WO2011136345A1 - Process for producing methanol - Google Patents

Process for producing methanol Download PDF

Info

Publication number
WO2011136345A1
WO2011136345A1 PCT/JP2011/060405 JP2011060405W WO2011136345A1 WO 2011136345 A1 WO2011136345 A1 WO 2011136345A1 JP 2011060405 W JP2011060405 W JP 2011060405W WO 2011136345 A1 WO2011136345 A1 WO 2011136345A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
hydrogen
methanol
reaction
reactor
Prior art date
Application number
PCT/JP2011/060405
Other languages
French (fr)
Japanese (ja)
Inventor
達己 松下
司 芳賀沼
大祐 藤田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2011136345A1 publication Critical patent/WO2011136345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof

Definitions

  • the present invention relates to a method for producing methanol under specific conditions using carbon dioxide and hydrogen as raw materials.
  • Methanol is used as a raw material and fuel for dimethyl ether, MTBE (methyl tertiary butyl ether), petrochemical intermediate products, and the like.
  • methanol uses fossil fuels such as hydrocarbons and coke as raw materials, obtains synthesis gas (including CO and H 2 and a small amount of CO 2 ) by steam reforming, and synthesizes the resulting synthesis gas as the main raw material. It is manufactured by.
  • this method uses fossil raw materials as main raw materials, it consumes global resources and increases CO 2 in the atmosphere, which causes global warming.
  • Methanol synthesis from raw material gas with high carbon dioxide content is more active and durable than methanol synthesis from synthesis gas due to the thermodynamic equilibrium of reaction and the reaction inhibition effect of water generated with methanol
  • the catalyst is required.
  • the reaction condition is the stoichiometric ratio of the reaction (CO 2 + 3H 2 ⁇ CH 3 OH + H 2 O) in the synthesis of methanol using CO 2 and hydrogen as raw materials.
  • Patent Document 4 describes that 3 out of 1 to 10 is optimal for H 2 / CO 2 (molar ratio).
  • Patent Document 5 the reaction is performed by adding the amount of CO 2 dissolved and separated in an aqueous methanol solution to the stoichiometric ratio, and H 2 / CO 2 (Molar ratio) is 2.8. As described above, the methanol synthesis reaction is performed at 3 or near the stoichiometric ratio of H 2 / CO 2 (molar ratio).
  • the catalyst is solid, it is common to use a fixed bed reactor for the methanol synthesis reaction.
  • a multitubular reactor can be generally used.
  • the above-described method for producing methanol from carbon dioxide and hydrogen reduces the production efficiency when the production apparatus is scaled up, and further, the pressure between the catalyst layer inlet and the outlet is reduced. It was found that a difference occurred.
  • Process Reactor Program 43D MEGA METHANOLPLANT, 2003 is a reactor that synthesizes methanol from synthesis gas (mainly CO and H 2 ) by filling the reaction tube with catalyst at a height of 4-12 m. , page7-73.
  • gas flows from the upper part of the reactor, and the reaction proceeds by gas-solid contact with the catalyst in the reaction tube, and the unreacted raw material and product mixed gas flows out from the lower part.
  • the reactor outlet pressure is lower than the inlet due to the pressure loss caused by the reaction gas passing through the catalyst filling portion.
  • the reaction for synthesizing methanol from the above synthesis gas is an equilibrium reaction, and the lower the pressure, the lower the equilibrium conversion rate.
  • the inventors of the present application have studied in view of the above problems, and as a result, by controlling the molar ratio of gas components such as hydrogen and carbon dioxide that are in contact with the catalyst layer to a specific range, It has been found that methanol can be efficiently produced even with a small facility, and the present invention has been completed.
  • the method for producing methanol of the present invention is a method for producing methanol by reacting hydrogen and carbon dioxide in a reactor having a catalyst layer formed from a catalyst containing copper, and the catalyst possessed by the reactor. Supplying hydrogen and carbon dioxide from the upstream side of the layer, and obtaining a reaction mixture containing methanol from the downstream side of the catalyst layer, wherein the catalyst layer has a thickness of 1 meter or more,
  • the molar ratio of hydrogen and carbon dioxide contacting the catalyst layer exceeds 3.0, and the molar ratio of the reaction inert gas to carbon dioxide (reactive inert gas / carbon dioxide) is 0.
  • the molar ratio of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 or more.
  • the molar ratio of hydrogen to carbon dioxide is 3.5 to 5.5, and the molar ratio of the total of hydrogen and reaction inert gas to carbon dioxide (hydrogen and reaction inert gas) Of carbon dioxide) is preferably 3.5 to 6.0.
  • the catalyst containing copper is a catalyst containing copper, zinc, aluminum, and silicon.
  • the reactor is a fixed bed reactor.
  • the particle size of the catalyst containing copper is preferably 3 to 20 mm.
  • the reaction is preferably performed at a pressure of 1 to 10 MPaG.
  • the influence of pressure loss can be effectively reduced by controlling the ratio of the supply amount (use amount) of the raw material in contact with the catalyst layer to a specific range. It is not necessary to use a reactor having a structure, and even a reactor such as a conventional fixed-bed multi-tubular reactor can produce methanol with high efficiency.
  • the method for producing methanol of the present invention is a method for producing methanol by reacting hydrogen and carbon dioxide in a reactor having a catalyst layer formed from a catalyst containing copper, and the catalyst layer possessed by the reactor.
  • the molar ratio of hydrogen to carbon dioxide in contact with the layer (hydrogen / carbon dioxide) exceeds 3.0, and the molar ratio of reactive gas to carbon dioxide (reactive inert gas / carbon dioxide) is 0 or more.
  • the molar ratio of the sum of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 or more.
  • a fixed bed reactor is used as the reactor.
  • hydrogen and carbon dioxide used in the present invention those obtained by known methods can be used without limitation.
  • hydrogen for example, hydrogen that is generated (by-product) by a steam reforming reaction, hydrogen that is generated by an electrolytic reaction, hydrogen obtained by photolysis of water, or the like can be used.
  • carbon dioxide generated by burning various chemical reactions and fuels in a petrochemical industrial plant can be used.
  • methanol and water are synthesized by the reaction of carbon dioxide and hydrogen.
  • the reaction mixture obtained by the reaction contains the methanol and water, and usually further contains unreacted raw materials (for example, hydrogen and carbon dioxide) and by-products (for example, carbon monoxide).
  • unreacted raw materials for example, hydrogen and carbon dioxide
  • by-products for example, carbon monoxide
  • methanol is obtained by dehydrating the mixture by a known method.
  • the unreacted raw material and by-products can be recycled to the reactor, preferably as a gaseous mixture, to increase the reaction efficiency.
  • hydrogen and carbon dioxide are supplied from the upstream side of the catalyst layer of the reactor, but the molar ratio of hydrogen to carbon dioxide in contact with the catalyst layer (hydrogen / carbon dioxide) is 3.0. Exceed. Preferably, it is 3.5 or more, more preferably 4.0 or more. Below the above range, due to an increase in pressure loss due to the catalyst layer, the equilibrium conversion rate decreases and the methanol productivity decreases. Further, the upper limit of the molar ratio of hydrogen and carbon dioxide that contacts the catalyst layer is not particularly limited, but if the molar ratio of hydrogen and carbon dioxide is too high, the productivity of methanol may decrease. .
  • the upper limit of the molar ratio of hydrogen to carbon dioxide is preferably 20.0, more preferably 10.0, even more preferably 6.0, particularly preferably 5.5, particularly preferably 5.0. .
  • the following factors can be considered as factors causing the effects of the present invention.
  • the proportion of hydrogen that does not substantially contribute to the reaction increases.
  • Hydrogen that does not contribute to this reaction serves to alleviate the pressure drop due to the reaction in the production of methanol.
  • the reaction that produces methanol and water from carbon dioxide and hydrogen is an equilibrium reaction, and the total amount of methanol and water produced is less than the sum of the reacting carbon dioxide and hydrogen. For this reason, the decrease in pressure is considered to increase the rate of so-called reverse reaction that generates carbon dioxide and hydrogen from methanol and water (decreases the productivity of methanol).
  • the methanol production method of the present invention may involve a reaction of generating carbon monoxide and water from carbon dioxide and hydrogen.
  • a decrease in pressure loss also brings about an effect of relatively suppressing the rate of the reaction for generating carbon monoxide.
  • the gas density is relatively lowered if the ratio of hydrogen and carbon dioxide of the present invention is used.
  • This low gas density is considered to show the effect of reducing the pressure loss due to the catalyst layer. That is, the condition of the present application having a high hydrogen ratio is considered to be another factor that increases the productivity of methanol.
  • water is synthesized in addition to methanol.
  • water may be adsorbed on a catalyst to inhibit the methanol production reaction, which may cause a reduction in methanol production efficiency.
  • the present invention since the supply amount of hydrogen to carbon dioxide is large, the generated water is diluted, and the water concentration is lowered as compared with the conventional case. Since a decrease in water concentration leads to a decrease in the amount of water adsorbed on the catalyst, it is thought that a decrease in methanol production efficiency due to water may be suppressed. For this reason, in the methanol manufacturing method of this invention, it is guessed that methanol production efficiency is high.
  • a gas other than hydrogen and carbon dioxide may be supplied.
  • gases other than hydrogen and carbon dioxide include reaction inert gases.
  • the reaction inert gas may be a compound that does not substantially react when hydrogen and carbon dioxide are reacted. If a reaction inert gas is supplied to the reaction, it is considered that the influence of pressure loss can be reduced, that is, the productivity of methanol can be increased.
  • the reaction inert gas includes a substance having a molecular weight equal to or lower than that of carbon dioxide, and specifically includes nitrogen; a rare gas such as helium and argon; and a hydrocarbon such as methane, ethane and propane. Can do. This reaction-inert gas is considered to bring about an improvement in methanol productivity for the same reason as the hydrogen that does not substantially contribute to the reaction.
  • the molar ratio of the reaction inert gas to carbon dioxide (reaction inert gas / carbon dioxide) in contact with the catalyst layer is 0 or more.
  • the upper limit of the molar ratio of the reaction inert gas to carbon dioxide is preferably 17.0, more preferably 10.0, Preferably it is 5.0, particularly preferably 1.0, particularly preferably 0.5.
  • the molar ratio of the total of hydrogen and inert gas to carbon dioxide (total of hydrogen and inert gas / carbon dioxide) in contact with the catalyst layer is 3.5 or more, preferably 4 0.0 or more.
  • the upper limit of the molar ratio of hydrogen and inert gas to carbon dioxide is not particularly limited, but is preferably 20.0, more preferably 10.0, and still more preferably from the viewpoint of methanol productivity. Is 6.0.
  • the hydrogen and carbon dioxide are reacted in the presence of a catalyst containing copper.
  • a catalyst containing copper can be used without limitation as long as it is a catalyst capable of producing methanol from hydrogen and carbon dioxide.
  • the catalyst of patent document 3 is mentioned as a preferable example.
  • the catalyst containing copper is preferably a catalyst containing copper, zinc, aluminum, and silicon. More preferably, the catalyst contains at least one element selected from zirconium, palladium, and gallium.
  • Such a catalyst containing a component such as copper can be suitably used in the method for producing methanol of the present application for the reason that there is little decrease in activity due to water produced as a by-product when methanol is produced from carbon dioxide. .
  • the copper-containing catalyst preferably has an average particle size of 0.5 to 20 mm, more preferably 1 to 20 mm, and still more preferably 2 to 20 mm. Further, the average particle size is preferably 3 to 20 mm, more preferably 3 to 15 mm, and particularly preferably 3 to 10 mm.
  • the particle size of the catalyst containing copper is within the above range, not only the handling of the catalyst is easy, but also, for example, a catalyst layer is formed by loading the catalyst on a fixed bed, and methanol is produced by the method of the present invention. This is suitable for suppressing a decrease in productivity due to pressure loss.
  • a method for producing the catalyst having the above particle diameter a known method can be used without limitation. A tableting method is preferably used.
  • the reactor used in the present invention a known reactor can be used without limitation.
  • the catalyst containing copper is preferably packed in a fixed bed reactor.
  • a radial flow reactor can also be suitably used. Since the pressure loss can be reduced by using the method of the present invention, the productivity can be improved even in a relatively large radial flow reactor, and methanol can be efficiently produced.
  • step (A) hydrogen and carbon dioxide are reacted in a reactor having a catalyst layer formed from the catalyst containing copper.
  • hydrogen and carbon dioxide are supplied from the upstream side of the catalyst layer of the reactor, and a reaction mixture containing methanol is obtained from the downstream side of the catalyst layer (hereinafter, also referred to as step (A)). It is done in the following.
  • the thickness of the catalyst layer included in the reactor is 1 meter or more.
  • the thickness of the catalyst layer is preferably 2 meters or more, more preferably 3 meters or more, and even more preferably 4 meters or more.
  • the upper limit of the thickness is preferably 20 meters, more preferably 15 meters.
  • the catalyst layer thickness in this application is not necessarily determined only by the positional relationship between the upstream side and the downstream side, but indicates a substantial length considering the shape of the catalyst layer.
  • the thickness of the catalyst layer according to the present invention need not be the same at any position, and it is preferable that the thickness of the thinnest portion satisfies the above-mentioned requirements. More preferably, the catalyst layer thickness is preferably uniform. If a portion having a thin catalyst layer is present, source gases such as carbon dioxide and hydrogen may be concentrated relatively on the portion, and the apparent catalytic reaction efficiency may be reduced.
  • the catalyst layer according to the methanol production method of the present invention is not particularly limited as long as hydrogen and carbon dioxide can pass through.
  • the catalyst layer may be a single block, or may be formed from a plurality of particles or powder.
  • the catalyst layer is preferably formed by filling a reactor with a catalyst containing copper having an average particle diameter of 1 to 20 mm, more preferably 3 to 20 mm, that is, catalyst particles. preferable.
  • the direction in which the reaction apparatus is installed can be set in any direction regardless of whether it is vertical or horizontal.
  • a shape like a curved pipe may be used, but a substantially straight pipe shape is preferable.
  • the positional relationship between the upstream and downstream is also arbitrary.
  • it may be a downflow reactor or an upflow reactor.
  • the aforementioned radial flow reactor may be used.
  • the productivity drop due to pressure loss is reduced compared to the conventional methanol production method. Therefore, it is possible to produce methanol with high production efficiency without increasing the diameter of the reactor so that the catalyst thickness and the catalyst amount are not highly balanced.
  • the reaction is usually carried out under conditions of a reaction temperature of 150 to 300 ° C., a reaction pressure of 1 to 10 MPaG, and a GHSV (Gas Hourly Space Velocity) of 1000 to 30000 h ⁇ 1 .
  • a reaction temperature of 150 to 300 ° C.
  • a reaction pressure of 1 to 10 MPaG
  • a GHSV Gas Hourly Space Velocity
  • the preferable lower limit of the reaction pressure is 2 MPaG, more preferably 3 MPaG, and particularly preferably 3.5 MPaG.
  • a preferable upper limit is 9 MPaG, more preferably 8.5 MPaG, and particularly preferably 8 MPaG.
  • the reaction pressure When the reaction pressure is too high, the aforementioned pressure loss hardly occurs in the first place, and the effect of the present invention tends to be relatively small. Moreover, a high pressure resistant material is required for the reaction apparatus, and the fixed cost tends to be high. On the other hand, if the reaction pressure is too low, the absolute value of the reaction rate may decrease, leading to a decrease in productivity. In order to compensate for the low reaction rate and increase the production volume, there is a method of increasing the size of the equipment, but this also tends to increase the fixed cost.
  • the step (A) is performed using a reactor having a catalyst layer as described above.
  • the reactor may have spaces on the upstream side and downstream side of the catalyst layer, the upstream side of the catalyst layer may be directly connected to the raw material supply line, or the downstream side of the catalyst layer may be the reactor. May be directly connected to the outlet (reactant take-out line).
  • the productivity of methanol can be increased.
  • the reason for this is that the present inventors can reduce the decrease in productivity due to pressure loss by using a raw material having a specific composition that was previously thought to decrease the productivity, resulting in a difference from the conventional knowledge. It was estimated that the productivity of methanol was excellent.
  • the reaction mixture obtained from the outlet of the reactor usually contains hydrogen and carbon dioxide as unreacted raw materials and carbon monoxide as a by-product, in addition to methanol and water obtained by the reaction.
  • the reaction mixture is usually obtained as a gas. That is, the reaction mixture is preferably a gaseous reaction mixture.
  • the gaseous reaction mixture is usually cooled and then separated into a liquid mixture and a gaseous mixture by a gas-liquid separator.
  • the separation is usually carried out under conditions of a pressure of 1 to 10 MPa and a temperature of ⁇ 10 to 50 ° C.
  • the liquid mixture obtained in the separation is formed from methanol, water and carbon dioxide dissolved in them, and the gaseous mixture is formed from the unreacted raw material and carbon monoxide as a by-product. It should be noted that at least a part of the gaseous mixture is preferably recycled to the reactor.
  • the gaseous mixture may contain carbon monoxide as a by-product.
  • Carbon monoxide may be supplied to the reactor as an impurity of the raw material, or carbon monoxide can be introduced as necessary.
  • the ratio of carbon dioxide to carbon monoxide is 100/0 to 60/40, more preferably 100/0 to 70/30, still more preferably 100/0 to 75/25, particularly preferably 100/0 to 80 / 20, particularly preferably 100/0 to 85/15.
  • the methanol production method of the present invention can reduce the productivity drop due to the pressure loss as compared with the conventional methanol production method.
  • the conventional production method can be used.
  • the effect of pressure loss may not be apparent when compared to the method. This is presumably because the pressure loss does not become apparent because the catalyst layer is mainly thin on a small scale.
  • the method for producing methanol of the present invention is substantially performed on a scale where the effect of reducing the effect of pressure loss is manifested.
  • the catalyst layer is often used in combination with a temperature control tank having a shape such as a jacket.
  • the catalyst layers may be combined in a single layer, or a plurality of catalyst layers may be stored in one temperature control tank, that is, a multi-tube type.
  • the multi-tubular shape is preferably used in industrialization.
  • the upper limit of the scale of the entire catalyst layer in this shape is not particularly limited, and is preferably 500 cubic meters, more preferably 400 cubic meters, more preferably 200 cubic meters, depending on the thickness of the catalyst layer. Further preferred, particularly preferred is 150 cubic meters.
  • the lower limit is 1 cubic meter, more preferably 10 cubic meters, and still more preferably 20 cubic meters. A plurality of these devices can be used in combination.
  • the scale of the reactor is naturally larger than the capacity of the catalyst layer.
  • a known method can be used without any limitation as a method for stopping the reaction. Specifically, without purging the residual gas in the reaction system with a reaction inert gas or the like, hydrogen is supplied instead of supplying the raw material mixed gas, and the residual gas remains in the reaction system under the same conditions as described above.
  • Carbon monoxide and carbon dioxide A preferred example is a method in which substantially the entire amount is converted to methanol by reacting with.
  • no reaction inert gas is used.
  • a mixed gas in which the molar ratio of hydrogen to carbon dioxide (hydrogen / carbon dioxide) is within a predetermined range is used as the raw material gas. It is done.
  • the raw material mixed gas that has entered the reaction circulation system is heated together with the gaseous mixture circulated by the circulation compressor 6 to a temperature suitable for the reaction in the heater 2 and then sent to the reactor 3 to synthesize methanol.
  • a catalyst layer formed from a catalyst containing copper is present in the reactor.
  • hydrogen and carbon dioxide react with each other to obtain a gaseous reaction mixture containing methanol.
  • the gaseous reaction mixture (reaction mixture gas) exiting the reactor 3 is cooled to below normal temperature by the cooler 4, and mainly produced methanol and water are liquefied and sent to the gas-liquid separator 5. After the liquid mixture and the gaseous mixture are separated from the gas-liquid separator 5, the liquid mixture and the gaseous mixture are respectively extracted, and most of the gaseous mixture is circulated to the reactor 3 by the circulation compressor 6. A part of the gaseous mixture can be purged out of the system.
  • carbon dioxide or the like dissolved in the liquid mixture may be appropriately separated from the liquid mixture extracted from the gas-liquid separator 5 and separated. Gas is usually discharged out of the system.
  • the liquid mixture composed of methanol and water separated by the gas-liquid separator 5 is dehydrated by a known method to obtain methanol.
  • the apparatus includes a booster compressor 1 for supplying a mixed gas as a raw material, a heater 2 for heating the raw material, a reactor 3 for performing a reaction, and a cooler 4 for cooling the obtained reaction mixture.
  • a gas-liquid separator 5 for dividing the reaction mixture into liquid and gas, and a circulation compressor 6 for circulating at least a part of the separated gas to the reactor 3 are provided.
  • Example 1 Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
  • the pressure loss of the reactor was 0.18 MPa, and the amount of methanol produced was 626 g-methanol / L-Cat / hr in STY (space-time yield).
  • Example 2 Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
  • the pressure loss of the reactor was 0.16 MPa, and the amount of methanol produced was 610 g-methanol / L-Cat / hr in STY (space-time yield).
  • the pressure loss of the reactor was 0.24 MPa, and the amount of methanol produced was 594 g-methanol / L-Cat / hr in STY (space-time yield).
  • Example 3 Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
  • the pressure loss of the reactor was 0.21 MPa, and the amount of methanol produced was 644 g-methanol / L-Cat / hr in STY (space-time yield).

Abstract

A process for producing methanol is provided by which it is possible to highly efficiently produce methanol even when a device which is similar to a conventional device, e.g., a fixed-bed reactor, and has a thick catalyst bed is used. The process for methanol production is a process for producing methanol by reacting hydrogen with carbon dioxide in a reactor having a catalyst bed constituted of a copper-containing catalyst. The process is characterized by including a step in which hydrogen and carbon dioxide are supplied from the upstream side of the catalyst bed of the reactor and a reaction mixture containing methanol is obtained from the downstream side of the catalyst bed. The process is further characterized in that the catalyst bed has a thickness of 1 m or more, the molar ratio of the hydrogen to the carbon dioxide which come into contact with the catalyst bed (hydrogen/carbon dioxide) exceeds 3.0, the molar ratio of an inert gas to the carbon dioxide (inert gas/carbon dioxide) is 0 or more, and the molar ratio of the sum of the hydrogen and the inert gas to the carbon dioxide ((sum of hydrogen and inert gas)/carbon dioxide) is 3.5 or more.

Description

メタノールの製造方法Method for producing methanol
 本発明は、二酸化炭素と水素とを原料とし、特定の条件でメタノールを製造する方法に関する。 The present invention relates to a method for producing methanol under specific conditions using carbon dioxide and hydrogen as raw materials.
 メタノールは、ジメチルエーテル、MTBE(メチルターシャルブチルエーテル)、石油化学中間製品等の原料および、燃料として使用されている。 Methanol is used as a raw material and fuel for dimethyl ether, MTBE (methyl tertiary butyl ether), petrochemical intermediate products, and the like.
 メタノールは従来、炭化水素類、コークスといった化石燃料を原料とし、水蒸気改質により合成ガス(COとH2および少量のCO2を含む)を得て、得られた合成ガスを主原料として合成することにより製造されている。しかし、この方法は、化石原料を主原料としているため、地球資源を消費し、大気中のCO2を増加させ地球温暖化の要因となっている。 Conventionally, methanol uses fossil fuels such as hydrocarbons and coke as raw materials, obtains synthesis gas (including CO and H 2 and a small amount of CO 2 ) by steam reforming, and synthesizes the resulting synthesis gas as the main raw material. It is manufactured by. However, since this method uses fossil raw materials as main raw materials, it consumes global resources and increases CO 2 in the atmosphere, which causes global warming.
 これに対しCO2と水素を原料としメタノールを合成する技術が知られている。この方法は、地球温暖化の要因である二酸化炭素を有機化合物に変換することから、種々の化学による生産活動への寄与だけでなく、温暖化ガスとされている二酸化炭素低減、即ち地球温暖化防止の面から非常に望ましい技術である。 On the other hand, a technique for synthesizing methanol using CO 2 and hydrogen as raw materials is known. This method converts carbon dioxide, which is a cause of global warming, into an organic compound, so that it contributes not only to production activities by various chemistry but also to reduce carbon dioxide, which is regarded as a warming gas, that is, global warming. This is a very desirable technique from the viewpoint of prevention.
 二酸化炭素含有量の高い原料ガスからのメタノール合成においては、反応の熱力学的平衡およびメタノールと共に生成する水の反応阻害効果のため、合成ガスからのメタノール合成に比べ、高活性かつ、高耐久性の触媒が要求されている。 Methanol synthesis from raw material gas with high carbon dioxide content is more active and durable than methanol synthesis from synthesis gas due to the thermodynamic equilibrium of reaction and the reaction inhibition effect of water generated with methanol The catalyst is required.
 このような観点から、銅/酸化亜鉛/酸化アルミニウム/酸化ジルコニウム、銅/酸化亜鉛/酸化アルミニウム/酸化ジルコニウム/酸化ガリウムなどの銅系多成分触媒が開発されている(例えば、特開平7-39755号公報(特許文献1)、特開平6-312138号公報(特許文献2)、Applied Catalysis A:Gernal, 38, 311-318(1996)(非特許文献1)参照)。さらに、シリカとしてコロイダルシリカ、または水中溶存シリカを0.3~0.9wt%添加し、480~690度で焼成する高活性触媒も開発されている(特開平10-309466号公報(特許文献3))。 From this point of view, copper-based multicomponent catalysts such as copper / zinc oxide / aluminum oxide / zirconium oxide and copper / zinc oxide / aluminum oxide / zirconium oxide / gallium oxide have been developed (for example, JP-A-7-39755). (Patent Document 1), JP-A-6-312138 (Patent Document 2), Applied Catalysis A: Gernal, 38, 311-318 (1996) (Non-Patent Document 1)). Further, a highly active catalyst in which 0.3 to 0.9 wt% of colloidal silica or silica dissolved in water is added as silica and calcined at 480 to 690 degrees has been developed (Japanese Patent Laid-Open No. 10-309466 (Patent Document 3). )).
 上記いずれの文献の実施例、実験例においても、反応条件としてはCO2と水素を原料としメタノールを合成する際の反応(CO2+3H2→CH3OH+H2O)の化学量論比であるH2/CO2=3(モル比)もしくは、副生するCOを考慮しH2/(CO2+CO)(モル比)=3にて反応をおこなっている。また、特開平7-173088号公報(特許文献4)では、H2/CO2(モル比)は1~10のうち、3が最適であることが記載されている。 In any of the above examples and experimental examples, the reaction condition is the stoichiometric ratio of the reaction (CO 2 + 3H 2 → CH 3 OH + H 2 O) in the synthesis of methanol using CO 2 and hydrogen as raw materials. The reaction is carried out at H 2 / CO 2 = 3 (molar ratio) or H 2 / (CO 2 + CO) (molar ratio) = 3 in consideration of CO by-product. Japanese Patent Laid-Open No. 7-173088 (Patent Document 4) describes that 3 out of 1 to 10 is optimal for H 2 / CO 2 (molar ratio).
 特開平6-184023号公報(特許文献5)においては、化学量論比に対し、メタノール水溶液に溶解し分離されるCO2量を加算した量にて反応をおこなっており、H2/CO2(モル比)は2.8となっている。このように、メタノール合成反応は、H2/CO2(モル比)が、化学量論比である3もしくは、その近傍にて行われている。 In Japanese Patent Application Laid-Open No. 6-1884023 (Patent Document 5), the reaction is performed by adding the amount of CO 2 dissolved and separated in an aqueous methanol solution to the stoichiometric ratio, and H 2 / CO 2 (Molar ratio) is 2.8. As described above, the methanol synthesis reaction is performed at 3 or near the stoichiometric ratio of H 2 / CO 2 (molar ratio).
 また、触媒は固体であるため、メタノール合成反応は固定床反応器を用いることが一般的である。反応器の型式として、一般的には多管式反応器を用いることができる。 In addition, since the catalyst is solid, it is common to use a fixed bed reactor for the methanol synthesis reaction. As a type of the reactor, a multitubular reactor can be generally used.
特開平7-39755号公報JP-A-7-39755 特開平6-312138号公報Japanese Patent Laid-Open No. 6-312138 特開平10-309466号公報Japanese Patent Laid-Open No. 10-309466 特開平7-173088号公報JP 7-173088 A 特開平6-184023号公報Japanese Patent Laid-Open No. 6-1884023
 本発明者らの検討によれば、前記の二酸化炭素と水素からメタノールを製造する方法は、製造装置を大スケールにすると生産効率が低下すること、更には触媒層入口と出口との間に圧力差が発生することが判明した。 According to the study by the present inventors, the above-described method for producing methanol from carbon dioxide and hydrogen reduces the production efficiency when the production apparatus is scaled up, and further, the pressure between the catalyst layer inlet and the outlet is reduced. It was found that a difference occurred.
 合成ガス(主としてCOとH2からなるガス)からメタノールを合成する反応器としては反応管に触媒を4~12mの高さに充填して用いていることが、Process Economic Program 43D MEGA METHANOLPLANT, 2003, page7-73に紹介されている。ここで、ガスは反応器上部から流通し、反応管内の触媒と気固接触することによって反応が進行し、下部から未反応の原料と生成物の混合ガスが流出する。この際、反応ガスが、触媒充填部を通過することによる圧力損失によって反応器出口圧力は入口よりも低下する。上記の合成ガスからメタノールを合成する反応は平衡反応であり、圧力が低いほど平衡転化率が低下するため、反応器出口圧力の低下、すなわち触媒充填部の圧力損失が増加するとメタノール生産量が低下するという問題点がある。そのため、触媒充填部の圧力低下を抑制するため、ラジアルフロー型の反応器を用いることが知られている。 Process Reactor Program 43D MEGA METHANOLPLANT, 2003 is a reactor that synthesizes methanol from synthesis gas (mainly CO and H 2 ) by filling the reaction tube with catalyst at a height of 4-12 m. , page7-73. Here, gas flows from the upper part of the reactor, and the reaction proceeds by gas-solid contact with the catalyst in the reaction tube, and the unreacted raw material and product mixed gas flows out from the lower part. At this time, the reactor outlet pressure is lower than the inlet due to the pressure loss caused by the reaction gas passing through the catalyst filling portion. The reaction for synthesizing methanol from the above synthesis gas is an equilibrium reaction, and the lower the pressure, the lower the equilibrium conversion rate. Therefore, if the reactor outlet pressure decreases, that is, the pressure loss in the catalyst filling section increases, the methanol production decreases. There is a problem of doing. Therefore, it is known to use a radial flow type reactor in order to suppress a pressure drop in the catalyst filling portion.
 この様な反応器は触媒充填部の厚みを薄くすることで圧力損失を低減し、メタノール生産量の低下を防止している(ペテロテック20巻,8号,P638、特開平3-47134号公報)。 In such a reactor, the pressure loss is reduced by reducing the thickness of the catalyst packed portion, and the decrease in methanol production is prevented (Petertech Vol. 20, No. 8, P638, JP-A-3-47134). ).
 しかしながら、前記の反応器の場合、充填可能な触媒量が相対的に低下する。従って、生産性を高める為には、反応槽の大型化が一策である。しかし反応槽の大型化は比表面積の関係から、反応熱を除去して反応温度を一定に保持するには不利となる。このため、触媒層内に除熱のための多数の伝熱管を設けるといった複雑な構造が必要となり、機器コストの上昇に繋がる場合がある。また、大型化された反応層では、圧力損失の問題を完全には解決できないと考えられる。このため、構造が簡便で、且つ、効率の良いメタノールの製造方法が求められている。 However, in the case of the reactor described above, the amount of catalyst that can be filled is relatively reduced. Therefore, increasing the size of the reaction tank is one way to increase productivity. However, the increase in the size of the reaction tank is disadvantageous for removing the heat of reaction and keeping the reaction temperature constant because of the specific surface area. For this reason, a complicated structure of providing a large number of heat transfer tubes for heat removal in the catalyst layer is required, which may lead to an increase in equipment cost. In addition, it is considered that the problem of pressure loss cannot be completely solved with a large reaction layer. For this reason, there is a demand for an efficient method for producing methanol with a simple structure.
 本願発明者らは、上記の課題に鑑み検討した結果、触媒層に接触する、水素、二酸化炭素等のガス成分のモル比を特定の範囲に制御することにより、簡便な構造の設備や比較的小型の設備であっても効率よくメタノールの製造が可能であることを見出し、本発明を完成した。 The inventors of the present application have studied in view of the above problems, and as a result, by controlling the molar ratio of gas components such as hydrogen and carbon dioxide that are in contact with the catalyst layer to a specific range, It has been found that methanol can be efficiently produced even with a small facility, and the present invention has been completed.
 すなわち本発明のメタノールの製造方法は、銅を含む触媒から形成される触媒層を有する反応器中で、水素と二酸化炭素とを反応させ、メタノールを製造する方法であり、前記反応器が有する触媒層よりも上流側から、水素と二酸化炭素とを供給し、前記触媒層よりも下流側から、メタノールを含む反応混合物を得る工程を含み、前記触媒層の厚さが1メートル以上であり、前記触媒層に接触する水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.0を超え、反応不活性なガスと二酸化炭素とのモル比(反応不活性なガス/二酸化炭素)が0以上であり、水素および反応不活性なガスの合計と二酸化炭素とのモル比(水素および反応不活性なガスの合計/二酸化炭素)が3.5以上であることを特徴とする。 That is, the method for producing methanol of the present invention is a method for producing methanol by reacting hydrogen and carbon dioxide in a reactor having a catalyst layer formed from a catalyst containing copper, and the catalyst possessed by the reactor. Supplying hydrogen and carbon dioxide from the upstream side of the layer, and obtaining a reaction mixture containing methanol from the downstream side of the catalyst layer, wherein the catalyst layer has a thickness of 1 meter or more, The molar ratio of hydrogen and carbon dioxide contacting the catalyst layer (hydrogen / carbon dioxide) exceeds 3.0, and the molar ratio of the reaction inert gas to carbon dioxide (reactive inert gas / carbon dioxide) is 0. The molar ratio of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 or more.
 前記水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.5~5.5であり、水素および反応不活性なガスの合計と二酸化炭素とのモル比(水素および反応不活性なガスの合計/二酸化炭素)が3.5~6.0であることが好ましい。 The molar ratio of hydrogen to carbon dioxide (hydrogen / carbon dioxide) is 3.5 to 5.5, and the molar ratio of the total of hydrogen and reaction inert gas to carbon dioxide (hydrogen and reaction inert gas) Of carbon dioxide) is preferably 3.5 to 6.0.
 前記銅を含む触媒が、銅、亜鉛、アルミニウム、およびケイ素を含む触媒であることが好ましい。 It is preferable that the catalyst containing copper is a catalyst containing copper, zinc, aluminum, and silicon.
 前記反応器が固定床反応器であることが好ましい。 It is preferable that the reactor is a fixed bed reactor.
 前記銅を含む触媒の粒径が3~20mmであることが好ましい。 The particle size of the catalyst containing copper is preferably 3 to 20 mm.
 前記反応は、1~10MPaGの圧力で行うことが好ましい。 The reaction is preferably performed at a pressure of 1 to 10 MPaG.
 本発明のメタノールの製造方法によれば、触媒層に接触する原料の供給量(使用量)の比を特定の範囲に制御することにより、圧力損失の影響を効果的に低減できるため、複雑な構造の反応器を用いる必要がなく、従来の固定床形式の多管式反応器等の反応器であっても高い効率でメタノールを生産することが可能である。 According to the method for producing methanol of the present invention, the influence of pressure loss can be effectively reduced by controlling the ratio of the supply amount (use amount) of the raw material in contact with the catalyst layer to a specific range. It is not necessary to use a reactor having a structure, and even a reactor such as a conventional fixed-bed multi-tubular reactor can produce methanol with high efficiency.
実施例、比較例で用いた装置を説明するためのフローチャート図である。It is a flowchart figure for demonstrating the apparatus used by the Example and the comparative example.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明のメタノールの製造方法は、銅を含む触媒から形成される触媒層を有する反応器中で、水素と二酸化炭素とを反応させ、メタノールを製造する方法であり、前記反応器が有する触媒層よりも上流側から、水素と二酸化炭素とを供給し、前記触媒層よりも下流側から、メタノールを含む反応混合物を得る工程を含み、前記触媒層の厚さが1メートル以上であり、前記触媒層に接触する水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.0を超え、反応不活性なガスと二酸化炭素とのモル比(反応不活性なガス/二酸化炭素)が0以上であり、水素および反応不活性なガスの合計と二酸化炭素とのモル比(水素および反応不活性なガスの合計/二酸化炭素)が3.5以上であることを特徴とする。なお、通常は、前記反応器としては、固定床反応器が用いられる。 The method for producing methanol of the present invention is a method for producing methanol by reacting hydrogen and carbon dioxide in a reactor having a catalyst layer formed from a catalyst containing copper, and the catalyst layer possessed by the reactor. A step of supplying hydrogen and carbon dioxide from the upstream side to obtain a reaction mixture containing methanol from the downstream side of the catalyst layer, wherein the catalyst layer has a thickness of 1 meter or more, The molar ratio of hydrogen to carbon dioxide in contact with the layer (hydrogen / carbon dioxide) exceeds 3.0, and the molar ratio of reactive gas to carbon dioxide (reactive inert gas / carbon dioxide) is 0 or more. The molar ratio of the sum of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 or more. Normally, a fixed bed reactor is used as the reactor.
 本発明に用いられる、水素および二酸化炭素としては、公知の方法で得られるものを制限なく用いることができる。水素は、例えば水蒸気改質反応により発生(副生)する水素、電解反応により発生する水素、水の光分解により得られる水素など公知のものを用いることが可能である。 As hydrogen and carbon dioxide used in the present invention, those obtained by known methods can be used without limitation. As hydrogen, for example, hydrogen that is generated (by-product) by a steam reforming reaction, hydrogen that is generated by an electrolytic reaction, hydrogen obtained by photolysis of water, or the like can be used.
 二酸化炭素は、例えば石油化学工業プラントで、種々の化学反応や燃料を燃焼させた際に発生するものを用いることが可能である。 For example, carbon dioxide generated by burning various chemical reactions and fuels in a petrochemical industrial plant can be used.
 本発明のメタノールの製造方法では、二酸化炭素と水素とが反応することによって、メタノールおよび水が合成される。反応によって得られた反応混合物には、前記メタノールおよび水を含み、通常はさらに、未反応原料(例えば水素、二酸化炭素)および副生物(例えば一酸化炭素)を含む。本発明のメタノールの製造方法では通常、得られた反応混合物から、未反応原料(例えば水素、二酸化炭素)および副生物(例えば一酸化炭素)を分離し、メタノールと水との混合物を得て、次いで該混合物を公知の方法で脱水することによりメタノールを得る。 In the method for producing methanol of the present invention, methanol and water are synthesized by the reaction of carbon dioxide and hydrogen. The reaction mixture obtained by the reaction contains the methanol and water, and usually further contains unreacted raw materials (for example, hydrogen and carbon dioxide) and by-products (for example, carbon monoxide). In the method for producing methanol of the present invention, usually, unreacted raw materials (for example, hydrogen and carbon dioxide) and by-products (for example, carbon monoxide) are separated from the obtained reaction mixture to obtain a mixture of methanol and water, Next, methanol is obtained by dehydrating the mixture by a known method.
 前記未反応原料および副生物は、好ましくはガス状混合物として反応器に再循環して反応効率を高めることもできる。 The unreacted raw material and by-products can be recycled to the reactor, preferably as a gaseous mixture, to increase the reaction efficiency.
 本発明では、反応器が有する触媒層よりも上流側から、水素と二酸化炭素とを供給するが、触媒層に接触する水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.0を超える。好ましくは、3.5以上であり、より好ましくは4.0以上である。前記範囲を下回ると、触媒層による圧力損失の増加によって、平衡転化率が低下し、メタノールの生産性が低下する。また、触媒層に接触する、水素と二酸化炭素とのモル比の上限としては、特に限定はないが、水素と二酸化炭素とのモル比が余りに高すぎるとメタノールの生産性が低下する場合がある。このため水素と二酸化炭素とのモル比の上限は、好ましくは20.0、より好ましくは10.0、さらに好ましくは6.0、特に好ましくは5.5、殊に好ましくは5.0である。

 本発明の効果が発現する要因としては以下の様なことが考えられる。
In the present invention, hydrogen and carbon dioxide are supplied from the upstream side of the catalyst layer of the reactor, but the molar ratio of hydrogen to carbon dioxide in contact with the catalyst layer (hydrogen / carbon dioxide) is 3.0. Exceed. Preferably, it is 3.5 or more, more preferably 4.0 or more. Below the above range, due to an increase in pressure loss due to the catalyst layer, the equilibrium conversion rate decreases and the methanol productivity decreases. Further, the upper limit of the molar ratio of hydrogen and carbon dioxide that contacts the catalyst layer is not particularly limited, but if the molar ratio of hydrogen and carbon dioxide is too high, the productivity of methanol may decrease. . For this reason, the upper limit of the molar ratio of hydrogen to carbon dioxide is preferably 20.0, more preferably 10.0, even more preferably 6.0, particularly preferably 5.5, particularly preferably 5.0. .

The following factors can be considered as factors causing the effects of the present invention.
 水素と二酸化炭素とのモル比を量論比である3.0を越える値、好ましくは3.5以上とすることにより、実質的に反応に寄与しない水素の割合が増加する。この反応に寄与しない水素(過剰の水素)は、メタノールの生成に反応による圧力の低下を緩和する働きをする。 By setting the molar ratio of hydrogen to carbon dioxide to a value that exceeds the stoichiometric ratio of 3.0, preferably 3.5 or more, the proportion of hydrogen that does not substantially contribute to the reaction increases. Hydrogen that does not contribute to this reaction (excess hydrogen) serves to alleviate the pressure drop due to the reaction in the production of methanol.
 二酸化炭素と水素とからメタノールと水を生成する反応は平衡反応であり、反応する二酸化炭素と水素の総和より、生成するメタノールと水の総和の方が少ない。このため、圧力の低下はメタノールと水から二酸化炭素と水素を生成する所謂逆反応の割合を増加させる(メタノールの生産性を低下させる)と考えられる。 The reaction that produces methanol and water from carbon dioxide and hydrogen is an equilibrium reaction, and the total amount of methanol and water produced is less than the sum of the reacting carbon dioxide and hydrogen. For this reason, the decrease in pressure is considered to increase the rate of so-called reverse reaction that generates carbon dioxide and hydrogen from methanol and water (decreases the productivity of methanol).
 前記の過剰の水素は、圧力損失が起こるような環境下では、その影響を抑制し、生産性の向上をもたらすと考えられる。通常、過剰の水素の存在は、圧力を一定とした場合、二酸化炭素の濃度の低下を意味する。従って、常識的にはメタノールの生産性が低下するはずである。しかしながら、本願発明の範囲の条件でメタノールの製造を行うと、この生産性低下を補って余りある生産性の向上をもたらすことが出来る。 It is considered that the excessive hydrogen described above suppresses the influence in an environment where pressure loss occurs and improves productivity. Usually, the presence of excess hydrogen means a decrease in the concentration of carbon dioxide when the pressure is constant. Therefore, it is common knowledge that the productivity of methanol should decrease. However, if methanol is produced under the conditions within the scope of the present invention, this productivity decrease can be compensated for and a significant improvement in productivity can be brought about.
 また、本発明のメタノールの製造方法では二酸化炭素と水素から一酸化炭素と水とを生成する反応を伴う場合がある。上記と類似の理由で、圧力損失の低下はこの一酸化炭素を生成する反応の割合を相対的に抑制する効果ももたらすと考えられる。 Also, the methanol production method of the present invention may involve a reaction of generating carbon monoxide and water from carbon dioxide and hydrogen. For reasons similar to the above, it is considered that a decrease in pressure loss also brings about an effect of relatively suppressing the rate of the reaction for generating carbon monoxide.
 また、水素はガスとしての密度が低い為、本願発明の水素と二酸化炭素の割合であれば、相対的にガス密度が低下する。この低いガス密度は、触媒層による圧力損失を低減する効果を示すと考えられる。即ち、水素比率の高い本願の条件は、メタノールの生産性を高める他の一因であるとも考えられる。 In addition, since hydrogen has a low density as a gas, the gas density is relatively lowered if the ratio of hydrogen and carbon dioxide of the present invention is used. This low gas density is considered to show the effect of reducing the pressure loss due to the catalyst layer. That is, the condition of the present application having a high hydrogen ratio is considered to be another factor that increases the productivity of methanol.
 本発明のメタノールの製造方法では、メタノール以外にも水が合成される。一般に水は触媒上に吸着されメタノール生成反応を阻害するなどの理由で、メタノール生産効率を低下させる要因となることがある。本発明では、水素の二酸化炭素に対する供給量が多いため、生成する水が希釈され、従来よりも水濃度が低下することになる。水濃度の低下は触媒上に吸着される水分量の低下につながるため、水によるメタノール生産効率の低下が抑制されるのではないかと考えられる。このため本発明のメタノール製造法では、メタノール生産効率が高いと推察される。 In the methanol production method of the present invention, water is synthesized in addition to methanol. In general, water may be adsorbed on a catalyst to inhibit the methanol production reaction, which may cause a reduction in methanol production efficiency. In the present invention, since the supply amount of hydrogen to carbon dioxide is large, the generated water is diluted, and the water concentration is lowered as compared with the conventional case. Since a decrease in water concentration leads to a decrease in the amount of water adsorbed on the catalyst, it is thought that a decrease in methanol production efficiency due to water may be suppressed. For this reason, in the methanol manufacturing method of this invention, it is guessed that methanol production efficiency is high.
 本発明のメタノールの製造方法においては、水素および二酸化炭素以外のガスを供給してもよい。水素および二酸化炭素以外のガスとしては、反応不活性なガスが挙げられる。なお、反応不活性なガスとは、水素と二酸化炭素とを反応させる際に、実質的に反応しない化合物であればよい。反応不活性なガスを、反応に供給すると、圧力損失による影響を低減することができる、すなわち、メタノールの生産性を高めることができる場合があると考えられる。反応不活性なガスとして好ましくは、二酸化炭素の分子量以下の分子量を有する物質が挙げられ、具体的には、窒素;ヘリウム、アルゴンなどの希ガス;メタン、エタン、プロパン等の炭化水素を挙げることができる。この反応不活性なガスは、前述の実質的に反応に寄与しない水素と同様の理由で、メタノールの生産性の向上をもたらすと考えられる。 In the method for producing methanol of the present invention, a gas other than hydrogen and carbon dioxide may be supplied. Examples of gases other than hydrogen and carbon dioxide include reaction inert gases. The reaction inert gas may be a compound that does not substantially react when hydrogen and carbon dioxide are reacted. If a reaction inert gas is supplied to the reaction, it is considered that the influence of pressure loss can be reduced, that is, the productivity of methanol can be increased. Preferably, the reaction inert gas includes a substance having a molecular weight equal to or lower than that of carbon dioxide, and specifically includes nitrogen; a rare gas such as helium and argon; and a hydrocarbon such as methane, ethane and propane. Can do. This reaction-inert gas is considered to bring about an improvement in methanol productivity for the same reason as the hydrogen that does not substantially contribute to the reaction.
 本発明では、触媒層に接触する、反応不活性なガスと二酸化炭素とのモル比(反応不活性なガス/二酸化炭素)が0以上である。また、前記水素と二酸化炭素とのモル比の好ましい範囲と同様の理由で、反応不活性なガスと二酸化炭素とのモル比の上限は、好ましくは17.0、より好ましくは10.0、さらに好ましくは5.0、特に好ましくは1.0、殊に好ましくは0.5である。 In the present invention, the molar ratio of the reaction inert gas to carbon dioxide (reaction inert gas / carbon dioxide) in contact with the catalyst layer is 0 or more. For the same reason as the preferable range of the molar ratio of hydrogen to carbon dioxide, the upper limit of the molar ratio of the reaction inert gas to carbon dioxide is preferably 17.0, more preferably 10.0, Preferably it is 5.0, particularly preferably 1.0, particularly preferably 0.5.
 また、本発明では、触媒層に接触する、前記水素および不活性ガスの合計と二酸化炭素とのモル比(水素および不活性ガスの合計/二酸化炭素)が3.5以上であり、好ましくは4.0以上である。水素および不活性ガスの合計と二酸化炭素とのモル比の上限としては、特に限定はないが、メタノールの生産性の観点から、好ましくは20.0であり、より好ましくは10.0、さらに好ましくは6.0である。 In the present invention, the molar ratio of the total of hydrogen and inert gas to carbon dioxide (total of hydrogen and inert gas / carbon dioxide) in contact with the catalyst layer is 3.5 or more, preferably 4 0.0 or more. The upper limit of the molar ratio of hydrogen and inert gas to carbon dioxide is not particularly limited, but is preferably 20.0, more preferably 10.0, and still more preferably from the viewpoint of methanol productivity. Is 6.0.
 本発明のメタノールの製造方法は、銅を含む触媒の存在下で、前記水素と二酸化炭素とを反応させる。該銅を含む触媒としては、銅を含む触媒であり、水素と二酸化炭素とからメタノールを製造することが可能な触媒であれば公知の物を制限なく使用することができる。本発明に用いられる銅を含む触媒としては、特許文献3に記載の触媒が好ましい例として挙げられる。具体的には、銅を含む触媒としては、銅、亜鉛、アルミニウム、およびケイ素を含む触媒が好ましい。また、該触媒は、ジルコニウム、パラジウム、およびガリウムから選択される少なくとも1種の元素を含むことがより好ましい。このような銅などの成分を含む触媒は、二酸化炭素からメタノールが製造される際に副生する水による活性低下が少ない等の理由で、本願のメタノールの製造方法に好適に使用することが出来る。 In the method for producing methanol of the present invention, the hydrogen and carbon dioxide are reacted in the presence of a catalyst containing copper. As the catalyst containing copper, a catalyst containing copper can be used without limitation as long as it is a catalyst capable of producing methanol from hydrogen and carbon dioxide. As a catalyst containing copper used for this invention, the catalyst of patent document 3 is mentioned as a preferable example. Specifically, the catalyst containing copper is preferably a catalyst containing copper, zinc, aluminum, and silicon. More preferably, the catalyst contains at least one element selected from zirconium, palladium, and gallium. Such a catalyst containing a component such as copper can be suitably used in the method for producing methanol of the present application for the reason that there is little decrease in activity due to water produced as a by-product when methanol is produced from carbon dioxide. .
 前記銅を含む触媒は、その平均粒径が0.5~20mmであることが好ましく、より好ましくは1~20mm、さらに好ましくは2~20mmである。更には平均粒径が3~20mmであることが好ましく、3~15mmであることがより好ましく、3~10mmであることが特に好ましい。銅を含む触媒の粒径が前記範囲内にあると、該触媒のハンドリングが容易であるだけでなく、例えば該触媒を固定床に装填する事で触媒層を形成し、本発明の方法によりメタノールを製造した場合の、圧力損失による生産性低下を抑制するのに好適である。上記の粒径の触媒を製造する方法は、公知の方法を制限無く用いることができる。好適には打錠法が用いられる。 The copper-containing catalyst preferably has an average particle size of 0.5 to 20 mm, more preferably 1 to 20 mm, and still more preferably 2 to 20 mm. Further, the average particle size is preferably 3 to 20 mm, more preferably 3 to 15 mm, and particularly preferably 3 to 10 mm. When the particle size of the catalyst containing copper is within the above range, not only the handling of the catalyst is easy, but also, for example, a catalyst layer is formed by loading the catalyst on a fixed bed, and methanol is produced by the method of the present invention. This is suitable for suppressing a decrease in productivity due to pressure loss. As a method for producing the catalyst having the above particle diameter, a known method can be used without limitation. A tableting method is preferably used.
 本発明に用いられる反応器は、公知の反応器を制限無く用いることができる。例えば前記銅を含む触媒が、固定床反応器に充填されていることが好ましい。またラジアルフロー型反応器も好適に用いることが出来る。本発明の方法を用いれば、圧力損失を低減できるので、比較的大型のラジアルフロー型反応器でも生産性が良好となり、効率よくメタノールの生産が出来る可能性がある。 As the reactor used in the present invention, a known reactor can be used without limitation. For example, the catalyst containing copper is preferably packed in a fixed bed reactor. A radial flow reactor can also be suitably used. Since the pressure loss can be reduced by using the method of the present invention, the productivity can be improved even in a relatively large radial flow reactor, and methanol can be efficiently produced.
 本発明のメタノールの製造方法は、前記銅を含む触媒から形成される触媒層を有する反応器中で、水素と二酸化炭素とを反応させる。該反応は、反応器が有する触媒層よりも上流側から、水素と二酸化炭素とを供給し、前記触媒層よりも下流側から、メタノールを含む反応混合物を得る工程(以下、工程(A)とも記す)において行われる。反応器が有する触媒層の厚さは1メートル以上である。触媒層の厚さは、好ましくは2メートル以上、より好ましくは3メートル以上、更に好ましくは4メートル以上である。厚みの上限を設定することに積極的な意味はないが、厚くなり過ぎると圧力損失の負の影響が大きくなる傾向があるので、上限としては、好ましくは20メートル、より好ましくは15メートルである。尚、本願における触媒層厚みとは、上流側と下流側の位置関係によってのみ決定される訳ではなく、触媒層形状も考慮した実質的な長さのことを指す。 In the method for producing methanol of the present invention, hydrogen and carbon dioxide are reacted in a reactor having a catalyst layer formed from the catalyst containing copper. In this reaction, hydrogen and carbon dioxide are supplied from the upstream side of the catalyst layer of the reactor, and a reaction mixture containing methanol is obtained from the downstream side of the catalyst layer (hereinafter, also referred to as step (A)). It is done in the following. The thickness of the catalyst layer included in the reactor is 1 meter or more. The thickness of the catalyst layer is preferably 2 meters or more, more preferably 3 meters or more, and even more preferably 4 meters or more. There is no positive meaning in setting the upper limit of the thickness, but if it becomes too thick, the negative effect of pressure loss tends to increase, so the upper limit is preferably 20 meters, more preferably 15 meters. . In addition, the catalyst layer thickness in this application is not necessarily determined only by the positional relationship between the upstream side and the downstream side, but indicates a substantial length considering the shape of the catalyst layer.
 なお本発明に掛かる触媒層の厚みは、任意の位置で同じである必要はなく、実質的に最も薄い箇所の厚みが前記の要件を満たしていることが好ましい。より好ましくは、触媒層厚みは均一であることが好ましい。触媒層厚みが薄い部分が存在すると二酸化炭素、水素などの原料ガスが、その箇所に相対的に集中する可能性があり、見かけの触媒反応効率が低下する場合があると考えられる。 It should be noted that the thickness of the catalyst layer according to the present invention need not be the same at any position, and it is preferable that the thickness of the thinnest portion satisfies the above-mentioned requirements. More preferably, the catalyst layer thickness is preferably uniform. If a portion having a thin catalyst layer is present, source gases such as carbon dioxide and hydrogen may be concentrated relatively on the portion, and the apparent catalytic reaction efficiency may be reduced.
 本発明のメタノール製造方法に係る触媒層は、水素と二酸化炭素とが通過することが可能な態様であれば、特に限定はない。例えば、触媒層は、一つの塊状であってもよいし、複数の粒子や、粉体から形成されていてもよい。なお、触媒層としては、好ましくは平均粒径が1~20mm、より好ましくは粒径が3~20mmである銅を含む触媒、すなわち触媒粒子を、反応器に充填することにより形成されることが好ましい。また、本発明のメタノールの製造方法においては、複数の触媒層を有していてもよい。 The catalyst layer according to the methanol production method of the present invention is not particularly limited as long as hydrogen and carbon dioxide can pass through. For example, the catalyst layer may be a single block, or may be formed from a plurality of particles or powder. The catalyst layer is preferably formed by filling a reactor with a catalyst containing copper having an average particle diameter of 1 to 20 mm, more preferably 3 to 20 mm, that is, catalyst particles. preferable. Moreover, in the manufacturing method of methanol of this invention, you may have a some catalyst layer.
 前記反応装置を設置する方向は、縦、横の区別無く任意の方向に設定できる。勿論、曲管の様な形状でも良いが、好ましくは実質的に直管形状である。また、上流、下流の位置関係も任意である。例えば、ダウンフロー型反応装置であってもアップフロー型反応装置であっても良い。勿論、前述のラジアルフロー型反応器でも良い。 The direction in which the reaction apparatus is installed can be set in any direction regardless of whether it is vertical or horizontal. Of course, a shape like a curved pipe may be used, but a substantially straight pipe shape is preferable. The positional relationship between the upstream and downstream is also arbitrary. For example, it may be a downflow reactor or an upflow reactor. Of course, the aforementioned radial flow reactor may be used.
 本願発明のメタノールの製造方法であれば、従来と同量の触媒を用いて、同様の反応器を用いた場合であっても、従来のメタノールの製造方法よりも圧力損失による生産性低下を低減することが可能であるため、反応器を大径化する事で触媒厚みと触媒量とを高度にバランスさせる様な態様にしなくても、高い生産効率でメタノールを製造することができる。 With the methanol production method of the present invention, even if the same reactor is used with the same amount of catalyst as in the conventional method, the productivity drop due to pressure loss is reduced compared to the conventional methanol production method. Therefore, it is possible to produce methanol with high production efficiency without increasing the diameter of the reactor so that the catalyst thickness and the catalyst amount are not highly balanced.
 本発明のメタノールの製造方法における、前記反応は、通常反応温度150~300℃、反応圧力1~10MPaG、GHSV(Gas Hourly Space Velocity)が1000~30000h-1の条件下で行なわれる。 In the methanol production method of the present invention, the reaction is usually carried out under conditions of a reaction temperature of 150 to 300 ° C., a reaction pressure of 1 to 10 MPaG, and a GHSV (Gas Hourly Space Velocity) of 1000 to 30000 h −1 .
 反応圧力の好ましい下限値は、2MPaG、さらに好ましくは3MPaG、特に好ましくは3.5MPaGである。一方、好ましい上限値は、9MPaG、さらに好ましくは8.5MPaG、特に好ましくは8MPaGである。 The preferable lower limit of the reaction pressure is 2 MPaG, more preferably 3 MPaG, and particularly preferably 3.5 MPaG. On the other hand, a preferable upper limit is 9 MPaG, more preferably 8.5 MPaG, and particularly preferably 8 MPaG.
 反応圧力が高過ぎると、前述の圧力損失がそもそも起こり難く、本願発明の効果が相対的に小さくなる傾向がある。また反応装置に高い耐圧の材料が必要となり、固定費が高くなる傾向がある。一方、反応圧力が低過ぎると反応速度の絶対値の低下から生産性の低下に繋がることがある。また、低反応速度を補い、生産量を増大させるためには、設備を大型化する方法があるが、これも固定費の増大を招く傾向がある。 When the reaction pressure is too high, the aforementioned pressure loss hardly occurs in the first place, and the effect of the present invention tends to be relatively small. Moreover, a high pressure resistant material is required for the reaction apparatus, and the fixed cost tends to be high. On the other hand, if the reaction pressure is too low, the absolute value of the reaction rate may decrease, leading to a decrease in productivity. In order to compensate for the low reaction rate and increase the production volume, there is a method of increasing the size of the equipment, but this also tends to increase the fixed cost.
 前記工程(A)は、前述のように、触媒層を有する反応器を用いて行われる。反応器としては例えば、触媒層の上流側および下流側のそれぞれに、空間を有していてもよく、触媒層上流側が原料供給ラインと直接繋がっていてもよいし、触媒層の下流側が反応器の出口(反応物取り出しライン)と直接繋がっていてもよい。 The step (A) is performed using a reactor having a catalyst layer as described above. For example, the reactor may have spaces on the upstream side and downstream side of the catalyst layer, the upstream side of the catalyst layer may be directly connected to the raw material supply line, or the downstream side of the catalyst layer may be the reactor. May be directly connected to the outlet (reactant take-out line).
 本発明の製造方法では触媒層の厚さが厚くても、メタノールの生産性を高くすることができる。該理由を本発明者らは、従来では生産性が低下すると考えられていた特定の組成の原料を用いることにより、圧力損失による生産性低下を低減することができ、結果として従来の知見と異なり、メタノールの生産性に優れると推測した。 In the production method of the present invention, even if the catalyst layer is thick, the productivity of methanol can be increased. The reason for this is that the present inventors can reduce the decrease in productivity due to pressure loss by using a raw material having a specific composition that was previously thought to decrease the productivity, resulting in a difference from the conventional knowledge. It was estimated that the productivity of methanol was excellent.
 また圧力損失が少なく、平衡転化率を高く維持することができるため、前述の未反応原料および副生物を、ガス状混合物として回収、再利用する場合において、昇圧に要するエネルギーを少なくできる可能性がある。すなわち、プロセス全体の消費エネルギーを低減することができると期待される。 Further, since the pressure loss is small and the equilibrium conversion rate can be kept high, there is a possibility that the energy required for pressurization can be reduced when the unreacted raw materials and by-products described above are recovered and reused as a gaseous mixture. is there. That is, it is expected that the energy consumption of the entire process can be reduced.
 本発明のメタノールの製造方法では、前記触媒層を有する反応器中で、水素と二酸化炭素とが反応する。前記反応器の出口から得られる反応混合物には、反応によって得られるメタノールおよび水以外にも、未反応原料である水素と二酸化炭素、副生物である一酸化炭素が通常は含有される。また、該反応混合物は、通常ガスとして得られる。すなわち、反応混合物は、ガス状反応混合物であることが好ましい。 In the methanol production method of the present invention, hydrogen and carbon dioxide react in a reactor having the catalyst layer. The reaction mixture obtained from the outlet of the reactor usually contains hydrogen and carbon dioxide as unreacted raw materials and carbon monoxide as a by-product, in addition to methanol and water obtained by the reaction. The reaction mixture is usually obtained as a gas. That is, the reaction mixture is preferably a gaseous reaction mixture.
 前記ガス状反応混合物は通常、冷却後、気液分離器により、液状混合物と、ガス状混合物とに分離される。該分離は、通常圧力1~10MPa、温度-10~50℃の条件下で行われる。該分離において得られる液状混合物は、メタノール、水およびこれらに溶解している二酸化炭素から形成され、ガス状混合物は、前記未反応原料および副生成物である一酸化炭素から形成される。なお、該ガス状混合物の少なくとも一部は、反応器に再循環されることが好ましい。 The gaseous reaction mixture is usually cooled and then separated into a liquid mixture and a gaseous mixture by a gas-liquid separator. The separation is usually carried out under conditions of a pressure of 1 to 10 MPa and a temperature of −10 to 50 ° C. The liquid mixture obtained in the separation is formed from methanol, water and carbon dioxide dissolved in them, and the gaseous mixture is formed from the unreacted raw material and carbon monoxide as a by-product. It should be noted that at least a part of the gaseous mixture is preferably recycled to the reactor.
 前述の通り、ガス状混合物には副生物である一酸化炭素が含まれていてもよい。また、一酸化炭素は、前記原料の不純物として、反応器に供給されてもよいし、必要に応じて一酸化炭素を導入することも出来る。好ましくは二酸化炭素と一酸化炭素の割合は100/0~60/40、より好ましくは100/0~70/30、さらに好ましくは100/0~75/25、特に好ましくは100/0~80/20、殊に好ましくは100/0~85/15である。 As described above, the gaseous mixture may contain carbon monoxide as a by-product. Carbon monoxide may be supplied to the reactor as an impurity of the raw material, or carbon monoxide can be introduced as necessary. Preferably, the ratio of carbon dioxide to carbon monoxide is 100/0 to 60/40, more preferably 100/0 to 70/30, still more preferably 100/0 to 75/25, particularly preferably 100/0 to 80 / 20, particularly preferably 100/0 to 85/15.
 本発明のメタノールの製造方法は、従来のメタノールの製造方法と比べて、前記圧力損失による生産性低下を低減することが可能であるが、反応が小スケールで行われる場合には、従来の製造方法と比べた際の、圧力損失の影響が顕在化しない場合がある。これは、小スケールでは主に触媒層の厚みが薄いため、圧力損失が顕在化しないためと推定される。 The methanol production method of the present invention can reduce the productivity drop due to the pressure loss as compared with the conventional methanol production method. However, when the reaction is performed on a small scale, the conventional production method can be used. The effect of pressure loss may not be apparent when compared to the method. This is presumably because the pressure loss does not become apparent because the catalyst layer is mainly thin on a small scale.
 このため、本発明のメタノールの製造方法は、圧力損失の影響の低減効果が顕在するスケールで実質的に行われる。具体的には、触媒層はジャケット等の形状の温度制御槽と組み合わされて用いられることが多い。この温度制御槽は触媒層が単層で組み合わされても良いし、複数の触媒層を一つの温度制御槽に格納する形式、即ち多管式になっていても良い。前記多管式形状は、工業化の際に好ましく用いられる。工業化を前提とした場合、この形状での触媒層全体のスケールの上限としては特に限定はなく、触媒層の厚みにもよるが、500立方メートルが好ましく、より好ましくは400立方メートルであり、200立方メートルがさらに好ましく、特に好ましくは150立方メートルである。一方下限値は、1立方メートル、より好ましくは10立方メートル、さらに好ましくは20立方メートルである。これらの装置は複数を併用することも可能である。 For this reason, the method for producing methanol of the present invention is substantially performed on a scale where the effect of reducing the effect of pressure loss is manifested. Specifically, the catalyst layer is often used in combination with a temperature control tank having a shape such as a jacket. In this temperature control tank, the catalyst layers may be combined in a single layer, or a plurality of catalyst layers may be stored in one temperature control tank, that is, a multi-tube type. The multi-tubular shape is preferably used in industrialization. Assuming industrialization, the upper limit of the scale of the entire catalyst layer in this shape is not particularly limited, and is preferably 500 cubic meters, more preferably 400 cubic meters, more preferably 200 cubic meters, depending on the thickness of the catalyst layer. Further preferred, particularly preferred is 150 cubic meters. On the other hand, the lower limit is 1 cubic meter, more preferably 10 cubic meters, and still more preferably 20 cubic meters. A plurality of these devices can be used in combination.
 反応器のスケールは、当然ながら、前記の触媒層以上の容量となる。 The scale of the reactor is naturally larger than the capacity of the catalyst layer.
 本発明のメタノールの製造方法において、反応を停止する方法も公知の方法を制限無く用いることができる。具体的には、反応系内の残存ガスを反応不活性なガスなどでパージすることなく、原料混合ガスの供給に代えて水素を供給し、前記と同様の条件下に反応系内に残存する一酸化炭素および二酸化炭素 と反応させることにより、実質上その全量をメタノールに転化する方法が好ましい例として挙げられる。 In the method for producing methanol of the present invention, a known method can be used without any limitation as a method for stopping the reaction. Specifically, without purging the residual gas in the reaction system with a reaction inert gas or the like, hydrogen is supplied instead of supplying the raw material mixed gas, and the residual gas remains in the reaction system under the same conditions as described above. Carbon monoxide and carbon dioxide   A preferred example is a method in which substantially the entire amount is converted to methanol by reacting with.
 本発明のメタノールの製造方法の一態様を、図1とともに以下に説明する。なお、該態様においては、反応不活性ガスは用いていない。原料ガスとして、水素と二酸化炭素とのモル比(水素/二酸化炭素)が所定の範囲である混合ガスを用い、該混合ガスは昇圧コンプレッサー1によって、好適な圧力まで昇圧され、反応循環系に送られる。反応循環系に入った原料混合ガスは、循環コンプレッサー6によって循環されるガス状混合物と共に、加熱器2にて、反応好適な温度まで昇温された後、反応器3へ送られ、メタノールの合成反応に供される。なお、反応器内には、銅を含む触媒から形成される触媒層が存在する。反応器3内で、水素と二酸化炭素とが反応し、メタノールを含む、ガス状の反応混合物が得られる。反応器3を出たガス状の反応混合物(反応混合ガス)は冷却器4により常温以下まで冷却され、主として生成したメタノールおよび水が液化され、気液分離器5に送られる。気液分離器5から液状混合物およびガス状混合物が分離されたのち、それぞれ抜き出され、ガス状混合物の大部分は、循環コンプレッサー6によって、反応器3へ循環される。また、ガス状混合物の一部は、系外へパージする事もできる。 One aspect of the method for producing methanol of the present invention will be described below with reference to FIG. In this embodiment, no reaction inert gas is used. A mixed gas in which the molar ratio of hydrogen to carbon dioxide (hydrogen / carbon dioxide) is within a predetermined range is used as the raw material gas. It is done. The raw material mixed gas that has entered the reaction circulation system is heated together with the gaseous mixture circulated by the circulation compressor 6 to a temperature suitable for the reaction in the heater 2 and then sent to the reactor 3 to synthesize methanol. Subject to reaction. Note that a catalyst layer formed from a catalyst containing copper is present in the reactor. In the reactor 3, hydrogen and carbon dioxide react with each other to obtain a gaseous reaction mixture containing methanol. The gaseous reaction mixture (reaction mixture gas) exiting the reactor 3 is cooled to below normal temperature by the cooler 4, and mainly produced methanol and water are liquefied and sent to the gas-liquid separator 5. After the liquid mixture and the gaseous mixture are separated from the gas-liquid separator 5, the liquid mixture and the gaseous mixture are respectively extracted, and most of the gaseous mixture is circulated to the reactor 3 by the circulation compressor 6. A part of the gaseous mixture can be purged out of the system.
 なお、図1において、図示してはいないが、気液分離器5から抜き出された液状混合物から、適宜液状混合物中に溶解していた二酸化炭素等をさらに分離してもよく、分離されたガスは通常、系外に排出される。また、通常は、気液分離器5で分離されたメタノールと水とからなる液状混合物は、公知の方法で脱水が行われ、メタノールが得られる。 In addition, although not shown in FIG. 1, carbon dioxide or the like dissolved in the liquid mixture may be appropriately separated from the liquid mixture extracted from the gas-liquid separator 5 and separated. Gas is usually discharged out of the system. Usually, the liquid mixture composed of methanol and water separated by the gas-liquid separator 5 is dehydrated by a known method to obtain methanol.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 実施例および比較例は、図1に示す装置を用いて行った。該装置は、原料である混合ガスを供給するための昇圧コンプレッサー1、原料を加熱するための加熱器2、反応を行う反応器3、得られた反応混合物を冷却するための冷却器4、得られた反応混合物を液体と気体とに分けるための気液分離器5、分離された気体の少なくとも一部を反応器3へ循環させるための循環コンプレッサー6を有する。 Examples and Comparative Examples were performed using the apparatus shown in FIG. The apparatus includes a booster compressor 1 for supplying a mixed gas as a raw material, a heater 2 for heating the raw material, a reactor 3 for performing a reaction, and a cooler 4 for cooling the obtained reaction mixture. A gas-liquid separator 5 for dividing the reaction mixture into liquid and gas, and a circulation compressor 6 for circulating at least a part of the separated gas to the reactor 3 are provided.
 〔製造例1〕
 (銅を含む触媒の調製)
 特許文献3(特開平10-309466号公報)の実施例1の方法に実質的に準じて触媒を調製した。得られた触媒の組成はCuO:45.2wt%、ZnO:27.1wt%、Al23:4.5wt%、ZrO2:22.6wt%、SiO2:0.6wt%であった。
[Production Example 1]
(Preparation of catalyst containing copper)
A catalyst was prepared substantially in accordance with the method of Example 1 of Patent Document 3 (Japanese Patent Laid-Open No. 10-309466). The composition of the resulting catalyst CuO: 45.2wt%, ZnO: 27.1wt %, Al 2 O 3: 4.5wt%, ZrO 2: 22.6wt%, SiO 2: was 0.6 wt%.
 〔実施例1〕
 図1に示す装置を用いて、下記条件で定常状態に達した後、24時間反応を行った。
[Example 1]
Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
 反応圧力:5.0MPaG
 反応温度:250℃
 触媒充填量:11L
 触媒層厚 :6メートル
 GHSV:10000hr-1
 水素/二酸化炭素モル比:4.88
 前記反応が定常状態に達した後、図1中の分析箇所(a~d)において、組成、温度および圧力を測定した。結果を表1に示す。
Reaction pressure: 5.0 MPaG
Reaction temperature: 250 ° C
Catalyst filling amount: 11L
Catalyst layer thickness: 6 meters GHSV: 10,000 hr −1
Hydrogen / carbon dioxide molar ratio: 4.88
After the reaction reached a steady state, the composition, temperature and pressure were measured at the analysis points (ad) in FIG. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 反応器の圧力損失は0.18MPaであり、メタノール生成量は、STY(空時収率)にして、626g‐メタノール/L-Cat/hrであった。 The pressure loss of the reactor was 0.18 MPa, and the amount of methanol produced was 626 g-methanol / L-Cat / hr in STY (space-time yield).
 〔実施例2〕
 図1に示す装置を用いて、下記条件で定常状態に達した後、24時間反応を行った。
[Example 2]
Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
 反応圧力:5.0MPaG
 反応温度:250℃
 触媒充填量:11L
 触媒層厚 :6メートル
 GHSV:10000hr-1
 水素/二酸化炭素モル比:5.22
 定常状態での図1中の分析箇所(a~d)において、組成、温度および圧力を測定した。結果を表2に示す。
Reaction pressure: 5.0 MPaG
Reaction temperature: 250 ° C
Catalyst filling amount: 11L
Catalyst layer thickness: 6 meters GHSV: 10,000 hr −1
Hydrogen / carbon dioxide molar ratio: 5.22
The composition, temperature and pressure were measured at the analysis points (ad) in FIG. 1 in the steady state. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 反応器の圧力損失は0.16MPaであり、メタノール生成量は、STY(空時収率)にして、610g‐メタノール/L-Cat/hrであった。 The pressure loss of the reactor was 0.16 MPa, and the amount of methanol produced was 610 g-methanol / L-Cat / hr in STY (space-time yield).
 〔比較例1〕
 図1に示す装置を用いて、下記条件で、定常状態に達した後24時間反応を行った。
[Comparative Example 1]
Using the apparatus shown in FIG. 1, the reaction was performed for 24 hours after reaching a steady state under the following conditions.
 反応圧力:5.0MPaG
 反応温度:250℃
 触媒充填量:11L
 触媒層厚 :6メートル
 GHSV:10000hr-1
 水素/二酸化炭素モル比:3.40
 定常状態に達した後、図1中の分析箇所(a~d)において、組成、温度および圧力を測定した。結果を表3に示す。
Reaction pressure: 5.0 MPaG
Reaction temperature: 250 ° C
Catalyst filling amount: 11L
Catalyst layer thickness: 6 meters GHSV: 10,000 hr −1
Hydrogen / carbon dioxide molar ratio: 3.40
After reaching the steady state, the composition, temperature and pressure were measured at the analysis points (ad) in FIG. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 反応器の圧力損失は0.24MPaであり、メタノール生成量は、STY(空時収率)にして、594g‐メタノール/L-Cat/hrであった。 The pressure loss of the reactor was 0.24 MPa, and the amount of methanol produced was 594 g-methanol / L-Cat / hr in STY (space-time yield).
 〔実施例3〕
 図1に示す装置を用いて、下記条件で定常状態に達した後、24時間反応を行った。
Example 3
Using the apparatus shown in FIG. 1, after reaching a steady state under the following conditions, the reaction was performed for 24 hours.
 反応圧力:5.0MPaG
 反応温度:250℃
 触媒充填量:11L
 触媒層厚 :6メートル
 GHSV:10000hr-1
 水素/二酸化炭素モル比:4.15
 定常状態での図1中の分析箇所(a~d)において、組成、温度および圧力を測定した。結果を表4に示す。
Reaction pressure: 5.0 MPaG
Reaction temperature: 250 ° C
Catalyst filling amount: 11L
Catalyst layer thickness: 6 meters GHSV: 10,000 hr −1
Hydrogen / carbon dioxide molar ratio: 4.15
The composition, temperature and pressure were measured at the analysis points (ad) in FIG. 1 in the steady state. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 反応器の圧力損失は0.21MPaであり、メタノール生成量は、STY(空時収率)にして、644g‐メタノール/L-Cat/hrであった。 The pressure loss of the reactor was 0.21 MPa, and the amount of methanol produced was 644 g-methanol / L-Cat / hr in STY (space-time yield).
 上記の結果から分かる通り、本願の範囲を外れる条件でメタノールを製造すると、その生産性が低く、高い圧力損失が生じている。前記の圧力損失が大きくなると、未反応原料をリサイクルして反応に再利用する場合、コンプレッサーによる加圧の負荷が高まる結果になり、生産性や、エネルギー効率が悪化する。このため、圧力損失の小さい本発明のメタノールの製造方法は、種々の面から有用である。 As can be seen from the above results, when methanol is produced under conditions outside the scope of the present application, the productivity is low and high pressure loss occurs. When the pressure loss increases, when unreacted raw materials are recycled and reused for the reaction, the pressure applied by the compressor is increased, and productivity and energy efficiency are deteriorated. For this reason, the method for producing methanol of the present invention having a small pressure loss is useful from various aspects.
 1・・・昇圧コンプレッサー
 2・・・加熱器
 3・・・反応器
 4・・・冷却器
 5・・・気液分離器
 6・・・循環コンプレッサー
DESCRIPTION OF SYMBOLS 1 ... Booster compressor 2 ... Heater 3 ... Reactor 4 ... Cooler 5 ... Gas-liquid separator 6 ... Circulating compressor

Claims (6)

  1.  銅を含む触媒から形成される触媒層を有する反応器中で、水素と二酸化炭素とを反応させ、メタノールを製造する方法であり、
     前記反応器が有する触媒層よりも上流側から、水素と二酸化炭素とを供給し、前記触媒層よりも下流側から、メタノールを含む反応混合物を得る工程を含み、
     前記触媒層の厚さが1メートル以上であり、
     前記触媒層に接触する水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.0を超え、反応不活性なガスと二酸化炭素とのモル比(反応不活性なガス/二酸化炭素)が0以上であり、水素および反応不活性なガスの合計と二酸化炭素とのモル比(水素および反応不活性なガスの合計/二酸化炭素)が3.5以上であることを特徴とするメタノールの製造方法。
    In a reactor having a catalyst layer formed from a catalyst containing copper, hydrogen and carbon dioxide are reacted to produce methanol,
    Supplying hydrogen and carbon dioxide from the upstream side of the catalyst layer of the reactor, and obtaining a reaction mixture containing methanol from the downstream side of the catalyst layer;
    The catalyst layer has a thickness of 1 meter or more;
    The molar ratio of hydrogen to carbon dioxide (hydrogen / carbon dioxide) in contact with the catalyst layer exceeds 3.0, and the molar ratio of reaction inert gas to carbon dioxide (reactive inert gas / carbon dioxide) is Methanol production characterized in that the molar ratio of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 or more. Method.
  2.  前記水素と二酸化炭素とのモル比(水素/二酸化炭素)が3.5~5.5であり、
     水素および反応不活性なガスの合計と二酸化炭素とのモル比(水素および反応不活性なガスの合計/二酸化炭素)が3.5~6.0であることを特徴とする請求項1に記載のメタノールの製造方法。
    The hydrogen to carbon dioxide molar ratio (hydrogen / carbon dioxide) is 3.5 to 5.5;
    2. The molar ratio of the sum of hydrogen and reaction inert gas to carbon dioxide (total of hydrogen and reaction inert gas / carbon dioxide) is 3.5 to 6.0. A method for producing methanol.
  3.  前記銅を含む触媒が、銅、亜鉛、アルミニウム、およびケイ素を含む触媒であることを特徴とする請求項1に記載のメタノールの製造方法。
    The method for producing methanol according to claim 1, wherein the catalyst containing copper is a catalyst containing copper, zinc, aluminum, and silicon.
  4.  前記反応器が固定床反応器であることを特徴とする請求項1に記載のメタノール製造方法。 The method for producing methanol according to claim 1, wherein the reactor is a fixed bed reactor.
  5.  前記銅を含む触媒の粒径が3~20mmであることを特徴とする請求項1に記載のメタノールの製造方法。 The method for producing methanol according to claim 1, wherein the catalyst containing copper has a particle size of 3 to 20 mm.
  6.  1~10MPaGの圧力で反応を行うことを特徴とする請求項1に記載のメタノールの製造方法。 The method for producing methanol according to claim 1, wherein the reaction is carried out at a pressure of 1 to 10 MPaG.
PCT/JP2011/060405 2010-04-30 2011-04-28 Process for producing methanol WO2011136345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010105449 2010-04-30
JP2010-105449 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011136345A1 true WO2011136345A1 (en) 2011-11-03

Family

ID=44861639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060405 WO2011136345A1 (en) 2010-04-30 2011-04-28 Process for producing methanol

Country Status (1)

Country Link
WO (1) WO2011136345A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022203A1 (en) 2021-08-19 2023-02-23 三井化学株式会社 Isocyanate production system, isocyanate composition, polymerizable composition, resin, and molded article
WO2024004464A1 (en) * 2022-06-30 2024-01-04 三菱瓦斯化学株式会社 Methanol production method and methanol production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132539A (en) * 1994-11-22 1997-05-20 Ube Ind Ltd Production of methanol
JP2006169095A (en) * 2004-11-17 2006-06-29 Tokyo Electric Power Co Inc:The Method for immobilizing co2 using microwave
JP2010037229A (en) * 2008-08-01 2010-02-18 Tokyo Electric Power Co Inc:The Method for synthesizing methanol from carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09132539A (en) * 1994-11-22 1997-05-20 Ube Ind Ltd Production of methanol
JP2006169095A (en) * 2004-11-17 2006-06-29 Tokyo Electric Power Co Inc:The Method for immobilizing co2 using microwave
JP2010037229A (en) * 2008-08-01 2010-02-18 Tokyo Electric Power Co Inc:The Method for synthesizing methanol from carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHISADA OGINO ET AL.: "ZnO, Cr2O3, SiO2, Al2O3 Shokubaijo ni Okeru Nisankatanso to Suiso kara no Methanol Gosei", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, no. 11, 1975, pages 1878 - 1883 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022203A1 (en) 2021-08-19 2023-02-23 三井化学株式会社 Isocyanate production system, isocyanate composition, polymerizable composition, resin, and molded article
WO2024004464A1 (en) * 2022-06-30 2024-01-04 三菱瓦斯化学株式会社 Methanol production method and methanol production device

Similar Documents

Publication Publication Date Title
US20170226029A1 (en) Methods of producing ethylene and synthesis gas by combining the oxidative coupling of methane and dry reforming of methane reactions
CN102256687A (en) Process for increasing the carbon monoxide content of a syngas mixture
WO2017085594A2 (en) Process and catalyst for conversion of co2 to syngas for a simultaneous production of olefins and methanol
EP2641889B1 (en) Methanol production process
WO2020159657A1 (en) Methanol production process with increased energy efficiency
WO2011136345A1 (en) Process for producing methanol
US7459486B2 (en) Making a methanol product in a slurry bubble reactor
US20220081380A1 (en) Methanol production process from syngas produced by catalytic partial oxidation integrated with cracking
US20220169502A1 (en) Production of synthesis gas and of methanol
EP2711336A1 (en) Non-co2 emitting manufacturing method for synthesis gas
US20210387934A1 (en) Methanol production process with higher carbon utilization by co2 recycle
EP3405448A1 (en) Conversion of methane to ethylene comprising integration with the in-situ ethane cracking and direct conversion of co2 byproduct to methanol
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
US11834394B2 (en) Methanol production process with increased energy efficiency
WO2018015824A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of a copper/zinc/zirconium mixed metal oxide catalyst
WO2021176970A1 (en) Method for producing fuel gas
US20220135506A1 (en) Methanol production process
JP4681265B2 (en) Syngas production method and synthesis gas production reactor.
WO2018015828A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of used chromium oxide supported catalysts
WO2018020343A1 (en) Process for producing an oxo-synthesis syngas composition by high-pressure hydrogenation over a chromium oxide/aluminum supported catalyst
WO2020142487A1 (en) Methanol production process
WO2018015829A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas applicable for methanol synthesis
WO2018020347A1 (en) Process for high-pressure hydrogenation of carbon dioxide to oxo-syngas composition using a copper/zinc/zirconium mixed metal oxide catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP