  • the front end surface of the small diameter portion 95 of the input plunger 11 is brought into contact with the ratio plate 105.
  • the ratio plate 105 is disposed coaxially with the input plunger 11.
  • the ratio plate 105 includes a disk-shaped pressing portion 106 and a rod portion 107 formed integrally with the pressing portion 106.
  • the front end surface of the small diameter portion 95 of the input plunger 11 is brought into contact with the rear end surface of the rod portion 107.
  • the booster member 110 has a substantially cylindrical booster body 112 and a boss 113 fixed to the rear end of the booster body 112.
  • the booster member 110 is disposed coaxially with the input member 4 (the input rod 10 and the input plunger 11).
  • the booster main body 112 has a large-diameter shaft hole 115 whose rear end is open and a small-diameter shaft hole 116 which is open at the front end and continues to the large-diameter shaft hole 115.
  • On the outer peripheral surface of the rear portion of the booster body 112, a two-sided width shape 120 with a predetermined interval is formed.
  • the outer peripheral surface of the large-diameter portion 96 of the input plunger 11 is slidably brought into contact with the inner peripheral surface of the large-diameter shaft hole 115 of the booster main body 112.
  • the outer peripheral surface of the pressing portion 106 of the ratio plate 105 is slidably brought into contact with the inner peripheral surface of the small diameter shaft hole 116 of the booster main body 112.
  • a restricting portion 119 that restricts the backward movement of the pressing portion 106 of the ratio plate 105 relative to the booster member 110 is formed.
  • the rod portion 107 of the ratio plate 105 is inserted into the shaft hole formed in the restricting portion 119, that is, the shaft hole formed between the large diameter shaft hole 115 and the small diameter shaft hole 116.
  • the axial length from the front end of the small diameter shaft hole 116 to the restricting portion 119 is formed longer than the axial length of the pressing portion 106 of the ratio plate 105.
  • a predetermined gap is formed between the front end surface of the input plunger 11 and the restricting portion 119 of the booster main body 112.
  • the boss 113 of the booster member 110 extends in the rearward direction from the rear end portion of the connection portion 122 through the flange portion 123 and is connected to the rear end portion of the large-diameter shaft hole 115 of the booster main body 112.
  • a cylindrical portion 124 is formed to be the same as the outer diameter of the booster main body 112.
  • the inner diameter of the cylindrical portion 124 is formed larger than the inner diameter of the large-diameter shaft hole 115 of the booster main body 112.
  • the resistance applying means 5 urges the booster member 110 and the input member 4 in the opposite direction.
  • the resistance force applying means 5 includes a compression coil spring 126 interposed between a spring receiving portion 127 formed on the boss 113 of the booster member 110 and the stopper abutting portion 82 of the input rod 10.
  • the compression coil spring 126 is a conical coil spring that is gradually reduced in diameter from the spring receiving portion 127 to the stopper contact portion 82, and is provided on the outer periphery (outside) of the small diameter portion 80 of the input rod 10.
  • a substantially disc-shaped reaction disk 135 made of an elastic body is brought into contact with the front end surface of the booster main body 112, that is, the front end surface of the booster member 110.
  • the reaction disk 135 is held by an output rod 137 disposed coaxially with the input member 4.
  • the output rod 137 has a cup portion 139 formed in a cup shape and provided with a reaction disk 135 at the inner bottom portion, and a rod having the above-described spherical convex portion 143 extending from the cup portion 139 to the front and formed at the tip.
  • a front end portion of the booster member 110 is slidably inserted into the cup portion 139.
  • a shaft hole 140 for connecting the pressing rod 142 is formed in the rod portion 138.
  • a substantially cylindrical sleeve 145 is provided on the outer periphery of the boost body 112 of the boost member 110.
  • the sleeve 145 includes a shaft hole 146, an annular recess 147 provided at the front end of the shaft hole 146, and a chamfered opening 148 continuous with the front end of the annular recess 147.
  • the booster body 112 is slidably inserted into the shaft hole 146.
  • the shaft hole 146 is provided with a plurality of grooves 150 extending in the front-rear direction in the circumferential direction.
  • the groove 150 allows the annular recess 147 of the sleeve 145 to communicate with the two-sided width shape 120 of the booster main body 112.
  • a cup 139 of the output rod 137 is disposed inside the annular recess 147 and the opening 148 of the sleeve 145.
  • a gap 153 (see FIG. 2) is provided between the rear end of the cup portion 139 of the output rod 137 and the annular surface 152 of the annular recess 147 of the sleeve 145.
  • a flange-shaped spring receiving portion 155 is formed at the front end portion of the sleeve 145.
  • the rear end surface of the sleeve 145 is brought into contact with the flange portion 123 of the boss 113 of the booster member 110.
  • a plurality of (only two are shown in FIG. 2) annular bulging portions 158 are provided at intervals in the front-rear direction.
  • a ball screw mechanism 6 is provided on the outer periphery of the sleeve 145.
  • the rotational force of the electric motor 2 (see FIG. 1) accommodated in the housing 3 is transmitted to the ball screw mechanism 6.
  • the ball screw mechanism 6 functions as a rotation / linear motion conversion mechanism that converts the input rotational motion into linear motion.
  • the ball screw mechanism 6 converts the rotational force of the electric motor 2 into the thrust of the booster member 110.
  • the ball screw mechanism 6 includes a nut member 160 and a screw shaft member 161.
  • the screw shaft member 161 is formed in a substantially cylindrical shape, and a sleeve 145 is inserted into the shaft hole 162.
  • the screw shaft member 161 is prevented from rotating with respect to the housing 3 by a detent mechanism (not shown) and can move in the front-rear direction.
  • Each bulging portion 158 of the sleeve 145 is brought into contact with the shaft hole 162 of the screw shaft member 161. As a result, a gap is formed between the shaft hole 162 of the screw shaft member 161 and the outer peripheral surface of the sleeve 145.
  • a plurality of convex portions 165 arranged at intervals in the circumferential direction are provided at the rear end portion of the shaft hole 162 of the screw shaft member 161.
  • the rear end surface of the flange portion 123 of the boss 113 of the booster member 110 is brought into contact with each convex portion 165.
  • a spiral groove 166 is formed on the outer peripheral surface of the screw shaft member 161 over the entire area in the front-rear direction (axial direction).
  • a compression coil spring 173 is interposed between the spring receiving portion 155 of the sleeve 145 and the outer peripheral edge portion (inner flange-shaped spring receiving portion) of the opening 29 (see FIG. 1) of the front housing 20.
  • the sleeve 145, the booster member 110, and the screw shaft member 161 are urged rearward with respect to the housing 3 by the spring force of the coil spring 173.
  • the nut member 160 is supported by the bearing 163 so as to be rotatable around the axis with respect to the housing 3.
  • a spiral groove 168 is formed on the inner peripheral surface of the nut member 160 over the entire front-rear direction (axial direction).
  • a plurality of balls 170 (steel balls) are loaded between the spiral groove 168 of the nut member 160 and the spiral groove 166 of the screw shaft member 161. Accordingly, when the nut member 160 rotates, the ball 170 rolls along the spiral grooves 166 and 168 and the screw shaft member 161 moves in the front / rear direction. In this way, the ball screw mechanism 6 outputs the input rotation of the nut member 160 as the thrust (advance / advance movement) of the screw shaft member 161.
  • the screw shaft member 161 advances by the rotation of the nut member 160, and the thrust of the screw shaft member 161 is transmitted to the booster member 110 and the sleeve 145 through the convex portion 165.
  • the booster member 110 and the sleeve 145 move forward against the biasing force of the compression coil spring 173.
  • the input member 4 the input rod 10 and the input plunger 11
  • the screw shaft member 161 can be moved forward independently from the convex portion 165 of the screw shaft member 161.
  • the power transmission mechanism described above is wound around a pulley 175 attached to the output shaft 2 ⁇ / b> A of the electric motor 2, a pulley 176 fixed to the outer peripheral surface of the nut member 160, and the pulley 175 and the pulley 176.
  • the output shaft 2A is supported by a pair of bearings 178 and 178 that are spaced apart from each other in the front-rear direction, and can rotate about the axis. Thereby, the rotational force (torque) of the output shaft 2A of the electric motor 2 is transmitted to the nut member 160 via the pulley 175, the pulley belt 177, and the pulley 176.
  • the controller 7 controls the electric motor 2 based on output signals of a stroke detection device, a rotational position detection device, and a hydraulic pressure detection device (not shown).
  • the controller 7 has a connector 180 used for power supply and communication to the stroke detection device, the rotational position detection device, and the hydraulic pressure detection device.
  • the controller 7 can be appropriately connected to a vehicle control device (not shown) that executes various brake controls such as brake assist control and automatic brake control.
  • connection mechanism 51 that connects the input rod 10 and the brake pedal 13 will be described mainly with reference to FIGS. 3 to 5.
  • the coupling mechanism 51 has a clevis 52 connected to the brake pedal 13 (only part of which is shown).
  • the clevis 52 includes a substantially cylindrical base 53, a pair of leg portions 54 and 54 extending in parallel to each other in the rearward direction from the base portion 53, and pin insertion holes 55 provided coaxially on the leg portions 54 and 54, 55.
  • a pin insertion hole 56 is formed in the brake pedal 13.
  • the clevis 52 can be rotated around the clevis pin 57 as an axis.
  • a flange portion 58 is formed at one end of the clevis pin 57.
  • a hole 59 that penetrates the clevis pin 57 in the radial direction is formed at the other end of the clevis pin 57, and a split pin 59 that prevents the clevis pin 57 from falling off is attached to the hole 59.
  • the connecting mechanism 51 includes a bottomed cylindrical cylinder 87 having an open rear end, and a piston 88 slidably fitted in the cylinder 87.
  • the piston 88 of the cylinder 87 has a shaft hole 89 in which a female screw is formed.
  • a rod insertion hole 90 through which the large diameter portion 81 of the input rod 10 is inserted is formed in the center of the bottom portion 87A at the front end of the cylinder 87.
  • a male screw 91 is formed at the rear end portion of the input rod 10 (large diameter portion 81) inserted into the cylinder 87 from the rod insertion hole 90, and the male screw 91 is screwed into the shaft hole 89 (female screw) of the piston 88. As a result, the rear end of the input rod 10 is connected to the piston 88.
  • the connecting mechanism 51 has a compression coil spring 92 provided on the outer periphery of the input rod 10 inserted into the cylinder 87.
  • the compression coil spring 92 is interposed between the bottom 87 ⁇ / b> A of the cylinder 87 and the piston 88.
  • a base 53 of the clevis 52 is connected to the rear end of the cylinder 87.
  • the cylinder 87 and the clevis 52 are connected by screwing a male screw formed on the outer periphery of the base 53 of the clevis 52 into a female screw formed on the inner periphery of the rear end portion of the cylinder 87.
  • the connection between the cylinder 87 and the clevis 52 may be press-fitting or the like in addition to a screw.
  • a predetermined set load (preload) is applied to the compression coil spring 92.
  • the set load of the compression coil spring 92 is generated when the brake pedal 13 is moved in conjunction with the input member 4 (the input rod 10 and the input plunger 11) that moves in the hydraulic pressure generation direction (forward direction). Is set to a value (predetermined value) greater than the operating resistance of the brake pedal 13, in other words, the pulling force of the brake pedal 13 when the automatic brake is operated.
  • the controller 7 performs the electric motor based on the detection result. 2 rotation is controlled.
  • the rotational force of the electric motor 2 is transmitted to the nut member 160 of the ball screw mechanism 6 via the pulley 175, the pulley belt 177, and the pulley 176.
  • the rotational movement of the nut member 160 is converted into the linear movement of the screw shaft member 161, whereby the screw shaft member 161 moves forward.
  • the booster member 110 moves forward while maintaining the positional relationship with the input member 4 so as to follow the input member 4.
  • the booster member 110 presses the reaction disk 135, and the sleeve 145 moves forward against the urging force of the compression coil spring 173.
  • the thrust of the input member 4 (the input rod 10 and the input plunger 11) due to the depression of the brake pedal 13 and the thrust of the booster member 110 due to the operation of the electric motor 2 are transmitted to the output rod 137 via the reaction disk 135. .
  • the output rod 137 moves forward, and the primary piston 31 and the secondary piston 32 of the master cylinder 15 move forward.
  • hydraulic pressure generated in the master cylinder 15 is supplied to the wheel cylinder of each wheel, so that a braking force by friction braking is generated.
  • the ratio plate 105 When the hydraulic pressure is generated in the master cylinder 15, the ratio plate 105 receives the hydraulic pressure in the primary chamber 37 and the secondary chamber 38 as a reaction force through the reaction disk 135, and the reaction force and the compression coil spring 126 (resistance) The reaction force added with the resistance force by the force applying mechanism 5) is transmitted to the brake pedal 13 via the input member 4 (input rod 10 and input plunger 11) and the coupling mechanism 51.
  • the boost ratio that is, the ratio of the hydraulic pressure output to the operation input of the brake pedal 13 is the pressure receiving area of the front end surface of the boost member 110 and the pressure receiving area of the front end surface of the pressing portion 106 of the ratio plate 105. Is the ratio.
  • the input member 4 (the input rod 10 and the input plunger 11) causes the reaction force due to the hydraulic pressure from the master cylinder 15 (the primary chamber 37 and the secondary chamber 38) and the compression coil spring 126 (resistance).
  • the stroke amount of the input member 4 at this time is detected by the stroke detection device, and the controller 7 controls the rotation of the electric motor 2 based on the detection result of the stroke detection device.
  • the rotational force of the electric motor 2 is converted into the thrust of the screw shaft member 161 by the ball screw mechanism 6, and the screw shaft member 161 moves backward.
  • the sleeve 145 When the screw shaft member 161 is retracted, the sleeve 145 is retracted by the biasing force of the compression coil spring 173. When the sleeve 145 moves backward, the booster member 110 moves backward while maintaining the positional relationship with the input member 4 (the input rod 10 and the input plunger 11), and returns to the initial position (see FIG. 1). As a result, when the primary piston 31 and the secondary piston 32 of the master cylinder 15 retreat and return to the non-braking position, the hydraulic pressure in the primary chamber 37 and the secondary chamber 38 of the master cylinder escapes to the reservoir 16 and is reduced. Canceled.
  • the controller 7 moves the electric motor 2 in the forward direction (the direction in which the screw shaft member 161 moves forward, in other words, the input member 4 Rotate in the direction of movement in the direction of hydraulic pressure generation).
  • the rotational force of the electric motor 2 is transmitted to the nut member 160 of the ball screw mechanism 6 via the pulley 175, the pulley belt 177, and the pulley 176.
  • the rotational movement of the nut member 160 is converted into the linear movement of the screw shaft member 161, and the screw shaft member 161 moves forward.
  • the brake pedal 13 moves (pulled) in conjunction with the advancement of the input plunger 11. That is, in the electric booster 1 of the first embodiment, the relationship between the stroke (pedal position) of the brake pedal 13 and the deceleration due to braking is unique (see FIG. 6B).
  • the brake pedal 13 when the brake pedal 13 is retracted in conjunction with the input member 4 (the input rod 10 and the input plunger 11) during the automatic brake operation, in other words, it is added to the compression coil spring 92 of the coupling mechanism 51.
  • the load to be applied is equal to or less than the set load, the state in which the piston 88 is pressed against the clevis 52 (base 53) is maintained by the biasing force of the compression coil spring 92, as shown in FIG. That is, the relative displacement in the front-rear direction between the input rod 10 and the brake pedal 13 (clevis pin 57) is zero.
  • the boost member 110 When an obstacle is caught between the dash panel and the brake pedal 13 and the movement (retraction) of the brake pedal 13 linked to the input member 4 is inhibited, the boost member 110 The thrust acts on the compression coil spring 92 interposed between the bottom portion 87A of the cylinder 87 and the piston 88 via the input member 4 (input rod 10 and input plunger 11).
  • the thrust of the booster member 110 acting on the compression coil spring 92 exceeds the set load of the compression coil spring 92, the compression coil spring 92 is connected to the bottom 87A of the cylinder 87 of the coupling mechanism 51 as shown in FIG. Compressed between the piston 88.
  • the piston 88 moves forward in the cylinder 87 (leftward in FIG. 5), and the input rod 10 (input member 4) advances and extends independently from the cylinder 87 of the coupling mechanism 51.
  • 52 and the brake pedal 13 connected to the cylinder 87 through the clevis pin 57 and advance (separated).
  • the compression coil spring 92 of the coupling mechanism 51 extends (see FIG. 4), and the brake The brake pedal 13 moves to a position where the relationship between the stroke (pedal position) of the pedal 13 and the deceleration matches the position in FIG.
  • the distance that the input member 4 (the input rod 10 and the input plunger 11) can advance independently from the brake pedal 13 is that of the compression coil spring 92. Depends on the amount of compression.
  • the operating resistance of the brake pedal 13 interlocked with the input member 4 has a predetermined value (set load of the compression coil spring 92). If exceeded, the compression coil spring 92 of the coupling mechanism 51 is compressed and the input member 4 moves forward independently from the brake pedal 13, so that even if the movement of the brake pedal 13 is hindered, the automatic brake is activated. There is no hindrance.
  • the relationship between the stroke of the brake pedal 13 and the deceleration when the automatic brake is operated is unique, in other words, the same as the boost control when the automatic brake is not operated. Even when the driver depresses the brake pedal 13 when the brake is operated, a good operation feeling can be obtained.
  • the first embodiment is an electric booster that moves an input member when hydraulic pressure is generated by an electric motor regardless of operation of the brake pedal.
  • the brake pedal is connected to the input member, and the input member is When moving in the hydraulic pressure generation direction, the input member moves in conjunction with the input member.
  • the operating resistance of the brake pedal becomes greater than a predetermined value
  • the input member moves without interlocking with the brake pedal. Therefore, during the automatic brake operation, if the operating resistance of the brake pedal linked to the input member exceeds a predetermined value, the input member moves forward independently from the brake pedal, so even if the movement of the brake pedal is hindered It is possible to provide an electric booster that does not hinder the operation of the automatic brake and has high reliability in operation.
  • the automatic brake pedal since the relationship between the stroke of the brake pedal and the deceleration of the vehicle when the automatic brake is activated is unique, even when the driver depresses the brake pedal when the automatic brake is activated, the automatic brake However, it is possible to obtain the same good operational feeling as during normal braking without intervention.
  • the input member 4 and the brake pedal 13 are connected via the clevis 52 and the clevis pin 57, but the input member 4 and the brake pedal 13 are connected to each other by a ball joint. You may comprise so that it may connect. In this case, since the clevis pin 57 and the split pin 60 for fixing the clevis pin 57 are not necessary, the number of parts and the number of assembly steps can be reduced.
  • the second embodiment With reference to FIGS. 7 and 8, the second embodiment will be described mainly with respect to differences from the first embodiment.
  • part which is common in 1st Embodiment it represents with the same name and the same code
  • the upward direction (upper side) and the downward direction (lower side) in FIG. 8 are defined as a right direction (right side) and a left direction (left side) in the electric booster 1.
  • the coupling mechanism 181 has a clevis 182 connected to the input rod 10.
  • the clevis 182 includes a square nut-shaped base portion 183 that forms a front end portion, and a pair of leg portions 184 and 184 that extend rearward from the base portion 183.
  • the clevis 182 is formed by screwing the male screw 91 at the rear end of the input rod 10 into the shaft hole 186 (female screw) of the base 183 of the clevis 182 and tightening the nut 187 screwed in advance with the male screw 91. It is fixed to the input rod 10 (input member 4).
  • the pair of leg portions 184 and 184 are formed symmetrically.
  • the leg portion 184 has a long hole 185 that extends in the front-rear direction and penetrates the leg portion 184 in the left-right direction.
  • the connecting mechanism 181 includes slide members 188 and 188 inserted into the long holes 185 and 185 of the leg portions 184 and 184, respectively.
  • the slide member 188 is formed in a substantially quadrangular prism shape, and a pair of upper and lower sliding surfaces that are slidably contacted with the side wall of the long hole 185 and the shaft hole 190 that penetrates the slide member 188 in the left-right direction.
  • 189 and 189, and flanges 191 and 191 formed at one end in the left and right direction and extending in the up and down direction.
  • the flange portions 191 and 191 are slidably contacted with the outer surfaces of the leg portions 184 and 184 of the clevis 182 (outer peripheral edges of the long holes 185 and 185).
  • the brake pedal 13 is inserted between the opposing leg portions 184 and 184 of the clevis 182 (see FIG. 8), and inserted into the pin insertion hole 56 and the elongated holes 185 and 185 of the brake pedal 13.
  • the clevis pin 57 is passed through the shaft holes 190 and 190 of the slide members 188 and 188.
  • the clevis 182 and thus the input rod 10 (input member 4) moves in the front-rear direction with respect to the brake pedal 13 by moving the slide members 188, 188 in the front-rear direction in the long holes 185, 185.
  • the clevis pin 57 can be pivoted about the clevis pin 57.
  • a split pin 59 for preventing the clevis pin 57 and the slide members 188 and 188 from falling off is attached to the other end of the clevis pin 57.
  • the connecting mechanism 181 includes compression coil springs 192 and 192 (spring members) that are mounted in the long holes 185 and 185 of the leg portions 184 and 184 of the clevis 182.
  • the compression coil spring 192 is interposed between the spring receiving portions 193 and 193 formed at the rear ends of the slide members 188 and 188 and the rear end surfaces 194 and 194 of the long holes 185 and 185 of the leg portions 184 and 184 of the clevis 182. Be dressed.
  • the slide members 188 and 188 are pressed against the front end surfaces 195 and 195 of the long holes 185 and 185 by the urging force of the compression coil springs 192 and 192.
  • a predetermined set load (preload) is applied to the compression coil springs 192 and 192. Is done.
  • the set load of the two compression coil springs 192 and 192 is obtained when the brake pedal 13 is moved in conjunction with the input member 4 (input rod 10 and input plunger 11) that moves in the hydraulic pressure generation direction (forward direction).
  • the operating resistance of the brake pedal 13 is set to a value (predetermined value) that is larger than the pulling force of the brake pedal 13 when the automatic brake is operated.
  • the thrust of the booster member 110 is the input member 4 (input rod 10 and input plunger 11), clevis 182, compression coil springs 192 and 192, and slide member 188. , 188 and the clevis pin 57 to be transmitted to the brake pedal 13. As a result, the brake pedal 13 is pulled in conjunction with the input member 4.
  • the third embodiment will be described mainly with respect to differences from the second embodiment.
  • part which is common in 1st and 2nd embodiment, it represents with the same name and the same code
  • the upward direction (upper side) and the downward direction (lower side) in FIG. 10 are defined as a right direction (right side) and a left direction (left side) in the electric booster 1.
  • connection mechanism 201 connection part of the structure different from the connection mechanism 51 of 1st Embodiment, and the connection mechanism 181 of 2nd Embodiment.
  • the connection mechanism 201 of the third embodiment differs from the connection mechanism 181 of the second embodiment in that a long hole 202 that extends mainly in the front-rear direction is formed in the brake pedal 13.
  • the coupling mechanism 201 has a clevis 182 connected to the rear end portion of the input rod 10.
  • Coaxial pin insertion holes 203 and 203 are formed in the leg portions 184 and 184 of the clevis 182.
  • the connecting mechanism 201 has a slide member 188 inserted into the elongated hole 202 of the brake pedal 13.
  • the pin insertion holes 203 and 203 of the leg portions 184 and 184 of the clevis 182 and the brake pedal The clevis pin 57 is passed through the shaft hole 190 of the slide member 188 inserted into the thirteen long holes 202.
  • the clevis 182 and the input rod 10 (input member 4) are connected to the brake pedal 13 so as to be movable in the front-rear direction by moving the slide member 188 in the front-rear direction in the long hole 202. And can be rotated around the clevis pin 57.
  • the connecting mechanism 201 has a compression coil spring 192 (biasing member) mounted in the elongated hole 202 of the brake pedal 13.
  • the compression coil spring 192 is interposed between a groove-shaped spring receiving member 204 attached to the front end of the long hole 202 of the brake pedal 13 and a spring receiving portion 193 formed at the front end of the slide member 188.
  • the slide member 188 is pressed against the rear end surface 194 of the long hole 202 of the brake pedal 13 by the urging force of the compression coil spring 192.
  • the slide member 188 (the abutting portion of the input member 4) causes the rear end surface 194 of the elongated hole 202 of the brake pedal 13 (the abutting portion of the abutting portion of the brake pedal 13).
  • a predetermined set load (preload) is applied to the compression coil spring 192 in a state of contact with the position) (see FIG. 10).
  • the set load of the compression coil spring 192 is the brake pedal 13 when the brake pedal 13 is moved in conjunction with the input member 4 (the input rod 10 and the input plunger 11) that moves in the hydraulic pressure generation direction (forward direction). Is set to a value (predetermined value) greater than the pulling force of the brake pedal 13 when the automatic brake is activated.
  • the thrust of the booster member 110 is the input member 4 (input rod 10 and input plunger 11), clevis 182, clevis pin 57, slide member 188, compression coil spring. 192 and the spring bearing member 204 are transmitted to the brake pedal 13. As a result, the brake pedal 13 is pulled in conjunction with the input member 4.
  • the spring receiving member 204 can be omitted by providing the front end of the elongated hole 202 of the brake pedal 13 with a convex portion that receives the front end of the compression coil spring 192.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Braking Elements And Transmission Devices (AREA)

Abstract

Provided is an electric booster such that even if the movement of a brake pedal is inhibited, automatic brake operation is not interrupted. In this electric booster which moves an input member when generating hydraulic pressure using an electric motor irrespective of operation of the brake pedal, the input member is connected to the brake pedal, and moves in conjunction with the brake pedal when moving in the direction in which hydraulic pressure is generated, whereas the input member does not move in conjunction with the brake pedal when the operation resistance of the brake pedal is greater than a predetermined value.

Description

電動倍力装置Electric booster
 本発明は、電動アクチュエータが発生する推力を倍力源として利用する電動倍力装置に関する。 The present invention relates to an electric booster that uses a thrust generated by an electric actuator as a boost source.
 特許文献1には、自動ブレーキ作動時にブレーキペダルが引き込まれないように構成した自動ブレーキ装置が開示されている。 Patent Document 1 discloses an automatic brake device configured such that a brake pedal is not retracted when an automatic brake is operated.
特開平10-44970号公報Japanese Patent Laid-Open No. 10-44970
 一方、ペダルフィーリングを考慮して自動ブレーキ作動時にブレーキペダルが引き込まれるように構成した電動倍力装置では、ブレーキペダルの移動が阻害されると自動ブレーキの作動が妨げられるという問題がある。 On the other hand, in the electric booster configured so that the brake pedal is retracted when the automatic brake is operated in consideration of the pedal feeling, there is a problem that the operation of the automatic brake is hindered when the movement of the brake pedal is inhibited.
 本発明の課題は、ブレーキペダルの移動が阻害されても、自動ブレーキの作動が妨げられることがない電動倍力装置を提供することにある。 An object of the present invention is to provide an electric booster that does not hinder the operation of an automatic brake even if the movement of a brake pedal is inhibited.
 本発明の一実施形態によれば、ブレーキペダルの操作に関わらず、電動機により液圧を発生するときに入力部材を移動させる電動倍力装置において、入力部材は、前記ブレーキペダルと連結され、該入力部材が液圧発生方向へ移動するときに前記ブレーキペダルと連動して移動し、前記ブレーキペダルの作動抵抗が所定値より大きくなるときに、前記ブレーキペダルと連動せずに移動する。 According to an embodiment of the present invention, in the electric booster that moves the input member when hydraulic pressure is generated by the electric motor regardless of the operation of the brake pedal, the input member is connected to the brake pedal, When the input member moves in the hydraulic pressure generation direction, the input member moves in conjunction with the brake pedal. When the operating resistance of the brake pedal becomes greater than a predetermined value, the input member moves without interlocking with the brake pedal.
 また、本発明の一実施形態によれば、ブレーキペダルの操作に関わらず、電動機により液圧を発生するときに入力部材を移動させる電動倍力装置において、前記ブレーキペダルと前記入力部材とは連結されており、前記ブレーキペダルと前記入力部材との連結部において、前記入力部材の当接部と前記ブレーキペダルの当接部とが相対移動可能であり、前記ブレーキペダルの操作時に前記ブレーキペダルとともに移動する前記ブレーキペダルの当接部の当接位置に、前記入力部材の当接部を付勢する付勢部材が設けられる。 According to one embodiment of the present invention, in the electric booster that moves the input member when hydraulic pressure is generated by the electric motor regardless of the operation of the brake pedal, the brake pedal and the input member are connected to each other. The abutting portion of the input member and the abutting portion of the brake pedal are relatively movable at the connecting portion between the brake pedal and the input member, and together with the brake pedal during operation of the brake pedal A biasing member that biases the contact portion of the input member is provided at a contact position of the contact portion of the moving brake pedal.
 本発明の実施形態によれば、ブレーキペダルの移動が阻害されても、自動ブレーキを作動させることができる。 According to the embodiment of the present invention, the automatic brake can be operated even if the movement of the brake pedal is inhibited.
第1実施形態の電動倍力装置および該電動倍力装置に連結されたマスタシリンダの断面図である。It is sectional drawing of the master cylinder connected with the electric booster of 1st Embodiment, and this electric booster. 図1における要部を拡大して示す図である。It is a figure which expands and shows the principal part in FIG. 第1実施形態の連結機構の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the connection mechanism of 1st Embodiment. 第1実施形態の説明図であって、圧縮コイルばねにセット荷重を超える荷重が付加されていない状態における連結機構を示す断面図である。It is explanatory drawing of 1st Embodiment, Comprising: It is sectional drawing which shows the connection mechanism in the state in which the load exceeding a set load is not added to the compression coil spring. 第1実施形態の説明図であって、入力ロッドがブレーキペダルから離れて単独で前進したときの連結機構を示す断面図である。It is explanatory drawing of 1st Embodiment, Comprising: It is sectional drawing which shows a connection mechanism when an input rod moves away from a brake pedal independently. 第1実施形態の説明図であって、(A)は、自動ブレーキ作動時にブレーキペダルが引き込まれない電動倍力装置におけるブレーキペダルのストロークと減速度との関係を示し、(B)は、第1実施形態に対応する自動ブレーキ作動時にブレーキペダルが引き込まれる電動倍力装置におけるブレーキペダルのストロークと減速度との関係を示す。It is explanatory drawing of 1st Embodiment, Comprising: (A) shows the relationship between the stroke of a brake pedal and deceleration in an electric booster in which a brake pedal is not pulled in at the time of automatic brake operation, (B) The relationship between the stroke of a brake pedal and deceleration in the electric booster in which a brake pedal is drawn at the time of the automatic brake action corresponding to 1 embodiment is shown. 第2実施形態の連結機構の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the connection mechanism of 2nd Embodiment. 第2実施形態の説明図であって、圧縮コイルばねにセット荷重を超える荷重が付加されていない状態における連結機構を示す断面図である。It is explanatory drawing of 2nd Embodiment, Comprising: It is sectional drawing which shows the connection mechanism in the state in which the load exceeding a set load is not added to the compression coil spring. 第3実施形態の連結機構の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the connection mechanism of 3rd Embodiment. 第3実施形態の説明図であって、圧縮コイルばねにセット荷重を超える荷重が付加されていない状態における連結機構を示す断面図である。It is explanatory drawing of 3rd Embodiment, Comprising: It is sectional drawing which shows the connection mechanism in the state in which the load exceeding a set load is not added to the compression coil spring.
[第1実施形態]
 本発明の第1実施形態を添付した図を参照して説明する。
 図1は、非通電時における第1実施形態の電動倍力装置1および該電動倍力装置1に連結されたマスタシリンダ15の断面図である。以下において、図1における左方向および右方向を電動倍力装置1における前方向(前側)および後方向(後側)とし、図1における上方向および下方向を電動倍力装置1における上方向および下方向とする。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of the electric booster 1 according to the first embodiment and a master cylinder 15 connected to the electric booster 1 when not energized. In the following, the left direction and the right direction in FIG. 1 are the front direction (front side) and the rear direction (rear side) in the electric booster 1, and the upper direction and the lower direction in FIG. Downward.
 図1に示されるように、電動倍力装置1は、電動モータ2、ハウジング3、入力部材4、抵抗力付与機構5、ボールねじ機構6、ストローク検出装置(図示省略)、およびコントローラ7を備える。電動モータ2は、ハウジング3内に収容される。入力部材4は、入力ロッド10と入力プランジャ11とを有する。入力ロッド10は、前側部分がハウジング3内をマスタシリンダ15に向かって延び、後端部が後述する連結機構51を介してブレーキペダル13に連結される。入力ロッド10は、前端のボールジョイント85が入力プランジャ11に連結される。入力プランジャ11には、マスタシリンダ15のプライマリピストン31およびセカンダリピストン32からの反力の一部がリアクションディスク135を介して伝達される。 As shown in FIG. 1, the electric booster 1 includes an electric motor 2, a housing 3, an input member 4, a resistance applying mechanism 5, a ball screw mechanism 6, a stroke detection device (not shown), and a controller 7. . The electric motor 2 is accommodated in the housing 3. The input member 4 includes an input rod 10 and an input plunger 11. The input rod 10 has a front portion extending in the housing 3 toward the master cylinder 15 and a rear end portion connected to the brake pedal 13 via a connecting mechanism 51 described later. The input rod 10 has a front end ball joint 85 connected to the input plunger 11. A part of the reaction force from the primary piston 31 and the secondary piston 32 of the master cylinder 15 is transmitted to the input plunger 11 via the reaction disk 135.
 抵抗力付与機構5は、入力部材4(入力ロッド10および入力プランジャ11)の前進時(ブレーキペダル13の踏み込み時)と後退時(ブレーキペダル13の戻し時)とで、入力部材4への抵抗力(反力)を変化させる、いわゆる、ヒステリシス特性を発生させる。電動モータ2は、ブレーキペダル13の操作(踏み込み)による入力ロッド10の前進に応じて作動し、マスタシリンダ15のプライマリピストン31およびセカンダリピストン32への推力をアシストする。ストローク検出装置は、入力部材4のハウジング3に対するストローク量を検出する。コントローラ7は、ストローク検出装置の検出結果に基づき電動モータ2の作動を制御する。 The resistance applying mechanism 5 has a resistance to the input member 4 when the input member 4 (input rod 10 and input plunger 11) moves forward (when the brake pedal 13 is depressed) and when it moves backward (when the brake pedal 13 is returned). A so-called hysteresis characteristic that changes the force (reaction force) is generated. The electric motor 2 operates in accordance with the forward movement of the input rod 10 due to the operation (depression) of the brake pedal 13, and assists the thrust to the primary piston 31 and the secondary piston 32 of the master cylinder 15. The stroke detection device detects the stroke amount of the input member 4 with respect to the housing 3. The controller 7 controls the operation of the electric motor 2 based on the detection result of the stroke detection device.
 図1に示されるように、ハウジング3の前側には、タンデム型のマスタシリンダ15が連結される。マスタシリンダ15の上部には、該マスタシリンダ15に作動油液を供給するリザーバ16が設けられる。ハウジング3は、電動モータ2、ボールねじ機構6等を収容するフロントハウジング20と、該フロントハウジング20の後端開口を閉塞するリアハウジング21とを有する。 As shown in FIG. 1, a tandem master cylinder 15 is connected to the front side of the housing 3. A reservoir 16 for supplying hydraulic fluid to the master cylinder 15 is provided at the upper part of the master cylinder 15. The housing 3 includes a front housing 20 that houses the electric motor 2, the ball screw mechanism 6, and the like, and a rear housing 21 that closes a rear end opening of the front housing 20.
 リアハウジング21は、マスタシリンダ15とは反対側(後側)に延び、かつ、マスタシリンダ15に対して同軸の円筒部22を有する。円筒部22の後端部の内側には、ストッパ部材25が設けられる。ストッパ部材25は、円筒部22の後端に形成された内フランジ部23に突き当てられる。リアハウジング21の後側面には、円筒部22の前端部を囲うようにして取付プレート27が設けられる。取付プレート27には、後方向へ延びる複数本(図1に1本のみ示す)のスタッドボルト28が接合される。電動倍力装置1は、入力ロッド10を車両のエンジンルームと車室との隔壁であるダッシュパネル(図示省略)から車室側へ突出させた状態で、複数本のスタッドボルト28(図1に1本のみ示す)およびナット(図示省略)を利用して当該ダッシュパネルに固定することで、エンジンルーム内に配置される。 The rear housing 21 has a cylindrical portion 22 that extends to the opposite side (rear side) to the master cylinder 15 and is coaxial with the master cylinder 15. A stopper member 25 is provided inside the rear end portion of the cylindrical portion 22. The stopper member 25 is abutted against an inner flange portion 23 formed at the rear end of the cylindrical portion 22. A mounting plate 27 is provided on the rear side surface of the rear housing 21 so as to surround the front end portion of the cylindrical portion 22. A plurality of stud bolts 28 (only one is shown in FIG. 1) extending in the rearward direction are joined to the mounting plate 27. The electric booster 1 has a plurality of stud bolts 28 (shown in FIG. 1) in a state where the input rod 10 protrudes from a dash panel (not shown) that is a partition wall between the engine room and the vehicle compartment of the vehicle to the vehicle compartment side. It is arranged in the engine room by fixing to the dash panel using a nut (not shown) and a nut (not shown).
 図1に示されるように、マスタシリンダ15は、フロントハウジング20の前側面に設けられ、後端部がフロントハウジング20の開口部29からハウジング3内に挿通される。マスタシリンダ15は、後端が開口した有底円筒形のシリンダボア30を有する。プライマリピストン31は、前側部分がシリンダボア30内に挿入され、後側部分がハウジング3内に延びる。プライマリピストン31の前側および後側部分は、軸平面による断面がH形のカップ状に形成される。プライマリピストン31は、隔壁34の後側面に設けられた球面形状の凹部35を有する。凹部35には、後述する押圧ロッド142の前端に形成された球面形状の凸部143が当接する。 1, the master cylinder 15 is provided on the front side surface of the front housing 20, and the rear end portion is inserted into the housing 3 from the opening 29 of the front housing 20. The master cylinder 15 has a bottomed cylindrical cylinder bore 30 whose rear end is open. The primary piston 31 has a front portion inserted into the cylinder bore 30 and a rear portion extending into the housing 3. The front and rear portions of the primary piston 31 are formed in a cup shape having an H-shaped cross section by an axial plane. The primary piston 31 has a spherical recess 35 provided on the rear side surface of the partition wall 34. A spherical convex portion 143 formed at the front end of a pressing rod 142 described later contacts the concave portion 35.
 セカンダリピストン32は、シリンダボア30内の底側(前側)に挿入される。これにより、シリンダボア30内には、プライマリ室37とセカンダリ室38とが形成される。プライマリ室37は、プライマリピストン31とセカンダリピストン32との間に形成される。セカンダリ室38は、シリンダボア30の底部とセカンダリピストン38との間に形成される。マスタシリンダ15は、2つの液圧ポート(図示省略)を有する。プライマリ室37は、マスタシリンダ15の一方の液圧ポートから液圧制御ユニット(図示省略)により制御される2系統の液圧回路の一方を介して対応する車輪のホイールシリンダ(図示省略)に接続される。セカンダリ室38は、他方の液圧ポートから2系統の液圧回路のうちの他方を介して対応する車輪のホイールシリンダに接続される。 The secondary piston 32 is inserted into the bottom side (front side) of the cylinder bore 30. Thereby, a primary chamber 37 and a secondary chamber 38 are formed in the cylinder bore 30. The primary chamber 37 is formed between the primary piston 31 and the secondary piston 32. The secondary chamber 38 is formed between the bottom of the cylinder bore 30 and the secondary piston 38. The master cylinder 15 has two hydraulic ports (not shown). The primary chamber 37 is connected from one hydraulic port of the master cylinder 15 to a wheel cylinder (not shown) of a corresponding wheel via one of two hydraulic circuits controlled by a hydraulic control unit (not shown). Is done. The secondary chamber 38 is connected from the other hydraulic pressure port to the wheel cylinder of the corresponding wheel via the other of the two hydraulic circuits.
 マスタシリンダ15は、プライマリ室37をリザーバ16に接続させるリザーバポート44と、セカンダリ室38をリザーバ16に接続させるリザーバポート45とを有する。シリンダボア30の内周面には、リザーバポート44を挟んで前後方向へ間隔をあけて配置されたシールリング47,48が設けられる。プライマリ室37は、プライマリピストン31が非制動位置に位置するとき、プライマリピストン31の側壁に設けられたピストンポート62を介してリザーバポート44に連通される。プライマリピストン31が非制動位置から前進してピストンポート62がシールリング48に達すると、シールリング48によりプライマリ室37がリザーバポート44から遮断されて液圧が発生する。 The master cylinder 15 has a reservoir port 44 that connects the primary chamber 37 to the reservoir 16 and a reservoir port 45 that connects the secondary chamber 38 to the reservoir 16. Seal rings 47 and 48 are provided on the inner peripheral surface of the cylinder bore 30 so as to be spaced apart in the front-rear direction across the reservoir port 44. The primary chamber 37 communicates with the reservoir port 44 via a piston port 62 provided on the side wall of the primary piston 31 when the primary piston 31 is located at the non-braking position. When the primary piston 31 moves forward from the non-braking position and the piston port 62 reaches the seal ring 48, the primary chamber 37 is blocked from the reservoir port 44 by the seal ring 48, and hydraulic pressure is generated.
 シリンダボア30の内周面には、リザーバポート45を挟んで前後方向へ間隔をあけて配置されたシールリング49,50が設けられる。セカンダリ室38は、セカンダリピストン32が非制動位置に位置するとき、セカンダリピストン32の側壁に設けられたピストンポート63を介してリザーバポート45に連通される。セカンダリピストン32が非制動位置から前進してピストンポート63がシールリング50に達すると、シールリング50によりセカンダリ室38がリザーバポート45から遮断されて液圧が発生する。 Seal rings 49 and 50 are provided on the inner peripheral surface of the cylinder bore 30 with a space in the front-rear direction with the reservoir port 45 interposed therebetween. The secondary chamber 38 communicates with the reservoir port 45 via a piston port 63 provided on the side wall of the secondary piston 32 when the secondary piston 32 is located at the non-braking position. When the secondary piston 32 moves forward from the non-braking position and the piston port 63 reaches the seal ring 50, the secondary chamber 38 is blocked from the reservoir port 45 by the seal ring 50, and hydraulic pressure is generated.
 マスタシリンダ15は、シリンダボア30内に設けられた圧縮コイルばね65,71を有する。圧縮コイルばね65は、プライマリピストン31とセカンダリピストン32との間に介装され、プライマリピストン31とセカンダリピストン32とを相反方向へ付勢する。圧縮コイルばね65の内側には、前後方向に一定範囲で伸縮可能であってプライマリピストン31とセカンダリピストン32との間隔を規制する規制機構66が設けられる。規制機構66は、後端がプライマリピストン31の隔壁34に接続されるリテーナガイド67と、前端がセカンダリピストン32に接続され、かつ、リテーナガイド67内を前後方向へ移動可能なリテーナロッド68とを有する。 The master cylinder 15 has compression coil springs 65 and 71 provided in the cylinder bore 30. The compression coil spring 65 is interposed between the primary piston 31 and the secondary piston 32 and biases the primary piston 31 and the secondary piston 32 in the opposite direction. Inside the compression coil spring 65 is provided a regulating mechanism 66 that can be expanded and contracted in a certain range in the front-rear direction and regulates the distance between the primary piston 31 and the secondary piston 32. The restriction mechanism 66 includes a retainer guide 67 whose rear end is connected to the partition wall 34 of the primary piston 31, and a retainer rod 68 whose front end is connected to the secondary piston 32 and which can move in the retainer guide 67 in the front-rear direction. Have.
 リテーナガイド67は、略円筒形に形成される。リテーナガイド67の前端には、内フランジ部67Aが設けられる。リテーナロッド68の後端には、外フランジ部68Aが設けられる。規制機構66は、リテーナガイド67とリテーナロッド68との前後方向への相対移動を許容し、リテーナロッド68の外フランジ部68Aをリテーナガイド67の内フランジ部67Aに当接させることで軸長が最大となり、このときプライマリピストン31とセカンダリピストン32との間隔が最大になる。 The retainer guide 67 is formed in a substantially cylindrical shape. An inner flange portion 67 </ b> A is provided at the front end of the retainer guide 67. An outer flange portion 68 </ b> A is provided at the rear end of the retainer rod 68. The restriction mechanism 66 allows the retainer guide 67 and the retainer rod 68 to move relative to each other in the front-rear direction, and causes the outer flange portion 68A of the retainer rod 68 to abut the inner flange portion 67A of the retainer guide 67 so that the shaft length is increased. At this time, the distance between the primary piston 31 and the secondary piston 32 is maximized.
 圧縮コイルばね71は、シリンダボア30の底部とセカンダリピストン32との間に介装され、セカンダリピストン32をシリンダボア30の底部に対して離れる方向(後方向)へ付勢する。圧縮コイルばね71の内側には、前後方向に一定範囲で伸縮可能であってシリンダボア30の底部とセカンダリピストン32との間を所定の間隔で規制する規制機構72が設けられる。規制機構72は、前端がシリンダボア30の底部に接続されるリテーナガイド73と、後端がセカンダリピストン32に接続され、かつ、リテーナガイド73内を前後方向へ移動可能なリテーナロッド74とを有する。 The compression coil spring 71 is interposed between the bottom of the cylinder bore 30 and the secondary piston 32, and biases the secondary piston 32 in a direction away from the bottom of the cylinder bore 30 (rearward direction). Inside the compression coil spring 71, there is provided a regulation mechanism 72 that can be expanded and contracted in a predetermined range in the front-rear direction and regulates the space between the bottom of the cylinder bore 30 and the secondary piston 32 at a predetermined interval. The restriction mechanism 72 includes a retainer guide 73 whose front end is connected to the bottom of the cylinder bore 30, and a retainer rod 74 whose rear end is connected to the secondary piston 32 and is movable in the retainer guide 73 in the front-rear direction.
 リテーナガイド73は、略円筒形に形成される。リテーナガイド73の後端には、内フランジ部73Aが設けられる。リテーナロッド74の前端には、外フランジ部74Aが設けられる。規制機構72は、リテーナガイド73とリテーナロッド74との前後方向への相対移動を許容する。 The retainer guide 73 is formed in a substantially cylindrical shape. An inner flange portion 73 </ b> A is provided at the rear end of the retainer guide 73. An outer flange portion 74 </ b> A is provided at the front end of the retainer rod 74. The restricting mechanism 72 allows relative movement of the retainer guide 73 and the retainer rod 74 in the front-rear direction.
 主に図2を参照すると、入力ロッド10の前側部分は、リアハウジング21の円筒部22内に収容され、かつ、円筒部22に対して同軸に配置される。入力ロッド10は、前端にボールジョイント85が形成された小径部80と、フランジ形のストッパ当接部82を介して小径部80の後端に連続する大径部81とを有する。ストッパ当接部82の後側面は、弾性部材86により被われる。入力ロッド10は、ストッパ当接部82が、弾性部材86を介してリアハウジング21の円筒部22内に設けられたストッパ部材25に当接されることにより、後端位置が定められる。 Referring mainly to FIG. 2, the front portion of the input rod 10 is accommodated in the cylindrical portion 22 of the rear housing 21 and is disposed coaxially with the cylindrical portion 22. The input rod 10 includes a small-diameter portion 80 having a ball joint 85 formed at the front end, and a large-diameter portion 81 continuous to the rear end of the small-diameter portion 80 via a flange-shaped stopper contact portion 82. The rear side surface of the stopper contact portion 82 is covered with an elastic member 86. The rear end position of the input rod 10 is determined by contacting the stopper abutting portion 82 with the stopper member 25 provided in the cylindrical portion 22 of the rear housing 21 via the elastic member 86.
 入力プランジャ11は、入力ロッド10に対して同軸に配置され、後述する倍力部材110の大径軸孔115内に収容される。入力プランジャ11は、前側部分の小径部95と、後側部分の大径部96とを有する。入力プランジャ11は、大径部96の外周面が大径軸孔115の内周面に摺動可能に当接される。大径部96の後端部には、内側に円錐形開口部102が形成された筒状かしめ部98が設けられる。大径部96の内側中央には、円錐形開口部102に連続する球面状の凹部100が形成される。凹部100には、入力ロッド10のボールジョイント85が連結される The input plunger 11 is disposed coaxially with the input rod 10 and is accommodated in a large-diameter shaft hole 115 of a booster member 110 described later. The input plunger 11 has a small-diameter portion 95 in the front portion and a large-diameter portion 96 in the rear portion. The input plunger 11 is slidably brought into contact with the inner peripheral surface of the large-diameter shaft hole 115 on the outer peripheral surface of the large-diameter portion 96. A cylindrical caulking portion 98 having a conical opening 102 formed inside is provided at the rear end portion of the large diameter portion 96. A spherical concave portion 100 that is continuous with the conical opening 102 is formed at the inner center of the large diameter portion 96. A ball joint 85 of the input rod 10 is connected to the recess 100.
 入力プランジャ11の小径部95の前端面は、レシオプレート105に当接される。レシオプレート105は、入力プランジャ11に対して同軸に配置される。レシオプレート105は、円板形の押圧部106と、該押圧部106と一体に形成されたロッド部107とを有する。ロッド部107の後端面には、前述した入力プランジャ11の小径部95の前端面が当接される。 The front end surface of the small diameter portion 95 of the input plunger 11 is brought into contact with the ratio plate 105. The ratio plate 105 is disposed coaxially with the input plunger 11. The ratio plate 105 includes a disk-shaped pressing portion 106 and a rod portion 107 formed integrally with the pressing portion 106. The front end surface of the small diameter portion 95 of the input plunger 11 is brought into contact with the rear end surface of the rod portion 107.
 倍力部材110は、略円筒形の倍力本体112と、該倍力本体112の後端に固定されたボス113とを有する。倍力部材110は、入力部材4(入力ロッド10および入力プランジャ11)に対して同軸に配置される。倍力本体112は、後端が開口する大径軸孔115と、前端に開口して大径軸孔115に連続する小径軸孔116とを有する。倍力本体112の後部外周面には、所定間隔の二面幅形状120が形成される。倍力本体112の大径軸孔115の内周面には、入力プランジャ11の大径部96の外周面が摺動可能に当接される。 The booster member 110 has a substantially cylindrical booster body 112 and a boss 113 fixed to the rear end of the booster body 112. The booster member 110 is disposed coaxially with the input member 4 (the input rod 10 and the input plunger 11). The booster main body 112 has a large-diameter shaft hole 115 whose rear end is open and a small-diameter shaft hole 116 which is open at the front end and continues to the large-diameter shaft hole 115. On the outer peripheral surface of the rear portion of the booster body 112, a two-sided width shape 120 with a predetermined interval is formed. The outer peripheral surface of the large-diameter portion 96 of the input plunger 11 is slidably brought into contact with the inner peripheral surface of the large-diameter shaft hole 115 of the booster main body 112.
 倍力本体112の小径軸孔116の内周面には、レシオプレート105の押圧部106の外周面が摺動可能に当接される。小径軸孔116の後端には、レシオプレート105の押圧部106の、倍力部材110に対する後方向への移動を規制する規制部119が形成される。規制部119に形成された軸孔、すなわち、大径軸孔115と小径軸孔116との間に形成された軸孔には、レシオプレート105のロッド部107が挿入される。小径軸孔116の前端から規制部119までの軸長は、レシオプレート105の押圧部106の軸長より長く形成される。非制動状態では、入力プランジャ11の前端面と倍力本体112の規制部119との間に所定の隙間が形成される。 The outer peripheral surface of the pressing portion 106 of the ratio plate 105 is slidably brought into contact with the inner peripheral surface of the small diameter shaft hole 116 of the booster main body 112. At the rear end of the small-diameter shaft hole 116, a restricting portion 119 that restricts the backward movement of the pressing portion 106 of the ratio plate 105 relative to the booster member 110 is formed. The rod portion 107 of the ratio plate 105 is inserted into the shaft hole formed in the restricting portion 119, that is, the shaft hole formed between the large diameter shaft hole 115 and the small diameter shaft hole 116. The axial length from the front end of the small diameter shaft hole 116 to the restricting portion 119 is formed longer than the axial length of the pressing portion 106 of the ratio plate 105. In the non-braking state, a predetermined gap is formed between the front end surface of the input plunger 11 and the restricting portion 119 of the booster main body 112.
 倍力部材110のボス113は、倍力本体112の大径軸孔115の後端部に接続される接続部122と、該接続部122の後端からフランジ部123を介して後方向へ延びる円筒部124とを有する。円筒部124の外径は、倍力本体112の外径と同一に形成される。円筒部124の内径は、倍力本体112の大径軸孔115の内径よりも大きく形成される。 The boss 113 of the booster member 110 extends in the rearward direction from the rear end portion of the connection portion 122 through the flange portion 123 and is connected to the rear end portion of the large-diameter shaft hole 115 of the booster main body 112. And a cylindrical portion 124. The outer diameter of the cylindrical portion 124 is formed to be the same as the outer diameter of the booster main body 112. The inner diameter of the cylindrical portion 124 is formed larger than the inner diameter of the large-diameter shaft hole 115 of the booster main body 112.
 抵抗力付与手段5は、倍力部材110と入力部材4とを相反方向へ付勢する。抵抗力付与手段5は、倍力部材110のボス113に形成されたばね受部127と入力ロッド10のストッパ当接部82との間に介装された圧縮コイルばね126を有する。圧縮コイルばね126は、ばね受部127からストッパ当接部82へ漸次縮径される円錐コイルばねが適用され、入力ロッド10の小径部80の外周(外側)に設けられる。 The resistance applying means 5 urges the booster member 110 and the input member 4 in the opposite direction. The resistance force applying means 5 includes a compression coil spring 126 interposed between a spring receiving portion 127 formed on the boss 113 of the booster member 110 and the stopper abutting portion 82 of the input rod 10. The compression coil spring 126 is a conical coil spring that is gradually reduced in diameter from the spring receiving portion 127 to the stopper contact portion 82, and is provided on the outer periphery (outside) of the small diameter portion 80 of the input rod 10.
 図1、図2を参照すると、倍力本体112の前端面、すなわち、倍力部材110の前端面には、弾性体からなる略円板形のリアクションディスク135が当接される。リアクションディスク135は、入力部材4に対して同軸に配置された出力ロッド137に保持される。出力ロッド137は、カップ形に形成されて内側底部にリアクションディスク135が設けられるカップ部139と、該カップ部139から前方向へ延びて先端に前述した球面形状の凸部143が形成されたロッド部138とを有する。カップ部139には、倍力部材110の前端部が摺動可能に挿入される。ロッド部138には、押圧ロッド142を接続するための軸孔140が形成される。 1 and 2, a substantially disc-shaped reaction disk 135 made of an elastic body is brought into contact with the front end surface of the booster main body 112, that is, the front end surface of the booster member 110. The reaction disk 135 is held by an output rod 137 disposed coaxially with the input member 4. The output rod 137 has a cup portion 139 formed in a cup shape and provided with a reaction disk 135 at the inner bottom portion, and a rod having the above-described spherical convex portion 143 extending from the cup portion 139 to the front and formed at the tip. Part 138. A front end portion of the booster member 110 is slidably inserted into the cup portion 139. A shaft hole 140 for connecting the pressing rod 142 is formed in the rod portion 138.
 倍力部材110の倍力本体112の外周には、略円筒形のスリーブ145が設けられる。スリーブ145は、軸孔146と、該軸孔146の前端に設けられた環状凹部147と、該環状凹部147の前端に連続する面取り形状の開口部148とを有する。軸孔146には、倍力本体112が摺動可能に挿入される。軸孔146には、前後方向へ延びる複数本の溝150が周方向に設けられる。溝150は、スリーブ145の環状凹部147と倍力本体112の二面幅形状120とを連通させる。スリーブ145の環状凹部147および開口部148の内側には、出力ロッド137のカップ部139が配置される。 A substantially cylindrical sleeve 145 is provided on the outer periphery of the boost body 112 of the boost member 110. The sleeve 145 includes a shaft hole 146, an annular recess 147 provided at the front end of the shaft hole 146, and a chamfered opening 148 continuous with the front end of the annular recess 147. The booster body 112 is slidably inserted into the shaft hole 146. The shaft hole 146 is provided with a plurality of grooves 150 extending in the front-rear direction in the circumferential direction. The groove 150 allows the annular recess 147 of the sleeve 145 to communicate with the two-sided width shape 120 of the booster main body 112. A cup 139 of the output rod 137 is disposed inside the annular recess 147 and the opening 148 of the sleeve 145.
 ブレーキペダル13の非操作状態で、出力ロッド137のカップ部139の後端とスリーブ145の環状凹部147の環状面152との間には隙間153(図2参照)が設けられる。スリーブ145の前端部には、フランジ状のばね受部155が形成される。スリーブ145の後端面は、倍力部材110のボス113のフランジ部123に当接される。スリーブ145の後端部外周面には、複数個(図2に2個のみ示す)の環状の膨出部158が前後方向へ間隔をあけて設けられる。スリーブ145の外周には、ボールねじ機構6が設けられる。 When the brake pedal 13 is not operated, a gap 153 (see FIG. 2) is provided between the rear end of the cup portion 139 of the output rod 137 and the annular surface 152 of the annular recess 147 of the sleeve 145. A flange-shaped spring receiving portion 155 is formed at the front end portion of the sleeve 145. The rear end surface of the sleeve 145 is brought into contact with the flange portion 123 of the boss 113 of the booster member 110. On the outer peripheral surface of the rear end portion of the sleeve 145, a plurality of (only two are shown in FIG. 2) annular bulging portions 158 are provided at intervals in the front-rear direction. A ball screw mechanism 6 is provided on the outer periphery of the sleeve 145.
 ボールねじ機構6には、ハウジング3に収容された電動モータ2(図1参照)の回転力が伝達される。ボールねじ機構6は、入力された回転運動を直線運動へ変換する回転直動変換機構として機能する。第1実施形態において、ボールねじ機構6は、電動モータ2の回転力を倍力部材110の推力に変換する。ボールねじ機構6は、ナット部材160とねじ軸部材161とを有する。ねじ軸部材161は、略円筒形に形成され、軸孔162にスリーブ145が挿入される。ねじ軸部材161は、回り止め機構(図示省略)によりハウジング3に対する回転が阻止されて前後方向へ移動可能である。ねじ軸部材161の軸孔162には、スリーブ145の各膨出部158が当接される。これにより、ねじ軸部材161の軸孔162とスリーブ145の外周面との間には隙間が形成される。 The rotational force of the electric motor 2 (see FIG. 1) accommodated in the housing 3 is transmitted to the ball screw mechanism 6. The ball screw mechanism 6 functions as a rotation / linear motion conversion mechanism that converts the input rotational motion into linear motion. In the first embodiment, the ball screw mechanism 6 converts the rotational force of the electric motor 2 into the thrust of the booster member 110. The ball screw mechanism 6 includes a nut member 160 and a screw shaft member 161. The screw shaft member 161 is formed in a substantially cylindrical shape, and a sleeve 145 is inserted into the shaft hole 162. The screw shaft member 161 is prevented from rotating with respect to the housing 3 by a detent mechanism (not shown) and can move in the front-rear direction. Each bulging portion 158 of the sleeve 145 is brought into contact with the shaft hole 162 of the screw shaft member 161. As a result, a gap is formed between the shaft hole 162 of the screw shaft member 161 and the outer peripheral surface of the sleeve 145.
 ねじ軸部材161の軸孔162の後端部には、周方向に間隔をあけて配置された複数個の凸部165が設けられる。各凸部165には、倍力部材110のボス113のフランジ部123の後端面が当接される。ねじ軸部材161の外周面には、前後方向(軸方向)の全域にわたって螺旋溝166が形成される。スリーブ145のばね受部155とフロントハウジング20の開口部29(図1参照)の外側周縁部(内フランジ形のばね受部)との間には、圧縮コイルばね173が介装され、該圧縮コイルばね173のばね力により、スリーブ145、倍力部材110、およびねじ軸部材161がハウジング3に対して後方向へ付勢される。 A plurality of convex portions 165 arranged at intervals in the circumferential direction are provided at the rear end portion of the shaft hole 162 of the screw shaft member 161. The rear end surface of the flange portion 123 of the boss 113 of the booster member 110 is brought into contact with each convex portion 165. A spiral groove 166 is formed on the outer peripheral surface of the screw shaft member 161 over the entire area in the front-rear direction (axial direction). A compression coil spring 173 is interposed between the spring receiving portion 155 of the sleeve 145 and the outer peripheral edge portion (inner flange-shaped spring receiving portion) of the opening 29 (see FIG. 1) of the front housing 20. The sleeve 145, the booster member 110, and the screw shaft member 161 are urged rearward with respect to the housing 3 by the spring force of the coil spring 173.
 ナット部材160は、軸受163によりハウジング3に対して軸線回りに回転可能に支持される。ナット部材160の内周面には、前後方向(軸方向)の全域にわたって螺旋溝168が形成される。ナット部材160の螺旋溝168とねじ軸部材161の螺旋溝166との間には、複数個のボール170(鋼球)が装填されている。これにより、ナット部材160が回転すると、ボール170が螺旋溝166,168に沿って転動してねじ軸部材161が前/後方向へ移動する。このようにして、ボールねじ機構6は、入力されたナット部材160の回転をねじ軸部材161の推力(前進/進退移動)として出力する。 The nut member 160 is supported by the bearing 163 so as to be rotatable around the axis with respect to the housing 3. A spiral groove 168 is formed on the inner peripheral surface of the nut member 160 over the entire front-rear direction (axial direction). A plurality of balls 170 (steel balls) are loaded between the spiral groove 168 of the nut member 160 and the spiral groove 166 of the screw shaft member 161. Accordingly, when the nut member 160 rotates, the ball 170 rolls along the spiral grooves 166 and 168 and the screw shaft member 161 moves in the front / rear direction. In this way, the ball screw mechanism 6 outputs the input rotation of the nut member 160 as the thrust (advance / advance movement) of the screw shaft member 161.
 そして、電動モータ2の動力は、後述する動力伝達機構を介してナット部材160に伝達される。ナット部材160の回転によりねじ軸部材161が前進し、ねじ軸部材161の推力は、凸部165を介して倍力部材110およびスリーブ145に伝達される。これにより、倍力部材110およびスリーブ145は、圧縮コイルばね173の付勢力に抗して前進する。なお、ねじ軸部材161が前進しない場合であっても、入力部材4(入力ロッド10および入力プランジャ11)は、ブレーキペダル13が操作される(踏み込まれる)ことで、倍力部材110に対してねじ軸部材161の凸部165から離れて単独で前進することができる。 And the power of the electric motor 2 is transmitted to the nut member 160 via a power transmission mechanism described later. The screw shaft member 161 advances by the rotation of the nut member 160, and the thrust of the screw shaft member 161 is transmitted to the booster member 110 and the sleeve 145 through the convex portion 165. As a result, the booster member 110 and the sleeve 145 move forward against the biasing force of the compression coil spring 173. Even when the screw shaft member 161 does not move forward, the input member 4 (the input rod 10 and the input plunger 11) is operated (depressed) by the brake pedal 13 with respect to the boost member 110. The screw shaft member 161 can be moved forward independently from the convex portion 165 of the screw shaft member 161.
 図1を参照すると、前述した動力伝達機構は、電動モータ2の出力軸2Aに装着されたプーリ175と、ナット部材160の外周面に固定されたプーリ176と、プーリ175およびプーリ176に巻回されたプーリベルト177とを有する。出力軸2Aは、前後方向へ間隔をあけて配置された一対の軸受178,178により支持されて軸線回りに回転可能である。これにより、電動モータ2の出力軸2Aの回転力(トルク)は、プーリ175、プーリベルト177、およびプーリ176を介してナット部材160に伝達される。 Referring to FIG. 1, the power transmission mechanism described above is wound around a pulley 175 attached to the output shaft 2 </ b> A of the electric motor 2, a pulley 176 fixed to the outer peripheral surface of the nut member 160, and the pulley 175 and the pulley 176. Pulley belt 177. The output shaft 2A is supported by a pair of bearings 178 and 178 that are spaced apart from each other in the front-rear direction, and can rotate about the axis. Thereby, the rotational force (torque) of the output shaft 2A of the electric motor 2 is transmitted to the nut member 160 via the pulley 175, the pulley belt 177, and the pulley 176.
 コントローラ7は、ストローク検出装置、回転位置検出装置、および液圧検出装置(図示省略)の出力信号に基づいて電動モータ2を制御する。コントローラ7は、ストローク検出装置、回転位置検出装置、および液圧検出装置への電力供給ならびに通信に用いられるコネクタ180を有する。コントローラ7は、ブレーキアシスト制御、自動ブレーキ制御等、種々のブレーキ制御を実行する車両制御装置(図示省略)に適宜接続することが可能である。 The controller 7 controls the electric motor 2 based on output signals of a stroke detection device, a rotational position detection device, and a hydraulic pressure detection device (not shown). The controller 7 has a connector 180 used for power supply and communication to the stroke detection device, the rotational position detection device, and the hydraulic pressure detection device. The controller 7 can be appropriately connected to a vehicle control device (not shown) that executes various brake controls such as brake assist control and automatic brake control.
 主に図3乃至図5を参照して、入力ロッド10とブレーキペダル13とを連結する連結機構51を説明する。 A connection mechanism 51 that connects the input rod 10 and the brake pedal 13 will be described mainly with reference to FIGS. 3 to 5.
 連結機構51は、ブレーキペダル13(一部のみ図示する)に接続されるクレビス52を有する。クレビス52は、略円柱形の基部53と、該基部53から後方向へ相互に平行に延びる一対の脚部54,54と、各脚部54,54に同軸で設けられたピン挿通孔55,55とを有する。ブレーキペダル13には、ピン挿通孔56が形成される。クレビス52の対向する脚部54,54間にブレーキペダル13を差し入れた状態で、ブレーキペダル13のピン挿通孔56とクレビス52のピン挿通孔55,55とにクレビスピン57を貫通させることにより、クレビス52がブレーキペダル13に接続される。これにより、クレビス52は、クレビスピン57を軸として回動可能である。なお、クレビスピン57の一端には、フランジ部58が形成される。クレビスピン57の他端部には、クレビスピン57を径方向へ貫通する孔59が形成され、該孔59には、クレビスピン57の脱落を防止する割ピン59が装着される。 The coupling mechanism 51 has a clevis 52 connected to the brake pedal 13 (only part of which is shown). The clevis 52 includes a substantially cylindrical base 53, a pair of leg portions 54 and 54 extending in parallel to each other in the rearward direction from the base portion 53, and pin insertion holes 55 provided coaxially on the leg portions 54 and 54, 55. A pin insertion hole 56 is formed in the brake pedal 13. By inserting the clevis pin 57 through the pin insertion hole 56 of the brake pedal 13 and the pin insertion holes 55 and 55 of the clevis 52 in a state where the brake pedal 13 is inserted between the opposing leg portions 54 and 54 of the clevis 52, the clevis pin 57 is penetrated. 52 is connected to the brake pedal 13. Thereby, the clevis 52 can be rotated around the clevis pin 57 as an axis. A flange portion 58 is formed at one end of the clevis pin 57. A hole 59 that penetrates the clevis pin 57 in the radial direction is formed at the other end of the clevis pin 57, and a split pin 59 that prevents the clevis pin 57 from falling off is attached to the hole 59.
 連結機構51は、後端が開口した有底円筒形のシリンダ87と、該シリンダ87内に摺動可能に嵌装されるピストン88とを有する。シリンダ87のピストン88は、雌ねじが形成された軸孔89を有する。シリンダ87の前端の底部87Aの中央には、入力ロッド10の大径部81を挿通させるロッド挿通孔90が形成される。ロッド挿通孔90からシリンダ87内に挿入された入力ロッド10(大径部81)の後端部には、雄ねじ91が形成され、該雄ねじ91がピストン88の軸孔89(雌ねじ)に螺合されることにより、入力ロッド10の後端がピストン88に接続される。 The connecting mechanism 51 includes a bottomed cylindrical cylinder 87 having an open rear end, and a piston 88 slidably fitted in the cylinder 87. The piston 88 of the cylinder 87 has a shaft hole 89 in which a female screw is formed. A rod insertion hole 90 through which the large diameter portion 81 of the input rod 10 is inserted is formed in the center of the bottom portion 87A at the front end of the cylinder 87. A male screw 91 is formed at the rear end portion of the input rod 10 (large diameter portion 81) inserted into the cylinder 87 from the rod insertion hole 90, and the male screw 91 is screwed into the shaft hole 89 (female screw) of the piston 88. As a result, the rear end of the input rod 10 is connected to the piston 88.
 連結機構51は、シリンダ87内に挿入された入力ロッド10の外周に設けられた圧縮コイルばね92を有する。圧縮コイルばね92は、シリンダ87の底部87Aとピストン88との間に介装される。シリンダ87の後端部には、クレビス52の基部53が接続される。シリンダ87とクレビス52とは、シリンダ87の後端部の内周に形成された雌ねじにクレビス52の基部53の外周に形成された雄ねじを螺合させることで接続される。なお、シリンダ87とクレビス52との接続は、ねじによるもの他、圧入等であってもよい。クレビス52をシリンダ87に接続する過程、換言すると、シリンダ87に対してクレビス52を前方向へ相対移動させる過程で、ピストン88は、圧縮コイルばね92を押し縮めながら、クレビス52によりシリンダ87の底部87Aへ向かって押し込まれる。 The connecting mechanism 51 has a compression coil spring 92 provided on the outer periphery of the input rod 10 inserted into the cylinder 87. The compression coil spring 92 is interposed between the bottom 87 </ b> A of the cylinder 87 and the piston 88. A base 53 of the clevis 52 is connected to the rear end of the cylinder 87. The cylinder 87 and the clevis 52 are connected by screwing a male screw formed on the outer periphery of the base 53 of the clevis 52 into a female screw formed on the inner periphery of the rear end portion of the cylinder 87. In addition, the connection between the cylinder 87 and the clevis 52 may be press-fitting or the like in addition to a screw. In the process of connecting the clevis 52 to the cylinder 87, in other words, in the process of moving the clevis 52 in the forward direction relative to the cylinder 87, the piston 88 presses and compresses the compression coil spring 92, while the bottom of the cylinder 87 is It is pushed toward 87A.
 このようにしてシリンダ87にクレビス52が接続された状態(図1参照)で、圧縮コイルばね92には、所定のセット荷重(プリロード)が付与される。第1実施形態において、圧縮コイルばね92のセット荷重は、液圧発生方向(前方向)へ移動する入力部材4(入力ロッド10および入力プランジャ11)に連動させてブレーキペダル13を移動させたときの、当該ブレーキペダル13の作動抵抗、換言すると、自動ブレーキ作動時のブレーキペダル13の引き込み力よりも大きい値(所定値)に設定される。 In this manner, with the clevis 52 connected to the cylinder 87 (see FIG. 1), a predetermined set load (preload) is applied to the compression coil spring 92. In the first embodiment, the set load of the compression coil spring 92 is generated when the brake pedal 13 is moved in conjunction with the input member 4 (the input rod 10 and the input plunger 11) that moves in the hydraulic pressure generation direction (forward direction). Is set to a value (predetermined value) greater than the operating resistance of the brake pedal 13, in other words, the pulling force of the brake pedal 13 when the automatic brake is operated.
 次に、前述した電動倍力装置1の作動を説明する。
 ブレーキペダル13が非操作状態から踏み込まれると、連結機構51を介して入力部材4(入力ロッド10および入力プランジャ11)が圧縮コイルばね126の付勢力に抗して前進する、すなわち、入力部材4が液圧発生方向へ移動へ移動する。これにより、リアクションディスク135は、入力プランジャ11に当接するレシオプレート105により押圧される。
Next, the operation of the above-described electric booster 1 will be described.
When the brake pedal 13 is depressed from the non-operating state, the input member 4 (the input rod 10 and the input plunger 11) moves forward against the biasing force of the compression coil spring 126 via the coupling mechanism 51, that is, the input member 4 Moves to move in the direction of hydraulic pressure generation. As a result, the reaction disk 135 is pressed by the ratio plate 105 that contacts the input plunger 11.
 ブレーキペダル13を踏み込むことで入力部材4(入力ロッド10および入力プランジャ11)が前進し、入力部材4のストローク量がストローク検出装置により検出されると、コントローラ7は、当該検出結果に基づき電動モータ2の回転を制御する。電動モータ2の回転力は、プーリ175、プーリベルト177、およびプーリ176を介してボールねじ機構6のナット部材160に伝達される。ナット部材160の回転運動はねじ軸部材161の直進運動に変換され、これによりねじ軸部材161が前進する。ねじ軸部材161が前進すると、倍力部材110は、入力部材4に追従するようにして、入力部材4との位置関係を維持したまま前進する。これにより、倍力部材110がリアクションディスク135を押圧し、スリーブ145が圧縮コイルばね173の付勢力に抗して前進する。 When the brake pedal 13 is depressed, the input member 4 (the input rod 10 and the input plunger 11) moves forward, and when the stroke amount of the input member 4 is detected by the stroke detection device, the controller 7 performs the electric motor based on the detection result. 2 rotation is controlled. The rotational force of the electric motor 2 is transmitted to the nut member 160 of the ball screw mechanism 6 via the pulley 175, the pulley belt 177, and the pulley 176. The rotational movement of the nut member 160 is converted into the linear movement of the screw shaft member 161, whereby the screw shaft member 161 moves forward. When the screw shaft member 161 moves forward, the booster member 110 moves forward while maintaining the positional relationship with the input member 4 so as to follow the input member 4. As a result, the booster member 110 presses the reaction disk 135, and the sleeve 145 moves forward against the urging force of the compression coil spring 173.
 ブレーキペダル13の踏み込みによる入力部材4(入力ロッド10および入力プランジャ11)の推力と、電動モータ2の作動による倍力部材110の推力とは、リアクションディスク135を介して出力ロッド137に伝達される。これにより、出力ロッド137が前進し、マスタシリンダ15のプライマリピストン31およびセカンダリピストン32が前進する。プライマリピストン31およびセカンダリピストン32の前進に伴い、マスタシリンダ15のプライマリ室37およびセカンダリ室38に液圧が発生する。マスタシリンダ15で発生した液圧が各車輪のホイールシリンダへ供給されることで、摩擦制動による制動力が発生する。 The thrust of the input member 4 (the input rod 10 and the input plunger 11) due to the depression of the brake pedal 13 and the thrust of the booster member 110 due to the operation of the electric motor 2 are transmitted to the output rod 137 via the reaction disk 135. . Thereby, the output rod 137 moves forward, and the primary piston 31 and the secondary piston 32 of the master cylinder 15 move forward. As the primary piston 31 and the secondary piston 32 move forward, hydraulic pressure is generated in the primary chamber 37 and the secondary chamber 38 of the master cylinder 15. The hydraulic pressure generated in the master cylinder 15 is supplied to the wheel cylinder of each wheel, so that a braking force by friction braking is generated.
 マスタシリンダ15での液圧発生時には、レシオプレート105は、プライマリ室37およびセカンダリ室38の液圧を、リアクションディスク135を介して反力として受圧し、当該反力と、圧縮コイルばね126(抵抗力付与機構5)による抵抗力とを加えた反力が、入力部材4(入力ロッド10および入力プランジャ11)および連結機構51を介してブレーキペダル13に伝達される。ここで、倍力比、すなわち、ブレーキペダル13の操作入力に対する液圧出力の比は、倍力部材110の前端面の受圧面積と、レシオプレート105の押圧部106の前端面の受圧面積との比である。 When the hydraulic pressure is generated in the master cylinder 15, the ratio plate 105 receives the hydraulic pressure in the primary chamber 37 and the secondary chamber 38 as a reaction force through the reaction disk 135, and the reaction force and the compression coil spring 126 (resistance) The reaction force added with the resistance force by the force applying mechanism 5) is transmitted to the brake pedal 13 via the input member 4 (input rod 10 and input plunger 11) and the coupling mechanism 51. Here, the boost ratio, that is, the ratio of the hydraulic pressure output to the operation input of the brake pedal 13 is the pressure receiving area of the front end surface of the boost member 110 and the pressure receiving area of the front end surface of the pressing portion 106 of the ratio plate 105. Is the ratio.
 ブレーキペダル13の操作を解除すると、入力部材4(入力ロッド10および入力プランジャ11)は、マスタシリンダ15(プライマリ室37およびセカンダリ室38)からの液圧による反力と、圧縮コイルばね126(抵抗力付与機構5)の付勢力とを受けて後退する。このときの入力部材4のストローク量は、ストローク検出装置により検出され、コントローラ7は、当該ストローク検出装置の検出結果に基づき電動モータ2の回転を制御する。電動モータ2の回転力は、ボールねじ機構6によりねじ軸部材161の推力に変換され、当該ねじ軸部材161が後退する。 When the operation of the brake pedal 13 is released, the input member 4 (the input rod 10 and the input plunger 11) causes the reaction force due to the hydraulic pressure from the master cylinder 15 (the primary chamber 37 and the secondary chamber 38) and the compression coil spring 126 (resistance). Retreat in response to the urging force of the force applying mechanism 5). The stroke amount of the input member 4 at this time is detected by the stroke detection device, and the controller 7 controls the rotation of the electric motor 2 based on the detection result of the stroke detection device. The rotational force of the electric motor 2 is converted into the thrust of the screw shaft member 161 by the ball screw mechanism 6, and the screw shaft member 161 moves backward.
 ねじ軸部材161が後退すると、スリーブ145は、圧縮コイルばね173の付勢力により後退する。スリーブ145が後退すると、倍力部材110は、入力部材4(入力ロッド10および入力プランジャ11)との位置関係を維持しながら後退し、初期位置(図1参照)に戻る。これにより、マスタシリンダ15のプライマリピストン31およびセカンダリピストン32が後退して非制動位置まで戻ると、マスタシリンダのプライマリ室37およびセカンダリ室38の液圧がリザーバ16へ逃げて減圧され、制動力が解除される。 When the screw shaft member 161 is retracted, the sleeve 145 is retracted by the biasing force of the compression coil spring 173. When the sleeve 145 moves backward, the booster member 110 moves backward while maintaining the positional relationship with the input member 4 (the input rod 10 and the input plunger 11), and returns to the initial position (see FIG. 1). As a result, when the primary piston 31 and the secondary piston 32 of the master cylinder 15 retreat and return to the non-braking position, the hydraulic pressure in the primary chamber 37 and the secondary chamber 38 of the master cylinder escapes to the reservoir 16 and is reduced. Canceled.
 次に、自動ブレーキ作動時の動作を説明する。
 図1に示される非通電時の状態で車両制御装置から自動ブレーキの指令を受けると、コントローラ7は、電動モータ2を正方向(ねじ軸部材161を前進させる方向、換言すると、入力部材4を液圧発生方向へ移動させる方向)へ回転させる。電動モータ2の回転力は、プーリ175、プーリベルト177、およびプーリ176を介してボールねじ機構6のナット部材160に伝達される。ナット部材160の回転運動はねじ軸部材161の直進運動に変換され、ねじ軸部材161が前進する。
Next, the operation when the automatic brake is activated will be described.
When receiving an automatic brake command from the vehicle control device in the non-energized state shown in FIG. 1, the controller 7 moves the electric motor 2 in the forward direction (the direction in which the screw shaft member 161 moves forward, in other words, the input member 4 Rotate in the direction of movement in the direction of hydraulic pressure generation). The rotational force of the electric motor 2 is transmitted to the nut member 160 of the ball screw mechanism 6 via the pulley 175, the pulley belt 177, and the pulley 176. The rotational movement of the nut member 160 is converted into the linear movement of the screw shaft member 161, and the screw shaft member 161 moves forward.
 ねじ軸部材161の前進により倍力部材110が前進すると、倍力部材110の推力は、リアクションディスク135を介して出力ロッド137に伝達される。これにより、出力ロッド137が前進し、マスタシリンダ15のプライマリピストン31およびセカンダリピストン32が前進する。プライマリピストン31およびセカンダリピストン32の前進により、マスタシリンダ15のプライマリ室37およびセカンダリ室38に液圧が発生する。マスタシリンダ15で発生した液圧が各車輪のホイールシリンダへ供給されると、摩擦制動による制動力が発生する。 When the booster member 110 moves forward by the advancement of the screw shaft member 161, the thrust of the booster member 110 is transmitted to the output rod 137 via the reaction disk 135. Thereby, the output rod 137 moves forward, and the primary piston 31 and the secondary piston 32 of the master cylinder 15 move forward. As the primary piston 31 and the secondary piston 32 move forward, hydraulic pressure is generated in the primary chamber 37 and the secondary chamber 38 of the master cylinder 15. When the hydraulic pressure generated in the master cylinder 15 is supplied to the wheel cylinder of each wheel, a braking force by friction braking is generated.
 前述したように電動モータ2の駆動により倍力部材110が前進すると、倍力部材110のボス113の接続部122の前端が入力プランジャ11の後端に当接する。これにより、入力プランジャ11は、倍力部材110とともに前進する。入力プランジャ11は、入力ロッド10および連結機構51を介してブレーキペダル13に連結されているので、ブレーキペダル13は、入力プランジャ11の前進に連動して移動する(引き込まれる)。すなわち、第1実施形態の電動倍力装置1は、ブレーキペダル13のストローク(ペダル位置)と制動による減速度との関係が一意的である(図6(B)参照)。 As described above, when the booster member 110 moves forward by driving the electric motor 2, the front end of the connection portion 122 of the boss 113 of the booster member 110 comes into contact with the rear end of the input plunger 11. Thereby, the input plunger 11 moves forward together with the booster member 110. Since the input plunger 11 is coupled to the brake pedal 13 via the input rod 10 and the coupling mechanism 51, the brake pedal 13 moves (pulled) in conjunction with the advancement of the input plunger 11. That is, in the electric booster 1 of the first embodiment, the relationship between the stroke (pedal position) of the brake pedal 13 and the deceleration due to braking is unique (see FIG. 6B).
 第1実施形態では、自動ブレーキ作動中、ブレーキペダル13が入力部材4(入力ロッド10および入力プランジャ11)に連動して引き込まれている場合、換言すると、連結機構51の圧縮コイルばね92に付加される荷重がセット荷重以下である場合、図4に示されるように、当該圧縮コイルばね92の付勢力により、ピストン88がクレビス52(基部53)に押し付けられた状態が維持される。すなわち、入力ロッド10とブレーキペダル13(クレビスピン57)との前後方向の相対変位量は0である。 In the first embodiment, when the brake pedal 13 is retracted in conjunction with the input member 4 (the input rod 10 and the input plunger 11) during the automatic brake operation, in other words, it is added to the compression coil spring 92 of the coupling mechanism 51. When the load to be applied is equal to or less than the set load, the state in which the piston 88 is pressed against the clevis 52 (base 53) is maintained by the biasing force of the compression coil spring 92, as shown in FIG. That is, the relative displacement in the front-rear direction between the input rod 10 and the brake pedal 13 (clevis pin 57) is zero.
 自動ブレーキ作動中、例えば、ダッシュパネルとブレーキペダル13との間に障害物が挟まる等して、入力部材4に連動するブレーキペダル13の移動(引き込み)が阻害されると、倍力部材110の推力が、入力部材4(入力ロッド10および入力プランジャ11)を介してシリンダ87の底部87Aとピストン88との間に介装された圧縮コイルばね92に作用する。圧縮コイルばね92に作用する倍力部材110の推力が当該圧縮コイルばね92のセット荷重を超えると、図5に示されるように、圧縮コイルばね92は、連結機構51のシリンダ87の底部87Aとピストン88との間で圧縮される。 During the automatic brake operation, for example, when an obstacle is caught between the dash panel and the brake pedal 13 and the movement (retraction) of the brake pedal 13 linked to the input member 4 is inhibited, the boost member 110 The thrust acts on the compression coil spring 92 interposed between the bottom portion 87A of the cylinder 87 and the piston 88 via the input member 4 (input rod 10 and input plunger 11). When the thrust of the booster member 110 acting on the compression coil spring 92 exceeds the set load of the compression coil spring 92, the compression coil spring 92 is connected to the bottom 87A of the cylinder 87 of the coupling mechanism 51 as shown in FIG. Compressed between the piston 88.
 これにより、ピストン88がシリンダ87内を前方向(図5における左方向)へ移動し、入力ロッド10(入力部材4)は、連結機構51のシリンダ87から独立して前進、延いては、クレビス52およびクレビスピン57を介してシリンダ87に連結されたブレーキペダル13から独立して(切り離されて)前進する。入力部材4がブレーキペダル13から独立して移動中、障害物等のブレーキペダル13の移動を阻害する要因が取り除かれると、連結機構51の圧縮コイルばね92が伸長し(図4参照)、ブレーキペダル13のストローク(ペダル位置)と減速度との関係が図6(B)に一致する位置まで、ブレーキペダル13が移動する。なお、入力部材4(入力ロッド10および入力プランジャ11)がブレーキペダル13から独立して前進することができる距離(入力部材4とブレーキペダル13との最大相対変位量)は、圧縮コイルばね92の圧縮量に依存される。 As a result, the piston 88 moves forward in the cylinder 87 (leftward in FIG. 5), and the input rod 10 (input member 4) advances and extends independently from the cylinder 87 of the coupling mechanism 51. 52 and the brake pedal 13 connected to the cylinder 87 through the clevis pin 57 and advance (separated). When the input member 4 is moving independently of the brake pedal 13 and a factor that obstructs the movement of the brake pedal 13 such as an obstacle is removed, the compression coil spring 92 of the coupling mechanism 51 extends (see FIG. 4), and the brake The brake pedal 13 moves to a position where the relationship between the stroke (pedal position) of the pedal 13 and the deceleration matches the position in FIG. The distance that the input member 4 (the input rod 10 and the input plunger 11) can advance independently from the brake pedal 13 (the maximum relative displacement between the input member 4 and the brake pedal 13) is that of the compression coil spring 92. Depends on the amount of compression.
 ここで、入力部材に連動してブレーキペダルが引き込まれる従来の電動倍力装置では、自動ブレーキ作動時に障害物等によりブレーキペダルの移動(引き込み動作)が阻害されると、自動ブレーキの作動(入力部材の前進)が妨げられるという問題があった。一方、自動ブレーキ作動時に入力部材がブレーキペダルから独立して(切り離されて)前進する従来の電動倍力装置では、自動ブレーキ作動時に運転者がブレーキペダルを踏み増す場合、ペダルストロークと減速度との関係が一意的でない(図6(A)参照)、すなわち、ペダルストロークと減速度との関係は、制御範囲内で自由に設定することが可能であり、操作フィーリングが低下する問題がある。 Here, in the conventional electric booster in which the brake pedal is retracted in conjunction with the input member, if the movement (retraction operation) of the brake pedal is obstructed by an obstacle or the like during the automatic brake operation, the operation of the automatic brake (input) There was a problem that the advancement of the member was hindered. On the other hand, in the conventional electric booster in which the input member moves forward (separated) from the brake pedal when the automatic brake is activated, when the driver increases the brake pedal when the automatic brake is activated, the pedal stroke and the deceleration Is not unique (see FIG. 6A), that is, the relationship between the pedal stroke and the deceleration can be freely set within the control range, and there is a problem that the operation feeling is lowered. .
 これに対して、第1実施形態は、自動ブレーキ作動中、入力部材4(入力ロッド10および入力軸11)に連動するブレーキペダル13の作動抵抗が所定値(圧縮コイルばね92のセット荷重)を超えると、連結機構51の圧縮コイルばね92が圧縮されて入力部材4がブレーキペダル13から独立して前進するので、ブレーキペダル13の移動が阻害された場合であっても、自動ブレーキの作動が妨げられることがない。また、第1実施形態は、自動ブレーキ作動時におけるブレーキペダル13のストロークと減速度との関係が一意的である、換言すると、自動ブレーキ非作動時の倍力制御時と同一であるので、自動ブレーキ作動時に運転者がブレーキペダル13を踏み増す場合であっても、良好な操作フィーリングを得ることができる。 On the other hand, in the first embodiment, during the automatic brake operation, the operating resistance of the brake pedal 13 interlocked with the input member 4 (input rod 10 and input shaft 11) has a predetermined value (set load of the compression coil spring 92). If exceeded, the compression coil spring 92 of the coupling mechanism 51 is compressed and the input member 4 moves forward independently from the brake pedal 13, so that even if the movement of the brake pedal 13 is hindered, the automatic brake is activated. There is no hindrance. In the first embodiment, the relationship between the stroke of the brake pedal 13 and the deceleration when the automatic brake is operated is unique, in other words, the same as the boost control when the automatic brake is not operated. Even when the driver depresses the brake pedal 13 when the brake is operated, a good operation feeling can be obtained.
 以下、第1実施形態の作用効果を示す。
 第1実施形態は、ブレーキペダルの操作に関わらず、電動機により液圧を発生するときに入力部材を移動させる電動倍力装置であって、ブレーキペダルは、入力部材と連結され、該入力部材が液圧発生方向へ移動するときに入力部材と連動して移動し、入力部材は、ブレーキペダルの作動抵抗が所定値より大きくなるときに、ブレーキペダルと連動せずに移動する。よって、自動ブレーキ作動中、入力部材に連動するブレーキペダルの作動抵抗が所定値を超えると、入力部材がブレーキペダルから独立して前進するので、ブレーキペダルの移動が阻害された場合であっても自動ブレーキの作動が妨げられることがなく、作動に関する信頼性が高い電動倍力装置を提供することができる。
Hereinafter, the operational effects of the first embodiment will be described.
The first embodiment is an electric booster that moves an input member when hydraulic pressure is generated by an electric motor regardless of operation of the brake pedal. The brake pedal is connected to the input member, and the input member is When moving in the hydraulic pressure generation direction, the input member moves in conjunction with the input member. When the operating resistance of the brake pedal becomes greater than a predetermined value, the input member moves without interlocking with the brake pedal. Therefore, during the automatic brake operation, if the operating resistance of the brake pedal linked to the input member exceeds a predetermined value, the input member moves forward independently from the brake pedal, so even if the movement of the brake pedal is hindered It is possible to provide an electric booster that does not hinder the operation of the automatic brake and has high reliability in operation.
 第1実施形態は、自動ブレーキ作動時におけるブレーキペダルのストロークと車両の減速度との関係が一意的であるので、自動ブレーキ作動時に運転者がブレーキペダルを踏み増す場合であっても、自動ブレーキが介入しない通常のブレーキ時と同じ良好な操作フィーリングを得ることができる。 In the first embodiment, since the relationship between the stroke of the brake pedal and the deceleration of the vehicle when the automatic brake is activated is unique, even when the driver depresses the brake pedal when the automatic brake is activated, the automatic brake However, it is possible to obtain the same good operational feeling as during normal braking without intervention.
 以上、第1実施形態について説明したが、第1実施形態では、入力部材4とブレーキペダル13とを、クレビス52およびクレビスピン57を介して接続したが、入力部材4とブレーキペダル13とをボールジョイントにより接続するように構成してもよい。この場合、クレビスピン57およびクレビスピン57を固定するための割ピン60が不要になるので、部品点数および組立工数を削減することができる。 Although the first embodiment has been described above, in the first embodiment, the input member 4 and the brake pedal 13 are connected via the clevis 52 and the clevis pin 57, but the input member 4 and the brake pedal 13 are connected to each other by a ball joint. You may comprise so that it may connect. In this case, since the clevis pin 57 and the split pin 60 for fixing the clevis pin 57 are not necessary, the number of parts and the number of assembly steps can be reduced.
[第2実施形態]
 図7、図8を参照して、第2実施形態を主に第1実施形態との相違部分を中心に説明する。なお、第1実施形態と共通する部位については、同一称呼、同一の符号で表す。便宜的に、図8における上方向(上側)および下方向(下側)を、電動倍力装置1における右方向(右側)および左方向(左側)とする。
[Second Embodiment]
With reference to FIGS. 7 and 8, the second embodiment will be described mainly with respect to differences from the first embodiment. In addition, about the site | part which is common in 1st Embodiment, it represents with the same name and the same code | symbol. For convenience, the upward direction (upper side) and the downward direction (lower side) in FIG. 8 are defined as a right direction (right side) and a left direction (left side) in the electric booster 1.
 第2実施形態は、第1実施形態の連結機構51とは異なる構造の連結機構181を備える。連結機構181は、入力ロッド10に接続されるクレビス182を有する。クレビス182は、前端部をなす四角ナット形の基部183と、該基部183から後方向へ延びる一対の脚部184、184とを有する。クレビス182は、当該クレビス182の基部183の軸孔186(雌ねじ)に入力ロッド10の後端部の雄ねじ91を螺合させ、当該雄ねじ91に予め螺合されていたナット187を締め付けることにより、入力ロッド10(入力部材4)に固定される。一対の脚部184,184は、左右対称に形成される。脚部184は、前後方向に延びて脚部184を左右方向へ貫通する長孔185を有する。 2nd Embodiment is provided with the connection mechanism 181 of a structure different from the connection mechanism 51 of 1st Embodiment. The coupling mechanism 181 has a clevis 182 connected to the input rod 10. The clevis 182 includes a square nut-shaped base portion 183 that forms a front end portion, and a pair of leg portions 184 and 184 that extend rearward from the base portion 183. The clevis 182 is formed by screwing the male screw 91 at the rear end of the input rod 10 into the shaft hole 186 (female screw) of the base 183 of the clevis 182 and tightening the nut 187 screwed in advance with the male screw 91. It is fixed to the input rod 10 (input member 4). The pair of leg portions 184 and 184 are formed symmetrically. The leg portion 184 has a long hole 185 that extends in the front-rear direction and penetrates the leg portion 184 in the left-right direction.
 連結機構181は、脚部184,184の長孔185,185に挿入されるスライド部材188,188を有する。スライド部材188は、略四角柱形に形成されており、当該スライド部材188を左右方向へ貫通する軸孔190と、長孔185の側壁に摺動可能に当接される上下一対の摺動面189,189と、左右方向の一端に形成されて上下方向へ延びる鍔部191,191とを有する。鍔部191,191は、クレビス182の脚部184,184の外側面(長孔185,185の外側開口周縁)に摺動可能に当接される。 The connecting mechanism 181 includes slide members 188 and 188 inserted into the long holes 185 and 185 of the leg portions 184 and 184, respectively. The slide member 188 is formed in a substantially quadrangular prism shape, and a pair of upper and lower sliding surfaces that are slidably contacted with the side wall of the long hole 185 and the shaft hole 190 that penetrates the slide member 188 in the left-right direction. 189 and 189, and flanges 191 and 191 formed at one end in the left and right direction and extending in the up and down direction. The flange portions 191 and 191 are slidably contacted with the outer surfaces of the leg portions 184 and 184 of the clevis 182 (outer peripheral edges of the long holes 185 and 185).
 第2実施形態では、クレビス182の対向する脚部184,184間にブレーキペダル13を差し入れた状態で(図8参照)、ブレーキペダル13のピン挿通孔56と長孔185,185に挿入されたスライド部材188,188の軸孔190,190とにクレビスピン57を貫通させる。これにより、クレビス182、延いては、入力ロッド10(入力部材4)は、スライド部材188,188を長孔185,185内で前後方向へ移動させることでブレーキペダル13に対して前後方向へ移動可能に連結され、かつ、クレビスピン57を中心に回動可能である。なお、クレビスピン57の他端部には、当該クレビスピン57およびスライド部材188,188の脱落を防止する割ピン59が装着される。 In the second embodiment, the brake pedal 13 is inserted between the opposing leg portions 184 and 184 of the clevis 182 (see FIG. 8), and inserted into the pin insertion hole 56 and the elongated holes 185 and 185 of the brake pedal 13. The clevis pin 57 is passed through the shaft holes 190 and 190 of the slide members 188 and 188. As a result, the clevis 182 and thus the input rod 10 (input member 4) moves in the front-rear direction with respect to the brake pedal 13 by moving the slide members 188, 188 in the front-rear direction in the long holes 185, 185. The clevis pin 57 can be pivoted about the clevis pin 57. A split pin 59 for preventing the clevis pin 57 and the slide members 188 and 188 from falling off is attached to the other end of the clevis pin 57.
 連結機構181は、クレビス182の脚部184,184の長孔185,185に装着される圧縮コイルばね192,192(ばね部材)を有する。圧縮コイルばね192は、スライド部材188,188の後端に形成されたばね受部193,193と、クレビス182の脚部184,184の長孔185,185の後端面194,194との間に介装される。スライド部材188,188は、圧縮コイルばね192,192の付勢力により、長孔185,185の前端面195,195に押し付けられる。 The connecting mechanism 181 includes compression coil springs 192 and 192 (spring members) that are mounted in the long holes 185 and 185 of the leg portions 184 and 184 of the clevis 182. The compression coil spring 192 is interposed between the spring receiving portions 193 and 193 formed at the rear ends of the slide members 188 and 188 and the rear end surfaces 194 and 194 of the long holes 185 and 185 of the leg portions 184 and 184 of the clevis 182. Be dressed. The slide members 188 and 188 are pressed against the front end surfaces 195 and 195 of the long holes 185 and 185 by the urging force of the compression coil springs 192 and 192.
 スライド部材188,188が長孔185,185の前端面195,195に当接された状態(図8参照)では、圧縮コイルばね192、192には、予め定められたセット荷重(プリロード)が付与される。2つの圧縮コイルばね192,192のセット荷重は、液圧発生方向(前方向)へ移動する入力部材4(入力ロッド10および入力プランジャ11)に連動させてブレーキペダル13を移動させたときの、当該ブレーキペダル13の作動抵抗、換言すると、自動ブレーキ作動時のブレーキペダル13の引き込み力よりも大きい値(所定値)に設定される。 When the slide members 188 and 188 are in contact with the front end surfaces 195 and 195 of the long holes 185 and 185 (see FIG. 8), a predetermined set load (preload) is applied to the compression coil springs 192 and 192. Is done. The set load of the two compression coil springs 192 and 192 is obtained when the brake pedal 13 is moved in conjunction with the input member 4 (input rod 10 and input plunger 11) that moves in the hydraulic pressure generation direction (forward direction). The operating resistance of the brake pedal 13 is set to a value (predetermined value) that is larger than the pulling force of the brake pedal 13 when the automatic brake is operated.
 第2実施形態では、自動ブレーキ作動中、倍力部材110(図1参照)の推力は、入力部材4(入力ロッド10および入力プランジャ11)、クレビス182、圧縮コイルばね192,192、スライド部材188,188、およびクレビスピン57を介してブレーキペダル13に伝達される。これにより、ブレーキペダル13は、入力部材4に連動して引き込まれる。 In the second embodiment, during the automatic brake operation, the thrust of the booster member 110 (see FIG. 1) is the input member 4 (input rod 10 and input plunger 11), clevis 182, compression coil springs 192 and 192, and slide member 188. , 188 and the clevis pin 57 to be transmitted to the brake pedal 13. As a result, the brake pedal 13 is pulled in conjunction with the input member 4.
 自動ブレーキ作動中、入力部材4に連動するブレーキペダル13の作動抵抗が所定値(2つの圧縮コイルばね192,192のセット荷重)を超えると、入力部材4に接続されたクレビス182が前進して連結機構181の圧縮コイルばね192,192が圧縮され、入力部材4(入力ロッド10および入力プランジャ11)がブレーキペダル13から独立して前進する。このように第2実施形態では、ブレーキペダル13の移動が阻害された場合であっても、自動ブレーキの作動が妨げられることがない。また、自動ブレーキ作動時におけるブレーキペダル13のストロークと減速度との関係が一意的であるので、自動ブレーキ作動時に運転者がブレーキペダル13を踏み増す場合であっても、良好な操作フィーリングを得ることができる。 When the operating resistance of the brake pedal 13 interlocked with the input member 4 exceeds a predetermined value (set load of the two compression coil springs 192 and 192) during the automatic brake operation, the clevis 182 connected to the input member 4 moves forward. The compression coil springs 192 and 192 of the coupling mechanism 181 are compressed, and the input member 4 (the input rod 10 and the input plunger 11) moves forward independently from the brake pedal 13. Thus, in 2nd Embodiment, even if it is a case where the movement of the brake pedal 13 is inhibited, the action | operation of an automatic brake is not prevented. In addition, since the relationship between the stroke and deceleration of the brake pedal 13 when the automatic brake is activated is unique, a good operation feeling can be obtained even when the driver depresses the brake pedal 13 when the automatic brake is activated. Obtainable.
[第3実施形態]
 図9、図10を参照して、第3実施形態を主に第2実施形態との相違部分を中心に説明する。なお、第1および第2実施形態と共通する部位については、同一称呼、同一の符号で表す。便宜的に、図10における上方向(上側)および下方向(下側)を、電動倍力装置1における右方向(右側)および左方向(左側)とする。
[Third Embodiment]
With reference to FIGS. 9 and 10, the third embodiment will be described mainly with respect to differences from the second embodiment. In addition, about the site | part which is common in 1st and 2nd embodiment, it represents with the same name and the same code | symbol. For convenience, the upward direction (upper side) and the downward direction (lower side) in FIG. 10 are defined as a right direction (right side) and a left direction (left side) in the electric booster 1.
 第3実施形態は、第1実施形態の連結機構51および第2実施形態の連結機構181とは異なる構造の連結機構201(連結部)を備える。第3実施形態の連結機構201は、主に前後方向へ延びる長孔202がブレーキペダル13に形成されている点で、第2実施形態の連結機構181と異なる。連結機構201は、入力ロッド10の後端部に接続されるクレビス182を有する。クレビス182の脚部184,184には、同軸のピン挿通孔203,203が形成される。 3rd Embodiment is provided with the connection mechanism 201 (connection part) of the structure different from the connection mechanism 51 of 1st Embodiment, and the connection mechanism 181 of 2nd Embodiment. The connection mechanism 201 of the third embodiment differs from the connection mechanism 181 of the second embodiment in that a long hole 202 that extends mainly in the front-rear direction is formed in the brake pedal 13. The coupling mechanism 201 has a clevis 182 connected to the rear end portion of the input rod 10. Coaxial pin insertion holes 203 and 203 are formed in the leg portions 184 and 184 of the clevis 182.
 連結機構201は、ブレーキペダル13の長孔202に挿入されるスライド部材188を有する。第3実施形態では、クレビス182の対向する脚部184,184間にブレーキペダル13を差し入れた状態で(図10参照)、クレビス182の脚部184,184のピン挿通孔203,203とブレーキペダル13の長孔202に挿入されたスライド部材188の軸孔190とにクレビスピン57を貫通させる。これにより、クレビス182、延いては、入力ロッド10(入力部材4)は、ブレーキペダル13に対して、スライド部材188を長孔202内で前後方向へ移動させることで前後方向へ移動可能に連結され、かつ、クレビスピン57を中心に回動可能である。 The connecting mechanism 201 has a slide member 188 inserted into the elongated hole 202 of the brake pedal 13. In the third embodiment, with the brake pedal 13 inserted between the opposing leg portions 184 and 184 of the clevis 182 (see FIG. 10), the pin insertion holes 203 and 203 of the leg portions 184 and 184 of the clevis 182 and the brake pedal The clevis pin 57 is passed through the shaft hole 190 of the slide member 188 inserted into the thirteen long holes 202. As a result, the clevis 182 and the input rod 10 (input member 4) are connected to the brake pedal 13 so as to be movable in the front-rear direction by moving the slide member 188 in the front-rear direction in the long hole 202. And can be rotated around the clevis pin 57.
 連結機構201は、ブレーキペダル13の長孔202に装着される圧縮コイルばね192(付勢部材)を有する。圧縮コイルばね192は、ブレーキペダル13の長孔202の前端に装着された溝形状のばね受部材204と、スライド部材188の前端に形成されたばね受部193との間に介装される。スライド部材188は、圧縮コイルばね192の付勢力により、ブレーキペダル13の長孔202の後端面194に押し付けられる。 The connecting mechanism 201 has a compression coil spring 192 (biasing member) mounted in the elongated hole 202 of the brake pedal 13. The compression coil spring 192 is interposed between a groove-shaped spring receiving member 204 attached to the front end of the long hole 202 of the brake pedal 13 and a spring receiving portion 193 formed at the front end of the slide member 188. The slide member 188 is pressed against the rear end surface 194 of the long hole 202 of the brake pedal 13 by the urging force of the compression coil spring 192.
 圧縮コイルばね192(付勢部材)の付勢力により、スライド部材188(入力部材4の当接部)が、ブレーキペダル13の長孔202の後端面194(ブレーキペダル13の当接部の当接位置)に当接した状態(図10参照)で、圧縮コイルばね192に所定のセット荷重(プリロード)が付与される。圧縮コイルばね192のセット荷重は、液圧発生方向(前方向)へ移動する入力部材4(入力ロッド10および入力プランジャ11)に連動させてブレーキペダル13を移動させたときの、当該ブレーキペダル13の作動抵抗、換言すると、自動ブレーキ作動時のブレーキペダル13の引き込み力よりも大きい値(所定値)に設定されている。 Due to the biasing force of the compression coil spring 192 (biasing member), the slide member 188 (the abutting portion of the input member 4) causes the rear end surface 194 of the elongated hole 202 of the brake pedal 13 (the abutting portion of the abutting portion of the brake pedal 13). A predetermined set load (preload) is applied to the compression coil spring 192 in a state of contact with the position) (see FIG. 10). The set load of the compression coil spring 192 is the brake pedal 13 when the brake pedal 13 is moved in conjunction with the input member 4 (the input rod 10 and the input plunger 11) that moves in the hydraulic pressure generation direction (forward direction). Is set to a value (predetermined value) greater than the pulling force of the brake pedal 13 when the automatic brake is activated.
 第3実施形態では、自動ブレーキ作動中、倍力部材110(図1参照)の推力は、入力部材4(入力ロッド10および入力プランジャ11)、クレビス182、クレビスピン57、スライド部材188、圧縮コイルばね192、およびばね受部材204を介してブレーキペダル13に伝達される。これにより、ブレーキペダル13は、入力部材4に連動して引き込まれる。 In the third embodiment, during the automatic brake operation, the thrust of the booster member 110 (see FIG. 1) is the input member 4 (input rod 10 and input plunger 11), clevis 182, clevis pin 57, slide member 188, compression coil spring. 192 and the spring bearing member 204 are transmitted to the brake pedal 13. As a result, the brake pedal 13 is pulled in conjunction with the input member 4.
 そして、自動ブレーキ作動中、入力部材4に連動するブレーキペダル13の作動抵抗が所定値(圧縮コイルばね192のセット荷重)を超えると、入力部材4に接続されたクレビス182が前進して連結機構201の圧縮コイルばね192が圧縮され、入力部材4がブレーキペダル13から独立して前進する。このように第3実施形態では、ブレーキペダル13の移動が阻害された場合であっても、自動ブレーキの作動が妨げられることがない。また、自動ブレーキ作動時におけるブレーキペダル13のストロークと減速度との関係が一意的であるので、自動ブレーキ作動時に運転者がブレーキペダル13を踏み増す場合であっても、良好な操作フィーリングを得ることができる。 When the operation resistance of the brake pedal 13 interlocked with the input member 4 exceeds a predetermined value (the set load of the compression coil spring 192) during the automatic brake operation, the clevis 182 connected to the input member 4 moves forward and the coupling mechanism The compression coil spring 192 of 201 is compressed, and the input member 4 moves forward independently from the brake pedal 13. Thus, in 3rd Embodiment, even if it is a case where the movement of the brake pedal 13 is inhibited, the action | operation of an automatic brake is not prevented. In addition, since the relationship between the stroke and deceleration of the brake pedal 13 when the automatic brake is activated is unique, a good operation feeling can be obtained even when the driver depresses the brake pedal 13 when the automatic brake is activated. Obtainable.
 以上、第3実施形態を説明したが、例えば、ブレーキペダル13の長孔202の前端に、圧縮コイルばね192の前端を受ける凸部を設けることにより、ばね受部材204を省くことができる。 As described above, the third embodiment has been described. For example, the spring receiving member 204 can be omitted by providing the front end of the elongated hole 202 of the brake pedal 13 with a convex portion that receives the front end of the compression coil spring 192.
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although several embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 本願は、2016年12月26日出願の日本特許出願番号2016-251148号に基づく優先権を主張する。2016年12月26日出願の日本特許出願番号2016-251148号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-251148 filed on Dec. 26, 2016. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-251148 filed on Dec. 26, 2016 is incorporated herein by reference in its entirety.
1 電動倍力装置、2 電動モータ(電動機)、4 入力部材、13 ブレーキペダル 1 electric booster, 2 electric motor (motor), 4 input members, 13 brake pedal

Claims (7)

  1.  ブレーキペダルの操作に関わらず、電動機により液圧を発生するときに入力部材を移動させる電動倍力装置であって、
     入力部材は、
      前記ブレーキペダルと連結され、
      該入力部材が液圧発生方向へ移動するときに前記ブレーキペダルと連動して移動し、
      前記ブレーキペダルの作動抵抗が所定値より大きくなるときに、前記ブレーキペダルと連動せずに移動する
     電動倍力装置。
    An electric booster that moves an input member when hydraulic pressure is generated by an electric motor regardless of operation of a brake pedal,
    The input member is
    Connected to the brake pedal,
    When the input member moves in the hydraulic pressure generation direction, the input member moves in conjunction with the brake pedal,
    An electric booster that moves without interlocking with the brake pedal when an operating resistance of the brake pedal becomes greater than a predetermined value.
  2.  請求項1に記載の電動倍力装置であって、
     前記入力部材は、長孔が形成されたクレビスを有し、
     前記入力部材は、
      前記クレビスの長孔と前記ブレーキペダルに設けられたクレビスピンとが係合することで前記ブレーキペダルと連結されており、
      前記クレビスの長孔に設けられるばね部材により前記クレビスピンが付勢されることで連動して移動でき、
      液圧発生方向に前記ブレーキペダルの作動抵抗が所定値より大きくなるとき、前記クレビスの長孔と前記クレビスピンとにより、前記ブレーキペダルとは連動せずに移動する
     電動倍力装置。
    The electric booster according to claim 1,
    The input member has a clevis formed with a long hole,
    The input member is
    The long hole of the clevis and the clevis pin provided in the brake pedal are engaged with each other and connected to the brake pedal,
    The clevis pin is urged by a spring member provided in the long hole of the clevis and can move in conjunction,
    When the operating resistance of the brake pedal becomes greater than a predetermined value in the hydraulic pressure generation direction, the electric booster moves without being interlocked with the brake pedal by the elongated hole of the clevis and the clevis pin.
  3.  請求項1に記載の電動倍力装置であって、
     前記入力部材は、
      ボールジョイントを介して前記ブレーキペダルと連結され、ばね部材により付勢されており、
      液圧発生方向に移動するときに前記ブレーキペダルと連動して移動し、
      前記ブレーキペダルの作動抵抗が所定値より大きくなるときは、前記ブレーキペダルから離脱し、ばね部材を介して前記ブレーキペダルに接続される
     電動倍力装置。
    The electric booster according to claim 1,
    The input member is
    It is connected to the brake pedal via a ball joint and is urged by a spring member,
    Moves in conjunction with the brake pedal when moving in the direction of hydraulic pressure generation,
    When the operating resistance of the brake pedal becomes greater than a predetermined value, the electric booster is detached from the brake pedal and connected to the brake pedal via a spring member.
  4.  ブレーキペダルの操作に関わらず、電動機により液圧を発生するときに入力部材を移動させる電動倍力装置であって、
     前記ブレーキペダルと前記入力部材とは連結されており、
     前記ブレーキペダルと前記入力部材との連結部において、前記入力部材の当接部と前記ブレーキペダルの当接部とが相対移動可能であり、
     前記ブレーキペダルの操作時に前記ブレーキペダルとともに移動する前記ブレーキペダルの当接部の当接位置に、前記入力部材の当接部を付勢する付勢部材が設けられる
     電動倍力装置。
    An electric booster that moves an input member when hydraulic pressure is generated by an electric motor regardless of operation of a brake pedal,
    The brake pedal and the input member are connected,
    In the connecting portion between the brake pedal and the input member, the contact portion of the input member and the contact portion of the brake pedal are relatively movable,
    An electric booster that is provided with a biasing member that biases the contact portion of the input member at a contact position of the contact portion of the brake pedal that moves together with the brake pedal when the brake pedal is operated.
  5.  請求項4に記載の電動倍力装置であって、
     前記入力部材は、長孔が形成されたクレビスを有し、
     前記入力部材は、前記クレビスの長孔と前記ブレーキペダルに設けられたクレビスピンとが係合することで連結されており、
     前記クレビスの長孔に設けられるばね部材により前記クレビスピンが付勢される
     電動倍力装置。
    The electric booster according to claim 4,
    The input member has a clevis formed with a long hole,
    The input member is connected by engaging a long hole of the clevis and a clevis pin provided on the brake pedal,
    An electric booster in which the clevis pin is urged by a spring member provided in a long hole of the clevis.
  6.  請求項4に記載の電動倍力装置であって、
     ボールジョイントを介して前記入力部材に連結されており、
     前記入力部材は、ボールジョイントを介して前記ブレーキペダルと連結され、ばね部材により付勢される
     電動倍力装置。
    The electric booster according to claim 4,
    It is connected to the input member via a ball joint,
    The electric booster is connected to the brake pedal via a ball joint and biased by a spring member.
  7.  ブレーキペダルの操作に関わらず、制動力を発生するときに入力部材を移動させるブレーキ装置であって、
     入力部材は、
      前記ブレーキペダルと連結され、
      該入力部材が制動力発生方向へ移動するときに前記ブレーキペダルと連動して移動し、
      前記ブレーキペダルの作動抵抗が所定値より大きくなるときに、前記ブレーキペダルと連動せずに移動する
     ブレーキ装置。
    A brake device that moves an input member when generating braking force regardless of operation of the brake pedal,
    The input member is
    Connected to the brake pedal,
    When the input member moves in the braking force generation direction, the input member moves in conjunction with the brake pedal,
    A brake device that moves without interlocking with the brake pedal when an operating resistance of the brake pedal is greater than a predetermined value.
PCT/JP2017/044310 2016-12-26 2017-12-11 Electric booster WO2018123530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018558987A JP6715955B2 (en) 2016-12-26 2017-12-11 Electric booster
CN201780075353.XA CN110035933B (en) 2016-12-26 2017-12-11 Electric booster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251148 2016-12-26
JP2016251148 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123530A1 true WO2018123530A1 (en) 2018-07-05

Family

ID=62710929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044310 WO2018123530A1 (en) 2016-12-26 2017-12-11 Electric booster

Country Status (3)

Country Link
JP (1) JP6715955B2 (en)
CN (1) CN110035933B (en)
WO (1) WO2018123530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102046B1 (en) * 2021-03-12 2022-07-19 燕山大学 Integrated plunger motor dual power hydraulic cylinder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183953B1 (en) * 2019-08-27 2020-11-27 현대모비스 주식회사 Apparatus for braking used electric booster and control method thereof
CN110936933B (en) * 2019-12-30 2023-12-19 陕西国力信息技术有限公司 Method for automatically braking emergency in case of blocking and vehicle brake booster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742895Y2 (en) * 1988-04-25 1995-10-04 自動車機器株式会社 Brake booster
JP2010215069A (en) * 2009-03-16 2010-09-30 Honda Motor Co Ltd Bbw type brake device
JP2016022752A (en) * 2014-07-16 2016-02-08 日立オートモティブシステムズ株式会社 Booster, stroke simulator and resistance force applying device
WO2016034342A1 (en) * 2014-09-01 2016-03-10 Robert Bosch Gmbh Brake booster for a brake system of a vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69514360T2 (en) * 1995-10-11 2000-09-28 Lucas Industries Ltd Actuator for an electronically controlled braking system of a motor vehicle
US7367187B2 (en) * 2005-06-30 2008-05-06 Hitachi, Ltd. Electrically actuated brake booster
DE102005059609A1 (en) * 2005-12-12 2007-06-14 Ipgate Ag Pedalarretierung
KR20090059253A (en) * 2007-12-06 2009-06-11 현대자동차주식회사 Brake booster of vehicle
JP5704311B2 (en) * 2010-10-29 2015-04-22 日立オートモティブシステムズ株式会社 Electric booster and automatic brake control method thereof
JP5756275B2 (en) * 2010-11-01 2015-07-29 日産自動車株式会社 Electric booster
CN102267450B (en) * 2011-05-05 2015-07-15 浙江师范大学 Electro-hydraulic control type braking power assisting device
DE102012220553A1 (en) * 2012-11-12 2014-05-15 Robert Bosch Gmbh Brake booster device for a brake system of a vehicle and method of manufacturing a brake booster device for a brake system of a vehicle
JP6331418B2 (en) * 2013-06-28 2018-05-30 株式会社アドヴィックス Braking device for vehicle
JP2015047949A (en) * 2013-08-30 2015-03-16 日立オートモティブシステムズ株式会社 Brake control device
JP6060057B2 (en) * 2013-09-19 2017-01-11 日立オートモティブシステムズ株式会社 Brake device
CN204250014U (en) * 2014-11-28 2015-04-08 吉林大学 Integrate motor electric control braking master cylinder drive system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742895Y2 (en) * 1988-04-25 1995-10-04 自動車機器株式会社 Brake booster
JP2010215069A (en) * 2009-03-16 2010-09-30 Honda Motor Co Ltd Bbw type brake device
JP2016022752A (en) * 2014-07-16 2016-02-08 日立オートモティブシステムズ株式会社 Booster, stroke simulator and resistance force applying device
WO2016034342A1 (en) * 2014-09-01 2016-03-10 Robert Bosch Gmbh Brake booster for a brake system of a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102046B1 (en) * 2021-03-12 2022-07-19 燕山大学 Integrated plunger motor dual power hydraulic cylinder

Also Published As

Publication number Publication date
CN110035933B (en) 2021-09-03
CN110035933A (en) 2019-07-19
JP6715955B2 (en) 2020-07-01
JPWO2018123530A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US20160016569A1 (en) Booster, resistance force applying apparatus, and stroke simulator
JP4692837B2 (en) Electric booster
US7823384B2 (en) Electrically actuated brake booster
JP5756275B2 (en) Electric booster
US8096122B2 (en) Electrically driven brake booster and master cylinder
WO2018123530A1 (en) Electric booster
US11136017B2 (en) Electric booster
JP6838783B2 (en) Electric booster
JP6865822B2 (en) Electric booster and booster
JP2008081033A (en) Electric booster
WO2018097278A1 (en) Electric booster
JP2011079525A (en) Electric booster
JP6436769B2 (en) Electric booster
JP5344164B2 (en) Booster
JP6695753B2 (en) Brake device for vehicle
CN110949355A (en) Rigid feedback device for servo force of automobile electronic intelligent booster
JP2015196414A (en) Electric booster device
JP6838214B2 (en) Electric booster
JP2014008891A (en) Braking device
KR20030045105A (en) Brake booster comprising variable response force ratio
JP2019142342A (en) Electric booster
CN211592537U (en) Rigid feedback device for servo force of automobile electronic intelligent booster
JP2014008869A (en) Booster device
JP6863668B2 (en) Electric booster
WO2019131619A1 (en) Electric power multiplier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558987

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886692

Country of ref document: EP

Kind code of ref document: A1