WO2018123033A1 - Method for producing hydrogen water - Google Patents
Method for producing hydrogen water Download PDFInfo
- Publication number
- WO2018123033A1 WO2018123033A1 PCT/JP2016/089144 JP2016089144W WO2018123033A1 WO 2018123033 A1 WO2018123033 A1 WO 2018123033A1 JP 2016089144 W JP2016089144 W JP 2016089144W WO 2018123033 A1 WO2018123033 A1 WO 2018123033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- water
- hydrogen water
- raw water
- pressure
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/68—Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
Definitions
- the present invention relates to a method for producing hydrogen water.
- hydrogen water water containing hydrogen
- a method for producing such hydrogen water for example, a method has been proposed in which a mixed fluid obtained by mixing raw water and hydrogen water is passed through a porous element (see, for example, Patent Document 1).
- the problem with hydrogen water is that the contained hydrogen escapes early. Therefore, if the hydrogen content of the produced hydrogen water is low, most of the hydrogen will be lost in the process of circulating to the consumer, and there is a possibility that the hydrogen water with a low hydrogen content will spread over the consumer. It is regarded as a problem. Therefore, a method for producing high-concentration hydrogen water has been desired.
- the present invention has been made in view of the above, and an object thereof is to provide a method for producing high-concentration hydrogen water.
- the hydrogen water production method includes a deaeration step for degassing the raw water enclosed in a container, and a deaeration in the deaeration step.
- the raw material water is aerated to maintain the pressurized state of the raw material water, whereby an aeration step for producing hydrogen water from the raw material water and agitation of the hydrogen water produced in the aeration step A stirring step.
- the method for producing hydrogen water according to claim 2 is the method for producing hydrogen water according to claim 1, wherein in the degassing step, the raw water is degassed at a pressure of ⁇ 67 kPa or less.
- the method for producing hydrogen water according to claim 3 is the method for producing hydrogen water according to claim 1 or 2, wherein in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more. Maintain a pressurized state of 0.6 MPa or more.
- the hydrogen water production method according to claim 4 is the hydrogen water production method according to any one of claims 1 to 3, wherein the hydrogen water is stirred for 1 minute or more in the stirring step.
- the air dissolved in the raw water is extracted in the deaeration step so that hydrogen is easily dissolved, and the pressurized state of the raw water is maintained in the aeration step.
- hydrogen is suitably dissolved in the raw water, and the hydrogen concentration in the hydrogen water can be further increased by stirring the hydrogen water in the stirring step, whereby high concentration hydrogen water can be produced.
- the raw water is degassed at a pressure of ⁇ 67 kPa or less in the degassing step, the air dissolved in the raw water can be more suitably extracted, Concentrated hydrogen water can be produced.
- hydrogen is aerated over the raw water for 15 minutes or more and the pressurized state of the raw water is kept at 0.6 MPa or higher.
- hydrogen can be more suitably dissolved, and more highly concentrated hydrogen water can be produced.
- the hydrogen concentration in the hydrogen water can be increased more suitably and uniformly, and a higher concentration hydrogen water is produced. be able to.
- the embodiment relates to a hydrogen water production method for producing hydrogen water by dissolving hydrogen in raw water.
- the use of hydrogen water produced by the hydrogen water production method is arbitrary, but in this embodiment, it is taken into the body and used.
- the method of taking in the body is arbitrary, and in the following, the case where the user drinks and uses it will be described.
- the present invention is not limited to this. And may be injected into the human body by a method such as infusion.
- FIG. 1 is a block diagram functionally conceptually showing a hydrogen water production apparatus 1 according to the present embodiment.
- a hydrogen water production apparatus 1 schematically includes a pressure vessel 2, a hydrogen generator 3, a bubbling stone 4, a vacuum pump 5, and a pressure gauge 6. .
- the pressure vessel 2 is a container for containing raw material water.
- the pressure vessel 2 is a vessel that can withstand pressure changes when deaerated by the vacuum pump 5 or when hydrogen is aerated in a pressurized state, and can be formed of any material such as glass or stainless steel.
- the upper end of the pressure vessel 2 is an opening, and a lid is provided to seal the gas so as not to leak from the opening. Tubes 7 and 8 penetrating the lid are provided, the tube 7 is connected to the vacuum pump 5, and the tube 8 is connected to the hydrogen generator 3.
- the hydrogen generator 3 is a device that generates hydrogen.
- the hydrogen generator 3 can employ any configuration as long as it can generate hydrogen.
- hydrogen for example, aseptic water
- the bubbling stone 4 is a means for making hydrogen into fine bubbles, and a known air stone or the like can be used.
- the bubbling stone 4 is attached to the tip of the tube 8, and hydrogen generated by the hydrogen generator 3 becomes bubbles through the bubbling stone 4 and is dissolved in the raw water.
- the vacuum pump 5 is pressure adjusting means for adjusting the pressure inside the pressure vessel 2.
- the vacuum pump 5 is connected to the inside of the pressure vessel 2 through the tube 7 as described above, and the inside of the pressure vessel 2 can be deaerated through the tube 7.
- the amount of hydrogen dissolved in the raw water can be increased by removing the air dissolved in the raw water. Hydrogen water with a larger hydrogen content can be generated.
- the pressure gauge 6 is a pressure measuring means for measuring the pressure inside the pressure-resistant vessel 2, and for example, a known elastic pressure gauge or liquid column pressure gauge can be used.
- the pressure gauge 6 is attached to the tube 7, and pressure is displayed by a display unit (for example, a part having a needle and a scale) according to the pressure inside the tube 7.
- This manufacturing process generally includes an encapsulation process, a deaeration process, an aeration process, an agitation process, and a filling process.
- This enclosing process is an enclosing step of enclosing the raw water in the pressure vessel 2. Specifically, the raw material water is poured into the pressure vessel 2 and the lid is closed to form a sealed state. At this time, the tube 7 and the tube 8 pass through the lid, the tip of the tube 7 is positioned above the raw water surface, and the bubbling stone 4 attached to the tip of the tube 8 is immersed in the raw water.
- This degassing process is a degassing step for degassing the raw water enclosed in the pressure vessel 2.
- the vacuum pump 5 is operated, and the inside of the pressure vessel 2 is sucked through the tube 7 to be in a negative pressure state (for example, 40 kPa or less in absolute pressure). Bubbles pop out and air escapes from the raw water.
- the pressure inside the pressure vessel 2 during the degassing process is hereinafter referred to as “degassing pressure”, and the degassing pressure can be measured with the pressure gauge 6.
- the duration of the deaeration process is hereinafter referred to as “deaeration time”.
- This aeration process is an aeration step in which hydrogen water is aerated from the raw material water in the deaeration step to maintain the pressurized state of the raw material water, thereby producing hydrogen water from the raw material water.
- the hydrogen generator 3 is operated and hydrogen is fed into the pressure vessel 2 through the tube 8, and at this time, hydrogen passes through the bubbling stone 4 to form fine bubbles into the raw water. Aerated.
- the pressure may be adjusted by appropriately sucking with the vacuum pump 5.
- the pressure inside the pressure vessel 2 during the aeration process is hereinafter referred to as “hydrogen pressurization pressure”, and this hydrogen pressurization pressure can be measured with the pressure gauge 6. Further, the duration time of the aeration process is hereinafter referred to as “aeration time”. When the aeration process is continued for a predetermined time (aeration time; for example, 15 minutes), the hydrogen generator 3 is stopped and the aeration process is terminated.
- This agitation process is an agitation step for agitating the hydrogen water produced in the aeration process.
- the hydrogen water produced in the aeration process is stirred while the lid is closed.
- a specific method of this stirring is arbitrary, for example, the pressure vessel 2 may be stirred on a shaker or the like, or mechanically stirred using a mixer such as a pump using a vortex flow, In this embodiment, the operator of the manufacturing method manually stirs by holding the pressure vessel 2 and shaking it.
- the duration of this stirring process is hereinafter referred to as “stirring time”.
- This filling process is a filling step in which the hydrogen water stirred in the stirring process is filled into an arbitrary container (for example, a PET bottle not shown below). Specifically, the lid of the pressure vessel 2 is removed, the tube 7, the tube 8, and the bubbling stone 4 are removed from the pressure vessel 2, and the hydrogen water inside the pressure vessel 2 is refilled into a plastic bottle to seal the plastic bottle. To do. It should be noted that the present invention is not limited to this method, and for example, it is possible to perform refilling while maintaining airtightness by providing a tube (not shown) on the lid and refilling the PET bottle with hydrogen water via this tube.
- FIG. 2 is a table showing experimental results A to H according to this example.
- the items in each row in each experimental result in FIG. 2 indicate information (for example, experimental results A1, A2, and A3) that uniquely specify a single experimental result, and the items in each column indicate the parameters ( Hydrogen generation amount (ml / min), hydrogen pressurization pressure (MPa), raw material water temperature (° C.), aeration time (min), stirring time (min), roughness of stone (bubbling stone 4), deaeration time ( min), degassing pressure (kPa), hydrogen concentration (ppm)).
- hydrogen generation amount ml / min
- MPa hydrogen pressurization pressure
- min raw material water temperature
- aeration time min
- stirring time min
- roughness of stone bubbling stone 4
- deaeration time min
- degassing pressure kPa
- hydrogen concentration ppm
- the experimental result A in FIG. 2 shows that the parameters other than the raw water temperature are fixed (the degassing time is fixed at 5 minutes), and the raw water temperature is in three stages: 0-10 ° C, 20-30 ° C, 40-50 ° C
- the hydrogen concentration was measured by applying a known determination method in which a methylene blue aqueous solution was dropped into the produced hydrogen water to check the color change of the aqueous solution.
- the experimental result A it can be seen that the lower the raw water temperature, the higher the hydrogen concentration. In particular, it is possible to produce higher concentration hydrogen water by setting the raw water temperature to 0-10 ° C.
- the experimental result C in FIG. 2 is an experimental result when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the depressurization and changing the depressurization in two stages of -56 kPa and -67 kPa. According to the experimental result C, it can be seen that the degassing pressure is ⁇ 67 kPa, the hydrogen concentration is high, and that hydrogen water with a higher concentration can be produced by reducing the degassing pressure.
- the experimental result D in FIG. 2 shows experimental results when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the deaeration time and changing the deaeration time in three steps of 5 minutes, 10 minutes, and 15 minutes. It is. According to the experimental result D, it can be seen that the degassing time is 15 minutes at the highest hydrogen concentration, and the longer the degassing time, the higher the concentration of hydrogen water can be produced. Although illustration is omitted, even if the deaeration time is made longer than 15 minutes, the hydrogen concentration of hydrogen water did not increase greatly, so it is considered that the deaeration time is 15 minutes.
- the experimental result D3 has produced the highest concentration (8.9 ppm) of hydrogen water among the experimental results shown in FIG. 2, and this concentration is extremely high compared to the conventional hydrogen water. It can be seen that the parameters of the experiment are suitable.
- the experimental result E in FIG. 2 shows an experiment in which the hydrogen concentration of hydrogen water is measured by fixing parameters other than the hydrogen pressurization pressure and changing the hydrogen pressurization pressure in two stages of 0.5 MPa and 0.6 MPa. It is a result. According to the experimental result E, it can be seen that the hydrogen concentration is higher when the hydrogen pressurization pressure is 0.6 MPa, and that hydrogen water with a higher concentration can be produced by increasing the hydrogen pressurization pressure.
- Experiment result F in FIG. 2 shows an experiment in which the hydrogen concentration of hydrogen water was measured by fixing parameters other than the aeration time and changing the aeration time in four stages of 2, 5, 10, and 15 minutes. It is a result. According to the experimental result F, it can be seen that the hydrogen concentration is the highest at 15 minutes and the hydrogen water with a higher concentration can be produced as the aeration time is longer. Although illustration is omitted, even if the aeration time is made longer than 15 minutes, the hydrogen concentration of hydrogen water did not increase greatly, so it is considered that the aeration time is sufficient for 15 minutes.
- the experimental result G in FIG. 2 is an experimental result when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the stirring time and changing the stirring time in three steps of 0 minutes, 0.5 minutes, and 1 minute. It is. According to the experimental result G, it can be seen that the stirring time is one minute at the highest hydrogen concentration, and the longer the stirring time, the higher the concentration of hydrogen water can be produced. In addition, although illustration is abbreviate
- the experimental result H in FIG. 2 is obtained when the parameters other than the roughness of the bubbling stone 4 are fixed, the roughness of the bubbling stone 4 is changed in two stages, # 180 and # 100, and the hydrogen concentration of hydrogen water is measured. It is an experimental result. According to the experimental result H, it can be seen that the roughness of the bubbling stone 4 does not significantly affect the hydrogen concentration. Although not disclosed in the experimental result H, when the bubbling stone 4 is not provided, the hydrogen concentration of the hydrogen water decreases, which is not preferable.
- the air dissolved in the raw water is removed in the deaeration step to make the hydrogen easy to dissolve, and the pressurized state of the raw water in the aeration step
- hydrogen can be suitably dissolved in the raw water, and the hydrogen concentration in the hydrogen water can be further increased by stirring the hydrogen water in the stirring step, so that high-concentration hydrogen water can be produced.
- the air dissolved in the raw water can be extracted more suitably, and more highly concentrated hydrogen water can be produced.
- hydrogen is aerated over the raw water for 15 minutes or more and the pressurized state of 0.6 MPa or higher of the raw water is maintained, so that hydrogen can be more suitably dissolved in the raw water, Furthermore, high concentration hydrogen water can be produced.
- the hydrogen concentration in the hydrogen water can be increased more suitably and uniformly, and a higher concentration hydrogen water can be produced.
- the method for producing hydrogen water according to appendix 1 includes a deaeration step for degassing the raw material water sealed in a container, and aeration of hydrogen to the raw material water degassed in the deaeration step to add the raw material water.
- Maintaining the pressure state includes an aeration step for producing hydrogen water from the raw water, and an agitation step for stirring the hydrogen water produced in the aeration step.
- the method for producing hydrogen water according to appendix 2 is the method for producing hydrogen water according to appendix 1, wherein in the degassing step, the raw water is degassed at a pressure of ⁇ 67 kPa or less.
- the method for producing hydrogen water according to appendix 3 is the method for producing hydrogen water according to appendix 1 or 2, wherein in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more, and the raw water is 0.6 MPa or more. The pressure state is maintained.
- the hydrogen water production method according to appendix 4 is the hydrogen water production method according to any one of appendices 1 to 3, wherein the hydrogen water is stirred for 1 minute or more in the stirring step.
- the air dissolved in the raw water is removed in the deaeration step so that hydrogen is easily dissolved, and the pressurized state of the raw water is maintained in the aeration step.
- the hydrogen concentration in the hydrogen water can be further increased, and high concentration hydrogen water can be produced.
- the hydrogen water is stirred for 1 minute or more, so that the hydrogen concentration in the hydrogen water can be more suitably and uniformly increased, and a higher concentration hydrogen water is produced. Can do.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physical Water Treatments (AREA)
Abstract
[Problem] To provide a method for producing a high concentration of hydrogen water. [Solution] The present invention provides a method for producing hydrogen water, the method comprising: a degassing step for degassing raw water sealed in a pressure-resistant vessel 2; an aeration step in which the raw water degassed in the degassing step is aerated with hydrogen to maintain the pressurized state of the raw water and thereby produce hydrogen water from the raw water; and an agitation step for agitating the hydrogen water produced in the aeration step, wherein the raw water is degassed at a pressure of -67 kPa or less in the degassing step, the raw water is aerated with hydrogen for at least 15 minutes and is maintained in a pressurized state of 0.6 MPa or higher in the aeration step, and the hydrogen water is agitated for at least one minute using a vibrating or stirring mixer or the like in the agitation step.
Description
本発明は、水素水製造方法に関する。
The present invention relates to a method for producing hydrogen water.
従来、治療、疲労回復、美容、及び農作物や家畜の成長促進等の目的で、水素を含有する水(以下、水素水)が利用されている。そこで、このような水素水を製造する方法として、例えば原料水と水素水を混合させた混合流体を、多孔質要素に通過させる方法が提案されている(例えば、特許文献1参照)。
Conventionally, water containing hydrogen (hereinafter referred to as hydrogen water) has been used for the purposes of treatment, recovery from fatigue, beauty, and promotion of growth of agricultural products and livestock. Therefore, as a method for producing such hydrogen water, for example, a method has been proposed in which a mixed fluid obtained by mixing raw water and hydrogen water is passed through a porous element (see, for example, Patent Document 1).
ここで、水素水は含有されている水素が早期に抜けてしまうことが問題である。そのため、製造された水素水の水素含有量が低いと、消費者に流通する過程で水素の殆どが抜けてしまい、水素含有量の低い水素水が消費者にわたってしまう可能性があり、一部では問題視されている。そのため、高濃度の水素水を製造する方法が要望されていた。
Here, the problem with hydrogen water is that the contained hydrogen escapes early. Therefore, if the hydrogen content of the produced hydrogen water is low, most of the hydrogen will be lost in the process of circulating to the consumer, and there is a possibility that the hydrogen water with a low hydrogen content will spread over the consumer. It is regarded as a problem. Therefore, a method for producing high-concentration hydrogen water has been desired.
本発明は、上記に鑑みてなされたものであって、高濃度の水素水を製造する方法を提供することを目的とする。
The present invention has been made in view of the above, and an object thereof is to provide a method for producing high-concentration hydrogen water.
上述した課題を解決し、目的を達成するために、請求項1に記載の水素水製造方法は、容器内に封入された原料水を脱気する脱気ステップと、前記脱気ステップにおいて脱気された原料水に対して水素を曝気して当該原料水の加圧状態を維持することで、前記原料水から水素水を製造する曝気ステップと、前記曝気ステップにおいて製造された前記水素水を攪拌する攪拌ステップと、を含む。
In order to solve the above-described problems and achieve the object, the hydrogen water production method according to claim 1 includes a deaeration step for degassing the raw water enclosed in a container, and a deaeration in the deaeration step. The raw material water is aerated to maintain the pressurized state of the raw material water, whereby an aeration step for producing hydrogen water from the raw material water and agitation of the hydrogen water produced in the aeration step A stirring step.
請求項2に記載の水素水製造方法は、請求項1に記載の水素水製造方法において、前記脱気ステップにおいて、前記原料水を-67kPa以下の圧力で脱気する。
The method for producing hydrogen water according to claim 2 is the method for producing hydrogen water according to claim 1, wherein in the degassing step, the raw water is degassed at a pressure of −67 kPa or less.
請求項3に記載の水素水製造方法は、請求項1又は2に記載の水素水製造方法において、前記曝気ステップにおいて、前記原料水に対して水素を15分間以上にわたって曝気し、前記原料水の0.6MPa以上の加圧状態を維持する。
The method for producing hydrogen water according to claim 3 is the method for producing hydrogen water according to claim 1 or 2, wherein in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more. Maintain a pressurized state of 0.6 MPa or more.
請求項4に記載の水素水製造方法は、請求項1から3のいずれか一項に記載の水素水製造方法において、前記攪拌ステップにおいて、前記水素水を1分以上攪拌する。
The hydrogen water production method according to claim 4 is the hydrogen water production method according to any one of claims 1 to 3, wherein the hydrogen water is stirred for 1 minute or more in the stirring step.
請求項1に記載の水素水製造方法によれば、脱気ステップにて原料水に溶存する空気を抜いて水素が溶存し易い状態とし、さらに曝気ステップにて原料水の加圧状態を維持することで原料水に好適に水素を溶解させ、かつ攪拌ステップで水素水を攪拌することで水素水中の水素濃度をさらに上昇させることができ、高濃度の水素水を製造することができる。
According to the method for producing hydrogen water according to claim 1, the air dissolved in the raw water is extracted in the deaeration step so that hydrogen is easily dissolved, and the pressurized state of the raw water is maintained in the aeration step. Thus, hydrogen is suitably dissolved in the raw water, and the hydrogen concentration in the hydrogen water can be further increased by stirring the hydrogen water in the stirring step, whereby high concentration hydrogen water can be produced.
請求項2に記載の水素水製造方法によれば、脱気ステップにおいて、原料水を-67kPa以下の圧力で脱気するので、原料水に溶存する空気をより好適に抜くことができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water according to claim 2, since the raw water is degassed at a pressure of −67 kPa or less in the degassing step, the air dissolved in the raw water can be more suitably extracted, Concentrated hydrogen water can be produced.
請求項3に記載の水素水製造方法によれば、曝気ステップにおいて、原料水に対して水素を15分間以上にわたって曝気し、原料水の0.6MPa以上の加圧状態を維持するので、原料水に水素をより好適に溶解させることができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water according to claim 3, in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more and the pressurized state of the raw water is kept at 0.6 MPa or higher. Thus, hydrogen can be more suitably dissolved, and more highly concentrated hydrogen water can be produced.
請求項4に記載の水素水製造方法によれば、水素水を1分以上攪拌するので、水素水中の水素濃度をより好適に均一に上昇させることができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water according to claim 4, since the hydrogen water is stirred for 1 minute or more, the hydrogen concentration in the hydrogen water can be increased more suitably and uniformly, and a higher concentration hydrogen water is produced. be able to.
以下に添付図面を参照して、この発明に係る水素水製造方法の実施の形態を詳細に説明する。まず、〔I〕実施の形態の基本的概念を説明した後、〔II〕実施の形態の具体的内容について説明し、最後に、〔III〕実施の形態に対する変形例について説明する。ただし、実施の形態によって本発明が限定されるものではない。
Embodiments of a method for producing hydrogen water according to the present invention will be described below in detail with reference to the accompanying drawings. First, [I] the basic concept of the embodiment will be described, then [II] the specific content of the embodiment will be described, and finally, [III] a modification to the embodiment will be described. However, the present invention is not limited to the embodiments.
〔I〕実施の形態の基本的概念
まず、実施の形態の基本的概念について説明する。実施の形態は、原料水に水素を溶かして水素水を製造する水素水製造方法に関する。ここで、水素水製造方法にて製造された水素水の用途は任意であるが、本実施の形態では体内に取り入れて利用する。なお、体内に取り入れる方法は任意であり、以下では利用者が飲んで利用する場合について説明するが、これに限らず、例えば原料水として生理食塩水のように体内に直接取り入れる事が可能な液体を使用し、点滴等の方法で人体に注入してもよい。 [I] Basic Concept of Embodiment First, the basic concept of the embodiment will be described. The embodiment relates to a hydrogen water production method for producing hydrogen water by dissolving hydrogen in raw water. Here, the use of hydrogen water produced by the hydrogen water production method is arbitrary, but in this embodiment, it is taken into the body and used. In addition, the method of taking in the body is arbitrary, and in the following, the case where the user drinks and uses it will be described. However, the present invention is not limited to this. And may be injected into the human body by a method such as infusion.
まず、実施の形態の基本的概念について説明する。実施の形態は、原料水に水素を溶かして水素水を製造する水素水製造方法に関する。ここで、水素水製造方法にて製造された水素水の用途は任意であるが、本実施の形態では体内に取り入れて利用する。なお、体内に取り入れる方法は任意であり、以下では利用者が飲んで利用する場合について説明するが、これに限らず、例えば原料水として生理食塩水のように体内に直接取り入れる事が可能な液体を使用し、点滴等の方法で人体に注入してもよい。 [I] Basic Concept of Embodiment First, the basic concept of the embodiment will be described. The embodiment relates to a hydrogen water production method for producing hydrogen water by dissolving hydrogen in raw water. Here, the use of hydrogen water produced by the hydrogen water production method is arbitrary, but in this embodiment, it is taken into the body and used. In addition, the method of taking in the body is arbitrary, and in the following, the case where the user drinks and uses it will be described. However, the present invention is not limited to this. And may be injected into the human body by a method such as infusion.
〔II〕実施の形態の具体的内容
次に、本実施の形態の具体的内容について説明する。 [II] Specific Contents of Embodiment Next, specific contents of the present embodiment will be described.
次に、本実施の形態の具体的内容について説明する。 [II] Specific Contents of Embodiment Next, specific contents of the present embodiment will be described.
(構成)
図1は、本実施の形態に係る水素水製造装置1を機能概念的に表したブロック図である。この図1に示すように、本実施の形態に係る水素水製造装置1は、概略的に、耐圧容器2、水素発生装置3、バブリングストーン4、真空ポンプ5、及び圧力ゲージ6を備えている。 (Constitution)
FIG. 1 is a block diagram functionally conceptually showing a hydrogenwater production apparatus 1 according to the present embodiment. As shown in FIG. 1, a hydrogen water production apparatus 1 according to this embodiment schematically includes a pressure vessel 2, a hydrogen generator 3, a bubbling stone 4, a vacuum pump 5, and a pressure gauge 6. .
図1は、本実施の形態に係る水素水製造装置1を機能概念的に表したブロック図である。この図1に示すように、本実施の形態に係る水素水製造装置1は、概略的に、耐圧容器2、水素発生装置3、バブリングストーン4、真空ポンプ5、及び圧力ゲージ6を備えている。 (Constitution)
FIG. 1 is a block diagram functionally conceptually showing a hydrogen
(構成-水素水製造装置-耐圧容器)
耐圧容器2は、原料水を入れるための容器である。この耐圧容器2は、真空ポンプ5により脱気した際、あるいは水素を加圧状態で曝気する際の圧力変化に耐え得る容器であって、例えばガラス、ステンレス等の任意の素材で形成できる。本実施の形態では耐圧容器2の上端は開口となっており、この開口からは気体が漏出しないように密閉する蓋が設けられている。そして、蓋を貫通するチューブ7、8が設けられており、チューブ7は真空ポンプ5と接続されており、チューブ8は水素発生装置3と接続されている。 (Configuration-Hydrogen water production equipment-Pressure vessel)
Thepressure vessel 2 is a container for containing raw material water. The pressure vessel 2 is a vessel that can withstand pressure changes when deaerated by the vacuum pump 5 or when hydrogen is aerated in a pressurized state, and can be formed of any material such as glass or stainless steel. In the present embodiment, the upper end of the pressure vessel 2 is an opening, and a lid is provided to seal the gas so as not to leak from the opening. Tubes 7 and 8 penetrating the lid are provided, the tube 7 is connected to the vacuum pump 5, and the tube 8 is connected to the hydrogen generator 3.
耐圧容器2は、原料水を入れるための容器である。この耐圧容器2は、真空ポンプ5により脱気した際、あるいは水素を加圧状態で曝気する際の圧力変化に耐え得る容器であって、例えばガラス、ステンレス等の任意の素材で形成できる。本実施の形態では耐圧容器2の上端は開口となっており、この開口からは気体が漏出しないように密閉する蓋が設けられている。そして、蓋を貫通するチューブ7、8が設けられており、チューブ7は真空ポンプ5と接続されており、チューブ8は水素発生装置3と接続されている。 (Configuration-Hydrogen water production equipment-Pressure vessel)
The
(構成-水素水製造装置-水素発生装置)
水素発生装置3は、水素を発生させる装置である。この水素発生装置3は、水素を発生させることができる限り任意の構成を採用でき、例えば、水(例えば無菌水)を電気分解して水素及び酸素を製造し、製造された水素のみを取り出してチューブ8を介して原料水中に送り出す公知の電気分解手段を用いてもよい。 (Configuration-Hydrogen water production device-Hydrogen generator)
The hydrogen generator 3 is a device that generates hydrogen. The hydrogen generator 3 can employ any configuration as long as it can generate hydrogen. For example, hydrogen (for example, aseptic water) is electrolyzed to produce hydrogen and oxygen, and only the produced hydrogen is taken out. You may use the well-known electrolysis means sent out to raw material water through thetube 8. FIG.
水素発生装置3は、水素を発生させる装置である。この水素発生装置3は、水素を発生させることができる限り任意の構成を採用でき、例えば、水(例えば無菌水)を電気分解して水素及び酸素を製造し、製造された水素のみを取り出してチューブ8を介して原料水中に送り出す公知の電気分解手段を用いてもよい。 (Configuration-Hydrogen water production device-Hydrogen generator)
The hydrogen generator 3 is a device that generates hydrogen. The hydrogen generator 3 can employ any configuration as long as it can generate hydrogen. For example, hydrogen (for example, aseptic water) is electrolyzed to produce hydrogen and oxygen, and only the produced hydrogen is taken out. You may use the well-known electrolysis means sent out to raw material water through the
(構成-水素水製造装置-バブリングストーン)
バブリングストーン4は、水素を微細な気泡にする微細化手段であって、公知のエアストーンなどを用いることができる。このバブリングストーン4は、チューブ8の先端に取り付けられており、水素発生装置3で生成された水素が当該バブリングストーン4を通って気泡となり原料水に溶存する。このバブリングストーン4は、発生させる気泡の細かさに応じた様々な種類のものがあるが、以下では、細かい気泡を発生させる#100や、さらに細かい気泡を発生させる#180を用いる。なお、このようなバブリングストーン4の具体的な構成については公知であるため、詳細な説明を省略する。 (Configuration-Hydrogen water production system-Bubbling stone)
The bubblingstone 4 is a means for making hydrogen into fine bubbles, and a known air stone or the like can be used. The bubbling stone 4 is attached to the tip of the tube 8, and hydrogen generated by the hydrogen generator 3 becomes bubbles through the bubbling stone 4 and is dissolved in the raw water. There are various types of bubbling stones 4 according to the fineness of bubbles to be generated. In the following, # 100 for generating fine bubbles and # 180 for generating finer bubbles are used. In addition, since the specific structure of such a bubbling stone 4 is well-known, detailed description is abbreviate | omitted.
バブリングストーン4は、水素を微細な気泡にする微細化手段であって、公知のエアストーンなどを用いることができる。このバブリングストーン4は、チューブ8の先端に取り付けられており、水素発生装置3で生成された水素が当該バブリングストーン4を通って気泡となり原料水に溶存する。このバブリングストーン4は、発生させる気泡の細かさに応じた様々な種類のものがあるが、以下では、細かい気泡を発生させる#100や、さらに細かい気泡を発生させる#180を用いる。なお、このようなバブリングストーン4の具体的な構成については公知であるため、詳細な説明を省略する。 (Configuration-Hydrogen water production system-Bubbling stone)
The bubbling
(構成-水素水製造装置-真空ポンプ)
真空ポンプ5は、耐圧容器2の内部の圧力を調整する圧力調整手段である。この真空ポンプ5は、上述したようにチューブ7を介して耐圧容器2の内部に接続されており、チューブ7を介して耐圧容器2の内部を脱気することができる。このように、原料水に水素を溶かす前段階に原料水を脱気しておくことで、原料水中に溶存している空気を抜き、原料水に溶存可能な水素の量を増加させることができ、より水素含有量の大きい水素水を生成することができる。 (Configuration-Hydrogen water production equipment-Vacuum pump)
Thevacuum pump 5 is pressure adjusting means for adjusting the pressure inside the pressure vessel 2. The vacuum pump 5 is connected to the inside of the pressure vessel 2 through the tube 7 as described above, and the inside of the pressure vessel 2 can be deaerated through the tube 7. Thus, by degassing the raw water before the hydrogen is dissolved in the raw water, the amount of hydrogen dissolved in the raw water can be increased by removing the air dissolved in the raw water. Hydrogen water with a larger hydrogen content can be generated.
真空ポンプ5は、耐圧容器2の内部の圧力を調整する圧力調整手段である。この真空ポンプ5は、上述したようにチューブ7を介して耐圧容器2の内部に接続されており、チューブ7を介して耐圧容器2の内部を脱気することができる。このように、原料水に水素を溶かす前段階に原料水を脱気しておくことで、原料水中に溶存している空気を抜き、原料水に溶存可能な水素の量を増加させることができ、より水素含有量の大きい水素水を生成することができる。 (Configuration-Hydrogen water production equipment-Vacuum pump)
The
(構成-水素水製造装置-圧力ゲージ)
圧力ゲージ6は、耐圧容器2の内部の圧力を計測する圧力計測手段であって、例えば公知の弾性圧力計や液柱圧力計を用いることができる。この圧力ゲージ6は、チューブ7に取り付けられており、チューブ7の内部の圧力に応じて表示部(例えば針と目盛を備える部分)による圧力表示が行われる。 (Configuration-Hydrogen water production system-Pressure gauge)
Thepressure gauge 6 is a pressure measuring means for measuring the pressure inside the pressure-resistant vessel 2, and for example, a known elastic pressure gauge or liquid column pressure gauge can be used. The pressure gauge 6 is attached to the tube 7, and pressure is displayed by a display unit (for example, a part having a needle and a scale) according to the pressure inside the tube 7.
圧力ゲージ6は、耐圧容器2の内部の圧力を計測する圧力計測手段であって、例えば公知の弾性圧力計や液柱圧力計を用いることができる。この圧力ゲージ6は、チューブ7に取り付けられており、チューブ7の内部の圧力に応じて表示部(例えば針と目盛を備える部分)による圧力表示が行われる。 (Configuration-Hydrogen water production system-Pressure gauge)
The
(製造方法)
続いて、水素水の製造方法について説明する。この製造工程は、概略的に、封入処理、脱気処理、曝気処理、攪拌処理、及び充填工程を含む。 (Production method)
Then, the manufacturing method of hydrogenous water is demonstrated. This manufacturing process generally includes an encapsulation process, a deaeration process, an aeration process, an agitation process, and a filling process.
続いて、水素水の製造方法について説明する。この製造工程は、概略的に、封入処理、脱気処理、曝気処理、攪拌処理、及び充填工程を含む。 (Production method)
Then, the manufacturing method of hydrogenous water is demonstrated. This manufacturing process generally includes an encapsulation process, a deaeration process, an aeration process, an agitation process, and a filling process.
(製造方法-封入処理)
まず、封入処理を行う。この封入処理は、耐圧容器2の内部に原料水を封入する封入ステップである。具体的には、耐圧容器2の内部に原料水を注ぎ込み、蓋を閉めて密閉状態とする。この際に、チューブ7及びチューブ8が蓋を貫通し、チューブ7の先端が原料水水面より上方に位置し、チューブ8の先端に取り付けられたバブリングストーン4が原料水に浸かった状態とする。 (Manufacturing method-encapsulation treatment)
First, an encapsulation process is performed. This enclosing process is an enclosing step of enclosing the raw water in thepressure vessel 2. Specifically, the raw material water is poured into the pressure vessel 2 and the lid is closed to form a sealed state. At this time, the tube 7 and the tube 8 pass through the lid, the tip of the tube 7 is positioned above the raw water surface, and the bubbling stone 4 attached to the tip of the tube 8 is immersed in the raw water.
まず、封入処理を行う。この封入処理は、耐圧容器2の内部に原料水を封入する封入ステップである。具体的には、耐圧容器2の内部に原料水を注ぎ込み、蓋を閉めて密閉状態とする。この際に、チューブ7及びチューブ8が蓋を貫通し、チューブ7の先端が原料水水面より上方に位置し、チューブ8の先端に取り付けられたバブリングストーン4が原料水に浸かった状態とする。 (Manufacturing method-encapsulation treatment)
First, an encapsulation process is performed. This enclosing process is an enclosing step of enclosing the raw water in the
(製造方法-脱気処理)
続いて、脱気処理を行う。この脱気処理は、耐圧容器2の内部に封入された原料水を脱気する脱気ステップである。具体的には、真空ポンプ5を稼働し、チューブ7を介して耐圧容器2の内部を吸引して負圧状態(例えば、絶対圧で40kPa以下)とすることで、原料水に溶け込んだ空気が泡状になって飛び出し、原料水から空気が抜ける。なお、この脱気処理中の耐圧容器2の内部の圧力を以下では「脱気圧」と称し、この脱気圧は圧力ゲージ6で測定することができる。また、脱気処理の継続時間を以下では「脱気時間」と称する。そして、脱気処理を所定時間(脱気時間。例えば15分)継続したら、真空ポンプ5を停止させて脱気処理を終了する。 (Manufacturing method-deaeration treatment)
Subsequently, a deaeration process is performed. This degassing process is a degassing step for degassing the raw water enclosed in thepressure vessel 2. Specifically, the vacuum pump 5 is operated, and the inside of the pressure vessel 2 is sucked through the tube 7 to be in a negative pressure state (for example, 40 kPa or less in absolute pressure). Bubbles pop out and air escapes from the raw water. The pressure inside the pressure vessel 2 during the degassing process is hereinafter referred to as “degassing pressure”, and the degassing pressure can be measured with the pressure gauge 6. Further, the duration of the deaeration process is hereinafter referred to as “deaeration time”. When the deaeration process is continued for a predetermined time (deaeration time; for example, 15 minutes), the vacuum pump 5 is stopped and the deaeration process is terminated.
続いて、脱気処理を行う。この脱気処理は、耐圧容器2の内部に封入された原料水を脱気する脱気ステップである。具体的には、真空ポンプ5を稼働し、チューブ7を介して耐圧容器2の内部を吸引して負圧状態(例えば、絶対圧で40kPa以下)とすることで、原料水に溶け込んだ空気が泡状になって飛び出し、原料水から空気が抜ける。なお、この脱気処理中の耐圧容器2の内部の圧力を以下では「脱気圧」と称し、この脱気圧は圧力ゲージ6で測定することができる。また、脱気処理の継続時間を以下では「脱気時間」と称する。そして、脱気処理を所定時間(脱気時間。例えば15分)継続したら、真空ポンプ5を停止させて脱気処理を終了する。 (Manufacturing method-deaeration treatment)
Subsequently, a deaeration process is performed. This degassing process is a degassing step for degassing the raw water enclosed in the
(製造方法-曝気処理)
続いて、曝気処理を行う。この曝気処理は、脱気ステップにおいて脱気された原料水に対して水素を曝気して原料水の加圧状態を維持することで、原料水から水素水を製造する曝気ステップである。具体的には、水素発生装置3を稼働し、チューブ8を介して耐圧容器2の内部に水素を送り込み、この際に水素がバブリングストーン4を通過することにより微細な気泡となって原料水に曝気される。このように曝気を行うことで、耐圧容器2の内部が加圧状態となる。なお、真空ポンプ5で適宜吸引することで圧力を調整してもよい。なお、この曝気処理中の耐圧容器2の内部の圧力を以下では「水素加圧圧力」と称し、この水素加圧圧力は圧力ゲージ6で測定することができる。また、曝気処理の継続時間を以下では「曝気時間」と称する。そして、曝気処理を所定時間(曝気時間。例えば15分)継続したら、水素発生装置3を停止させて曝気処理を終了する。 (Manufacturing method-aeration treatment)
Subsequently, an aeration process is performed. This aeration process is an aeration step in which hydrogen water is aerated from the raw material water in the deaeration step to maintain the pressurized state of the raw material water, thereby producing hydrogen water from the raw material water. Specifically, the hydrogen generator 3 is operated and hydrogen is fed into thepressure vessel 2 through the tube 8, and at this time, hydrogen passes through the bubbling stone 4 to form fine bubbles into the raw water. Aerated. By performing aeration in this way, the inside of the pressure vessel 2 is in a pressurized state. The pressure may be adjusted by appropriately sucking with the vacuum pump 5. The pressure inside the pressure vessel 2 during the aeration process is hereinafter referred to as “hydrogen pressurization pressure”, and this hydrogen pressurization pressure can be measured with the pressure gauge 6. Further, the duration time of the aeration process is hereinafter referred to as “aeration time”. When the aeration process is continued for a predetermined time (aeration time; for example, 15 minutes), the hydrogen generator 3 is stopped and the aeration process is terminated.
続いて、曝気処理を行う。この曝気処理は、脱気ステップにおいて脱気された原料水に対して水素を曝気して原料水の加圧状態を維持することで、原料水から水素水を製造する曝気ステップである。具体的には、水素発生装置3を稼働し、チューブ8を介して耐圧容器2の内部に水素を送り込み、この際に水素がバブリングストーン4を通過することにより微細な気泡となって原料水に曝気される。このように曝気を行うことで、耐圧容器2の内部が加圧状態となる。なお、真空ポンプ5で適宜吸引することで圧力を調整してもよい。なお、この曝気処理中の耐圧容器2の内部の圧力を以下では「水素加圧圧力」と称し、この水素加圧圧力は圧力ゲージ6で測定することができる。また、曝気処理の継続時間を以下では「曝気時間」と称する。そして、曝気処理を所定時間(曝気時間。例えば15分)継続したら、水素発生装置3を停止させて曝気処理を終了する。 (Manufacturing method-aeration treatment)
Subsequently, an aeration process is performed. This aeration process is an aeration step in which hydrogen water is aerated from the raw material water in the deaeration step to maintain the pressurized state of the raw material water, thereby producing hydrogen water from the raw material water. Specifically, the hydrogen generator 3 is operated and hydrogen is fed into the
(製造方法-攪拌処理)
続いて、攪拌処理を行う。この攪拌処理は、曝気処理において製造された水素水を攪拌する攪拌ステップである。具体的には、曝気処理において製造された水素水を、蓋を閉めたまま攪拌する。この攪拌の具体的な方法は任意で、例えば耐圧容器2を振とう器等に乗せて攪拌したり、渦流を用いたポンプなどのミキサーを用いて機械的に攪拌したりしてもよいが、本実施の形態では製造方法の作業者が手で耐圧容器2を持って振ることにより人力で攪拌する。なお、この攪拌処理の継続時間を以下では「攪拌時間」と称する。 (Manufacturing method-stirring process)
Subsequently, a stirring process is performed. This agitation process is an agitation step for agitating the hydrogen water produced in the aeration process. Specifically, the hydrogen water produced in the aeration process is stirred while the lid is closed. A specific method of this stirring is arbitrary, for example, thepressure vessel 2 may be stirred on a shaker or the like, or mechanically stirred using a mixer such as a pump using a vortex flow, In this embodiment, the operator of the manufacturing method manually stirs by holding the pressure vessel 2 and shaking it. The duration of this stirring process is hereinafter referred to as “stirring time”.
続いて、攪拌処理を行う。この攪拌処理は、曝気処理において製造された水素水を攪拌する攪拌ステップである。具体的には、曝気処理において製造された水素水を、蓋を閉めたまま攪拌する。この攪拌の具体的な方法は任意で、例えば耐圧容器2を振とう器等に乗せて攪拌したり、渦流を用いたポンプなどのミキサーを用いて機械的に攪拌したりしてもよいが、本実施の形態では製造方法の作業者が手で耐圧容器2を持って振ることにより人力で攪拌する。なお、この攪拌処理の継続時間を以下では「攪拌時間」と称する。 (Manufacturing method-stirring process)
Subsequently, a stirring process is performed. This agitation process is an agitation step for agitating the hydrogen water produced in the aeration process. Specifically, the hydrogen water produced in the aeration process is stirred while the lid is closed. A specific method of this stirring is arbitrary, for example, the
(製造方法-充填処理)
最後に、充填処理を行う。この充填処理は、攪拌処理にて攪拌した水素水を、任意の容器(例えば、以下では図示しないペットボトル)に充填する充填ステップである。具体的には、耐圧容器2の蓋を外して、耐圧容器2からチューブ7、チューブ8、及びバブリングストーン4を取り外し、耐圧容器2の内部の水素水をペットボトルに詰め替えてペットボトルの封をする。なお、このような方法に限らず、例えば、蓋にさらに図示しないチューブを設け、このチューブを介してペットボトルに水素水を詰め替えることで気密性を保持したまま詰め替えを行うことが可能である。また、本実施の形態では水素水を流通するためにこのような充填処理を行って水素水の詰め替えを行ったが、流通が不要であれば充填処理を省略して、例えば耐圧容器2の内部の水素水を人が直接飲んでも構わない。 (Manufacturing method-filling process)
Finally, a filling process is performed. This filling process is a filling step in which the hydrogen water stirred in the stirring process is filled into an arbitrary container (for example, a PET bottle not shown below). Specifically, the lid of thepressure vessel 2 is removed, the tube 7, the tube 8, and the bubbling stone 4 are removed from the pressure vessel 2, and the hydrogen water inside the pressure vessel 2 is refilled into a plastic bottle to seal the plastic bottle. To do. It should be noted that the present invention is not limited to this method, and for example, it is possible to perform refilling while maintaining airtightness by providing a tube (not shown) on the lid and refilling the PET bottle with hydrogen water via this tube. Further, in this embodiment, in order to distribute the hydrogen water, such a filling process is performed and the hydrogen water is refilled. However, if the distribution is unnecessary, the filling process is omitted, for example, the inside of the pressure vessel 2 You can drink the hydrogen water directly.
最後に、充填処理を行う。この充填処理は、攪拌処理にて攪拌した水素水を、任意の容器(例えば、以下では図示しないペットボトル)に充填する充填ステップである。具体的には、耐圧容器2の蓋を外して、耐圧容器2からチューブ7、チューブ8、及びバブリングストーン4を取り外し、耐圧容器2の内部の水素水をペットボトルに詰め替えてペットボトルの封をする。なお、このような方法に限らず、例えば、蓋にさらに図示しないチューブを設け、このチューブを介してペットボトルに水素水を詰め替えることで気密性を保持したまま詰め替えを行うことが可能である。また、本実施の形態では水素水を流通するためにこのような充填処理を行って水素水の詰め替えを行ったが、流通が不要であれば充填処理を省略して、例えば耐圧容器2の内部の水素水を人が直接飲んでも構わない。 (Manufacturing method-filling process)
Finally, a filling process is performed. This filling process is a filling step in which the hydrogen water stirred in the stirring process is filled into an arbitrary container (for example, a PET bottle not shown below). Specifically, the lid of the
(実施例)
続いて、水素水製造方法の実施例について説明する。図2には、本実施例に係る実験結果AからHを示す表である。なお、この図2の各実験結果における各行の項目は、単一の実験結果を一意に特定する情報(例えば実験結果A1、A2、A3)を示し、各列の項目は、各実験のパラメータ(水素発生量(ml/min)、水素加圧圧力(MPa)、原料水温度(℃)、曝気時間(min)、攪拌時間(min)、石(バブリングストーン4)の粗さ、脱気時間(min)、脱気圧(kPa)、水素濃度(ppm))を示している。以下では、この図2の実験結果AからHに示すように、パラメータのいずれかを適宜変更して上記製造方法にて水素水を製造する実験を行い、上記製造方法に適したパラメータを求めた。 (Example)
Then, the Example of the hydrogenous water manufacturing method is described. FIG. 2 is a table showing experimental results A to H according to this example. The items in each row in each experimental result in FIG. 2 indicate information (for example, experimental results A1, A2, and A3) that uniquely specify a single experimental result, and the items in each column indicate the parameters ( Hydrogen generation amount (ml / min), hydrogen pressurization pressure (MPa), raw material water temperature (° C.), aeration time (min), stirring time (min), roughness of stone (bubbling stone 4), deaeration time ( min), degassing pressure (kPa), hydrogen concentration (ppm)). In the following, as shown in the experimental results A to H of FIG. 2, an experiment for producing hydrogen water by the above production method by appropriately changing any of the parameters was performed, and parameters suitable for the production method were obtained. .
続いて、水素水製造方法の実施例について説明する。図2には、本実施例に係る実験結果AからHを示す表である。なお、この図2の各実験結果における各行の項目は、単一の実験結果を一意に特定する情報(例えば実験結果A1、A2、A3)を示し、各列の項目は、各実験のパラメータ(水素発生量(ml/min)、水素加圧圧力(MPa)、原料水温度(℃)、曝気時間(min)、攪拌時間(min)、石(バブリングストーン4)の粗さ、脱気時間(min)、脱気圧(kPa)、水素濃度(ppm))を示している。以下では、この図2の実験結果AからHに示すように、パラメータのいずれかを適宜変更して上記製造方法にて水素水を製造する実験を行い、上記製造方法に適したパラメータを求めた。 (Example)
Then, the Example of the hydrogenous water manufacturing method is described. FIG. 2 is a table showing experimental results A to H according to this example. The items in each row in each experimental result in FIG. 2 indicate information (for example, experimental results A1, A2, and A3) that uniquely specify a single experimental result, and the items in each column indicate the parameters ( Hydrogen generation amount (ml / min), hydrogen pressurization pressure (MPa), raw material water temperature (° C.), aeration time (min), stirring time (min), roughness of stone (bubbling stone 4), deaeration time ( min), degassing pressure (kPa), hydrogen concentration (ppm)). In the following, as shown in the experimental results A to H of FIG. 2, an experiment for producing hydrogen water by the above production method by appropriately changing any of the parameters was performed, and parameters suitable for the production method were obtained. .
図2の実験結果Aは、原料水温度以外のパラメータを固定し(脱気時間は5分で固定)、原料水温度を0-10℃、20-30℃、40-50℃と3段階に変化させて、水素水の水素濃度を測定した際の実験結果である。なお図2に示すいずれの実験においても、水素濃度の測定は、製造された水素水に、メチレンブルー水溶液を滴下して水溶液の色の変化を確認する公知の判定方法を適用した。この実験結果Aによれば、原料水温度は低いほど水素濃度が高くなり、特に原料水温度を0-10℃とすることでより高濃度の水素水を製造できることがわかる。
The experimental result A in FIG. 2 shows that the parameters other than the raw water temperature are fixed (the degassing time is fixed at 5 minutes), and the raw water temperature is in three stages: 0-10 ° C, 20-30 ° C, 40-50 ° C It is an experimental result when changing the hydrogen concentration of hydrogen water. In any of the experiments shown in FIG. 2, the hydrogen concentration was measured by applying a known determination method in which a methylene blue aqueous solution was dropped into the produced hydrogen water to check the color change of the aqueous solution. According to the experimental result A, it can be seen that the lower the raw water temperature, the higher the hydrogen concentration. In particular, it is possible to produce higher concentration hydrogen water by setting the raw water temperature to 0-10 ° C.
また、図2の実験結果Bは、原料水温度以外のパラメータを固定し(脱気時間は10分で固定)、原料水温度を0-10℃、20-30℃、40-50℃と3段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Bによれば、脱気時間が10分である場合も、上記実験結果Aに示す脱気時間が5分である場合と同様に、原料水温度は低いほど水素濃度が高くなり、特に原料水温度を0-10℃とすることでより高濃度の水素水を製造できることがわかる。
Further, in the experimental result B of FIG. 2, parameters other than the raw water temperature are fixed (degassing time is fixed at 10 minutes), and the raw water temperature is set to 0-10 ° C., 20-30 ° C., 40-50 ° C. It is an experimental result when changing the stage and measuring the hydrogen concentration of hydrogen water. According to this experimental result B, even when the degassing time is 10 minutes, as in the case where the degassing time shown in the experimental result A is 5 minutes, the lower the raw water temperature, the higher the hydrogen concentration, In particular, it can be seen that hydrogen water with a higher concentration can be produced by setting the raw water temperature to 0-10 ° C.
図2の実験結果Cは、脱気圧以外のパラメータを固定し、脱気圧を-56kPaと-67kPaの2段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Cによれば、脱気圧は-67kPaの方が水素濃度が高く、脱気圧を低くすることで、より高濃度の水素水が製造できることがわかる。
The experimental result C in FIG. 2 is an experimental result when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the depressurization and changing the depressurization in two stages of -56 kPa and -67 kPa. According to the experimental result C, it can be seen that the degassing pressure is −67 kPa, the hydrogen concentration is high, and that hydrogen water with a higher concentration can be produced by reducing the degassing pressure.
図2の実験結果Dは、脱気時間以外のパラメータを固定し、脱気時間を5分、10分、15分の3段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Dによれば、脱気時間は15分が最も水素濃度が高く、脱気時間が長いほど、より高濃度の水素水を製造できることがわかる。なお、図示は省略するが、脱気時間を15分よりさらに長くしても、水素水の水素濃度は大きく増加しなかったため、脱気時間は15分で十分であると考えられる。なお、実験結果D3は、図2に示す各実験結果の中でも最高の濃度(8.9ppm)の水素水を製造できており、この濃度は従来の水素水と比較しても極めて高濃度の水素水であり、当該実験のパラメータが好適であることがわかる。
The experimental result D in FIG. 2 shows experimental results when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the deaeration time and changing the deaeration time in three steps of 5 minutes, 10 minutes, and 15 minutes. It is. According to the experimental result D, it can be seen that the degassing time is 15 minutes at the highest hydrogen concentration, and the longer the degassing time, the higher the concentration of hydrogen water can be produced. Although illustration is omitted, even if the deaeration time is made longer than 15 minutes, the hydrogen concentration of hydrogen water did not increase greatly, so it is considered that the deaeration time is 15 minutes. The experimental result D3 has produced the highest concentration (8.9 ppm) of hydrogen water among the experimental results shown in FIG. 2, and this concentration is extremely high compared to the conventional hydrogen water. It can be seen that the parameters of the experiment are suitable.
図2の実験結果Eは、水素加圧圧力以外のパラメータを固定し、水素加圧圧力を0.5MPa、0.6MPaの2段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Eによれば、水素加圧圧力は0.6MPaの方が水素濃度が高くなり、水素加圧圧力を高くすることで、より高濃度の水素水が製造できることがわかる。
The experimental result E in FIG. 2 shows an experiment in which the hydrogen concentration of hydrogen water is measured by fixing parameters other than the hydrogen pressurization pressure and changing the hydrogen pressurization pressure in two stages of 0.5 MPa and 0.6 MPa. It is a result. According to the experimental result E, it can be seen that the hydrogen concentration is higher when the hydrogen pressurization pressure is 0.6 MPa, and that hydrogen water with a higher concentration can be produced by increasing the hydrogen pressurization pressure.
図2の実験結果Fは、曝気時間以外のパラメータを固定し、曝気時間を2分、5分、10分、15分の4段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Fによれば、曝気時間は15分が最も水素濃度が高く、曝気時間が長いほど、より高濃度の水素水を製造できることがわかる。なお、図示は省略するが、曝気時間を15分よりさらに長くしても、水素水の水素濃度は大きく増加しなかったため、曝気時間は15分で十分であると考えられる。
Experiment result F in FIG. 2 shows an experiment in which the hydrogen concentration of hydrogen water was measured by fixing parameters other than the aeration time and changing the aeration time in four stages of 2, 5, 10, and 15 minutes. It is a result. According to the experimental result F, it can be seen that the hydrogen concentration is the highest at 15 minutes and the hydrogen water with a higher concentration can be produced as the aeration time is longer. Although illustration is omitted, even if the aeration time is made longer than 15 minutes, the hydrogen concentration of hydrogen water did not increase greatly, so it is considered that the aeration time is sufficient for 15 minutes.
図2の実験結果Gは、攪拌時間以外のパラメータを固定し、攪拌時間を0分、0.5分、1分の3段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Gによれば、攪拌時間は1分が最も水素濃度が高く、攪拌時間が長いほど、より高濃度の水素水を製造できることがわかる。なお、図示は省略するが、攪拌時間を1分よりさらに長くしても、水素水の水素濃度は大きく増加しなかったため、攪拌時間は1分で十分であると考えられる。
The experimental result G in FIG. 2 is an experimental result when the hydrogen concentration of hydrogen water is measured by fixing parameters other than the stirring time and changing the stirring time in three steps of 0 minutes, 0.5 minutes, and 1 minute. It is. According to the experimental result G, it can be seen that the stirring time is one minute at the highest hydrogen concentration, and the longer the stirring time, the higher the concentration of hydrogen water can be produced. In addition, although illustration is abbreviate | omitted, even if stirring time was further made longer than 1 minute, since the hydrogen concentration of hydrogen water did not increase largely, it is thought that stirring time is enough for 1 minute.
図2の実験結果Hは、バブリングストーン4の粗さ以外のパラメータを固定し、バブリングストーン4の粗さを#180、#100の2段階に変化させて、水素水の水素濃度を測定した際の実験結果である。この実験結果Hによれば、バブリングストーン4の粗さは水素濃度に大きな影響を及ぼさないことがわかる。なお、実験結果Hに開示してはいないが、バブリングストーン4を設けない場合には水素水の水素濃度が低下してしまい好ましくない。
The experimental result H in FIG. 2 is obtained when the parameters other than the roughness of the bubbling stone 4 are fixed, the roughness of the bubbling stone 4 is changed in two stages, # 180 and # 100, and the hydrogen concentration of hydrogen water is measured. It is an experimental result. According to the experimental result H, it can be seen that the roughness of the bubbling stone 4 does not significantly affect the hydrogen concentration. Although not disclosed in the experimental result H, when the bubbling stone 4 is not provided, the hydrogen concentration of the hydrogen water decreases, which is not preferable.
(実施の形態の効果)
このように、本実施の形態の水素水製造方法によれば、脱気ステップにて原料水に溶存する空気を抜いて水素が溶存し易い状態とし、さらに曝気ステップにて原料水の加圧状態を維持することで原料水に好適に水素を溶解させ、かつ攪拌ステップで水素水を攪拌することで水素水中の水素濃度をさらに上昇させることができ、高濃度の水素水を製造することができる。 (Effect of embodiment)
Thus, according to the method for producing hydrogen water of the present embodiment, the air dissolved in the raw water is removed in the deaeration step to make the hydrogen easy to dissolve, and the pressurized state of the raw water in the aeration step By maintaining the pH, hydrogen can be suitably dissolved in the raw water, and the hydrogen concentration in the hydrogen water can be further increased by stirring the hydrogen water in the stirring step, so that high-concentration hydrogen water can be produced. .
このように、本実施の形態の水素水製造方法によれば、脱気ステップにて原料水に溶存する空気を抜いて水素が溶存し易い状態とし、さらに曝気ステップにて原料水の加圧状態を維持することで原料水に好適に水素を溶解させ、かつ攪拌ステップで水素水を攪拌することで水素水中の水素濃度をさらに上昇させることができ、高濃度の水素水を製造することができる。 (Effect of embodiment)
Thus, according to the method for producing hydrogen water of the present embodiment, the air dissolved in the raw water is removed in the deaeration step to make the hydrogen easy to dissolve, and the pressurized state of the raw water in the aeration step By maintaining the pH, hydrogen can be suitably dissolved in the raw water, and the hydrogen concentration in the hydrogen water can be further increased by stirring the hydrogen water in the stirring step, so that high-concentration hydrogen water can be produced. .
また、脱気ステップにおいて、原料水を-67kPa以下の圧力で脱気するので、原料水に溶存する空気をより好適に抜くことができ、さらに高濃度の水素水を製造することができる。
In the deaeration step, since the raw water is degassed at a pressure of −67 kPa or less, the air dissolved in the raw water can be extracted more suitably, and more highly concentrated hydrogen water can be produced.
また、曝気ステップにおいて、原料水に対して水素を15分間以上にわたって曝気し、原料水の0.6MPa以上の加圧状態を維持するので、原料水に水素をより好適に溶解させることができ、さらに高濃度の水素水を製造することができる。
Further, in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more and the pressurized state of 0.6 MPa or higher of the raw water is maintained, so that hydrogen can be more suitably dissolved in the raw water, Furthermore, high concentration hydrogen water can be produced.
また、水素水を1分以上攪拌するので、水素水中の水素濃度をより好適に均一に上昇させることができ、さらに高濃度の水素水を製造することができる。
Moreover, since the hydrogen water is stirred for 1 minute or more, the hydrogen concentration in the hydrogen water can be increased more suitably and uniformly, and a higher concentration hydrogen water can be produced.
〔実施の形態に対する変形例〕
以上、本発明に係る実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。 [Modifications to Embodiment]
Although the embodiments of the present invention have been described above, the specific configuration and means of the present invention can be arbitrarily modified and improved within the scope of the technical idea of each invention described in the claims. Can do. Hereinafter, such a modification will be described.
以上、本発明に係る実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。 [Modifications to Embodiment]
Although the embodiments of the present invention have been described above, the specific configuration and means of the present invention can be arbitrarily modified and improved within the scope of the technical idea of each invention described in the claims. Can do. Hereinafter, such a modification will be described.
(解決しようとする課題や発明の効果について)
まず、発明が解決しようとする課題や発明の効果は、上述の内容に限定されるものではなく、発明の実施環境や構成の細部に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏することがある。 (About problems to be solved and effects of the invention)
First, the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment and details of the configuration of the invention. May be solved, or only some of the effects described above may be achieved.
まず、発明が解決しようとする課題や発明の効果は、上述の内容に限定されるものではなく、発明の実施環境や構成の細部に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏することがある。 (About problems to be solved and effects of the invention)
First, the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment and details of the configuration of the invention. May be solved, or only some of the effects described above may be achieved.
(寸法や材料について)
発明の詳細な説明や図面で説明した水素水製造装置1の各部の寸法、形状、材料、比率等は、あくまで例示であり、その他の任意の寸法、形状、材料、比率等とすることができる。 (About dimensions and materials)
The dimensions, shapes, materials, ratios, and the like of the respective parts of the hydrogenwater production apparatus 1 described in the detailed description of the invention and the drawings are merely examples, and other arbitrary dimensions, shapes, materials, ratios, and the like can be used. .
発明の詳細な説明や図面で説明した水素水製造装置1の各部の寸法、形状、材料、比率等は、あくまで例示であり、その他の任意の寸法、形状、材料、比率等とすることができる。 (About dimensions and materials)
The dimensions, shapes, materials, ratios, and the like of the respective parts of the hydrogen
(付記)
付記1の水素水製造方法は、容器内に封入された原料水を脱気する脱気ステップと、前記脱気ステップにおいて脱気された原料水に対して水素を曝気して当該原料水の加圧状態を維持することで、前記原料水から水素水を製造する曝気ステップと、前記曝気ステップにおいて製造された前記水素水を攪拌する攪拌ステップと、を含む。 (Appendix)
The method for producing hydrogen water according toappendix 1 includes a deaeration step for degassing the raw material water sealed in a container, and aeration of hydrogen to the raw material water degassed in the deaeration step to add the raw material water. Maintaining the pressure state includes an aeration step for producing hydrogen water from the raw water, and an agitation step for stirring the hydrogen water produced in the aeration step.
付記1の水素水製造方法は、容器内に封入された原料水を脱気する脱気ステップと、前記脱気ステップにおいて脱気された原料水に対して水素を曝気して当該原料水の加圧状態を維持することで、前記原料水から水素水を製造する曝気ステップと、前記曝気ステップにおいて製造された前記水素水を攪拌する攪拌ステップと、を含む。 (Appendix)
The method for producing hydrogen water according to
付記2の水素水製造方法は、付記1に記載の水素水製造方法において、前記脱気ステップにおいて、前記原料水を-67kPa以下の圧力で脱気する。
The method for producing hydrogen water according to appendix 2 is the method for producing hydrogen water according to appendix 1, wherein in the degassing step, the raw water is degassed at a pressure of −67 kPa or less.
付記3の水素水製造方法は、付記1又は2に記載の水素水製造方法において、前記曝気ステップにおいて、前記原料水に対して水素を15分間以上にわたって曝気し、前記原料水の0.6MPa以上の加圧状態を維持する。
The method for producing hydrogen water according to appendix 3 is the method for producing hydrogen water according to appendix 1 or 2, wherein in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more, and the raw water is 0.6 MPa or more. The pressure state is maintained.
付記4の水素水製造方法は、付記1から3のいずれか一項に記載の水素水製造方法において、前記攪拌ステップにおいて、前記水素水を1分以上攪拌する。
The hydrogen water production method according to appendix 4 is the hydrogen water production method according to any one of appendices 1 to 3, wherein the hydrogen water is stirred for 1 minute or more in the stirring step.
(付記の効果)
付記1に記載の水素水製造方法によれば、脱気ステップにて原料水に溶存する空気を抜いて水素が溶存し易い状態とし、さらに曝気ステップにて原料水の加圧状態を維持することで原料水に好適に水素を溶解させ、かつ攪拌ステップで水素水を攪拌することで水素水中の水素濃度をさらに上昇させることができ、高濃度の水素水を製造することができる。 (Additional effects)
According to the hydrogen water production method described inappendix 1, the air dissolved in the raw water is removed in the deaeration step so that hydrogen is easily dissolved, and the pressurized state of the raw water is maintained in the aeration step. Thus, by suitably dissolving hydrogen in the raw water and stirring the hydrogen water in the stirring step, the hydrogen concentration in the hydrogen water can be further increased, and high concentration hydrogen water can be produced.
付記1に記載の水素水製造方法によれば、脱気ステップにて原料水に溶存する空気を抜いて水素が溶存し易い状態とし、さらに曝気ステップにて原料水の加圧状態を維持することで原料水に好適に水素を溶解させ、かつ攪拌ステップで水素水を攪拌することで水素水中の水素濃度をさらに上昇させることができ、高濃度の水素水を製造することができる。 (Additional effects)
According to the hydrogen water production method described in
付記2に記載の水素水製造方法によれば、脱気ステップにおいて原料水を-67kPa以下の圧力で脱気するので、原料水に溶存する空気をより好適に抜くことができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water described in appendix 2, since the raw water is degassed at a pressure of −67 kPa or less in the deaeration step, the air dissolved in the raw water can be more suitably removed, and a higher concentration can be obtained. Hydrogen water can be produced.
付記3に記載の水素水製造方法によれば、曝気ステップにおいて、原料水に対して水素を15分間以上にわたって曝気し、原料水の0.6MPa以上の加圧状態を維持するので、原料水に水素をより好適に溶解させることができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water described in Supplementary Note 3, in the aeration step, hydrogen is aerated over the raw water for 15 minutes or more and the pressurized state of 0.6 MPa or higher of the raw water is maintained. Hydrogen can be dissolved more suitably, and more highly concentrated hydrogen water can be produced.
付記4に記載の水素水製造方法によれば、水素水を1分以上攪拌するので、水素水中の水素濃度をより好適に均一に上昇させることができ、さらに高濃度の水素水を製造することができる。
According to the method for producing hydrogen water described in appendix 4, the hydrogen water is stirred for 1 minute or more, so that the hydrogen concentration in the hydrogen water can be more suitably and uniformly increased, and a higher concentration hydrogen water is produced. Can do.
1 水素水製造装置
2 耐圧容器
3 水素発生装置
4 バブリングストーン
5 真空ポンプ
6 圧力ゲージ
7、8 チューブ
DESCRIPTION OFSYMBOLS 1 Hydrogen water production apparatus 2 Pressure-resistant container 3 Hydrogen generator 4 Bubbling stone 5 Vacuum pump 6 Pressure gauge 7, 8 Tube
2 耐圧容器
3 水素発生装置
4 バブリングストーン
5 真空ポンプ
6 圧力ゲージ
7、8 チューブ
DESCRIPTION OF
Claims (4)
- 容器内に封入された原料水を脱気する脱気ステップと、
前記脱気ステップにおいて脱気された原料水に対して水素を曝気して当該原料水の加圧状態を維持することで、前記原料水から水素水を製造する曝気ステップと、
前記曝気ステップにおいて製造された前記水素水を攪拌する攪拌ステップと、を含む、
水素水製造方法。 A degassing step for degassing the raw water enclosed in the container;
Aeration step of producing hydrogen water from the raw water by aeration of the raw water degassed in the degassing step and maintaining the pressurized state of the raw water;
Agitating step of agitating the hydrogen water produced in the aeration step.
Hydrogen water production method. - 前記脱気ステップにおいて、前記原料水を-67kPa以下の圧力で脱気する、
請求項1に記載の水素水製造方法。 In the degassing step, the raw water is degassed at a pressure of −67 kPa or less.
The method for producing hydrogen water according to claim 1. - 前記曝気ステップにおいて、前記原料水に対して水素を15分間以上にわたって曝気し、前記原料水の0.6MPa以上の加圧状態を維持する、
請求項1又は2に記載の水素水製造方法。 In the aeration step, hydrogen is aerated over the raw water for 15 minutes or more, and the pressurized state of 0.6 MPa or higher of the raw water is maintained.
The method for producing hydrogen water according to claim 1 or 2. - 前記攪拌ステップにおいて、前記水素水を1分以上攪拌する、
請求項1から3のいずれか一項に記載の水素水製造方法。
In the stirring step, the hydrogen water is stirred for 1 minute or more.
The method for producing hydrogen water according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/089144 WO2018123033A1 (en) | 2016-12-28 | 2016-12-28 | Method for producing hydrogen water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/089144 WO2018123033A1 (en) | 2016-12-28 | 2016-12-28 | Method for producing hydrogen water |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123033A1 true WO2018123033A1 (en) | 2018-07-05 |
Family
ID=62710468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/089144 WO2018123033A1 (en) | 2016-12-28 | 2016-12-28 | Method for producing hydrogen water |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018123033A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112979017A (en) * | 2019-12-02 | 2021-06-18 | 上海道氢霖健康科技有限公司 | Preparation process of energy water |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230370A (en) * | 2002-12-05 | 2004-08-19 | Wataru Murota | Reduced water and manufacturing method therefor |
JP2009011999A (en) * | 2007-06-29 | 2009-01-22 | Joho Kagaku Kenkyusho:Kk | Production system and production method for reduced water with hydrogen radical pressure-dissolved therein |
JP2009248048A (en) * | 2008-04-09 | 2009-10-29 | Shori:Kk | Gas/liquid-mixed water generating apparatus |
JP3174569U (en) * | 2012-01-13 | 2012-03-29 | 株式会社フラックス | Hydrogen water generator |
JP2012176395A (en) * | 2011-02-01 | 2012-09-13 | Hiromaito Co Ltd | Method of regulating hydrogen water, and unpurified water container |
JP2015150472A (en) * | 2014-02-12 | 2015-08-24 | 有限会社ジェニス・ホワイト | Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water |
JP2016087523A (en) * | 2014-10-31 | 2016-05-23 | 株式会社 伊藤園 | Manufacturing method of gas dispersion liquid |
-
2016
- 2016-12-28 WO PCT/JP2016/089144 patent/WO2018123033A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004230370A (en) * | 2002-12-05 | 2004-08-19 | Wataru Murota | Reduced water and manufacturing method therefor |
JP2009011999A (en) * | 2007-06-29 | 2009-01-22 | Joho Kagaku Kenkyusho:Kk | Production system and production method for reduced water with hydrogen radical pressure-dissolved therein |
JP2009248048A (en) * | 2008-04-09 | 2009-10-29 | Shori:Kk | Gas/liquid-mixed water generating apparatus |
JP2012176395A (en) * | 2011-02-01 | 2012-09-13 | Hiromaito Co Ltd | Method of regulating hydrogen water, and unpurified water container |
JP3174569U (en) * | 2012-01-13 | 2012-03-29 | 株式会社フラックス | Hydrogen water generator |
JP2015150472A (en) * | 2014-02-12 | 2015-08-24 | 有限会社ジェニス・ホワイト | Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water |
JP2016087523A (en) * | 2014-10-31 | 2016-05-23 | 株式会社 伊藤園 | Manufacturing method of gas dispersion liquid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112979017A (en) * | 2019-12-02 | 2021-06-18 | 上海道氢霖健康科技有限公司 | Preparation process of energy water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2620894A (en) | Deaeration of viscous and plastic materials | |
JP2009011999A (en) | Production system and production method for reduced water with hydrogen radical pressure-dissolved therein | |
CN113038840A (en) | Apparatus for preparing a fortified beverage | |
JP6129403B2 (en) | Seal / foam stopper | |
KR20170046720A (en) | Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device | |
JP2011152513A (en) | Gas-liquid mixture liquid generating apparatus | |
JP2011020005A (en) | Nano bubble generator | |
KR20160119049A (en) | Hydrogen water production device, and production method and storage method for hydrogen water | |
JP7218016B2 (en) | Fine bubble forming device | |
WO2018123033A1 (en) | Method for producing hydrogen water | |
JP2013128882A (en) | Hydrogen water producing apparatus | |
JP2007125535A (en) | Emulsification process and emulsification apparatus | |
JP2011088076A (en) | Method and apparatus for generating gas-liquid mixed liquid | |
JPH06315617A (en) | Emulsifying method and device | |
JP6837351B2 (en) | Mixing aqueous solution manufacturing equipment and manufacturing method | |
JP2018008230A (en) | Hydrogen-containing water and method of producing the same | |
JP3843361B2 (en) | Solution reduction treatment method, oxidation treatment method, and automatic oxidation reduction treatment apparatus | |
JP2009226386A (en) | Ultrafine-bubble water | |
US20060000361A1 (en) | Individual means for producing oxygen cocktail and the oxygen cylinder therefor | |
JP4085121B1 (en) | Dental gargle water supply device | |
CN102249361B (en) | Ozone gas supply pressure stabilizing device and air flotation reactor using same | |
CN207614695U (en) | A kind of diamond wire production sand supply automatically device | |
CN204298124U (en) | Oxyhydrogen water machine | |
CN106554068B (en) | A kind of neutral saturation hydrogen water and preparation method thereof and a kind of system for preparing neutral saturation hydrogen water | |
KR101562708B1 (en) | A method for manufacturing Packaged Liquid using the physical and chemical characteristics of micro nano bubble and system therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925830 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |