WO2018123077A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2018123077A1
WO2018123077A1 PCT/JP2017/006188 JP2017006188W WO2018123077A1 WO 2018123077 A1 WO2018123077 A1 WO 2018123077A1 JP 2017006188 W JP2017006188 W JP 2017006188W WO 2018123077 A1 WO2018123077 A1 WO 2018123077A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
compound
optical element
functional resin
functional
Prior art date
Application number
PCT/JP2017/006188
Other languages
French (fr)
Japanese (ja)
Inventor
忠史 鳥居
敬介 荻野
Original Assignee
伊藤光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤光学工業株式会社 filed Critical 伊藤光学工業株式会社
Priority to PCT/JP2017/046616 priority Critical patent/WO2018124063A1/en
Priority to JP2018537546A priority patent/JP6585850B2/en
Publication of WO2018123077A1 publication Critical patent/WO2018123077A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/12Making multilayered or multicoloured articles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to an optical element in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body.
  • the performance required for eyeglass materials (lenses) of optical elements includes vision correction performance, light control performance, and specific wavelength absorption performance.
  • a spectacle material In order for a spectacle material to have dimming performance and specific wavelength absorption performance, it is necessary to include functional drugs such as a photochromic agent and a specific wavelength absorber in the spectacle material.
  • functional drugs such as a photochromic agent and a specific wavelength absorber in the spectacle material.
  • the eyeglass material is a vision correction lens (a lens with a degree)
  • the density difference (color tone difference) of the functional drug occurs due to the difference in thickness between the inner and outer circumferences.
  • a difference in performance occurs between the inner and outer circumferences.
  • Patent Document 1 describes a manufacturing method of a resin lens (vision correction lens) including a functional resin layer.
  • This manufacturing method comprises a cavity for molding a functional resin layer on one side or both sides of a base lens, and is provided with a thermoplastic elastomer adhesive layer on the side surface of the functional resin layer of the base lens.
  • This is a method of manufacturing a resin lens in which a lens and a functional resin layer are integrated.
  • the resin lens manufactured by this manufacturing method is provided with a light control performance and a specific wavelength absorption performance by the functional resin layer containing a functional drug, and the functional resin layer has a constant thickness. This solves the problem of light and shade differences caused by the difference in thickness between the inner and outer circumferences of a prescription lens.
  • rimless (frameless frame) and half rim (upper half frame) eyeglass frames have come to be used as optical element eyeglass materials (lenses).
  • a frame mounting hole is formed at the outer periphery of the lens, or a groove (ny roll groove) for tying nylon thread is formed on the outer peripheral surface (edge surface) of the lens.
  • a conventional resin lens having a functional resin layer is one in which the functional resin layer is bonded to the base lens with an adhesive layer of a thermoplastic elastomer, and is used for a processing tool in drilling or grooving. Depending on the handling, there is an undeniable risk that the functional resin layer may be damaged due to excessive force.
  • the present invention has been made in view of the above points, and even when the spectacle material (lens) of the optical element receives an excessive force, the functional resin layer is less likely to be damaged, and the functional resin layer is closely attached. It aims at providing the optical element excellent in property.
  • the optical element of the present invention is an optical element in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body.
  • the functional resin layer comprises a functional agent, an isocyanate compound,
  • the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more.
  • the inventors of the present invention have a function in which the polyol compound of the functional resin layer (urethane resin layer) containing the isocyanate compound and the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more. It was discovered that the adhesive resin layer is excellent in adhesion to the organic glass substrate. Since the polyhydric alcohol polymer compound has an average molecular weight of 180 or more, the polyhydric alcohol polymer compound has higher hydrophilicity than a compound having a small average molecular weight (less than 180).
  • a functional resin layer having a polymer formed from a polyhydric alcohol polymer compound and an oleophilic isocyanate compound as a binder has a good balance between hydrophilicity and oleophilicity. For this reason, it is thought that a functional resin layer becomes the thing excellent in the adhesiveness to an organic glass base material.
  • the optical element of the present invention since the polyhydric alcohol polymer compound having an average molecular weight of 180 or more is contained, even if the optical element receives an excessive force, a defect or the like is hardly generated in the functional resin layer. It is possible to provide an optical element having excellent durability.
  • the polyhydric alcohol polymer compound may contain a polyalkylene glycol (polyoxyalkylene) compound.
  • polyalkylene glycol compound since the polyalkylene glycol compound has ether (alkyleneoxy), the hydrophilicity is stronger, and the functional resin layer has a better balance between hydrophilicity and lipophilicity. Excellent adhesion due to Thereby, the optical element can be made more excellent in durability.
  • the polyhydric alcohol polymer compound may contain a polyalkylene glycol (polyoxyalkylene) compound and a phenol skeleton-containing polyalkylene glycol (polyoxyalkylene) compound. According to this, the optical element can be reduced in distortion due to heat at the time of drying during manufacture, and can be excellent in durability.
  • the functional resin layer may contain a thiol compound. According to this, by containing a thiol compound, the functional resin layer (thiourethane resin layer) can have excellent optical properties such as a high refractive index.
  • the functional drug can contain a photochromic agent.
  • a photochromic agent when a photochromic agent is contained in a urethane resin or a thiourethane resin, there is a problem that the resin becomes cloudy.
  • the inventors of the present application can prevent the resin from becoming clouded by containing a polyhydric alcohol polymer compound having an average molecular weight of 180 or more of the polyol compound of the urethane resin or thiourethane resin. It was discovered that we can do it. According to this, even if it is a functional resin layer made of urethane resin or thiourethane resin, the functional resin layer can contain the photochromic agent, so that the optical element has photochromic characteristics (light controllability). It can have.
  • a polarizing film may be provided between the organic glass substrate and the functional resin layer. According to this, since the polarizing film can exhibit polarization characteristics, the optical element can have polarization characteristics.
  • the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, at the time of manufacture, the thickness of the cavity for molding the functional resin layer can be ensured, and the functional resin layer can be cast and molded instantly. Since it can be cured without causing unevenness in curing, the optical element can suppress the occurrence of striae (parts having different refractive indexes).
  • the optical element of the embodiment is an optical element in which the functional resin layer 15 is integrated on one side or both sides of the organic glass substrate 11 that is a resin molded body.
  • An isocyanate compound and a polyol compound are contained, and the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more.
  • the functional resin layer 15 is integrated with the surface (convex surface) of the organic glass substrate 11 as a spectacle lens by casting.
  • the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use.
  • the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
  • the organic glass substrate 11 is used as a substrate of an optical element such as a lens or a window glass.
  • the optical element of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
  • polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used.
  • the thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom.
  • the resin material include one or more isocyanate components selected from polyisocyanate, polyisothiocyanate, polyisothiocyanate thioisocyanate, and one or more known active hydrogens selected from polythiol and a suitable polyol.
  • a polymerizable component in combination with a compound component can be preferably used.
  • organic glass substrate 11 examples include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd.
  • the organic glass substrate 11 includes a deterioration inhibitor that prevents resin degradation of organic glass, an ultraviolet absorber that absorbs ultraviolet rays, an internal mold release agent that improves releasability from a mold for molding a lens shape, and organic glass.
  • a bluing agent for imparting a bluish tint, a curing agent for curing organic glass, and the like can be added depending on the type of organic glass.
  • the internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold.
  • a mold suitable for the organic glass material can be used.
  • the curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and includes organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator.
  • organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator.
  • the one suitable for can be used.
  • the organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method.
  • the polishing method is a method in which a synthetic resin for forming the organic glass substrate 11 is molded into a block-like resin under suitable conditions, and then polished according to the lens design for obtaining the block-like resin.
  • a cavity 21 is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold,
  • a synthetic resin for molding the organic glass substrate 11 is injected into the cavity 21 and cured, and the organic glass substrate 11 is polished as necessary.
  • the functional resin layer 15 is a layer that is integrated on one or both sides of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11.
  • the functional resin layer 15 contains a functional agent, an isocyanate compound, and a polyol compound, and if necessary, a thiol compound.
  • the resin for forming the functional resin layer 15 can be added with the above-described deterioration preventing agent, internal mold release agent, curing agent, molecular weight adjusting agent, or the like, depending on the type of resin. .
  • a functional drug is a drug that imparts a function to an optical element, a photochromic agent that imparts photochromic properties, an ultraviolet absorber that imparts ultraviolet absorption performance, a specific wavelength absorber that imparts specific wavelength absorption or cut performance, Examples include pigments or dyes that impart coloring performance. These are expensive, and it is possible to reduce the content of the functional drug by containing the functional drug in the functional resin layer 15 having a smaller thickness than the organic glass substrate 11, Optical elements can reduce manufacturing costs.
  • an azobenzene photochromic agent As such a photochromic agent, an azobenzene photochromic agent, a spiropyran photochromic agent, a naphthopyran photochromic agent, a spirooxazine photochromic agent, a chromene photochromic agent, a hexaarylbisimidazole photochromic agent, or the like can be used.
  • spiropyran-based photochromic agents, naphthopyran-based photochromic agents, spirooxazine-based photochromic agents, and chromene-based photochromic agents are more preferred because they become darker when they change color by absorbing light. can do.
  • the ultraviolet absorber is an additive that absorbs ultraviolet rays and is added to the optical element for protecting the eyeball. This is because ultraviolet rays may cause cataracts and macular degeneration when entering the eyes. Depending on the absorption wavelength range of the ultraviolet absorber, it also functions as a deterioration preventing agent.
  • the ultraviolet absorber include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series.
  • NeoContrast manufactured by Mitsui Chemicals, absorption peak wavelength: 580 nm
  • the optical element has a function of selectively cutting dazzling light and can improve the appearance. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777.
  • the isocyanate compound and the polyol compound form a polyurethane resin that is a resin of the functional resin layer 15.
  • the isocyanate compound, the polyol compound, and the thiol compound form a thiourethane resin that is a resin of the functional resin layer 15.
  • the polyurethane resin or thiourethane resin one or two or more isocyanate components selected from polyisocyanate, polyisothiocyanate and polyisothiocyanate thioisocyanate, a polyol compound and an appropriate polythiol are used.
  • a polymerizable component in combination with the above known active hydrogen compound component can be preferably used.
  • polyisocyanate aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds.
  • aliphatic or alicyclic polyisocyanates are desirable from the standpoint of yellowing resistance.
  • polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains as a base compound.
  • aliphatic or alicyclic polythiols are desirable from the standpoint of yellowing resistance.
  • the polyol compound is a polyhydric alcohol polymer compound having an average molecular weight of 180 or more, a polyalkylene glycol (polyoxyalkylene) compound represented by the following general formula (1) and / or a phenol represented by the following general formula (2).
  • a skeleton-containing polyalkylene glycol (polyoxyalkylene) compound can be preferably used.
  • the inventors of the present application include an isocyanate compound and a polyol compound by containing the polyhydric alcohol polymer compound represented by the general formula (1) and / or the general formula (2) having an average molecular weight of 180 or more. It has been found that the functional resin layer 15 contained is excellent in adhesion to the organic glass substrate 11.
  • the functional resin layer 15 having a polymer (polyurethane resin) formed from a polyhydric alcohol polymer compound and an oleophilic isocyanate compound as a binder has a good balance between hydrophilicity and oleophilicity. is there. For this reason, the functional resin layer 15 is considered to have excellent adhesion to the organic glass substrate 11. As a result, the optical element of the embodiment can be made excellent in durability because the functional resin layer 15 is less likely to be damaged even when the optical element receives an excessive force.
  • the functional resin layer 15 may shrink during curing, and the adhesion of the functional resin layer 15 to the organic glass substrate 11 may be insufficient. is there.
  • the larger the average molecular weight of the polyol compound the smaller the shrinkage when the functional resin layer 15 is cured, and the functional resin layer 15 has better adhesion to the organic glass substrate 11.
  • the average molecular weight of the polyol compound exceeds 15000, it is estimated that the polyhydric alcohol compound that is a hydrophilic portion becomes long, easily contains water, and the strength of the functional resin layer 15 may not be maintained.
  • the polyhydric alcohol polymer compound contains a polyalkylene glycol (polyoxyalkylene) compound and a phenol skeleton-containing polyalkylene glycol (polyoxyalkylene) compound, so that the optical element is distorted by heat during drying of production. Can be reduced, and the durability can be improved.
  • m + n (m is an average polymerization degree of alkylene glycol, n is an average polymerization degree of alkylene glycol) is preferably 1 or more and 300 or less.
  • the polyol compounds represented by the general formulas (1) and (2) in this range can shorten the decoloring time of the photochromic agent when the functional agent is a photochromic agent, and the functional resin layer 15 This is because the strength is maintained. If m + n in the formula is less than 1, the effect of shortening the decoloring time of the photochromic agent may not be sufficiently obtained. On the other hand, if m + n exceeds 300, it is represented by the general formula (1) or (2).
  • m + n in the formula is from 10 to 270, and even more preferably, m + n is from 30 to 250.
  • (OR) n and (OR) m in the polyol compounds of the general formulas (1) and (2) are polyoxyethylene (hereinafter referred to as EO) and / or polyoxypropylene (hereinafter referred to as PO). Is preferred. This is because EO and PO have high hydrophilicity and the functional resin layer 15 has excellent adhesion to the organic glass substrate 11.
  • (OR) n and (OR) m in the polyol compounds of the general formulas (1) and (2) are preferably a copolymer (block copolymer) of EO and PO.
  • the photochromic agent can be excellent in dispersibility and photochromic properties.
  • the integration of the functional resin layer 15 into the organic glass substrate 11 can be performed by a cast molding method as shown in FIG.
  • the casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin.
  • the functional resin layer 15 can be integrated with the organic glass substrate 11 by a general method such as a dipping method or a spray method.
  • a cast molding method is preferable. Since the mold cavity 21 is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass substrate 11, the oxygen in the air can be blocked to prevent inhibition of curing. Because it can.
  • the organic glass substrate 11 is the first mold 13, and the second mold 17 is arranged so that a certain gap is formed outside the first mold 13.
  • a gap between the peripheral surfaces of the mold 13 and the second mold 17 is formed by sealing with a taping 19 or the like.
  • the gap between the cavities 21 where the functional resin layer 15 is provided is set depending on the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that it can be easily injected, cast molding can be performed instantaneously, and the injected functional resin can be cured without flowing, so that the optical element has a pulse. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If the gap between the cavities 21 is less than 0.2 mm, injection may be difficult even if the resin has excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, it is 0.3 to 1.5 mm, and still more preferably 0.4 to 1.0 mm.
  • the optical element has a polarizing film provided on the side of the organic glass substrate 11 provided with the functional resin layer 15 and a polarizing film provided between the organic glass substrate 11 and the functional resin layer 15.
  • An optical element having characteristics can be obtained.
  • the polarizing film is preferably composed of polyvinyl alcohol. This is because the adhesion between the organic glass substrate 11, the polarizing film, and the functional resin layer 15 is ensured by the isocyanate compound containing polyvinyl alcohol in the functional resin layer 15.
  • the thickness of the polarizing film is preferably 10 to 50 ⁇ m. This is because the polarizing film has elongation characteristics that follow the curved surface of the optical element while having polarization characteristics.
  • the organic glass substrate 11 (optical element) on which the functional resin layer 15 is formed generally has a hard coat process, an antifogging process, an antireflection process, a water repellent process, and an antistatic process.
  • General-purpose surface treatment such as processing can be appropriately performed.
  • NBDI ((2,5) -bis (isocyanatomethyl) bicyclo [2.2.1] heptane)
  • HDI hexamethylene diisocyanate
  • MBDI methylene bis (4,1 cyclohexylene) diisocyanate
  • MXDI metaxylene diisocyanate
  • PEG200 polyethylene glycol (average molecular weight 200, m + n ⁇ 4, bifunctional)
  • PEG400 polyethylene glycol (average molecular weight 400, m + n ⁇ 9, bifunctional)
  • PEG1000 polyethylene glycol (average molecular weight 1000, m + n ⁇ 22, 2) Functional)
  • PPG400 polypropylene glycol (average molecular weight 400, m + n ⁇ 6, bifunctional)
  • PPG1000 polypropylene glycol (average molecular weight 1000, m + n ⁇ 17, bifunctional)
  • PEPG1500 polyethylene glycol-polypropylene glycol copolymer
  • PEPG2000 Polyethylene glycol-polypropylene glycol copolymer (average molecular weight 2000,
  • Photochromic agent and specific wavelength absorber were used as functional drugs.
  • the photochromic agent was blended with a spiropyran photochromic agent and a spirooxazine photochromic agent (both manufactured by Yamada Chemical Co., Ltd.).
  • NeoContrast manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm was used as the specific wavelength absorber.
  • the functional resin is a mixture of an isocyanate compound, a thiol compound and a polyol compound, a functional agent and other additives (molecular weight modifier, curing agent, etc.), and the temperature is adjusted to 15 ° C. in a nitrogen gas atmosphere. The mixture was stirred for 1 hour. Subsequently, after degassing for 1 hour while stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, a functional resin that forms the functional resin layer 15 by filtration through a 1 ⁇ m filter was prepared.
  • the organic glass base material 11 was prepared as follows.
  • ⁇ Resin B episulfide resin
  • Bis (2,3-epithiopropyl) disulfide 90 parts, 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 10 parts at 15 ° C.
  • ⁇ Resin C ((meth) acrylic resin)> NK11P (manufactured by Nippon Shimizu Sangyo Co., Ltd., main component bisphenol MMA): 96 parts, ⁇ -methylstyrene dimer: 4 parts, mixed and stirred for 30 minutes while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere, and perbutyl ND: 1 as a curing agent 4 parts, 3-5 [-(2-benzotriazole) -3-tert-butyl-4-hydroxyphenyl] propionic acid: 1.0 part each as an ultraviolet absorber, and further added to 15 ° C. under nitrogen gas atmosphere The mixture was stirred for 30 minutes while adjusting the temperature.
  • the mixture was degassed for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, and then filtered through a 1 ⁇ m filter to prepare a resin raw material having a refractive index (ne) of 1.56.
  • NXT polyurea resin manufactured by Tribex Corporation (ICRX NXT) cast molding was used.
  • the organic glass substrate 11 is molded by a cast molding method, and the mold is sealed with taping made of an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold.
  • a mold having a cavity for forming an organic glass substrate was prepared.
  • cast molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and molding the functional resin layer 15. Molded by injecting resin and curing.
  • the cavity 21 is a convex surface used when forming the organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 is the first mold 13 and a certain gap is formed outside the first mold 13.
  • a side mold was disposed, and a circumferential gap between the first mold 13 and the second mold 17 was formed by sealing with a taping 19.
  • the interval between the first mold 13 and the second mold 17 was 0.8 mm unless otherwise specified.
  • a polarizing film is disposed on the side of the organic glass substrate 11 on which the functional resin layer 15 is provided, and then a mold cavity 21 is formed.
  • the functional resin for forming the functional resin layer 15 was injected.
  • the optical element is provided with a polarizing film between the organic glass substrate 11 and the functional resin layer 15 and has polarizing characteristics.
  • the polarizing film used was a 38 ⁇ m thick polyvinyl alcohol stretched polarizing film.
  • the organic glass substrate 11 (resin lens) on which the functional resin layer 15 is molded has its concave surface and outer periphery cut and polished, and an optical element (glasses) having a diameter of 70 mm and SPH (spherical surface (D)) of ⁇ 8.00. Lens).
  • the optical element was prepared by a combination of the organic glass substrate 11 and the functional resin layer 15, and the photochromic characteristics and appearance were evaluated for these, and the adhesion was measured as strength evaluation.
  • the return speed was evaluated as follows by irradiating the optical element with ultraviolet rays for 15 minutes, measuring the spectral average transmittance after 2 minutes from blocking irradiation.
  • the return speed becomes worse as the spectral average transmittance is smaller.
  • the dimming property was evaluated as the dimming property, which is the worse of the coloring property and the return speed.
  • ⁇ Adhesion> The adhesion was evaluated by performing a forced peel test.
  • a groove (Nyroll groove) on which a nylon thread is hung is provided on the outer peripheral surface (edge surface) of the lens corresponding to the interface between the functional substrate layer 15 and the organic glass substrate 11, and a minus driver is inserted into the Nyroll groove.
  • the adhesiveness was evaluated by forcibly peeling. And adhesiveness was evaluated as follows. ⁇ : No peeling (even if the functional base material layer 15 or the organic glass base material 11 has a defect, no peeling at the interface is seen), ⁇ : the functional base material layer 15 and the organic glass base Peeling is seen at the interface with the material 11 but no gap is confirmed. X: Peeling is seen at the interface between the functional base material layer 15 and the organic glass base material 11, and the occurrence of the gap can be confirmed.
  • Test Examples 1-1 to 1-31 are test examples in which the resin A (thiourethane resin) is used for the organic glass substrate 11. Although not shown in the table, Test Examples 1-13 to 1-16 are optical elements having polarization characteristics. The results of evaluation performance are listed in Table 2-1.
  • Test Example 1-1 to Test Example 1-12 are modified types of polyol compounds (polyalkylene glycol compound and phenol skeleton-containing polyalkylene glycol compound). In addition, the kind of the isocyanate compound and the thiol compound was changed as appropriate.
  • Test Example 1-1 is a test example in which PEG200 of polyalkylene glycol having an average molecular weight of slightly small as 200, polyoxyalkylene is polyoxyethylene, and average degree of polymerization (m + n) is 4 is used as the polyol compound. is there.
  • Test Example 1-1 is slightly inferior in light control due to a small average degree of polymerization, slightly inferior in adhesiveness because of an average molecular weight of slightly small as 200, polyoxyalkylene is polyoxyethylene, and dispersibility of the photochromic agent is It was somewhat inferior, and white turbidity was observed in the functional resin layer 15.
  • Test Examples 1-2 and 1-3 are test examples using PEG400 or PEG1000 of polyalkylene glycol in which polyoxyalkylene is polyoxyethylene as the polyol compound.
  • Test Example 1-2 since the average degree of polymerization was small (m + n ⁇ 9), the light control was slightly inferior, but there was no problem in adhesion and lens appearance.
  • Test Example 1-3 although there is no problem in the light control and adhesion, the functional resin layer 15 is slightly cloudy because the polyoxyalkylene is polyoxyethylene and the dispersibility of the photochromic agent is slightly inferior. It was.
  • Test Example 1-4 and Test Example 1-5 are test examples using PPG400 or PPG1000 of a polyalkylene glycol whose polyoxyalkylene is polyoxypropylene as a polyol compound.
  • PPG400 or PPG1000 of a polyalkylene glycol whose polyoxyalkylene is polyoxypropylene as a polyol compound.
  • the average degree of polymerization was small (m + n ⁇ 9), but the light control property was slightly inferior.
  • Test Examples 1-6 to 1-8 are test examples in which polyalkylene glycol PEPG1500, PEPG2000 or PEPG2500 in which polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene is used as a polyol compound. is there.
  • polyalkylene glycol PEPG1500, PEPG2000 or PEPG2500 in which polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene is used as a polyol compound. is there.
  • test Example 1-6 there were no problems in light control, adhesion, and lens appearance.
  • Test Examples 1-9 and 1-10 are test examples using a phenol skeleton-containing polyalkylene glycol EPH400 or EPH700 whose polyoxyalkylene is polyoxyethylene as the polyol compound.
  • a phenol skeleton-containing polyalkylene glycol was used as the polyol compound, so that distortion due to heat was reduced.
  • Test Example 1-11 is a test example in which a phenol skeleton-containing polyalkylene glycol PPH400 in which the polyoxyalkylene is polyoxypropylene is used as the polyol compound.
  • the light control property was slightly inferior because of the small average degree of polymerization (m + n ⁇ 4).
  • Test Example 1-12 is a test example using a phenol skeleton-containing polyalkylene glycol EPPH800, in which the polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene, as the polyol compound. In Test Example 1-12, there were no problems in light control, adhesion, and lens appearance.
  • Test Examples 1-21 to 1-24 are test examples in which two types of polyalkylene glycol compounds were used in combination with a polyol compound and no thiol compound was used. These did not have any problems in light control and lens appearance, but because of the use of polyoxyethylene / polyoxypropylene-pentaerythritol-ether, which is a highly hydrophilic tetrafunctional polyol compound, it has good adhesion. Since the functional resin layer 15 is a urethane resin, the refractive index is inferior (lower) compared to other test examples.
  • Test Example 1-25 to Test Example 1-31 are PEPG1500, PEPG2000, PEPG2500, PEPG3500, PEPG10000, PEPG13000, which are polyalkylene glycols in which a polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene. This is a test example using PEPG 14000.
  • Test Example 1-25 and Test Example 1-28 to Test Example 1-31 there were no problems in light control, adhesion, and lens appearance.
  • Test Examples 1-28 to 1-31 also contained NeoContrast as a functional drug, and the appearance of the optical element was improved.
  • Test Example 1-13 a test was performed in which the thickness of the functional resin layer 15 was changed from 0.8 mm to 0.2 mm and 3.0 mm.
  • the test example in which the thickness of the functional resin layer 15 was 0.2 mm was considered to be the lower limit value of the thickness from the viewpoint of workability because the functional resin could be injected but the work was difficult.
  • the thickness of the functional resin layer 15 was 3.0 mm, the thickness of the functional resin layer 15 was uneven because of the thickness, and a slight occurrence of striae was confirmed.
  • Test Examples 2-1 to 2-31 are test examples in which resin B (episulfide resin) is used for the organic glass substrate 11. The results of evaluation performance are listed in Table 2-2.
  • Test examples 3-1 to 3-31 are test examples using the resin C ((meth) acrylic resin) for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-3.
  • Test Examples 4-1 to 4-31 are test examples in which resin D (nylon resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-4.
  • Test Examples 5-1 to 5-31 are test examples in which resin E (polycarbonate resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-5.
  • Test Examples 6-1 to 6-31 are test examples in which resin F (polyurea resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-6.
  • the functional resin layer 15 of the embodiment can be used even when the organic glass substrate 11 is an episulfide resin, a (meth) acrylic resin, a nylon resin, a polycarbonate resin, or a polyurea resin. It could be confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Optical Filters (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide an optical element that exhibits excellent adhesion of a functional resin layer in which a fracture is unlikely to occur even when the optical element is subjected to excessive force. This optical element has a functional resin layer (15) integrated in one or both surfaces of an organic glass substrate (11) which is a resin molding, wherein the functional resin layer (15) contains a functional chemical agent, an isocyanate compound, and a polyol compound, and the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more. Since the polyhydric alcohol polymer compound having an average molecular weight of 180 or more is highly hydrophilic, and a polymer that is formed from the polyhydric alcohol polymer compound and the isocyanate compound that is lipophilic is used as a binder; the functional resin layer (15) has a well-balanced combination between hydrophilicity and lipophilicity and exhibits excellent adhesion to the organic glass substrate (11).

Description

光学要素Optical element
 本発明は、樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された光学要素に係る発明である。 The present invention relates to an optical element in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body.
 光学要素の眼鏡素材(レンズ)に求められる性能として、視力矯正性能、調光性能、特定波長吸収性能などがある。眼鏡素材が調光性能や特定波長吸収性能を備えるには、フォトクロミック剤、特定波長吸収剤などの機能性薬剤を眼鏡素材に含有させる必要がある。しかし、眼鏡素材に機能性薬剤を混合させて含有させると、眼鏡素材が視力矯正レンズ(度付きレンズ)の場合、内外周の厚みの差から機能性薬剤の濃淡差(色調差)が発生してしまい、内外周で性能差が生じるという問題があった。 The performance required for eyeglass materials (lenses) of optical elements includes vision correction performance, light control performance, and specific wavelength absorption performance. In order for a spectacle material to have dimming performance and specific wavelength absorption performance, it is necessary to include functional drugs such as a photochromic agent and a specific wavelength absorber in the spectacle material. However, when a functional drug is mixed in the eyeglass material, if the eyeglass material is a vision correction lens (a lens with a degree), the density difference (color tone difference) of the functional drug occurs due to the difference in thickness between the inner and outer circumferences. As a result, there is a problem that a difference in performance occurs between the inner and outer circumferences.
 これに対して、特許文献1には、機能性樹脂層を備える樹脂レンズ(視力矯正レンズ)の製造方法が記載されている。この製造方法は、基材レンズの片面又は両面に機能性樹脂層を成形するキャビティを構成し、基材レンズの機能性樹脂層の成形側面に熱可塑性エラストマーの接着剤層を備えて、基材レンズと機能性樹脂層とを一体化する樹脂レンズの製造方法である。この製造方法によって製造された樹脂レンズは、機能性樹脂層が機能性薬剤を含有することによって、調光性能や特定波長吸収性能を備えつつ、機能性樹脂層が一定の厚みであることにより、度付きレンズの内外周の厚みの差から生じる濃淡差の問題を解消している。 On the other hand, Patent Document 1 describes a manufacturing method of a resin lens (vision correction lens) including a functional resin layer. This manufacturing method comprises a cavity for molding a functional resin layer on one side or both sides of a base lens, and is provided with a thermoplastic elastomer adhesive layer on the side surface of the functional resin layer of the base lens. This is a method of manufacturing a resin lens in which a lens and a functional resin layer are integrated. The resin lens manufactured by this manufacturing method is provided with a light control performance and a specific wavelength absorption performance by the functional resin layer containing a functional drug, and the functional resin layer has a constant thickness. This solves the problem of light and shade differences caused by the difference in thickness between the inner and outer circumferences of a prescription lens.
特開2014-156067号公報Japanese Patent Laid-Open No. 2014-156067
 近年、誤って人に踏まれたりしても、変形しないしなやかな眼鏡フレームが、光学要素の眼鏡素材(レンズ)に用いられるようになってきた。人に踏まれた際の条件によっては、レンズは過大な力を受けることになる。しかしながら、従来の機能性樹脂層を備えた樹脂レンズは、人に踏まれることを想定されたものではなく、過大な力を受けたときに機能性樹脂層に欠損等の異常が生じることまで検討されていなかった。 In recent years, supple spectacle frames that do not deform even if they are stepped on by mistake have come to be used as spectacle materials (lenses) for optical elements. Depending on the conditions when stepped on, the lens will receive excessive force. However, conventional resin lenses with a functional resin layer are not supposed to be stepped on by humans, but are examined until abnormalities such as defects occur in the functional resin layer when excessive force is applied. Was not.
 また、眼鏡フレームのデザインの多様化により、リムレス(縁無しフレーム)やハーフリム(上半分のみのフレーム)の眼鏡フレームが光学要素の眼鏡素材(レンズ)に用いられるようになってきた。これらは、レンズの外周の際にフレーム取付け穴が開けられたり、レンズの外周面(コバ面)にナイロン糸を掛ける溝(ナイロール溝)が掘られたりする。しかしながら、従来の機能性樹脂層を備える樹脂レンズは、機能性樹脂層が熱可塑性エラストマーの接着剤層によって基材レンズに接着されているものであり、穴加工や溝加工の際の加工器具の取り扱いによっては、過大な力を受け、機能性樹脂層に欠損等が生じるおそれが否定できないものであった。 In addition, with the diversification of eyeglass frame designs, rimless (frameless frame) and half rim (upper half frame) eyeglass frames have come to be used as optical element eyeglass materials (lenses). In these cases, a frame mounting hole is formed at the outer periphery of the lens, or a groove (ny roll groove) for tying nylon thread is formed on the outer peripheral surface (edge surface) of the lens. However, a conventional resin lens having a functional resin layer is one in which the functional resin layer is bonded to the base lens with an adhesive layer of a thermoplastic elastomer, and is used for a processing tool in drilling or grooving. Depending on the handling, there is an undeniable risk that the functional resin layer may be damaged due to excessive force.
 本発明は、上記の点に鑑みてなされたもので、光学要素の眼鏡素材(レンズ)が過大な力を受けても、機能性樹脂層に欠損等が発生し難い、機能性樹脂層の密着性に優れた光学要素を提供することを目的とする。 The present invention has been made in view of the above points, and even when the spectacle material (lens) of the optical element receives an excessive force, the functional resin layer is less likely to be damaged, and the functional resin layer is closely attached. It aims at providing the optical element excellent in property.
 本発明の光学要素は、樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された光学要素において、該機能性樹脂層が、機能性薬剤と、イソシアネート化合物と、ポリオール化合物と、を含有し、該ポリオール化合物は、平均分子量が180以上である多価アルコール重合体化合物を含有することを特徴とするものである。 The optical element of the present invention is an optical element in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body. The functional resin layer comprises a functional agent, an isocyanate compound, The polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more.
 本願発明者らは、イソシアネート化合物と、ポリオール化合物と、を含有する機能性樹脂層(ウレタン樹脂層)のポリオール化合物が、平均分子量180以上である多価アルコール重合体化合物を含有することによって、機能性樹脂層が有機ガラス基材への密着性に優れることを発見したものである。多価アルコール重合体化合物は、平均分子量が180以上であることによって、平均分子量の小さい(180未満)ものと比較して親水性が強いものである。多価アルコール重合体化合物と親油性であるイソシアネート化合物とから形成された高分子をバインダーとする機能性樹脂層は、親水性と親油性とをバランスよく備えているものである。このため、機能性樹脂層は、有機ガラス基材への密着性に優れたものになると考えられる。本発明の光学要素によれば、平均分子量が180以上である多価アルコール重合体化合物を含有することによって、光学要素が過大な力を受けても、機能性樹脂層に欠損等が発生し難い、耐久性に優れた光学要素を提供することができる。 The inventors of the present invention have a function in which the polyol compound of the functional resin layer (urethane resin layer) containing the isocyanate compound and the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more. It was discovered that the adhesive resin layer is excellent in adhesion to the organic glass substrate. Since the polyhydric alcohol polymer compound has an average molecular weight of 180 or more, the polyhydric alcohol polymer compound has higher hydrophilicity than a compound having a small average molecular weight (less than 180). A functional resin layer having a polymer formed from a polyhydric alcohol polymer compound and an oleophilic isocyanate compound as a binder has a good balance between hydrophilicity and oleophilicity. For this reason, it is thought that a functional resin layer becomes the thing excellent in the adhesiveness to an organic glass base material. According to the optical element of the present invention, since the polyhydric alcohol polymer compound having an average molecular weight of 180 or more is contained, even if the optical element receives an excessive force, a defect or the like is hardly generated in the functional resin layer. It is possible to provide an optical element having excellent durability.
 ここで、上記光学要素において、前記多価アルコール重合体化合物が、ポリアルキレングリコール(ポリオキシアルキレン)化合物を含有するものとすることができる。これによれば、ポリアルキレングリコール化合物がエーテル(アルキレンオキシ)を有しているため親水性がより強く、機能性樹脂層は、親水性と親油性とをよりバランスよく備えるため、有機ガラス基材への密着性により優れたものとなる。これにより、光学要素は、耐久性により優れたものとすることができる。 Here, in the above optical element, the polyhydric alcohol polymer compound may contain a polyalkylene glycol (polyoxyalkylene) compound. According to this, since the polyalkylene glycol compound has ether (alkyleneoxy), the hydrophilicity is stronger, and the functional resin layer has a better balance between hydrophilicity and lipophilicity. Excellent adhesion due to Thereby, the optical element can be made more excellent in durability.
 また、上記光学要素において、前記多価アルコール重合体化合物が、フェノール骨格含有ポリアルキレングリコール(ポリオキシアルキレン)化合物を含有するものとすることができる。これによれば、フェノール骨格含有ポリアルキレングリコール化合物を含有する機能性樹脂の熱膨張率が低いため、光学要素は、製造の乾燥時等における熱による歪みが軽減されたものとなる。 In the optical element, the polyhydric alcohol polymer compound may contain a phenol skeleton-containing polyalkylene glycol (polyoxyalkylene) compound. According to this, since the thermal expansion coefficient of the functional resin containing the phenol skeleton-containing polyalkylene glycol compound is low, the optical element is reduced in distortion due to heat at the time of production drying and the like.
 また、上記光学要素において、前記多価アルコール重合体化合物が、ポリアルキレングリコール(ポリオキシアルキレン)化合物とフェノール骨格含有ポリアルキレングリコール(ポリオキシアルキレン)化合物とを含有するものとすることができる。これによれば、光学要素は、製造の乾燥時における熱による歪みが軽減されたものとなり、且つ、耐久性に優れたものとすることができる。 In the above optical element, the polyhydric alcohol polymer compound may contain a polyalkylene glycol (polyoxyalkylene) compound and a phenol skeleton-containing polyalkylene glycol (polyoxyalkylene) compound. According to this, the optical element can be reduced in distortion due to heat at the time of drying during manufacture, and can be excellent in durability.
 また、上記光学要素において、前記機能性樹脂層が、チオール化合物を含有するものとすることができる。これによれば、チオール化合物を含有することによって機能性樹脂層(チオウレタン樹脂層)は屈折率が高いなど光学特性に優れたものとすることができる。 In the above optical element, the functional resin layer may contain a thiol compound. According to this, by containing a thiol compound, the functional resin layer (thiourethane resin layer) can have excellent optical properties such as a high refractive index.
 また、上記光学要素において、前記機能性薬剤が、フォトクロミック剤を含有することができる。従来、ウレタン系樹脂又はチオウレタン系樹脂にフォトクロミック剤を含有させると、樹脂が白濁するという問題があった。これに対して、本願発明者らは、ウレタン系樹脂又はチオウレタン系樹脂のポリオール化合物の平均分子量が180以上である多価アルコール重合体化合物を含有することによって、樹脂の白濁を防止することができることを発見したものである。これによれば、ウレタン系樹脂又はチオウレタン系樹脂からなる機能性樹脂層であっても、機能性樹脂層がフォトクロミック剤を含有することができるため、光学要素は、フォトクロミック特性(調光性)を有するものとすることができる。 Further, in the optical element, the functional drug can contain a photochromic agent. Conventionally, when a photochromic agent is contained in a urethane resin or a thiourethane resin, there is a problem that the resin becomes cloudy. In contrast, the inventors of the present application can prevent the resin from becoming clouded by containing a polyhydric alcohol polymer compound having an average molecular weight of 180 or more of the polyol compound of the urethane resin or thiourethane resin. It was discovered that we can do it. According to this, even if it is a functional resin layer made of urethane resin or thiourethane resin, the functional resin layer can contain the photochromic agent, so that the optical element has photochromic characteristics (light controllability). It can have.
 また、上記光学要素において、前記有機ガラス基材と前記機能性樹脂層との間に偏光フィルムを備えるものとすることができる。これによれば、偏光フィルムが偏光特性を発揮することができるため、光学要素は、偏光特性を有するものとすることができる。 In the above optical element, a polarizing film may be provided between the organic glass substrate and the functional resin layer. According to this, since the polarizing film can exhibit polarization characteristics, the optical element can have polarization characteristics.
 また、上記光学要素において、前記機能性樹脂層の厚みが0.2~3.0mmであるものとすることができる。これによれば、製造時において、機能性樹脂層を成形するキャビティの厚みを確保することができ、機能性樹脂層の注型成形を瞬時に行うことができ、注入された機能性樹脂層が硬化ムラを生じることなく硬化することができるため、光学要素は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができる。 In the optical element, the functional resin layer may have a thickness of 0.2 to 3.0 mm. According to this, at the time of manufacture, the thickness of the cavity for molding the functional resin layer can be ensured, and the functional resin layer can be cast and molded instantly. Since it can be cured without causing unevenness in curing, the optical element can suppress the occurrence of striae (parts having different refractive indexes).
 本発明の光学要素によれば、平均分子量が180以上である多価アルコール重合体化合物を含有することによって、光学要素が過大な力を受けても、機能性樹脂層に欠損等が発生し難い、機能性樹脂層の密着性に優れた光学要素を提供することができる。 According to the optical element of the present invention, since the polyhydric alcohol polymer compound having an average molecular weight of 180 or more is contained, even if the optical element receives an excessive force, a defect or the like is hardly generated in the functional resin layer. An optical element having excellent adhesion of the functional resin layer can be provided.
本発明の光学要素の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the optical element of this invention.
 以下、本発明の一実施形態について説明する。実施形態の光学要素は、樹脂成形体である有機ガラス基材11の片面又は両面に、機能性樹脂層15が一体化された光学要素において、該機能性樹脂層15が、機能性薬剤と、イソシアネート化合物と、ポリオール化合物と、を含有し、該ポリオール化合物は、平均分子量が180以上である多価アルコール重合体化合物を含有することを特徴とするものである。 Hereinafter, an embodiment of the present invention will be described. The optical element of the embodiment is an optical element in which the functional resin layer 15 is integrated on one side or both sides of the organic glass substrate 11 that is a resin molded body. An isocyanate compound and a polyol compound are contained, and the polyol compound contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more.
 実施形態の光学要素では、図1に示すように、眼鏡レンズとしての有機ガラス基材11の表面(凸面)に機能性樹脂層15が注型成形により一体化されたものを例に採り説明する。もちろん、本発明は、眼鏡レンズの用途に限定されるものではなく、望遠鏡レンズ、建築又は車両用途の窓ガラスなどのあらゆる光学要素に対して適用することが可能なものである。また、本発明の機能性樹脂層15は、有機ガラス基材11の表面(凸面)への用途に限定されるものではなく、有機ガラス基材11の裏面(凹面)又は両面(凸面及び凹面)に対しても適用することが可能なものである。 In the optical element of the embodiment, as shown in FIG. 1, an example in which the functional resin layer 15 is integrated with the surface (convex surface) of the organic glass substrate 11 as a spectacle lens by casting is described. . Of course, the present invention is not limited to the use of spectacle lenses, but can be applied to any optical element such as telescope lenses, window glass for architectural or vehicle use. Moreover, the functional resin layer 15 of this invention is not limited to the use to the surface (convex surface) of the organic glass base material 11, The back surface (concave surface) or both surfaces (convex surface and concave surface) of the organic glass base material 11 It is possible to apply to.
 有機ガラス基材11とは、レンズや窓ガラスなどの光学要素の基材として使用されるものであり、実施形態の光学要素では、無機ガラスより軽量であることから有機ガラス(プラスチック)製であるものとする。 The organic glass substrate 11 is used as a substrate of an optical element such as a lens or a window glass. The optical element of the embodiment is made of organic glass (plastic) because it is lighter than inorganic glass. Shall.
 有機ガラス基材11としては、ポリカーボネート(PC)系、ポリウレタン系、ポリウレア系、脂肪族アリルカーボネート系、芳香族アリルカーボネート系、ポリチオウレタン系、エピスルフィド系、(メタ)アクリレート系、透明ポリアミド(透明ナイロン)系、ノルボルネン系、ポリイミド系、ポリオレフィン系などの合成樹脂を使用することができる。 As the organic glass substrate 11, polycarbonate (PC), polyurethane, polyurea, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, episulfide, (meth) acrylate, transparent polyamide (transparent Nylon), norbornene, polyimide, polyolefin, and other synthetic resins can be used.
 なお、チオウレタン系樹脂とは、ポリウレタン結合(-NHCOO-)の酸素原子の少なくとも1個が硫黄原子に入れ替わった結合(-NHCOS-、-NHCSO-、-NHCSS-)を有するポリマー(樹脂)を意味する。該樹脂材料としては、ポリイソシアネート、ポリイソチオシアネート、ポリイソチオシアネートチオイソシアネートより選ばれる1種または2種以上のイソシアネート成分と、ポリチオールおよび適宜ポリオールより選ばれる1種または2種以上の公知の活性水素化合物成分とを組み合わせた重合性成分を好適に使用できる。ここでポリイソシアネートとしては、脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリイソシアネートが望ましい。また、ポリチオールとしては、同様に脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・ポリチオエーテルを母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリチオールが望ましい。 The thiourethane resin is a polymer (resin) having a bond (-NHCOS-, -NHCSO-, -NHCSS-) in which at least one oxygen atom of a polyurethane bond (-NHCOO-) is replaced with a sulfur atom. means. Examples of the resin material include one or more isocyanate components selected from polyisocyanate, polyisothiocyanate, polyisothiocyanate thioisocyanate, and one or more known active hydrogens selected from polythiol and a suitable polyol. A polymerizable component in combination with a compound component can be preferably used. Here, as the polyisocyanate, aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds. Can be mentioned. Of these, aliphatic or alicyclic polyisocyanates are desirable from the standpoint of yellowing resistance. Similarly, polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains as a base compound. Can be mentioned. Of these, aliphatic or alicyclic polythiols are desirable from the standpoint of yellowing resistance.
 エピスルフィド系樹脂とは、ジチオエポキシ化合物と硬化剤と、さらには、その他の重合性化合物とを反応させて得られるポリマー(樹脂)を意味し、直鎖アルキルスルフィド型ジチオエポキシ化合物を硬化させて得られる公知のものを使用できる。硬化剤としては、通常のエポキシ樹脂用硬化剤であるアミン類、有機酸類、又は無機酸類を使用することができる。 The episulfide resin means a polymer (resin) obtained by reacting a dithioepoxy compound, a curing agent, and another polymerizable compound, and is obtained by curing a linear alkyl sulfide type dithioepoxy compound. The well-known thing used can be used. As the curing agent, amines, organic acids, or inorganic acids that are ordinary epoxy resin curing agents can be used.
 具体的な有機ガラス基材11としては、MR-6,MR-8,MR-20,MR-60,MR-95(三井化学株式会社製チオウレタン系樹脂、屈折率:1.60)、MR-7,MR-10(三井化学株式会社製チオウレタン系樹脂、屈折率:1.67)、MR-174(三井化学株式会社製エピスルフィド系樹脂、屈折率:1.74)、NK-11P,LS106S,LS420(日本清水産業株式会社製(メタ)アクリレート系樹脂、屈折率:1.56)、ユーピロンCLS3400(三菱エンジニアリングプラスチックス株式会社製ポリカーボネート系樹脂、屈折率:1.59)、グリルアミドTR XE3805(エムスケミー・ジャパン株式会社製ナイロン系樹脂、屈折率:1.53)、NXT(トライベックス社(ICRX NXT社)製ポリウレア系樹脂、屈折率:1.53)などを好適に使用することができる。 Specific examples of the organic glass substrate 11 include MR-6, MR-8, MR-20, MR-60, MR-95 (Mitsui Chemicals, thiourethane resin, refractive index: 1.60), MR -7, MR-10 (Mitsui Chemicals Co., Ltd. thiourethane resin, refractive index: 1.67), MR-174 (Mitsui Chemicals, Inc. episulfide resin, refractive index: 1.74), NK-11P, LS106S, LS420 (Nippon Shimizu Sangyo Co., Ltd. (meth) acrylate resin, refractive index: 1.56), Iupilon CLS3400 (Mitsubishi Engineering Plastics polycarbonate resin, refractive index: 1.59), Grillamide TR XE3805 (Nylon-based resin, refractive index: 1.53 manufactured by Emschemy Japan Co., Ltd.), NXT (Tribex Corporation (ICRX) XT Co.) made by polyurea resin, refractive index: 1.53) can be suitably used and the like.
 有機ガラス基材11には、有機ガラスの樹脂劣化を防止する劣化防止剤、紫外線を吸収する紫外線吸収剤、レンズ形状を成形する型枠からの離型性を向上させる内部離型剤、有機ガラスに青味を付けるブルーイング剤、有機ガラスを硬化させる硬化剤などを有機ガラスの種類に応じてそれぞれ適したものを添加することができる。 The organic glass substrate 11 includes a deterioration inhibitor that prevents resin degradation of organic glass, an ultraviolet absorber that absorbs ultraviolet rays, an internal mold release agent that improves releasability from a mold for molding a lens shape, and organic glass. A bluing agent for imparting a bluish tint, a curing agent for curing organic glass, and the like can be added depending on the type of organic glass.
 劣化防止剤とは、有機ガラスの樹脂が分解・劣化し易い280~320nmの光を吸収しつつ、有機ガラスの樹脂が光や熱によって分解・劣化する際に生じるアルキルラジカル(R・:Rはアルキル鎖)やパーオキシラジカル(ROO・)、過酸化物(ROOH)を捕捉または分解することで、樹脂の劣化が加速度的に進行するのを抑制するものである。劣化防止剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。劣化防止剤は、有機ガラスの種類に応じて適したものを添加することができる。なお、劣化防止剤の吸収波長域によっては紫外線吸収剤としても機能するものである。 The deterioration preventing agent is an alkyl radical (R ·: R is generated when the organic glass resin is decomposed or deteriorated by light or heat while absorbing light of 280 to 320 nm, which is easily decomposed or deteriorated by the organic glass resin. By capturing or decomposing alkyl chains), peroxy radicals (ROO.), And peroxides (ROOH), the deterioration of the resin is prevented from proceeding at an accelerated rate. Examples of the deterioration inhibitor include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, and the like. A suitable deterioration inhibitor can be added depending on the type of organic glass. Depending on the absorption wavelength range of the deterioration preventing agent, it also functions as an ultraviolet absorber.
 内部離型剤とは、成形型を用いて、有機ガラスから有機ガラス基材11を成形した後の脱型の際に、成形型からの抜けを良くするために加える添加剤であり、内部離型剤として有機ガラスの材料に適したものを使用することができる。 The internal mold release agent is an additive that is added to improve the release from the mold during mold removal after the organic glass substrate 11 is molded from the organic glass using the mold. A mold suitable for the organic glass material can be used.
 硬化剤とは、有機ガラス基材11を成形する有機ガラスを硬化(重合)させる添加剤であり、スズ系の触媒、アミン系の触媒、過酸化物系の重合開始剤など、有機ガラスの材料に適したものを使用することができる。 The curing agent is an additive that cures (polymerizes) the organic glass that forms the organic glass substrate 11, and includes organic glass materials such as a tin-based catalyst, an amine-based catalyst, and a peroxide-based polymerization initiator. The one suitable for can be used.
 有機ガラス基材11の成形は、研磨法、注型成形法などの一般的な成形方法を使用することができる。研磨法は、有機ガラス基材11を成形する合成樹脂を適した条件によりブロック状の樹脂に成形させた後に、ブロック状の樹脂を求めるレンズ設計に合わせて研磨する方法である。注型成形法は、凹凸レンズを例に採ると、凹面側モールドと凸面側モールドとを必要とする間隔をおいて、モールドの周面をテーピングやガスケットを用いてシールしキャビティ21を形成し、キャビティ21に有機ガラス基材11を成形する合成樹脂を注入・硬化させ、必要に応じて、有機ガラス基材11を研磨する方法である。 The organic glass substrate 11 can be formed using a general forming method such as a polishing method or a casting method. The polishing method is a method in which a synthetic resin for forming the organic glass substrate 11 is molded into a block-like resin under suitable conditions, and then polished according to the lens design for obtaining the block-like resin. In the casting molding method, when an uneven lens is taken as an example, a cavity 21 is formed by sealing the peripheral surface of the mold with taping or a gasket at an interval that requires a concave mold and a convex mold, In this method, a synthetic resin for molding the organic glass substrate 11 is injected into the cavity 21 and cured, and the organic glass substrate 11 is polished as necessary.
 次に機能性樹脂層15について述べる。機能性樹脂層15は、有機ガラス基材11の片面又は両面に一体化される層であり、有機ガラス基材11と比して厚みが薄い層である。機能性樹脂層15は、機能性薬剤と、イソシアネート化合物と、ポリオール化合物とを含有し、必要により、チオール化合物を含有するものである。機能性樹脂層15を成形する樹脂には、先に述べた、劣化防止剤、内部離型剤、硬化剤、分子量調整剤などを、樹脂の種類に応じて適したものを添加することができる。 Next, the functional resin layer 15 will be described. The functional resin layer 15 is a layer that is integrated on one or both sides of the organic glass substrate 11, and is a layer that is thinner than the organic glass substrate 11. The functional resin layer 15 contains a functional agent, an isocyanate compound, and a polyol compound, and if necessary, a thiol compound. The resin for forming the functional resin layer 15 can be added with the above-described deterioration preventing agent, internal mold release agent, curing agent, molecular weight adjusting agent, or the like, depending on the type of resin. .
 機能性薬剤とは、光学要素に機能を付与する薬剤であり、フォトクロミック性を付与するフォトクロミック剤、紫外線吸収性能を付与する紫外線吸収剤、特定波長を吸収又はカット性能を付与する特定波長吸収剤、着色性能を付与する顔料又は染料、などがある。これらは高価なものであり、有機ガラス基材11と比して厚みの薄い機能性樹脂層15に、機能性薬剤が含有されることにより、機能性薬剤の含有量を減らすことが可能となり、光学要素は製造コストを抑えることができる。 A functional drug is a drug that imparts a function to an optical element, a photochromic agent that imparts photochromic properties, an ultraviolet absorber that imparts ultraviolet absorption performance, a specific wavelength absorber that imparts specific wavelength absorption or cut performance, Examples include pigments or dyes that impart coloring performance. These are expensive, and it is possible to reduce the content of the functional drug by containing the functional drug in the functional resin layer 15 having a smaller thickness than the organic glass substrate 11, Optical elements can reduce manufacturing costs.
 フォトクロミック剤とは、フォトクロミズムを示す化合物のことであり、光(紫外線)を吸収することにより、分子量を変えることなく、構造変化(異性化)を起こし、色変化(異なる吸収スペクトルを示す)をする添加剤である。実施形態において、好ましいフォトクロミック剤は、光を吸収することによってフォトクロミック剤の色が無色(または淡色)から青、紫、赤紫、黒などの有色に変化し、光の吸収がなくなると変化した色から元の無色(または淡色)に戻るという可逆的な色変化をするもの(T型フォトクロミック剤)である。このようなフォトクロミック剤として、アゾベンゼン系フォトクロミック剤、スピロピラン系フォトクロミック剤、ナフトピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤、クロメン系フォトクロミック剤、ヘキサアリールビスイミダゾール系フォトクロミック剤などを使用することができる。これらの中でも、スピロピラン系フォトクロミック剤、ナフトピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤、クロメン系フォトクロミック剤が、光を吸収することによって有色に変化した際の色が濃色となるため、より好んで使用することができる。なお、フォトクロミック剤は、単一のフォトクロミック剤のみを機能性樹脂層15に含有させても、本発明の効果を奏することができるが、可視光域の光の透過率を均一に下げるために複数種のフォトクロミック剤を混合して使用することが好ましい。 A photochromic agent is a compound that exhibits photochromism. By absorbing light (ultraviolet rays), it undergoes a structural change (isomerization) and a color change (shows a different absorption spectrum) without changing the molecular weight. It is an additive. In an embodiment, a preferred photochromic agent is a color that changes its color from colorless (or light) to blue, purple, magenta, black, etc. by absorbing light, and changes its color when light absorption stops. It has a reversible color change (T-type photochromic agent) that returns to its original colorless (or light color). As such a photochromic agent, an azobenzene photochromic agent, a spiropyran photochromic agent, a naphthopyran photochromic agent, a spirooxazine photochromic agent, a chromene photochromic agent, a hexaarylbisimidazole photochromic agent, or the like can be used. Among these, spiropyran-based photochromic agents, naphthopyran-based photochromic agents, spirooxazine-based photochromic agents, and chromene-based photochromic agents are more preferred because they become darker when they change color by absorbing light. can do. In addition, even if it contains only a single photochromic agent in the functional resin layer 15, the effect of this invention can be show | played, but in order to reduce the transmittance | permeability of the light of a visible light region uniformly, a photochromic agent has two or more. It is preferable to use a mixture of seed photochromic agents.
 紫外線吸収剤とは、紫外線を吸収する添加剤であり、眼球保護のために光学要素に添加される。紫外線は、眼に入ると白内障や黄斑変性症を引き起こすおそれがあるからである。なお、紫外線吸収剤の吸収波長域によっては劣化防止剤としても機能するものである。紫外線吸収剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系等を挙げることができる。 The ultraviolet absorber is an additive that absorbs ultraviolet rays and is added to the optical element for protecting the eyeball. This is because ultraviolet rays may cause cataracts and macular degeneration when entering the eyes. Depending on the absorption wavelength range of the ultraviolet absorber, it also functions as a deterioration preventing agent. Examples of the ultraviolet absorber include benzophenone series, diphenyl acrylate series, sterically hindered amine series, salicylic acid ester series, benzotriazole series, hydroxybenzoate series, cyanoacrylate series, and hydroxyphenyl triazine series.
 特定波長吸収剤とは、特定の波長の光を吸収する添加剤であり、例えば、ブルーライトの透過を低減させるために光学要素に添加される。ブルーライトは、疲れ目を引き起こすおそれがあるからである。特定波長吸収剤としては、ベンゾフェノン系、ジフェニルアクリレート系、立体障害アミン系、サリチル酸エステル系、ベンゾトリアゾール系、ヒドロキシベンゾエート系、シアノアクリレート系、ヒドロキシフェニルトリアジン系、ポルフィリン系等を挙げることができる。 The specific wavelength absorber is an additive that absorbs light of a specific wavelength, and is added to an optical element, for example, to reduce the transmission of blue light. This is because blue light may cause tired eyes. Specific wavelength absorbers include benzophenone, diphenyl acrylate, sterically hindered amine, salicylic acid ester, benzotriazole, hydroxybenzoate, cyanoacrylate, hydroxyphenyl triazine, porphyrin, and the like.
 また、565~605nmの間(特に580nm)に主吸収ピークを有する特定波長吸収剤として、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)がある。NeoContrastを使用することによって、光学要素は、選択的にまぶしい光をカットする機能を持ち、見え方を改善することができるものとなる。なお、NeoContrastの詳細は、日本国特許第5778109号及び米国特許第7506977号に記載されている。 Also, NeoContrast (manufactured by Mitsui Chemicals, absorption peak wavelength: 580 nm) is a specific wavelength absorber having a main absorption peak between 565 and 605 nm (especially 580 nm). By using NeoContrast, the optical element has a function of selectively cutting dazzling light and can improve the appearance. Details of NeoContrast are described in Japanese Patent No. 5778109 and US Pat. No. 7,506,777.
 イソシアネート化合物とポリオール化合物は、機能性樹脂層15の樹脂であるポリウレタン系樹脂を形成する。また、イソシアネート化合物とポリオール化合物とチオール化合物は、機能性樹脂層15の樹脂であるチオウレタン系樹脂を形成する。ポリウレタン系樹脂又はチオウレタン系樹脂としては、ポリイソシアネート、ポリイソチオシアネート、ポリイソチオシアネートチオイソシアネートより選ばれる1種または2種以上のイソシアネート成分と、ポリオール化合物および適宜ポリチオールより選ばれる1種または2種以上の公知の活性水素化合物成分とを組み合わせた重合性成分を好適に使用することができる。ここでポリイソシアネートとしては、脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・チオカルボニル(チオケトン)誘導体を母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリイソシアネートが望ましい。また、ポリチオールとしては、同様に脂肪族系、脂環式系、芳香族系及びそれらの誘導体さらにはそれらの炭素鎖の一部に硫黄を導入したスルフィド・ポリスルフィド・ポリチオエーテルを母体化合物とするものを挙げることができる。これらのうちで、耐黄変性の見地から、脂肪族系又は脂環式系のポリチオールが望ましい。 The isocyanate compound and the polyol compound form a polyurethane resin that is a resin of the functional resin layer 15. In addition, the isocyanate compound, the polyol compound, and the thiol compound form a thiourethane resin that is a resin of the functional resin layer 15. As the polyurethane resin or thiourethane resin, one or two or more isocyanate components selected from polyisocyanate, polyisothiocyanate and polyisothiocyanate thioisocyanate, a polyol compound and an appropriate polythiol are used. A polymerizable component in combination with the above known active hydrogen compound component can be preferably used. Here, as the polyisocyanate, aliphatic, alicyclic, aromatic, and derivatives thereof, as well as sulfide, polysulfide, and thiocarbonyl (thioketone) derivatives in which sulfur is introduced into a part of their carbon chains are parent compounds. Can be mentioned. Of these, aliphatic or alicyclic polyisocyanates are desirable from the standpoint of yellowing resistance. Similarly, polythiols include aliphatic, alicyclic, aromatic, and derivatives thereof, and sulfides, polysulfides, and polythioethers in which sulfur is introduced into a part of their carbon chains as a base compound. Can be mentioned. Of these, aliphatic or alicyclic polythiols are desirable from the standpoint of yellowing resistance.
 ポリオール化合物は、平均分子量が180以上の多価アルコール重合体化合物である、下記一般式(1)で表わされるポリアルキレングリコール(ポリオキシアルキレン)化合物及び/又は下記一般式(2)で表わされるフェノール骨格含有ポリアルキレングリコール(ポリオキシアルキレン)化合物を好適に使用することができる。 The polyol compound is a polyhydric alcohol polymer compound having an average molecular weight of 180 or more, a polyalkylene glycol (polyoxyalkylene) compound represented by the following general formula (1) and / or a phenol represented by the following general formula (2). A skeleton-containing polyalkylene glycol (polyoxyalkylene) compound can be preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本願発明者らは、ポリオール化合物が平均分子量180以上である一般式(1)及び/又は一般式(2)で表わされる多価アルコール重合体化合物を含有することによって、イソシアネート化合物とポリオール化合物とを含有する機能性樹脂層15が、有機ガラス基材11への密着性に優れることを発見したものである。 The inventors of the present application include an isocyanate compound and a polyol compound by containing the polyhydric alcohol polymer compound represented by the general formula (1) and / or the general formula (2) having an average molecular weight of 180 or more. It has been found that the functional resin layer 15 contained is excellent in adhesion to the organic glass substrate 11.
 多価アルコール重合体化合物は、平均分子量が180以上であることによって、平均分子量の小さい(180未満)ものと比較して親水性が強いものである。多価アルコール重合体化合物と親油性であるイソシアネート化合物とから形成された高分子(ポリウレタン系樹脂)をバインダーとする機能性樹脂層15は、親水性と親油性とをバランスよく備えているものである。このため、機能性樹脂層15は、有機ガラス基材11への密着性に優れたものになると考えられる。これにより、実施形態の光学要素は、光学要素が過大な力を受けても、機能性樹脂層15に欠損等が発生し難い、耐久性に優れたものとすることができる。ポリオール化合物の平均分子量が180未満である場合には、機能性樹脂層15の硬化時の収縮が発生し、機能性樹脂層15の有機ガラス基材11への密着性が不十分となるおそれがある。一方、ポリオール化合物の平均分子量が大きいほど、機能性樹脂層15の硬化時の収縮が小さく、機能性樹脂層15は有機ガラス基材11への密着性に優れるものとなる。なお、ポリオール化合物の平均分子量が15000を超える場合には、親水部である多価アルコール化合物が長くなり、水を含みやすく、機能性樹脂層15の強度を保つことができないおそれがあると推測される。後で述べる実施例においては、ポリオール化合物の平均分子量14000である機能性樹脂層15が有機ガラス基材11への密着性に優れることを確認している。しかしこれ以上の平均分子量のポリオール化合物では確認が取れていない。このため、ポリオール化合物の平均分子量が15000を超える場合であっても、機能性樹脂層15は、有機ガラス基材11への密着性に優れるものであることが考えられる。従って、確認が取れた範囲として、ポリオール化合物の平均分子量は、180~15000が好ましく、より好ましくは、500~15000であり、さらに好ましくは、1000~15000である。 Since the polyhydric alcohol polymer compound has an average molecular weight of 180 or more, the polyhydric alcohol polymer compound has stronger hydrophilicity than a compound having a small average molecular weight (less than 180). The functional resin layer 15 having a polymer (polyurethane resin) formed from a polyhydric alcohol polymer compound and an oleophilic isocyanate compound as a binder has a good balance between hydrophilicity and oleophilicity. is there. For this reason, the functional resin layer 15 is considered to have excellent adhesion to the organic glass substrate 11. As a result, the optical element of the embodiment can be made excellent in durability because the functional resin layer 15 is less likely to be damaged even when the optical element receives an excessive force. When the average molecular weight of the polyol compound is less than 180, the functional resin layer 15 may shrink during curing, and the adhesion of the functional resin layer 15 to the organic glass substrate 11 may be insufficient. is there. On the other hand, the larger the average molecular weight of the polyol compound, the smaller the shrinkage when the functional resin layer 15 is cured, and the functional resin layer 15 has better adhesion to the organic glass substrate 11. In addition, when the average molecular weight of the polyol compound exceeds 15000, it is estimated that the polyhydric alcohol compound that is a hydrophilic portion becomes long, easily contains water, and the strength of the functional resin layer 15 may not be maintained. The In the examples described later, it has been confirmed that the functional resin layer 15 having an average molecular weight of 14,000 of the polyol compound is excellent in adhesion to the organic glass substrate 11. However, it has not been confirmed with polyol compounds having an average molecular weight higher than this. For this reason, even if the average molecular weight of a polyol compound exceeds 15000, it is possible that the functional resin layer 15 is excellent in adhesiveness to the organic glass substrate 11. Therefore, as a confirmed range, the average molecular weight of the polyol compound is preferably 180 to 15000, more preferably 500 to 15000, and still more preferably 1000 to 15000.
 多価アルコール重合体化合物は、ポリアルキレングリコール(ポリオキシアルキレン)化合物を含有するものとすることができる。これによれば、ポリアルキレングリコール化合物がエーテルを有しているため親水性がより強く、機能性樹脂層は、親水性と親油性とをよりバランスよく備えるため、有機ガラス基材への密着性により優れたものとなる。これにより、光学要素は、耐久性により優れたものとすることができる。 The polyhydric alcohol polymer compound may contain a polyalkylene glycol (polyoxyalkylene) compound. According to this, since the polyalkylene glycol compound has ether, the hydrophilicity is stronger, and the functional resin layer is provided with a better balance between hydrophilicity and lipophilicity, so that it adheres to the organic glass substrate. Will be better. Thereby, the optical element can be made more excellent in durability.
 また、多価アルコール重合体化合物は、フェノール骨格含有ポリアルキレングリコール化合物を含有するものとすることができる。これにより、機能性樹脂層15は、製造の乾燥時における熱による歪みが軽減されるものとすることができる。フェノール骨格含有ポリアルキレングリコール化合物を含有する機能性樹脂層15は、その熱膨張率が低いためである。フェノール骨格含有ポリアルキレングリコール化合物として、ポリオキシアルキレン-ビスフェノールAエーテルなどを使用することができる。 The polyhydric alcohol polymer compound may contain a phenol skeleton-containing polyalkylene glycol compound. Thereby, the functional resin layer 15 can reduce distortion caused by heat at the time of drying during manufacture. This is because the functional resin layer 15 containing the phenol skeleton-containing polyalkylene glycol compound has a low coefficient of thermal expansion. Polyoxyalkylene-bisphenol A ether and the like can be used as the phenol skeleton-containing polyalkylene glycol compound.
 そして、多価アルコール重合体化合物がポリアルキレングリコール(ポリオキシアルキレン)化合物とフェノール骨格含有ポリアルキレングリコール(ポリオキシアルキレン)化合物とを含有することによって、光学要素は、製造の乾燥時における熱による歪みが軽減されたものとなり、且つ、耐久性に優れたものとすることができる。 The polyhydric alcohol polymer compound contains a polyalkylene glycol (polyoxyalkylene) compound and a phenol skeleton-containing polyalkylene glycol (polyoxyalkylene) compound, so that the optical element is distorted by heat during drying of production. Can be reduced, and the durability can be improved.
 一般式(1)及び(2)のポリオール化合物中のm+n(mはアルキレングリコールの平均重合度、nはアルキレングリコールの平均重合度)は、1以上300以下であるものが好ましい。この範囲にある一般式(1)及び(2)で表されるポリオール化合物は、機能性薬剤がフォトクロミック剤である場合に、フォトクロミック剤の消色時間を短縮可能とし、且つ、機能性樹脂層15の強度が保たれるからである。式中のm+nが、1未満の場合には、フォトクロミック剤の消色時間の短縮効果が十分に得られないおそれがあり、一方、300を超えると、一般式(1)又は(2)で表されるポリオール化合物の親水部であるポリアルキレングリコールが長く、水を含みやすいため、機能性樹脂層15の強度を保つことができないおそれがあると推測される。より好ましくは、式中のm+nは10以上270以下であり、さらに好ましくは、式中のm+nは30以上250以下である。 In the polyol compounds of the general formulas (1) and (2), m + n (m is an average polymerization degree of alkylene glycol, n is an average polymerization degree of alkylene glycol) is preferably 1 or more and 300 or less. The polyol compounds represented by the general formulas (1) and (2) in this range can shorten the decoloring time of the photochromic agent when the functional agent is a photochromic agent, and the functional resin layer 15 This is because the strength is maintained. If m + n in the formula is less than 1, the effect of shortening the decoloring time of the photochromic agent may not be sufficiently obtained. On the other hand, if m + n exceeds 300, it is represented by the general formula (1) or (2). Since the polyalkylene glycol which is a hydrophilic part of the polyol compound to be produced is long and easily contains water, it is presumed that the strength of the functional resin layer 15 may not be maintained. More preferably, m + n in the formula is from 10 to 270, and even more preferably, m + n is from 30 to 250.
 一般式(1)及び(2)のポリオール化合物中の(OR)n、(OR)mは、ポリオキシエチレン(以下、EOとする。)及び/又はポリオキシプロピレン(以下、POとする。)が好ましい。EOとPOは、親水性が高く、機能性樹脂層15が有機ガラス基材11への密着性に優れたものとなるからである。特に、一般式(1)及び(2)のポリオール化合物中の(OR)n、(OR)mは、EOとPOとの共重合体(ブロックコポリマー)が好ましい。そして、EOとPOの比率は、EO/(EO+PO)=20~90質量%である比率が好ましい。機能性薬剤がフォトクロミック剤である場合に、フォトクロミック剤の分散性に優れ、かつ、フォトクロミック特性に優れるものとすることができるからである。EOとPOの比率が、EO/(EO+PO)=20質量%未満の場合には、フォトクロミック剤の分散性が劣るおそれがあり、機能性樹脂層が白濁するおそれがある。一方、EO/(EO+PO)=90質量%を超える場合には、フォトクロミック特性が劣るおそれがある。より好ましくは、EOとPOの比率は、EO/(EO+PO)=30~85質量%であり、さらに好ましくは、EO/(EO+PO)=40~80質量%である。 (OR) n and (OR) m in the polyol compounds of the general formulas (1) and (2) are polyoxyethylene (hereinafter referred to as EO) and / or polyoxypropylene (hereinafter referred to as PO). Is preferred. This is because EO and PO have high hydrophilicity and the functional resin layer 15 has excellent adhesion to the organic glass substrate 11. In particular, (OR) n and (OR) m in the polyol compounds of the general formulas (1) and (2) are preferably a copolymer (block copolymer) of EO and PO. The ratio of EO and PO is preferably EO / (EO + PO) = 20 to 90% by mass. This is because when the functional agent is a photochromic agent, the photochromic agent can be excellent in dispersibility and photochromic properties. When the ratio of EO and PO is less than EO / (EO + PO) = 20% by mass, the dispersibility of the photochromic agent may be inferior, and the functional resin layer may become cloudy. On the other hand, when EO / (EO + PO) = 90 mass% is exceeded, the photochromic characteristics may be inferior. More preferably, the ratio of EO and PO is EO / (EO + PO) = 30 to 85% by mass, and more preferably EO / (EO + PO) = 40 to 80% by mass.
 機能性樹脂層15の有機ガラス基材11への一体化は、図1に示すように、注型成形法よって行うことができる。注型成形法は、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂を注入することによって成形する方法である。また、機能性樹脂層15の有機ガラス基材11への一体化は、ディッピング法やスプレー法などの一般的な方法によっても行うことができる。なお、機能性樹脂が空気中の酸素と反応して硬化阻害を生じる材料である場合には、注型成形法が好ましい。成形型のキャビティ21が有機ガラス基材11からなる第1モールド13と第2モールド17とテーピング19とで閉鎖された密閉系であるため、空気中の酸素を遮断して硬化阻害を防ぐことができるからである。 The integration of the functional resin layer 15 into the organic glass substrate 11 can be performed by a cast molding method as shown in FIG. The casting molding method is a method in which a mold cavity 21 is formed in the organic glass substrate 11 and molding is performed by injecting a functional resin. The functional resin layer 15 can be integrated with the organic glass substrate 11 by a general method such as a dipping method or a spray method. In the case where the functional resin is a material that reacts with oxygen in the air to cause curing inhibition, a cast molding method is preferable. Since the mold cavity 21 is a closed system closed by the first mold 13, the second mold 17, and the taping 19 made of the organic glass substrate 11, the oxygen in the air can be blocked to prevent inhibition of curing. Because it can.
 機能性樹脂層15を設けるキャビティ21は、有機ガラス基材11を第1モールド13とし、第1モールド13の外側に一定の隙間が形成されるように第2モールド17を配するとともに、第1モールド13と第2モールド17の周面隙間をテーピング19等でシールして形成する。第2モールド17として有機ガラス基材11の成形に使用したものと同一のモールドを使用することによって、機能性樹脂層15は一定の厚みを有することができる。 In the cavity 21 in which the functional resin layer 15 is provided, the organic glass substrate 11 is the first mold 13, and the second mold 17 is arranged so that a certain gap is formed outside the first mold 13. A gap between the peripheral surfaces of the mold 13 and the second mold 17 is formed by sealing with a taping 19 or the like. By using the same mold as that used for forming the organic glass substrate 11 as the second mold 17, the functional resin layer 15 can have a certain thickness.
 機能性樹脂層15を設けるキャビティ21の隙間は、機能性樹脂の流動特性や機能性樹脂層15に要求される機能性によって設定されるが、0.2~3.0mmであることが好ましい。キャビティ21の隙間が注入容易な程度に確保されているため注型成形を瞬時に行うことができ、かつ、注入された機能性樹脂が流動することなく硬化することができるため、光学要素は脈理(屈折率を異にした部分が生じること。)の発生を抑制することができるためである。キャビティ21の隙間が0.2mm未満であると、流動性に優れた樹脂であっても、注入が困難となるおそれがある。一方、3.0mmを超えると、機能性樹脂の流動による硬化ムラから脈理が発生するおそれがある。より好ましくは、0.3~1.5mmであり、さらに好ましくは、0.4~1.0mmである。 The gap between the cavities 21 where the functional resin layer 15 is provided is set depending on the flow characteristics of the functional resin and the functionality required for the functional resin layer 15, but is preferably 0.2 to 3.0 mm. Since the gap between the cavities 21 is secured to such an extent that it can be easily injected, cast molding can be performed instantaneously, and the injected functional resin can be cured without flowing, so that the optical element has a pulse. This is because it is possible to suppress the occurrence of reason (parts having different refractive indexes). If the gap between the cavities 21 is less than 0.2 mm, injection may be difficult even if the resin has excellent fluidity. On the other hand, if it exceeds 3.0 mm, striae may occur due to uneven curing due to the flow of the functional resin. More preferably, it is 0.3 to 1.5 mm, and still more preferably 0.4 to 1.0 mm.
 なお、光学要素は、有機ガラス基材11の機能性樹脂層15を備える側に偏光フィルムを配設し、有機ガラス基材11と機能性樹脂層15との間に偏光フィルムを備えた、偏光特性を有する光学要素とすることができる。偏光フィルムは、ポリビニルアルコールから構成されるものが好ましい。ポリビニルアルコールが機能性樹脂層15に含有されるイソシアネート化合物によって、有機ガラス基材11と偏光フィルムと機能性樹脂層15の密着性が確保されるからである。偏光フィルムの厚みは、10~50μmであることが好ましい。偏光フィルムが、偏光特性を有しつつ、光学要素の曲面に追従する伸び性を有するためである。 The optical element has a polarizing film provided on the side of the organic glass substrate 11 provided with the functional resin layer 15 and a polarizing film provided between the organic glass substrate 11 and the functional resin layer 15. An optical element having characteristics can be obtained. The polarizing film is preferably composed of polyvinyl alcohol. This is because the adhesion between the organic glass substrate 11, the polarizing film, and the functional resin layer 15 is ensured by the isocyanate compound containing polyvinyl alcohol in the functional resin layer 15. The thickness of the polarizing film is preferably 10 to 50 μm. This is because the polarizing film has elongation characteristics that follow the curved surface of the optical element while having polarization characteristics.
 また、機能性樹脂層15が形成された有機ガラス基材11(光学要素)には、一般的に行われているハードコート加工、防曇処理加工、反射防止加工、撥水処理加工、帯電防止加工などの汎用の表面処理を適宜施すことができる。 In addition, the organic glass substrate 11 (optical element) on which the functional resin layer 15 is formed generally has a hard coat process, an antifogging process, an antireflection process, a water repellent process, and an antistatic process. General-purpose surface treatment such as processing can be appropriately performed.
 以下、実施例により本発明をさらに詳細に説明する。機能性樹脂層15を形成する機能性樹脂は、表1-1に記載のA-1からA-24と、表1-2に記載のA-25からA-31を使用した。 Hereinafter, the present invention will be described in more detail with reference to examples. As functional resins for forming the functional resin layer 15, A-1 to A-24 shown in Table 1-1 and A-25 to A-31 shown in Table 1-2 were used.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1-1と表1-2において、イソシアネート化合物には略称を用い、略称に対する呼び名等を括弧に記載する。NBDI((2,5)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン)、HDI(ヘキサメチレンジイソシアネート)、MBDI(メチレンビス(4,1シクロヘキシレン)ジイソシアネート)、MXDI(メタキシレンジイソシアネート)。 In Table 1-1 and Table 1-2, abbreviations are used for isocyanate compounds, and names and the like for the abbreviations are described in parentheses. NBDI ((2,5) -bis (isocyanatomethyl) bicyclo [2.2.1] heptane), HDI (hexamethylene diisocyanate), MBDI (methylene bis (4,1 cyclohexylene) diisocyanate), MXDI (metaxylene diisocyanate) ).
 チオール化合物には略称を用い、略称に対する呼び名等を括弧に記載する。PEMP(ペンタエリスリトールテトラキス(3-メルカプトプロピオネ-ト))、FSH(4,7(5,7又は4,8)-ビス(メルカプトメチル)-3,6,9-トリチアウンデカン-1,11-ジチオールを主成分とする1-クロロ-2,3エポキシプロパン、2-メルカプトエタノール、硫化ナトリウム及びチオ尿素の反応生成物)。 An abbreviation is used for the thiol compound, and the name of the abbreviation is written in parentheses. PEMP (pentaerythritol tetrakis (3-mercaptopropionate)), FSH (4,7 (5,7 or 4,8) -bis (mercaptomethyl) -3,6,9-trithiaundecane-1,11 A reaction product of 1-chloro-2,3 epoxypropane, 2-mercaptoethanol, sodium sulfide and thiourea based on dithiol).
 ポリオール化合物には略称を用い、略称に対する呼び名等を括弧に記載する。PEG200(ポリエチレングリコール(平均分子量200、m+n≒4、2官能))、PEG400(ポリエチレングリコール(平均分子量400、m+n≒9、2官能))、PEG1000(ポリエチレングリコール(平均分子量1000、m+n≒22、2官能))、PPG400(ポリプロピレングリコール(平均分子量400、m+n≒6、2官能))、PPG1000(ポリプロピレングリコール(平均分子量1000、m+n≒17、2官能))、PEPG1500(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量1500、m+n≒30、EO≒40質量%、2官能))、PEPG2000(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量2000、m+n≒40、EO≒20質量%、2官能))、PEPG2500(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量2500、m+n≒50、EO≒20質量%、2官能))、PEPG3500(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量3500、m+n≒70、EO≒40質量%、2官能))、PEPG10000(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量10000、m+n≒200、EO≒80質量%、2官能))、PEPG13000(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量13000、m+n≒250、EO≒70質量%、2官能))、PEPG14000(ポリエチレングリコール-ポリプロピレングリコール共重合体(平均分子量14000、m+n≒270、EO≒70質量%、2官能))、EPPE4000(ポリオキシエチレン・ポリオキシプロピレン-ペンタエスリトール-エーテル(平均分子量4000、4官能))、EPH400(ポリオキシエチレン-ビスフェノールAエーテル(平均分子量400、m+n≒4、2官能))、EPH700(ポリオキシエチレン-ビスフェノールAエーテル(平均分子量660、m+n≒10、2官能))、PPH400(ポリオキシプロピレン-ビスフェノールAエーテル(平均分子量400、m+n≒4、2官能))、EPPH800(ポリオキシエチレン-ポリオキシプロピレン-ビスフェノールAエーテル(平均分子量750、m+n≒10、2官能))。 * Abbreviations are used for polyol compounds, and names for abbreviations are written in parentheses. PEG200 (polyethylene glycol (average molecular weight 200, m + n≈4, bifunctional)), PEG400 (polyethylene glycol (average molecular weight 400, m + n≈9, bifunctional)), PEG1000 (polyethylene glycol (average molecular weight 1000, m + n≈22, 2) Functional)), PPG400 (polypropylene glycol (average molecular weight 400, m + n≈6, bifunctional)), PPG1000 (polypropylene glycol (average molecular weight 1000, m + n≈17, bifunctional)), PEPG1500 (polyethylene glycol-polypropylene glycol copolymer) (Average molecular weight 1500, m + n≈30, EO≈40 mass%, bifunctional)), PEPG2000 (polyethylene glycol-polypropylene glycol copolymer (average molecular weight 2000, m + n≈40, O≈20 mass%, bifunctional)), PEPG 2500 (polyethylene glycol-polypropylene glycol copolymer (average molecular weight 2500, m + n≈50, EO≈20 mass%, bifunctional)), PEPG 3500 (polyethylene glycol-polypropylene glycol copolymer) Combined (average molecular weight 3500, m + n≈70, EO≈40 mass%, bifunctional)), PEPG 10000 (polyethylene glycol-polypropylene glycol copolymer (average molecular weight 10,000, m + n≈200, EO≈80 mass%, bifunctional)) PEPG 13000 (polyethylene glycol-polypropylene glycol copolymer (average molecular weight 13000, m + n≈250, EO≈70 mass%, bifunctional)), PEPG 14000 (polyethylene glycol-polypropylene glycol Copolymer (average molecular weight 14000, m + n≈270, EO≈70% by mass, bifunctional)), EPPE4000 (polyoxyethylene / polyoxypropylene-pentaerythritol-ether (average molecular weight 4000, tetrafunctional)), EPH400 (polyoxyethylene-bisphenol A ether (average molecular weight 400, m + n≈4, bifunctional)), EPH700 (polyoxyethylene-bisphenol A ether (average molecular weight 660, m + n≈10, bifunctional)), PPH400 (polyoxy Propylene-bisphenol A ether (average molecular weight 400, m + n≈4, bifunctional)), EPPH800 (polyoxyethylene-polyoxypropylene-bisphenol A ether (average molecular weight 750, m + n≈10, bifunctional)).
 機能性薬剤にはフォトクロミック剤と特定波長吸収剤を使用した。フォトクロミック剤には、スピロピラン系フォトクロミック剤、スピロオキサジン系フォトクロミック剤(ともに山田化学工業株式会社製)をブレンドして使用した。特定波長吸収剤には、NeoContrast(三井化学株式会社製、吸収ピーク波長:580nm)を使用した。 ∙ Photochromic agent and specific wavelength absorber were used as functional drugs. The photochromic agent was blended with a spiropyran photochromic agent and a spirooxazine photochromic agent (both manufactured by Yamada Chemical Co., Ltd.). NeoContrast (manufactured by Mitsui Chemicals, Inc., absorption peak wavelength: 580 nm) was used as the specific wavelength absorber.
 機能性樹脂は、イソシアネート化合物とチオール化合物とポリオール化合物とを混合し、機能性薬剤とその他添加剤(分子量調整剤、硬化剤など)とを混合し、窒素ガス雰囲気下で15℃に温度調節しながら1時間混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmのフィルターでろ過して機能性樹脂層15を形成する機能性樹脂を調製した。 The functional resin is a mixture of an isocyanate compound, a thiol compound and a polyol compound, a functional agent and other additives (molecular weight modifier, curing agent, etc.), and the temperature is adjusted to 15 ° C. in a nitrogen gas atmosphere. The mixture was stirred for 1 hour. Subsequently, after degassing for 1 hour while stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, a functional resin that forms the functional resin layer 15 by filtration through a 1 μm filter was prepared.
 有機ガラス基材11は、それぞれ下記のようにして調製したものを使用した。 The organic glass base material 11 was prepared as follows.
 <樹脂A(チオウレタン系樹脂)>
  2,5-ビシクロ[2,2,1]ヘプタンビス(メチルイソシアナト):100部に、硬化剤としてジブチルチンジクロライド:0.1部、内部離型剤としてアルキル燐酸エステル2部、更に紫外線吸収剤として3-5-[(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸とポリエチレングリコールとのモノエステル:2.0部を液温15℃窒素ガス雰囲気下で1時間充分に撹拌した。その後、更にペンタエリスリトールテトラキス(3-メルカプトプロピオネート):50部と4,7-ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオール:50部を添加し、更に窒素ガス雰囲気下で15℃に温度調節しながら1時間混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.60のチオウレタン系の液状のレンズ基材用の樹脂原料を調製した。
<Resin A (thiourethane resin)>
2,5-bicyclo [2,2,1] heptanebis (methylisocyanato): 100 parts, dibutyltin dichloride: 0.1 part as a curing agent, alkyl phosphate ester 2 parts as an internal mold release agent, and 3 parts as an ultraviolet absorber Monoester of -5-[(2-benzotriazole) -3-t-butyl-4-hydroxyphenyl] propionic acid and polyethylene glycol: 2.0 parts were sufficiently stirred for 1 hour in a nitrogen gas atmosphere at a liquid temperature of 15 ° C. . Thereafter, 50 parts of pentaerythritol tetrakis (3-mercaptopropionate): 50 parts and 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 50 parts were further added. The mixture was stirred for 1 hour while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere. Subsequently, after deaeration for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, the resin raw material for a thiourethane liquid lens substrate having a refractive index (ne) of 1.60 is filtered through a 1 μm filter. Was prepared.
 <樹脂B(エピスルフィド系樹脂)>
 ビス(2,3-エピチオプロピル)ジスルフィド:90部、4,7-ビス(メルカプトメチル)-3,6,9-トリチア-1,11-ウンデカンジチオール:10部を窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌し、硬化剤としてN,N-ジメチルシクロヘキシルアミン:0.3部、香気性付与剤としてイソプレゴール:0.3部、更に紫外線吸収剤として3-5[-(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸とポリエチレングリコールとのモノエステル:1.5部をそれぞれ添加し、  更に窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.74のエピスルフィド系樹脂の液状樹脂原料を調製した。
<Resin B (episulfide resin)>
Bis (2,3-epithiopropyl) disulfide: 90 parts, 4,7-bis (mercaptomethyl) -3,6,9-trithia-1,11-undecanedithiol: 10 parts at 15 ° C. under nitrogen gas atmosphere The mixture was stirred for 30 minutes while adjusting the temperature, N, N-dimethylcyclohexylamine: 0.3 parts as a curing agent, isopulegol: 0.3 parts as a fragrance imparting agent, and 3-5 [-(2-benzotriazole as an ultraviolet absorber) ) -3-T-Butyl-4-hydroxyphenyl] propionic acid and polyethylene glycol: 1.5 parts were added respectively, and the mixture was further stirred for 30 minutes while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere. Subsequently, the mixture was deaerated for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, and then filtered through a 1 μm filter to prepare a liquid resin raw material of an episulfide resin having a refractive index (ne) of 1.74.
 <樹脂C((メタ)アクリル系樹脂)>
 NK11P(日本清水産業製、主成分ビスフェノール系MMA):96部、αメチルスチレンダイマー:4部、窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌し、硬化剤としてパーブチルND:1.4部、紫外線吸収剤として3-5[-(2-ベンゾトリアゾール)-3-t-ブチル-4-ヒドロキシフェニル]プロピオン酸:1.0部をそれぞれ添加し、更に窒素ガス雰囲気下で15℃に温度調節しながら30分混合撹拌した。続いて、真空ポンプを用いて液温度15℃、133Paで撹拌しながら1時間脱気後、1μmフィルターでろ過して屈折率(ne)1.56の樹脂原料を調製した。
<Resin C ((meth) acrylic resin)>
NK11P (manufactured by Nippon Shimizu Sangyo Co., Ltd., main component bisphenol MMA): 96 parts, α-methylstyrene dimer: 4 parts, mixed and stirred for 30 minutes while adjusting the temperature to 15 ° C. in a nitrogen gas atmosphere, and perbutyl ND: 1 as a curing agent 4 parts, 3-5 [-(2-benzotriazole) -3-tert-butyl-4-hydroxyphenyl] propionic acid: 1.0 part each as an ultraviolet absorber, and further added to 15 ° C. under nitrogen gas atmosphere The mixture was stirred for 30 minutes while adjusting the temperature. Subsequently, the mixture was degassed for 1 hour with stirring at a liquid temperature of 15 ° C. and 133 Pa using a vacuum pump, and then filtered through a 1 μm filter to prepare a resin raw material having a refractive index (ne) of 1.56.
 <樹脂D(ナイロン系樹脂)>
 ナイロン系樹脂には、グリルアミドTR XE3805(エムスケミー・ジャパン株式会社製ポリアミド系樹脂)注型成型品を使用した。
<Resin D (nylon-based resin)>
As the nylon resin, a grill amide TR XE3805 (polyamide resin manufactured by EMS Chemie Japan Co., Ltd.) cast molding was used.
 <樹脂E(ポリカーボネート系樹脂)>
 ポリカーボネート系樹脂には、ユーピロンCLS3400(三菱エンジニアリングプラスチックス株式会社製ポリカーボネート系樹脂)注型成型品を使用した。
<Resin E (polycarbonate resin)>
As the polycarbonate resin, Iupilon CLS3400 (Mitsubishi Engineering Plastics polycarbonate resin) cast molding was used.
 <樹脂F(ポリウレア系樹脂)>
 ポリウレア系樹脂には、NXT(トライベックス社(ICRX NXT社)製ポリウレア系樹脂)注型成形品を使用した。
<Resin F (polyurea resin)>
As the polyurea resin, NXT (polyurea resin manufactured by Tribex Corporation (ICRX NXT)) cast molding was used.
 有機ガラス基材11の成形は、注型成形法で行い、成形型は、凸面側モールドと凹面側モールドとをレンズの中心の間隔が1.0mmとなるように粘着テープからなるテーピングでシールをして、有機ガラス基材成形用のキャビティを有する成形型を作成した。 The organic glass substrate 11 is molded by a cast molding method, and the mold is sealed with taping made of an adhesive tape so that the distance between the center of the lens is 1.0 mm between the convex mold and the concave mold. Thus, a mold having a cavity for forming an organic glass substrate was prepared.
 有機ガラス基材11は、上述の組成で混合され、成形型に注入され、チオウレタン系とエピスルフィド系は120℃で2時間、(メタ)アクリレート系は80℃で1時間加熱硬化させることによって成形した。 The organic glass substrate 11 is mixed by the above-described composition and injected into a mold, and the thiourethane and episulfide are molded by heating and curing at 120 ° C. for 2 hours, and the (meth) acrylate system is heated and cured at 80 ° C. for 1 hour. did.
 機能性樹脂層15の有機ガラス基材11への注型成形は、図1に示すように、有機ガラス基材11に成形型のキャビティ21を形成し、機能性樹脂層15を成形する機能性樹脂を注入し、硬化させることによって成形した。キャビティ21は、有機ガラス基材11を第1モールド13とし、第1モールド13の外側に一定の隙間が形成されるように、第2モールド17として有機ガラス基材11成形の際に使用した凸面側モールドを配するとともに、第1モールド13と第2モールド17の周面隙間をテーピング19でシールして形成した。なお、第1モールド13と第2モールド17との隙間の間隔(機能性樹脂層15の厚み)は、特記した場合を除き、0.8mmとした。 As shown in FIG. 1, cast molding of the functional resin layer 15 onto the organic glass substrate 11 is performed by forming a mold cavity 21 in the organic glass substrate 11 and molding the functional resin layer 15. Molded by injecting resin and curing. The cavity 21 is a convex surface used when forming the organic glass substrate 11 as the second mold 17 so that the organic glass substrate 11 is the first mold 13 and a certain gap is formed outside the first mold 13. A side mold was disposed, and a circumferential gap between the first mold 13 and the second mold 17 was formed by sealing with a taping 19. The interval between the first mold 13 and the second mold 17 (the thickness of the functional resin layer 15) was 0.8 mm unless otherwise specified.
 光学要素(眼鏡レンズ)が偏光特性を有するものとする場合には、有機ガラス基材11の機能性樹脂層15を備える側に偏光フィルムを配設してから、成形型のキャビティ21を形成し、機能性樹脂層15を成形する機能性樹脂を注入した。機能性樹脂が硬化することによって、光学要素は、有機ガラス基材11と機能性樹脂層15との間に偏光フィルムが備えられ、偏光特性を有するものとした。なお、偏光フィルムは、厚み38μmのポリビニルアルコール延伸偏光フィルムを使用した。 When the optical element (glasses lens) has polarization characteristics, a polarizing film is disposed on the side of the organic glass substrate 11 on which the functional resin layer 15 is provided, and then a mold cavity 21 is formed. The functional resin for forming the functional resin layer 15 was injected. When the functional resin is cured, the optical element is provided with a polarizing film between the organic glass substrate 11 and the functional resin layer 15 and has polarizing characteristics. The polarizing film used was a 38 μm thick polyvinyl alcohol stretched polarizing film.
 機能性樹脂層15が成形された有機ガラス基材11(樹脂レンズ)は、凹面と外周とが切削・研磨され、直径70mmのSPH(球面(D))が-8.00の光学要素(眼鏡レンズ)とした。 The organic glass substrate 11 (resin lens) on which the functional resin layer 15 is molded has its concave surface and outer periphery cut and polished, and an optical element (glasses) having a diameter of 70 mm and SPH (spherical surface (D)) of −8.00. Lens).
 光学要素は、有機ガラス基材11と機能性樹脂層15との組合せにより作成し、これらについて、フォトクロミック特性、外観の評価を測定し、強度の評価として密着性を測定した。 The optical element was prepared by a combination of the organic glass substrate 11 and the functional resin layer 15, and the photochromic characteristics and appearance were evaluated for these, and the adhesion was measured as strength evaluation.
 <調光性(フォトクロミック特性)>
 フォトクロミック特性は、光学要素に紫外線照射による着色と紫外線遮断による消色をさせて、着色状態の分光平均透過率(着色性)と遮断2分後の分光平均透過率(戻り速さ)を測定した。紫外線照射は、FL4.BLB(東芝ライテック株式会社製ブラックライト蛍光ランプ、紫外線出力0.25W、紫外線放射強度2.7μW/cm2)を試験体の光学要素の光軸上の20cm離れた位置から照射した。分光平均透過率は、以下の装置及び規格に準拠して求め、380~780nmの光についての平均透過率を求めた。なお、測定位置は、光学要素の幾何中心とした。
<Light control (photochromic characteristics)>
For photochromic properties, the optical element was colored by UV irradiation and decolored by UV blocking, and the spectral average transmittance (colorability) in the colored state and the spectral average transmittance (return speed) 2 minutes after blocking were measured. . UV irradiation is FL4. BLB (black light fluorescent lamp manufactured by Toshiba Lighting & Technology Co., Ltd., ultraviolet output 0.25 W, ultraviolet radiation intensity 2.7 μW / cm 2 ) was irradiated from a position 20 cm away from the optical axis of the optical element of the test specimen. The spectral average transmittance was determined according to the following apparatus and standard, and the average transmittance for light of 380 to 780 nm was determined. The measurement position was the geometric center of the optical element.
  ・装置:分光光度計U-4100(株式会社日立ハイテクサイエンス製)
  ・規格:屈折補正用眼鏡レンズの透過率の仕様及び試験方法(JIS T 7333:2005(ISO/DIS 8980-3:2002))
 そして、着色性は、光学要素に15分間紫外線照射した直後の分光平均透過率を測定し、以下のように評価した。◎:20%以下、○:20%を超え30%以下、△:30%を超え50%以下、×:50%を超える。着色性は、分光平均透過率が大きいほど悪い評価となる。戻り速さは、光学要素に15分間紫外線照射し、照射遮断2分後の分光平均透過率を測定し、以下のように評価した。◎:70%以上、○:50%以上70%未満、△:30%以上50%未満、×:30%未満。戻り速さは、分光平均透過率が小さいほど悪い評価となる。調光性は、着色性と戻り速さのうち、悪い方の評価を調光性として評価した。
・ Device: Spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.)
Standard: Specification and test method of transmittance of refraction correcting spectacle lens (JIS T 7333: 2005 (ISO / DIS 8980-3: 2002))
The colorability was evaluated as follows by measuring the spectral average transmittance immediately after the optical element was irradiated with ultraviolet rays for 15 minutes. A: 20% or less, B: 20% to 30%, Δ: 30% to 50%, ×: 50% or more. As the spectral average transmittance increases, the colorability becomes worse. The return speed was evaluated as follows by irradiating the optical element with ultraviolet rays for 15 minutes, measuring the spectral average transmittance after 2 minutes from blocking irradiation. A: 70% or more, O: 50% or more and less than 70%, Δ: 30% or more and less than 50%, ×: less than 30%. The return speed becomes worse as the spectral average transmittance is smaller. The dimming property was evaluated as the dimming property, which is the worse of the coloring property and the return speed.
 <レンズ外観>
 レンズ外観は、目視でその異常の有無を確認した。そして、レンズ外観は、以下のように評価した。○:異常なし、△:脈理の発生や白濁の発生が見られるものの使用するにあたり問題がないもの、×:脈理の発生や白濁の発生により使用において問題があるもの。
<Lens appearance>
The external appearance of the lens was confirmed by visual inspection. And the lens external appearance was evaluated as follows. ○: no abnormality, Δ: striae or white turbidity is observed, but there are no problems in use, ×: striae or white turbidity causes problems in use.
 <密着性>
 密着性は、強制剥離試験を行って評価した。強制剥離試験は、機能性基材層15と有機ガラス基材11との界面にあたるレンズの外周面(コバ面)にナイロン糸を掛ける溝(ナイロール溝)を設け、ナイロール溝にマイナスドライバーを差し込んで強制的に剥離させるようにして、密着性を評価した。そして、密着性は、以下のように評価した。○:剥離なし(機能性基材層15又は有機ガラス基材11に欠損が見られる場合であっても、界面での剥離は見られない)、△:機能性基材層15と有機ガラス基材11との界面に剥離が見られるが隙間の発生は確認されない、×:機能性基材層15と有機ガラス基材11との界面に剥離が見られ隙間の発生が確認できる。
<Adhesion>
The adhesion was evaluated by performing a forced peel test. In the forced peel test, a groove (Nyroll groove) on which a nylon thread is hung is provided on the outer peripheral surface (edge surface) of the lens corresponding to the interface between the functional substrate layer 15 and the organic glass substrate 11, and a minus driver is inserted into the Nyroll groove. The adhesiveness was evaluated by forcibly peeling. And adhesiveness was evaluated as follows. ○: No peeling (even if the functional base material layer 15 or the organic glass base material 11 has a defect, no peeling at the interface is seen), Δ: the functional base material layer 15 and the organic glass base Peeling is seen at the interface with the material 11 but no gap is confirmed. X: Peeling is seen at the interface between the functional base material layer 15 and the organic glass base material 11, and the occurrence of the gap can be confirmed.
 以下に、試験例を記載する。なお、試験例1-1~試験例1-31,試験例2-1~試験例2-31,試験例3-1~試験例3-31,試験例4-1~試験例4-31,試験例5-1~試験例5-31,試験例6-1~試験例6-31が実施例であり、最善の実施例は、試験例1-31である。 The test example is described below. Test Example 1-1 to Test Example 1-31, Test Example 2-1 to Test Example 2-31, Test Example 3-1 to Test Example 3-31, Test Example 4-1 to Test Example 4-31, Test Examples 5-1 to 5-31 and Test Examples 6-1 to 6-31 are examples, and the best example is Test Example 1-31.
  (試験例1-1~試験例1-31)
 試験例1-1~試験例1-31は、有機ガラス基材11に樹脂A(チオウレタン系樹脂)を使用した試験例である。なお、表中には記載していないが、試験例1-13から試験例1-16は、偏光特性を有する光学要素とした。評価性能の結果を表2-1に記載する。
(Test Example 1-1 to Test Example 1-31)
Test Examples 1-1 to 1-31 are test examples in which the resin A (thiourethane resin) is used for the organic glass substrate 11. Although not shown in the table, Test Examples 1-13 to 1-16 are optical elements having polarization characteristics. The results of evaluation performance are listed in Table 2-1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験例1-1~試験例1-12は、ポリオール化合物(ポリアルキレングリコール化合物及びフェノール骨格含有ポリアルキレングリコール化合物)の種類を変更したものである。なお、イソシアネート化合物とチオール化合物は、適宜、その種類を変更した。 Test Example 1-1 to Test Example 1-12 are modified types of polyol compounds (polyalkylene glycol compound and phenol skeleton-containing polyalkylene glycol compound). In addition, the kind of the isocyanate compound and the thiol compound was changed as appropriate.
 試験例1-1は、ポリオール化合物に、平均分子量が200とやや小さく、ポリオキシアルキレンがポリオキシエチレンであり、平均重合度(m+n)が4であるポリアルキレングリコールのPEG200を使用した試験例である。試験例1-1は、平均重合度が小さいため調光性がやや劣り、平均分子量が200とやや小さいため密着性がやや劣り、ポリオキシアルキレンがポリオキシエチレンであり、フォトクロミック剤の分散性がやや劣るためか、機能性樹脂層15に白濁が見られた。 Test Example 1-1 is a test example in which PEG200 of polyalkylene glycol having an average molecular weight of slightly small as 200, polyoxyalkylene is polyoxyethylene, and average degree of polymerization (m + n) is 4 is used as the polyol compound. is there. Test Example 1-1 is slightly inferior in light control due to a small average degree of polymerization, slightly inferior in adhesiveness because of an average molecular weight of slightly small as 200, polyoxyalkylene is polyoxyethylene, and dispersibility of the photochromic agent is It was somewhat inferior, and white turbidity was observed in the functional resin layer 15.
 試験例1-2と試験例1-3はポリオール化合物に、ポリオキシアルキレンがポリオキシエチレンであるポリアルキレングリコールのPEG400又はPEG1000を使用した試験例である。試験例1-2は、平均重合度が小さいため(m+n≒9)調光性が僅かながら劣るものの、密着性とレンズ外観に問題はなかった。試験例1-3は、調光性と密着性に問題ないものの、ポリオキシアルキレンがポリオキシエチレンでありフォトクロミック剤の分散性がやや劣るためか、機能性樹脂層15に僅かながら白濁が見られた。 Test Examples 1-2 and 1-3 are test examples using PEG400 or PEG1000 of polyalkylene glycol in which polyoxyalkylene is polyoxyethylene as the polyol compound. In Test Example 1-2, since the average degree of polymerization was small (m + n≈9), the light control was slightly inferior, but there was no problem in adhesion and lens appearance. In Test Example 1-3, although there is no problem in the light control and adhesion, the functional resin layer 15 is slightly cloudy because the polyoxyalkylene is polyoxyethylene and the dispersibility of the photochromic agent is slightly inferior. It was.
 試験例1-4と試験例1-5は、ポリオール化合物に、ポリオキシアルキレンがポリオキシプロピレンであるポリアルキレングリコールのPPG400又はPPG1000を使用した試験例である。試験例1-4と試験例1-5は、密着性とレンズ外観に問題ないものの、試験例1-4では、平均重合度が小さいため(m+n≒9)調光性が僅かながら劣った。 Test Example 1-4 and Test Example 1-5 are test examples using PPG400 or PPG1000 of a polyalkylene glycol whose polyoxyalkylene is polyoxypropylene as a polyol compound. In Test Example 1-4 and Test Example 1-5, there was no problem in adhesion and lens appearance, but in Test Example 1-4, the average degree of polymerization was small (m + n≈9), but the light control property was slightly inferior.
 試験例1-6~試験例1-8は、ポリオール化合物に、ポリオキシアルキレンがポリオキシエチレンとポリオキシプロピレンとの共重合体であるポリアルキレングリコールのPEPG1500、PEPG2000又はPEPG2500を使用した試験例である。試験例1-6は、調光性、密着性及びレンズ外観に問題はなかった。なお、試験例1-7と試験例1-8は、ポリオキシアルキレンのEOとPOの比率がEO/(EO+PO)=20質量%と、EOの比率が小さいためか、機能性樹脂層15に白濁が生じることがあった。 Test Examples 1-6 to 1-8 are test examples in which polyalkylene glycol PEPG1500, PEPG2000 or PEPG2500 in which polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene is used as a polyol compound. is there. In Test Example 1-6, there were no problems in light control, adhesion, and lens appearance. In Test Example 1-7 and Test Example 1-8, the ratio of EO / PO of polyoxyalkylene is EO / (EO + PO) = 20% by mass and the ratio of EO is small. White turbidity sometimes occurred.
 試験例1-9と試験例1-10は、ポリオール化合物に、ポリオキシアルキレンがポリオキシエチレンであるフェノール骨格含有ポリアルキレングリコールのEPH400又はEPH700を使用した試験例である。試験例1-9と試験例1-10は、ポリオール化合物にフェノール骨格含有ポリアルキレングリコールを使用しているため、熱による歪みが軽減されたものであった。 Test Examples 1-9 and 1-10 are test examples using a phenol skeleton-containing polyalkylene glycol EPH400 or EPH700 whose polyoxyalkylene is polyoxyethylene as the polyol compound. In Test Example 1-9 and Test Example 1-10, a phenol skeleton-containing polyalkylene glycol was used as the polyol compound, so that distortion due to heat was reduced.
 試験例1-11は、ポリオール化合物に、ポリオキシアルキレンがポリオキシプロピレンであるフェノール骨格含有ポリアルキレングリコールのPPH400を使用した試験例である。試験例1-11は、密着性とレンズ外観に問題ないものの、平均重合度が小さいため(m+n≒4)調光性が僅かながら劣った。 Test Example 1-11 is a test example in which a phenol skeleton-containing polyalkylene glycol PPH400 in which the polyoxyalkylene is polyoxypropylene is used as the polyol compound. In Test Example 1-11, although there was no problem in adhesion and lens appearance, the light control property was slightly inferior because of the small average degree of polymerization (m + n≈4).
 試験例1-12は、ポリオール化合物に、ポリオキシアルキレンがポリオキシエチレンとポリオキシプロピレンとの共重合体であるフェノール骨格含有ポリアルキレングリコールのEPPH800を使用した試験例である。試験例1-12は、調光性、密着性及びレンズ外観に問題はなかった。 Test Example 1-12 is a test example using a phenol skeleton-containing polyalkylene glycol EPPH800, in which the polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene, as the polyol compound. In Test Example 1-12, there were no problems in light control, adhesion, and lens appearance.
 試験例1-13~試験例1-20は、ポリオール化合物にポリアルキレングリコール化合物とフェノール骨格含有ポリアルキレングリコール化合物とを併用した試験例である。試験例1-15が調光性にやや劣る結果になったが、それ以外の試験例は、調光性、密着性及びレンズ外観に問題はなかった。なお、試験例1-13~試験例1-16は、偏光フィルムを備えているため、偏光特性を備えていた。 Test Examples 1-13 to 1-20 are test examples in which a polyalkylene glycol compound and a phenol skeleton-containing polyalkylene glycol compound are used in combination with a polyol compound. Test Example 1-15 resulted in slightly inferior light control, but the other test examples had no problems with light control, adhesion, and lens appearance. Since Test Examples 1-13 to 1-16 were provided with the polarizing film, they had polarization characteristics.
 試験例1-21~試験例1-24は、ポリオール化合物にポリアルキレングリコール化合物を2種類併用し、チオール化合物を使用しなかった試験例である。これらは、調光性及びレンズ外観に問題はなかったが、親水性の強い4官能のポリオール化合物であるポリオキシエチレン・ポリオキシプロピレン-ペンタエスリトール-エーテルを使用しているため密着性がやや劣り、機能性樹脂層15がウレタン系樹脂であるため屈折率が他の試験例と比して劣る(低い)ものであった。 Test Examples 1-21 to 1-24 are test examples in which two types of polyalkylene glycol compounds were used in combination with a polyol compound and no thiol compound was used. These did not have any problems in light control and lens appearance, but because of the use of polyoxyethylene / polyoxypropylene-pentaerythritol-ether, which is a highly hydrophilic tetrafunctional polyol compound, it has good adhesion. Since the functional resin layer 15 is a urethane resin, the refractive index is inferior (lower) compared to other test examples.
 試験例1-25~試験例1-31は、ポリオール化合物に、ポリオキシアルキレンがポリオキシエチレンとポリオキシプロピレンとの共重合体であるポリアルキレングリコールのPEPG1500、PEPG2000、PEPG2500、PEPG3500、PEPG10000、PEPG13000、PEPG14000を使用した試験例である。試験例1-25と試験例1-28~試験例1-31は、調光性、密着性及びレンズ外観に問題はなかった。また、試験例1-28~試験例1-31は、機能性薬剤としてNeoContrastも含有しているものであり、光学要素の見え方が改善されたものであった。試験例1-26と試験例1-27は、ポリオキシアルキレンのEOとPOの比率がEO/(EO+PO)=20質量%と、EOの比率が小さいためか、頻度的には少ないが、機能性樹脂層15に白濁が生じることがあった。 Test Example 1-25 to Test Example 1-31 are PEPG1500, PEPG2000, PEPG2500, PEPG3500, PEPG10000, PEPG13000, which are polyalkylene glycols in which a polyoxyalkylene is a copolymer of polyoxyethylene and polyoxypropylene. This is a test example using PEPG 14000. In Test Example 1-25 and Test Example 1-28 to Test Example 1-31, there were no problems in light control, adhesion, and lens appearance. Test Examples 1-28 to 1-31 also contained NeoContrast as a functional drug, and the appearance of the optical element was improved. In Test Example 1-26 and Test Example 1-27, the ratio of EO to PO in polyoxyalkylene is EO / (EO + PO) = 20% by mass, and the ratio of EO is small. In some cases, white turbidity occurred in the conductive resin layer 15.
 なお、表中には記載しなかったが、試験例1-13において、機能性樹脂層15の厚みを0.8mmから0.2mmと3.0mmに変更した試験を行った。機能性樹脂層15の厚みが0.2mmの試験例は、機能性樹脂の注入が可能であったものの作業がし難く、作業性の観点から厚みの下限値であると考えられた。一方、機能性樹脂層15の厚みが3.0mmの試験例は、厚みがあることから機能性樹脂層15の硬化にムラが生じ、わずかながら脈理の発生が確認できた。 Although not shown in the table, in Test Example 1-13, a test was performed in which the thickness of the functional resin layer 15 was changed from 0.8 mm to 0.2 mm and 3.0 mm. The test example in which the thickness of the functional resin layer 15 was 0.2 mm was considered to be the lower limit value of the thickness from the viewpoint of workability because the functional resin could be injected but the work was difficult. On the other hand, in the test example in which the thickness of the functional resin layer 15 was 3.0 mm, the thickness of the functional resin layer 15 was uneven because of the thickness, and a slight occurrence of striae was confirmed.
  (試験例2-1~試験例2-31、試験例3-1~試験例3-31、試験例4-1~試験例4-31、試験例5-1~試験例5-31、試験例6-1~試験例6-31)
 試験例2-1~試験例2-31は、有機ガラス基材11に樹脂B(エピスルフィド系樹脂)を使用した試験例である。評価性能の結果を表2-2に記載する。また、試験例3-1~試験例3-31は、有機ガラス基材11に樹脂C((メタ)アクリル系樹脂)を使用した試験例である。評価性能の結果を表2-3に記載する。試験例4-1~試験例4-31は、有機ガラス基材11に樹脂D(ナイロン系樹脂)を使用した試験例である。評価性能の結果を表2-4に記載する。試験例5-1~試験例5-31は、有機ガラス基材11に樹脂E(ポリカーボネート系樹脂)を使用した試験例である。評価性能の結果を表2-5に記載する。試験例6-1~試験例6-31は、有機ガラス基材11に樹脂F(ポリウレア系樹脂)を使用した試験例である。評価性能の結果を表2-6に記載する。
(Test Example 2-1 to Test Example 2-31, Test Example 3-1 to Test Example 3-31, Test Example 4-1 to Test Example 4-31, Test Example 5-1 to Test Example 5-31, Test Example 6-1 to Test Example 6-31)
Test Examples 2-1 to 2-31 are test examples in which resin B (episulfide resin) is used for the organic glass substrate 11. The results of evaluation performance are listed in Table 2-2. Test examples 3-1 to 3-31 are test examples using the resin C ((meth) acrylic resin) for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-3. Test Examples 4-1 to 4-31 are test examples in which resin D (nylon resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-4. Test Examples 5-1 to 5-31 are test examples in which resin E (polycarbonate resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-5. Test Examples 6-1 to 6-31 are test examples in which resin F (polyurea resin) is used for the organic glass substrate 11. The results of evaluation performance are shown in Table 2-6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 試験例2-1~試験例2-31、試験例3-1~試験例3-31、試験例4-1~試験例4-31及び試験例5-1~試験例5-31の結果から、実施形態の機能性樹脂層15は、有機ガラス基材11が、エピスルフィド系樹脂、(メタ)アクリル系樹脂、ナイロン系樹脂、ポリカーボネート系樹脂及びポリウレア系樹脂であっても使用可能であることが確認できた。 From the results of Test Example 2-1 to Test Example 2-31, Test Example 3-1 to Test Example 3-31, Test Example 4-1 to Test Example 4-31, and Test Example 5-1 to Test Example 5-31 The functional resin layer 15 of the embodiment can be used even when the organic glass substrate 11 is an episulfide resin, a (meth) acrylic resin, a nylon resin, a polycarbonate resin, or a polyurea resin. It could be confirmed.
 11…有機ガラス基材、13…第1モールド、15…機能性樹脂層、17…第2モールド、19…テーピング、21…キャビティ。 DESCRIPTION OF SYMBOLS 11 ... Organic glass base material, 13 ... 1st mold, 15 ... Functional resin layer, 17 ... 2nd mold, 19 ... Taping, 21 ... Cavity.

Claims (8)

  1.  樹脂成形体である有機ガラス基材の片面又は両面に、機能性樹脂層が一体化された光学要素において、
     該機能性樹脂層が、機能性薬剤と、イソシアネート化合物と、ポリオール化合物と、を含有し、
     該ポリオール化合物は、平均分子量が180以上である多価アルコール重合体化合物を含有することを特徴とする光学要素。
    In an optical element in which a functional resin layer is integrated on one side or both sides of an organic glass substrate that is a resin molded body,
    The functional resin layer contains a functional agent, an isocyanate compound, and a polyol compound,
    The polyol element contains a polyhydric alcohol polymer compound having an average molecular weight of 180 or more.
  2.  前記多価アルコール重合体化合物が、ポリアルキレングリコール化合物を含有することを特徴とする請求項1に記載の光学要素。 The optical element according to claim 1, wherein the polyhydric alcohol polymer compound contains a polyalkylene glycol compound.
  3.  前記多価アルコール重合体化合物が、フェノール骨格含有ポリアルキレングリコール化合物を含有することを特徴とする請求項1に記載の光学要素。 2. The optical element according to claim 1, wherein the polyhydric alcohol polymer compound contains a phenol skeleton-containing polyalkylene glycol compound.
  4.  前記多価アルコール重合体化合物が、ポリアルキレングリコール化合物とフェノール骨格含有ポリアルキレングリコール化合物とを含有することを特徴とする請求項1に記載の光学要素。 The optical element according to claim 1, wherein the polyhydric alcohol polymer compound contains a polyalkylene glycol compound and a phenol skeleton-containing polyalkylene glycol compound.
  5.  前記機能性樹脂層が、チオール化合物を含有することを特徴とする請求項1~4のいずれかに記載の光学要素。 The optical element according to any one of claims 1 to 4, wherein the functional resin layer contains a thiol compound.
  6.  前記機能性薬剤が、フォトクロミック剤を含有することを特徴とする請求項5に記載の光学要素。 The optical element according to claim 5, wherein the functional drug contains a photochromic agent.
  7.  前記有機ガラス基材と前記機能性樹脂層との間に偏光フィルムを備えることを特徴とする請求項5に記載の光学要素。 The optical element according to claim 5, further comprising a polarizing film between the organic glass substrate and the functional resin layer.
  8.  前記機能性樹脂層の厚みが0.2~3.0mmであることを特徴とする請求項5に記載の光学要素。 6. The optical element according to claim 5, wherein the functional resin layer has a thickness of 0.2 to 3.0 mm.
PCT/JP2017/006188 2016-12-28 2017-02-20 Optical element WO2018123077A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/046616 WO2018124063A1 (en) 2016-12-28 2017-12-26 Optical element and production method therefor
JP2018537546A JP6585850B2 (en) 2016-12-28 2017-12-26 Optical element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-255420 2016-12-28
JP2016255420 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123077A1 true WO2018123077A1 (en) 2018-07-05

Family

ID=62710008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006188 WO2018123077A1 (en) 2016-12-28 2017-02-20 Optical element

Country Status (2)

Country Link
JP (1) JP6585850B2 (en)
WO (1) WO2018123077A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330784A (en) * 2019-07-24 2019-10-15 上海康耐特光学有限公司 A kind of polyurethane mixture and its preparation method and application includes its modification eyeglass
CN112812667A (en) * 2019-10-31 2021-05-18 天元清水光学(上海)有限公司 Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens
CN113348223A (en) * 2019-01-30 2021-09-03 三井化学株式会社 Method for producing polymerizable composition for optical material
CN115768746A (en) * 2020-05-28 2023-03-07 株式会社德山 Compound for optical material, curable composition, cured product, and optical article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518960A (en) * 1997-04-04 2001-10-16 コーニング ソシエテ アノニム Self-light-stabilized photochromic polymer, process for preparing the same, and articles containing the same
JP2009507264A (en) * 2005-09-07 2009-02-19 トランジションズ オプティカル, インコーポレイテッド Photochromic multifocal optics
JP2010031294A (en) * 2002-12-05 2010-02-12 Tokuyama Corp Coating composition and optical article

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600625B2 (en) * 1993-09-02 2004-12-15 三井化学株式会社 Two-component polyurethane foam-type sealing material composition, sealing method and lamp
JP3288151B2 (en) * 1993-09-02 2002-06-04 三井化学株式会社 Two-component polyurethane foam-type sealing material composition, sealing method and lamp
JP2006039394A (en) * 2004-07-29 2006-02-09 Canon Chemicals Inc Conductive roller
WO2015046369A1 (en) * 2013-09-26 2015-04-02 三井化学株式会社 1,4-bis(isocyanatomethyl)cyclohexane, polyisocyanate composition, polyurethane resin, molded product, eyewear material, eyewear frame and lens
WO2015060259A1 (en) * 2013-10-21 2015-04-30 三井化学株式会社 Polymerizable composition for optical material and optical material
EP3061780B1 (en) * 2013-10-21 2020-09-16 Mitsui Chemicals, Inc. Polymerizable composition for optical material and optical material
JP6127159B2 (en) * 2014-02-03 2017-05-10 三井化学株式会社 Polymerizable composition for optical material, optical material obtained from the composition, and plastic lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518960A (en) * 1997-04-04 2001-10-16 コーニング ソシエテ アノニム Self-light-stabilized photochromic polymer, process for preparing the same, and articles containing the same
JP2010031294A (en) * 2002-12-05 2010-02-12 Tokuyama Corp Coating composition and optical article
JP2009507264A (en) * 2005-09-07 2009-02-19 トランジションズ オプティカル, インコーポレイテッド Photochromic multifocal optics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113348223A (en) * 2019-01-30 2021-09-03 三井化学株式会社 Method for producing polymerizable composition for optical material
CN110330784A (en) * 2019-07-24 2019-10-15 上海康耐特光学有限公司 A kind of polyurethane mixture and its preparation method and application includes its modification eyeglass
CN112812667A (en) * 2019-10-31 2021-05-18 天元清水光学(上海)有限公司 Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens
CN115768746A (en) * 2020-05-28 2023-03-07 株式会社德山 Compound for optical material, curable composition, cured product, and optical article

Also Published As

Publication number Publication date
JP6585850B2 (en) 2019-10-02
JPWO2018124063A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
AU2008245205B9 (en) Infrared ray-absorbable eyeglass lens, and method for production thereof
WO2018123077A1 (en) Optical element
KR101761828B1 (en) Optical resin compositions and optical lens prepared therefrom
US7035010B2 (en) Polarized lenses with variable transmission
EP1243621B1 (en) Plastic base material
EP3105276A1 (en) Amine-catalyzed thiol-curing of epoxide resins
JP2012173704A (en) Antiglare optical element
US11774636B2 (en) Blue light cutting optical material having a bluish appearance
JP2010085911A (en) Lens substrate for infrared ray absorbing spectacles
KR20180040651A (en) Polymerizable composition for optical material, optical material, method of producing polymeric composition for optical material, and method of producing optical material
WO2017047684A1 (en) Method for manufacturing polymerizable composition for optical material, and method for manufacturing optical material
US8474973B2 (en) Infrared absorbing polarized eyeglass lens
JP2020530524A (en) Optical adhesives and the optical laminates and optical lenses formed by them
US10934480B2 (en) Optical articles comprising photochromic poly(urea-urethane)
JP2019015922A (en) Spectacle lens material
WO2018124063A1 (en) Optical element and production method therefor
KR20210134700A (en) Manufacturing method of optical material, polymerizable composition for optical material
WO2018008179A1 (en) Eyeglass material
JP6692249B2 (en) Eyeglass material
WO2018037621A1 (en) Light-modulating optical element
JP7228206B2 (en) optical material
JP7160649B2 (en) Polymerizable composition for optical material and optical material obtained from said composition
CN112812667A (en) Functional resin layer and preparation process of functional resin layer applied to blue-light-proof lens
JP2019086550A (en) Optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP