WO2018123209A1 - Heat exchanger and ship - Google Patents

Heat exchanger and ship Download PDF

Info

Publication number
WO2018123209A1
WO2018123209A1 PCT/JP2017/037213 JP2017037213W WO2018123209A1 WO 2018123209 A1 WO2018123209 A1 WO 2018123209A1 JP 2017037213 W JP2017037213 W JP 2017037213W WO 2018123209 A1 WO2018123209 A1 WO 2018123209A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat exchanger
casing
heat
downstream
Prior art date
Application number
PCT/JP2017/037213
Other languages
French (fr)
Japanese (ja)
Inventor
森 匡史
龍太 中村
英輝 天野
智 末野
浩市 松下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020187035149A priority Critical patent/KR20190005920A/en
Priority to CN201780035748.7A priority patent/CN110088554A/en
Publication of WO2018123209A1 publication Critical patent/WO2018123209A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/32Arrangements of propulsion power-unit exhaust uptakes; Funnels peculiar to vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/40Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to a heat exchanger and a ship.
  • the exhaust heat recovery device that has a heat exchanger that exchanges heat with exhaust gas and the like and that recovers the heat of the exhaust gas and the like.
  • the exhaust heat recovery device is mounted on a power generation facility or a ship.
  • the exhaust heat recovery device has a heat exchanger that performs heat exchange between the exhaust gas and a heat carrier (for example, water).
  • the heat exchanger includes a plurality of heat transfer pipes through which the heat medium flows, and a casing which covers the heat transfer pipes from the outside.
  • the heat exchanger performs heat exchange between the exhaust gas and the heat medium via the heat transfer pipe by being disposed in the flue through which the exhaust gas flows.
  • Patent Document 1 describes a heat exchanger including an exhaust heat recovery device having a heat transfer pipe panel that recovers the heat of the fluid flowing between the casing and the heat transfer pipe and transfers the heat to the heat transfer pipe.
  • a gap is formed between the heat transfer tubes and the casing.
  • the flow resistance to the exhaust gas in this gap is smaller than the flow resistance in the region between the plurality of heat transfer tubes. Therefore, the exhaust gas flows into the gap between the heat transfer pipe and the casing, thereby forming a slip-through flow.
  • the heat exchanger described in Patent Document 1 can recover the heat of the steam flowing in the gap between the inner surface of the casing and the heat transfer tube with an exhaust heat recovery device.
  • the heat transfer pipe panel is attached to the heat transfer pipe itself, a large space is still formed between the inner surface of the casing and the heat transfer pipe. For this reason, sufficient heat recovery may not be possible.
  • the structure becomes complicated and enlarged. As a result, it becomes difficult to adopt the structure to a ship that is particularly strong in demand for downsizing of the mounted device. That is, the apparatus described in Patent Document 1 still has room for improvement.
  • the present invention was made in order to solve the above-mentioned subject, and it aims at providing a heat exchanger and a ship with which heat exchange performance improved.
  • the heat exchanger of the present invention includes a cylindrical casing in which the working fluid flows from the upstream side to the downstream side, and a plurality of casings provided inside the casing and arranged at an equal pitch in the flow direction of the working fluid. And a plurality of heat transfer tube blocks which are formed by laminating a plurality of heat transfer tube layers having heat transfer tubes in a direction orthogonal to the flow direction, and are spaced apart from each other in the flow direction; And a downstream guide portion provided on the downstream side and projecting from the inner surface of the casing and having a first guide surface facing the upstream side.
  • the working fluid is guided by the first guide surface, and is a region upstream of the first guide surface. It flows in the direction away from the inner surface of the casing in the area where the heat pipe block is disposed. Thereby, the working fluid can be reduced to the gap formed between the heat transfer tube block and the inner surface of the casing.
  • the first guide surface may overlap the heat transfer pipe closest to the inner surface when viewed in the flow direction.
  • the possibility of the working fluid flowing into the gap between the heat transfer tube block and the inner surface of the casing can be further reduced.
  • the distance between the heat transfer tube block and the inner surface of the casing can be reduced.
  • the first guide surface may be inclined with respect to the flow direction as viewed from the direction in which the heat transfer pipe extends.
  • the working fluid can be smoothly guided along the first guide surface. In other words, it is possible to reduce stagnation and stagnation in the flow of the working fluid leading to the accumulation of foreign matter such as soot and droplets of lubricating oil accompanied in the working fluid.
  • the first guide surface may be curved in a direction away from the inner surface as it goes from the upstream side to the downstream side.
  • the working fluid can be guided more smoothly along the first guide surface. In other words, stagnation and stagnation of the flow of the working fluid leading to the accumulation of foreign matter such as soot and droplets of lubricating oil accompanied in the working fluid can be further reduced.
  • the downstream guide portion may have a plate shape in which the thickness does not change in the region extending in the direction away from the inner surface.
  • downstream guide can be provided simply and inexpensively as compared with other complicated shapes.
  • the dimension by which the downstream side guide portion protrudes from the inner surface may be one or more times and three or less times the pitch of the heat transfer tubes.
  • the distance between the first guide surface and the heat transfer pipe closest to the first guide surface may be 10 mm or more and 50 mm or less.
  • the heat exchanger of the present invention may further include an upstream guiding portion provided on the upstream side of the heat transfer pipe block and projecting from the inner surface of the casing and having a second guiding surface facing the upstream side. .
  • the ship of this invention is equipped with the above-mentioned heat exchanger, the flue in which the said heat exchanger is arrange
  • the efficiency of heat exchange can be improved.
  • FIG. 1 is a schematic view showing the configuration of a ship according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the heat exchanger of the exhaust heat recovery apparatus according to the first embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 4 is an enlarged sectional view showing a modification of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged sectional view showing another modification of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of a heat exchanger according to a second embodiment of the present invention.
  • the ship 100 includes a hull 1, a diesel engine 11, and an exhaust heat recovery device 10.
  • the hull 1 is a housing on which a passenger or the like can be mounted.
  • the diesel engine 11 is a main engine.
  • the main engine may be an internal combustion engine other than the diesel engine 11.
  • the diesel engine 11 generates power for driving a propeller shaft, for example, and emits exhaust gas.
  • the heat is recovered by the exhaust heat recovery device 10 from the exhaust gas discharged from the diesel engine 11 of the ship 100, but the high temperature gas to be recovered by the exhaust heat recovery device 10 is particularly limited. I will not. That is, the exhaust heat recovery apparatus 10 can be installed downstream of an apparatus that discharges high-temperature gas, such as a gas turbine, a boiler, a fuel cell, etc., and can recover the heat of the high-temperature gas.
  • an exhaust gas treatment device may be installed downstream of the exhaust heat recovery device 10 to remove and reduce harmful substances in the exhaust gas.
  • the heat exchanger 40 exchanges heat between the exhaust gas discharged from the diesel engine 11 and water as a heat medium. Water heated by heat exchange becomes superheated steam, and is used to drive other devices (not shown) such as a steam turbine.
  • the heat exchanger 40 has a casing 41 and a heat exchanger main body 42, as shown in FIG.
  • the casing 41 is cylindrical, and the exhaust gas flows from the upstream side toward the downstream side in the inside.
  • the flow direction of the exhaust gas may be referred to as “flow direction”.
  • the casing 41 is a part of an exhaust path through which the exhaust gas discharged from the diesel engine 11 flows.
  • a heat exchanger main body 42 is provided in the internal space of the casing 41.
  • the heat exchanger main body 42 includes a plurality of (two) heat transfer tube blocks 43 arranged at intervals in the flow direction, and a downstream guide portion 50 for guiding the exhaust gas (working fluid) around each heat transfer tube block 43 And.
  • a configuration in which two heat transfer tube blocks 43 are provided will be described, but the number of heat transfer tube blocks 43 is not limited to two, and may be three or more.
  • the two heat transfer pipe blocks 43 have the same configuration, but in the following description, the heat transfer pipe block 43 located on the upstream side is called the first heat transfer pipe block 44, and the heat transfer pipe block 43 located on the downstream side Is referred to as a second heat transfer tube block 45, and the two may be distinguished.
  • the heat transfer tube block 43 has a plurality of heat transfer tube layers 46 stacked in the flow direction.
  • the heat transfer tube layer 46 has a plurality of heat transfer tubes 47 arranged at equal pitches P in the direction orthogonal to the flow direction.
  • the pitch P of the heat transfer tubes 47 refers to the distance between the center points of the adjacent heat transfer tubes 47.
  • Each heat transfer tube 47 is formed by turning back one tube extending continuously in the flow direction at a plurality of intervals in the flow direction. That is, the heat transfer tubes 47 are disposed across the plurality of heat transfer tube layers 46.
  • Each heat transfer tube 47 has a circular tubular cross-sectional shape and extends in a direction perpendicular to the flow direction.
  • water as a heat medium flows in the inside from the downstream side in the flow direction toward the upstream side.
  • the flow directions of the water inside are opposite to each other.
  • the heat transfer tubes 47 when viewed from the direction orthogonal to the flow direction and the direction in which the heat transfer tubes 47 extend in one heat transfer tube layer, the heat transfer tubes 47 are arranged in a staggered manner. In other words, in the heat transfer tube layers 46 adjacent to each other, the plurality of heat transfer tubes 47 are arranged at mutually different positions in the direction orthogonal to the flow direction. In addition, the heat transfer tube block 43 may arrange the heat transfer tubes 47 in a grid shape instead of the zigzag shape.
  • a gap G1 is formed between the outer peripheral edge of the heat transfer tube block 43 and the inner surface S of the casing 41.
  • the outer peripheral edge of the heat transfer tube block 43 is an edge portion formed by the outer peripheral surfaces of the plurality of heat transfer tubes 47 located on the outermost peripheral side of the heat transfer tube block 43.
  • the downstream guide portion 50 is provided in the region of the inner surface S of the casing 41 on the downstream side of the heat transfer pipe block 43.
  • the downstream guide portion 50 has a plate shape that protrudes from the inner surface S of the casing 41 in a direction orthogonal to the inner surface S.
  • the downstream guide portion 50 is formed so that the area extending in the direction away from the inner surface S does not change in thickness. In other words, the thickness of the downstream guide portion 50 is constant.
  • the downstream guide portion 50 can be installed by fixing the plate material to the inner surface S of the casing 41 by welding or the like.
  • the downstream side guide portion 50 may be configured to have an L-shaped cross section, one side of the L-shape facing the casing 41, and one side protruding from the casing 41.
  • the downstream guide portion 50 may have a structure in which the plate member is supported by the stay.
  • the downstream side guide portion 50 has a protrusion height, that is, a dimension between an end portion of the downstream side guide portion 50 on the side away from the inner surface S and the inner surface S is one or more times of the pitch P of the heat transfer tubes 47 described above. It is preferable that it is twice or less. It is more preferable that the downstream guide portion 50 has a protrusion height that is not less than 1 time and not more than 2 times the pitch P of the heat transfer tubes 47. Most preferably, the downstream guide portion 50 has a protrusion height that is one time the pitch P of the heat transfer tubes 47.
  • the heat exchanger 40 can increase the efficiency of heat exchange by making the gap G1 narrower than the pitch P.
  • the downstream guide portion 50 can have a shape overlapping the heat transfer tube 47 closest to the inner surface S of the casing 41 when viewed from the flow direction by setting the protrusion height in the above range.
  • the first guide surface 51 which is a surface facing the upstream side, of both surfaces of the downstream side guide portion 50 faces the gap G1 and the heat transfer tube block 43 from the downstream side in the flow direction.
  • the gap G1 is closed by the downstream guide portion 50.
  • the first guide surface 51 is a surface that extends in a plane perpendicular to the inner surface S of the casing 41.
  • the distance between the first guide surface 51 and the heat transfer tube 47 closest to the first guide surface 51 is preferably 10 mm or more and 50 mm or less, more preferably 10 mm or more and 30 mm or less, and 10 mm Most preferred.
  • the downstream guide unit 50 regulates and guides the flow of the exhaust gas, and reduces the amount of the exhaust gas that is going to flow into the gap G1.
  • the downstream side guide part 50 is demonstrated with reference to FIG.
  • the downstream guide portion 50 is a flow resistance to the exhaust gas, and the periphery of the first guide surface 51 in the vicinity of the inner surface S in the downstream portion of the first heat transfer pipe block 44 is an area in which the exhaust gas hardly flows. As a result, the exhaust gas flowing in the vicinity of the inner surface S and in the gap G1 easily flows away from the inner surface S while flowing in the region where the first heat transfer pipe block 44 is disposed.
  • the exhaust gas having flowed through the gap G1 does not form a flow (broken line arrow F1) along the inner surface S, and the downstream guide portion on the downstream side of the first heat transfer tube block 44
  • the direction is changed by the 50 first guide surfaces 51.
  • the exhaust gas flows along the first guide surface 51 in the direction away from the inner surface S as indicated by an arrow F2.
  • the exhaust gas flows along the flow (arrow F3) of the exhaust gas flowing through the portion other than the gap G1 through the first heat transfer pipe block 44.
  • the amount of exhaust gas flowing is greater on the arrow F3 side closer to the center of the casing 41 than on the gap G1 side.
  • the efficiency of heat exchanger 40 can be improved as compared with the configuration in which the downstream guide portion 50 is not provided.
  • the first guide surface 51 overlaps the heat transfer tube 47 closest to the inner surface S when viewed in the flow direction.
  • the gap G1 can be sufficiently covered from the downstream side by the downstream guide portion 50. Therefore, the flow resistance to the exhaust gas by the downstream side guide portion 50 can be sufficiently ensured, and the possibility of the exhaust gas flowing into the gap G1 between the heat transfer pipe block 43 and the inner surface S of the casing 41 is further reduced. it can.
  • the distance between the heat transfer tube block 43 and the inner surface S of the casing 41 can be reduced by providing the downstream side guide portion 50.
  • the downstream side guide portion 50 when the downstream side guide portion 50 is provided, the dimension (that is, the number of heat transfer tube layers 46) of the heat transfer tube block 43 is increased without considering the decrease in thermal efficiency due to the formation of the gap G1. be able to. Therefore, the efficiency of the heat exchanger 40 can be further improved.
  • the downstream guide part 50 is plate shape with constant thickness. According to this configuration, the downstream side guide portion 50 can be provided simply and inexpensively as compared with other complicated shapes.
  • the dimension (that is, the protrusion height) of the downstream side guide portion 50 protruding from the inner surface S is 1 or more and 3 or less times the pitch P of the heat transfer tubes 47. Further, the distance between the first guide surface 51 and the heat transfer tube 47 closest to the first guide surface 51 is 10 mm or more and 50 mm or less. According to this configuration, the possibility of exhaust gas flowing into the gap G1 between the heat transfer pipe block 43 and the inner surface S of the casing 41 can be further reduced, and the efficiency of the heat exchanger 40 can be sufficiently improved.
  • the configuration in which the first guide surface 51 of the downstream guide unit 50 is a surface orthogonal to the inner surface S of the casing 41 has been described.
  • the configuration of the first guide surface 51 is not limited to this, and a configuration as shown in FIG. 4 can also be adopted.
  • the first guide surface 52 is inclined with respect to the flow direction of the exhaust gas. In other words, the first guide surface 52 extends in the direction of being gradually separated from the inner surface S as it goes from the upstream side to the downstream side.
  • the exhaust gas can be smoothly guided along the first guide surface 52 because the first guide surface 52 is inclined with respect to the flow direction. Therefore, the possibility of stagnation or stagnation in the exhaust gas flow can be reduced.
  • the first guide surface 51 can also be configured as shown in FIG. Specifically, in the example of FIG. 5, the first guide surface 53 is gradually curved in the direction away from the inner surface S as it goes from the upstream side to the downstream side.
  • the exhaust gas can be guided more smoothly along the first guide surface 53.
  • an upstream guide portion 60 is further provided on the upstream side of the second heat transfer pipe block 45.
  • the upstream guide portion 60 is provided in the region of the inner surface S of the casing 41 on the upstream side of the heat transfer tube block 43.
  • the upstream guide portion 60 has a plate shape that protrudes from the inner surface S of the casing 41 in a direction orthogonal to the inner surface S.
  • the upstream guide portion 60 is formed so that the area extending in the direction away from the inner surface S does not change in thickness. In other words, the thickness of the upstream guide portion 60 is constant.
  • the upstream guide portion 60 can be installed by fixing a plate material to the inner surface S of the casing 41 by welding or the like, as with the downstream guide portion 50. Further, the upstream guide portion 60 may be configured to have an L-shaped cross section so that one side of the L-shape protrudes from the casing 41. Further, the upstream guide portion 60 may have a structure in which the plate member is supported by a stay.
  • the upstream guide portion 60 has a protrusion height, that is, a dimension between the end portion of the upstream guide portion 60 on the side away from the inner surface S and the inner surface S is at least one time the pitch P of the heat transfer tubes 47 described above. It is preferable that it is twice or less. More preferably, the upstream guide portion 60 has a protrusion height of at least one time and at most two times the pitch P of the heat transfer tubes 47. Most preferably, the upstream guide portion 60 has a protrusion height that is one time the pitch P of the heat transfer tubes 47.
  • the heat exchanger 40 can increase the efficiency of heat exchange by making the gap G2 narrower than the pitch P.
  • the upstream guide portion 60 can have a shape overlapping the heat transfer tube 47 closest to the inner surface S of the casing 41 when viewed from the flow direction by setting the protrusion height to the above range.
  • the second guide surface 61 which is a surface facing the upstream side, of both surfaces of the upstream guide portion 60 faces the gap G1 and the second heat transfer tube block 45 from the upstream side in the flow direction.
  • the gap G1 is closed by the upstream guide portion 60.
  • the second guide surface 61 is a surface extending in a plane perpendicular to the inner surface S of the casing 41.
  • the distance between the second guiding surface 61 and the heat transfer tube 47 closest to the second guiding surface 61 is preferably 10 mm or more and 50 mm or less. It is more preferable that the distance between the second guide surface 61 and the heat transfer tube 47 closest to the second guide surface 61 be 10 mm or more and 30 mm or less. The distance between the second guide surface 61 and the heat transfer tube 47 closest to the second guide surface 61 is most preferably 10 mm.
  • the working fluid flowing from the upstream side can be reduced with respect to the gap G2 between the second heat transfer pipe block 45 and the inner surface S of the casing 41.
  • the exhaust gas has been circulated in the first heat transfer pipe block 44 after being guided in a direction away from the inner surface S by the downstream guide portion 50 provided on the downstream side of the first heat transfer pipe block 44 It joins with the mainstream of the exhaust gas, that is, the flow of the exhaust gas flowing through the portion other than the gap G1, and flows toward the downstream side.
  • the exhaust gas guided by the downstream side guiding portion 50 flows into the second heat transfer pipe block 45 located downstream from the position separated from the inner surface S of the casing 41 by the upstream side guiding portion 60 being provided. .
  • downstream guide portion 50 is provided on the downstream side of the first heat transfer pipe block 44, and the upstream guide portion 60 is provided on the upstream side of the second heat transfer pipe block 45. It is possible to further reduce the inflow of the exhaust gas into the gap G2 between 45 and the casing 41. Therefore, the efficiency of the heat exchanger 40 can be further improved.
  • the configuration in which the second guide surface 61 of the upstream guide portion 60 is a surface orthogonal to the inner surface S of the casing 41 has been described.
  • the configuration of the second guide surface 61 is not limited to this, and it is also possible to adopt the configuration as shown in FIG. 4 or FIG. 5 similarly to the downstream guide portion 50. Specifically, it is possible to adopt a configuration in which the second guide surface 61 is inclined with respect to the flow direction, and a configuration in which the second guide surface 61 is curved.
  • the application object of the heat exchanger 40 is not limited to the exhaust heat recovery apparatus 10,

Abstract

Provided are: a heat exchanger having improved thermal efficiency; and a ship. This heat exchanger 40 is provided with: a cylindrical casing 41, through the inside of which operating fluid flows from the upstream side toward the downstream side; a plurality of blocks 43 of heat transfer pipes, the blocks 43 being provided within the casing 41, the blocks 43 being formed by stacking a plurality of layers 46 of heat transfer pipe in the flow direction of the operating fluid, the layers 46 having a plurality of heat transfer pipes 47 arranged at equal pitches P in the radial direction in a plane perpendicular to the flow direction, the blocks 43 being arranged at a distance from each other in the flow direction; and a downstream-side guide section 50 which is provided on the downstream side of the blocks 43 of heat transfer pipes, protrudes from the inner surface S of the casing 41, and has a first guide surface 51 facing the upstream side.

Description

熱交換器及び船舶Heat exchanger and ship
 本発明は、熱交換器及び船舶に関する。 The present invention relates to a heat exchanger and a ship.
 排ガス等と熱交換を行う熱交換器を有し、前記排ガス等の熱を回収する排熱回収装置がある。排熱回収装置は、発電設備や船舶に搭載される。排熱回収装置は、排ガスと熱媒(例えば水)との間で熱交換を行う熱交換器を有する。熱交換器は、内部に熱媒が流通する複数の伝熱管と、伝熱管を外側から覆うケーシングと、を備えている。熱交換器は、排ガスが流通する煙道内に配置されることで、伝熱管を介して排ガスと熱媒との間で熱交換を行う。このような熱交換器では、排ガスに含まれる煤、潤滑油等の異物が伝熱管表面に付着することがある。ここで、特許文献1には、ケーシングと伝熱管との間を流れる流体の熱を回収して伝熱管に伝える伝熱管パネルを有する排熱回収装置を備える熱交換器が記載されている。 There is an exhaust heat recovery device that has a heat exchanger that exchanges heat with exhaust gas and the like and that recovers the heat of the exhaust gas and the like. The exhaust heat recovery device is mounted on a power generation facility or a ship. The exhaust heat recovery device has a heat exchanger that performs heat exchange between the exhaust gas and a heat carrier (for example, water). The heat exchanger includes a plurality of heat transfer pipes through which the heat medium flows, and a casing which covers the heat transfer pipes from the outside. The heat exchanger performs heat exchange between the exhaust gas and the heat medium via the heat transfer pipe by being disposed in the flue through which the exhaust gas flows. In such a heat exchanger, foreign matter such as lubricating oil may be adhered to the surface of the heat transfer tube, as it is contained in the exhaust gas. Here, Patent Document 1 describes a heat exchanger including an exhaust heat recovery device having a heat transfer pipe panel that recovers the heat of the fluid flowing between the casing and the heat transfer pipe and transfers the heat to the heat transfer pipe.
特許第5514690号公報Patent No. 5514690
 ここで、複数の伝熱管からなる熱交換器では、伝熱管とケーシングとの間に隙間が形成される。この隙間における排ガスに対する流動抵抗は、複数の伝熱管同士の間の領域における流動抵抗よりも小さい。このため、伝熱管とケーシングとの間の隙間に排ガスが流れ込んでしまうことで、すり抜け流れが形成されてしまう。 Here, in the heat exchanger composed of a plurality of heat transfer tubes, a gap is formed between the heat transfer tubes and the casing. The flow resistance to the exhaust gas in this gap is smaller than the flow resistance in the region between the plurality of heat transfer tubes. Therefore, the exhaust gas flows into the gap between the heat transfer pipe and the casing, thereby forming a slip-through flow.
 特許文献1に記載の熱交換器は、排熱回収装置で、ケーシングの内面と伝熱管との間の隙間を流れる蒸気の熱を回収することができる。しかしながら、特許文献1に記載された装置では、伝熱管パネルが伝熱管自体に取り付けられているため、ケーシングの内面と伝熱管との間には依然として大きな空間が形成されてしまう。このため、十分な熱回収ができない可能性がある。加えて、伝熱管パネルが設けられることにより、構造が複雑・大型化してしまう。これにより、搭載機器の小型化に対する要請が特に強い船舶に当該構造を採用することが難しくなってしまう。すなわち、特許文献1に記載された装置には、依然として改善の余地がある。 The heat exchanger described in Patent Document 1 can recover the heat of the steam flowing in the gap between the inner surface of the casing and the heat transfer tube with an exhaust heat recovery device. However, in the apparatus described in Patent Document 1, since the heat transfer pipe panel is attached to the heat transfer pipe itself, a large space is still formed between the inner surface of the casing and the heat transfer pipe. For this reason, sufficient heat recovery may not be possible. In addition, by providing the heat transfer tube panel, the structure becomes complicated and enlarged. As a result, it becomes difficult to adopt the structure to a ship that is particularly strong in demand for downsizing of the mounted device. That is, the apparatus described in Patent Document 1 still has room for improvement.
 本発明は上記課題を解決するためになされたものであって、熱交換性能が向上した熱交換器及び船舶を提供することを目的とする。 The present invention was made in order to solve the above-mentioned subject, and it aims at providing a heat exchanger and a ship with which heat exchange performance improved.
 本発明の熱交換器は、内部を作動流体が上流側から下流側に向かって流れる筒状のケーシングと、前記ケーシングの内部に設けられ、前記作動流体の流れ方向に等ピッチで配列された複数の伝熱管を有する伝熱管層を前記流れ方向に直交する方向に複数積層させることで形成されるとともに、前記流れ方向に間隔をあけて配置された複数の伝熱管ブロックと、前記伝熱管ブロックの下流側に設けられ、前記ケーシングの内面から突出するとともに、上流側を向く第一案内面を有する下流側案内部と、を備える。 The heat exchanger of the present invention includes a cylindrical casing in which the working fluid flows from the upstream side to the downstream side, and a plurality of casings provided inside the casing and arranged at an equal pitch in the flow direction of the working fluid. And a plurality of heat transfer tube blocks which are formed by laminating a plurality of heat transfer tube layers having heat transfer tubes in a direction orthogonal to the flow direction, and are spaced apart from each other in the flow direction; And a downstream guide portion provided on the downstream side and projecting from the inner surface of the casing and having a first guide surface facing the upstream side.
 この構成によれば、下流側案内部の第一案内面が作動流体に対する流動抵抗となるため、作動流体は第一案内面によって案内されて、第一案内面よりも上流側の領域である伝熱管ブロックが配置されている領域で、ケーシングの内面から離間する方向に向かって流れる。これにより、伝熱管ブロックとケーシングの内面との間に形成される隙間に作動流体を低減することができる。 According to this configuration, since the first guide surface of the downstream guide portion serves as a flow resistance to the working fluid, the working fluid is guided by the first guide surface, and is a region upstream of the first guide surface. It flows in the direction away from the inner surface of the casing in the area where the heat pipe block is disposed. Thereby, the working fluid can be reduced to the gap formed between the heat transfer tube block and the inner surface of the casing.
 また、本発明の熱交換器では、前記第一案内面は、前記流れ方向から見て前記内面に最も近接する前記伝熱管と重なっていてもよい。 Further, in the heat exchanger of the present invention, the first guide surface may overlap the heat transfer pipe closest to the inner surface when viewed in the flow direction.
 この構成によれば、伝熱管ブロックとケーシングの内面との間の隙間に作動流体が流れ込む可能性をさらに低減することができる。加えて、伝熱管ブロックとケーシングの内面との距離を小さくすることができる。 According to this configuration, the possibility of the working fluid flowing into the gap between the heat transfer tube block and the inner surface of the casing can be further reduced. In addition, the distance between the heat transfer tube block and the inner surface of the casing can be reduced.
 また、本発明の熱交換器では、前記第一案内面は、前記伝熱管が延びる方向から見て、前記流れ方向に対して傾斜していてもよい。 Further, in the heat exchanger of the present invention, the first guide surface may be inclined with respect to the flow direction as viewed from the direction in which the heat transfer pipe extends.
 この構成によれば、第一案内面が流れ方向に対して傾斜していることから、作動流体を第一案内面に沿って円滑に案内することができる。言い換えると、作動流体中に随伴される煤や潤滑油の飛沫などの異物の堆積につながる作動流体の流れにおける淀みや滞留を低減することができる。 According to this configuration, since the first guide surface is inclined with respect to the flow direction, the working fluid can be smoothly guided along the first guide surface. In other words, it is possible to reduce stagnation and stagnation in the flow of the working fluid leading to the accumulation of foreign matter such as soot and droplets of lubricating oil accompanied in the working fluid.
 また、本発明の熱交換器では、前記第一案内面は、上流側から下流側に向かうにしたがって前記内面から離間する方向に湾曲していてもよい。 Further, in the heat exchanger of the present invention, the first guide surface may be curved in a direction away from the inner surface as it goes from the upstream side to the downstream side.
 この構成によれば、第一案内面が湾曲していることから、作動流体を第一案内面に沿ってさらに円滑に案内することができる。言い換えると、作動流体中に随伴される煤や潤滑油の飛沫などの異物の堆積につながる作動流体の流れの淀みや滞留をさらに低減することができる。 According to this configuration, since the first guide surface is curved, the working fluid can be guided more smoothly along the first guide surface. In other words, stagnation and stagnation of the flow of the working fluid leading to the accumulation of foreign matter such as soot and droplets of lubricating oil accompanied in the working fluid can be further reduced.
 また、本発明の熱交換器では、前記下流側案内部は、前記内面から離れる方向に延びる領域が、厚みが変化しない板形状であってもよい。 Further, in the heat exchanger of the present invention, the downstream guide portion may have a plate shape in which the thickness does not change in the region extending in the direction away from the inner surface.
 この構成によれば、伝熱管ブロックとケーシングの内面との間の隙間に作動流体が流れ込む可能性を低減することができる。加えて、他の複雑な形状とした場合に比べて、下流側案内部を簡素かつ廉価に設けることができる。 According to this configuration, it is possible to reduce the possibility of the working fluid flowing into the gap between the heat transfer tube block and the inner surface of the casing. In addition, the downstream guide can be provided simply and inexpensively as compared with other complicated shapes.
 また、本発明の熱交換器では、前記下流側案内部が前記内面から突出する寸法は、前記伝熱管の前記ピッチの1倍以上3倍以下であってもよい。 Further, in the heat exchanger of the present invention, the dimension by which the downstream side guide portion protrudes from the inner surface may be one or more times and three or less times the pitch of the heat transfer tubes.
 この構成によれば、下流側案内部によって伝熱管ブロックとケーシングの内面との間の隙間を十分に覆うことができるため、当該隙間に流れ込む作動流体をさらに低減することができる。 According to this configuration, since the gap between the heat transfer pipe block and the inner surface of the casing can be sufficiently covered by the downstream side guide portion, the working fluid flowing into the gap can be further reduced.
 また、本発明の熱交換器では、前記第一案内面と、該第一案内面に最も近接する前記伝熱管との距離は、10mm以上50mm以下であってもよい。 Further, in the heat exchanger of the present invention, the distance between the first guide surface and the heat transfer pipe closest to the first guide surface may be 10 mm or more and 50 mm or less.
 この構成によれば、伝熱管における熱交換をさらに効率的に行うことができる。 According to this configuration, heat exchange in the heat transfer tube can be performed more efficiently.
 また、本発明の熱交換器は、前記伝熱管ブロックの上流側に設けられ、前記ケーシングの内面から突出するとともに、上流側を向く第二案内面を有する上流側案内部をさらに備えてもよい。 Further, the heat exchanger of the present invention may further include an upstream guiding portion provided on the upstream side of the heat transfer pipe block and projecting from the inner surface of the casing and having a second guiding surface facing the upstream side. .
 この構成によれば、伝熱管ブロックとケーシングの内面との間の隙間に対する、上流側からの作動流体の流入を低減することができる。 According to this configuration, the inflow of working fluid from the upstream side to the gap between the heat transfer tube block and the inner surface of the casing can be reduced.
 また、本発明の船舶は、上述の熱交換器と、前記熱交換器が配置された煙道と、前記煙道に排ガスを供給する主機関と、を備える。 Moreover, the ship of this invention is equipped with the above-mentioned heat exchanger, the flue in which the said heat exchanger is arrange | positioned, and the main engine which supplies waste gas to the said flue.
 この構成によれば、効率の向上した熱交換器を備えた船舶を提供することができる。 According to this configuration, it is possible to provide a ship provided with the heat exchanger with improved efficiency.
 本発明によれば、熱交換の効率を向上することができる。 According to the present invention, the efficiency of heat exchange can be improved.
図1は、本発明の第一実施形態に係る船舶の構成を示す模式図である。FIG. 1 is a schematic view showing the configuration of a ship according to a first embodiment of the present invention. 図2は、本発明の第一実施形態に係る排熱回収装置の熱交換器の断面図である。FIG. 2 is a cross-sectional view of the heat exchanger of the exhaust heat recovery apparatus according to the first embodiment of the present invention. 図3は、本発明の第一実施形態に係る熱交換器の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the heat exchanger according to the first embodiment of the present invention. 図4は、本発明の第一実施形態に係る熱交換器の変形例を示す拡大断面図である。FIG. 4 is an enlarged sectional view showing a modification of the heat exchanger according to the first embodiment of the present invention. 図5は、本発明の第一実施形態に係る熱交換器の他の変形例を示す拡大断面図である。FIG. 5 is an enlarged sectional view showing another modification of the heat exchanger according to the first embodiment of the present invention. 図6は、本発明の第二実施形態に係る熱交換器の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of a heat exchanger according to a second embodiment of the present invention.
[第一実施形態]
 以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
First Embodiment
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited by the embodiments, and in the case where there are a plurality of embodiments, the present invention also includes those configured by combining the respective embodiments.
 本発明の第一実施形態について、図1から図3を参照して説明する。図1に示すように、船舶100は、船体1と、ディーゼルエンジン11と、排熱回収装置10と、を備えている。 A first embodiment of the present invention will be described with reference to FIGS. 1 to 3. As shown in FIG. 1, the ship 100 includes a hull 1, a diesel engine 11, and an exhaust heat recovery device 10.
 船体1は、貨客等を搭載可能な筐体である。ディーゼルエンジン11は、主機関である。なお、主機関はディーゼルエンジン11以外の内燃機関であってもよい。ディーゼルエンジン11は、例えばプロペラシャフトを駆動するための動力を発生するとともに、排ガスを排出する。なお、本実施形態では、船舶100のディーゼルエンジン11から排出される排ガスから熱を排熱回収装置10で回収するが、排熱回収装置10が熱を回収する対象の高温のガスは、特に限定されない。つまり、排熱回収装置10は、ガスタービン、ボイラ、燃料電池など、高温のガスを排出する装置の下流側に設置することができ、高温のガスの熱を回収することができる。また、船舶100は、排熱回収装置10の下流側に排ガスの有害物質を除去、低減する排ガス処理装置を設置してもよい。 The hull 1 is a housing on which a passenger or the like can be mounted. The diesel engine 11 is a main engine. The main engine may be an internal combustion engine other than the diesel engine 11. The diesel engine 11 generates power for driving a propeller shaft, for example, and emits exhaust gas. In the present embodiment, the heat is recovered by the exhaust heat recovery device 10 from the exhaust gas discharged from the diesel engine 11 of the ship 100, but the high temperature gas to be recovered by the exhaust heat recovery device 10 is particularly limited. I will not. That is, the exhaust heat recovery apparatus 10 can be installed downstream of an apparatus that discharges high-temperature gas, such as a gas turbine, a boiler, a fuel cell, etc., and can recover the heat of the high-temperature gas. In the ship 100, an exhaust gas treatment device may be installed downstream of the exhaust heat recovery device 10 to remove and reduce harmful substances in the exhaust gas.
 熱交換器40は、ディーゼルエンジン11から排出された排ガスと、熱媒としての水との間で熱交換を行う。熱交換によって昇温された水は過熱蒸気となり、蒸気タービン等の他の装置(不図示)の駆動に利用される。 The heat exchanger 40 exchanges heat between the exhaust gas discharged from the diesel engine 11 and water as a heat medium. Water heated by heat exchange becomes superheated steam, and is used to drive other devices (not shown) such as a steam turbine.
 以下、熱交換器40の詳細な構成について、図2を参照して説明する。熱交換器40は、図2に示すように、ケーシング41と、熱交換器本体42と、を有する。ケーシング41は筒状であり、内部を上流側から下流側に向かって排ガスが流れる。なお、以下の説明では、排ガスの流れる方向を「流れ方向」と呼ぶことがある。ケーシング41は、ディーゼルエンジン11から排出された排ガスが流れる排気経路の一部となる。ケーシング41の内部空間には、熱交換器本体42が設けられている。 Hereinafter, the detailed configuration of the heat exchanger 40 will be described with reference to FIG. The heat exchanger 40 has a casing 41 and a heat exchanger main body 42, as shown in FIG. The casing 41 is cylindrical, and the exhaust gas flows from the upstream side toward the downstream side in the inside. In the following description, the flow direction of the exhaust gas may be referred to as “flow direction”. The casing 41 is a part of an exhaust path through which the exhaust gas discharged from the diesel engine 11 flows. In the internal space of the casing 41, a heat exchanger main body 42 is provided.
 熱交換器本体42は、流れ方向に間隔をあけて配列された複数(2つ)の伝熱管ブロック43と、各伝熱管ブロック43周囲の排ガス(作動流体)を案内する下流側案内部50と、を有する。なお、本実施形態では伝熱管ブロック43が2つ設けられる構成について説明するが、伝熱管ブロック43の数は2つに限定されず、3つ以上であってもよい。また、2つの伝熱管ブロック43は互いに同等の構成を有するが、以降の説明では、上流側に位置する伝熱管ブロック43を第一伝熱管ブロック44と呼び、下流側に位置する伝熱管ブロック43を第二伝熱管ブロック45と呼び、両者を区別することがある。 The heat exchanger main body 42 includes a plurality of (two) heat transfer tube blocks 43 arranged at intervals in the flow direction, and a downstream guide portion 50 for guiding the exhaust gas (working fluid) around each heat transfer tube block 43 And. In the present embodiment, a configuration in which two heat transfer tube blocks 43 are provided will be described, but the number of heat transfer tube blocks 43 is not limited to two, and may be three or more. The two heat transfer pipe blocks 43 have the same configuration, but in the following description, the heat transfer pipe block 43 located on the upstream side is called the first heat transfer pipe block 44, and the heat transfer pipe block 43 located on the downstream side Is referred to as a second heat transfer tube block 45, and the two may be distinguished.
 伝熱管ブロック43は、複数の伝熱管層46が流れ方向に積層されている。伝熱管層46は、流れ方向に直交する方向に等ピッチPで配列された複数の伝熱管47を有する。ここで、伝熱管47のピッチPとは、隣接する伝熱管47の中心点同士の間の距離を指している。各伝熱管47は、流れ方向に連続して延びる一の管を流れ方向に間隔をあけて複数回折り返すことで形成されている。つまり、伝熱管47は、複数の伝熱管層46に跨って配置されている。 The heat transfer tube block 43 has a plurality of heat transfer tube layers 46 stacked in the flow direction. The heat transfer tube layer 46 has a plurality of heat transfer tubes 47 arranged at equal pitches P in the direction orthogonal to the flow direction. Here, the pitch P of the heat transfer tubes 47 refers to the distance between the center points of the adjacent heat transfer tubes 47. Each heat transfer tube 47 is formed by turning back one tube extending continuously in the flow direction at a plurality of intervals in the flow direction. That is, the heat transfer tubes 47 are disposed across the plurality of heat transfer tube layers 46.
 各伝熱管47は円管状の断面形状を有し、流れ方向に直交する方向に延びている。伝熱管47は、熱媒としての水が内部を、流れ方向下流側から上流側に向かって流通する。隣接する各伝熱管層46間における伝熱管47同士では、内部の水の流れる向きが互いに反対である。 Each heat transfer tube 47 has a circular tubular cross-sectional shape and extends in a direction perpendicular to the flow direction. In the heat transfer pipe 47, water as a heat medium flows in the inside from the downstream side in the flow direction toward the upstream side. In the heat transfer tubes 47 between adjacent heat transfer tube layers 46, the flow directions of the water inside are opposite to each other.
 本実施形態の伝熱管ブロック43は、流れ方向に直交する方向、かつ、1つの伝熱管層において伝熱管47の延びる方向から見た場合、各伝熱管47が千鳥状に配置されている。言い換えると、互いに隣接する伝熱管層46では、複数の伝熱管47が流れ方向に直交する方向において互いに異なる位置に配置されている。なお、伝熱管ブロック43は、伝熱管47を千鳥状ではなく、格子状に配列してもよい。 In the heat transfer tube block 43 of the present embodiment, when viewed from the direction orthogonal to the flow direction and the direction in which the heat transfer tubes 47 extend in one heat transfer tube layer, the heat transfer tubes 47 are arranged in a staggered manner. In other words, in the heat transfer tube layers 46 adjacent to each other, the plurality of heat transfer tubes 47 are arranged at mutually different positions in the direction orthogonal to the flow direction. In addition, the heat transfer tube block 43 may arrange the heat transfer tubes 47 in a grid shape instead of the zigzag shape.
 熱交換器40は、伝熱管ブロック43の外周縁とケーシング41の内面Sとの間に隙間G1が形成されている。なお、伝熱管ブロック43の外周縁とは、伝熱管ブロック43における最も外周側に位置する複数の伝熱管47の外周面がなす縁部である。 In the heat exchanger 40, a gap G1 is formed between the outer peripheral edge of the heat transfer tube block 43 and the inner surface S of the casing 41. The outer peripheral edge of the heat transfer tube block 43 is an edge portion formed by the outer peripheral surfaces of the plurality of heat transfer tubes 47 located on the outermost peripheral side of the heat transfer tube block 43.
 下流側案内部50は、ケーシング41の内面Sにおける伝熱管ブロック43の下流側の領域に設けられている。具体的には、下流側案内部50は、ケーシング41の内面Sから当該内面Sに直交する方向に突出する板形状である。下流側案内部50は、内面Sから離れる方向に延びる領域が、厚みが変化しないように形成されている。言い換えると、下流側案内部50の厚みは一定である。下流側案内部50は、板材をケーシング41の内面Sに溶接等により固定することで設置することができる。また、下流側案内部50は、断面がL字となる形状とし、L字の一辺をケーシング41と対面させ、一辺をケーシング41から突出させた構造としてもよい。また、下流側案内部50は、板状部材をステーで支持した構造としてもよい。 The downstream guide portion 50 is provided in the region of the inner surface S of the casing 41 on the downstream side of the heat transfer pipe block 43. Specifically, the downstream guide portion 50 has a plate shape that protrudes from the inner surface S of the casing 41 in a direction orthogonal to the inner surface S. The downstream guide portion 50 is formed so that the area extending in the direction away from the inner surface S does not change in thickness. In other words, the thickness of the downstream guide portion 50 is constant. The downstream guide portion 50 can be installed by fixing the plate material to the inner surface S of the casing 41 by welding or the like. Further, the downstream side guide portion 50 may be configured to have an L-shaped cross section, one side of the L-shape facing the casing 41, and one side protruding from the casing 41. Further, the downstream guide portion 50 may have a structure in which the plate member is supported by the stay.
 下流側案内部50は、突出高さ、すなわち下流側案内部50における内面Sから離間する側の端部と内面Sとの間の寸法が、上述した伝熱管47のピッチPの1倍以上3倍以下であることが好ましい。下流側案内部50は、突出高さが伝熱管47のピッチPの1倍以上2倍以下であることがより好ましい。下流側案内部50は、突出高さを、伝熱管47のピッチPの1倍とすることが最も好ましい。熱交換器40は、隙間G1をピッチPよりも狭くすることで、熱交換の効率を高くすることができる。下流側案内部50は、突出高さを上記範囲とすることで、流れ方向から見た場合に、ケーシング41の内面Sに最も近接する伝熱管47と重なる形状とすることができる。これにより、下流側案内部50の両面のうち、上流側を向く面である第一案内面51は、流れ方向下流側から隙間G1と伝熱管ブロック43とに対向している。言い換えると、流れ方向から見て、隙間G1は下流側案内部50によって塞がれている。なお、第一案内面51は、ケーシング41の内面Sに直交する面内に広がる面である。 The downstream side guide portion 50 has a protrusion height, that is, a dimension between an end portion of the downstream side guide portion 50 on the side away from the inner surface S and the inner surface S is one or more times of the pitch P of the heat transfer tubes 47 described above. It is preferable that it is twice or less. It is more preferable that the downstream guide portion 50 has a protrusion height that is not less than 1 time and not more than 2 times the pitch P of the heat transfer tubes 47. Most preferably, the downstream guide portion 50 has a protrusion height that is one time the pitch P of the heat transfer tubes 47. The heat exchanger 40 can increase the efficiency of heat exchange by making the gap G1 narrower than the pitch P. The downstream guide portion 50 can have a shape overlapping the heat transfer tube 47 closest to the inner surface S of the casing 41 when viewed from the flow direction by setting the protrusion height in the above range. Thereby, the first guide surface 51, which is a surface facing the upstream side, of both surfaces of the downstream side guide portion 50 faces the gap G1 and the heat transfer tube block 43 from the downstream side in the flow direction. In other words, as viewed in the flow direction, the gap G1 is closed by the downstream guide portion 50. The first guide surface 51 is a surface that extends in a plane perpendicular to the inner surface S of the casing 41.
 第一案内面51と、当該第一案内面51に最も近接する伝熱管47との間の距離は、10mm以上50mm以下とすることが好ましく、10mm以上30mm以下とすることがより好ましく、10mmとすることが最も好ましい。 The distance between the first guide surface 51 and the heat transfer tube 47 closest to the first guide surface 51 is preferably 10 mm or more and 50 mm or less, more preferably 10 mm or more and 30 mm or less, and 10 mm Most preferred.
 以下、第一実施形態に係る熱交換器40の動作について説明する。ディーゼルエンジン11から排出された排ガスは、熱交換器40に流入する。熱交換器40に流入した排ガスは伝熱管ブロック43に接触する。排ガスは、伝熱管47内を流通する熱媒としての水と熱交換されて低温となった後、大気中に放出される。 Hereinafter, the operation of the heat exchanger 40 according to the first embodiment will be described. Exhaust gas discharged from the diesel engine 11 flows into the heat exchanger 40. The exhaust gas flowing into the heat exchanger 40 contacts the heat transfer tube block 43. The exhaust gas is subjected to heat exchange with water as a heat medium flowing in the heat transfer pipe 47 to become a low temperature, and then released to the atmosphere.
 下流側案内部50は、排ガスの流れを規制・案内し、隙間G1に流れ込もうとする排ガスの量を低減させる。下流側案内部50について図3を参照して説明する。下流側案内部50は、排ガスに対する流動抵抗となり、第一伝熱管ブロック44の下流側部分で、かつ内面Sの近傍である第一案内面51の周囲が、排ガスが流れにくい領域となる。これにより、内面S近傍や、隙間G1を流れている排ガスは、第一伝熱管ブロック44が配置されている領域を流れている間に、内面Sから離れる方向に流れやすくなる。 The downstream guide unit 50 regulates and guides the flow of the exhaust gas, and reduces the amount of the exhaust gas that is going to flow into the gap G1. The downstream side guide part 50 is demonstrated with reference to FIG. The downstream guide portion 50 is a flow resistance to the exhaust gas, and the periphery of the first guide surface 51 in the vicinity of the inner surface S in the downstream portion of the first heat transfer pipe block 44 is an area in which the exhaust gas hardly flows. As a result, the exhaust gas flowing in the vicinity of the inner surface S and in the gap G1 easily flows away from the inner surface S while flowing in the region where the first heat transfer pipe block 44 is disposed.
 具体的には、隙間G1を流通した排ガスは、図3に示すように、内面Sに沿う流れ(破線矢印F1)を形成せずに、第一伝熱管ブロック44の下流側で下流側案内部50の第一案内面51によって向きを変える。その結果、排ガスは、第一案内面51に沿って内面Sから離間する方向に向かって、矢印F2のように流れる。その後、排ガスは、第一伝熱管ブロック44を経て隙間G1以外の部分を流通してきた排ガスの流れ(矢印F3)に沿って流れる。これにより、排ガスの流れる量は、隙間G1側ではなく、ケーシング41の中心に近い矢印F3側においてより多くなる。したがって、第一伝熱管ブロック44に対してより多くの排ガスを接触させることができるため、熱交換の効率を向上させることができる。加えて、下流側案内部50によって案内された排ガスは、ケーシング41の内面Sから離間した位置から、下流側に位置する第二伝熱管ブロック45に流入する。言い換えると、第一伝熱管ブロック44の下流側に下流側案内部50が設けられていることにより、第二伝熱管ブロック45とケーシング41との間の隙間G2への排ガスの流入量が低減される。したがって、下流側案内部50が設けられていない構成に比べて、熱交換器40の効率を向上させることができる。 Specifically, as shown in FIG. 3, the exhaust gas having flowed through the gap G1 does not form a flow (broken line arrow F1) along the inner surface S, and the downstream guide portion on the downstream side of the first heat transfer tube block 44 The direction is changed by the 50 first guide surfaces 51. As a result, the exhaust gas flows along the first guide surface 51 in the direction away from the inner surface S as indicated by an arrow F2. Thereafter, the exhaust gas flows along the flow (arrow F3) of the exhaust gas flowing through the portion other than the gap G1 through the first heat transfer pipe block 44. As a result, the amount of exhaust gas flowing is greater on the arrow F3 side closer to the center of the casing 41 than on the gap G1 side. Therefore, more exhaust gases can be brought into contact with the first heat transfer tube block 44, so the efficiency of heat exchange can be improved. In addition, the exhaust gas guided by the downstream guide portion 50 flows from the position separated from the inner surface S of the casing 41 into the second heat transfer pipe block 45 located on the downstream side. In other words, by providing the downstream side guide portion 50 on the downstream side of the first heat transfer pipe block 44, the amount of inflow of exhaust gas into the gap G2 between the second heat transfer pipe block 45 and the casing 41 is reduced. Ru. Therefore, the efficiency of the heat exchanger 40 can be improved as compared with the configuration in which the downstream guide portion 50 is not provided.
 さらに、上述の熱交換器40では、第一案内面51が、流れ方向から見て内面Sに最も近接する伝熱管47と重なっている。この構成によれば、下流側案内部50によって隙間G1を下流側から十分に覆うことができる。したがって、下流側案内部50による排ガスへの流動抵抗を十分に確保することができ、伝熱管ブロック43とケーシング41の内面Sとの間の隙間G1に排ガスが流れ込む可能性をさらに低減することができる。 Furthermore, in the above-described heat exchanger 40, the first guide surface 51 overlaps the heat transfer tube 47 closest to the inner surface S when viewed in the flow direction. According to this configuration, the gap G1 can be sufficiently covered from the downstream side by the downstream guide portion 50. Therefore, the flow resistance to the exhaust gas by the downstream side guide portion 50 can be sufficiently ensured, and the possibility of the exhaust gas flowing into the gap G1 between the heat transfer pipe block 43 and the inner surface S of the casing 41 is further reduced. it can.
 加えて、下流側案内部50を設けることで、伝熱管ブロック43とケーシング41の内面Sとの距離を小さくすることができる。言い換えると、下流側案内部50が設けられている場合、隙間G1が形成されることによる熱効率の低下を考慮することなく、伝熱管ブロック43の寸法(すなわち、伝熱管層46の数)を増やすことができる。このため、熱交換器40の効率をさらに向上させることができる。 In addition, the distance between the heat transfer tube block 43 and the inner surface S of the casing 41 can be reduced by providing the downstream side guide portion 50. In other words, when the downstream side guide portion 50 is provided, the dimension (that is, the number of heat transfer tube layers 46) of the heat transfer tube block 43 is increased without considering the decrease in thermal efficiency due to the formation of the gap G1. be able to. Therefore, the efficiency of the heat exchanger 40 can be further improved.
 さらに、上述の熱交換器40では、下流側案内部50は、厚みが一定の板形状である。この構成によれば、他の複雑な形状とした場合に比べて、下流側案内部50を簡素かつ廉価に設けることができる。 Furthermore, in the above-mentioned heat exchanger 40, the downstream guide part 50 is plate shape with constant thickness. According to this configuration, the downstream side guide portion 50 can be provided simply and inexpensively as compared with other complicated shapes.
 さらに加えて、上述の熱交換器40では、下流側案内部50が内面Sから突出する寸法(すなわち、突出高さ)は、伝熱管47のピッチPの1倍以上3倍以下である。また、第一案内面51と、第一案内面51に最も近接する伝熱管47との距離は、10mm以上50mm以下である。この構成によれば、伝熱管ブロック43とケーシング41の内面Sとの間の隙間G1に排ガスが流れ込む可能性をさらに低減し、熱交換器40としての効率を十分に向上させることができる。 Furthermore, in the above-described heat exchanger 40, the dimension (that is, the protrusion height) of the downstream side guide portion 50 protruding from the inner surface S is 1 or more and 3 or less times the pitch P of the heat transfer tubes 47. Further, the distance between the first guide surface 51 and the heat transfer tube 47 closest to the first guide surface 51 is 10 mm or more and 50 mm or less. According to this configuration, the possibility of exhaust gas flowing into the gap G1 between the heat transfer pipe block 43 and the inner surface S of the casing 41 can be further reduced, and the efficiency of the heat exchanger 40 can be sufficiently improved.
 以上、本発明の第一実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上述の構成に種々の変更を施すことが可能である。 The first embodiment of the present invention has been described above. Note that various changes can be made to the above-described configuration without departing from the scope of the present invention.
 例えば、第一実施形態では、下流側案内部50の第一案内面51がケーシング41の内面Sに直交する面である構成について説明した。しかしながら、第一案内面51の構成はこれに限定されず、図4に示すような構成を採ることも可能である。具体的には、図4の例では、第一案内面52は、排ガスの流れ方向に対して傾斜している。言い換えると、第一案内面52は、上流側から下流側に向かうにしたがって、内面Sから次第に離間する方向に延びている。 For example, in the first embodiment, the configuration in which the first guide surface 51 of the downstream guide unit 50 is a surface orthogonal to the inner surface S of the casing 41 has been described. However, the configuration of the first guide surface 51 is not limited to this, and a configuration as shown in FIG. 4 can also be adopted. Specifically, in the example of FIG. 4, the first guide surface 52 is inclined with respect to the flow direction of the exhaust gas. In other words, the first guide surface 52 extends in the direction of being gradually separated from the inner surface S as it goes from the upstream side to the downstream side.
 この構成によれば、第一案内面52が流れ方向に対して傾斜していることから、排ガスを第一案内面52に沿って円滑に案内することができる。したがって、排ガスの流れに淀みや滞留が発生する可能性を低減することができる。 According to this configuration, the exhaust gas can be smoothly guided along the first guide surface 52 because the first guide surface 52 is inclined with respect to the flow direction. Therefore, the possibility of stagnation or stagnation in the exhaust gas flow can be reduced.
 さらに、第一案内面51は図5に示すような構成を採ることも可能である。具体的には、図5の例では、第一案内面53は、上流側から下流側に向かうにしたがって内面Sから離間する方向に向かって次第に湾曲している。 Furthermore, the first guide surface 51 can also be configured as shown in FIG. Specifically, in the example of FIG. 5, the first guide surface 53 is gradually curved in the direction away from the inner surface S as it goes from the upstream side to the downstream side.
 この構成によれば、第一案内面51が湾曲していることから、排ガスを第一案内面53に沿ってさらに円滑に案内することができる。 According to this configuration, since the first guide surface 51 is curved, the exhaust gas can be guided more smoothly along the first guide surface 53.
[第二実施形態]
 次に、本発明の第二実施形態について、図6を参照して説明する。本実施形態では、第二伝熱管ブロック45の上流側に、上流側案内部60がさらに設けられている。上流側案内部60は、ケーシング41の内面Sにおける伝熱管ブロック43の上流側の領域に設けられている。具体的には、上流側案内部60は、ケーシング41の内面Sから当該内面Sに直交する方向に突出する板形状である。上流側案内部60は、内面Sから離れる方向に延びる領域が、厚みが変化しないように形成されている。言い換えると、上流側案内部60の厚みは一定である。上流側案内部60は、下流側案内部50と同様に、板材をケーシング41の内面Sに溶接等により固定することで設置することができる。また、上流側案内部60は、断面がL字となる形状とし、L字の一辺をケーシング41から突出させた構造としてもよい。また、上流側案内部60は、板状部材をステーで支持した構造としてもよい。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, an upstream guide portion 60 is further provided on the upstream side of the second heat transfer pipe block 45. The upstream guide portion 60 is provided in the region of the inner surface S of the casing 41 on the upstream side of the heat transfer tube block 43. Specifically, the upstream guide portion 60 has a plate shape that protrudes from the inner surface S of the casing 41 in a direction orthogonal to the inner surface S. The upstream guide portion 60 is formed so that the area extending in the direction away from the inner surface S does not change in thickness. In other words, the thickness of the upstream guide portion 60 is constant. The upstream guide portion 60 can be installed by fixing a plate material to the inner surface S of the casing 41 by welding or the like, as with the downstream guide portion 50. Further, the upstream guide portion 60 may be configured to have an L-shaped cross section so that one side of the L-shape protrudes from the casing 41. Further, the upstream guide portion 60 may have a structure in which the plate member is supported by a stay.
 上流側案内部60は、突出高さ、すなわち上流側案内部60における内面Sから離間する側の端部と内面Sとの間の寸法が、上述した伝熱管47のピッチPの1倍以上3倍以下であることが好ましい。上流側案内部60は、突出高さが伝熱管47のピッチPの1倍以上2倍以下であることがより好ましい。上流側案内部60は、突出高さが伝熱管47のピッチPの1倍であることが最も好ましい。熱交換器40は、隙間G2をピッチPよりも狭くすることで、熱交換の効率を高くすることができる。上流側案内部60は、突出高さを上記範囲とすることで、流れ方向から見た場合に、ケーシング41の内面Sに最も近接する伝熱管47と重なる形状とすることができる。これにより、上流側案内部60の両面のうち、上流側を向く面である第二案内面61は、流れ方向上流側から隙間G1と第二伝熱管ブロック45とに対向している。言い換えると、流れ方向から見て、隙間G1は上流側案内部60によって塞がれている。第二案内面61は、ケーシング41の内面Sに直交する面内に広がる面である。 The upstream guide portion 60 has a protrusion height, that is, a dimension between the end portion of the upstream guide portion 60 on the side away from the inner surface S and the inner surface S is at least one time the pitch P of the heat transfer tubes 47 described above. It is preferable that it is twice or less. More preferably, the upstream guide portion 60 has a protrusion height of at least one time and at most two times the pitch P of the heat transfer tubes 47. Most preferably, the upstream guide portion 60 has a protrusion height that is one time the pitch P of the heat transfer tubes 47. The heat exchanger 40 can increase the efficiency of heat exchange by making the gap G2 narrower than the pitch P. The upstream guide portion 60 can have a shape overlapping the heat transfer tube 47 closest to the inner surface S of the casing 41 when viewed from the flow direction by setting the protrusion height to the above range. As a result, the second guide surface 61, which is a surface facing the upstream side, of both surfaces of the upstream guide portion 60 faces the gap G1 and the second heat transfer tube block 45 from the upstream side in the flow direction. In other words, as viewed in the flow direction, the gap G1 is closed by the upstream guide portion 60. The second guide surface 61 is a surface extending in a plane perpendicular to the inner surface S of the casing 41.
 第二案内面61と、当該第二案内面61に最も近接する伝熱管47との間の距離は、10mm以上50mm以下であることが好ましい。第二案内面61と、当該第二案内面61に最も近接する伝熱管47との間の距離は10mm以上30mm以下であることがより好ましい。第二案内面61と、当該第二案内面61に最も近接する伝熱管47との間の距離は、10mmであることが最も好ましい。 The distance between the second guiding surface 61 and the heat transfer tube 47 closest to the second guiding surface 61 is preferably 10 mm or more and 50 mm or less. It is more preferable that the distance between the second guide surface 61 and the heat transfer tube 47 closest to the second guide surface 61 be 10 mm or more and 30 mm or less. The distance between the second guide surface 61 and the heat transfer tube 47 closest to the second guide surface 61 is most preferably 10 mm.
 この構成によれば、第二伝熱管ブロック45とケーシング41の内面Sとの間の隙間G2に対して、上流側から流入する作動流体を低減することができる。より詳細には、排ガスは、第一伝熱管ブロック44の下流側に設けられた下流側案内部50によって、内面Sから離間する方向に案内された後、第一伝熱管ブロック44を流通してきた排ガスの主流、すなわち隙間G1以外の部分を流通してきた排ガスの流れに合流し、下流側に向かって流れる。下流側案内部50によって案内された排ガスは、上流側案内部60が設けられていることにより、ケーシング41の内面Sから離間した位置から、下流側に位置する第二伝熱管ブロック45に流入する。言い換えると、第一伝熱管ブロック44の下流側に下流側案内部50が設けられ、第二伝熱管ブロック45の上流側に上流側案内部60が設けられていることにより、第二伝熱管ブロック45とケーシング41との間の隙間G2への排ガスの流入量をさらに低減することができる。このため、熱交換器40の効率をさらに向上させることができる。 According to this configuration, the working fluid flowing from the upstream side can be reduced with respect to the gap G2 between the second heat transfer pipe block 45 and the inner surface S of the casing 41. More specifically, the exhaust gas has been circulated in the first heat transfer pipe block 44 after being guided in a direction away from the inner surface S by the downstream guide portion 50 provided on the downstream side of the first heat transfer pipe block 44 It joins with the mainstream of the exhaust gas, that is, the flow of the exhaust gas flowing through the portion other than the gap G1, and flows toward the downstream side. The exhaust gas guided by the downstream side guiding portion 50 flows into the second heat transfer pipe block 45 located downstream from the position separated from the inner surface S of the casing 41 by the upstream side guiding portion 60 being provided. . In other words, the downstream guide portion 50 is provided on the downstream side of the first heat transfer pipe block 44, and the upstream guide portion 60 is provided on the upstream side of the second heat transfer pipe block 45. It is possible to further reduce the inflow of the exhaust gas into the gap G2 between 45 and the casing 41. Therefore, the efficiency of the heat exchanger 40 can be further improved.
 以上、本発明の第二実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上述の構成に種々の変更を施すことが可能である。 The second embodiment of the present invention has been described above. Note that various changes can be made to the above-described configuration without departing from the scope of the present invention.
 例えば、第二実施形態では、上流側案内部60の第二案内面61がケーシング41の内面Sに直交する面である構成について説明した。しかしながら、第二案内面61の構成はこれに限定されず、下流側案内部50と同様に、図4又は図5に示すような構成を採ることも可能である。具体的には、第二案内面61を流れ方向に対して傾斜させる構成や、第二案内面61を湾曲させる構成を採ることが可能である。 For example, in the second embodiment, the configuration in which the second guide surface 61 of the upstream guide portion 60 is a surface orthogonal to the inner surface S of the casing 41 has been described. However, the configuration of the second guide surface 61 is not limited to this, and it is also possible to adopt the configuration as shown in FIG. 4 or FIG. 5 similarly to the downstream guide portion 50. Specifically, it is possible to adopt a configuration in which the second guide surface 61 is inclined with respect to the flow direction, and a configuration in which the second guide surface 61 is curved.
 また、熱交換器40の適用対象は排熱回収装置10に限定されず、例えば排熱回収ボイラの過熱器や蒸発器、節炭器等に各実施形態で説明した構成を適用することも可能である。 Moreover, the application object of the heat exchanger 40 is not limited to the exhaust heat recovery apparatus 10, For example, it is also possible to apply the structure demonstrated in each embodiment to the superheater, evaporator, economizer etc. of a waste heat recovery boiler It is.
 100 船舶
 1 船体
 10 排熱回収装置
 11 ディーゼルエンジン
 40 熱交換器
 41 ケーシング
 42 熱交換器本体
 43 伝熱管ブロック
 44 第一伝熱管ブロック
 45 第二伝熱管ブロック
 50 下流側案内部
 46 伝熱管層
 47 伝熱管
 51 第一案内面
 52 第一案内面
 53 第一案内面
 60 上流側案内部
 61 第二案内面
 G1 隙間
 G2 隙間
 P ピッチ
 S 内面
100 Vessel 1 Hull 10 Exhaust Heat Recovery Device 11 Diesel Engine 40 Heat Exchanger 41 Casing 42 Heat Exchanger Body 43 Heat Transfer Tube Block 44 First Heat Transfer Tube Block 45 Second Heat Transfer Tube Block 50 Downstream Guide 46 Heat Transfer Tube Layer 47 Transfer Heat pipe 51 first guide surface 52 first guide surface 53 first guide surface 60 upstream guide portion 61 second guide surface G1 gap G2 gap P pitch S inner surface

Claims (9)

  1.  内部を作動流体が上流側から下流側に向かって流れる筒状のケーシングと、
     前記ケーシングの内部に設けられ、前記作動流体の流れ方向に直交する面内で等ピッチで配列された複数の伝熱管を有する伝熱管層を前記流れ方向に複数積層させることで形成されるとともに、前記流れ方向に間隔をあけて配置された複数の伝熱管ブロックと、
     前記伝熱管ブロックの下流側に設けられ、前記ケーシングの内面から突出するとともに、上流側を向く第一案内面を有する下流側案内部と、
    を備える熱交換器。
    A cylindrical casing in which the working fluid flows from the upstream side to the downstream side;
    It is formed by laminating a plurality of heat transfer tube layers provided inside the casing and having a plurality of heat transfer tubes arranged at equal pitch in a plane orthogonal to the flow direction of the working fluid in the flow direction, A plurality of heat transfer tube blocks spaced apart in the flow direction;
    A downstream guiding portion provided on the downstream side of the heat transfer tube block and having a first guiding surface that protrudes from the inner surface of the casing and faces the upstream side;
    Heat exchanger provided with
  2.  前記第一案内面は、前記流れ方向から見て前記内面に最も近接する前記伝熱管と重なっている請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the first guide surface overlaps the heat transfer pipe closest to the inner surface when viewed in the flow direction.
  3.  前記第一案内面は、前記伝熱管が延びる方向から見て、前記流れ方向に対して傾斜している請求項1又は2に記載の熱交換器。 The heat exchanger according to claim 1, wherein the first guide surface is inclined with respect to the flow direction when viewed from the direction in which the heat transfer tubes extend.
  4.  前記第一案内面は、上流側から下流側に向かうにしたがって前記内面から離間する方向に湾曲している請求項1から3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the first guide surface is curved in a direction away from the inner surface as it goes from upstream to downstream.
  5.  前記下流側案内部は、前記内面から離れる方向に延びる領域が、厚みが変化しない板形状である請求項1から4のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the downstream guide portion has a plate shape in which a region extending in a direction away from the inner surface does not change in thickness.
  6.  前記下流側案内部が前記内面から突出する寸法は、前記伝熱管の前記ピッチの1倍以上3倍以下である請求項1から5のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein a dimension in which the downstream side guide portion protrudes from the inner surface is one time or more and three times or less of the pitch of the heat transfer tube.
  7.  前記第一案内面と、該第一案内面に最も近接する前記伝熱管との距離は、10mm以上50mm以下である請求項1から6のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6, wherein a distance between the first guide surface and the heat transfer pipe closest to the first guide surface is 10 mm or more and 50 mm or less.
  8.  前記伝熱管ブロックの上流側に設けられ、前記ケーシングの内面から突出するとともに、上流側を向く第二案内面を有する上流側案内部をさらに備える請求項1から7のいずれか一項に記載の熱交換器。 The upstream guide portion according to any one of claims 1 to 7, further comprising: an upstream guide portion provided on the upstream side of the heat transfer tube block and projecting from the inner surface of the casing and having a second guide surface facing the upstream side. Heat exchanger.
  9.  請求項1から8のいずれか一項に記載の熱交換器と、
     前記熱交換器が配置された煙道と、
     前記煙道に排ガスを供給する主機関と、
    を備える船舶。
    A heat exchanger according to any one of the preceding claims,
    A flue in which the heat exchanger is arranged;
    A main engine supplying exhaust gas to the flue;
    Ships equipped with
PCT/JP2017/037213 2016-12-28 2017-10-13 Heat exchanger and ship WO2018123209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187035149A KR20190005920A (en) 2016-12-28 2017-10-13 Heat exchangers and vessels
CN201780035748.7A CN110088554A (en) 2016-12-28 2017-10-13 Heat exchanger and ship

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256680A JP2018109464A (en) 2016-12-28 2016-12-28 Heat exchanger and vessel
JP2016-256680 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123209A1 true WO2018123209A1 (en) 2018-07-05

Family

ID=62708101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037213 WO2018123209A1 (en) 2016-12-28 2017-10-13 Heat exchanger and ship

Country Status (4)

Country Link
JP (1) JP2018109464A (en)
KR (1) KR20190005920A (en)
CN (1) CN110088554A (en)
WO (1) WO2018123209A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021932A1 (en) * 2018-07-27 2020-01-30 株式会社ノーリツ Water heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7357208B2 (en) * 2019-11-26 2023-10-06 株式会社ノーリツ Heat exchanger and water heating equipment equipped with the same
JP7470280B2 (en) * 2020-04-06 2024-04-18 株式会社ノーリツ Heat exchanger and hot water device equipped with same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154307U (en) * 1982-04-01 1983-10-15 三菱重工業株式会社 economizer device
JPS6252706U (en) * 1985-09-20 1987-04-02
JPS62192006U (en) * 1986-05-28 1987-12-07
JPH09137906A (en) * 1995-11-14 1997-05-27 Mitsubishi Heavy Ind Ltd Exhaust heat recovery device
JPH1172202A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Horizontal type heat exchanger
JPH11118101A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Horizontal type heat exchanger in boiler
JP2000211591A (en) * 1999-01-22 2000-08-02 Hitachi Zosen Corp Exhaust heat recovery equipment
JP2002106805A (en) * 2000-09-28 2002-04-10 Ishikawajima Harima Heavy Ind Co Ltd Horizontal load transfer structure of heating tube in heat recovery steam generator
JP2008275290A (en) * 2007-05-07 2008-11-13 National Maritime Research Institute Exhaust heat recovery device
WO2010106699A1 (en) * 2009-03-18 2010-09-23 三菱重工業株式会社 Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604735A (en) 1978-04-14 1981-12-16 Raychem Corp Ptc compositions and devices comprising them
CN201719926U (en) * 2010-07-07 2011-01-26 山东中实易通集团有限公司 Flue gas dedusting system in pulverized coal fired boiler
CN205532803U (en) * 2016-01-19 2016-08-31 南通东方船用设备制造有限公司 Marine indirect heating equipment that discharges fume of heat pipe formula
CN205332166U (en) * 2016-02-04 2016-06-22 廊坊瑞康饲料有限公司 Popped boiler economizer of fodder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154307U (en) * 1982-04-01 1983-10-15 三菱重工業株式会社 economizer device
JPS6252706U (en) * 1985-09-20 1987-04-02
JPS62192006U (en) * 1986-05-28 1987-12-07
JPH09137906A (en) * 1995-11-14 1997-05-27 Mitsubishi Heavy Ind Ltd Exhaust heat recovery device
JPH1172202A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Horizontal type heat exchanger
JPH11118101A (en) * 1997-10-20 1999-04-30 Mitsubishi Heavy Ind Ltd Horizontal type heat exchanger in boiler
JP2000211591A (en) * 1999-01-22 2000-08-02 Hitachi Zosen Corp Exhaust heat recovery equipment
JP2002106805A (en) * 2000-09-28 2002-04-10 Ishikawajima Harima Heavy Ind Co Ltd Horizontal load transfer structure of heating tube in heat recovery steam generator
JP2008275290A (en) * 2007-05-07 2008-11-13 National Maritime Research Institute Exhaust heat recovery device
WO2010106699A1 (en) * 2009-03-18 2010-09-23 三菱重工業株式会社 Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021932A1 (en) * 2018-07-27 2020-01-30 株式会社ノーリツ Water heater

Also Published As

Publication number Publication date
JP2018109464A (en) 2018-07-12
KR20190005920A (en) 2019-01-16
CN110088554A (en) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2018123209A1 (en) Heat exchanger and ship
AU2016201413B2 (en) Heating element undulation patterns
US7077190B2 (en) Exhaust gas heat exchanger
BRPI0709556A2 (en) heat exchanger for a motor vehicle
JP2011506896A (en) Recirculation exhaust gas cooler for internal combustion engines
JP2020106168A (en) Heat exchanger and water heater
RU2708733C1 (en) Rib for boiler pipe system and assembly containing such rib
GB2494058A (en) Heat exchanger comprising a plurality of laminates, particularly for use in a turbo-machine
JP2013213424A (en) Exhaust gas heat exchanger
JP5611278B2 (en) Ship boiler
JP6021511B2 (en) Method of additionally installing heat exchanger and vibration suppressing member
JP2006300415A (en) Heat exchanger device
EP2955469A1 (en) Baffle suitable for evaporators
US20170343302A1 (en) Heat exchanger
JP4823043B2 (en) Heat exchanger
JP2013015068A (en) Exhaust heat recovery apparatus
KR101194570B1 (en) Turbulent pipe and heat exchanger having the same
JP2009002300A (en) Egr cooler
WO2018070126A1 (en) Gas engine system
KR101572113B1 (en) Condenser
KR20100021937A (en) Economizer
US20170218805A1 (en) Emission signature modification device
JP5615325B2 (en) Exhaust gas economizer
JP4059702B2 (en) Water tube for boiler water wall
JP2018080864A (en) Air-cooled heat exchanger and air-cooled heat exchange device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035149

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887883

Country of ref document: EP

Kind code of ref document: A1