WO2018123201A1 - Differential-output d/a converter and a/d converter - Google Patents

Differential-output d/a converter and a/d converter Download PDF

Info

Publication number
WO2018123201A1
WO2018123201A1 PCT/JP2017/036636 JP2017036636W WO2018123201A1 WO 2018123201 A1 WO2018123201 A1 WO 2018123201A1 JP 2017036636 W JP2017036636 W JP 2017036636W WO 2018123201 A1 WO2018123201 A1 WO 2018123201A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
positive
capacitor
negative
array
Prior art date
Application number
PCT/JP2017/036636
Other languages
French (fr)
Japanese (ja)
Inventor
悠 藤本
智裕 根塚
牧原 哲哉
森永 剛
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018123201A1 publication Critical patent/WO2018123201A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion

Definitions

  • the present disclosure relates to a differential output type D / A converter including a capacitor array and an A / D converter using the D / A converter.
  • JP 2002-100991 A Japanese Patent No. 3844392
  • the present disclosure provides a differential output type D / A converter that can reduce the influence of an in-plane gradient existing on a semiconductor substrate without increasing the area of the capacitor array and without complicating the wiring, and the D / A
  • An object of the present invention is to provide an A / D converter using the A converter.
  • the decoder includes a decoder that converts input data into a thermometer code, and a positive and negative capacitor array having a plurality of unit capacitors corresponding to the thermometer code. Then, the positive capacitor array and the negative capacitor array are arranged in an arbitrary first direction, and the unit capacitors constituting each array are arranged in a second direction orthogonal to the first direction. Further, the unit capacitors corresponding to the thermometer code in the positive and negative capacitor arrays are arranged so as to be symmetric with respect to each other with the center of the array as a symmetric point.
  • the integral nonlinearity error of the D / A converter can be reduced without increasing the arrangement area of the capacitor array and without complicating the wiring.
  • thermometer code in the positive-side and negative-side capacitor arrays, at least part of the unit capacitors corresponding to the same thermometer code are arranged at positions facing each other.
  • the unit capacitors corresponding to the thermometer code are arranged so as to be point-symmetric with respect to the center of the array of the other unit capacitors.
  • FIG. 1 is a diagram schematically showing a layout of each unit capacitor in a capacitor array constituting a D / A converter in the first embodiment.
  • FIG. 2 is a diagram showing a capacitor array constituting the D / A converter
  • FIG. 3 is a functional block diagram showing the overall configuration of the D / A converter
  • FIG. 4 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the second embodiment.
  • FIG. 5 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the third embodiment.
  • FIG. 1 is a diagram schematically showing a layout of each unit capacitor in a capacitor array constituting a D / A converter in the first embodiment.
  • FIG. 2 is a diagram showing a capacitor array constituting the D / A converter
  • FIG. 3 is a functional block diagram showing the overall configuration of the D / A converter
  • FIG. 4 is a diagram schematically showing the layout of each unit capacitor in the capacitor array
  • FIG. 6 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the fourth embodiment.
  • FIG. 7 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the fifth embodiment.
  • FIG. 8 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the sixth embodiment.
  • FIG. 9 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the seventh embodiment.
  • FIG. 10 is a diagram illustrating a configuration of an A / D converter in the eighth embodiment.
  • FIG. 11 is a diagram illustrating a configuration of an A / D converter in the ninth embodiment.
  • FIG. 12 is a diagram showing a configuration of a resistance array type D / A converter
  • FIG. 13 is a diagram (No. 1) showing the configuration of another resistor array type D / A converter as a modification
  • FIG. 14 is a diagram (No. 2) showing the configuration of another resistor array type D / A converter as a modification
  • FIG. 15 is a diagram illustrating a configuration of an A / D converter in the tenth embodiment.
  • the D / A converter 1 of the present embodiment is a differential output type, and the number of bits is, for example, “5”.
  • the input 5-bit binary code is converted into a thermometer code of “32” by the positive and negative thermometer decoders 2p and 2n, respectively.
  • the converted positive and negative thermometer codes are input to the positive and negative capacitor arrays 3p and 3n.
  • the negative thermometer code is the positive inversion.
  • the positive side and negative side capacitor arrays 3p and 3n include 32 unit capacitors Cp1 to Cp32 and Cn1 to Cn32.
  • the numbers given to each unit capacitor correspond to the thermometer code.
  • One end of each of the unit capacitors Cp1 to Cp32 is connected to the DACp output terminal, and the other end is connected to one of the reference voltages REFp and REFn via the changeover switches SWp1 to SWp32.
  • one end of each of the unit capacitors Cn1 to Cn32 is connected to the DACn output terminal, and the other end is connected to one of the reference voltages REFp and REFn via the changeover switches SWn1 to SWn32.
  • the feature of this embodiment is the layout of the unit capacitors in the positive side and negative side capacitor arrays 3p and 3n, as shown in FIG.
  • the unit capacitors Cp1 to Cp32 of the positive capacitor array 3p are arranged in the order in which the value of the thermometer code changes from small to large along the X direction shown in the figure.
  • the negative side capacitor array 3n is located in the ⁇ Y direction in the figure of the positive side capacitor array 3p
  • the unit capacitor Cn1 to Cn32 has a thermometer code value along the X direction shown in the figure. They are arranged in the order of changing from large to small, that is, in the reverse order of the capacitor array 3p on the positive side.
  • the unit capacitors Cp1, Cn32 face each other in the Y direction
  • the unit capacitors Cp32, Cn1 face each other in the Y direction.
  • the Y direction corresponds to the first direction
  • the X direction corresponds to the second direction.
  • the space between the 16th column and the 17th column is the center of the array indicated by “x” in the figure.
  • the unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are arranged in a positional relationship that is point-symmetric with each other.
  • the decoders 2p and 2n that convert input data into thermometer codes and positive and negative capacitor arrays 3p having a plurality of unit capacitors corresponding to each thermometer code, 3n. Then, the positive capacitor array 3p and the negative capacitor array 3n are arranged in the Y direction, and the unit capacitors constituting each array 3 are arranged along the X direction.
  • the unit capacitors Cp and Cn corresponding to each thermometer code in the positive and negative capacitor arrays 3p and 3n are arranged so as to be symmetrical with respect to each other with the center of the array 3 as a symmetric point.
  • the unit capacitors Cp and Cn constituting the positive side and negative side capacitor arrays 3p and 3n are arranged in the order corresponding to the thermometer code.
  • the D / A converter 1 as a differential output configuration, the variation in the capacitance gradient in the X direction in which the unit capacitors Cp and Cn are arranged side by side is canceled by the positive and negative capacitor arrays 3p and 3n. . Therefore, the integral nonlinearity error of the D / A converter 1 can be reduced without increasing the arrangement area of the capacitor array 3 and without complicating the wiring.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described.
  • the unit capacitor Cp1 in the positive capacitor array 3Ap, the unit capacitor Cp1, the 32nd column unit capacitor Cp2, the second column unit capacitor Cp3, the 31st column in the first column in the X direction.
  • the unit capacitors Cp4 and the like are arranged so that the value of the thermometer code sequentially increases from the outside to the center of the array 3Ap.
  • the unit capacitor Cp31 is located in the 16th column, and the unit capacitor Cp32 is located in the 17th column.
  • each thermometer code includes a unit capacitor Cn1, a unit capacitor Cn2, a unit capacitor Cn2, a unit capacitor Cn3, a unit capacitor Cn4, and a second column.
  • Corresponding unit capacitors are arranged in the reverse order of the capacitor array 3Ap on the positive side.
  • the unit capacitor Cn32 is located in the 16th column, and the unit capacitor Cn31 is located in the 17th column.
  • unit capacitors corresponding to odd-numbered thermometer codes are arranged from the first column to the sixteenth column, and correspond to the thermometer code of the even number from the 32nd column to the 17th column. Unit capacitors are arranged.
  • the negative capacitor array 3An the relationship between the odd number and the even number is reversed.
  • the unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are arranged in a positional relationship that is point-symmetric with respect to the center of the arrays 3Ap and 3An as in the first embodiment. .
  • each of the positive side capacitor array 3Bp and the negative side capacitor array 3Bn has unit capacitors Cp1 to Cp32 and Cn1 to Cn32 of the array 3 as opposed to the second embodiment. Arrangement is started from the center side, and the arrangement is sequentially performed toward both end sides of the array 3.
  • thermometer code values are arranged so as to increase sequentially from the outside toward the outside.
  • the unit capacitor Cp31 is located in the first column, and the unit capacitor Cp32 is located in the 32nd column.
  • each thermometer code has a unit capacitor Cn1, a unit capacitor Cn2, a unit capacitor Cn2, a unit capacitor Cn3 in the 18th column, a unit capacitor Cn4 in the 15th column, etc.
  • Corresponding unit capacitors are arranged in the reverse order of the positive capacitor array 3Bp.
  • the unit capacitor Cn32 is located in the first column, and the unit capacitor Cn31 is located in the 32nd column.
  • each of the positive capacitor array 3Cp and the negative capacitor array 3Cn is arranged in 2 rows and 16 columns.
  • Unit capacitors Cp1, Cp3,..., Cp31 corresponding to odd-numbered thermometer codes are arranged in the first row: 1st to 16th columns of the positive side capacitor array 3Cp.
  • unit capacitors Cp2, Cp4,..., Cp32 corresponding to the divisor thermometer code are arranged.
  • the row directly opposite to the first row of the positive side capacitor array 3Cp is defined as the first row.
  • the first row 1st to 16th columns
  • unit capacitors Cn31, Cn29,..., Cn1 corresponding to odd thermometer codes are arranged.
  • the second row the 1st to 16th columns
  • unit capacitors Cn32, Cn30,..., Cn2 corresponding to the divisor thermometer codes are arranged. That is, these are in reverse order to the corresponding row arrangement of the positive capacitor array 3pC.
  • the center between the eighth column and the ninth column is the center of the array 3, but the unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are also point symmetric with respect to the center. Are arranged in a positional relationship.
  • the unit capacitors Cp1 to Cp32 and Cn1 to Cn32 constituting the positive side and negative side capacitor arrays 3Cp and 3Cn are respectively arranged in two columns along the Y direction.
  • the unit capacitor Cp32 of the positive side capacitor array 3Dp and the unit capacitor Cn32 of the negative side capacitor array 3Dn corresponding to the thermometer code 32 are Y at the left end of the array. Opposite along the direction. The remaining unit capacitors Cp1 to Cp31 and unit capacitors Cn1 to Cn31 are arranged in reverse order to each other as in the first embodiment.
  • the center of the array of the unit capacitors Cp1 to Cp31 and Cn1 to Cn31 is Cp16 and Cn16 located in the 17th column, and they naturally face each other along the Y direction. Accordingly, the unit capacitors Cp1 to Cp31 and the unit capacitors Cn1 to Cn31 are also arranged in a positional relationship that is point-symmetric with respect to each other with the center of the array 3 as the symmetry point.
  • the unit capacitors Cp32 and Cn32 corresponding to the same thermometer code “32” are arranged at positions facing each other.
  • the unit capacitors Cp1 to Cp31 and Cn1 to Cn31 are arranged in the same manner as in the first embodiment.
  • Cn31 located in the 17th column which is the center of the array of unit capacitors Cp1 to Cp31
  • Cn31 located in the 17th column of the array of unit capacitors Cn1 to Cn31 face each other along the Y direction.
  • the unit capacitors Cp1 to Cp31 and the unit capacitors Cn1 to Cn31 are also arranged in a positional relationship that is point-symmetric with respect to each other with the center of the array 3 as the symmetry point.
  • the same effect as that of the fifth embodiment can be obtained.
  • the successive approximation type 5-bit A / D converter 11 is configured by using the same D / A converter 1A as in the first embodiment.
  • the decoder 2 is not shown.
  • the changeover switches SWp1 to SWp32 and SWn1 in the switches of the capacitor arrays 3p and 3n of the first embodiment are used.
  • SWn32 is replaced with a three-input selector switch.
  • the output terminal TOPp of the positive side capacitor array 3Ep is connected to the non-inverting input terminal of the comparator 12, and the output terminal TOPn of the negative side capacitor array 3nE is connected to the inverting input terminal.
  • a series circuit of switches SWsp and SWsn is connected between the non-inverting input terminal and the inverting input terminal.
  • a common voltage Vcm is applied to a common connection point of the switches SWsp and SWsn.
  • the output terminal of the comparator 12 is connected to the input terminal of the successive approximation register 13.
  • the output terminal of the successive approximation register 13 is connected to the input terminal of the control circuit 14.
  • the control circuit 14 controls switching of the changeover switches SWp1 to SWp32 and SWn1 to SWn32 in the positive side and negative side capacitor arrays 3Ep and 3En according to the register value input from the successive approximation register 13.
  • the register value stored in the successive approximation register 13 becomes A / D conversion data.
  • the successive approximation type A / D converter 11 is configured using the D / A converter 1A, the A / D conversion accuracy can be improved.
  • the ninth embodiment forms an A / D converter 21 as in the eighth embodiment.
  • the A / D converter 21 is the same D / A converter as in the eighth embodiment. It is a hybrid type in which a resistance array type D / A converter 22 is combined with 1B. Since the D / A converter 1B is used for the conversion of the upper 5 bits and the D / A converter 22 is used for the conversion of the lower 7 bits, the A / D converter 21 has a 12-bit configuration.
  • the positive-side and negative-side capacitor arrays 3Fp and 3Fn constituting the D / A converter 1B are obtained by deleting the change-over switches SWp32 and SWn32 of the positive-side and negative-side capacitor arrays 3Ep and 3En in the sixth embodiment. Instead, output terminals Bp32 and Bn32 of the D / A converters 22p and 22n are connected to one ends of the unit capacitors Cp32 and Cn32, respectively.
  • the D / A converter 22p is formed of, for example, a segment type, and includes a plurality of unit resistors Ru and 8-bit changeover switches SWrp1 to SWrp8. Between the output terminal Bp32 and the reference voltages REFp and REFn, a series circuit of two unit resistors Ru and a changeover switch SWrp is connected in 8 parallels corresponding to 8 bits.
  • the 8th to 6th bits which are the upper 3 bits, are configured as an unary-weighted type including only the two unit resistors Ru.
  • the remaining lower 5 bits, the 5th to 1st bits, are configured as an R-2R type in which the upper end on the adjacent upper bit side is connected by the unit resistor Ru in addition to the two unit resistors Ru.
  • the A series circuit of two unit resistors Ru is connected between the upper end of the series circuit corresponding to the first bit and the reference voltage REFn.
  • the A / D converter 21 is converted into the capacitor array type D / A converter 1B used for the conversion of the higher-order bits corresponding to the input signal and the lower-order bits.
  • a resistor array type D / A converter 22 to be used is provided.
  • the output terminals Bp32 and Bn32 of the D / A converters 22p and 22n are connected to the unit capacitors Cp32 and Cn32 of the capacitor arrays 3Fp and 3Fn included in the D / A converter 1B so as to be configured in a hybrid type.
  • the area for configuring the capacitor array increases exponentially as the resolution increases.
  • the lower-order bit conversion is performed by the resistor array type D / A converter 22, thereby suppressing an increase in area.
  • the wiring capacitance on the D / A converter 22 side and the parasitic capacitance of the wiring connecting the D / A converter 22 and the D / A converter 1B are linear. Since there is no influence, the restrictions on the layout on the D / A converter 1B side do not become severe.
  • the D / A converter 22p may use a string type shown in FIG. 13 or an R-2R type shown in FIG. 14 in addition to the segment type.
  • the string type has an advantage that the current variation depending on the code is small, but the number of unit resistors Ru and the changeover switch SWr increases, and the arrangement area increases.
  • the R-2R type has a small arrangement area, but the current variation depending on the code increases.
  • by making the D / A converter 22 a segment type it is possible to suppress the current fluctuation depending on the code and to reduce the arrangement area.
  • the D / A converter 1A of the eighth embodiment and the D / A converter 1B of the ninth embodiment are combined to provide a 2-stage weighted A / D converter 31.
  • the unit capacitor Cp1 of the D / A converter 1A and the unit capacitor Cp32 of the D / A converter 1B are connected. Note that “_2” is assigned to the component of the D / A converter 1A, and “_1” is assigned to the component of the D / A converter 1B.
  • the A / D converter 31 has a 10-bit configuration by converting the upper 5 bits by the D / A converter 1B and converting the lower 5 bits by the D / A converter 1A.
  • the conversion process is performed by the successive approximation register 32 and the control circuit 33.
  • the 2-stage / weighted A / D converter 31 is configured by combining the D / A converter 1A and the D / A converter 1B.
  • the degree of freedom in laying out the unit capacitors Cp32 and Cn32 is improved, so that the wiring can be shortened to reduce the parasitic capacitance, and the A / D conversion accuracy can be increased.
  • each unit capacitor is not limited to that shown in each embodiment, and the unit capacitors corresponding to the thermometer code in the positive and negative capacitor arrays are symmetrical with respect to each other with the center of the array as the symmetry point. Should be arranged as follows. When at least a part of the unit capacitors corresponding to the same thermometer code are arranged at positions facing each other, the other unit capacitors are arranged in units of other unit capacitors corresponding to the thermometer code. It is sufficient to arrange them so as to be symmetrical with respect to each other with the center of the center of symmetry.
  • the A / D converters of the ninth and tenth embodiments may be configured using the D / A converters of the second to seventh embodiments.

Abstract

A differential-output D/A converter according to the present disclosure is provided with: decoders (2p, 2n) for converting inputted data into thermometer code; a positive-side capacitor array (3p, 3Ap, 3Bp, 3Cp) comprising a plurality of unit capacitors (Cp) having one end connected to a positive-side output terminal, and a switch (SWp) for switching the other end of the unit capacitors so as to connect to a positive-side reference voltage or a negative-side reference voltage in accordance with the thermometer code; and a negative-side capacitor array (3n, 3An, 3Bn, 3Cn) comprising a plurality of unit capacitors (Cn) having one end connected to a negative-side output terminal, and a switch (SWn) for switching the other end of the unit capacitors so as to connect to the positive-side reference voltage or the negative-side reference voltage in accordance with the thermometer code. The positive-side and negative-side capacitor arrays are disposed in an discretionary first direction. The unit capacitors constituting each of the arrays are arranged in a second direction orthogonal to the first direction. The unit capacitors corresponding to the thermometer code in the positive-side and negative-side capacitor arrays are disposed so as to be point-symmetrical with respect to the center of the arrays as the symmetry point.

Description

差動出力型D/A変換器及びA/D変換器Differential output type D / A converter and A / D converter 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月28日に出願された日本出願番号2016-255670号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-255670 filed on Dec. 28, 2016, the contents of which are incorporated herein by reference.
 本開示は、キャパシタアレイを備えた差動出力型D/A変換器,及び当該D/A変換器を用いたA/D変換器に関する。 The present disclosure relates to a differential output type D / A converter including a capacitor array and an A / D converter using the D / A converter.
 キャパシタアレイにおける電荷再分配の原理を利用したD/A変換器やA/D変換器については、これらのキャパシタを半導体基板上に例えば直線状に配列すると、面内膜厚の勾配の影響をより受け易くなる。すると、非直線性誤差や微分非直線性誤差が悪化してしまうことから、多数のキャパシタを半導体基板上にどのようなレイアウトにより形成するかが問題となる。そこで、従来より例えば特許文献1,2に示すように、様々なレイアウト手法が提案されている。 For D / A converters and A / D converters that use the principle of charge redistribution in capacitor arrays, if these capacitors are arranged, for example, in a straight line on a semiconductor substrate, the influence of the in-plane film thickness gradient is further reduced. It becomes easy to receive. Then, since the nonlinearity error and the differential nonlinearity error are deteriorated, it becomes a problem how to form a large number of capacitors on the semiconductor substrate. In view of this, various layout methods have been proposed in the past, for example, as shown in Patent Documents 1 and 2.
特開2002-100991号公報JP 2002-100991 A 特許第3843942号公報Japanese Patent No. 3844392
 従来提案されているレイアウト手法によれば、基板上に面内勾配が存在していてもその影響をある程度軽減する効果が得られる。しかしながら、特許文献1の構成では、サーモメータコードの奇数番目に対応するキャパシタについては配置が非対象となり、ばらつきの影響を受けてしまう。また、特許文献2の構成では、キャパシタ及びそれらに接続されるスイッチ間の配線が複雑になり、キャパシタアレイが占める面積や寄生容量が増大するという問題がある。 According to the conventionally proposed layout method, even if an in-plane gradient exists on the substrate, an effect of reducing the influence to some extent can be obtained. However, in the configuration of Patent Literature 1, the arrangement corresponding to the odd-numbered capacitors of the thermometer code is not targeted and is affected by variations. Further, the configuration of Patent Document 2 has a problem that the wiring between the capacitors and the switches connected to them becomes complicated, and the area occupied by the capacitor array and the parasitic capacitance increase.
 本開示は、半導体基板上に存在する面内勾配の影響を、キャパシタアレイの面積を増大させず、且つ配線を複雑化させることなく軽減できる差動出力型D/A変換器,及び当該D/A変換器を用いたA/D変換器を提供することを目的とする。 The present disclosure provides a differential output type D / A converter that can reduce the influence of an in-plane gradient existing on a semiconductor substrate without increasing the area of the capacitor array and without complicating the wiring, and the D / A An object of the present invention is to provide an A / D converter using the A converter.
 本開示の一態様によれば、入力されるデータをサーモメータコードに変換するデコーダと、前記サーモメータコードに対応する複数の単位キャパシタを有する正側及び負側キャパシタアレイとを備える。そして、正側キャパシタアレイと負側キャパシタアレイとを任意の第1方向に配置し、各アレイを構成する単位キャパシタを、第1方向と直交する第2方向に配列する。更に、正側,負側キャパシタアレイにおいてサーモメータコードに対応する単位キャパシタ同士を、アレイの中央を対称点として互いに点対称となるように配置する。 According to one aspect of the present disclosure, the decoder includes a decoder that converts input data into a thermometer code, and a positive and negative capacitor array having a plurality of unit capacitors corresponding to the thermometer code. Then, the positive capacitor array and the negative capacitor array are arranged in an arbitrary first direction, and the unit capacitors constituting each array are arranged in a second direction orthogonal to the first direction. Further, the unit capacitors corresponding to the thermometer code in the positive and negative capacitor arrays are arranged so as to be symmetric with respect to each other with the center of the array as a symmetric point.
 このように、差動出力構成を採用することで、単位キャパシタを並べて配置する方向について生じる容量の傾斜ばらつきが、正側,負側キャパシタアレイによって相殺される。したがって、キャパシタアレイの配置面積を増大させず、且つ配線を複雑化させることなく、D/A変換器の積分非直線性誤差を低減できる。 Thus, by adopting the differential output configuration, the variation in the capacitance gradient in the direction in which the unit capacitors are arranged and arranged is canceled by the positive and negative capacitor arrays. Therefore, the integral nonlinearity error of the D / A converter can be reduced without increasing the arrangement area of the capacitor array and without complicating the wiring.
 また、本開示の一態様によれば、正側,負側キャパシタアレイにおいて、同じサーモメータコードに対応する単位キャパシタの少なくとも一部を、互いに対向する位置に配置する。そして、その他の単位キャパシタについては請求項1と同様に、サーモメータコードに対応する単位キャパシタ同士を、その他の単位キャパシタによるアレイの中央を対称点として互いに点対称となるように配置する。 Also, according to one aspect of the present disclosure, in the positive-side and negative-side capacitor arrays, at least part of the unit capacitors corresponding to the same thermometer code are arranged at positions facing each other. As for the other unit capacitors, similarly to the first aspect, the unit capacitors corresponding to the thermometer code are arranged so as to be point-symmetric with respect to the center of the array of the other unit capacitors.
 このように構成すれば、複数のD/A変換器によってハイブリッド型や、2-stage weighted型のD/A変換器を構成する場合に、複数のD/A変換器間を接続する配線のレイアウト面積が極力小さくなるように、単位キャパシタの少なくとも一部を配置することが可能になる。 With this configuration, when a hybrid type or a 2-stage / weighted type D / A converter is constituted by a plurality of D / A converters, a layout of wiring for connecting the plurality of D / A converters. At least a part of the unit capacitor can be arranged so that the area becomes as small as possible.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図2は、D/A変換器を構成するキャパシタアレイを示す図であり、 図3は、D/A変換器の全体構成を示す機能ブロック図であり、 図4は、第2実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図5は、第3実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図6は、第4実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図7は、第5実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図8は、第6実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図9は、第7実施形態において、D/A変換器を構成するキャパシタアレイにおける各単位キャパシタのレイアウトをモデル的に示す図であり、 図10は、第8実施形態において、A/D変換器の構成を示す図であり、 図11は、第9実施形態において、A/D変換器の構成を示す図であり、 図12は、抵抗アレイ型D/A変換器の構成を示す図であり、 図13は、変形例として、その他抵抗アレイ型D/A変換器の構成を示す図(その1)であり、 図14は、変形例として、その他抵抗アレイ型D/A変換器の構成を示す図(その2)であり、 図15は、第10実施形態において、A/D変換器の構成を示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram schematically showing a layout of each unit capacitor in a capacitor array constituting a D / A converter in the first embodiment. FIG. 2 is a diagram showing a capacitor array constituting the D / A converter, FIG. 3 is a functional block diagram showing the overall configuration of the D / A converter, FIG. 4 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the second embodiment. FIG. 5 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the third embodiment. FIG. 6 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the fourth embodiment. FIG. 7 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the fifth embodiment. FIG. 8 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the sixth embodiment. FIG. 9 is a diagram schematically showing the layout of each unit capacitor in the capacitor array constituting the D / A converter in the seventh embodiment. FIG. 10 is a diagram illustrating a configuration of an A / D converter in the eighth embodiment. FIG. 11 is a diagram illustrating a configuration of an A / D converter in the ninth embodiment. FIG. 12 is a diagram showing a configuration of a resistance array type D / A converter, FIG. 13 is a diagram (No. 1) showing the configuration of another resistor array type D / A converter as a modification, FIG. 14 is a diagram (No. 2) showing the configuration of another resistor array type D / A converter as a modification, FIG. 15 is a diagram illustrating a configuration of an A / D converter in the tenth embodiment.
  (第1実施形態)
 図3に示すように、本実施形態のD/A変換器1は差動出力型で、ビット数は例えば「5」で構成される。入力される5ビットのバイナリコードは、正側,負側のサーモメータデコーダ2p,2nによってそれぞれ「32」のサーモメータコードに変換される。変換された正側,負側のサーモメータコードは、正側,負側のキャパシタアレイ3p,3nに入力される。負側のサーモメータコードは、正側の反転となる。
(First embodiment)
As shown in FIG. 3, the D / A converter 1 of the present embodiment is a differential output type, and the number of bits is, for example, “5”. The input 5-bit binary code is converted into a thermometer code of “32” by the positive and negative thermometer decoders 2p and 2n, respectively. The converted positive and negative thermometer codes are input to the positive and negative capacitor arrays 3p and 3n. The negative thermometer code is the positive inversion.
 図2に示すように、正側,負側のキャパシタアレイ3p,3nは、それぞれ32個の単位キャパシタCp1~Cp32,Cn1~Cn32を備えている。尚、各単位キャパシタに付した数字は、サーモメータコードに対応している。単位キャパシタCp1~Cp32の一端はDACp出力端子に接続されており、他端はそれぞれ切替スイッチSWp1~SWp32を介して基準電圧REFp,REFnの何れかに接続される。同様に、単位キャパシタCn1~Cn32の一端はDACn出力端子に接続されており、他端はそれぞれ切替スイッチSWn1~SWn32を介して基準電圧REFp,REFnの何れかに接続される。 As shown in FIG. 2, the positive side and negative side capacitor arrays 3p and 3n include 32 unit capacitors Cp1 to Cp32 and Cn1 to Cn32. The numbers given to each unit capacitor correspond to the thermometer code. One end of each of the unit capacitors Cp1 to Cp32 is connected to the DACp output terminal, and the other end is connected to one of the reference voltages REFp and REFn via the changeover switches SWp1 to SWp32. Similarly, one end of each of the unit capacitors Cn1 to Cn32 is connected to the DACn output terminal, and the other end is connected to one of the reference voltages REFp and REFn via the changeover switches SWn1 to SWn32.
 本実施形態の特徴は、図1に示すように、正側,負側キャパシタアレイ3p,3nにおける各単位キャパシタのレイアウトにある。正側キャパシタアレイ3pの単位キャパシタCp1~Cp32については、図中に示すX方向に沿ってサーモメータコードの値が小から大に変化する順序で配列されている。一方、負側キャパシタアレイ3nは、正側キャパシタアレイ3pの図中-Y方向に位置しており、その単位キャパシタCn1~Cn32については、図中に示すX方向に沿ってサーモメータコードの値が大から小に変化する順序で、つまり正側のキャパシタアレイ3pの逆順で配列されている。第1列では単位キャパシタCp1,Cn32がY方向で対向しており、第32列では単位キャパシタCp32,Cn1がY方向で対向している。尚、Y方向は第1方向に相当し、X方向は第2方向に相当する。 The feature of this embodiment is the layout of the unit capacitors in the positive side and negative side capacitor arrays 3p and 3n, as shown in FIG. The unit capacitors Cp1 to Cp32 of the positive capacitor array 3p are arranged in the order in which the value of the thermometer code changes from small to large along the X direction shown in the figure. On the other hand, the negative side capacitor array 3n is located in the −Y direction in the figure of the positive side capacitor array 3p, and the unit capacitor Cn1 to Cn32 has a thermometer code value along the X direction shown in the figure. They are arranged in the order of changing from large to small, that is, in the reverse order of the capacitor array 3p on the positive side. In the first column, the unit capacitors Cp1, Cn32 face each other in the Y direction, and in the 32nd column, the unit capacitors Cp32, Cn1 face each other in the Y direction. The Y direction corresponds to the first direction, and the X direction corresponds to the second direction.
 この場合、第16列と第17列との間が図中に「×」印で示すアレイの中央になる。その中央を対称点として、単位キャパシタCp1~Cp32と単位キャパシタCn1~Cn32とは、互いに点対称となる位置関係で配置されている。このような配置形態を採用することでX方向における容量ばらつきの傾斜が相殺され、積分非直線性誤差が低減される。 In this case, the space between the 16th column and the 17th column is the center of the array indicated by “x” in the figure. With the center as the symmetry point, the unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are arranged in a positional relationship that is point-symmetric with each other. By adopting such an arrangement form, the slope of the capacitance variation in the X direction is canceled, and the integral nonlinearity error is reduced.
 以上のように本実施形態によれば、入力されるデータをサーモメータコードに変換するデコーダ2p,2nと、各サーモメータコードに対応する複数の単位キャパシタを有する正側,負側キャパシタアレイ3p,3nとを備える。そして、正側キャパシタアレイ3pと負側キャパシタアレイ3nとをY方向に配置し、各アレイ3を構成する単位キャパシタをX方向に沿って配列する。 As described above, according to the present embodiment, the decoders 2p and 2n that convert input data into thermometer codes, and positive and negative capacitor arrays 3p having a plurality of unit capacitors corresponding to each thermometer code, 3n. Then, the positive capacitor array 3p and the negative capacitor array 3n are arranged in the Y direction, and the unit capacitors constituting each array 3 are arranged along the X direction.
 更に、正側,負側キャパシタアレイ3p,3nにおいて各サーモメータコードに対応する単位キャパシタCp,Cn同士を、アレイ3の中央を対称点として、互いに点対称となるように配置した。具体的には、正側,負側キャパシタアレイ3p,3nを構成する各単位キャパシタCp,Cnを、それぞれサーモメータコードの並びに対応する順序で配置した。 Furthermore, the unit capacitors Cp and Cn corresponding to each thermometer code in the positive and negative capacitor arrays 3p and 3n are arranged so as to be symmetrical with respect to each other with the center of the array 3 as a symmetric point. Specifically, the unit capacitors Cp and Cn constituting the positive side and negative side capacitor arrays 3p and 3n are arranged in the order corresponding to the thermometer code.
 このように、D/A変換器1を差動出力構成として、単位キャパシタCp,Cnを並べて配置するX方向について生じる容量の傾斜ばらつきが、正側,負側キャパシタアレイ3p,3nによって相殺される。したがって、キャパシタアレイ3の配置面積を増大させず、且つ配線を複雑化させることなく、D/A変換器1の積分非直線性誤差を低減できる。 In this way, with the D / A converter 1 as a differential output configuration, the variation in the capacitance gradient in the X direction in which the unit capacitors Cp and Cn are arranged side by side is canceled by the positive and negative capacitor arrays 3p and 3n. . Therefore, the integral nonlinearity error of the D / A converter 1 can be reduced without increasing the arrangement area of the capacitor array 3 and without complicating the wiring.
  (第2実施形態)
 以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第2実施形態は、図4に示すように、正側キャパシタアレイ3Apでは、X方向における第1列に単位キャパシタCp1,第32列に単位キャパシタCp2,第2列に単位キャパシタCp3,第31列に単位キャパシタCp4,といったように、アレイ3Apの外側から中央に向かってサーモメータコードの値が順次増加するように配置される。第16列には単位キャパシタCp31が、第17列には単位キャパシタCp32が位置する。
(Second Embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof will be omitted, and different parts will be described. In the second embodiment, as shown in FIG. 4, in the positive capacitor array 3Ap, the unit capacitor Cp1, the 32nd column unit capacitor Cp2, the second column unit capacitor Cp3, the 31st column in the first column in the X direction. The unit capacitors Cp4 and the like are arranged so that the value of the thermometer code sequentially increases from the outside to the center of the array 3Ap. The unit capacitor Cp31 is located in the 16th column, and the unit capacitor Cp32 is located in the 17th column.
 一方、負側キャパシタアレイ3Anでは、第32列に単位キャパシタCn1,第1列に単位キャパシタCn2,第31列に単位キャパシタCn3,第2列に単位キャパシタCn4,といったように、各サーモメータコードに対応する単位キャパシタが、正側のキャパシタアレイ3Apの逆順で配列されている。第16列には単位キャパシタCn32が、第17列には単位キャパシタCn31が位置する。 On the other hand, in the negative side capacitor array 3An, each thermometer code includes a unit capacitor Cn1, a unit capacitor Cn2, a unit capacitor Cn2, a unit capacitor Cn3, a unit capacitor Cn4, and a second column. Corresponding unit capacitors are arranged in the reverse order of the capacitor array 3Ap on the positive side. The unit capacitor Cn32 is located in the 16th column, and the unit capacitor Cn31 is located in the 17th column.
 換言すれば、正側キャパシタアレイ3Apでは、第1列から第16列にかけて奇数のサーモメータコードに対応する単位キャパシタが配列され、第32列から第17列にかけて遇数のサーモメータコードに対応する単位キャパシタが配列されている。負側キャパシタアレイ3Anでは、上記奇数,偶数の関係が逆になっている。そして、アレイ3Ap,3Anの中央を対称点として、単位キャパシタCp1~Cp32と単位キャパシタCn1~Cn32とは、互いに点対称となる位置関係で配置されている状態は、第1実施形態と同様である。 In other words, in the positive side capacitor array 3Ap, unit capacitors corresponding to odd-numbered thermometer codes are arranged from the first column to the sixteenth column, and correspond to the thermometer code of the even number from the 32nd column to the 17th column. Unit capacitors are arranged. In the negative capacitor array 3An, the relationship between the odd number and the even number is reversed. The unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are arranged in a positional relationship that is point-symmetric with respect to the center of the arrays 3Ap and 3An as in the first embodiment. .
 以上のように構成される第2実施形態による場合も、正側キャパシタアレイ3Ap,負側キャパシタアレイ3An間においてX方向における容量ばらつきの傾斜が相殺されるので、積分非直線性誤差が低減される。 Also in the case of the second embodiment configured as described above, since the slope of the capacitance variation in the X direction is canceled between the positive capacitor array 3Ap and the negative capacitor array 3An, the integral nonlinearity error is reduced. .
  (第3実施形態)
 第3実施形態は、図5に示すように、正側キャパシタアレイ3Bp,負側キャパシタアレイ3Bnのそれぞれが、第2実施形態とは逆に、単位キャパシタCp1~Cp32,Cn1~Cn32をアレイ3の中央側から配置を開始し、順次アレイ3の両端側に向かう順序で配置する。
(Third embodiment)
In the third embodiment, as shown in FIG. 5, each of the positive side capacitor array 3Bp and the negative side capacitor array 3Bn has unit capacitors Cp1 to Cp32 and Cn1 to Cn32 of the array 3 as opposed to the second embodiment. Arrangement is started from the center side, and the arrangement is sequentially performed toward both end sides of the array 3.
 すなわち、正側キャパシタアレイ3Bpでは、第16列に単位キャパシタCp1,第17列に単位キャパシタCp2,第15列に単位キャパシタCp3,第18列に単位キャパシタCp4,といったように、アレイ3の中央側から外側に向かってサーモメータコードの値が順次増加するように配置される。第1列には単位キャパシタCp31が、第32列には単位キャパシタCp32が位置する。 That is, in the positive side capacitor array 3Bp, the unit capacitor Cp1 in the 16th column, the unit capacitor Cp2 in the 17th column, the unit capacitor Cp4 in the 15th column, the unit capacitor Cp4 in the 18th column, etc. The thermometer code values are arranged so as to increase sequentially from the outside toward the outside. The unit capacitor Cp31 is located in the first column, and the unit capacitor Cp32 is located in the 32nd column.
 一方、負側キャパシタアレイ3Bnでは、第17列に単位キャパシタCn1,第16列に単位キャパシタCn2,第18列に単位キャパシタCn3,第15列に単位キャパシタCn4,といったように、各サーモメータコードに対応する単位キャパシタが、正側のキャパシタアレイ3Bpの逆順で配列されている。第1列には単位キャパシタCn32が、第32列には単位キャパシタCn31が位置する。
 以上のように構成される第3実施形態による場合も、第2実施形態と同様の効果が得られる。
On the other hand, in the negative side capacitor array 3Bn, each thermometer code has a unit capacitor Cn1, a unit capacitor Cn2, a unit capacitor Cn2, a unit capacitor Cn3 in the 18th column, a unit capacitor Cn4 in the 15th column, etc. Corresponding unit capacitors are arranged in the reverse order of the positive capacitor array 3Bp. The unit capacitor Cn32 is located in the first column, and the unit capacitor Cn31 is located in the 32nd column.
In the case of the third embodiment configured as described above, the same effects as those of the second embodiment can be obtained.
  (第4実施形態)
 第4実施形態は、図6に示すように、正側キャパシタアレイ3Cp,負側キャパシタアレイ3Cnのそれぞれが、2行16列の配置形態となっている。正側キャパシタアレイ3Cpの第1行:第1列から第16列には、奇数のサーモメータコードに対応する単位キャパシタCp1,Cp3,…,Cp31が配列されている。また、同第2行:第1列から第16列には、遇数のサーモメータコードに対応する単位キャパシタCp2,Cp4,…,Cp32が配列されている。
(Fourth embodiment)
In the fourth embodiment, as shown in FIG. 6, each of the positive capacitor array 3Cp and the negative capacitor array 3Cn is arranged in 2 rows and 16 columns. Unit capacitors Cp1, Cp3,..., Cp31 corresponding to odd-numbered thermometer codes are arranged in the first row: 1st to 16th columns of the positive side capacitor array 3Cp. In the second row: from the first column to the 16th column, unit capacitors Cp2, Cp4,..., Cp32 corresponding to the divisor thermometer code are arranged.
 一方、負側キャパシタアレイ3Cnについては、正側キャパシタアレイ3Cpの第1行に直接対向する行を第1行とする。前記第1行:第1列から第16列には、奇数のサーモメータコードに対応する単位キャパシタCn31,Cn29,…,Cn1が配列されている。また、同第2行:第1列から第16列には、遇数のサーモメータコードに対応する単位キャパシタCn32,Cn30,…,Cn2が配列されている。すなわち、これらは正側キャパシタアレイ3pCの対応する行の並びと逆順である。 On the other hand, for the negative side capacitor array 3Cn, the row directly opposite to the first row of the positive side capacitor array 3Cp is defined as the first row. In the first row: 1st to 16th columns, unit capacitors Cn31, Cn29,..., Cn1 corresponding to odd thermometer codes are arranged. In the second row: the 1st to 16th columns, unit capacitors Cn32, Cn30,..., Cn2 corresponding to the divisor thermometer codes are arranged. That is, these are in reverse order to the corresponding row arrangement of the positive capacitor array 3pC.
 以上の配置形態では、第8列と第9列との間がアレイ3の中央になるが、やはりその中央を対称点として、単位キャパシタCp1~Cp32と単位キャパシタCn1~Cn32とは、互いに点対称となる位置関係で配置されている。 In the above arrangement, the center between the eighth column and the ninth column is the center of the array 3, but the unit capacitors Cp1 to Cp32 and the unit capacitors Cn1 to Cn32 are also point symmetric with respect to the center. Are arranged in a positional relationship.
 以上のように第4実施形態によれば、正側,負側キャパシタアレイ3Cp,3Cnを構成する各単位キャパシタCp1~Cp32,Cn1~Cn32を、それぞれY方向に沿って2列に配置した。このように構成すれば、D/A変換の分解能を向上させるため素子数がより多くなる場合にX方向の配列長が伸びることを抑制し、他の回路等を含むレイアウトプランの自由度を高めることができる。 As described above, according to the fourth embodiment, the unit capacitors Cp1 to Cp32 and Cn1 to Cn32 constituting the positive side and negative side capacitor arrays 3Cp and 3Cn are respectively arranged in two columns along the Y direction. With this configuration, when the number of elements is increased in order to improve the resolution of the D / A conversion, the arrangement length in the X direction is suppressed from increasing, and the degree of freedom of the layout plan including other circuits is increased. be able to.
  (第5実施形態)
 第5実施形態は、図7に示すように、サーモメータコード32に対応する正側キャパシタアレイ3Dpの単位キャパシタCp32と、負側キャパシタアレイ3Dnの単位キャパシタCn32とが、アレイの図中左端においてY方向に沿って対向している。そして、残りの単位キャパシタCp1~Cp31と単位キャパシタCn1~Cn31とは、第1実施形態と同様に、互いに逆順で配置されている。
(Fifth embodiment)
In the fifth embodiment, as shown in FIG. 7, the unit capacitor Cp32 of the positive side capacitor array 3Dp and the unit capacitor Cn32 of the negative side capacitor array 3Dn corresponding to the thermometer code 32 are Y at the left end of the array. Opposite along the direction. The remaining unit capacitors Cp1 to Cp31 and unit capacitors Cn1 to Cn31 are arranged in reverse order to each other as in the first embodiment.
 この場合、単位キャパシタCp1~Cp31及びCn1~Cn31のアレイの中央は、第17列に位置するCp16,Cn16となり、これらも自ずとY方向に沿って対向することになる。したがって、単位キャパシタCp1~Cp31と単位キャパシタCn1~Cn31とは、やはりアレイ3の中央を対称点として互いに点対称となる位置関係で配置されている。 In this case, the center of the array of the unit capacitors Cp1 to Cp31 and Cn1 to Cn31 is Cp16 and Cn16 located in the 17th column, and they naturally face each other along the Y direction. Accordingly, the unit capacitors Cp1 to Cp31 and the unit capacitors Cn1 to Cn31 are also arranged in a positional relationship that is point-symmetric with respect to each other with the center of the array 3 as the symmetry point.
 以上のように第5実施形態によれば、正側,負側キャパシタアレイ3Dp,3Dnにおいて、同じサーモメータコード「32」に対応する単位キャパシタCp32及びCn32を互いに対向する位置に配置し、その他の単位キャパシタCp1~Cp31,Cn1~Cn31については第1実施形態と同様に配置した。 As described above, according to the fifth embodiment, in the positive and negative capacitor arrays 3Dp and 3Dn, the unit capacitors Cp32 and Cn32 corresponding to the same thermometer code “32” are arranged at positions facing each other. The unit capacitors Cp1 to Cp31 and Cn1 to Cn31 are arranged in the same manner as in the first embodiment.
 このように構成すれば、複数のD/A変換器によってハイブリッド型や、2-stage weighted型のD/A変換器を構成する場合に、それらの間を接続する配線のレイアウト面積を極力小さくすることが可能になる。 With this configuration, when a hybrid type or a 2-stage / weighted type D / A converter is configured by a plurality of D / A converters, the layout area of the wiring connecting them is minimized. It becomes possible.
  (第6実施形態)
 図8に示す第6実施形態では、第2実施形態の構成において、正側キャパシタアレイ3Apの単位キャパシタCp32と負側キャパシタアレイ3Anの単位キャパシタCn32とを抜き出して、第5実施形態と同様に何れも第1列に配置したものをそれぞれ正側,負側キャパシタアレイ3A’p,3A’nとしたものである。
(Sixth embodiment)
In the sixth embodiment shown in FIG. 8, in the configuration of the second embodiment, the unit capacitors Cp32 of the positive capacitor array 3Ap and the unit capacitors Cn32 of the negative capacitor array 3An are extracted, and as in the fifth embodiment, Are arranged in the first column as positive and negative capacitor arrays 3A′p and 3A′n, respectively.
 この場合、単位キャパシタCp1~Cp31からなるアレイにおいて中央となる第17列に位置するCn31と、単位キャパシタCn1~Cn31のアレイにおいて第17列に位置するCn31とが、Y方向に沿って対向することになる。したがって、単位キャパシタCp1~Cp31と単位キャパシタCn1~Cn31とは、やはりアレイ3の中央を対称点として互いに点対称となる位置関係で配置されている。以上のように構成される第6実施形態による場合も、第5実施形態と同様の効果が得られる。 In this case, Cn31 located in the 17th column, which is the center of the array of unit capacitors Cp1 to Cp31, and Cn31 located in the 17th column of the array of unit capacitors Cn1 to Cn31 face each other along the Y direction. become. Accordingly, the unit capacitors Cp1 to Cp31 and the unit capacitors Cn1 to Cn31 are also arranged in a positional relationship that is point-symmetric with respect to each other with the center of the array 3 as the symmetry point. In the case of the sixth embodiment configured as described above, the same effect as that of the fifth embodiment can be obtained.
  (第7実施形態)
 図9に示す第7実施形態では、第3実施形態の構成において、正側キャパシタアレイ3Bpの第1列にある単位キャパシタCp31と、第32列にある単位キャパシタCp32と入れ替えたものを正側キャパシタアレイ3B’pとしている。この場合、第5実施形態と同様に、単位キャパシタCp32と単位キャパシタCn32とがY方向で対向すると共に、第17列にある単位キャパシタCp1と単位キャパシタCn1とが同じように対向する。以上のように構成される第7実施形態による場合も、第5実施形態と同様の効果が得られる。
(Seventh embodiment)
In the seventh embodiment shown in FIG. 9, in the configuration of the third embodiment, the unit capacitor Cp31 in the first column of the positive capacitor array 3Bp and the unit capacitor Cp32 in the 32nd column are replaced with the positive capacitor. The array 3B'p is used. In this case, as in the fifth embodiment, the unit capacitor Cp32 and the unit capacitor Cn32 face each other in the Y direction, and the unit capacitor Cp1 and the unit capacitor Cn1 in the 17th column face each other in the same manner. In the case of the seventh embodiment configured as described above, the same effect as that of the fifth embodiment can be obtained.
  (第8実施形態)
 図10に示す第8実施形態では、第1実施形態と同様のD/A変換器1Aを用いて逐次比較型の5ビットA/D変換器11を構成している。尚、デコーダ2については図示を省略している。また、正側,負側キャパシタアレイ3Ep,3Enは、A/D変換器11の入力電圧VINP,VINNを与えるため、第1実施形態のキャパシタアレイ3p,3nのスイッチにおける切替スイッチSWp1~SWp32,SWn1~SWn32を、3入力の切替スイッチに置き換えたものである。
(Eighth embodiment)
In the eighth embodiment shown in FIG. 10, the successive approximation type 5-bit A / D converter 11 is configured by using the same D / A converter 1A as in the first embodiment. The decoder 2 is not shown. Further, since the positive side and negative side capacitor arrays 3Ep and 3En supply the input voltages VINP and VINN of the A / D converter 11, the changeover switches SWp1 to SWp32 and SWn1 in the switches of the capacitor arrays 3p and 3n of the first embodiment are used. SWn32 is replaced with a three-input selector switch.
 正側キャパシタアレイ3Epの出力端子TOPpは、コンパレータ12の非反転入力端子に接続されており、負側キャパシタアレイ3nEの出力端子TOPnは、同反転入力端子に接続されている。前記非反転入力端子と前記反転入力端子との間にはスイッチSWsp及びSWsnの直列回路が接続されている。スイッチSWsp及びSWsnの共通接続点には、コモン電圧Vcmが与えられている。 The output terminal TOPp of the positive side capacitor array 3Ep is connected to the non-inverting input terminal of the comparator 12, and the output terminal TOPn of the negative side capacitor array 3nE is connected to the inverting input terminal. A series circuit of switches SWsp and SWsn is connected between the non-inverting input terminal and the inverting input terminal. A common voltage Vcm is applied to a common connection point of the switches SWsp and SWsn.
 コンパレータ12の出力端子は、逐次比較レジスタ13の入力端子に接続されている。逐次比較レジスタ13の出力端子は、制御回路14の入力端子に接続されている。制御回路14は、逐次比較レジスタ13より入力されるレジスタ値に応じて、正側,負側キャパシタアレイ3Ep,3Enにおける切替スイッチSWp1~SWp32,SWn1~SWn32の切替えを制御する。最終的に、逐次比較レジスタ13に格納されるレジスタ値がA/D変換データとなる。
 以上のように第8実施形態によれば、D/A変換器1Aを用いて逐次比較型のA/D変換器11を構成したので、A/D変換精度を向上させることができる。
The output terminal of the comparator 12 is connected to the input terminal of the successive approximation register 13. The output terminal of the successive approximation register 13 is connected to the input terminal of the control circuit 14. The control circuit 14 controls switching of the changeover switches SWp1 to SWp32 and SWn1 to SWn32 in the positive side and negative side capacitor arrays 3Ep and 3En according to the register value input from the successive approximation register 13. Finally, the register value stored in the successive approximation register 13 becomes A / D conversion data.
As described above, according to the eighth embodiment, since the successive approximation type A / D converter 11 is configured using the D / A converter 1A, the A / D conversion accuracy can be improved.
  (第9実施形態)
 第9実施形態は図11に示すように、第8実施形態と同様にA/D変換器21を構成するが、A/D変換器21は、第8実施形態と同様のD/A変換器1Bに、抵抗アレイ型D/A変換器22を組み合わせたハイブリッド型となっている。D/A変換器1Bが上位5ビットの変換に使用され、D/A変換器22が下位7ビットの変換に使用されることで、A/D変換器21は12ビット構成となっている。
(Ninth embodiment)
As shown in FIG. 11, the ninth embodiment forms an A / D converter 21 as in the eighth embodiment. The A / D converter 21 is the same D / A converter as in the eighth embodiment. It is a hybrid type in which a resistance array type D / A converter 22 is combined with 1B. Since the D / A converter 1B is used for the conversion of the upper 5 bits and the D / A converter 22 is used for the conversion of the lower 7 bits, the A / D converter 21 has a 12-bit configuration.
 D/A変換器1Bを構成する正側,負側キャパシタアレイ3Fp,3Fnは、第6実施形態の正側,負側キャパシタアレイ3Ep,3Enの切替えスイッチSWp32,SWn32を削除したものである。それに替えて、単位キャパシタCp32,Cn32の一端には、それぞれD/A変換器22p,22nの出力端子Bp32,Bn32が接続されている。 The positive-side and negative-side capacitor arrays 3Fp and 3Fn constituting the D / A converter 1B are obtained by deleting the change-over switches SWp32 and SWn32 of the positive-side and negative-side capacitor arrays 3Ep and 3En in the sixth embodiment. Instead, output terminals Bp32 and Bn32 of the D / A converters 22p and 22n are connected to one ends of the unit capacitors Cp32 and Cn32, respectively.
 図12に示すように、D/A変換器22pは例えばセグメント型で構成され、複数の単位抵抗Ruと、8ビット分の切替スイッチSWrp1~SWrp8とを備えている。出力端子であるBp32と基準電圧REFp,REFnとの間には、2つの単位抵抗Ruと切替スイッチSWrpとの直列回路が、8ビットに対応して8並列で接続されている。上位3ビットである第8~第6ビットについては、上記2つの単位抵抗RuのみからなるUnary weighted型で構成される。残りの下位5ビットである第5~第1ビットについては、2つの単位抵抗Ruに加えて隣接する上位ビット側の上端との間が単位抵抗Ruにより接続されて、R-2R型で構成される。また、第1ビットに対応する直列回路の上端と基準電圧REFnとの間には、2つの単位抵抗Ruの直列回路が接続されている。 As shown in FIG. 12, the D / A converter 22p is formed of, for example, a segment type, and includes a plurality of unit resistors Ru and 8-bit changeover switches SWrp1 to SWrp8. Between the output terminal Bp32 and the reference voltages REFp and REFn, a series circuit of two unit resistors Ru and a changeover switch SWrp is connected in 8 parallels corresponding to 8 bits. The 8th to 6th bits, which are the upper 3 bits, are configured as an unary-weighted type including only the two unit resistors Ru. The remaining lower 5 bits, the 5th to 1st bits, are configured as an R-2R type in which the upper end on the adjacent upper bit side is connected by the unit resistor Ru in addition to the two unit resistors Ru. The A series circuit of two unit resistors Ru is connected between the upper end of the series circuit corresponding to the first bit and the reference voltage REFn.
 以上のように第9実施形態によれば、A/D変換器21を、入力信号に対応する上位側ビットの変換に用いられるキャパシタアレイ型D/A変換器1Bと、下位側ビットの変換に使用される抵抗アレイ型D/A変換器22を備える。そして、D/A変換器22p,22nの出力端子Bp32,Bn32を、D/A変換器1Bが有するキャパシタアレイ3Fp,3Fnの単位キャパシタCp32,Cn32に接続し、ハイブリッド型で構成した。 As described above, according to the ninth embodiment, the A / D converter 21 is converted into the capacitor array type D / A converter 1B used for the conversion of the higher-order bits corresponding to the input signal and the lower-order bits. A resistor array type D / A converter 22 to be used is provided. Then, the output terminals Bp32 and Bn32 of the D / A converters 22p and 22n are connected to the unit capacitors Cp32 and Cn32 of the capacitor arrays 3Fp and 3Fn included in the D / A converter 1B so as to be configured in a hybrid type.
 すなわち、キャパシタアレイ型のD/A変換器1のみを用いてA/D変換器を構成すると、分解能が大きくなるのに応じてキャパシタアレイを構成するための面積が指数関数的に増大する。これに対して第7実施形態のように、下位側ビットの変換を抵抗アレイ型D/A変換器22によって行うことで、面積の増大を抑制できる。また、このようにハイブリッド型で構成した場合でも、D/A変換器22側の配線容量や、D/A変換器22とD/A変換器1Bとを接続する配線の寄生容量が線形性に影響を与えないので、D/A変換器1B側のレイアウトに対する制約が厳しくなることもない。 That is, when the A / D converter is configured using only the capacitor array type D / A converter 1, the area for configuring the capacitor array increases exponentially as the resolution increases. On the other hand, as in the seventh embodiment, the lower-order bit conversion is performed by the resistor array type D / A converter 22, thereby suppressing an increase in area. Even in the case of such a hybrid type, the wiring capacitance on the D / A converter 22 side and the parasitic capacitance of the wiring connecting the D / A converter 22 and the D / A converter 1B are linear. Since there is no influence, the restrictions on the layout on the D / A converter 1B side do not become severe.
 尚、第9実施形態の変形として、D/A変換器22pはセグメント型以外に、図13に示すストリング型や、図14に示すR-2R型を用いても良い。但し、ストリング型は、コードに依存した電流変動が小さいというメリットはあるが、単位抵抗Ru及び切替スイッチSWrの数が多くなり、配置面積が大きくなる。また、出力抵抗が大きくなるため、セトリングに時間を要するというデメリットがある。一方、R-2R型は配置面積が小さくなるが、コードに依存した電流変動が大きくなる。
 これらに対して、D/A変換器22をセグメント型にすることで、コードに依存した電流変動を抑制し、且つ配置面積を小さくすることが可能になる。
As a modification of the ninth embodiment, the D / A converter 22p may use a string type shown in FIG. 13 or an R-2R type shown in FIG. 14 in addition to the segment type. However, the string type has an advantage that the current variation depending on the code is small, but the number of unit resistors Ru and the changeover switch SWr increases, and the arrangement area increases. In addition, since the output resistance increases, there is a demerit that time is required for settling. On the other hand, the R-2R type has a small arrangement area, but the current variation depending on the code increases.
On the other hand, by making the D / A converter 22 a segment type, it is possible to suppress the current fluctuation depending on the code and to reduce the arrangement area.
  (第10実施形態)
 図15に示す第10実施形態では、第8実施形態のD/A変換器1Aと第9実施形態のD/A変換器1Bとを組み合わせて2-stage weighted型のA/D変換器31を構成しており、D/A変換器1Aの単位キャパシタCp1と、D/A変換器1Bの単位キャパシタCp32とが接続されている。尚、D/A変換器1A側の構成要素の符号には「_2」を付し、D/A変換器1B側の構成要素の符号には「_1」を付している。
(10th Embodiment)
In the tenth embodiment shown in FIG. 15, the D / A converter 1A of the eighth embodiment and the D / A converter 1B of the ninth embodiment are combined to provide a 2-stage weighted A / D converter 31. The unit capacitor Cp1 of the D / A converter 1A and the unit capacitor Cp32 of the D / A converter 1B are connected. Note that “_2” is assigned to the component of the D / A converter 1A, and “_1” is assigned to the component of the D / A converter 1B.
 D/A変換器1Bにより上位5ビットを変換し、D/A変換器1Aにより下位5ビットを変換することで、A/D変換器31は10ビット構成となっている。変換処理は、逐次比較レジスタ32及び制御回路33によって行われる。 The A / D converter 31 has a 10-bit configuration by converting the upper 5 bits by the D / A converter 1B and converting the lower 5 bits by the D / A converter 1A. The conversion process is performed by the successive approximation register 32 and the control circuit 33.
 以上のように第10実施形態によれば、D/A変換器1AとD/A変換器1Bとを組み合わせて2-stage weighted型のA/D変換器31を構成した。このように構成すれば、単位キャパシタCp32,Cn32をレイアウトする自由度が向上するので配線を短くして寄生容量を低減でき、A/D変換精度を高めることができる。 As described above, according to the tenth embodiment, the 2-stage / weighted A / D converter 31 is configured by combining the D / A converter 1A and the D / A converter 1B. With this configuration, the degree of freedom in laying out the unit capacitors Cp32 and Cn32 is improved, so that the wiring can be shortened to reduce the parasitic capacitance, and the A / D conversion accuracy can be increased.
  (その他の実施形態)
 各単位キャパシタのレイアウトは、各実施形態に示したものに限らず、正側,負側キャパシタアレイにおいてサーモメータコードに対応する単位キャパシタ同士が、アレイの中央を対称点として、互いに点対称となるように配置すれば良い。
 また、同じサーモメータコードに対応する単位キャパシタの少なくとも一部を、互いに対向する位置に配置する場合は、その他の単位キャパシタを、サーモメータコードに対応する単位キャパシタ同士が、その他の単位キャパシタによるアレイの中央を対称点として、互いに点対称となるように配置すれば良い。
(Other embodiments)
The layout of each unit capacitor is not limited to that shown in each embodiment, and the unit capacitors corresponding to the thermometer code in the positive and negative capacitor arrays are symmetrical with respect to each other with the center of the array as the symmetry point. Should be arranged as follows.
When at least a part of the unit capacitors corresponding to the same thermometer code are arranged at positions facing each other, the other unit capacitors are arranged in units of other unit capacitors corresponding to the thermometer code. It is sufficient to arrange them so as to be symmetrical with respect to each other with the center of the center of symmetry.
 D/A変換器,A/D変換器の変換ビット数は、個別の設計に応じて適宜変更すれば良い。
 第9,第10実施形態のA/D変換器を、第2~第7実施形態のD/A変換器を用いて構成しても良い。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
What is necessary is just to change suitably the number of conversion bits of a D / A converter and an A / D converter according to each design.
The A / D converters of the ninth and tenth embodiments may be configured using the D / A converters of the second to seventh embodiments.
Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (13)

  1.  入力されるデータをサーモメータコードに変換するデコーダ(2p,2n)と、
     一端が正側出力端子に接続される複数の単位キャパシタ(Cp),及び前記単位キャパシタの他端を前記サーモメータコードに応じて正側参照電圧,負側参照電圧の何れかに接続するように切替えるスイッチ(SWp)からなる正側キャパシタアレイ(3p,3Ap,3Bp,3Cp)と、
     一端が負側出力端子に接続される複数の単位キャパシタ(Cn),及び前記単位キャパシタの他端を前記サーモメータコードに応じて前記正側参照電圧,前記負側参照電圧の何れかに接続するように切替えるスイッチ(SWn)からなる負側キャパシタアレイ(3n,3An,3Bn,3Cn)とを備え、
     前記正側キャパシタアレイと前記負側キャパシタアレイとは、任意の第1方向に配置され、各アレイを構成する単位キャパシタは、前記第1方向と直交する第2方向に配列されており、
     前記正側,負側キャパシタアレイにおいて前記サーモメータコードに対応する単位キャパシタ同士が、アレイの中央を対称点として、互いに点対称となるように配置されている差動出力型D/A変換器。
    A decoder (2p, 2n) for converting input data into a thermometer code;
    A plurality of unit capacitors (Cp) whose one ends are connected to the positive output terminal, and the other ends of the unit capacitors are connected to either the positive reference voltage or the negative reference voltage according to the thermometer cord. A positive capacitor array (3p, 3Ap, 3Bp, 3Cp) composed of switches (SWp) to be switched;
    A plurality of unit capacitors (Cn), one end of which is connected to the negative output terminal, and the other end of the unit capacitor are connected to either the positive reference voltage or the negative reference voltage according to the thermometer cord. A negative capacitor array (3n, 3An, 3Bn, 3Cn) comprising switches (SWn) for switching
    The positive-side capacitor array and the negative-side capacitor array are arranged in an arbitrary first direction, and unit capacitors constituting each array are arranged in a second direction orthogonal to the first direction,
    A differential output type D / A converter in which unit capacitors corresponding to the thermometer code in the positive and negative capacitor arrays are arranged so as to be point-symmetric with respect to the center of the array.
  2.  前記正側及び負側キャパシタアレイ(3p,3n)を構成する各単位キャパシタが、それぞれ前記サーモメータコードの並びに対応する順序で配置されている請求項1記載の差動出力型D/A変換器。 2. The differential output type D / A converter according to claim 1, wherein the unit capacitors constituting the positive side and negative side capacitor arrays (3p, 3n) are arranged in the corresponding order of the thermometer code. .
  3.  前記正側及び負側キャパシタアレイ(3Ap,3An)を構成する各単位キャパシタが、それぞれ前記サーモメータコードの並びに対応する順序で、アレイの一端側から他端側へと交互に、且つ順次中央側に向かうように配置されている請求項1記載の差動出力型D/A変換器。 The unit capacitors constituting the positive-side and negative-side capacitor arrays (3Ap, 3An) are alternately arranged from one end side to the other end side of the array in the corresponding order of the thermometer code, and sequentially to the center side. The differential output type D / A converter according to claim 1, wherein the differential output type D / A converter is disposed so as to face toward the center.
  4.  前記正側及び負側キャパシタアレイ(3Bp,3Bn)を構成する各単位キャパシタが、それぞれ前記サーモメータコードの並びに対応する順序で、アレイの中央側から配置を開始した後、一方向側,他方向側へと交互に、且つ順次外側に向かうように配置されている請求項1記載の差動出力型D/A変換器。 After each unit capacitor constituting the positive side and negative side capacitor arrays (3Bp, 3Bn) starts to be arranged from the center side of the array in the order corresponding to the thermometer code, one direction side, the other direction 2. The differential output type D / A converter according to claim 1, wherein the differential output type D / A converters are arranged alternately toward the side and sequentially toward the outside.
  5.  前記正側及び負側キャパシタアレイ(3Cp,3Cn)を構成する各単位キャパシタが、それぞれ前記第1方向に2列で配置されている請求項1から4の何れか一項に記載の差動出力型D/A変換器。 5. The differential output according to claim 1, wherein the unit capacitors constituting the positive-side and negative-side capacitor arrays (3 Cp, 3 Cn) are respectively arranged in two rows in the first direction. Type D / A converter.
  6.  入力されるデータをサーモメータコードに変換するデコーダ(2)と、
     一端が正側出力端子に接続される複数の単位キャパシタ,及び前記単位キャパシタの他端を前記サーモメータコードに応じて正側参照電圧,負側参照電圧の何れかに接続するように切替えるスイッチ(SWp)からなる正側キャパシタアレイ(3A’p,3Dp,3Ep)と、
     一端が負側出力端子に接続される複数の単位キャパシタ,及び前記単位キャパシタの他端を前記サーモメータコードに応じて前記正側参照電圧,前記負側参照電圧の何れかに接続するように切替えるスイッチ(SWn)からなる負側キャパシタアレイ(3A’n,3Dn,3En)とを備え、
     前記正側キャパシタアレイと前記負側キャパシタアレイとは、任意の方向に配置され、各アレイを構成する単位キャパシタは、前記方向と直交する方向に配列されており、
     前記正側,負側キャパシタアレイにおいて、同じサーモメータコードに対応する単位キャパシタの少なくとも一部が、互いに対向する位置に配置されており、
     その他の単位キャパシタは、前記サーモメータコードに対応する単位キャパシタ同士が、前記その他の単位キャパシタによるアレイの中央を対称点として、互いに点対称となるように配置されている差動出力型D/A変換器。
    A decoder (2) for converting input data into a thermometer code;
    A plurality of unit capacitors, one end of which is connected to the positive output terminal, and a switch for switching the other end of the unit capacitor to be connected to either the positive reference voltage or the negative reference voltage according to the thermometer cord ( SWp) positive side capacitor array (3A'p, 3Dp, 3Ep),
    A plurality of unit capacitors, one end of which is connected to the negative output terminal, and the other end of the unit capacitor are switched so as to be connected to either the positive reference voltage or the negative reference voltage according to the thermometer code. A negative capacitor array (3A'n, 3Dn, 3En) comprising switches (SWn),
    The positive-side capacitor array and the negative-side capacitor array are arranged in an arbitrary direction, and unit capacitors constituting each array are arranged in a direction orthogonal to the direction,
    In the positive-side and negative-side capacitor arrays, at least a part of unit capacitors corresponding to the same thermometer code are arranged at positions facing each other,
    The other unit capacitor is a differential output type D / A in which unit capacitors corresponding to the thermometer code are arranged symmetrically with respect to each other about the center of the array of the other unit capacitors. converter.
  7.  前記その他の単位キャパシタは、それぞれ前記サーモメータコードの並びに対応する順序で配置されている請求項6記載の差動出力型D/A変換器。 The differential output type D / A converter according to claim 6, wherein the other unit capacitors are arranged in a corresponding order of the thermometer codes.
  8.  前記その他の単位キャパシタは、アレイの一端側から他端側へと交互に、且つ順次中央側に向かうように、互いに反転した位置関係で配置されている請求項6記載の差動出力型D/A変換器。 7. The differential output type D / D according to claim 6, wherein the other unit capacitors are arranged in an inverted positional relationship so as to alternate from one end side to the other end side of the array and sequentially toward the center side. A converter.
  9.  前記その他の単位キャパシタは、アレイの中央側から配置を開始した後、一方向側,他方向側へと交互に、且つ順次外側に向かうように配置されている請求項6記載の差動出力型D/A変換器。 7. The differential output type according to claim 6, wherein the other unit capacitors are arranged so as to start outward from the center side of the array, and then alternately toward the one direction side and the other direction side and sequentially toward the outside. D / A converter.
  10.  請求項1から9の何れか一項に記載の差動出力型D/A変換器を備えるA/D変換器。 An A / D converter comprising the differential output type D / A converter according to any one of claims 1 to 9.
  11.  前記D/A変換器を、入力信号に対応する上位側ビットの変換に用いられるキャパシタアレイ型D/A変換器(1B)として備え、
     下位側ビットの変換に使用される抵抗アレイ型D/A変換器(22)を備え、
     前記抵抗アレイ型D/A変換器の出力端子は、キャパシタアレイ型D/A変換器が有するキャパシタアレイの単位キャパシタの1つを介して、前記正側又は負側出力端子に接続されている請求項10記載のA/D変換器。
    The D / A converter is provided as a capacitor array type D / A converter (1B) used for conversion of upper bits corresponding to an input signal,
    A resistor array type D / A converter (22) used for conversion of the lower bit,
    The output terminal of the resistor array type D / A converter is connected to the positive side or negative side output terminal via one of unit capacitors of a capacitor array included in the capacitor array type D / A converter. Item 11. The A / D converter according to Item 10.
  12.  前記抵抗アレイ型D/A変換器は、セグメント型である請求項11記載のA/D変換器。 The A / D converter according to claim 11, wherein the resistance array type D / A converter is a segment type.
  13.  前記D/A変換器を、入力信号に対応する上位側ビットの変換に用いられる上位側D/A変換器(1B),及び入力信号に対応する下位側ビットの変換に用いられる下位側D/A変換器(1A)として備え、
     前記下位側D/A変換器の出力端子は、上位側D/A変換器が有するキャパシタアレイの単位キャパシタの1つを介して、前記正側又は負側出力端子に接続されている請求項10記載のA/D変換器。
     
    The D / A converter includes an upper D / A converter (1B) used for conversion of upper bits corresponding to an input signal, and a lower D / A converter used for conversion of lower bits corresponding to an input signal. As an A converter (1A),
    11. The output terminal of the lower D / A converter is connected to the positive or negative output terminal via one of unit capacitors of a capacitor array included in the upper D / A converter. A / D converter of description.
PCT/JP2017/036636 2016-12-28 2017-10-10 Differential-output d/a converter and a/d converter WO2018123201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255670 2016-12-28
JP2016255670A JP2018107771A (en) 2016-12-28 2016-12-28 Differential output type d/a converter and a/d converter

Publications (1)

Publication Number Publication Date
WO2018123201A1 true WO2018123201A1 (en) 2018-07-05

Family

ID=62707948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036636 WO2018123201A1 (en) 2016-12-28 2017-10-10 Differential-output d/a converter and a/d converter

Country Status (2)

Country Link
JP (1) JP2018107771A (en)
WO (1) WO2018123201A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268097A (en) * 1992-03-21 1993-10-15 Hitachi Ltd D/a converter and oversample a/d converter
JPH06152425A (en) * 1992-06-12 1994-05-31 Yamaha Corp D/a converter
JPH0969777A (en) * 1995-08-31 1997-03-11 Sanyo Electric Co Ltd Digital-analog conversion circuit and analog-digital conversion circuit
JPH11163728A (en) * 1997-08-22 1999-06-18 Harris Corp D/a converter having current cell matrix to improve linearity and its control method
JP2005136055A (en) * 2003-10-29 2005-05-26 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and delta-sigma a/d converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05268097A (en) * 1992-03-21 1993-10-15 Hitachi Ltd D/a converter and oversample a/d converter
JPH06152425A (en) * 1992-06-12 1994-05-31 Yamaha Corp D/a converter
JPH0969777A (en) * 1995-08-31 1997-03-11 Sanyo Electric Co Ltd Digital-analog conversion circuit and analog-digital conversion circuit
JPH11163728A (en) * 1997-08-22 1999-06-18 Harris Corp D/a converter having current cell matrix to improve linearity and its control method
JP2005136055A (en) * 2003-10-29 2005-05-26 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and delta-sigma a/d converter

Also Published As

Publication number Publication date
JP2018107771A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US9667268B2 (en) Method for digital error correction for binary successive approximation analog-to-digital converter (ADC)
US8633846B2 (en) Successive approximation register analog to digital converter
JP3229135B2 (en) Analog / digital converter
US8963757B2 (en) D/A converter including higher-order resistor string
WO2016149964A1 (en) Analogue-digital converter and chip of non-binary capacitor array with redundant bit
US7259706B2 (en) Balanced dual resistor string digital to analog converter system and method
US8937568B2 (en) D/A converter
CN112583410A (en) Sectional digital-to-analog converter
JP2004208011A (en) D/a converter and a/d converter
JP5477093B2 (en) DA converter
CN101179273B (en) Analog-digital convertor
WO2018123201A1 (en) Differential-output d/a converter and a/d converter
JP2002016497A (en) Parallel analog/digital converter
KR100300240B1 (en) Serial-parallel a/d converter
JP2001127634A (en) D/a converter
JP5711013B2 (en) Resistor string type D / A converter
JP4103849B2 (en) D / A converter
JPH08125536A (en) Resistance radder, d/a converter and a/d converter
JP2737927B2 (en) Resistive voltage dividing digital-analog converter
US7256722B2 (en) D/A converter
JP3820210B2 (en) D / A converter circuit
JP4519509B2 (en) Semiconductor integrated circuit device and operation method thereof
JPH11340830A (en) Successive comparison a/d converter circuit
JP2638002B2 (en) Parallel A / D converter
JP2015092788A (en) D/a conversion circuit, a/d conversion circuit, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887593

Country of ref document: EP

Kind code of ref document: A1