WO2018123363A1 - Production method for paraffin - Google Patents

Production method for paraffin Download PDF

Info

Publication number
WO2018123363A1
WO2018123363A1 PCT/JP2017/041978 JP2017041978W WO2018123363A1 WO 2018123363 A1 WO2018123363 A1 WO 2018123363A1 JP 2017041978 W JP2017041978 W JP 2017041978W WO 2018123363 A1 WO2018123363 A1 WO 2018123363A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
paraffin
reaction
carrier
reaction tower
Prior art date
Application number
PCT/JP2017/041978
Other languages
French (fr)
Japanese (ja)
Inventor
修司 津野
晃裕 桑名
良一郎 酒井
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201780063374.XA priority Critical patent/CN109843835B/en
Priority to KR1020197012389A priority patent/KR102468527B1/en
Publication of WO2018123363A1 publication Critical patent/WO2018123363A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/06Ethane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/08Propane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing high purity paraffin by a hydrogenation reaction to an olefin in the presence of a catalyst.
  • high-purity propane as a raw material for a high-pressure silicon carbide (SiC) semiconductor is required to make the concentration of each impurity contained less than 1.0 vol ppm in order to realize the high pressure resistance of silicon carbide. .
  • Patent Document 1 a method for producing propane by hydrogenation reaction to liquid phase propylene in the presence of a catalyst is known.
  • Patent Document 1 a method for producing propane by hydrogenation reaction to liquid phase propylene in the presence of a catalyst.
  • the raw material propylene is in a liquid phase, if the raw material concentration increases, the heat of reaction increases and heat removal becomes difficult. Propylene is decomposed into impurities due to excessive temperature rise, and the impurity concentration increases. Therefore, in order to produce high purity paraffin by hydrogenation reaction to the liquid phase raw material, it is necessary to make the raw material concentration about 25% or less, so it is difficult to produce high purity paraffin efficiently. .
  • Patent Document 2 it has been proposed to produce paraffin by a hydrogenation reaction to a gas phase olefin.
  • the catalyst supported by the carrier and alumina balls having no catalytic activity are packed in the reaction tower, and the heat of reaction due to the hydrogenation reaction in the presence of the catalyst is removed by diffusion to the alumina balls or heat transfer. ing.
  • the alumina balls and the like are decreased as the gas flow in the reaction tower goes downstream, and the ratio of the catalyst is increased.
  • the olefin and hydrogen are reliably reacted to prevent the unreacted olefin from being mixed into the paraffin, thereby reducing the impurity concentration.
  • An object of the present invention is to solve the above-mentioned problems in the prior art in a method for producing paraffin by a reaction between a gas phase olefin and hydrogen.
  • a plurality of granular members having no catalytic activity are packed in a reaction tower, and at least a part of the granular members is used as a carrier supporting a catalyst, and gas in the presence of the catalyst in the reaction tower is used.
  • alumina balls and the carrier carrying the catalyst are mixed in the upstream region of the gas flow where the reaction is active, and the volume of the alumina balls and the like and the volume of the entire carrier carrying the catalyst are mixed.
  • the volume ratio of alumina balls or the like with respect to the sum is 90 to 99%.
  • the ratio of the weight of the catalyst supported by each carrier to the sum of the weight of each carrier and the weight of the catalyst supported by each carrier is 0.1 to 1.0%.
  • the heat of reaction increases at a position where the catalyst is unevenly distributed, and the olefin is decomposed and becomes impurities due to an excessive temperature rise due to local heat generation.
  • the amount of impurities produced varies, and high-purity paraffin cannot be produced stably and efficiently.
  • the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support is set to 0.01%, which is smaller than that in the above prior art.
  • reaction heat can be reduced to prevent an excessive temperature rise due to local heat generation, impurity generation due to decomposition of olefins can be suppressed, and variations in the amount of impurity generation can be prevented.
  • a granular member that is not used as a carrier is not required or the mixing ratio can be reduced, it is possible to prevent variations in the amount of impurity generation.
  • the carrier carrying the catalyst By making all of the granular member the carrier carrying the catalyst, it is possible to more reliably cause a hydrogenation reaction to the olefin and prevent the unreacted olefin from being mixed as an impurity in the produced paraffin, In addition, the catalyst distribution in the reaction tower can be made uniform, and variations in the amount of impurities produced can be reliably prevented.
  • the carriers supporting the catalyst not all of the granular members having catalytic activity packed in the reaction tower are the carriers supporting the catalyst, and a part of the granular members are the carriers supporting the catalyst, It is preferable to mix with the remainder of the granular member not carrying the catalyst.
  • the ratio of the weight of the catalyst carried by each carrier to the sum of the weight of each carrier and the weight of the catalyst carried by each carrier is 0.001% or more and less than 0.01%.
  • the amount of the catalyst is ensured and the hydrogenation reaction to the olefin is reliably generated. It is possible to prevent the unreacted olefin from being mixed as impurities into the produced paraffin.
  • the olefin and paraffin preferably each have 2 to 4 carbon atoms. That is, propane (C 3 H 8 ) by hydrogenation reaction to propylene (C 3 H 6 ), ethane (C 2 H 6 ) by hydrogenation reaction to ethylene (C 2 H 4 ), n-butene or It is preferable to produce butane (C 4 H 10 ) by hydrogenation reaction to isobutene (C 4 H 8 ), respectively.
  • the catalyst contains palladium and the support is alumina.
  • the purity of the paraffin is preferably 99.99 vol% or more, more preferably 99.999 vol% or more.
  • the present invention it is possible to provide a method capable of stably and efficiently producing a high-purity paraffin from easily available high-purity olefins while suppressing side reactions and without causing variations in the amount of impurities produced.
  • the paraffin production apparatus 1 shown in FIG. 1 supplies ethylene, propylene, n-butene, isobutene, or the like as an olefin in a gas phase state from an olefin gas cylinder 2.
  • the supplied olefin is decompressed by the first pressure reducing valve 3, is set to a set flow rate by the first flow rate control valve 4 with a flow meter, and is introduced into the gas mixer 5.
  • the paraffin production apparatus 1 supplies hydrogen in a gas phase state from a hydrogen gas cylinder 6.
  • the supplied hydrogen is depressurized by the second pressure reducing valve 7, is set to a set flow rate by the second flow rate control valve 8 with a flow meter, and is introduced into the gas mixer 5.
  • the olefin and hydrogen mixed in the gas mixer 5 are introduced as raw materials into the cylindrical reaction tower 10 from the upper inlet 10a.
  • the purity of the olefin as the raw material is preferably 99.99 vol% or more.
  • the reaction rate can be increased by supplying more hydrogen than the theoretical equivalent to the reaction tower 10.
  • the supply amount of hydrogen to the reaction tower 10 is less than 1.00 times mol with respect to the supply amount of olefin, the raw material olefin remains, and when the supply amount exceeds 2.00 times mol, removal of hydrogen in the subsequent step Becomes troublesome. Therefore, the supply amount of hydrogen is preferably 1.00 to 2.00 times mol, more preferably 1.00 to 1.20 times mol, relative to the supply amount of olefin.
  • the purity of hydrogen as a raw material is preferably 99 vol% or more, more preferably 99.9 vol% or more.
  • the reaction tower 10 is filled with a plurality of granular members. In the present embodiment, all the granular members packed in the reaction tower 10 are used as a carrier carrying a catalyst.
  • a known reduction catalyst can be used.
  • a metal catalyst such as palladium, platinum, rhodium, ruthenium, or nickel can be used.
  • palladium is used.
  • the material of the carrier is not limited as long as it does not have a catalytic activity capable of supporting the catalyst, and in this embodiment, the carrier is alumina.
  • the shape of the carrier is spherical in the present embodiment, but is not particularly limited. For example, the shape may be a columnar shape, a pellet, or the like.
  • the carrier may carry two or more kinds of catalysts.
  • the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support in the reaction tower 10 and the weight of the catalyst supported by each support is 0.001% or more and less than 0.01%. That is, the weight of the carrier, each w s, the weight of the catalyst support, each carrying as w c, are 0.001 ⁇ w c ⁇ 100 / ( w s + w c) ⁇ 0.01. In addition, since all the granular members packed in the reaction tower 10 are used as the support carrying the catalyst, the total weight of all the granular members including the support in the reaction tower 10 and the total weight of the catalyst supported by all the supports. The ratio of the total weight of the catalyst supported by all the carriers to the sum of is 0.001% or more and less than 0.01%.
  • the reaction between the olefin in the gas phase and hydrogen in the presence of the catalyst in the reaction tower 10 generates ethane, propane, butane or the like in the gas phase as paraffin.
  • the reaction tower 10 is covered with a cooling jacket 11, and a cooling device 12 for sucking, cooling, and refluxing the refrigerant in the cooling jacket 11 is provided. It is measured by the thermometer 13.
  • the internal temperature of the reaction tower 10 is set to a temperature at which the paraffin is not liquefied so as not to make it difficult to control the reaction rate, and the temperature at which impurities are not increased by the decomposition of the paraffin.
  • propane is produced as paraffin
  • the internal temperature of the reaction tower 10 is preferably ⁇ 42 to 250 ° C., more preferably 0 to 250 ° C.
  • the paraffin produced by the hydrogenation reaction to the olefin in the reaction tower 10 is discharged from the lower outlet 10b of the reaction tower 10 and introduced into the product tank 15 through the back pressure valve 14 for adjusting the internal pressure of the reaction tower 10.
  • the internal pressure of the reaction tower 10 is measured by the pressure gauge 16. If the internal pressure of the reaction tower 10 becomes too high, the hydrogenation reaction is promoted, but the heat of reaction cannot be controlled and impurities may increase, and the reaction gas may be liquefied to form a liquid phase reaction. Therefore, it is preferable to control appropriately.
  • the internal pressure of the reaction column 10 is preferably 0.0 to 0.5 MPaG, more preferably 0.1 to 0.5 MPaG.
  • the space velocity SV in the standard state gas amount is preferably 1000 / h or less, and more preferably 500 / h or less.
  • the space velocity is 1000 / h or less, the hydrogenation reaction does not become insufficient, and it is possible to prevent unreacted raw materials from remaining.
  • a cooling device 18 for cooling and liquefying the gas phase paraffin introduced into the product tank 15 is provided.
  • the cooling temperature by the cooling device 18 is lower than the boiling point of paraffin and higher than the boiling point of hydrogen.
  • Hydrogen contained as an impurity in the paraffin is discharged from the product tank 15 via the third flow control valve 19 with a flow meter without being liquefied and separated from the paraffin, thereby increasing the purity of the paraffin.
  • the concentration of hydrogen contained in the paraffin is less than 1.0 vol. Hydrogen separated from paraffin may be recovered and returned to the reaction tower 10 to be reused as a raw material.
  • Example 1 Propane was manufactured by the hydrogenation reaction to propylene using the paraffin manufacturing apparatus 1 of the said embodiment.
  • the reaction tower 10 was made of stainless steel and had an inner diameter of 31 mm.
  • the filling height of the granular member in the reaction tower 10 was 50 cm. All the granular members packed in the reaction tower 10 were used as carriers for supporting the catalyst. That is, the ratio of the sum of the volume of the entire carrier carrying the catalyst and the volume of the whole granular member not carrying the catalyst to the volume of the whole carrier carrying the catalyst was set to 1 time.
  • the carrier supporting the catalyst one manufactured by N.E. Chemcat Co., Ltd. having an average particle diameter of 3 mm was used.
  • Each support in this example was made of ⁇ -alumina, and supported by palladium (Pd) as a catalyst.
  • the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support (hereinafter, this ratio is referred to as the “support ratio” of the catalyst by the support) is 0.001% It was.
  • Propylene with a purity exceeding 99.99 vol% is supplied from the olefin gas cylinder 2, introduced into the gas mixer 5 at a flow rate of 1.0 L / min, and hydrogen with a purity exceeding 99.999 vol% is supplied from the hydrogen gas cylinder 6. It was introduced into the gas mixer 5 at a flow rate of 1.1 L / min.
  • Propylene and hydrogen were mixed in the mixer 5 at room temperature and then introduced into the reaction tower 10.
  • the internal pressure of the reaction tower 10 was set to 0.3 MPaG, and water having a temperature of 40 ° C. was circulated in the cooling jacket 11 as a refrigerant. Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 230 ° C. was exhibited at a position 7 cm from the inlet 10a in the reaction tower 10.
  • impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual propylene ⁇ 0.1 vol ppm, methane 0.3 vol ppm, Ethane 0.5 vol ppm and butane 0.6 vol ppm.
  • Example 2 The catalyst loading rate on the carrier was 0.0005%, the height of the reaction tower 10 was doubled in Example 1, and the packing height of the carrier carrying the catalyst in the reaction tower 10 was doubled in Example 1. .
  • propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1.
  • the maximum exothermic temperature of 220 ° C. was exhibited at a position 9 cm from the inlet 10a in the reaction tower 10 by the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions.
  • impurities other than hydrogen are 1.2 vol ppm of residual propylene, 0.1 vol ppm of methane, ethane. 0.3 vol ppm, butane ⁇ 0.1 vol ppm.
  • impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual propylene ⁇ 0.1 vol ppm, methane 1.0 vol ppm, Ethane was 0.9 vol ppm and butane was 1.0 vol ppm.
  • the carrier carrying the catalyst and the granular member not carrying the catalyst were mixed and packed into the reaction tower 10 so that the height dimension was 50 cm.
  • propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1. Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 50 ° C. was exhibited at a position 5 cm from the inlet 10 a in the reaction tower 10.
  • impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 30% by volume of residual propylene, 1.3% by volume of methane, 0. They were 4 vol ppm and butane 0.5 vol ppm.
  • Table 1 below shows the analysis results in Example 1 and Comparative Examples 1 to 5.
  • Example 2 Ethylene with a purity of more than 99.99 vol% was supplied from the olefin gas cylinder 2, and ethane was produced by hydrogenation reaction to ethylene under the same conditions as in Example 1. Due to the hydrogenation reaction to ethylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 250 ° C. was shown at a position 6 cm from the inlet 10 a in the reaction tower 10. When impurities contained in the ethane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual ethylene ⁇ 0.1 vol ppm, methane 0.3 vol ppm, propane ⁇ 0.1 vol ppm.
  • Ethane was produced by hydrogenation reaction to ethylene under the same conditions as in Example 2 except that the catalyst was supported on the support at 0.0005%. Due to the hydrogenation reaction to ethylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 240 ° C. was exhibited at a position 8 cm from the inlet 10a in the reaction tower 10.
  • impurities contained in ethane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 1.0 vol ppm of residual ethylene, 0.2 vol ppm of methane, propane ⁇ It was 0.1 vol ppm.
  • the catalyst activity is achieved by making the ratio of the weight of the catalyst supported by each carrier to the sum of the weight of each carrier and the weight of the catalyst supported by each carrier less than 0.01%. Even if no granular member is mixed, the reaction heat can be reduced to prevent an excessive temperature rise due to local heat generation, the generation of impurities due to the decomposition of olefins can be suppressed, and variations in the amount of generated impurities can be prevented. In addition, by eliminating the need for a granular member that is not used as a carrier, local heat generation can be prevented, and variations in the amount of impurities generated can be prevented.
  • the hydrogenation reaction to the olefin is surely caused. It is possible to prevent the unreacted olefin from being mixed as impurities in the produced paraffin.
  • the granular member a carrier carrying a catalyst, a hydrogenation reaction to the olefin can be caused more reliably, and unreacted olefin can be prevented from being mixed as an impurity in the produced paraffin.
  • the uneven distribution of the catalyst in the reaction tower 10 can be reliably reduced, and variations in the amount of impurities produced can be reliably prevented.
  • the purity of the paraffin produced according to the above embodiment is preferably 99.99 vol% or more, and more preferably 99.999 vol% or more.
  • the present invention is not limited to the above embodiments and examples.
  • not all of the granular members packed in the reaction tower 10 are used as a carrier carrying a catalyst, but a part of the granular members packed in the reaction tower 10 is a carrier carrying a catalyst, and the granular member does not carry a catalyst. May be mixed with the rest of.
  • the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support in the reaction tower 10 and the weight of the catalyst supported by each support is 0.001% or more and less than 0.01%.
  • the ratio of the total weight of the catalyst supported by all the supports to the sum of the total weight of all the granular members including the support in the reaction tower 10 and the total weight of the catalyst supported by all the supports is 0. 001% or more and less than 0.01%. That is, not only is 0.001 ⁇ w c ⁇ 100 / (w s + w c ) ⁇ 0.01, but the total weight of the granular members that are used as carriers in the reaction tower 10 is ⁇ w s , and the granular members that are not used as carriers.
  • ⁇ w g is the total weight of the catalyst and ⁇ w c is the total weight of the catalyst supported by all the carriers, 0.001 ⁇ ⁇ w c ⁇ 100 / ( ⁇ w s + ⁇ w g + ⁇ w c ).
  • 0.001 ⁇ w c ⁇ 100 / (w s + w c ) ⁇ 0.01 not only the carrier carrying the catalyst but also the granular member not carrying the catalyst and not carrying the catalyst reacts. Even when the column 10 is packed, it is possible to ensure the amount of catalyst to cause a hydrogenation reaction to the olefin, and to prevent the unreacted olefin from being mixed as impurities into the produced paraffin. Since w c ⁇ 100 / (w s + w c ) ⁇ 0.01, ⁇ w c ⁇ 100 / ( ⁇ w s + ⁇ w g + ⁇ w c ) ⁇ 0.01.
  • the method for separating hydrogen from paraffin produced by the reaction of olefin and hydrogen is not particularly limited.
  • gas phase paraffin introduced into the product tank 15 is adsorbed by an adsorbent in an adsorption tower by a pressure swing adsorption method, and hydrogen is discharged from the adsorption tower as a non-adsorbed gas so that the paraffin is not liquefied. May be separated from the paraffin to increase the purity of the paraffin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

[Problem] To provide a method capable of stably and efficiently producing a high-purity paraffin from a high-purity olefin which is easily available, while inhibiting side reactions and eliminating variation in the amount of produced impurities. [Solution] This method comprises loading a plurality of granular materials not having catalyst activity into a reaction tower 10, at least a portion of the granular materials being used as carriers supporting a catalyst, and reacting hydrogen and an olefin in a gas phase state in the presence of the catalyst in the reactor tower 10, to produce a paraffin. The proportion of the weight of the catalyst supported by the carriers with respect to the sum of the weight of the carriers and the weight of the catalyst supported by the carriers is not less than 0.001% but less than 0.01%.

Description

パラフィンの製造方法Paraffin production method
 本発明は、触媒の存在下におけるオレフィンへの水素添加反応により高純度のパラフィンを製造する方法に関する。 The present invention relates to a method for producing high purity paraffin by a hydrogenation reaction to an olefin in the presence of a catalyst.
 近年、高純度エタン、高純度プロパン等の高純度パラフィンの必要性が高まっている。例えば、高耐圧炭化珪素(SiC )半導体の原料としての高純度プロパンは、炭化珪素の高耐圧性を実現するため、含有する不純物各々の濃度を1.0vol ppm 未満にすることが要求されている。 In recent years, the need for high purity paraffin such as high purity ethane and high purity propane is increasing. For example, high-purity propane as a raw material for a high-pressure silicon carbide (SiC) semiconductor is required to make the concentration of each impurity contained less than 1.0 vol ppm in order to realize the high pressure resistance of silicon carbide. .
 高純度パラフィンの製造方法として低純度パラフィンを蒸留精製する方法が知られている。しかし、この方法では不純物を分離するための蒸留設備が大規模となり投資額が大きくなる。また、設備が大規模になるため運転に多大なエネルギーを要する。特に、プロピレンを不純物として含む低純度プロパンを蒸留する場合、プロパンとプロピレンの沸点差が小さいため蒸留での精製が困難であった。 As a method for producing high purity paraffin, a method of distilling and purifying low purity paraffin is known. However, this method requires a large-scale distillation facility for separating impurities, resulting in a large investment. Moreover, since the facilities are large-scale, a large amount of energy is required for operation. In particular, when distilling low-purity propane containing propylene as an impurity, it is difficult to purify by distillation because the difference in boiling points between propane and propylene is small.
 また、触媒の存在下における液相プロピレンへの水素添加反応によりプロパンを製造する方法が知られている(特許文献1)。しかし、原料のプロピレンが液相である場合、原料濃度が高くなると反応熱が大きくなって除熱が困難になり、過度な温度上昇によりプロピレンが分解されて不純物となり、不純物濃度が高くなる。そのため、液相原料への水素添加反応により高純度のパラフィンを製造するためには、原料濃度を25%程度以下にする必要があるので、効率良く高純度のパラフィンを製造するのが困難である。 Further, a method for producing propane by hydrogenation reaction to liquid phase propylene in the presence of a catalyst is known (Patent Document 1). However, when the raw material propylene is in a liquid phase, if the raw material concentration increases, the heat of reaction increases and heat removal becomes difficult. Propylene is decomposed into impurities due to excessive temperature rise, and the impurity concentration increases. Therefore, in order to produce high purity paraffin by hydrogenation reaction to the liquid phase raw material, it is necessary to make the raw material concentration about 25% or less, so it is difficult to produce high purity paraffin efficiently. .
 そこで、気相状態のオレフィンへの水素添加反応によりパラフィンを製造することが提案されている(特許文献2)。この際、担体が担持する触媒と触媒活性を有しないアルミナボール等とを反応塔に充填し、触媒の存在下における水素添加反応による反応熱をアルミナボール等への放散や伝熱等により除去している。これにより、過度な温度上昇によるオレフィンの分解を防止し、不純物濃度を低減している。さらに、反応塔におけるガス流れの下流に向かうに従いアルミナボール等を減少させ、触媒の割合を増加させている。これにより、オレフィンと水素を確実に反応させ、未反応のオレフィンがパラフィンに混入するのを防止し、不純物濃度を低減している。 Therefore, it has been proposed to produce paraffin by a hydrogenation reaction to a gas phase olefin (Patent Document 2). At this time, the catalyst supported by the carrier and alumina balls having no catalytic activity are packed in the reaction tower, and the heat of reaction due to the hydrogenation reaction in the presence of the catalyst is removed by diffusion to the alumina balls or heat transfer. ing. As a result, the decomposition of the olefin due to an excessive temperature rise is prevented, and the impurity concentration is reduced. Further, the alumina balls and the like are decreased as the gas flow in the reaction tower goes downstream, and the ratio of the catalyst is increased. As a result, the olefin and hydrogen are reliably reacted to prevent the unreacted olefin from being mixed into the paraffin, thereby reducing the impurity concentration.
米国特許第3509226号明細書US Pat. No. 3,509,226 特開2014-84285号公報JP 2014-84285 A
 特許文献2に記載の方法によれば、気相のオレフィンを原料としているので、液相の原料を用いる場合よりも原料濃度を高くしても反応熱の除去は容易である。しかし、不純物生成量にバラツキがあり、高純度のパラフィンを安定して効率良く製造することができないという問題がある。 According to the method described in Patent Document 2, since the gas phase olefin is used as the raw material, the reaction heat can be easily removed even if the raw material concentration is increased as compared with the case where the liquid phase raw material is used. However, there are variations in the amount of impurities produced, and there is a problem that high-purity paraffin cannot be produced stably and efficiently.
 本発明は、気相状態のオレフィンと水素との反応によりパラフィンを製造する方法における上記従来技術の問題を解決することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the prior art in a method for producing paraffin by a reaction between a gas phase olefin and hydrogen.
 本発明は、触媒活性を有しない複数の粒状部材を反応塔に充填し、前記粒状部材の中の少なくとも一部を、触媒を担持した担体とし、前記反応塔での前記触媒の存在下における気相状態のオレフィンと水素との反応によりパラフィンを製造する方法において、前記担体を含む全ての前記粒状部材の総重量と全ての前記担体が担持した前記触媒の総重量との和に対する、全ての前記担体が担持した前記触媒の総重量の割合を、0.001%以上かつ0.01%未満とし、前記担体各々の重量と前記担体各々が担持した前記触媒の重量との和に対する、前記担体各々が担持した前記触媒の重量の割合を、0.001%以上かつ0.01%未満とすることを特徴とする。 According to the present invention, a plurality of granular members having no catalytic activity are packed in a reaction tower, and at least a part of the granular members is used as a carrier supporting a catalyst, and gas in the presence of the catalyst in the reaction tower is used. In the method for producing paraffin by the reaction of olefin and hydrogen in a phase state, all of the above-mentioned total weight of the total weight of all the granular members including the support and the total weight of the catalyst supported by all the supports The ratio of the total weight of the catalyst supported by the support is 0.001% or more and less than 0.01%, and each of the supports with respect to the sum of the weight of each of the supports and the weight of the catalyst supported by each of the supports The ratio of the weight of the catalyst supported by is 0.001% or more and less than 0.01%.
 本発明は以下の知見に基づく。
 特許文献2に記載の従来技術においては、反応が活発なガスの流れの上流領域で、アルミナボール等と触媒を担持した担体を混合し、アルミナボール等の体積と触媒を担持した全担体の体積との和に対するアルミナボール等の体積の割合を90~99%としている。このように触媒活性を有しないアルミナボール等の割合が高い場合、反応塔において触媒が偏在し、また、混合状態の再現性もない。さらに特許文献2においては、担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合は0.1~1.0%とされている。そのため、触媒が偏在する位置では反応熱が増大し、局部発熱による過度な温度上昇によってオレフィンが分解されて不純物となる。これにより従来技術では、不純物生成量にバラツキが生じ、高純度のパラフィンを安定して効率良く製造できない。
 これに対し本発明によれば、担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合を、上記従来技術におけるよりも小さい0.01%未満とすることで、反応熱を小さくして局部発熱による過度な温度上昇を防止し、オレフィンの分解による不純物生成を抑止でき、不純物生成量にバラツキが生じるのを防止できる。また、担体としない粒状部材を不要にし、あるいは混合比率を小さくできるので、不純物生成量にバラツキが生じるのを防止できる。担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合を0.001%以上とすることで、オレフィンへの水素添加反応を確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを確実に防止できる。
The present invention is based on the following findings.
In the prior art described in Patent Document 2, alumina balls and the carrier carrying the catalyst are mixed in the upstream region of the gas flow where the reaction is active, and the volume of the alumina balls and the like and the volume of the entire carrier carrying the catalyst are mixed. The volume ratio of alumina balls or the like with respect to the sum is 90 to 99%. When the proportion of alumina balls or the like having no catalytic activity is high, the catalyst is unevenly distributed in the reaction tower and there is no reproducibility of the mixed state. Further, in Patent Document 2, the ratio of the weight of the catalyst supported by each carrier to the sum of the weight of each carrier and the weight of the catalyst supported by each carrier is 0.1 to 1.0%. Therefore, the heat of reaction increases at a position where the catalyst is unevenly distributed, and the olefin is decomposed and becomes impurities due to an excessive temperature rise due to local heat generation. Thereby, in the prior art, the amount of impurities produced varies, and high-purity paraffin cannot be produced stably and efficiently.
On the other hand, according to the present invention, the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support is set to 0.01%, which is smaller than that in the above prior art. By making it less than this, reaction heat can be reduced to prevent an excessive temperature rise due to local heat generation, impurity generation due to decomposition of olefins can be suppressed, and variations in the amount of impurity generation can be prevented. In addition, since a granular member that is not used as a carrier is not required or the mixing ratio can be reduced, it is possible to prevent variations in the amount of impurity generation. By setting the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support to be 0.001% or more, the hydrogenation reaction to the olefin is surely caused. Thus, it is possible to reliably prevent the unreacted olefin from being mixed as impurities into the produced paraffin.
 前記粒状部材の全てを前記触媒を担持した前記担体とすることで、オレフィンへの水素添加反応をより確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを防止でき、また、反応塔における触媒の分布を均一化し、不純物生成量にバラツキが生じるのを確実に防止できる。 By making all of the granular member the carrier carrying the catalyst, it is possible to more reliably cause a hydrogenation reaction to the olefin and prevent the unreacted olefin from being mixed as an impurity in the produced paraffin, In addition, the catalyst distribution in the reaction tower can be made uniform, and variations in the amount of impurities produced can be reliably prevented.
 本発明において、前記反応塔に充填される触媒活性を有しない前記粒状部材の全てを前記触媒を担持した前記担体とせず、前記粒状部材の中の一部を前記触媒を担持した前記担体とし、前記触媒を担持しない前記粒状部材の残りと混合するのが好ましい。
 これにより、前記担体各々の重量と前記担体各々が担持した前記触媒の重量との和に対する、前記担体各々が担持した前記触媒の重量の割合が0.001%以上かつ0.01%未満となる本発明において、触媒を担持した担体だけでなく、担体とされずに触媒を担持しない粒状部材が反応塔に充填される場合でも、触媒量を確保してオレフィンへの水素添加反応を確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを防止できる。
In the present invention, not all of the granular members having catalytic activity packed in the reaction tower are the carriers supporting the catalyst, and a part of the granular members are the carriers supporting the catalyst, It is preferable to mix with the remainder of the granular member not carrying the catalyst.
As a result, the ratio of the weight of the catalyst carried by each carrier to the sum of the weight of each carrier and the weight of the catalyst carried by each carrier is 0.001% or more and less than 0.01%. In the present invention, not only a carrier carrying a catalyst but also a granular member that is not made a carrier and does not carry a catalyst is charged in the reaction tower, the amount of the catalyst is ensured and the hydrogenation reaction to the olefin is reliably generated. It is possible to prevent the unreacted olefin from being mixed as impurities into the produced paraffin.
 前記オレフィンとパラフィンは、それぞれ炭素数が2~4であるのが好ましい。すなわち、プロピレン(C3H6)への水素添加反応によりプロパン(C3H8)を、エチレン(C2H4)への水素添加反応によりエタン(C2H6)を、n-ブテンまたはイソブテン(C4H8)への水素添加反応によりブタン(C4H10 )を、それぞれ製造するのが好ましい。 The olefin and paraffin preferably each have 2 to 4 carbon atoms. That is, propane (C 3 H 8 ) by hydrogenation reaction to propylene (C 3 H 6 ), ethane (C 2 H 6 ) by hydrogenation reaction to ethylene (C 2 H 4 ), n-butene or It is preferable to produce butane (C 4 H 10 ) by hydrogenation reaction to isobutene (C 4 H 8 ), respectively.
 前記触媒はパラジウムを含み、前記担体はアルミナであるのが好ましい。 It is preferable that the catalyst contains palladium and the support is alumina.
 前記パラフィンの純度は99.99vol %以上であるのが好ましく、99.999 vol%以上であるのがより好ましい。 The purity of the paraffin is preferably 99.99 vol% or more, more preferably 99.999 vol% or more.
 本発明によれば、容易に入手可能な高純度オレフィンから高純度のパラフィンを、副反応を抑制しつつ、不純物生成量にバラツキを生じることなく、安定して効率良く製造できる方法を提供できる。 According to the present invention, it is possible to provide a method capable of stably and efficiently producing a high-purity paraffin from easily available high-purity olefins while suppressing side reactions and without causing variations in the amount of impurities produced.
本発明の実施形態におけるパラフィン製造装置の構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS Structure explanatory drawing of the paraffin manufacturing apparatus in embodiment of this invention.
 図1に示すパラフィン製造装置1は、気相状態のオレフィンとしてエチレン、プロピレン、n-ブテンまたはイソブテン等をオレフィンガスシリンダー2から供給する。この供給されたオレフィンは、第1減圧弁3により減圧され、流量計付き第1流量制御弁4により設定流量とされ、ガス混合器5に導入される。また、パラフィン製造装置1は、気相状態の水素を水素ガスシリンダー6から供給する。この供給された水素は、第2減圧弁7により減圧され、流量計付き第2流量制御弁8により設定流量とされ、ガス混合器5に導入される。ガス混合器5において混合されたオレフィンと水素は原料として筒状の反応塔10に上部入口10aから導入される。 The paraffin production apparatus 1 shown in FIG. 1 supplies ethylene, propylene, n-butene, isobutene, or the like as an olefin in a gas phase state from an olefin gas cylinder 2. The supplied olefin is decompressed by the first pressure reducing valve 3, is set to a set flow rate by the first flow rate control valve 4 with a flow meter, and is introduced into the gas mixer 5. Further, the paraffin production apparatus 1 supplies hydrogen in a gas phase state from a hydrogen gas cylinder 6. The supplied hydrogen is depressurized by the second pressure reducing valve 7, is set to a set flow rate by the second flow rate control valve 8 with a flow meter, and is introduced into the gas mixer 5. The olefin and hydrogen mixed in the gas mixer 5 are introduced as raw materials into the cylindrical reaction tower 10 from the upper inlet 10a.
 製造されるパラフィンの純度低下を防止するため、原料としてのオレフィンの純度は99.99vol %以上であるのが好ましい。 In order to prevent a decrease in the purity of the paraffin produced, the purity of the olefin as the raw material is preferably 99.99 vol% or more.
 オレフィンへの水素添加反応はモル数が減る方向に反応が進む還元反応なので、反応塔10へ水素を理論当量より多く供給することで反応速度を上昇させることができる。また、反応塔10への水素の供給量がオレフィンの供給量に対して1.00倍モルを下回ると原料であるオレフィンが残存し、2.00倍モルを超えると後工程での水素の除去が面倒になる。よって、水素の供給量はオレフィンの供給量に対して1.00~2.00倍モルであるのが好ましく、1.05~1.20倍モルであるのがより好ましい。また、製造されるパラフィンの純度低下を防止するため、原料としての水素の純度は99vol %以上であるのが好ましく、99.9vol %以上であるのがより好ましい。 Since the hydrogenation reaction to the olefin is a reduction reaction in which the reaction proceeds in the direction of decreasing the number of moles, the reaction rate can be increased by supplying more hydrogen than the theoretical equivalent to the reaction tower 10. Further, when the supply amount of hydrogen to the reaction tower 10 is less than 1.00 times mol with respect to the supply amount of olefin, the raw material olefin remains, and when the supply amount exceeds 2.00 times mol, removal of hydrogen in the subsequent step Becomes troublesome. Therefore, the supply amount of hydrogen is preferably 1.00 to 2.00 times mol, more preferably 1.00 to 1.20 times mol, relative to the supply amount of olefin. Moreover, in order to prevent the purity reduction of the paraffin manufactured, the purity of hydrogen as a raw material is preferably 99 vol% or more, more preferably 99.9 vol% or more.
 反応塔10に複数の粒状部材が充填されている。本実施形態においては、反応塔10に充填された全ての粒状部材を、触媒を担持した担体としている。 The reaction tower 10 is filled with a plurality of granular members. In the present embodiment, all the granular members packed in the reaction tower 10 are used as a carrier carrying a catalyst.
 触媒としては公知の還元触媒を用いることができ、例えばパラジウム、白金、ロジウム、ルテニウム、ニッケル等の金属触媒を用いることができ、本実施形態ではパラジウムとされる。担体は、触媒を担持できる触媒活性を有しないものであれば材質は限定されず、本実施形態ではアルミナとされる。担体の形状は本実施形態では球形とされるが特に限定されず、例えば円柱状、ペレット状等であってもよく、寸法も本実施形態では平均粒径3mmとされるが特に限定されない。なお、担体は2種以上の触媒を担持してもよい。 As the catalyst, a known reduction catalyst can be used. For example, a metal catalyst such as palladium, platinum, rhodium, ruthenium, or nickel can be used. In the present embodiment, palladium is used. The material of the carrier is not limited as long as it does not have a catalytic activity capable of supporting the catalyst, and in this embodiment, the carrier is alumina. The shape of the carrier is spherical in the present embodiment, but is not particularly limited. For example, the shape may be a columnar shape, a pellet, or the like. The carrier may carry two or more kinds of catalysts.
 反応塔10における担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合は、0.001%以上かつ0.01%未満とされる。すなわち、担体各々の重量をw、担体各々が担持した触媒の重量をwとして、0.001≦w×100/(w+w)<0.01とされる。
 また、反応塔10に充填された全ての粒状部材が触媒を担持した担体とされているので、反応塔10における担体を含む全ての粒状部材の総重量と全ての担体が担持した触媒の総重量との和に対する、全ての担体が担持した触媒の総重量の割合が、0.001%以上かつ0.01%未満とされる。
The ratio of the weight of the catalyst supported by each support to the sum of the weight of each support in the reaction tower 10 and the weight of the catalyst supported by each support is 0.001% or more and less than 0.01%. That is, the weight of the carrier, each w s, the weight of the catalyst support, each carrying as w c, are 0.001 ≦ w c × 100 / ( w s + w c) <0.01.
In addition, since all the granular members packed in the reaction tower 10 are used as the support carrying the catalyst, the total weight of all the granular members including the support in the reaction tower 10 and the total weight of the catalyst supported by all the supports. The ratio of the total weight of the catalyst supported by all the carriers to the sum of is 0.001% or more and less than 0.01%.
 反応塔10での触媒の存在下における気相状態のオレフィンと水素との反応により、パラフィンとして気相状態のエタン、プロパン、又はブタン等が生成される。反応塔10の内部温度を制御するため、反応塔10は冷却ジャケット11により覆われ、冷却ジャケット11内の冷媒を吸引、冷却して還流させる冷却装置12が設けられ、反応塔10の内部温度が温度計13により測定される。反応塔10の内部温度は、反応速度制御が困難にならないようにパラフィンが液化することがない温度とされ、また、パラフィンの分解により不純物が増加することのない温度とされる。例えばパラフィンとしてプロパンを製造する場合、反応塔10の内部温度は好ましくは-42~250℃とされ、より好ましくは0~250℃とされる。 The reaction between the olefin in the gas phase and hydrogen in the presence of the catalyst in the reaction tower 10 generates ethane, propane, butane or the like in the gas phase as paraffin. In order to control the internal temperature of the reaction tower 10, the reaction tower 10 is covered with a cooling jacket 11, and a cooling device 12 for sucking, cooling, and refluxing the refrigerant in the cooling jacket 11 is provided. It is measured by the thermometer 13. The internal temperature of the reaction tower 10 is set to a temperature at which the paraffin is not liquefied so as not to make it difficult to control the reaction rate, and the temperature at which impurities are not increased by the decomposition of the paraffin. For example, when propane is produced as paraffin, the internal temperature of the reaction tower 10 is preferably −42 to 250 ° C., more preferably 0 to 250 ° C.
 反応塔10におけるオレフィンへの水素添加反応により生成されたパラフィンは、反応塔10の下部出口10bから排出され、反応塔10の内部圧力を調節するための背圧弁14を介して製品タンク15に導入され、反応塔10の内部圧力が圧力計16により測定される。反応塔10の内部圧力は、高くなり過ぎると水素添加反応は促進されるが、反応熱を制御できずに不純物が増加するおそれがあり、また、反応ガスが液化して液相反応となるおそれがあるので、適宜制御するのが好ましい。例えばパラフィンとしてプロパンを製造する場合、反応塔10の内部圧力は好ましくは通常0.0~0.5MPaGとされ、より好ましくは0.1~0.5MPaGとされる。 The paraffin produced by the hydrogenation reaction to the olefin in the reaction tower 10 is discharged from the lower outlet 10b of the reaction tower 10 and introduced into the product tank 15 through the back pressure valve 14 for adjusting the internal pressure of the reaction tower 10. The internal pressure of the reaction tower 10 is measured by the pressure gauge 16. If the internal pressure of the reaction tower 10 becomes too high, the hydrogenation reaction is promoted, but the heat of reaction cannot be controlled and impurities may increase, and the reaction gas may be liquefied to form a liquid phase reaction. Therefore, it is preferable to control appropriately. For example, when producing propane as paraffin, the internal pressure of the reaction column 10 is preferably 0.0 to 0.5 MPaG, more preferably 0.1 to 0.5 MPaG.
 還元反応時のガス流速や空間速度は小さくなる程に好ましい結果が得られる。例えばパラフィンとしてプロパンを製造する場合、標準状態ガス量における空間速度SVは好ましくは1000/h以下とされ、より好ましくは500/h以下とされる。空間速度が1000/h以下となることで、水素添加反応が不十分になることはなく、未反応の原料が残存するのを防止できる。 Favorable results are obtained as the gas flow rate and space velocity during the reduction reaction become smaller. For example, when propane is produced as paraffin, the space velocity SV in the standard state gas amount is preferably 1000 / h or less, and more preferably 500 / h or less. When the space velocity is 1000 / h or less, the hydrogenation reaction does not become insufficient, and it is possible to prevent unreacted raw materials from remaining.
 水素添加反応により生成されたパラフィンに含まれる不純物を分析するため、反応塔10の出口10bから排出されるガスの一部がガスクロマトグラフ17に導入される。 In order to analyze impurities contained in the paraffin generated by the hydrogenation reaction, a part of the gas discharged from the outlet 10 b of the reaction tower 10 is introduced into the gas chromatograph 17.
 本実施形態では、オレフィンと水素との反応により生成されたパラフィンから水素を分離するため、製品タンク15に導入された気相のパラフィンを冷却して液化するための冷却装置18が設けられる。冷却装置18による冷却温度はパラフィンの沸点よりも低く、水素の沸点よりも高くされる。パラフィンに不純物として含まれる水素は、液化することなく製品タンク15から流量計付き第3流量制御弁19を介して排出され、パラフィンから分離され、これによりパラフィンの純度を高めることができる。本実施形態では、パラフィンに含まれる水素の濃度は1.0vol ppm 未満とされる。パラフィンから分離された水素を回収し、反応塔10に戻すことで原料として再利用してもよい。 In this embodiment, in order to separate hydrogen from paraffin produced by the reaction of olefin and hydrogen, a cooling device 18 for cooling and liquefying the gas phase paraffin introduced into the product tank 15 is provided. The cooling temperature by the cooling device 18 is lower than the boiling point of paraffin and higher than the boiling point of hydrogen. Hydrogen contained as an impurity in the paraffin is discharged from the product tank 15 via the third flow control valve 19 with a flow meter without being liquefied and separated from the paraffin, thereby increasing the purity of the paraffin. In this embodiment, the concentration of hydrogen contained in the paraffin is less than 1.0 vol. Hydrogen separated from paraffin may be recovered and returned to the reaction tower 10 to be reused as a raw material.
 〔実施例1〕
 上記実施形態のパラフィン製造装置1を用い、プロピレンへの水素添加反応によりプロパンを製造した。
 反応塔10はステンレス鋼製で内径31mmとした。反応塔10における粒状部材の充填高さを50cmとした。反応塔10に充填した全ての粒状部材を、触媒を担持する担体とした。すなわち、触媒を担持した全担体の体積に対する、触媒を担持した全担体の体積と触媒を担持しない全粒状部材の体積との和の比率を1倍とした。触媒を担持した担体として、平均粒径3mmのエヌ・イーケムキャット(株)製のものを用いた。本実施例の各担体はαアルミナ製で、触媒としてパラジウム(Pd)を担持した。担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合(以下、この割合を担体による触媒の「担持率」と言う)を0.001%とした。
 オレフィンガスシリンダー2から純度99.99vol %を超えるプロピレンを供給し、1.0L/minの流量でガス混合器5に導入し、水素ガスシリンダー6から純度99.999vol %を超える水素を供給し、1.1L/minの流量でガス混合器5に導入した。プロピレンと水素を混合器5において室温で混合した後に反応塔10に導入した。この際、反応塔10の内部圧力は0.3MPaGとし、冷却ジャケット11において冷媒として温度40℃の水を循環させた。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから7cmの位置で最大発熱温度230℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン<0.1vol ppm 、メタン0.3vol ppm 、エタン0.5vol ppm 、ブタン0.6vol ppm であった。
[Example 1]
Propane was manufactured by the hydrogenation reaction to propylene using the paraffin manufacturing apparatus 1 of the said embodiment.
The reaction tower 10 was made of stainless steel and had an inner diameter of 31 mm. The filling height of the granular member in the reaction tower 10 was 50 cm. All the granular members packed in the reaction tower 10 were used as carriers for supporting the catalyst. That is, the ratio of the sum of the volume of the entire carrier carrying the catalyst and the volume of the whole granular member not carrying the catalyst to the volume of the whole carrier carrying the catalyst was set to 1 time. As the carrier supporting the catalyst, one manufactured by N.E. Chemcat Co., Ltd. having an average particle diameter of 3 mm was used. Each support in this example was made of α-alumina, and supported by palladium (Pd) as a catalyst. The ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support (hereinafter, this ratio is referred to as the “support ratio” of the catalyst by the support) is 0.001% It was.
Propylene with a purity exceeding 99.99 vol% is supplied from the olefin gas cylinder 2, introduced into the gas mixer 5 at a flow rate of 1.0 L / min, and hydrogen with a purity exceeding 99.999 vol% is supplied from the hydrogen gas cylinder 6. It was introduced into the gas mixer 5 at a flow rate of 1.1 L / min. Propylene and hydrogen were mixed in the mixer 5 at room temperature and then introduced into the reaction tower 10. At this time, the internal pressure of the reaction tower 10 was set to 0.3 MPaG, and water having a temperature of 40 ° C. was circulated in the cooling jacket 11 as a refrigerant.
Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 230 ° C. was exhibited at a position 7 cm from the inlet 10a in the reaction tower 10.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual propylene <0.1 vol ppm, methane 0.3 vol ppm, Ethane 0.5 vol ppm and butane 0.6 vol ppm.
 〔比較例1〕
 担体による触媒の担持率を0.0005%とし、その他は実施例1と同じ条件でプロピレンへの水素添加反応によりプロパンを製造した。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから10cmの位置で最大発熱温度220℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン1.3vol ppm 、メタン0.2vol ppm 、エタン0.3vol ppm 、ブタン<0.1vol ppm であった。
[Comparative Example 1]
Propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1 except that the catalyst was supported on the support at 0.0005%.
Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 220 ° C. was shown at a position 10 cm from the inlet 10 a in the reaction tower 10.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 1.3 vol ppm of residual propylene, 0.2 vol ppm of methane, ethane. 0.3 vol ppm, butane <0.1 vol ppm.
 〔比較例2〕
 担体による触媒の担持率を0.0005%とし、反応塔10の高さを実施例1の2倍とし、触媒を担持した担体の反応塔10における充填高さを実施例1の2倍とした。その他は実施例1と同じ条件でプロピレンへの水素添加反応によりプロパンを製造した。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから9cmの位置で最大発熱温度220℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン1.2vol ppm 、メタン0.1vol ppm 、エタン0.3vol ppm 、ブタン<0.1vol ppm であった。
[Comparative Example 2]
The catalyst loading rate on the carrier was 0.0005%, the height of the reaction tower 10 was doubled in Example 1, and the packing height of the carrier carrying the catalyst in the reaction tower 10 was doubled in Example 1. . Other than that, propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1.
The maximum exothermic temperature of 220 ° C. was exhibited at a position 9 cm from the inlet 10a in the reaction tower 10 by the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed using a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 1.2 vol ppm of residual propylene, 0.1 vol ppm of methane, ethane. 0.3 vol ppm, butane <0.1 vol ppm.
 〔比較例3〕
 担体による触媒の担持率を0.01%とし、各担体はγアルミナ製とした。その他は実施例1と同じ条件でプロピレンへの水素添加反応によりプロパンを製造した。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから7cmの位置で最大発熱温度240℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン<0.1vol ppm 、メタン1.0vol ppm 、エタン0.9vol ppm 、ブタン1.0vol ppm であった。
[Comparative Example 3]
The catalyst loading rate by the carrier was 0.01%, and each carrier was made of γ-alumina. Other than that, propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1.
Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 240 ° C. was exhibited at a position 7 cm from the inlet 10 a in the reaction tower 10.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual propylene <0.1 vol ppm, methane 1.0 vol ppm, Ethane was 0.9 vol ppm and butane was 1.0 vol ppm.
 〔比較例4〕
 担体による触媒の担持率を0.5%とし、各担体はγアルミナ製とした。その他は実施例1と同じ条件でプロピレンへの水素添加反応によりプロパンを製造した。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから4cmの位置で最大発熱温度400℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン<0.1vol ppm 、メタン<0.1vol ppm 、エタン1.6vol %、ブタン1900 vol ppmであった。
[Comparative Example 4]
The catalyst loading rate by the carrier was 0.5%, and each carrier was made of γ-alumina. Other than that, propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1.
The maximum exothermic temperature of 400 ° C. was exhibited at a position 4 cm from the inlet 10a in the reaction tower 10 by the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual propylene <0.1 vol ppm and methane <0.1 vol ppm. Ethane 1.6 vol% and butane 1900 vol ppm.
 〔比較例5〕
 反応塔10に充填した粒状部材の中の一部を、触媒を担持した担体とした。担体として、材質がγアルミナ、平均粒径3mmのエヌ・イーケムキャット(株)製のものを用いた。触媒を担持しない粒状部材の残りは、平均粒径3mmのアズワン(株)製アルミナボールとした。担体による触媒の担持率を0.5%とした。触媒を担持した全担体の体積に対する、触媒を担持した全担体の体積と触媒を担持しない全粒状部材の体積との和の比率を500倍とした。触媒を担持した担体と触媒を担持しない粒状部材とを混合し、反応塔10に高さ方向寸法が50cmとなるよう充填した。その他は実施例1と同じ条件でプロピレンへの水素添加反応によりプロパンを製造した。
 上記条件での反応塔10におけるプロピレンへの水素添加反応により、反応塔10内の入口10aから5cmの位置で最大発熱温度50℃を示した。
 反応塔10の出口10bから排出されたプロパンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存プロピレン30vol %、メタン1.3vol ppm 、エタン0.4vol ppm 、ブタン0.5vol ppm であった。
[Comparative Example 5]
A part of the granular member packed in the reaction tower 10 was used as a carrier carrying a catalyst. As the carrier, a material manufactured by N.E. Chemcat Co., Ltd. having a material of γ-alumina and an average particle diameter of 3 mm was used. The remainder of the granular member that does not carry the catalyst was alumina balls manufactured by ASONE Co., Ltd. having an average particle diameter of 3 mm. The catalyst loading rate by the carrier was 0.5%. The ratio of the sum of the volume of the total carrier carrying the catalyst and the volume of the whole granular member not carrying the catalyst to the volume of the whole carrier carrying the catalyst was 500 times. The carrier carrying the catalyst and the granular member not carrying the catalyst were mixed and packed into the reaction tower 10 so that the height dimension was 50 cm. Other than that, propane was produced by a hydrogenation reaction to propylene under the same conditions as in Example 1.
Due to the hydrogenation reaction to propylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 50 ° C. was exhibited at a position 5 cm from the inlet 10 a in the reaction tower 10.
When impurities contained in the propane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 30% by volume of residual propylene, 1.3% by volume of methane, 0. They were 4 vol ppm and butane 0.5 vol ppm.
 以下の表1は、実施例1と比較例1~5における分析結果を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the analysis results in Example 1 and Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
 〔実施例2〕
 オレフィンガスシリンダー2から純度99.99vol %を超えるエチレンを供給し、その他は実施例1と同じ条件でエチレンへの水素添加反応によりエタンを製造した。
 上記条件での反応塔10におけるエチレンへの水素添加反応により、反応塔10内の入口10aから6cmの位置で最大発熱温度250℃を示した。
 反応塔10の出口10bから排出されたエタンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存エチレン<0.1vol ppm 、メタン0.3vol ppm 、プロパン<0.1vol ppm であった。
[Example 2]
Ethylene with a purity of more than 99.99 vol% was supplied from the olefin gas cylinder 2, and ethane was produced by hydrogenation reaction to ethylene under the same conditions as in Example 1.
Due to the hydrogenation reaction to ethylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 250 ° C. was shown at a position 6 cm from the inlet 10 a in the reaction tower 10.
When impurities contained in the ethane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual ethylene <0.1 vol ppm, methane 0.3 vol ppm, propane <0.1 vol ppm.
 〔比較例6〕
 担体による触媒の担持率を0.0005%とし、その他は実施例2と同じ条件でエチレンへの水素添加反応によりエタンを製造した。
 上記条件での反応塔10におけるエチレンへの水素添加反応により、反応塔10内の入口10aから8cmの位置で最大発熱温度240℃を示した。
 反応塔10の出口10bから排出されたエタンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存エチレン1.0vol ppm 、メタン0.2vol ppm 、プロパン<0.1vol ppm であった。
[Comparative Example 6]
Ethane was produced by hydrogenation reaction to ethylene under the same conditions as in Example 2 except that the catalyst was supported on the support at 0.0005%.
Due to the hydrogenation reaction to ethylene in the reaction tower 10 under the above conditions, a maximum exothermic temperature of 240 ° C. was exhibited at a position 8 cm from the inlet 10a in the reaction tower 10.
When impurities contained in ethane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are 1.0 vol ppm of residual ethylene, 0.2 vol ppm of methane, propane < It was 0.1 vol ppm.
 〔比較例7〕
 担体による触媒の担持率を0.01%とし、各担体はγアルミナ製とした。その他は実施例2と同じ条件でエチレンへの水素添加反応によりエタンを製造した。
 上記条件での反応塔10におけるエチレンへの水素添加反応により、反応塔10内の入口10aから5cmの位置で最大発熱温度260℃を示した。
 反応塔10の出口10bから排出されたエタンガスに含まれる不純物を島津製作所(株)製ガスクロマトグラフ17により分析すると、水素以外の不純物は、残存エチレン<0.1vol ppm 、メタン1.0vol ppm 、プロパン<0.1vol ppm であった。
[Comparative Example 7]
The catalyst loading rate by the carrier was 0.01%, and each carrier was made of γ-alumina. Other than that, ethane was produced by hydrogenation reaction to ethylene under the same conditions as in Example 2.
The maximum exothermic temperature of 260 ° C. was exhibited at a position 5 cm from the inlet 10a in the reaction tower 10 by the hydrogenation reaction to ethylene in the reaction tower 10 under the above conditions.
When impurities contained in ethane gas discharged from the outlet 10b of the reaction tower 10 are analyzed by a gas chromatograph 17 manufactured by Shimadzu Corporation, impurities other than hydrogen are residual ethylene <0.1 vol ppm, methane 1.0 vol ppm, propane <0.1 vol ppm.
 以下の表2は、実施例2と比較例6、7における分析結果を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 below shows the analysis results in Example 2 and Comparative Examples 6 and 7.
Figure JPOXMLDOC01-appb-T000002
 実施例1、2及び比較例1~7から、オレフィンの水素添加反応に用いる金属触媒の担持率を0.01%未満にすることで、反応塔10における局部発熱が低減され、副反応で生成される不純物各々の濃度を1.0vol ppm 未満にでき、不純物生成量を抑制できることを確認できる。また、担持率を0.0005%にした場合、反応塔10の高さと触媒を担持した担体の充填高さを高くしても未反応オレフィンを十分に低減できないのに対し、0.001%にすることで未反応オレフィンを十分に低減できることを確認できる。 From Examples 1 and 2 and Comparative Examples 1 to 7, when the supporting rate of the metal catalyst used for the olefin hydrogenation reaction is less than 0.01%, local heat generation in the reaction tower 10 is reduced, and it is generated by a side reaction. It can be confirmed that the concentration of each impurity produced can be less than 1.0 vol. In addition, when the loading rate is 0.0005%, the unreacted olefin cannot be sufficiently reduced even if the height of the reaction column 10 and the packing height of the carrier supporting the catalyst are increased, whereas 0.001% By doing this, it can be confirmed that the unreacted olefin can be sufficiently reduced.
 上記実施形態によれば、担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合を0.01%未満とすることで、触媒活性を有しない粒状部材を混合しなくても、反応熱を小さくして局部発熱による過度な温度上昇を防止し、オレフィンの分解による不純物生成を抑止でき、不純物生成量にバラツキが生じるのを防止できる。また、担体とされない粒状部材を不要にできることによっても、局部発熱を防止し、不純物生成量にバラツキが生じるのを防止できる。担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合を0.001%以上とすることで、オレフィンへの水素添加反応を確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを防止できる。また、粒状部材の全てを触媒を担持した担体とすることで、オレフィンへの水素添加反応をより確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを防止でき、さらに、反応塔10における触媒の偏在を確実に低減し、不純物生成量にバラツキが生じるのを確実に防止できる。 According to the above embodiment, the catalyst activity is achieved by making the ratio of the weight of the catalyst supported by each carrier to the sum of the weight of each carrier and the weight of the catalyst supported by each carrier less than 0.01%. Even if no granular member is mixed, the reaction heat can be reduced to prevent an excessive temperature rise due to local heat generation, the generation of impurities due to the decomposition of olefins can be suppressed, and variations in the amount of generated impurities can be prevented. In addition, by eliminating the need for a granular member that is not used as a carrier, local heat generation can be prevented, and variations in the amount of impurities generated can be prevented. By setting the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support and the weight of the catalyst supported by each support to be 0.001% or more, the hydrogenation reaction to the olefin is surely caused. It is possible to prevent the unreacted olefin from being mixed as impurities in the produced paraffin. In addition, by making the granular member a carrier carrying a catalyst, a hydrogenation reaction to the olefin can be caused more reliably, and unreacted olefin can be prevented from being mixed as an impurity in the produced paraffin. In addition, the uneven distribution of the catalyst in the reaction tower 10 can be reliably reduced, and variations in the amount of impurities produced can be reliably prevented.
 上記実施形態により製造されるパラフィンの純度は99.99vol %以上であるのが好ましく、99.999vol %以上であるのがより好ましい。 The purity of the paraffin produced according to the above embodiment is preferably 99.99 vol% or more, and more preferably 99.999 vol% or more.
 本発明は上記実施形態や実施例に限定されない。
 例えば、反応塔10に充填される粒状部材の全てを触媒を担持した担体とせず、反応塔10に充填された粒状部材の中の一部を触媒を担持した担体とし、触媒を担持しない粒状部材の残りと混合してもよい。この場合、反応塔10における担体各々の重量と担体各々が担持した触媒の重量との和に対する、担体各々が担持した触媒の重量の割合が、0.001%以上かつ0.01%未満とされるだけでなく、反応塔10における担体を含む全ての粒状部材の総重量と全ての担体が担持した触媒の総重量との和に対する、全ての担体が担持した触媒の総重量の割合が0.001%以上かつ0.01%未満とされる。すなわち、0.001≦w×100/(w+w)<0.01とされるだけでなく、反応塔10における担体とされる粒状部材の総重量をΣw、担体とされない粒状部材の総重量をΣw、全ての担体により担持される触媒の総重量をΣwとして、0.001≦Σw×100/(Σw+Σw+Σw)とされる。これにより、0.001≦w×100/(w+w)<0.01となる本発明において、触媒を担持した担体だけでなく、担体とされずに触媒を担持しない粒状部材が反応塔10に充填される場合でも、触媒量を確保してオレフィンへの水素添加反応を確実に生じさせ、未反応のオレフィンが製造されたパラフィンに不純物として混入するのを防止できる。なお、w×100/(w+w)<0.01であるので、Σw×100/(Σw+Σw+Σw)<0.01となる。
The present invention is not limited to the above embodiments and examples.
For example, not all of the granular members packed in the reaction tower 10 are used as a carrier carrying a catalyst, but a part of the granular members packed in the reaction tower 10 is a carrier carrying a catalyst, and the granular member does not carry a catalyst. May be mixed with the rest of. In this case, the ratio of the weight of the catalyst supported by each support to the sum of the weight of each support in the reaction tower 10 and the weight of the catalyst supported by each support is 0.001% or more and less than 0.01%. In addition, the ratio of the total weight of the catalyst supported by all the supports to the sum of the total weight of all the granular members including the support in the reaction tower 10 and the total weight of the catalyst supported by all the supports is 0. 001% or more and less than 0.01%. That is, not only is 0.001 ≦ w c × 100 / (w s + w c ) <0.01, but the total weight of the granular members that are used as carriers in the reaction tower 10 is Σw s , and the granular members that are not used as carriers. Where Σw g is the total weight of the catalyst and Σw c is the total weight of the catalyst supported by all the carriers, 0.001 ≦ Σw c × 100 / (Σw s + Σw g + Σw c ). As a result, in the present invention where 0.001 ≦ w c × 100 / (w s + w c ) <0.01, not only the carrier carrying the catalyst but also the granular member not carrying the catalyst and not carrying the catalyst reacts. Even when the column 10 is packed, it is possible to ensure the amount of catalyst to cause a hydrogenation reaction to the olefin, and to prevent the unreacted olefin from being mixed as impurities into the produced paraffin. Since w c × 100 / (w s + w c ) <0.01, Σw c × 100 / (Σw s + Σw g + Σw c ) <0.01.
 また、オレフィンと水素との反応により生成されたパラフィンから水素を分離する方法は特に限定されない。例えば、製品タンク15に導入された気相のパラフィンをプレッシャースイング吸着法によって吸着塔内で吸着剤に吸着させ、水素を非吸着ガスとして吸着塔から排出することで、パラフィンを液化することなく水素をパラフィンから分離し、パラフィンの純度を高めてもよい。 Also, the method for separating hydrogen from paraffin produced by the reaction of olefin and hydrogen is not particularly limited. For example, gas phase paraffin introduced into the product tank 15 is adsorbed by an adsorbent in an adsorption tower by a pressure swing adsorption method, and hydrogen is discharged from the adsorption tower as a non-adsorbed gas so that the paraffin is not liquefied. May be separated from the paraffin to increase the purity of the paraffin.
 1…パラフィン製造装置、2…オレフィンガスシリンダー、6…水素ガスシリンダー、10…反応塔、15…製品タンク。 DESCRIPTION OF SYMBOLS 1 ... Paraffin manufacturing apparatus, 2 ... Olefin gas cylinder, 6 ... Hydrogen gas cylinder, 10 ... Reaction tower, 15 ... Product tank.

Claims (6)

  1.  触媒活性を有しない複数の粒状部材を反応塔に充填し、
     前記粒状部材の中の少なくとも一部を、触媒を担持した担体とし、
     前記反応塔での前記触媒の存在下における気相状態のオレフィンと水素との反応によりパラフィンを製造する方法において、
     前記担体を含む全ての前記粒状部材の総重量と全ての前記担体が担持した前記触媒の総重量との和に対する、全ての前記担体が担持した前記触媒の総重量の割合を、0.001%以上かつ0.01%未満とし、
     前記担体各々の重量と前記担体各々が担持した前記触媒の重量との和に対する、前記担体各々が担持した前記触媒の重量の割合を、0.001%以上かつ0.01%未満とすることを特徴とするパラフィンの製造方法。
    Packing a plurality of granular members having no catalytic activity into a reaction tower;
    At least a part of the granular member is a carrier carrying a catalyst,
    In the method for producing paraffin by the reaction of olefin in a gas phase with hydrogen in the presence of the catalyst in the reaction tower,
    The ratio of the total weight of the catalyst supported by all the carriers to the sum of the total weight of all the granular members including the carrier and the total weight of the catalysts supported by all the carriers is 0.001% And less than 0.01%,
    The ratio of the weight of the catalyst carried by each carrier to the sum of the weight of each carrier and the weight of the catalyst carried by each carrier is 0.001% or more and less than 0.01%. A method for producing paraffin.
  2.  前記粒状部材の全てを前記触媒を担持した前記担体とする請求項1に記載のパラフィンの製造方法。 The method for producing paraffin according to claim 1, wherein all the granular members are used as the carrier carrying the catalyst.
  3.  前記粒状部材の中の一部を前記触媒を担持した前記担体とし、前記触媒を担持しない前記粒状部材の残りと混合する請求項1に記載のパラフィンの製造方法。 The method for producing paraffin according to claim 1, wherein a part of the granular member is used as the carrier carrying the catalyst and mixed with the rest of the granular member not carrying the catalyst.
  4.  前記オレフィンがエチレン、プロピレン、n-ブテンまたはイソブテンである請求項1~3の中の何れか1項に記載のパラフィンの製造方法。 The method for producing paraffin according to any one of claims 1 to 3, wherein the olefin is ethylene, propylene, n-butene or isobutene.
  5.  前記触媒はパラジウムを含み、前記担体がアルミナである請求項1~4の中の何れか1項に記載のパラフィンの製造方法。 The method for producing paraffin according to any one of claims 1 to 4, wherein the catalyst contains palladium, and the carrier is alumina.
  6.  前記パラフィンの純度が99.99vol %以上である請求項1~5の中の何れか1項に記載のパラフィンの製造方法。 The method for producing paraffin according to any one of claims 1 to 5, wherein the purity of the paraffin is 99.99 vol% or more.
PCT/JP2017/041978 2016-12-28 2017-11-22 Production method for paraffin WO2018123363A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780063374.XA CN109843835B (en) 2016-12-28 2017-11-22 Process for producing paraffin
KR1020197012389A KR102468527B1 (en) 2016-12-28 2017-11-22 Paraffin manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254666 2016-12-28
JP2016254666A JP6251377B1 (en) 2016-12-28 2016-12-28 Paraffin production method

Publications (1)

Publication Number Publication Date
WO2018123363A1 true WO2018123363A1 (en) 2018-07-05

Family

ID=60685750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041978 WO2018123363A1 (en) 2016-12-28 2017-11-22 Production method for paraffin

Country Status (5)

Country Link
JP (1) JP6251377B1 (en)
KR (1) KR102468527B1 (en)
CN (1) CN109843835B (en)
TW (1) TWI741077B (en)
WO (1) WO2018123363A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084285A (en) * 2012-10-22 2014-05-12 Sumitomo Seika Chem Co Ltd Process for producing paraffin
JP2014091733A (en) * 2012-11-06 2014-05-19 Sumitomo Seika Chem Co Ltd Method for manufacturing paraffin and paraffin manufacturing apparatus
JP2014518872A (en) * 2011-05-16 2014-08-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Catalytic hydrogenation of fluoroolefins, alpha-alumina supported palladium compositions, and their use as hydrogenation catalysts

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509226A (en) 1966-05-25 1970-04-28 Exxon Research Engineering Co Process for hydrogenating propylene
JP2684285B2 (en) * 1991-12-13 1997-12-03 株式会社テイエルブイ Decompression evaporative cooling equipment
JP5986477B2 (en) * 2012-10-18 2016-09-06 住友精化株式会社 Paraffin manufacturing method and manufacturing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518872A (en) * 2011-05-16 2014-08-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Catalytic hydrogenation of fluoroolefins, alpha-alumina supported palladium compositions, and their use as hydrogenation catalysts
JP2014084285A (en) * 2012-10-22 2014-05-12 Sumitomo Seika Chem Co Ltd Process for producing paraffin
JP2014091733A (en) * 2012-11-06 2014-05-19 Sumitomo Seika Chem Co Ltd Method for manufacturing paraffin and paraffin manufacturing apparatus

Also Published As

Publication number Publication date
KR20190100905A (en) 2019-08-29
KR102468527B1 (en) 2022-11-17
TWI741077B (en) 2021-10-01
CN109843835B (en) 2022-07-15
JP2018104380A (en) 2018-07-05
TW201835013A (en) 2018-10-01
CN109843835A (en) 2019-06-04
JP6251377B1 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP4860688B2 (en) Double bond hydroisomerization method
KR100614182B1 (en) Preparation of Amines
JP6877142B2 (en) Hydrogenation method of aromatic compounds
JP2008536863A (en) Improved double bond hydroisomerization process
JP4148777B2 (en) Method for hydrogenating liquid organic compounds
JP2010260858A (en) Process for preparing aromatic amine
WO2018123363A1 (en) Production method for paraffin
CN105849071B (en) Method for obtaining alkene by double decomposition
TWI649304B (en) Selective hydrogenation process
CN102264688A (en) Process for preparing bis(para-aminocyclohexyl)methane
KR102047139B1 (en) Method and apparatus for producing paraffin
US10800721B1 (en) Method for preparing 2-Cyclohexyl cyclohexanol
JP6034653B2 (en) Paraffin production method
CN105481627B (en) A kind of high-purity propane production method for environmental protection refrigerant R290
TW202007679A (en) Process for the purification of isobutene from a C4 stream and processing facility therefor
WO2011136345A1 (en) Process for producing methanol
JP7434152B2 (en) Method for removing dienes from a stream containing C3-C5 hydrocarbons by selective hydrogenation
KR102112623B1 (en) Continuous preparing method and apparatus for aromatic hydrocarbon
WO2022210164A1 (en) Method for producing cyclopentene
JPH0455175B2 (en)
JP2013116923A (en) Method for producing propylene oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012389

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP