WO2018123413A1 - 画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム - Google Patents

画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム Download PDF

Info

Publication number
WO2018123413A1
WO2018123413A1 PCT/JP2017/042893 JP2017042893W WO2018123413A1 WO 2018123413 A1 WO2018123413 A1 WO 2018123413A1 JP 2017042893 W JP2017042893 W JP 2017042893W WO 2018123413 A1 WO2018123413 A1 WO 2018123413A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
face
image processing
image
processing apparatus
Prior art date
Application number
PCT/JP2017/042893
Other languages
English (en)
French (fr)
Inventor
圭祐 大森
徳井 圭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/473,751 priority Critical patent/US11042724B2/en
Priority to CN201780080938.0A priority patent/CN110140145A/zh
Priority to JP2018558924A priority patent/JP6846440B2/ja
Publication of WO2018123413A1 publication Critical patent/WO2018123413A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/165Detection; Localisation; Normalisation using facial parts and geometric relationships
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/168Feature extraction; Face representation
    • G06V40/171Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Definitions

  • One aspect of the present disclosure relates to an image processing apparatus that corrects an image including a face as a subject.
  • a technique for changing the impression of a subject by applying a correction for enlarging or reducing a specific area to an image is widely used. For example, by applying a correction for reducing an area corresponding to a face to an image including a person as a subject, the impression of the subject can be made smaller than the actual face. In addition, if the same image is corrected to reduce the region corresponding to the whole body in the left-right direction, the impression of the subject can be made slimmer than the actual image, and the region corresponding to the leg is expanded vertically. If correction is made, the impression of the subject can be made smarter than it actually is.
  • Patent Document 1 is an example of a document disclosing an image processing apparatus for obtaining an image with a changed facial impression.
  • the face type (“round face”, “face length”, and “face length” specified based on the face length L1 and the face width L2 is used. Corrections according to “square” etc. are performed.
  • the face length L1 is determined as: The distance from the top of the head to the chin is calculated, and the distance from the right cheek to the left cheek at the mouth height is calculated as the face width L2.
  • the face length L1 and the face width L2 it is not always possible to detect these facial organs whose positions need to be referred to from an image including the face as a subject.
  • facial organs constituting the contour of the face are likely to fail in detection or be erroneously detected.
  • both the cheek and the hand are skin-colored, making it difficult to accurately detect the boundary between the cheek and the hand.
  • detection of the cheek may fail, or a part other than the cheek may be erroneously detected as a cheek.
  • the chin-neck boundary is often unclear depending on the face orientation, camera orientation, or lighting conditions. For this reason, the detection of the jaw may fail or a part other than the jaw may be erroneously detected as the jaw.
  • the cheek or chin fails, the face length L1 or the face width L2 cannot be calculated, so the face type cannot be specified, and as a result, correction becomes impossible. Further, if the cheek or chin is erroneously detected, the correct face length L1 or the face width L2 cannot be calculated, so that the correct face type cannot be specified, and as a result, the correction becomes inappropriate.
  • the image processing apparatus described in Patent Document 1 is required to detect facial organs (specifically, chin and cheeks) that constitute the contour of the face, which are likely to fail in detection or be erroneously detected. It is said. For this reason, the image processing apparatus described in Patent Document 1 has a problem that correction is impossible or correction is likely to be inappropriate.
  • One aspect of the present disclosure has been made in view of the above-described problem, and an object thereof is to provide an image processing apparatus that is less likely to be corrected or less appropriate than in the past. It is to be realized.
  • An image processing apparatus is an image processing apparatus that corrects an image including a face, and the position according to the center of the face and the size according to the size of the face with respect to the image.
  • FIG. 1 is a block diagram illustrating a configuration of an image printing apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration of a subject detection unit included in the image processing apparatus of the image printing apparatus illustrated in FIG. 1.
  • 2 is a flowchart illustrating a flow of image processing performed by the image processing apparatus illustrated in FIG. 1. It is a figure which shows an example of the input image containing a human face as a to-be-photographed object.
  • FIG. 5 is a diagram illustrating an example of a first correction region and a second correction region set based on a right eye, a left eye, and a mouth included as subjects in the input image shown in FIG. 4.
  • (D) is the figure which drew the outer periphery of the 1st correction area
  • the arrows in (c) and (d) represent the displacement of each point by correction.
  • (A) is a figure showing a face included as a subject in an input image.
  • (B) is the figure which drawn the outer periphery of the 1st correction area
  • the arrow in (b) represents the displacement of each point by correction.
  • (A) is a figure which shows the face before correction
  • (b) is a figure which shows the face after the correction
  • the upper face is a face obtained by correction for isotropic reduction of the first correction area
  • the lower face is obtained by correction for anisotropic reduction of the first correction area. It is a face. It is a figure which shows an example of the input image containing a human face as a to-be-photographed object.
  • the image processing apparatus 100 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9.
  • the image processing apparatus 100 according to the present embodiment is an apparatus for performing correction for isotropically reducing or enlarging a region corresponding to a face on an image including the face as a subject.
  • FIG. 1 is a functional block diagram showing the configuration of the image printing apparatus 1 of the present embodiment.
  • the image printing apparatus 1 includes an imaging unit 10, an operation unit 20, a display unit 30, an image processing device 100 (control unit), a printing unit 50, and a storage unit 60.
  • the imaging unit 10 images a subject, and transmits the captured image to the image processing apparatus 100 as an input image.
  • the operation unit 20 receives user input, and is realized by, for example, a touch panel or a mouse. For example, when the operation unit 20 is a touch panel, an input image is displayed on the display unit 30 including the touch panel.
  • the display unit 30 displays various images.
  • the display unit 30 displays, for example, an image captured by the imaging unit 10 or an output image generated by an image correction unit 104 described later.
  • the image processing apparatus 100 functions as an image processing apparatus that performs image processing on an image (input image) captured by the imaging unit 10 and generates an output image after processing (after correction).
  • the image processing apparatus 100 also functions as a control unit that controls the image printing apparatus 1 in an integrated manner. A specific configuration of the image processing apparatus 100 will be described later.
  • the printing unit 50 prints an output image (image) generated by the processing of the image processing apparatus 100.
  • the printing unit 50 may further print an image drawn by the user via the operation unit 20 on the output image.
  • the storage unit 60 stores, for example, various control programs executed by the image processing apparatus 100, and includes a non-volatile storage device such as a hard disk or a flash memory. For example, an input image and an output image are stored in the storage unit 60. Further, the storage unit 60 may store parameters and the like necessary for processing of the image processing apparatus 100 such as image processing (correction processing) and subject detection processing.
  • control unit that controls the image printing apparatus 1 is not necessarily the image processing apparatus 100.
  • an external device that can be communicably connected to the image printing apparatus 1 may function as the image processing apparatus 100.
  • FIG. 2 is a block diagram illustrating a configuration of the subject detection unit 101 included in the image processing apparatus 100.
  • the image processing apparatus 100 includes a subject detection unit 101, a correction area setting unit (setting unit) 102, a correction intensity setting unit (setting unit) 103, and an image correction unit (correction unit) 104. Yes.
  • An image including a human face as a subject is input to the image processing apparatus 100.
  • An image input to the image processing apparatus 100 and including a human face as a subject is hereinafter referred to as an “input image”.
  • the subject detection unit 101 is configured to detect a human face and facial organs included as a subject in the input image.
  • the subject detection unit 101 can be constituted by a face detection unit 101a and a face organ detection unit 101b.
  • the face detection unit 101a is configured to detect an area corresponding to a face (hereinafter, simply referred to as “face”) in an input image.
  • face a face
  • a known algorithm for example, using skin color information detected from an input image
  • the face organ detection unit 101b detects a region corresponding to a predetermined face organ (hereinafter, simply referred to as “face organ”) in the region corresponding to the face detected by the face detection unit 101a. It is the composition.
  • the facial organ detection unit 101b detects the right eye, the left eye, and the mouth. These face organs are less likely to fail to be detected or erroneously detected than the face organs that form the contours of the jaws and cheeks.
  • a well-known algorithm for example, using pattern matching etc.
  • the correction area setting unit 102 is a configuration for setting the first correction area and the second correction area based on the positions of the face and facial organs detected by the subject detection unit 101.
  • the correction area setting unit 102 sets the first correction area and the second correction area based on the positions of the right eye, left eye, and mouth detected by the subject detection unit 101.
  • the first correction region is a region having a predetermined shape having a position corresponding to the center of the face and a size corresponding to the size of the face in the input image.
  • the first correction area is a circular area defined as a set of pixels whose distance from the correction center c corresponding to the face center is equal to or smaller than the first correction distance d1 corresponding to the face size. .
  • the first correction area is a circular area having a radius (size) having the correction center c as the center position and the first correction distance d1.
  • the second correction area is an area surrounding the first correction area in the input image.
  • the distance from the correction center c is larger than the first correction distance d1, and a predetermined second correction distance is set.
  • This is an annular region defined as a set of pixels that are equal to or less than d2 (d2> d1).
  • the first correction area is a target for reduction
  • the second correction area is a target for enlargement.
  • the first correction area is an object to be enlarged
  • the second correction area is an object to be reduced.
  • the correction intensity setting unit 103 is a configuration for setting the scaling factors ⁇ and ⁇ of the first correction region and the second correction region set by the correction region setting unit 102. For example, when performing correction for making the face appear smaller, the correction strength setting unit 103 sets the enlargement / reduction ratio ⁇ of the first correction area to a positive constant smaller than 1 and the enlargement / reduction ratio ⁇ of the second correction area. Set to a positive constant greater than 1. Conversely, when performing correction to make the face appear larger, the correction strength setting unit 103 sets the enlargement / reduction ratio ⁇ of the first correction area to a positive constant ⁇ greater than 1, and the enlargement / reduction ratio of the second correction area. ⁇ is set to a positive constant smaller than 1.
  • the correction strength setting unit 103 may be configured to (1) set the enlargement / reduction ratios ⁇ and ⁇ of the first correction region and the second correction region to preset values, or (2) The enlargement / reduction ratios ⁇ and ⁇ of the first correction area and the second correction area may be set to values specified by the user, or (3) the enlargement / reduction ratio of the first correction area and the second correction area. ⁇ and ⁇ may be set based on the face and facial organs detected by the subject detection unit 101.
  • the image correction unit 104 is configured to perform correction processing according to the enlargement / reduction ratios ⁇ and ⁇ set by the correction intensity setting unit 103 on the first correction region and the second correction region set by the correction region setting unit 102. It is.
  • the correction processing performed on the input image by the image correction unit 104 includes (1) reducing the first correction area set by the correction area setting unit 102 at the enlargement / reduction ratio ⁇ ( ⁇ ⁇ 1) set by the correction intensity setting unit 103.
  • the first correction area is enlarged by the enlargement / reduction ratio ⁇ ( ⁇ > 1) set by the correction intensity setting section 103
  • the second correction area set by the correction area setting section 102 is set by the correction intensity setting section 103.
  • a correction process for reducing by ⁇ ( ⁇ ⁇ 1) can be given.
  • a specific example of the image correction process executed by the image correction unit 104 will be described later with reference to another drawing.
  • the storage unit 105 stores, for example, an input image and an output image (an image obtained by performing the above correction process on the input image).
  • the storage unit 105 may store various parameters referred to when the subject detection unit 101, the correction area setting unit 102, the correction intensity setting unit 103, and the image correction unit 104 execute the above processing.
  • the first correction area and the second correction area are set based on a predetermined position of the facial organ, but one aspect of the present disclosure is not limited to this. That is, a mode in which the first correction area and the second correction area are set based on the position of the face organ selected by the user from the predetermined face organs may be employed.
  • the image processing apparatus 100 includes a touch panel
  • the user can select a facial organ using the touch panel.
  • the image processing apparatus 100 displays the input image on the touch panel, and the user touches any of the facial organs displayed on the touch panel.
  • the image processing apparatus 100 considers the facial organ touched by the user as the facial organ selected by the user.
  • the image processing apparatus 100 When a display and a mouse are connected to the image processing apparatus 100, the user can select a facial organ using this mouse.
  • the image processing apparatus 100 displays the input image on the display, and the user points one of the facial organs displayed on the display with the mouse cursor.
  • the image processing apparatus 100 regards the facial organ pointed by the mouse cursor as the facial organ selected by the user.
  • FIG. 3 is a flowchart showing a flow of image processing performed by the image processing apparatus 100.
  • Image processing performed by the image processing apparatus 100 includes subject detection processing S301, correction region setting processing S302, correction intensity setting processing S303, and image correction processing S304, as shown in FIG.
  • the subject detection processing S301 is processing for detecting a human face and facial organs included as an image in the input image, and is executed by the subject detection unit 101 in the present embodiment.
  • the subject detection process S301 is a process for setting the first correction area and the second correction area based on the face and the facial organ detected in the subject detection process S301.
  • the correction area setting unit 102 performs the process. Executed.
  • the correction intensity setting process S303 is a process of setting the enlargement / reduction ratios ⁇ and ⁇ of the first correction area and the second correction area set in the correction area setting process S302.
  • the correction intensity setting unit 103 is set. Executed by.
  • the image correction process S304 is a process for reducing or enlarging the first correction area and the second correction area set in the correction area setting process S302 with the enlargement / reduction ratios ⁇ and ⁇ set in the correction intensity setting process S303. In this embodiment, it is executed by the image correction unit 104.
  • the configuration in which the subject detection process S301, the correction area setting process S302, and the correction intensity setting process S303 are executed in this order is adopted, but the present disclosure is not limited to this.
  • the correction intensity setting process S303 when the enlargement / reduction ratio is determined without depending on the first correction area and the second correction area set in the correction area setting process S302, the correction intensity setting process S303 is performed. It may be executed prior to.
  • the correction intensity setting process S303 when the enlargement / reduction ratio is determined regardless of the face and face organ detected in the subject detection process S301, the correction intensity setting process S303 is performed prior to the subject detection process S301. May be.
  • the correction intensity setting process S303 when the enlargement / reduction ratio is set to a predetermined value, the correction intensity setting process S303 can be performed prior to the subject detection process S301.
  • the facial organs (cheeks, jaws, etc.) constituting the contour of the face are highly likely to fail to be detected or erroneously detected. Therefore, the correction area setting process S302 according to the present embodiment is executed with reference to the positions of the facial organs other than the facial organs constituting the contour of the face, specifically, the positions of the three facial organs of the left eye, the right eye, and the mouth. Is done.
  • FIG. 4 is a diagram illustrating an input image 400 including a human face 401 as a subject.
  • the input image 400 illustrated in FIG. 4 includes a left eye 402, a right eye 403, and a mouth 404 as subjects.
  • the positions of the left eye 402, the right eye 403, and the mouth 404 detected by the subject detection unit 101 are respectively expressed as follows.
  • the position of the left eye 402 (LEFT_x, LEFT_y), Position of the right eye 403: (RIGHT_x, RIGHT_y), Position of mouth 404: (MOUTH_x, MOUTH_y).
  • cx (LEFT_x + RIGHT_x + MOUTH_x) / 3
  • cy (LEFT_y + RIGHT_y + MOUTH_y) / 3
  • the size of the face is approximately proportional to the distance between both eyes (the distance between the right eye 403 and the left eye 404) dist_eye. Therefore, the correction area setting unit 102 calculates a correction distance d1 corresponding to the size of the face from the positions of the left eye 402 and the right eye 403 according to the following equations (3) and (4).
  • dist_eye ⁇ (LEFT_x-RIGHT_x) 2 + (LEFT_y-RIGHT_y) 2 ⁇ 1/2 (3)
  • d1 dist_eye ⁇ param_A (4)
  • param_A is a preset proportionality coefficient.
  • the correction area setting unit 102 sets the first correction area 501 and the second correction area 502 as shown in FIG. 5 using the correction center c and the first correction distance d1 calculated as described above.
  • the first correction area 501 is a circular area defined as a set of pixels whose distance from the correction center c is equal to or less than the first correction distance d1.
  • the second correction area 502 is an annular area defined as a set of pixels whose distance from the correction center c is greater than the first correction distance d1 and equal to or less than the second correction distance d2 (d2> d1). It is.
  • the first correction area 501 is a target for reduction
  • the second correction area 502 is a target for enlargement.
  • the first correction area 501 is an object to be enlarged
  • the second correction area 502 is an object to be reduced.
  • the second correction distance d2 may be calculated according to the following formula (5), for example.
  • the outer periphery of the first correction area 501 does not match the contour of the face 500.
  • the coefficient param_A appearing in Equation (4) is appropriately set, the contour of the face 500 can be accurately approximated by the outer periphery of the first correction region 501.
  • the ratio of the face size to the interval between the eyes is measured for a plurality of people and the coefficient param_A is set to the average value of the measured ratio, the contour of the face 500 can be accurately obtained by the outer periphery of the first correction region 501. Can be approximated.
  • the person who can be a subject is limited to a person having a specific attribute (such as age or sex)
  • the person who serves as a sample when setting the coefficient param_A as described above is also a person who has that attribute. It is preferable to limit. Thereby, the difference between the outer periphery of the first correction area 501 and the contour of the face 500 can be made smaller than in the case where the sample person is not limited when setting the coefficient param_A.
  • the distance r from the correction center c of the point P before correction and the correction center c of the point P after correction are The relationship with the distance r ′ is as shown in the graph of FIG. Further, in this case, if the displacement due to the correction is represented as an arrow, it is as shown in FIG. In FIG. 7, the start point of the arrow indicates the point P before correction, the end point of the arrow indicates the point P ′ after correction, the length of the arrow indicates the correction amount, and the direction of the arrow indicates the correction direction. As apparent from FIGS.
  • the first correction area 701 (r ⁇ d1) is isotropically reduced, and (2) the second correction area 702 (d1 ⁇ r ⁇ d2) is isotropic. (3) The other region 703 (d2 ⁇ r) does not move.
  • the second correction area 702 is expanded inward while maintaining the outer periphery, and the inner periphery of the corrected second correction area 702 coincides with the outer periphery of the corrected first correction area 701.
  • the first point to be noted in FIGS. 6 and 7 is that the correction amount for each point P is determined in accordance with the distance r from the correction center c of the point P with respect to the first correction region 701. . Specifically, the correction amount for each point P is correlated with the distance r from the correction center c of that point P. Further, in one aspect, the correction amount for each point P is proportional to the distance r from the correction center c of the point P. For this reason, the correction amount in the first correction region 701 decreases as the correction center c is approached, and increases as it approaches the outer periphery of the first correction region 701.
  • the correction center c is a point that approximates the center of the face
  • the outer periphery of the first correction region 701 is a circle that approximates the contour of the face. Therefore, the correction amount decreases as it approaches the center of the face, and increases as it approaches the face outline. For this reason, the size of the face can be made sufficiently small while suppressing the influence on the facial organs (eyes, nose, mouth, etc.) near the center of the face.
  • the second point to be noted in FIGS. 6 and 7 is that the second correction region 702 is expanded inward while maintaining the outer periphery. Therefore, even when the face does not fit in the first correction area 701 and protrudes into the second correction area 702 due to individual differences in the shape of the face, the face outline is moved toward the center of the face, The size of the face can be reduced.
  • the correction area setting unit 102 only needs to determine the correction amount for each point P according to the distance r from the correction center c of the point P with respect to the first correction area 701, as described above.
  • the correction amount for each point P may not be proportional to the distance r from the correction center c of the point P.
  • the correspondence relationship between the correction amount for each point P and the distance r from the correction center c of the point P may be determined so that the graph shown in FIG.
  • FIG. 8A shows a face 800a included as an object in the input image.
  • a contour 805a of the face 800a is circular.
  • FIG. 8B is a diagram showing another face 800b included as an object in the input image.
  • the contour 805b of the face 800b is an ellipse that is long in the vertical direction. That is, the face 800a is a round face, while the face 800b is a face length.
  • the positions of the right eye, the left eye, and the mouth included in the face 800b coincide with the positions of the right eye, the left eye, and the mouth included in the face 800a, respectively.
  • the first correction region and the second correction region set based on the right eye, the left eye, and the mouth included in the face 800b are respectively the first correction region set based on the right eye, the left eye, and the mouth included in the face 800a. It coincides with the correction area and the second correction area.
  • FIG. 8 is a diagram showing the first correction region 801a set based on the right eye, the left eye, and the mouth included in the face 800a and the contour 805a of the face 800a together with an arrow indicating the displacement due to the correction.
  • the contour 805a of the face 800a is circular, the distance from the correction center c to the contour 805a of the face 800a is constant regardless of the direction. Therefore, the correction amount for the contour 805a of the face 800a is constant regardless of the direction.
  • the contour 805a of the face 800a after correction is circular, like the contour 805a of the face 800a before correction. That is, the face 800a after correction becomes a round face like the face 800a before correction.
  • FIG. 8 is a figure which shows the 1st correction
  • the contour 805b of the face 800b is a vertically long ellipse
  • the distance from the correction center c to the contour 805b of the face 800b is relatively large in the vertical direction and relatively small in the left-right direction. Accordingly, the correction amount for the contour 805b of the face 800b is relatively large in the vertical direction and relatively small in the horizontal direction.
  • the correction based on the distance from the correction center is preferable because the lateral correction amount of the face-length face is set to be small and the lateral correction amount of the thin face is weak.
  • the contour 805b of the face 800b after correction is closer to a circle than the contour 805b of the face 800b before correction. That is, the face 800b after correction is closer to a round face than the face 800b before correction.
  • FIG. 9A shows a face 900 included as an object in the input image.
  • the face 900 faces right toward the paper surface, and the position of the face is biased to the left with respect to the correction center c set based on the right eye, left eye, and mouth of the face 900.
  • FIG. 9B is a diagram showing the first correction region 901 set based on the right eye, the left eye, and the mouth included in the face 900 and the outline 905 of the face 900 together with an arrow indicating the displacement due to the correction. .
  • the distance from the correction center c to the contour 905 of the face 900 is relatively larger on the left side than the correction center c, and is relatively on the right side relative to the correction center c.
  • the correction amount for the contour 905 of the face 900 is relatively larger on the left side than the correction center c and relatively smaller on the right side than the correction center c.
  • the amount of correction on the right side of the face that is reduced and photographed on the image is smaller than when the image is taken facing the front, and conversely, the image is magnified on the image compared with the case that the photograph is taken facing the front. Since the correction amount on the left side of the face being photographed increases, the right and left sides of the face are corrected in a well-balanced manner, and a suitable corrected image is obtained.
  • the first correction region and the enlargement target (or enlargement target) to be reduced (or enlarged) (or enlarged) ( Or a second correction area to be reduced).
  • the center of the face and the size of the face can be specified without referring to the positions of facial organs constituting the contour of the face, such as the cheeks and jaws.
  • the correction center c representing the center of the face is specified by referring to the positions of the right eye, the left eye, and the mouth, and the correction distance d1 representing the size of the face is determined based on the positions of the right eye and the left eye.
  • the left eye, right eye, and mouth are less likely to fail to be detected or erroneously detected than the facial organs that make up the facial contour. Therefore, the image processing apparatus 100 according to the embodiment may not be able to be corrected or may be inappropriately corrected as compared with a conventional image processing apparatus in which the detection of the facial organs constituting the contour of the face is essential. Is less likely to do.
  • the right eye, the left eye, and the mouth are used as the facial organs that are referred to in order to specify the face center and the face size, but one aspect of the present disclosure is not limited thereto. That is, if a facial organ other than the facial organs constituting the contour of the face is used as the facial organ to be referred to in order to specify the face center and the face size, the same effect as the image processing apparatus 100 according to the present embodiment. Is obtained. Examples of facial organs other than the facial organs constituting the contour of the face include a right eyebrow, a left eyebrow, and a nose in addition to the right eye, the left eye, and the mouth.
  • FIG. 17 is a functional block diagram illustrating a configuration of the imaging apparatus 2 according to another aspect of the present embodiment. Similar to the image printing apparatus 1, the imaging apparatus 2 includes the imaging unit 10, the operation unit 20, the display unit 30, the control unit 100 (image processing apparatus), and the storage unit 60, but does not include the printing unit 50. .
  • the shape of the first correction region is not limited to a circle. That is, the first correction area may be an area having a predetermined shape having a position corresponding to the center of the face and a size corresponding to the size of the face.
  • the predetermined shape may be an ellipse in addition to a circle. It may be a polygon or the like.
  • the shape of the second correction region is not limited to a circle, and may be an ellipse, a polygon, or the like.
  • FIG. 18A is a diagram showing an example of the first correction area 501a and the second correction area 502a when the predetermined shape is an ellipse
  • the first correction region 501a has, for example, the correction center c as the center position and the first correction distance d1 as the major axis (size). It can be an elliptical region.
  • the ellipticity is not particularly limited, and a predetermined value may be used.
  • the first correction area 501b has, for example, the correction center c as the center (center of gravity) position and the first correction distance d1 as the vertical length. It is a hexagonal region with a width (size) in the direction.
  • the type of polygon is not particularly limited, and other polygons (triangle, quadrangle, pentagon, octagon, etc.) may be used instead of the hexagon.
  • is a positive constant set by the correction intensity setting unit 103 as the enlargement / reduction ratio for the first correction region, and satisfies ⁇ ⁇ 1.
  • the shapes of the first correction region and the second correction region may be shapes other than a circle.
  • the shape of the first correction region is used as the first correction distance used when performing image correction processing.
  • D1 ( ⁇ ) defined for each angle ⁇ corresponding to the angle ⁇ , and d2 ( ⁇ ) defined for each angle ⁇ corresponding to the shape of the second correction region may be used as the second correction distance.
  • FIGS. An image processing apparatus 100 according to the second embodiment of the present disclosure will be described with reference to FIGS.
  • the image processing apparatus 100 according to the first embodiment employs a configuration in which the first correction area is isotropically reduced at a direction-independent scaling factor ⁇
  • the image processing according to the present embodiment employs a configuration in which the first correction region is anisotropically reduced with a direction-dependent scaling factor ⁇ ( ⁇ ).
  • FIG. 10A shows a face 1000 before correction included as a subject in the input image
  • FIG. 10B shows corrected faces 1001 and 1002 included as subjects in the output image.
  • a corrected face 1001 isotropically includes a face included as a subject in the output image obtained by the image processing apparatus 100 according to the first embodiment, that is, the face 1000 before correction.
  • the face 1002 obtained when the image is reduced, and the face 1002 after correction is anisotropically the face included as a subject in the output image obtained by the image processing apparatus according to the present embodiment, that is, the face 1000 before correction. This is the face obtained when the image is reduced.
  • the correction amount in the upward direction of the face 1000 is relatively small, the correction amounts in the lower right direction and the lower left direction of the face 1000 are relatively large, and the right direction of the face 1000
  • the enlargement / reduction ratio ⁇ ( ⁇ ) in each direction is set so that the correction amounts in the left direction and the downward direction are medium.
  • the face 1002 after correction has a sharper line from the cheek to the chin than the face 1000 before correction.
  • the scaling factor ⁇ ( ⁇ ) in each direction is set in consideration of the inclination of the face 1000 in the input image.
  • the image processing apparatus 100 according to the present embodiment can be realized, for example, by adding the following changes to the image processing apparatus 100 according to the first embodiment.
  • Change point 1 A function of calculating the face inclination ⁇ _f from the position of the facial organ (specifically, the right eye and the left eye) is added to the correction intensity setting unit (estimating unit) 103.
  • Change point 2 In the correction intensity setting unit 103, the function of setting the scaling factors ⁇ and ⁇ independent of the direction is replaced with the function of setting the scaling factors ⁇ ( ⁇ ) and ⁇ ( ⁇ ) depending on the direction.
  • Change point 3 In the image correction unit 104, the first correction area is isotropically reduced with a direction-independent scaling ratio ⁇ , and the second correction area is isotropically enlarged with a direction-independent scaling ratio ⁇ .
  • the function reduces the first correction region anisotropically with a direction-dependent scaling factor ⁇ ( ⁇ ) and expands the second correction region anisotropically with a direction-dependent scaling factor ⁇ ( ⁇ ). Replace with the function you want.
  • FIG. 11 is a diagram showing an input image 1100 including a human face 1101 as a subject.
  • the face inclination ⁇ _f is defined as an angle formed by the x-axis (horizontal axis) of the input image 1100 and a straight line 1102 connecting the left and right eyes.
  • the face inclination ⁇ _f can be calculated according to the following equation (6).
  • ⁇ _f arctan ((RIGHT_y ⁇ LEFT_y) / (RIGHT_x ⁇ LEFT_x)) (6)
  • is a constant that does not depend on the direction introduced in the first embodiment
  • ⁇ ( ⁇ ) is a coefficient that depends on the direction introduced in the present embodiment.
  • FIG. 12 is a graph showing an example of the coefficient ⁇ ( ⁇ ). In FIG. 12, the horizontal axis represents the direction ⁇ viewed from the correction center c, and the vertical axis represents the coefficient ⁇ ( ⁇ ).
  • correction for anisotropically reducing the first correction region is performed on an input image including a face as a subject with a scaling factor ⁇ ( ⁇ ) that depends on the direction.
  • a scaling factor
  • ⁇ _f the face inclination ⁇ _f included in the input image
  • the enlargement / reduction ratio ⁇ ( ⁇ ) is set according to the specified face inclination ⁇ _f. For this reason, even when the face included as a subject in the input image is tilted, it is possible to perform correction to bring the face closer to a desired shape.
  • FIGS. 13 to 14 An image processing apparatus 100 according to the third embodiment of the present disclosure will be described with reference to FIGS. 13 to 14. Configuration in which the image processing apparatus 100 according to the first embodiment sets the first correction region and the second correction region based on the positions of predetermined facial organs (specifically, the right eye, the left eye, and the mouth). In contrast, the image processing apparatus 100 according to the present embodiment employs a facial organ that has been successfully detected among predetermined facial organs (specifically, the right eye, the left eye, and the mouth). A configuration is adopted in which the first correction area and the second correction area are set based on the position.
  • the right eye, the left eye, and the mouth to be detected by the image processing apparatus 100 according to the first embodiment are less likely to fail in detection than the cheeks and jaws that are detected by the conventional image processing apparatus. .
  • the position of the mouth covered by the mask 1301 cannot be detected from the input image.
  • the image processing apparatus 100 according to the first embodiment cannot correct the input image when the mouth detection fails. This is because the position of the mouth is required to set the first correction area and the second correction area.
  • the image processing apparatus 100 according to the present embodiment can correct the input image even when the mouth detection fails. This is because if the mouth detection fails, the first correction area and the second correction area are set based on the positions of the right eye and the left eye.
  • the image processing apparatus 100 according to the present embodiment can be realized, for example, by adding the following changes to the image processing apparatus 100 according to the first embodiment.
  • Change point 1 A function for setting the first correction area and the second correction area based on the positions of the right eye and the left eye is added to the correction area setting unit 102. Thereby, the correction area setting unit 102 sets the first correction area and the second correction area based on the positions of the right eye, the left eye, and the mouth, and the first correction area and the first correction area based on the positions of the right eye and the left eye. 2 has both a function of setting a correction area.
  • Change point 2 A configuration is added to the correction area setting unit 102 to switch functions used for setting the first correction area and the second correction area depending on whether or not the mouth has been successfully detected. Thereby, when the detection of the mouth is successful, the correction area setting unit 102 sets the first correction area and the second correction area based on the positions of the right eye, the left eye, and the mouth, and fails to detect the mouth. In this case, the first correction area and the second correction area are set based on the positions of the right eye and the left eye.
  • the function of setting the first correction area and the second correction area based on the positions of the right eye, the left eye, and the mouth can be realized by the method described in the first embodiment.
  • the function of setting the first correction area and the second correction area based on the positions of the right eye and the left eye can be realized by the method described below.
  • FIG. 14 is a diagram illustrating a face 1400 included as a subject in the input image.
  • This input image includes a left eye 1402 and a right eye 1403 as subjects.
  • the positions of the left eye 1402 and the right eye 1403 detected by the subject detection unit 101 are respectively expressed as follows.
  • Position of left eye 1402 (LEFT_x, LEFT_y), Position of the right eye 1403: (RIGHT_x, RIGHT_y).
  • cx (LEFT_x + RIGHT_x) / 2 ⁇ (RIGHT_y ⁇ LEFT_y) ⁇ param_c (7)
  • cy (LEFT_y + RIGHT_y) / 2 ⁇ (LEFT_x-RIGHT_x) ⁇ param_c (8)
  • the correction area setting unit 102 uses the correction center c calculated as described above and the first correction distance d1 calculated according to the equations (3) and (4) as in the first embodiment, to perform the first correction.
  • An area and a second correction area are set.
  • this embodiment is not limited to this. That is, when the position of the right eye cannot be detected, the first correction area and the second correction area are set based on the positions of the left eye and mouth, or when the position of the left eye cannot be detected, the right eye and mouth A mode in which the first correction area and the second correction area are set based on the position is also included in the category of the present embodiment.
  • the first correction is performed based on the combination of these functions, that is, the positions of the remaining two facial organs that are successfully detected when detection of any one of the right eye, the left eye, and the mouth fails.
  • the form of setting the area and the second correction area is also included in the category of the present embodiment.
  • the present embodiment is not limited to this. That is, the present embodiment is also applied to a mode in which other facial organs are detected, for example, a mode in which the right eye, left eye, and nose are detection candidates, or a mode in which the right ear, left ear, and mouth are detected. Included in the category of form. Examples of facial organs that can be substituted for the left and right eyes include left and right cheeks and left and right eyebrows (eyebrows) in addition to the left and right ears. In addition to the nose, the facial organ that can replace the mouth includes the chin and the top of the head.
  • the first correction region and the second correction region can be set based on other facial organs. Therefore, facial organs (such as ears, cheeks, jaws, and tops of the head) that form the contours of faces that are likely to fail detection can be detected. Also, the position of the right eye or the left eye's head or corner may be added to the detection candidate, or the position of the right mouth corner or the left mouth corner of the mouth may be added to the detection candidate. That is, the position of each part of each facial organ can also be added to the detection target.
  • facial organs such as ears, cheeks, jaws, and tops of the head
  • the first correction is performed based on the position of the facial organs (for example, the right eye and the left eye) that have been successfully detected among the predetermined facial organs (for example, the right eye, the left eye, and the mouth).
  • An area and a second correction area are set. Therefore, the first correction area and the second correction area can be set even if detection of a part of a predetermined facial organ (for example, mouth) fails.
  • the image processing apparatus 100 according to the present embodiment is configured to anisotropically reduce the first correction region with a direction-dependent scaling ratio ⁇ ( ⁇ ), like the image processing apparatus 100 according to the second embodiment. And, as in the image processing apparatus 100 according to the third embodiment, among the predetermined facial organs (specifically, the right eye, the left eye, and the mouth), based on the position of the facial organ that has been successfully detected. A configuration in which the first correction area and the second correction area are set is employed.
  • the correction strength setting unit 103 may change the inclination of the face depending on the combination of the facial organ that has been successfully detected. It may not be possible to estimate. In such a case, if the image correction unit 104 is configured to always reduce the first correction region anisotropically, for example, as shown in FIG. 15E, unnatural correction is performed. .
  • the image processing apparatus 100 when the face inclination cannot be estimated, for example, as shown in FIG. If it is possible to estimate the inclination of the face while avoiding the unnatural correction, the first correction area is anisotropic as shown in FIG. It is possible to obtain an effect such as sharpening the jaw line and sharpening the jaw line.
  • the image processing apparatus 100 according to the present embodiment can be realized, for example, by adding the following changes to the image processing apparatus 100 according to the second embodiment.
  • Change point 1 With respect to the correction intensity setting unit 103, the first correction area and the second correction area are set based on the position of the facial organ that has been successfully detected as in the image processing apparatus 100 according to the third embodiment. Add the function to be set. Thereby, even when detection of some facial organs fails, the first correction region and the second correction region can be set based on the position of the facial organ that has been successfully detected.
  • the correction strength setting unit 103 determines whether or not the face inclination ⁇ _f can be calculated from the position of the face organ that has been successfully detected, and when the face inclination ⁇ _f cannot be calculated, When the scaling factors ⁇ and ⁇ independent of the direction are set and the face inclination ⁇ _f can be calculated, a function for setting the scaling factors ⁇ ( ⁇ ) and ⁇ ( ⁇ ) depending on the direction is added. Accordingly, whether or not the first correction area is anisotropically reduced can be switched depending on whether or not the inclination of the face can be estimated.
  • FIG. 15A shows an input image 1500 in which a human face 1501 is shown.
  • a region indicated by a dotted rectangular frame is a face region 1502, which indicates a state in which only the face region can be detected and a face organ cannot be detected.
  • FIG. 15B shows an input image 1503 in which a human face 1504 is shown.
  • a region indicated by a dotted rectangular frame is a face region 1505, which indicates a state in which only the face region can be detected and a face organ cannot be detected.
  • the face 1501 and the face 1504 have different face inclinations with respect to the vertical and horizontal directions of the image, but the face area is a rectangle parallel to the horizontal and vertical directions of the image.
  • the center of the rectangular face area can be set as the correction center when performing the correction process if it is not greatly deviated from the position of the detected face area.
  • FIGS. 15A and 15B respectively show an image 1506 and an image 1507 obtained by correcting the face 1501 and the face 1504 shown in FIGS. 15A and 15B with isotropic correction amounts. . By correcting the face with an isotropic correction amount, the entire face is corrected to be small.
  • (e) in FIG. 15 performs anisotropic correction as shown in FIG. 12 in the image 1504 shown in (b) in FIG. 15 with the face inclination being a rectangular angle (x direction).
  • An image 1508 is shown. Since the inclination of the face 1504 and the angle of the rectangle are different, if anisotropic correction is performed, a direction different from the desired direction is strongly corrected, and the shape of the face is unnaturally corrected. According to this embodiment, such unnatural correction can be avoided.
  • FIG. 16A shows an image 1603 obtained by performing anisotropic correction as shown in FIG. 12 with the face inclination being a rectangular angle in the image 1601 shown in FIG.
  • the cheek-to-chin line is sharpened, and it can be corrected to an image with a small face.
  • the face organ cannot be detected and only the face area indicated by the rectangle can be detected.
  • only one face area and one face organ can be detected. Since it is difficult to estimate the face angle, it is preferable to correct the face with an isotropic correction amount.
  • the position of the nose is located in the vicinity of the center of the face region, and thus it is difficult to estimate the inclination of the face.
  • the detected facial organ is the chin
  • the position of the chin is located in the lower direction of the face area, so the inclination of the face is determined based on the position indicated by the rectangle indicating the face area and the position of the chin. There is a possibility that it can be estimated. If the tilt of the face can be estimated, anisotropic correction is possible.
  • the face area and face organ necessary for estimating the inclination of the face cannot be acquired, but the face area and face organ necessary for setting the correction center and the correction area. If the information can be acquired, the face is corrected with an isotropic correction amount, so that the face can be prevented from being corrected to an unintended shape by correction based on an incorrect angle.
  • the control blocks of the image processing apparatus 100 can be realized by a processor included in the image processing apparatus 100. More specifically, it may be realized by software processing by a CPU (Central Processing Unit) or GPU (Graphics Processing Unit), or by hardware processing by an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array). May be.
  • a processor included in the image processing apparatus 100 More specifically, it may be realized by software processing by a CPU (Central Processing Unit) or GPU (Graphics Processing Unit), or by hardware processing by an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array). May be.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the image processing apparatus 100 includes a CPU that executes instructions of a program that is software that realizes each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by a computer (or CPU).
  • a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) for expanding the program, and the like are provided.
  • the objective of this indication is achieved when a computer (or CPU) reads and runs the said program from the said recording medium.
  • a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • an arbitrary transmission medium such as a communication network or a broadcast wave
  • one aspect of the present disclosure can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • An image processing apparatus (100) is an image processing apparatus that corrects an image including a face, and the position of the face according to the center of the face and the size of the face with respect to the image.
  • a first correction area of a predetermined shape having a size corresponding to the first correction area, and a correction process for enlarging a second correction area around the first correction area, or the first correction area is enlarged and the first correction area is enlarged.
  • 2 includes a correction unit (image correction unit 104) that performs correction processing for reducing the correction area.
  • the first correction area to be reduced (or to be enlarged) and the second correction area to be enlarged (or to be reduced) are set based on the center of the face and the size of the face.
  • the center of the face and the size of the face can be specified without referring to the positions of facial organs constituting the contour of the face, such as the cheeks and jaws.
  • the correction may be impossible or may be inappropriate as compared with the conventional image processing apparatus in which the detection of the facial organs constituting the contour of the face is essential. Is low.
  • the predetermined shape is a circle
  • the position corresponding to the center of the face is the center of the circle, and corresponds to the size of the face.
  • the size may be the radius of the circle.
  • the first correction area can be set and the first correction area can be reduced or enlarged by a simple process.
  • the setting unit (correction) that sets a position and a size of the first correction area based on a predetermined position of the facial organ in the image.
  • An area setting unit 102 and a correction intensity setting unit 103) and the correction unit includes the first correction area and the second correction area based on the position and size of the first correction area set by the setting unit.
  • the correction area may be determined.
  • the position and size of the first correction area can be suitably determined based on the detected position of the facial organ.
  • the image processing apparatus further includes an estimation unit (correction intensity setting unit 103) that estimates the inclination of the face based on the position of the specific facial organ in the image according to aspect 3.
  • the setting unit may set the scaling ratio of the first correction area in the correction process in an anisotropic manner according to the inclination of the face estimated by the estimation unit.
  • the predetermined facial organ is selected from the group consisting of eyes, nose, mouth, eyebrows, and ears of the face. There may be.
  • the position and size of the first correction region can be suitably determined based on the detected position of the facial organ.
  • the first correction area according to aspect 1 or 2 is based on a position in the image of a facial organ that has been successfully detected among a plurality of predetermined facial organs.
  • setting sections correction area setting section 102, correction intensity setting section 103 for setting the position and size of the first correction area based on the position and size of the first correction area set by the setting section. Then, the first correction area and the second correction area may be determined.
  • the position and size of the first correction region can be suitably determined based on the position of the facial organ that has been successfully detected, even if detection of some facial organs has failed. it can.
  • the image processing device further includes an estimation unit (correction intensity setting unit 103) that estimates the inclination of the face based on the position of the specific facial organ in the image according to aspect 6. And when the setting unit succeeds in detecting the specific facial organ, the setting unit is anisotropic according to the inclination of the face estimated by the estimation unit. If the detection of the specific facial organ fails, the scaling ratio of the first correction area in the correction process may be set isotropically.
  • the image processing apparatus is the image processing apparatus according to aspect 6 or 7, wherein the facial organ is a group consisting of eyes, nose, mouth, eyebrows, ears, chin, crown, cheek, and contour of the face. It may be selected.
  • the position and size of the first correction region can be suitably determined based on the detected position of the facial organ.
  • the imaging apparatus includes the imaging unit that captures the face and acquires the image, and performs image processing on the image including the face captured by the imaging unit. 8 may be included.
  • the user can image a human face and easily perform image processing on the captured image.
  • the imaging device according to aspect 10 of the present disclosure may further include a display unit that displays the image in aspect 9 described above.
  • the user can easily confirm an image obtained by performing image processing on the captured image.
  • the image printing apparatus may include any one of the image processing apparatuses according to the first to eighth aspects and a printing unit that prints an image processed by the image processing apparatus.
  • the user can easily print an image subjected to image processing.
  • An image printing apparatus includes an imaging unit that captures the face and acquires the image, the image processing apparatus according to any one of aspects 1 to 8, and the image processing apparatus that performs image processing.
  • a printing unit that prints an image.
  • the user can easily print an image obtained by performing image processing on the captured image.
  • the image processing apparatus may be realized by a computer.
  • the image processing apparatus is operated by causing the computer to operate as each unit (software element) included in the image processing apparatus.
  • An image processing program for an image processing apparatus realized by a computer and a computer-readable recording medium on which the image processing program is recorded also fall within the scope of the present disclosure.
  • the image processing program is an image processing apparatus that corrects an image including a face
  • the processor of the image processing apparatus including a processor is configured to respond to the center of the face with respect to the image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Abstract

補正が不可能になったり、補正が不適切になったりする可能性が従来よりも低い画像処理装置画像処理装置(100)は、顔(500)を含む画像に対し、顔(500)の中心に応じた位置と、顔(500)の大きさに応じたサイズとを有する円形の第1補正領域(501)を縮小/拡大すると共に、第1補正領域の周囲の第2補正領域(502)を拡大/縮小する補正処理を施す。

Description

画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム
 本開示の一態様は、顔を被写体として含む画像を補正する画像処理装置に関する。
 画像に対して、特定の領域を拡大したり縮小したりする補正を施すことで、被写体の印象を変化させる技術が広く用いられている。例えば、人を被写体として含む画像に対して、顔に対応する領域を縮小する補正を施すことで、被写体の印象を実際よりも小顔にすることができる。また、同様の画像に対して、全身に対応する領域を左右方向に縮小する補正を施せば、被写体の印象を実際よりも痩身にすることができ、脚に対応する領域を上下方向に拡大する補正を施せば、被写体の印象を実際よりもスマートにすることができる。
 顔の印象を変化させた画像を得るための画像処理装置を開示した文献としては、例えば、特許文献1が挙げられる。特許文献1に記載の画像処理装置においては、顔を被写体として含む画像に対して、顔の長さL1及び顔の幅L2に基づいて特定した顔のタイプ(「丸顔」「面長」「四角」など)に応じた補正が施される。
日本国公開特許公報「特開2004-264893号公報」
 しかしながら、特許文献1に記載の画像処理装置には、以下の問題があった。
 すなわち、特許文献1に記載の画像処理装置においては、顔を被写体として含む画像から頭頂部、顎、口、右頬、左頬の各顔器官を検出したうえで、顔の長さL1として、頭頂部から顎までの距離を算出すると共に、顔の幅L2として、口の高さにおける右頬から左頬までの距離を算出している。しかしながら、顔の長さL1および顔の幅L2を算出するために、その位置を参照する必要のあるこれらの顔器官を、顔を被写体として含む画像から常に検出できるとは限らない。
 特に、顎や頬など顔の輪郭を構成する顔器官は、検出に失敗したり、誤検出したりする可能性が高い。例えば、被写体となる人が頬に手をついている場合、頬と手とが共に肌色であるため、頬と手との境界を正確に検出することが困難になる。このため、頬の検出に失敗したり、頬以外の部位を頬として誤検出したりすることがある。また、顎と首との境界は、顔の向き、カメラの向き、又は照明条件次第で、しばしば不鮮明となる。このため、顎の検出に失敗したり、顎以外の部位を顎として誤検出したりすることがある。
 頬又は顎の検出に失敗すると、顔の長さL1又は顔の幅L2を算出することができないので顔のタイプを特定することができず、その結果、補正が不可能になる。また、頬又は顎を誤検出すると、正しい顔の長さL1又は顔の幅L2を算出することができないので正しい顔のタイプを特定することができず、その結果、補正が不適切になる。
 以上のように、特許文献1に記載の画像処理装置は、検出に失敗したり、誤検出したりし易い、顔の輪郭を構成する顔器官(具体的には顎及び頬)の検出を必須としている。このため、特許文献1に記載の画像処理装置には、補正が不可能になったり、補正が不適切になったりし易いという問題があった。
 本開示の一態様は、上記の問題に鑑みてなされたものであり、その目的は、補正が不可能になったり、補正が不適切になったりする可能性が従来よりも低い画像処理装置を実現することにある。
 本開示の一態様に係る画像処理装置は、顔を含む画像を補正する画像処理装置であって、前記画像に対し、前記顔の中心に応じた位置と、前記顔の大きさに応じたサイズとを有する所定の形状の第1補正領域を縮小すると共に、第1補正領域の周囲の第2補正領域を拡大する補正処理、または、前記第1補正領域を拡大すると共に、前記第2補正領域を縮小する補正処理を施す補正部を備えている。
 本開示の一態様によれば、補正が不可能になったり、補正が不適切になったりする可能性が従来よりも低い画像処理装置を実現することができる。
本開示の一実施形態に係る画像印刷装置の構成を示すブロック図である。 図1に示す画像印刷装置の画像処理装置が備える被写体検出部の構成を示すブロック図である。 図1に示す画像処理装置が実施する画像処理の流れを示すフローチャートである。 人の顔を被写体として含む入力画像の一例を示す図である。 図4に示す入力画像に被写体として含まれる右目、左目、および口に基づいて設定した第1補正領域および第2補正領域の一例を示す図である。 画像補正処理に関して、補正前の点の補正中心からの距離rと補正後の点の補正中心からの距離r’との関係を示すグラフである。 画像補正処理に関して、補正による各点の変位を矢印として表した図である。 (a)は、入力画像に被写体として含まれる顔を示す図である。(b)は、入力画像に被写体として含まれる別の顔を示す図である。(c)は、(a)に示す顔に含まれる右目、左目、および口に基づいて設定した第1補正領域の外周を、(a)に示す顔の輪郭と共に描いた図である。(d)は、(b)に示す顔に含まれる右目、左目、および口に基づいて設定した第1補正領域の外周を、(b)に示す顔の輪郭と共に描いた図である。(c)および(d)における矢印は、補正による各点の変位を表す。 (a)は、入力画像に被写体として含まれる顔を示す図である。(b)は、(a)に示す顔に含まれる右目、左目、および口に基づいて設定した第1補正領域の外周を、(a)に示す顔の輪郭と共に描いた図である。(b)における矢印は、補正による各点の変位を表す。 (a)は、入力画像に被写体として含まれる補正前の顔を示す図であり、(b)は、出力画像に被写体として含まれる補正後の顔を示す図である。(b)において、上段の顔は、第1補正領域を等方的に縮小する補正により得られる顔であり、下段の顔は、第1補正領域を非等方的に縮小する補正により得られる顔である。 人の顔を被写体として含む入力画像の一例を示す図である。 補正強度設定処理に関して、拡縮率α(θ)を算出するために利用される係数γ(θ)の方向依存性を示すグラフである。 入力画像に被写体として含まれる顔を示す図である。 入力画像に被写体として含まれる顔を示す図である。 入力画像に被写体として含まれる顔と補正後の画像とを複数例示する図である。 入力画像に被写体として含まれる顔と補正後の画像とを示す図である。 本開示の一実施形態に係る画像撮像装置の構成を示すブロック図である。 第1補正領域および第2補正領域の他の例を示す図である。
 (第1の実施形態)
 本開示の第1の実施形態に係る画像処理装置100について、図1~図9を参照して説明する。本実施形態に係る画像処理装置100は、顔を被写体として含む画像に対して、顔に対応する領域を等方的に縮小又は拡大する補正を施すための装置である。
 <画像処理装置の構成>
 まず、図1に基づいて、画像印刷装置1の構成の一例について説明する。図1は、本実施形態の画像印刷装置1の構成を示す機能ブロック図である。図1に示すように、画像印刷装置1は、撮像部10、操作部20、表示部30、画像処理装置100(制御部)、印刷部50および記憶部60を備えている。
 撮像部10は、被写体を撮像するものであり、撮像した画像を入力画像として画像処理装置100に送信する。
 操作部20は、ユーザの入力を受け付けるものであり、例えばタッチパネル、マウスによって実現される。例えば、操作部20がタッチパネルの場合、当該タッチパネルを備えた表示部30に入力画像が表示される。
 表示部30は、各種画像を表示するものである。表示部30は、例えば、撮像部10が撮像した画像、または後述の画像補正部104が生成する出力画像を表示する。
 画像処理装置100は、撮像部10が撮像した画像(入力画像)に対して画像処理を行い、処理後(補正後)の出力画像を生成する画像処理装置として機能する。本実施形態では、画像処理装置100は、画像印刷装置1を統括的に制御する制御部としても機能する。画像処理装置100の具体的な構成については後述する。
 印刷部50は、画像処理装置100の処理によって生成された出力画像(画像)を印刷する。印刷部50は、当該出力画像に対してさらに、操作部20を介してユーザによって描画された画像を印刷してもよい。
 記憶部60は、例えば、画像処理装置100が実行する各種の制御プログラム等を記憶するものであり、例えばハードディスク、フラッシュメモリ等の不揮発性の記憶装置によって構成される。記憶部60には、例えば、入力画像および出力画像が記憶される。また、記憶部60には、画像処理(補正処理)、被写体の検出処理等、画像処理装置100の処理に必要なパラメータ等が記憶されていてもよい。
 なお、画像印刷装置1を制御する制御部が、画像処理装置100である必要は必ずしもない。例えば、画像印刷装置1と通信可能に接続できる外部装置が、画像処理装置100として機能するものであってもよい。
 <画像処理装置の構成>
 次に、画像処理装置100の構成について、図1および図2を参照して説明する。図2は、画像処理装置100が備える被写体検出部101の構成を示すブロック図である。
 画像処理装置100は、図1に示すように、被写体検出部101、補正領域設定部(設定部)102、補正強度設定部(設定部)103、および画像補正部(補正部)104を備えている。画像処理装置100には、人の顔を被写体として含む画像が入力される。画像処理装置100に入力される、人の顔を被写体として含む画像のことを、以下、「入力画像」と記載する。
 被写体検出部101は、入力画像に被写体として含まれる人の顔および顔器官を検出するための構成である。被写体検出部101は、例えば図2に示すように、顔検出部101aと顔器官検出部101bとにより構成することができる。顔検出部101aは、入力画像において、顔に対応する領域(以下、単に「顔」と記載することもある)を検出するための構成である。なお、顔に対応する領域の検出には、公知のアルゴリズム(例えば、入力画像から検出した肌色の情報を利用するなど)を用いることができるので、ここでは詳細に立ち入らない。顔器官検出部101bは、顔検出部101aが検出した顔に対応する領域において、予め定められた顔器官に対応する領域(以下、単に「顔器官」と記載することもある)を検出するための構成である。本実施形態において、顔器官検出部101bは、右目、左目、および口を検出する。これらの顔器官は、顎や頬などの輪郭を構成する顔器官と比べて、検出に失敗したり、誤検出したりする可能性が低い。なお、各顔器官に対応する領域の検出には、公知のアルゴリズム(例えば、パターンマッチングを利用するなど)を用いることができるので、ここでは詳細に立ち入らない。
 補正領域設定部102は、被写体検出部101が検出した顔および顔器官の位置に基づいて、第1補正領域および第2補正領域を設定するための構成である。本実施形態において、補正領域設定部102は、被写体検出部101が検出した右目、左目、および口の位置に基づいて、第1補正領域および第2補正領域を設定する。ここで、第1補正領域は、入力画像において、顔の中心に応じた位置と、顔の大きさに応じたサイズとを有する所定の形状の領域である。本実施形態では、第1補正領域は、顔の中心に応じた補正中心cからの距離が顔の大きさに応じた第1補正距離d1以下になる画素の集合として定義される円形領域である。換言すれば、第1補正領域は、補正中心cを中心位置とする半径(サイズ)が第1補正距離d1の円形の領域である。また、第2補正領域は、入力画像において、第1補正領域を取り囲む領域であり、例えば、補正中心cからの距離が第1補正距離d1よりも大きく、かつ、予め定められた第2補正距離d2(d2>d1)以下になる画素の集合として定義される円環領域である。例えば、顔を小さく見せるための補正を行う場合には、第1補正領域が縮小の対象となり、第2補正領域が拡大の対象となる。逆に、顔を大きく見せるための補正を行う場合には、第1補正領域が拡大の対象となり、第2補正領域が縮小の対象となる。なお、補正領域設定部102が実行する補正領域設定処理の具体例については、参照する図面を替えて後述する。
 補正強度設定部103は、補正領域設定部102が設定した第1補正領域および第2補正領域の拡縮率α,βを設定するための構成である。例えば、顔を小さく見せるための補正を行う場合、補正強度設定部103は、第1補正領域の拡縮率αを1よりも小さい正の定数に設定すると共に、第2補正領域の拡縮率βを1よりも大きい正の定数に設定する。逆に、顔を大きく見せるための補正を行う場合、補正強度設定部103は、第1補正領域の拡縮率αを1よりも大きい正の定数αに設定すると共に、第2補正領域の拡縮率βを1よりも小さい正の定数に設定する。なお、補正強度設定部103は、(1)第1補正領域および第2補正領域の拡縮率α,βを、予め設定された値に設定するように構成されていてもよいし、(2)第1補正領域および第2補正領域の拡縮率α,βを、ユーザが指定した値に設定するように構成されていてもよいし、(3)第1補正領域および第2補正領域の拡縮率α,βを、被写体検出部101が検出した顔および顔器官に基づいて設定するように構成されていてもよい。
 画像補正部104は、補正領域設定部102が設定した第1補正領域および第2補正領域に対して、補正強度設定部103が設定した拡縮率α,βに応じた補正処理を施すための構成である。画像補正部104が入力画像に対して施す補正処理としては、(1)補正領域設定部102が設定した第1補正領域を補正強度設定部103が設定した拡縮率α(α<1)で縮小すると共に、補正領域設定部102が設定した第2補正領域を補正強度設定部103が設定した拡縮率β(β>1)で拡大する補正処理、又は、(2)補正領域設定部102が設定した第1補正領域を補正強度設定部103が設定した拡縮率α(α>1)で拡大すると共に、補正領域設定部102が設定した第2補正領域を補正強度設定部103が設定した拡縮率β(β<1)で縮小する補正処理が挙げられる。なお、画像補正部104が実行する画像補正処理の具体例については、参照する図面を代えて後述する。
 記憶部105は、例えば、入力画像および出力画像(入力画像に対して、上記の補正処理を施すことにより得られる画像)を記憶する。記憶部105は、被写体検出部101、補正領域設定部102、補正強度設定部103、および画像補正部104が上記の処理を実行する際に参照する各種パラメータを記憶してもよい。
 なお、本実施形態においては、予め定められた顔器官の位置に基づいて第1補正領域および第2補正領域を設定する形態を採用しているが、本開示の一態様はこれに限定されない。すなわち、予め定められた顔器官からユーザにより選択された顔器官の位置に基づいて第1補正領域および第2補正領域を設定する形態を採用してもよい。例えば、画像処理装置100がタッチパネルを備えている場合、このタッチパネルを用いてユーザに顔器官を選択させることができる。この場合、画像処理装置100は、入力画像をタッチパネルに表示し、ユーザは、タッチパネルに表示された顔器官の何れかに触れる。画像処理装置100は、ユーザが触れた顔器官を、ユーザにより選択された顔器官と見做す。また、画像処理装置100にディスプレイとマウスとが接続されている場合、このマウスを用いてユーザに顔器官を選択させることができる。この場合、画像処理装置100は、入力画像をディスプレイに表示し、ユーザは、ディスプレイに表示された顔器官の何れかをマウスカーソルにより指し示す。画像処理装置100は、マウスカーソルにより指し示された顔器官を、ユーザにより選択された顔器官と見做す。
 <画像処理の流れ>
 次に、画像処理装置100が実施する画像処理の流れについて、図3を参照して説明する。図3は、画像処理装置100が実施する画像処理の流れを示すフローチャートである。
 画像処理装置100が実施する画像処理は、図3に示すように、被写体検出処理S301、補正領域設定処理S302、補正強度設定処理S303、画像補正処理S304を含んでいる。
 入力画像が画像処理装置100に与えられると、被写体検出処理S301が実行される。被写体検出処理S301は、入力画像に像として含まれる人の顔および顔器官を検出する処理であり、本実施形態においては、被写体検出部101によって実行される。
 被写体検出処理S301が完了すると、補正領域設定処理S302が実行される。被写体検出処理S301は、被写体検出処理S301にて検出した顔および顔器官に基づいて、第1補正領域および第2補正領域を設定する処理であり、本実施形態においては、補正領域設定部102によって実行される。
 補正領域設定処理S302が完了すると、補正強度設定処理S303が実行される。補正強度設定処理S303は、補正領域設定処理S302にて設定された第1補正領域および第2補正領域の拡縮率α,βを設定する処理であり、本実施形態においては、補正強度設定部103によって実行される。
 補正強度設定処理S303が完了すると、画像補正処理S304が実行される。画像補正処理S304は、補正領域設定処理S302にて設定された第1補正領域および第2補正領域を、補正強度設定処理S303にて設定された拡縮率α,βで縮小又は拡大する処理であり、本実施形態においては、画像補正部104によって実行される。
 なお、本実施形態においては、被写体検出処理S301、補正領域設定処理S302、および補正強度設定処理S303をこの順に実行する構成を採用しているが、本開示はこれに限定されない。補正強度設定処理S303において、補正領域設定処理S302にて設定された第1補正領域および第2補正領域に依らずに拡縮率を決定する場合には、補正強度設定処理S303を補正領域設定処理S302に先行して実行してもよい。また、補正強度設定処理S303において、被写体検出処理S301にて検出された顔および顔器官に依らずに拡縮率を決定する場合には、補正強度設定処理S303を被写体検出処理S301に先行して実施してもよい。例えば、補正強度設定処理S303において、拡縮率を予め定められた値に設定する場合には、補正強度設定処理S303を、被写体検出処理S301に先行して実施することができる。
 <補正領域設定処理の具体例>
 次に、補正領域設定部102が実施する補正領域設定処理S302の具体例について、図4および図5を参照して説明する。
 上述したように、顔の輪郭を構成する顔器官(頬や顎など)は、検出に失敗したり、誤検出したりする可能性が高い。そこで、本実施形態に係る補正領域設定処理S302は、顔の輪郭を構成する顔器官以外の顔器官、具体的には、左目、右目、および口の3つの顔器官の位置を参照して実行される。
 図4は、人の顔401を被写体として含む入力画像400を例示する図である。図4に例示した入力画像400には、左目402、右目403、および口404が被写体として含まれている。以下、被写体検出部101により検出された左目402、右目403、および口404の位置を、それぞれ下記のように表す。
  左目402の位置:( LEFT_x、 LEFT_y)、
  右目403の位置:(RIGHT_x、RIGHT_y)、
  口404の位置 :(MOUTH_x、MOUTH_y)。
 顔400の中心は、左目402、右目403、口404の重心に近似的に一致する。そこで、補正領域設定部102は、顔の中心を表す補正中心c=(cx、cy)を、左目402、右目403、口404の位置から下記の式(1)および(2)に従って算出する。
  cx=(LEFT_x+RIGHT_x+MOUTH_x)/3・・・(1)
  cy=(LEFT_y+RIGHT_y+MOUTH_y)/3・・・(2)
 また、顔の大きさは、両目の間隔(右目403と左目404との距離)dist_eyeに近似的に比例する。そこで、補正領域設定部102は、顔の大きさに応じた補正距離d1を、左目402および右目403の位置から下記の式(3)および(4)に従って算出する。
  dist_eye={(LEFT_x-RIGHT_x)
            +(LEFT_y-RIGHT_y)1/2・・・(3)
  d1=dist_eye×param_A            ・・・(4)
 式(4)において、param_Aは、予め設定された比例係数である。
 補正領域設定部102は、上記のように算出した補正中心cおよび第1補正距離d1を用いて、図5に示すように、第1補正領域501および第2補正領域502を設定する。ここで、第1補正領域501は、補正中心cからの距離が第1補正距離d1以下になる画素の集合として定義される円形領域である。一方、第2補正領域502は、補正中心cからの距離が第1補正距離d1よりも大きく、かつ、第2補正距離d2(d2>d1)以下になる画素の集合として定義される円環領域である。顔を小さく見せるための補正を行う場合、第1補正領域501は、縮小の対象となり、第2補正領域502は、拡大の対象となる。逆に、顔を大きく見せるための補正を行う場合、第1補正領域501は、拡大の対象となり、第2補正領域502は、縮小の対象となる。
 第2補正距離d2は、例えば、下記の式(5)に従って算出すればよい。
  d2=d1×param_B・・・(5)
 式(5)において、param_Bは、予め定められた比例係数である(ただし、param_B>1)。例えば、param_B=2.0とすると、第2補正距離d2は、第1補正距離d1の2倍となり、第2補正領域502の幅(外径と内径との差)は、第1補正領域501の半径と等しくなる。
 なお、実際の人の顔は円ではないため、第1補正領域501の外周は、顔500の輪郭と一致しない。しかしながら、式(4)に現れる係数param_Aを適切に設定すれば、第1補正領域501の外周により、顔500の輪郭を精度良く近似することができる。実際、両目の間隔と顔の大きさとの間には有意な相関がある。したがって、複数の人について両目の間隔に対する顔の大きさの比を実測し、係数param_Aを実測した比の平均値に設定すれば、第1補正領域501の外周により、顔500の輪郭を精度良く近似することができる。なお、被写体となり得る人が特定の属性(年齢や性別など)を有する人に限定されている場合には、上記のように係数param_Aを設定する際にサンプルとする人もその属性を有する人に限定することが好ましい。これにより、第1補正領域501の外周と顔500の輪郭との差を、係数param_Aを設定する際にサンプルとする人を限定しない場合よりも小さくすることができる。
 <画像補正処理の具体例>
 次に、画像補正部104が実施する画像補正処理S304の具体例について、図6および図7を参照して説明する。
 画像補正処理S304において入力画像に施す補正は、(1)第1補正領域を等方的に縮小すると共に、(2)第2補正領域を等方的に拡大する補正である。より具体的に言うと、補正中心cからの距離がrであり、補正中心c=(c1,c2)から見た方向がθである点P=(rcosθ,rsinθ)+(c1,c2)を、(1)r≦d1であるときには、補正中心cからの距離がr’=αrであり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写し、(2)d1<r≦d2であるときには、補正中心cからの距離がr’=βr-(β‐α)d1であり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写す補正である。ここで、αは、第1補正領域に対する拡縮率として補正強度設定部103にて設定された正の定数であり、α<1を満たす。一方、βは、第2補正領域に対する拡縮率として補正強度設定部103にて設定された正の定数であり、β=(d2-αd1)/(d2-d1)により定義され、β>1を満たす。
 例えば、α=0.9であり、β=1.1(d2=2d1)である場合、補正前の点Pの補正中心cからの距離rと、補正後の点Pの補正中心cからの距離r’との関係は、図6に示すグラフのようになる。また、この場合、補正による変位を矢印として表せば、図7に示すようになる。図7において、矢印の始点は補正前の点Pを示し、矢印の終点は補正後の点P’を示し、矢印の長さは補正量を示し、矢印の方向は補正方向を示す。図6および図7から明らかなように、(1)第1補正領域701(r≦d1)は等方的に縮小され、(2)第2補正領域702(d1<r≦d2)は等方的に拡大され、(3)その他の領域703(d2<r)は不動である。第2補正領域702は、外周を保ったまま内向きに拡大され、補正後の第2補正領域702の内周は、補正後の第1補正領域701の外周と一致する。
 図6および図7において注目すべき第1の点は、第1補正領域701に関して、各点Pに対する補正量を、その点Pの補正中心cからの距離rに応じて定めている点である。具体的には、各点Pに対する補正量を、その点Pの補正中心cからの距離rに相関させている。更に一態様において、各点Pに対する補正量を、その点Pの補正中心cからの距離rに比例させている。このため、第1補正領域701における補正量は、補正中心cに近づくほど小さくなり、第1補正領域701の外周に近づくほど大きくなる。上述したように、補正中心cは、顔の中心を近似する点であり、第1補正領域701の外周は、顔の輪郭を近似する円である。したがって、補正量は、顔の中心に近づくほど小さくなり、顔の輪郭に近づくほど大きくなる。このため、顔の中心付近にある顔器官(目、鼻、口など)への影響を抑えながら、顔の大きさを十分に小さくすることができる。図6および図7において注目すべき第2の点は、第2補正領域702が外周を保ったまま内向きに拡大される点である。したがって、顔の形状の個人差等に起因して、顔が第1補正領域701に収まらず、第2補正領域702にはみ出している場合でも、顔の輪郭を顔の中心に向かって移動させ、顔の大きさを小さくすることができる。
 なお、補正領域設定部102は、第1補正領域701に関して、各点Pに対する補正量を、その点Pの補正中心cからの距離rに応じて定めるものであればよく、上記のように、各点Pに対する補正量を、その点Pの補正中心cからの距離rに比例させるものでなくともよい。例えば、図6に示すグラフが曲線となるように、各点Pに対する補正量と、その点Pの補正中心cからの距離rとの対応関係を定めてもよい。
 図8の(a)は、入力画像に被写体として含まれる顔800aを示す図である。顔800aの輪郭805aは、円形である。図8の(b)は、入力画像に被写体として含まれる別の顔800bを示す図である。顔800bの輪郭805bは、縦に長い楕円形である。すなわち、顔800aは、丸顔であるのに対して、顔800bは、面長である。ただし、顔800bに含まれる右目、左目、および口の位置は、それぞれ、顔800aに含まれる右目、左目、および口の位置と一致している。このため、顔800bに含まれる右目、左目、および口に基づいて設定した第1補正領域および第2補正領域は、それぞれ、顔800aに含まれる右目、左目、および口に基づいて設定した第1補正領域および第2補正領域と一致する。
 図8の(c)は、顔800aに含まれる右目、左目、および口に基づいて設定した第1補正領域801aと顔800aの輪郭805aとを、補正による変位を示す矢印と共に示す図である。顔800aの輪郭805aが円形である場合、補正中心cから顔800aの輪郭805aまでの距離は、方向に依らず一定となる。したがって、顔800aの輪郭805aに対する補正量は、方向に依らず一定となる。その結果、補正後の顔800aの輪郭805aは、補正前の顔800aの輪郭805aと同様、円形になる。すなわち、補正後の顔800aは、補正前の顔800aと同様、丸顔になる。
 図8の(d)は、顔800bに含まれる右目、左目、および口に基づいて設定した第1補正領域801bと顔800bの輪郭805bとを、補正による変位を示す矢印と共に示す図である。顔800bの輪郭805bが縦に長い楕円形である場合、補正中心cから顔800bの輪郭805bまでの距離は、上下方向で相対的に大きくなり、左右方向で相対的に小さくなる。したがって、顔800bの輪郭805bに対する補正量は、上下方向で相対的に大きくなり、左右方向で相対的に小さくなる。すなわち、補正中心からの距離に基づいて補正することで、面長の顔は横方向の補正量が小さく設定されることになり、細い顔に対する横方向の補正量が弱くなるため好適である。補正後の顔800bの輪郭805bは、補正前の顔800bの輪郭805bよりも円形に近づく。すなわち、補正後の顔800bは、補正前の顔800bよりも丸顔に近づく。
 また、補正量を補正中心cからの距離rに応じて定めることで、以下の効果も得ることができる。図9の(a)は、入力画像に被写体として含まれる顔900を示す図である。顔900は、紙面に向かって右を向いており、顔900の右目、左目、および口に基づいて設定された補正中心cに対して顔の位置が左に偏った状態となっている。
 図9の(b)は、顔900に含まれる右目、左目、および口に基づいて設定した第1補正領域901と顔900の輪郭線905とを、補正による変位を示す矢印と共に示す図である。顔900が紙面に向かって右を向いている場合、補正中心cから顔900の輪郭905までの距離は、補正中心cよりも左側で相対的に大きくなり、補正中心cよりも右側で相対的に小さくなる。したがって、顔900の輪郭905に対する補正量は、補正中心cよりも左側で相対的に大きくなり、補正中心cよりも右側で相対的に小さくなる。したがって、正面を向いて撮影された場合に比べ画像上で縮小されて撮影されている顔の右側の補正量は小さくなり、逆に、正面を向いて撮影された場合に比べ画像上で拡大されて撮影されている顔の左側の補正量が大きくなるため、顔の左右がバランスよく補正され好適な補正画像が得られる。
 <付記事項>
 以上のように、本実施形態では、顔の中心を表す補正中心cと顔の大きさを表す補正距離d1とに基づいて、縮小対象(又は拡大対象)とする第1補正領域および拡大対象(又は縮小対象)とする第2補正領域を設定している。顔の中心および顔の大きさは、頬や顎など、顔の輪郭を構成する顔器官の位置を参照することなく特定することが可能である。実際、本実施形態では、顔の中心を表す補正中心cを、右目、左目、および口の位置を参照することにより特定すると共に、顔の大きさ表す補正距離d1を、右目および左目の位置を参照することにより特定している。左目、右目、および口は、顔の輪郭を構成する顔器官と比べて、検出に失敗したり、誤検出したりする可能性が低い。したがって、実施形態に係る画像処理装置100は、顔の輪郭を構成する顔器官の検出が必須となる従来の画像処理装置と比べて、補正が不可能になったり、補正が不適切になったりする可能性が低い。
 なお、本実施形態においては、顔の中心および顔の大きさを特定するために参照する顔器官として、右目、左目、および口を用いているが、本開示の一態様はこれに限定されない。すなわち、顔の中心および顔の大きさを特定するために参照する顔器官として、顔の輪郭を構成する顔器官以外の顔器官を用いれば、本実施形態に係る画像処理装置100と同様の効果が得られる。顔の輪郭を構成する顔器官以外の顔器官としては、右目、左目、および口の他に、右眉、左眉、および鼻が挙げられる。
 また、本実施形態の他の一態様は、印刷機能を有さない画像撮像装置であってもよい。図17は、本実施形態の他の一態様に係る撮像装置2の構成を示す機能ブロック図である。撮像装置2は、画像印刷装置1と同様、撮像部10、操作部20、表示部30、制御部100(画像処理装置)、および記憶部60を備えているが、印刷部50を備えていない。
 また、上述したように、本実施形態において、第1補正領域の形状は円形に限定されない。すなわち、第1補正領域は、顔の中心に応じた位置と、顔の大きさに応じたサイズとを有する所定の形状の領域であればよく、所定の形状としては、円形の他、楕円形、多角形等であってもよい。また、第2補正領域の形状も円形に限定されず、楕円形、多角形等であってもよい。図18の(a)は、所定の形状を楕円形とした場合の第1補正領域501aおよび第2補正領域502aの例を示す図であり、図18の(b)は、所定の形状を多角形とした場合の第1補正領域501aおよび第2補正領域502bの例を示す図である。
 図18の(a)に示すように、所定の形状を楕円形とした場合、第1補正領域501aは、例えば、補正中心cを中心位置とし、第1補正距離d1を長径(サイズ)とした楕円形の領域であり得る。楕円率は特に限定されず、予め定められた値を用いればよい。また、図18の(b)に示すように、所定の形状を多角形とした場合、第1補正領域501bは、例えば、補正中心cを中心(重心)位置とし、第1補正距離d1を縦方向の幅(サイズ)とした六角形の領域である。多角形の種類は特に限定されず、六角形の替わりに、他の多角形(三角形、四角形、五角形、八角形等)を用いてもよい。
 以上のように、第1補正領域および第2補正領域の形状を円形以外の形状とした場合、画像補正処理S304において入力画像に施す補正は、以下のようになる。すなわち、補正中心cから見た方向がθであるときの補正中心cから第1補正領域の外周までの距離をd1(θ)、補正中心cから第2補正領域の外周までの距離をd2(θ)とすると、補正中心cからの距離がrであり、補正中心c=(c1,c2)から見た方向がθである点P=(rcosθ,rsinθ)+(c1,c2)を、(1)r≦d1(θ)であるときには、補正中心cからの距離がr’=αrであり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写し、(2)d1(θ)<r≦d2(θ)であるときには、補正中心cからの距離がr’=βr-(β‐α)d1(θ)であり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写す補正である。ここで、αは、第1補正領域に対する拡縮率として補正強度設定部103にて設定された正の定数であり、α<1を満たす。一方、βは、第2補正領域に対する拡縮率として補正強度設定部103にて設定された正の定数であり、β=(d2(θ)-αd1(θ))/(d2(θ)-d1(θ))により定義され、β>1を満たす。
 このように、第1補正領域および第2補正領域の形状は円形以外の形状としてもよく、その場合には、画像補正処理を行う際に使用する第1補正距離として、第1補正領域の形状に対応して角度θ毎に規定されたd1(θ)を使用し、第2補正距離として、第2補正領域の形状に対応して角度θ毎に規定されたd2(θ)を使用すれよい。これは、以下の実施形態についても同様である。
 (第2の実施形態)
 本開示の第2の実施形態に係る画像処理装置100について、図10~図12を参照して説明する。第1の実施形態に係る画像処理装置100が、方向に依存しない拡縮率αで第1補正領域を等方的に縮小する構成を採用していたのに対して、本実施形態に係る画像処理装置100は、方向に依存する拡縮率α(θ)で第1補正領域を非等方的に縮小する構成を採用している。ここで、θは、補正中心cから見た方向を表し、入力画像の右方向においてθ=0、入力画像の上方向においてθ=π/2、入力画像の左方向においてθ=π、入力画像の下方向においてθ=3π/2となる(単位はラジアン)。
 図10の(a)は、入力画像に被写体として含まれる補正前の顔1000を示す図であり、図10の(b)は、出力画像に被写体として含まれる補正後の顔1001、1002を示す図である。図10の(b)において、補正後の顔1001は、第1の実施形態に係る画像処理装置100により得られる出力画像に被写体として含まれる顔、すなわち、補正前の顔1000を等方的に縮小した場合に得られる顔であり、補正後の顔1002は、本実施形態に係る画像処理装置により得られる出力画像に被写体として含まれる顔、すなわち、補正前の顔1000を非等方的に縮小した場合に得られる顔である。本実施形態に係る画像処理装置100による補正では、顔1000の上方向の補正量が相対的に小さく、顔1000の右下方向および左下方向の補正量が相対的に大きく、顔1000の右方向、左方向、および下方向の補正量が中程度となるように、各方向の拡縮率α(θ)を設定している。このため、補正後の顔1002は、頬から顎にかけてのラインが補正前の顔1000よりもシャープになっている。なお、入力画像に被写体として含まれる顔1000が傾いている場合、入力画像の上下左右方向と顔1000の上下左右方向とが一致しない。そこで、本実施形態においては、入力画像における顔1000の傾きを考慮したうえで、各方向の拡縮率α(θ)を設定している。
 本実施形態に係る画像処理装置100は、例えば、第1の実施形態に係る画像処理装置100に対して、以下の変更を加えることによって実現することができる。
 変更点1:補正強度設定部(推定部)103に対して、顔器官(具体的には右目および左目)の位置から顔の傾きθ_fを算出する機能を追加する。
 変更点2:補正強度設定部103において、方向に依存しない拡縮率α,βを設定する機能を、方向に依存する拡縮率α(θ),β(θ)を設定する機能に置き換える。
 変更点3:画像補正部104において、方向に依存しない拡縮率αで第1補正領域を等方的に縮小すると共に、方向に依存しない拡縮率βで第2補正領域を等方的に拡大する機能を、方向に依存した拡縮率α(θ)で第1補正領域を非等方的に縮小すると共に、方向に依存した拡縮率β(θ)で第2補正領域を非等方的に拡大する機能に置き換える。
 まず、右目および左目の位置から顔の傾きθ_fを算出する方法について、図11を参照して説明する。
 図11は、人の顔1101を被写体として含む入力画像1100を示す図である。顔の傾きθ_fは、入力画像1100のx軸(横軸)と左右の目を結ぶ直線1102との成す角として定義される。左目1103の位置を(LEFT_x、 LEFT_y)、右目1104の位置を(RIGHT_x、RIGHT_y)とすると、顔の傾きθ_fは、下記の式(6)に従って算出することができる。
  θ_f=arctan((RIGHT_y-LEFT_y)/
                   (RIGHT_x-LEFT_x))・・・(6)
 次に、補正中心cから見た方向に応じた拡縮率α(θ),β(θ)を設定する方法について、図12を参照して説明する。
 顔の傾きθ_fを用いると、補正中心cから見た方向θ(画像の右方向をθ=0、画像の上方向をθ=π/2、画像の左方向をθ=π、画像の下方向をθ=3π/2とする)と、顔の方向とを対応付けることができる。すなわち、θ=θ_fが顔の右方向、θ=θ_f+π/2の方向が顔の上方向、θ=θ_f+πの方向が顔の左方向、θ=θ_f+3π/2の方向が顔の下方向となる(単位はラジアン)。
 第1補正領域に対する拡縮率α(θ)は、例えば、α(θ)=1-(1-α)γ(θ)に従って設定することができる。ここで、αは、第1の実施形態において導入された方向に依存しない定数であり、γ(θ)は、本実施形態において導入された方向に依存する係数である。図12は、係数γ(θ)の一例を示すグラフである。図12において、横軸は、補正中心cから見た方向θを表し、縦軸は、係数γ(θ)を表す。例えば、α=0.9である場合、(1)θ=θ_f(顔の右方向)では、γ(θ)=0.5なのでα(θ)=0.95となり、(2)θ=θ_f+π/2(顔の上方向)では、γ(θ)=0なのでα(θ)=1になり、(3)θ=θ_f+π(顔の左方向)では、γ(θ)=0.5なのでα(θ)=0.95となり、(4)θ=θ_f+3π/2では、γ(θ)=0.5なのでα(θ)=0.95となる。また、θ=θ_f+5π/4(顔の左下)およびθ=θ_f+7π/4(顔の右下)では、γ(θ)=1なのでα(θ)=0.9となる。すなわち、係数γ(θ)を図12に示すように設定した場合、顔の上方向の補正量が最も小さくなり、顔の横方向および下方向の補正量が中程度となり、顔の斜め下方向の補正量が最も大きくなる。第2補正領域に対する拡縮率β(θ)は、第1の実施形態と同様、β(θ)=(d2-α(θ)d1)/(d2-d1)に従って設定すればよい。
 画像補正部104による補正処理は、第1の実施形態と同様、補正中心cからの距離がrであり、補正中心c=(c1,c2)から見た方向がθである点P=(rcosθ,rsinθ)+(c1,c2)を、(1)r≦d1であるときには、補正中心cからの距離がr’=α(θ)rであり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写し、(2)d1<r≦d2であるときには、補正中心cからの距離がr’=β(θ)r-(β(θ)‐α(θ))d1であり、補正中心cから見た方向がθである点P’=(r’cosθ,r’sinθ)+(c1,c2)に写すことによって実現される。各方向に対する拡縮率α(θ),β(θ)が上記のように設定されていれば、図10に示すように、補正後の顔1002は、頬から顎にかけてのラインが補正前の顔1000よりもシャープになる。
 以上のように本実施形態では、顔を被写体として含む入力画像に対して、方向に依存する拡縮率α(θ)で第1補正領域を非等方的に縮小する補正を施している。このため、拡縮率α(θ)を適宜設定することにより、顔の頬から顎にかけてのラインをシャープにするなど、顔を所望の形に近づける補正を行うことができる。また、本実施形態では、入力画像に含まれる顔の傾きθ_fを特定すると共に、特定した顔の傾きθ_fに応じて拡縮率α(θ)を設定している。このため、入力画像に被写体として含まれる顔が傾いている場合でも、顔を所望の形に近づける補正を行うことができる。
 (第3の実施形態)
 本開示の第3の実施形態に係る画像処理装置100について、図13~図14を参照して説明する。第1の実施形態に係る画像処理装置100が、予め定められた顔器官(具体的には、右目、左目、および口)の位置に基づいて第1補正領域および第2補正領域を設定する構成を採用していたのに対して、本実施形態に係る画像処理装置100は、予め定められた顔器官(具体的には、右目、左目、および口)のうち、検出に成功した顔器官の位置に基づいて第1補正領域および第2補正領域を設定する構成を採用している。
 第1の実施形態に係る画像処理装置100が検出対象とする右目、左目、および口は、従来の画像処理装置が検出対象とする頬や顎などと比べて、検出に失敗する可能性が低い。とはいえ、例えば、図13に示すようにマスク1301を掛けた顔1300を被写体として含む入力画像が与えられた場合、マスク1301に覆い隠された口の位置を入力画像から検出することはできない。第1の実施形態に係る画像処理装置100では、口の検出に失敗した場合に、入力画像の補正を行うことができない。なぜなら、第1補正領域および第2補正領域の設定に口の位置を要するからである。これに対して、本実施形態に係る画像処理装置100では、口の検出に失敗した場合にも、入力画像の補正を行うことができる。なぜなら、口の検出に失敗した場合には、右目および左目の位置に基づいて第1補正領域および第2補正領域が設定されるからである。
 本実施形態に係る画像処理装置100は、例えば、第1の実施形態に係る画像処理装置100に対して、以下の変更を加えることによって実現することができる。
 変更点1:補正領域設定部102に対して、右目および左目の位置に基づいて第1補正領域および第2補正領域を設定する機能を追加する。これにより、補正領域設定部102は、右目、左目、および口の位置に基づいて第1補正領域および第2補正領域を設定する機能と、右目および左目の位置に基づいて第1補正領域および第2補正領域を設定する機能との両方を持つことになる。
 変更点2:補正領域設定部102に対して、口の検出に成功したか否かに応じて、第1補正領域および第2補正領域を設定するために利用する機能を切り替える構成を追加する。これにより、補正領域設定部102は、口の検出に成功した場合には、右目、左目、および口の位置に基づいて第1補正領域および第2補正領域を設定し、口の検出に失敗した場合には、右目および左目の位置に基づいて第1補正領域および第2補正領域を設定することになる。
 右目、左目、および口の位置に基づいて第1補正領域および第2補正領域を設定する機能は、第1の実施形態において説明した方法により実現することができる。一方、右目および左目の位置に基づいて第1補正領域および第2補正領域を設定する機能は、以下に説明する方法により実現することができる。
 図14は、入力画像に被写体として含まれる顔1400を例示する図である。この入力画像には、左目1402および右目1403が被写体として含まれている。以下、被写体検出部101により検出された左目1402および右目1403の位置を、それぞれ下記のように表す。
  左目1402の位置:( LEFT_x、 LEFT_y)、
  右目1403の位置:(RIGHT_x、RIGHT_y)。
 顔1400の中心は、左目1402と右目1403との中点1401から、左目1402と右目1403とを結ぶ直線に垂直な方向(口の方向)に、両面の間隔dist_eyeのparam_c倍の長さ分移動した点により近似することができる。そこで、補正領域設定部102は、顔の中心を表す補正中心c=(cx、cy)を、下記の式(7)および(8)に従って算出する。
  cx=(LEFT_x+RIGHT_x)/2-
           (RIGHT_y-LEFT_y)×param_c・・・(7)
  cy=(LEFT_y+RIGHT_y)/2-
           (LEFT_x-RIGHT_x)×param_c・・・(8)
 両目の間隔と両目の中点から顔の中心までの距離との間には有意な相関がある。したがって、複数の人について両目の間隔に対する両面の中点から顔の中心までの距離の比を実測し、係数param_cを実測した比の平均値に設定すれば、顔の中心を精度良く近似する補正中心cを算出することが可能になる。
 補正領域設定部102は、上記のように算出した補正中心c、および、第1の実施形態と同様に式(3)および(4)に従って算出した第1補正距離d1を用いて、第1補正領域および第2補正領域を設定する。
 なお、ここでは、口の位置が検出できなかった場合に右目および左目の位置に基づいて第1補正領域および第2補正領域を設定する形態について説明したが、本実施形態はこれに限定されない。すなわち、右目の位置が検出できなかった場合に左目および口の位置に基づいて第1補正領域および第2補正領域を設定する形態、或いは、左目の位置が検出できなかった場合に右目および口の位置に基づいて第1補正領域および第2補正領域を設定する形態についても、本実施形態の範疇に含まれる。また、これらの機能を併せ持った形態、すなわち、右目、左目、及び口うち、何れか1つの顔器官の検出に失敗した場合に検出に成功した残り2つの顔器官の位置に基づいて第1補正領域および第2補正領域を設定する形態についても、本実施形態の範疇に含まれる。
 また、ここでは、右目、左目、および口を検出対象とする形態について説明したが、本実施形態はこれに限定されない。すなわち、これ以外の顔器官を検出対象とする形態、例えば、右目、左目、および鼻を検出候補とする形態、或いは、右耳、左耳、および口を検出対象とする形態についても、本実施形態の範疇に含まれる。左右の目の代替となり得る顔器官としては、左右の耳の他にも、左右の頬や左右の眉(眉毛)などが挙げられる。また、口の代替となり得る顔器官としては、鼻の他にも、顎や頭頂部などが挙げられる。本実施形態においては、或る顔器官の検出に失敗しても他の顔器官に基づいて第1補正領域および第2補正領域を設定することができる。したがって、検出に失敗する可能性の高い顔の輪郭を構成する顔器官(耳、頬、顎、頭頂部など)も検出対象とすることができる。また、右目または左目の目頭または目尻の位置を検出候補に加えたり、口の右口角または左口角の位置を検出候補に加えたりしてもよい。すなわち、各顔器官の各部位の位置も検出対象に加えることができる。
 以上のように、本実施形態では、予め定められた顔器官(例えば、右目、左目、および口)のうち、検出に成功した顔器官(例えば、右目および左目)の位置に基づいて第1補正領域および第2補正領域を設定している。したがって、予め定められた顔器官の一部(例えば、口)の検出に失敗しても、第1補正領域および第2補正領域を設定することが可能である。
 (第4の実施形態)
 本開示の第4の実施形態に係る画像処理装置100について、図15~図16を参照して説明する。本実施形態に係る画像処理装置100は、第2の実施形態に係る画像処理装置100のように、方向に依存する拡縮率α(θ)で第1補正領域を非等方的に縮小する構成と、第3の実施形態に係る画像処理装置100のように、予め定められた顔器官(具体的には、右目、左目、および口)のうち、検出に成功した顔器官の位置に基づいて第1補正領域および第2補正領域を設定する構成とをそれぞれ採用している。
 このとき、検出に成功した顔器官の位置に基づいて第1補正領域および第2補正領域を設定する構成では、検出に成功した顔器官の組み合わせによっては、補正強度設定部103が顔の傾きを推定することができない場合がある。そのような場合に、画像補正部104が常に第1補正領域を非等方的に縮小する構成であると、例えば、図15の(e)に示すように、不自然な補正がなされてしまう。これに対して、本実施形態に係る画像処理装置100では、顔の傾きを推定することができない場合には、例えば、図16の(a)に示すように、第1補正領域を等方的に縮小して、不自然な補正がなされることを避け、顔の傾きを推定することができる場合には、例えば、図16の(b)に示すように、第1補正領域を非等方的に縮小して、顎のラインをシャープにするなどの効果を得ることができる。
 本実施形態に係る画像処理装置100は、例えば、第2の実施形態に係る画像処理装置100に対して、以下の変更を加えることによって実現することができる。
 変更点1:補正強度設定部103に対して、第3の実施形態に係る画像処理装置100のように、検出に成功した顔器官の位置に基づいて、第1補正領域および第2補正領域を設定する機能を追加する。これにより、一部の顔器官の検出に失敗した場合であっても、検出に成功した顔器官の位置に基づいて、第1補正領域および第2補正領域を設定することができる。
 変更点2:補正強度設定部103に対して、検出に成功した顔器官の位置から顔の傾きθ_fを算出することができるか否かを判定し、顔の傾きθ_fを算出できない場合には、方向に依存しない拡縮率α,βを設定し、顔の傾きθ_fを算出できる場合には、方向に依存する拡縮率α(θ),β(θ)を設定する機能を追加する。これにより、顔の傾きを推定可能か否かに応じて、第1補正領域を非等方的に縮小するか否かを切り替えることができる。
 図15の(a)は、入力画像1500を示しており、人物の顔1501が写っている。点線の矩形の枠で示す領域は、顔領域1502であり、顔領域のみ検出できており、顔器官は検出できていない状態を示す。また、図15の(b)は入力画像1503を示しており、人物の顔1504が写っている。点線の矩形の枠で示す領域は、顔領域1505であり、顔領域のみ検出できており、顔器官は検出できていない状態を示す。図15の(a)および(b)に示すように、顔1501と顔1504とは画像の垂直および水平方向に対する顔の傾きが異なるが、顔領域が、画像の水平および垂直方向に平行な矩形領域として検出される場合、矩形の顔領域から顔の傾きを算出することができない。一方、検出した顔領域の位置から大きくずれていなければ、矩形の顔領域の中心を、補正処理を行う際の補正中心として設定することができる。また、顔領域が、おおよそ顔の輪郭に外接するような大きさで検出されていれば、矩形の大きさに基づいて補正領域と設定することができる。矩形の横幅をrect_x、縦幅をrect_yとすると、d1を例えば、
 d1=(rect_x+rect_y)/4・・・(9)
として設定することができる。図15の(a)および(b)に示すように、画像から検出した顔領域や顔器官の情報から、顔の中心位置や顔の大きさを推定することができ、顔の傾きを推定することができない場合は、補正中心と補正領域の範囲を設定し、補正中心からの角度に依らず一定の補正量で顔を補正する。図15の(c)および(d)はそれぞれ、図15の(a)および(b)に示す顔1501と顔1504を、等方的な補正量で補正した画像1506と画像1507を示している。等方的な補正量で顔を補正することで、顔全体が小さく補正されている。
 ここで、図15の(e)は、図15の(b)に示す画像1504において、顔の傾きを矩形の角度(x方向)として、図12に示すような非等方的な補正を行った画像1508を示している。顔1504の傾きと矩形の角度が異なっているため、非等方的な補正を行うと、所望の方向とは異なる方向が強く補正され、顔の形状が不自然に補正されている。本実施形態によれば、このような不自然な補正を避けることができる。
 なお、顔器官が検出できない場合であっても、図16の(a)に示すように、顔1601の顔領域を顔1601の向きに応じた顔領域1602として検出できる場合は、顔領域のみしか検出できない場合においても、補正中心、補正領域の大きさ、顔の角度に基づいた補正を行うことができる。図16の(b)は、図16の(a)に示す画像1601において、顔の傾きを、矩形の角度として、図12に示すような非等方的な補正を行った画像1603を示しており、頬から顎のラインがシャープになり、小顔な印象の画像に補正することができている。
 なお、以上では、顔器官が検出できず、矩形で示す顔領域のみが検出できた場合について述べたが、顔領域と顔器官が1つのみ検出できた場合も、検出された顔器官によっては、顔の角度の推定が困難であるため、等方的な補正量で顔を補正する方が好適である。例えば、検出された顔器官が鼻のみである場合は、鼻の位置は顔領域の中心付近に位置しているため、顔の傾きの推定が困難である。いっぽう、検出された顔器官が顎であれば、顎の位置は顔領域の下方向に位置しているため、顔領域を示す矩形が示す位置と顎の位置とに基づいて、顔の傾きを推定することができる可能性がある。顔の傾きが推定できる場合は、非等方的な補正が可能である。
 以上説明したように、本実施形態では、顔の傾きを推定するために必要な顔領域及び顔器官の情報は取得できないが、補正中心と補正領域を設定するために必要な顔領域及び顔器官の情報は取得できる場合に、等方的な補正量で顔を補正することで、誤った角度に基づく補正により意図しない形状に顔が補正されることを回避することができる。
 〔プロセッサによる実施例〕
 画像処理装置100の制御ブロック(特に、被写体検出部101、補正領域設定部102、補正強度設定部103および画像補正部104)は、画像処理装置100が備えるプロセッサによって実現することができる。より詳細には、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)によるソフトウェア処理によって実現してもよいし、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)によるハードウェア処理によって実現してもよい。
 前者の場合、画像処理装置100は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本開示の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本開示の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本開示の態様1に係る画像処理装置(100)は、顔を含む画像を補正する画像処理装置であって、前記画像に対し、前記顔の中心に応じた位置と、前記顔の大きさに応じたサイズとを有する所定の形状の第1補正領域を縮小すると共に、第1補正領域の周囲の第2補正領域を拡大する補正処理、または、前記第1補正領域を拡大すると共に、前記第2補正領域を縮小する補正処理を施す補正部(画像補正部104)を備えている。
 上記の構成によれば、顔の中心と顔の大きさとに基づいて、縮小対象(又は拡大対象)とする第1補正領域および拡大対象(又は縮小対象)とする第2補正領域を設定することができる。顔の中心および顔の大きさは、頬や顎など、顔の輪郭を構成する顔器官の位置を参照することなく特定することが可能である。これにより、上記構成によれば、顔の輪郭を構成する顔器官の検出が必須となる従来の画像処理装置と比べて、補正が不可能になったり、補正が不適切になったりする可能性が低い。
 本開示の態様2に係る画像処理装置は、上記態様1において、前記所定の形状は、円形であり、前記顔の中心に応じた位置は当該円形の中心であり、前記顔の大きさに応じたサイズは当該円形の半径であってもよい。
 上記の構成によれば、第1補正領域の設定および第1補正領域の縮小または拡大を簡易な処理で行うことができる。
 本開示の態様3に係る画像処理装置は、上記態様1または2において、予め定められた顔器官の前記画像における位置に基づいて、前記第1補正領域の位置およびサイズを設定する設定部(補正領域設定部102、補正強度設定部103)を更に備えており、前記補正部は、前記設定部が設定した前記第1補正領域の位置およびサイズに基づいて、前記第1補正領域及び前記第2補正領域を決定するものであってもよい。
 上記の構成によれば、検出した顔器官の位置に基づいて、前記第1補正領域の位置およびサイズを好適に決定することができる。
 本開示の態様4に係る画像処理装置は、上記態様3において、特定の顔器官の前記画像における位置に基づいて、前記顔の傾きを推定する推定部(補正強度設定部103)を更に備えており、前記設定部は、前記補正処理における前記第1補正領域の拡縮率を、前記推定部が推定した前記顔の傾きに応じて非等方的に設定するものであってもよい。
 上記の構成によれば、補正後の画像における顔の顎をシャープにするなど、好適な効果を得ることができる。
 本開示の態様5に係る画像処理装置は、上記態様3または4において、前記予め定められた顔器官は、前記顔の目、鼻、口、眉毛、および耳からなる群より選択されるものであってもよい。
 上記の構成によれば、検出した顔器官の位置に基づいて、第1補正領域の位置およびサイズを好適に決定することができる。
 本開示の態様6に係る画像処理装置は、上記態様1または2において、予め定められた複数の顔器官のうち、検出に成功した顔器官の前記画像における位置に基づいて、前記第1補正領域の位置およびサイズを設定する設定部(補正領域設定部102、補正強度設定部103)を更に備えており、前記補正部は、前記設定部が設定した前記第1補正領域の位置およびサイズに基づいて、前記第1補正領域及び前記第2補正領域を決定するものであってもよい。
 上記の構成によれば、一部の顔器官の検出に失敗した場合であっても、検出に成功した顔器官の位置に基づいて、第1補正領域の位置およびサイズを好適に決定することができる。
 本開示の態様7に係る画像処理装置は、上記態様6において、特定の顔器官の前記画像における位置に基づいて、前記顔の傾きを推定する推定部(補正強度設定部103)を更に備えており、前記設定部は、前記特定の顔器官の検出に成功した場合、前記補正処理における前記第1補正領域の拡縮率を、前記推定部が推定した前記顔の傾きに応じて非等方的に設定し、前記特定の顔器官の検出に失敗した場合、前記補正処理における前記第1補正領域の拡縮率を等方的に設定するものであってもよい。
 上記の構成によれば、顔の傾きを推定できるときは、第1補正領域の拡縮率を非等方的に設定することにより、好適な効果を得ることができ、顔の傾きを推定できないときは、第1補正領域の拡縮率を等方的に設定することにより、不自然な補正がなされることを避けることができる。
 本開示の態様8に係る画像処理装置は、上記態様6または7において、前記顔器官は、前記顔の目、鼻、口、眉毛、耳、顎、頭頂部、頬、および輪郭からなる群より選択されるものであってもよい。
 上記の構成によれば、検出した顔器官の位置に基づいて、第1補正領域の位置およびサイズを好適に決定することができる。
 本開示の態様9に係る撮像装置は、前記顔を撮像して前記画像を取得する撮像部と、前記撮像部が撮像した前記顔を含む前記画像に対して画像処理を行う、上記態様1から8の何れか1つの画像処理装置と、を備えていてもよい。
 上記の構成によれば、ユーザは、人物の顔を撮像し、撮像した画像に対し画像処理を容易に施すことができる。
 本開示の態様10に係る撮像装置は、上記態様9において、前記画像を表示する表示部をさらに備えていてもよい。
 上記の構成によれば、ユーザは、撮像した画像に対し画像処理が施された画像を容易に確認することができる。
 本開示の態様11に係る画像印刷装置は、上記態様1から8の何れか1つの画像処理装置と、前記画像処理装置が画像処理した画像を印刷する印刷部と、を備えていてもよい。
 上記の構成によれば、ユーザは、画像処理が施された画像を容易に印刷することができる。
 本開示の態様12に係る画像印刷装置は、前記顔を撮像して前記画像を取得する撮像部と、上記態様1から8の何れか1つの画像処理装置と、前記画像処理装置が画像処理した画像を印刷する印刷部と、を備えていてもよい。
 上記の構成によれば、ユーザは、撮像した画像に対し画像処理が施された画像を容易に印刷することができる。
 さらに、本開示の各態様に係る画像処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記画像処理装置が備える各部(ソフトウェア要素)として動作させることにより上記画像処理装置をコンピュータにて実現させる画像処理装置の画像処理プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本開示の範疇に入る。
 すなわち、本開示の態様13に係る画像処理プログラムは、顔を含む画像を補正する画像処理装置であって、プロセッサを備える画像処理装置の前記プロセッサに、前記画像に対し、前記顔の中心に応じた位置と、前記顔の大きさに応じたサイズとを有する所定の形状の第1補正領域を縮小すると共に、第1補正領域の周囲の第2補正領域を拡大する補正処理、または、前記第1補正領域を拡大すると共に、前記第2補正領域を縮小する補正処理を施す補正処理を実行させるための画像処理プログラムである。
 上記の構成によれば、上記態様1に係る画像処理装置と同様の効果を奏する。
 〔付記事項〕
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 〔関連出願の相互参照〕
 本出願は、2016年12月27日に出願された日本国特許出願:特願2016-253888に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
 1     画像印刷装置
 2     撮像装置
 10    撮像部
 30    表示部
 50    印刷部
 100   画像処理装置
 101   被写体検出部
  101a  顔検出部
  101b  顔器官検出部
 102   補正領域設定部(設定部)
 103   補正強度設定部(設定部、推定部)
 104   画像補正部(補正部)

Claims (13)

  1.  顔を含む画像を補正する画像処理装置であって、
     前記画像に対し、前記顔の中心に応じた位置と、前記顔の大きさに応じたサイズとを有する所定の形状の第1補正領域を縮小すると共に、第1補正領域の周囲の第2補正領域を拡大する補正処理、または、前記第1補正領域を拡大すると共に、前記第2補正領域を縮小する補正処理を施す補正部を備えている、
    ことを特徴とする画像処理装置。
  2.  前記所定の形状は、円形であり、前記顔の中心に応じた位置は当該円形の中心であり、前記顔の大きさに応じたサイズは当該円形の半径であることを特徴とする請求項1に記載の画像処理装置。
  3.  予め定められた顔器官の前記画像における位置に基づいて、前記第1補正領域の位置およびサイズを設定する設定部を更に備えており、
     前記補正部は、前記設定部が設定した前記第1補正領域の位置およびサイズに基づいて、前記第1補正領域及び前記第2補正領域を決定する、
    ことを特徴とする請求項1または2に記載の画像処理装置。
  4.  特定の顔器官の前記画像における位置に基づいて、前記顔の傾きを推定する推定部を更に備えており、
     前記設定部は、前記補正処理における前記第1補正領域の拡縮率を、前記推定部が推定した前記顔の傾きに応じて非等方的に設定する、
    ことを特徴とする請求項3に記載の画像処理装置。
  5.  前記予め定められた顔器官は、前記顔の目、鼻、口、眉毛、および耳からなる群より選択される、
    ことを特徴とする請求項3または4に記載の画像処理装置。
  6.  予め定められた複数の顔器官のうち、検出に成功した顔器官の前記画像における位置に基づいて、前記第1補正領域の位置およびサイズを設定する設定部を更に備えており、
     前記補正部は、前記設定部が設定した前記第1補正領域の位置およびサイズに基づいて、前記第1補正領域及び前記第2補正領域を決定する、
    ことを特徴とする請求項1または2に記載の画像処理装置。
  7.  特定の顔器官の前記画像における位置に基づいて、前記顔の傾きを推定する推定部を更に備えており、
     前記設定部は、前記特定の顔器官の検出に成功した場合、前記補正処理における前記第1補正領域の拡縮率を、前記推定部が推定した前記顔の傾きに応じて非等方的に設定し、前記特定の顔器官の検出に失敗した場合、前記補正処理における前記第1補正領域の拡縮率を等方的に設定する、
    ことを特徴とする請求項6に記載の画像処理装置。
  8.  前記顔器官は、前記顔の目、鼻、口、眉毛、耳、顎、頭頂部、頬、および輪郭からなる群より選択される、
    ことを特徴とする請求項6または7に記載の画像処理装置。
  9.  前記顔を撮像して前記画像を取得する撮像部と、
     前記撮像部が撮像した前記顔を含む前記画像に対して画像処理を行う、請求項1から8の何れか1項に記載の画像処理装置と、を備えることを特徴とする撮像装置。
  10.  前記画像を表示する表示部をさらに備えていることを特徴とする請求項9に記載の撮像装置。
  11.  請求項1から8の何れか1項に記載の画像処理装置と、
     前記画像処理装置が画像処理した画像を印刷する印刷部と、を備えることを特徴とする画像印刷装置。
  12.  前記顔を撮像して前記画像を取得する撮像部と、
     前記撮像部が撮像した前記顔を含む前記画像に対して画像処理を行う、請求項1から8の何れか1項に記載の画像処理装置と、
     前記画像処理装置が画像処理した画像を印刷する印刷部と、を備えることを特徴とする画像印刷装置。
  13.  顔を含む画像を補正する画像処理装置であって、プロセッサを備える画像処理装置の前記プロセッサに、
     前記画像に対し、前記顔の中心に応じた位置と、前記顔の大きさに応じたサイズとを有する所定の形状の第1補正領域を縮小すると共に、第1補正領域の周囲の第2補正領域を拡大する補正処理、または、前記第1補正領域を拡大すると共に、前記第2補正領域を縮小する補正処理を施す補正処理を実行させるための画像処理プログラム。
PCT/JP2017/042893 2016-12-27 2017-11-29 画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム WO2018123413A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/473,751 US11042724B2 (en) 2016-12-27 2017-11-29 Image processing device, image printing device, imaging device, and non-transitory medium
CN201780080938.0A CN110140145A (zh) 2016-12-27 2017-11-29 图像处理装置、图像打印装置、拍摄装置及图像处理程序
JP2018558924A JP6846440B2 (ja) 2016-12-27 2017-11-29 画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253888 2016-12-27
JP2016-253888 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123413A1 true WO2018123413A1 (ja) 2018-07-05

Family

ID=62707242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042893 WO2018123413A1 (ja) 2016-12-27 2017-11-29 画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム

Country Status (4)

Country Link
US (1) US11042724B2 (ja)
JP (1) JP6846440B2 (ja)
CN (1) CN110140145A (ja)
WO (1) WO2018123413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110598694A (zh) * 2019-08-14 2019-12-20 广东奥普特科技股份有限公司 一种快速处理感兴趣区域图像的算法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114333030A (zh) * 2021-12-31 2022-04-12 科大讯飞股份有限公司 图像处理方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264893A (ja) * 2003-01-31 2004-09-24 Sony Corp 画像処理装置、画像処理方法及び撮影装置
JP2009048447A (ja) * 2007-08-21 2009-03-05 Oki Electric Ind Co Ltd 画像処理装置、画像処理方法および画像処理プログラム
JP2010152871A (ja) * 2008-11-28 2010-07-08 Casio Computer Co Ltd 画像処理装置、画像処理方法及びプログラム
JP2012142772A (ja) * 2010-12-28 2012-07-26 Furyu Kk 画像処理装置および画像処理方法
JP2013098925A (ja) * 2011-11-04 2013-05-20 Casio Comput Co Ltd 画像処理装置、画像処理方法、及びプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962803B2 (ja) * 2005-12-16 2007-08-22 インターナショナル・ビジネス・マシーンズ・コーポレーション 頭部検出装置、頭部検出方法および頭部検出プログラム
US8218895B1 (en) * 2006-09-27 2012-07-10 Wisconsin Alumni Research Foundation Systems and methods for generating and displaying a warped image using fish eye warping
JP2009232246A (ja) * 2008-03-24 2009-10-08 Seiko Epson Corp 画像処理装置および画像処理方法
JP4930433B2 (ja) * 2008-04-01 2012-05-16 セイコーエプソン株式会社 画像処理装置、画像処理方法、および画像処理プログラム
JP5008605B2 (ja) * 2008-05-26 2012-08-22 富士フイルム株式会社 画像処理装置および方法ならびにプログラム
JP5115398B2 (ja) * 2008-08-27 2013-01-09 セイコーエプソン株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2012003576A (ja) * 2010-06-18 2012-01-05 Casio Comput Co Ltd 画像処理装置、画像処理方法及びプログラム
WO2012030869A2 (en) * 2010-08-30 2012-03-08 Apple Inc. Multi-image face-based image processing
JPWO2013186994A1 (ja) * 2012-06-15 2016-02-04 日本電気株式会社 投射型投影装置、光防眩方法、および光防眩用プログラム
JP6056746B2 (ja) * 2013-12-18 2017-01-11 株式会社デンソー 顔画像撮影装置、および運転者状態判定装置
KR101569268B1 (ko) * 2014-01-02 2015-11-13 아이리텍 잉크 얼굴 구성요소 거리를 이용한 홍채인식용 이미지 획득 장치 및 방법
WO2018123265A1 (ja) * 2016-12-27 2018-07-05 シャープ株式会社 画像処理装置、撮像装置、画像印刷装置、画像処理装置の制御方法、および画像処理プログラム
JP6905588B2 (ja) * 2017-04-21 2021-07-21 シャープ株式会社 画像処理装置、撮像装置、画像印刷装置、画像処理装置の制御方法、および画像処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004264893A (ja) * 2003-01-31 2004-09-24 Sony Corp 画像処理装置、画像処理方法及び撮影装置
JP2009048447A (ja) * 2007-08-21 2009-03-05 Oki Electric Ind Co Ltd 画像処理装置、画像処理方法および画像処理プログラム
JP2010152871A (ja) * 2008-11-28 2010-07-08 Casio Computer Co Ltd 画像処理装置、画像処理方法及びプログラム
JP2012142772A (ja) * 2010-12-28 2012-07-26 Furyu Kk 画像処理装置および画像処理方法
JP2013098925A (ja) * 2011-11-04 2013-05-20 Casio Comput Co Ltd 画像処理装置、画像処理方法、及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110598694A (zh) * 2019-08-14 2019-12-20 广东奥普特科技股份有限公司 一种快速处理感兴趣区域图像的算法

Also Published As

Publication number Publication date
JPWO2018123413A1 (ja) 2019-10-31
JP6846440B2 (ja) 2021-03-24
CN110140145A (zh) 2019-08-16
US11042724B2 (en) 2021-06-22
US20210133427A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US9818226B2 (en) Method for optimizing occlusion in augmented reality based on depth camera
US8520089B2 (en) Eye beautification
US9443131B2 (en) Wrinkle detection apparatus and wrinkle detection method
US9135726B2 (en) Image generation apparatus, image generation method, and recording medium
JP4739870B2 (ja) サングラス検出装置及び顔中心位置検出装置
JP2009237619A (ja) 画像における顔領域および器官領域の検出
JP6489427B2 (ja) 画像処理装置および画像処理方法
JP6111723B2 (ja) 画像生成装置、画像生成方法及びプログラム
WO2018123413A1 (ja) 画像処理装置、画像印刷装置、撮像装置、および画像処理プログラム
JP5256974B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US10812678B2 (en) Image processing device, imaging apparatus, image printing apparatus, control method of image processing device, and image processing program for performing correction processing on image
JP6098133B2 (ja) 顔構成部抽出装置、顔構成部抽出方法及びプログラム
JP5966657B2 (ja) 画像生成装置、画像生成方法及びプログラム
GB2598016A (en) Biometric authentication apparatus and biometric authentication method
JP6905588B2 (ja) 画像処理装置、撮像装置、画像印刷装置、画像処理装置の制御方法、および画像処理プログラム
JP2009251634A (ja) 画像処理装置、画像処理方法、及びプログラム
JP2005242535A (ja) 画像補正装置
JP2015184701A (ja) 画像処理装置、画像処理方法及びプログラム
JP6889774B2 (ja) 画像処理装置、撮像装置、画像印刷装置、画像処理装置の制御方法、および画像処理プログラム
WO2023276271A1 (ja) 情報処理装置、情報処理方法、及び記録媒体
JP6354118B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP7110657B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP6376673B2 (ja) 画像処理装置
JP2022073604A (ja) 画像処理装置、画像処理方法および画像処理プログラム
JP2014099077A (ja) 顔構成部抽出装置、顔構成部抽出方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887185

Country of ref document: EP

Kind code of ref document: A1