WO2010134551A1 - Gas-liquid mixture - Google Patents

Gas-liquid mixture Download PDF

Info

Publication number
WO2010134551A1
WO2010134551A1 PCT/JP2010/058464 JP2010058464W WO2010134551A1 WO 2010134551 A1 WO2010134551 A1 WO 2010134551A1 JP 2010058464 W JP2010058464 W JP 2010058464W WO 2010134551 A1 WO2010134551 A1 WO 2010134551A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
bubbles
liquid mixture
pressure
Prior art date
Application number
PCT/JP2010/058464
Other languages
French (fr)
Japanese (ja)
Inventor
敦志 辻
尚治 中川
哲也 前川
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to JP2011514437A priority Critical patent/JPWO2010134551A1/en
Publication of WO2010134551A1 publication Critical patent/WO2010134551A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the present invention relates to a gas-liquid mixture in which gas is present as stable bubbles in the liquid.
  • the fine bubbles in the liquid tend to disappear when dissolved or coalesced, making it difficult to stably exist in the liquid. For this reason, gas is continuously supplied to the liquid for bubbling, or a strong force is applied to agitate to generate bubbles, and the liquid is used so that the generated bubbles do not disappear. Yes. Further, as the size of the bubbles becomes nano-order and the size of the bubbles becomes finer, the bubbles are more difficult to be generated and more easily disappeared, and it is more difficult to use the liquid in which the bubbles are dispersed.
  • Patent Documents 2 to 4 disclose that nanobubbles are stabilized by rapidly reducing microbubbles.
  • a part of microbubbles is reduced by applying a force of strength, and both ions having opposite signs attracted to an aqueous solution near the interface by ions adsorbed on the gas-liquid interface and electrostatic attractive force.
  • the ions are concentrated in a minute volume at a high concentration to act as a shell surrounding the microbubbles, and the nanobubbles are stabilized by inhibiting diffusion of the gas in the microbubbles into the aqueous solution.
  • it is necessary to generate an electrostatic force at the gas-liquid interface so the presence of an electrolyte is indispensable. In solutions such as pure water in which an electrolytic substance is not dissolved, nanobubbles are prevented. It could not exist stably.
  • Patent Document 5 discloses that nanobubbles are generated by electrolyzing water and then applying ultrasonic waves.
  • the gas is limited to hydrogen and oxygen, the amount of gas generated by electrolysis is small, and the generated bubbles are not stabilized. And the bubbles could not be stably maintained over a long period of time.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a gas-liquid mixture in which gas is present in a liquid as a high-density and stable bubble over a long period of time. is there.
  • the gas-liquid mixture of the present invention is a gas-liquid mixture in which bubbles are present in a liquid composed of molecules that form hydrogen bonds, and the distance between hydrogen bonds of molecules present at the interface with the liquid bubbles is It is characterized by being shorter than the hydrogen bond distance of the molecules constituting the liquid when the liquid is at normal temperature and pressure.
  • the liquid is preferably water.
  • the liquid is a liquid composed of molecules having at least one of OH bond, NH bond, (halogen) -H bond, and SH bond. It is preferable.
  • the liquid is preferably a liquid composed of molecules having a carboxyl group.
  • the concentration of the gas contained in the gas-liquid mixture is equal to or higher than the saturated dissolution concentration of the liquid.
  • the pressure of the gas forming the bubbles is 0.12 MPa or more.
  • the distance between hydrogen bonds at the bubble interface is shortened, so that the bubbles can be surrounded by liquid molecules that form strong hydrogen bonds. Since the molecule forms a strong shell and encloses the bubble, it does not collapse even if the bubbles collide with each other, and can counteract the pressure from the liquid with the stress from the inside of the bubble, causing the bubble to disappear in the liquid It can exist stably without being combined with each other. And since this hydrogen bond is stable over a long period of time, it becomes possible to use the gas-liquid mixture in which bubbles existed stably over a long period of time. Further, nano-order size bubbles can be generated at a density far exceeding the conventional level and can be stably present in the gas-liquid mixture.
  • a liquid composed of molecules that form hydrogen bonds is used.
  • a hydrogen bond is a bond that stabilizes the system in a molecule that has a high electronegativity atom and a hydrogen atom, because the hydrogen atom approaches the high electronegativity atom of another molecule.
  • Bubbles are present in the liquid forming the gas-liquid mixture, and in the liquid molecules existing around the bubbles, that is, at the interface with the bubbles, the distance of hydrogen bonding between the molecules is (25 ° C., 1 atm (0.1013 MPa)), which is shorter than the hydrogen bond distance of the molecules constituting the liquid.
  • the size of the bubbles contained in the gas-liquid mixture is not particularly limited, but is preferably finer, and can be a micro-order of 1000 ⁇ m or less (so-called microbubbles).
  • those having a nano-order of 1 to 1000 nm can be preferably used. Since the buoyancy does not substantially act on the nano-order size bubbles, the bubbles do not rise and separate from the liquid, so that the bubbles can exist stably over a long period of time. Even if the bubble is smaller or larger than this range, the bubble may not be stabilized.
  • the bubble size can be measured by a scanning electron microscope (SEM), and the average particle diameter of the bubbles can be obtained by averaging the particle diameters of the bubbles obtained by the measurement.
  • SEM scanning electron microscope
  • the liquid mixed with microbubbles is cloudy and can be discriminated visually.
  • the liquid mixed with nanobubbles is colorless and transparent (or the color of the liquid when the liquid is colored) and can be discriminated visually. Can not.
  • One of the liquids preferably used for the gas-liquid mixture is water.
  • the water molecule is a hydrogen bond of O ... H, that is, a hydrogen bond is formed between an oxygen atom of one water molecule and a hydrogen atom of another water molecule, and water is used as the liquid of the gas-liquid mixture. Then, this hydrogen bond in the liquid becomes stronger at the bubble interface, and the bubbles can be further stabilized.
  • water is abundant in supply sources, can be obtained stably, is safe for the human body, and since water with dispersed bubbles has a wide range of applications, it is possible to obtain a highly useful gas-liquid mixture. It can be done.
  • the water is not limited to high-purity water, and any water can be used including water and sewage systems, ponds, seawater, and the like. That is, any material that contains water as a liquid may be used.
  • the liquid is water.
  • the hydrogen bonds of O ... H formed by water molecules that is, the bonds between oxygen atoms of one water molecule and hydrogen atoms of another water molecule become stronger, and the bubbles can be further stabilized.
  • water in which bubbles are dispersed has a wide range of applications, it is possible to obtain a gas-liquid mixture having high utility value.
  • the liquid is a liquid composed of molecules having at least one of (halogen) -H bond and SH bond such as OH bond, NH bond, FH bond and Cl-H bond. It is also preferable. These bonds are bonds between atoms and hydrogen atoms having a sufficiently large electronegativity with respect to hydrogen atoms, such as OH ... O, NH ... N, FH ... F and Cl-H ... Cl. (Halogen) -H ... (halogen), SH ... S, etc., are formed, and these hydrogen bonds can surround the bubbles and stabilize the bubbles.
  • a typical liquid having an OH bond is water, but other examples include alcohols such as hydrogen peroxide, methanol and ethanol, and glycerin.
  • liquid having an N—H bond examples include ammonia.
  • examples of those having a (halogen) -H bond include HF (hydrogen fluoride) having an FH bond and HCl (hydrogen chloride) having a Cl-H bond.
  • H 2 S hydrogen sulfide
  • the liquid is a liquid composed of molecules having one or more of OH bond, NH bond, (halogen) -H bond, and SH bond.
  • the bubbles can be stabilized by surrounding the bubbles by strong hydrogen bonds such as OH ... O, NH ... N, (halogen) -H ... (halogen), and SH ... S. Can be obtained.
  • the liquid is a liquid composed of molecules having a carboxyl group.
  • the carboxyl group has a carbonyl oxygen atom with high electronegativity, and the carbonyl oxygen atom in one carboxyl group and a hydrogen atom in another carboxyl group form a strong hydrogen bond to surround the bubble. Therefore, it is possible to obtain a gas-liquid mixture in which bubbles are stably present.
  • Examples of the liquid composed of molecules having a carboxyl group include carboxylic acids such as formic acid and acetic acid.
  • the liquid is a liquid composed of molecules having a carboxyl group.
  • the oxygen atom in the carboxyl group and the hydrogen atom in the other carboxyl group form a strong hydrogen bond and surround the bubble, a gas-liquid mixture in which the bubble is stably present can be obtained. .
  • the gas used for the gas-liquid mixture is not particularly limited, and various gases can be used.
  • gases such as air, carbon dioxide, nitrogen, oxygen, ozone, argon, hydrogen, helium, methane, propane, and butane can be used singly or in combination.
  • the gas concentration contained in the gas-liquid mixture is preferably equal to or higher than the saturated dissolution concentration of the liquid. If a saturated gas amount or a large amount of gas exceeding it is held in the liquid, a high-concentration gas contained in the liquid can be used, and the utility value of the gas-liquid mixture can be increased. . More preferably, a saturated dissolved amount of gas is dissolved in the gas-liquid mixed liquid, and bubbles are present in the saturated dissolved liquid. If the gas is dissolved in the saturated dissolution amount, it becomes possible to stabilize the gas in the form of bubbles without dissolving them and to hold them in the liquid as bubbles.
  • a gas-liquid mixed solution in which a gas is present in excess of the saturated dissolution amount has a gas dissolved at a saturated concentration in the liquid, and the bubbles do not collapse or dissolve, and the bubbles are more stably contained in the liquid. Can be present.
  • concentration of the gas contained in the gas-liquid mixture increases, the bubbles can be stabilized in a state where the distance of hydrogen bonding is shortened, and various activities (physiological activity, detergency, etc.) The action becomes stronger and the utility value can be further increased.
  • the amount of gas in the gas-liquid mixture can be calculated from the amount of mass change by separating the gas from the gas-liquid mixture as shown in the examples described later.
  • the concentration of the gas contained in the gas-liquid mixture is equal to or higher than the saturated dissolution concentration of the liquid. In that case, by maintaining a large amount of gas in or above the saturated dissolution amount in the liquid, the hydrogen bond with a short distance at the bubble interface is stabilized, and a high concentration gas contained in the liquid is used. It is possible to increase the utility value of the gas-liquid mixture.
  • the pressure of the gas forming the bubbles is 0.12 MPa or more.
  • a stronger interface structure can be formed by maintaining the bubbles at a high internal pressure, and in the stationary state, stable bubbles are formed and an impact is once applied to the gas-liquid mixture. Then, the shell of the liquid formed by hydrogen bonds collapses due to the force of the internal pressure, and the bubbles merge and foam, so this foaming can be used and the utility value of the gas-liquid mixture can be increased. It is possible.
  • the pressure of the gas forming the bubbles that is, the internal pressure of the bubbles is 0.12 MPa or more, but it is higher than the internal pressure of the bubbles given by the Young Laplace equation (the following equation). A pressure is preferred.
  • the distance between the hydrogen bonds of the liquid molecules at the interface with the bubbles can be set as appropriate depending on the liquid used, but is 99% or less when the distance between hydrogen bonds at room temperature and normal pressure is 100%. Is preferred.
  • the hydrogen bond distance falls within this range, the bubbles can be surrounded and stabilized by a hard shell of hydrogen bonds. If the distance between hydrogen bonds is longer than this, there is a possibility that bubbles cannot be stabilized and exist. Considering the interatomic distance, the lower limit of the hydrogen bond distance is 95%.
  • the hydrogen bond distance at the bubble interface in the gas-liquid mixture can be calculated by analyzing the infrared absorption spectrum (IR) of the gas-liquid mixture as shown in the examples described later.
  • water having a hydrogen bond distance of the above-mentioned distance usually has an ice or hydrate crystal structure.
  • the above-mentioned locally at the bubble interface.
  • a hydrogen bond with a short distance is formed, and a normal hydrogen bond is formed in other liquids. That is, a hard shell of liquid molecules is formed by hydrogen bonds at a short distance at the bubble interface to prevent the bubbles from coalescing and disappearing, and at other than the bubble interface, liquid exists in a normal state and normal temperature At normal pressure, fluidity is ensured, and it is easy to use liquid in which stable bubbles are present.
  • the zeta potential becomes negative.
  • the area of the bubble interface existing in a volume of 1 cm 3 is 0.6 to 1. the 2m 2 about. Such characteristics can be used in various fields.
  • the liquid into which the gas has been injected is pressurized at a pressure rate ⁇ P 1 / t ( ⁇ P 1 : pressure increase, t: time) of 0.17 MPa / sec or more.
  • the pressure of the liquid is set to 0.15 MPa or more by pressurization.
  • the pressure is gradually reduced to atmospheric pressure by setting the upper limit of the pressure reduction rate ⁇ P 2 / t ( ⁇ P 2 : pressure reduction amount, t: time) in the entire piping while feeding the liquid.
  • ⁇ P 1 pressure increase, t: time
  • FIG. 4 is a schematic view showing an example of an apparatus for producing a gas-liquid mixed solution.
  • This gas-liquid mixed liquid manufacturing apparatus is an apparatus for continuously manufacturing a gas-liquid mixed liquid by pumping liquid, taking out the liquid held at atmospheric pressure (0.1 MPa) from the liquid storage tank 12 and pumping it.
  • a pressurizing unit 1 that pressurizes the gas
  • a gas supply unit 2 that supplies a gas to the liquid
  • a gas-liquid mixing unit 3 that mixes the supplied gas with fine liquids
  • a liquid in the gas-liquid mixing unit 3 A defoaming section 4 for removing large bubbles present in the gas, a decompression section 5 for gradually depressurizing the liquid from which the large bubbles have been removed by the defoaming section 4 to an atmospheric pressure without generating large bubbles, And a discharge portion 7 for discharging the liquid, and each portion is provided connected to the flow path 6.
  • the pressurizing unit 1 pumps the liquid to the gas-liquid mixing unit 3 and can be constituted by, for example, a pump 11 that sucks the liquid from the liquid storage tank 12 as in this device. It can also be composed of piping that sends out pressure.
  • the gas supply unit 2 supplies gas to the liquid by being connected to the flow path 6. For example, when supplying air as gas, the other end of the tubular body whose one end is opened to the atmosphere is connected.
  • the gas supply unit 2 can be formed by connecting to the flow path 6. Or when supplying oxygen, ozone, hydrogen, nitrogen, a carbon dioxide, argon etc. as gas, the gas supply part 2 can also be formed by connecting the cylinder etc. which enclosed these gas to the flow path 6.
  • connection position of the gas supply unit 2 to the flow path 6 may be a position upstream of the gas-liquid mixing section 3 and is connected to the flow path 6 upstream of the pressurizing section 1 as in this device. Alternatively, it may be either connected to the flow path 6 on the downstream side of the pressurizing unit 1.
  • the gas-liquid mixing unit 3 mixes the pumped liquid and the gas supplied to the liquid, and converts the gas into fine bubbles by pressurization to disperse and mix in the liquid.
  • the gas-liquid mixing unit 3 can be configured by applying a stirring force by changing the cross-sectional area of the flow path, or if the liquid is flowing in the flow path 6 with the liquid being stirred, 6 can also be configured.
  • the pressurizing unit 1 constituted by the pump 11 or the like may also be used as the gas-liquid mixing unit 3.
  • the liquid When pressurization and mixing of gas and liquid are performed by the pump 11, the liquid can be rapidly pressurized and mixed, so that a gas-liquid mixture having a strong bubble interface structure can be reliably generated.
  • the gas-liquid mixing unit 3 is constituted by a Venturi tube. In that case, the liquid can be rapidly pressurized and mixed with a simple configuration.
  • the liquid and gas are mixed under high pressure conditions.
  • hydrogen bonds having a shorter bond distance are formed around the bubbles, and the bubbles can be covered with the shell of the hydrogen bonds, and the gas can be stabilized as fine bubbles.
  • the pressure of the gas-liquid mixed liquid when it is sent out from the gas-liquid mixing part 3 to the defoaming part 4 becomes 0.15 MPa or more, thereby generating nano-sized bubbles with a strong structure at the bubble interface Is something that can be done.
  • the upper limit of the pressurization rate ⁇ P 1 / t is 167 MPa / sec, and the upper limit of the pressure of the pressurized gas-liquid mixture is 50 MPa.
  • FIG. 4B is a schematic view of the main part showing an example of a specific form of the pump 11.
  • the pump 11 a pressurizes the liquid by the rotation of the rotating body 21, and the rotating blades 22 attached to the rotating body 21 continuously rotate to pump the pump outlet 27 through the pump passage chamber 23 from the pump inlet 26.
  • the liquid is sent out in the direction of flow to and pressurized.
  • the white arrow indicates the flow direction of the liquid
  • the solid line arrow indicates the rotation direction of the rotating body 21.
  • the pump 11a includes four rotary blades 22.
  • the rotating shaft 25 of the rotating body 21 is arranged so as to be deviated toward the pump outlet 27 side from the cylindrical center of the pump wall 24 formed in a cylindrical shape, and is provided as an eccentric shaft.
  • the volume of the second flow path chamber 23b of the pump flow path chamber 23 is formed smaller than the volume of the first flow path chamber 23a due to the eccentricity of the rotary shaft 21, and the pump flow path chamber is arranged along the liquid flow direction.
  • the volume of 23 is gradually reduced.
  • the liquid fed to the pump flow passage chamber 23 is pressurized is fed by rotating blades 22, large bubbles B B due to rapid pressure changes bubbles B N of subdivided by fine nano-sized generated . That is, the liquid sent from the first flow path chamber 23a to the second flow path chamber 23b along with the rotation of the rotating body 21 is rapidly compressed and pressurized as the volume of the pump flow path chamber 23 becomes smaller. Nano-sized bubbles BN are generated by the pressure. Further, in the illustrated pump 11a, a shearing force is applied when the liquid passes between the inner surface of the pump wall 24 and the tip of the rotor blade 22, and the liquid is pressurized while being sheared by the clearance.
  • the gas (large bubbles B B ) mixed in the liquid is sheared by the shearing force applied to the liquid and becomes finer nano-sized bubbles (B N ).
  • the distance narrowest part between the inner surface of the pump wall 24 and the tip portion of the rotor blades 22, i.e. the clearance distance L C is preferably 5 [mu] m ⁇ 2 mm.
  • the rotational speed of the rotating body 21 of the pump 11 is 100 rpm or more. At this time, it becomes 1/2 rotation or more in 0.3 seconds. By having such a rotational speed, it is possible to reliably generate nano-sized bubbles in which the hydrogen bond distance is shortened by injecting a gas having a saturation dissolution concentration or more into the liquid.
  • Pressurization by the pressurizing unit 1 and the gas-liquid mixing unit 3 can be performed multiple times by providing a plurality of pressurizing units 1 or gas-liquid mixing units 3.
  • the pressurization can be performed by a plurality of pumps 11 and venturi pipes, and the liquid is strongly pressurized to generate a gas-liquid mixture having a strong bubble interface structure. It is something that can be done.
  • the pressurizing unit 1 can be configured with a pump 11 as shown in FIG. 4, and the gas-liquid mixing unit 3 can be configured with one or more pumps 11 or Venturi tubes.
  • the defoaming section 4 removes relatively large bubbles from the liquid mixed with the gas as described above, and may be composed of a tubular body or the like in which the bubbles are removed by raising their buoyancy. it can. Since the removed bubbles become gas and accumulate on the upper part, the removed gas can be removed by the gas removing unit 8. Bubbles rising by buoyancy are micro-order sizes, that is, bubbles having a diameter exceeding 1 ⁇ m, and by removing such relatively large bubbles, nano-sized bubbles that are fine bubbles are present in the liquid. Thus, a gas-liquid mixed solution having a strong interface structure can be obtained.
  • the degassing part 4 can be configured as shown in FIG. (A) is formed so as to be substantially horizontal to the ground surface (on a plane substantially perpendicular to the direction of gravity) continuously with the gas-liquid mixing unit 3, and the bubbles B in the liquid Lq are It shows an example of a tubular body that is lifted up to remove bubbles B.
  • (B) is formed so that the shape combined with the gas-liquid mixing unit 3 and the gas-liquid mixing unit 3 is a reverse L-shape when viewed from the front, and the flow direction of the liquid Lq is downward (the direction of gravity)
  • the bubbles B are removed by raising the bubbles B in the liquid Lq to the liquid level by the buoyancy.
  • (c) is separated from the gas-liquid mixing unit 3, and the flow direction of the liquid Lq is set downward (substantially the same direction as the direction of gravity), and the bubbles B in the liquid Lq are raised to the liquid level by the buoyancy.
  • the decompression unit 5 gradually reduces the pressure of the liquid mixed with gas to atmospheric pressure without generating large bubbles.
  • the liquid mixed with gas by pressurization as described above is in a high-pressure state and is discharged to the outside under atmospheric pressure as it is, bubbles in the gas-liquid mixture are combined due to a sudden pressure drop. May become a gas and be discharged from the liquid, and cavitation may occur. Therefore, the decompression unit 5 is provided, and when the gas-liquid mixture in a pressurized state is sent out, the decompression unit 5 gradually reduces the pressure to atmospheric pressure and then discharges it.
  • the decompression unit 5 is configured to decompress while reducing the upper limit of the decompression speed ⁇ P 2 / t ( ⁇ P 2 : decompression amount, t: time) over the entire piping while sending a liquid in which gas is mixed. ing.
  • the gas-liquid mixture can be taken out without erasing or coalescing the nano-sized bubbles while maintaining the structure of the strong bubble interface.
  • the decompression unit 5 can be configured as shown in FIG. 6, and specifically, the flow path 6 whose flow path cross-sectional area gradually decreases as shown in FIG. In this way, the flow path 6 in which the cross-sectional area of the flow path gradually decreases gradually, or the gas-liquid mixing in the high pressure state (P 1 ) due to the pressure loss in which the pressurized liquid flows in the flow path 6 as in (c).
  • the flow path 6 whose flow path length (L) is adjusted so as to reduce the pressure of the liquid gradually (P 2 , P 3 ,...) To the atmospheric pressure (P n ), and (d)
  • it can be configured by a plurality of pressure regulating valves 9 provided in the flow path 6.
  • the flow path 6 upstream of the decompression unit 5 has an inner diameter of 20 mm, and the decompression unit 5 has a channel length of about 1 cm to At 10 m, the inner diameter can be gradually reduced from 20 mm to 4 mm so that the cross-sectional area of the flow path can be reduced.
  • the pressure is reduced by 1.0 MPa at a maximum decompression speed of 2000 MPa / sec or less without erasing nano-sized bubbles.
  • the gas-liquid mixture can be depressurized to atmospheric pressure.
  • the discharge part 7 discharges the decompressed liquid.
  • an extension channel 10 can be provided between the discharge unit 7 and the decompression unit 5 in order to ensure a sufficient pressure of the liquid in the pressurization unit 1. That is, the total pressure loss including the decompression unit 5 is calculated, the pressure required to pressurize the liquid and gas in the gas-liquid mixing unit 3 by the indentation pressure from the pressurization unit 1, and the total pressure loss
  • the extended flow path 10 may be added to the flow path 6 with the flow path length adjusted so that the pressure loss of this difference occurs. In order to secure the indentation pressure, it may be possible to provide a throttling portion or the like.
  • the liquid is pumped by the pressurizing unit 1, and the gas is supplied to the liquid by the gas supply unit 2 and injected. Then, the liquid into which the gas has been injected is pressurized by the pressurizing unit 1 and the gas-liquid mixing unit 3 at a pressurization rate ⁇ P 1 / t ( ⁇ P 1 : pressure increase, t: time) of 0.17 MPa / sec or more.
  • the liquid pressure is set to 0.15 MPa or more. That is, the pressure of the liquid when being sent out from the gas-liquid mixing unit 3 to the defoaming unit 4 is 0.15 MPa or more.
  • the pressure is gradually reduced to atmospheric pressure at 2 / t ( ⁇ P 2 : reduced pressure amount, t: time).
  • the pressure in the gas-liquid mixing part 3 can be set as appropriate, it is preferable that the absolute pressure exceeds 0.1 MPa (atmospheric pressure). Thereby, the distance of a hydrogen bond can be shortened reliably.
  • the flow path 6 on the downstream side of the gas-liquid mixing unit 3 can be formed in a tube having an inner diameter of about 2 to 50 mm. As a result, the gas-liquid mixture can be discharged with a relatively thick channel cross-sectional area, and the clogging of the pipe as in the case where the channel 6 is configured by a narrow path can be prevented, and the gas-liquid mixture can be used. It can be made easier.
  • FIG. 8 is a schematic view showing another example of an apparatus for producing a gas-liquid mixed solution.
  • This gas-liquid mixture manufacturing apparatus is configured as a gas-liquid mixing tank 13 in which the pressurizing unit 1 and the gas-liquid mixing unit 3 are combined, and the liquid supplied with gas in the gas-liquid mixing tank 13 is set to 0. ⁇ Pressure is applied at a pressure rate ⁇ P 1 / t ( ⁇ P 1 : pressure increase, t: time) of 17 MPa / sec or more, and the liquid pressure is increased to 0.15 MPa or more to contain bubbles having a strong interface structure.
  • the gas-liquid mixture to be produced is produced in a batch system, and after removing large bubbles from the gas-liquid mixture at the defoaming section 4, the gas-liquid mixture is sent to the decompression section 5 and the pressure is reduced to a maximum decompression speed of 2000 MPa.
  • the pressure is reduced to atmospheric pressure at a pressure reduction rate ⁇ P 2 / t ( ⁇ P 2 : pressure reduction amount, t: time) of / sec or less, and the gas-liquid mixture is discharged from the discharge part 7.
  • the gas-liquid mixing tank 13 which is a closed system is sent out and pressurized in a batch manner, and is stirred by a stirring blade 14 or the like provided in the gas-liquid mixing tank 13 so that the liquid Lq and the gas are mixed.
  • the gas-liquid mixed liquid of the present invention can be obtained by sending the generated gas-liquid mixed liquid to the defoaming section 4, the decompression section 5 and the discharge section 7 configured in the same manner as the apparatus of FIG. It is.
  • the gas-liquid mixture of the present invention is one in which bubbles are covered with a hydrogen bond shell, but this hydrogen bond shell collapses due to external force, and gas is applied by applying external force.
  • the generated gas can be used for various purposes.
  • the gas is enveloped by a strong shell of hydrogen bonds, and the bubbles stably held in the liquid have a high internal pressure.
  • the bubbles collapse to generate gas and dissolve in the liquid. Or release from liquid. Since the generated gas can be used for various purposes, a large amount of gas can be held in the liquid, and the gas can be efficiently generated from the liquid and used.
  • Examples of the external force applied to the gas-liquid mixture include temperature control for changing the temperature, irradiation with ultrasonic waves, infrared rays, and microwaves. By applying these external forces, it is possible to efficiently generate gas in the gas-liquid mixture.
  • FIG. 9 is an example of a gas utilization system using a gas-liquid mixture.
  • the gas utilization system generates a gas-liquid mixture in which the gas is present as nano-sized bubbles in the liquid, generates gas from the gas-liquid mixture, and in the gas-liquid mixture present as bubbles
  • the gas is used by dissolving or releasing the gas in a liquid.
  • a gas-liquid mixed liquid generating device 30 that generates a gas-liquid mixed liquid mixed with a liquid in the form of bubbles of nano-size gas, and a gas-liquid mixed generated by the gas-liquid mixed liquid generating apparatus 30
  • An external force supply unit 31 is provided that applies external force to the liquid and breaks bubbles to dissolve the gas into the liquid or generate the gas from the liquid.
  • the gas-liquid mixed liquid generating device 30 and the external force donating unit 31 are continuously arranged. Therefore, in this gas utilization system, it is possible to easily generate the gas-liquid mixed liquid and use the gas.
  • the gas-liquid mixed liquid generating apparatus 30 generates a gas-liquid mixed liquid, and can have the same configuration as the gas-liquid mixed liquid manufacturing apparatus in FIGS.
  • the apparatus has substantially the same configuration as that of the apparatus of FIG. 4 that continuously generates the gas-liquid mixed liquid, but the points that are different from the apparatus of FIG. 4 will be described.
  • the gas-liquid mixed liquid generating apparatus 30 includes a pipe connecting portion 18 that connects the flow path 6 to a liquid supply source 16 outside the apparatus.
  • This pipe connection part 18 is comprised by the adjustment valve etc. which can be opened and closed and can adjust water quantity and water pressure.
  • the liquid supply source 16 is constituted by the liquid storage tank 12, the water pipe 16a, and the like.
  • the pressurizing unit 1 and the gas-liquid mixing unit 3 are constituted by a pump 11 in the same body.
  • a gas return unit 15 is provided between the gas removal unit 8 and the gas supply unit 2.
  • the gas return part 15 is for returning the gas from the gas removal part 8 to the gas supply part 2 and putting it in again, and is formed by a pipe body for sending the gas.
  • the gas return unit 15 is connected to the gas path of the gas supply unit 2.
  • the external force providing unit 31 applies an external force to the gas / liquid mixture generated by the gas / liquid mixture generation apparatus 30 to break up bubbles in the gas / liquid mixture to generate gas, and dissolve the gas in the liquid.
  • a gas is diffused from a liquid. Even if you try to use the gas that has become bubbles in the liquid as it is for cleaning, sterilization, oxygen supply, etc., because the gas is in bubbles, the gas does not contact the object, and the desired effect cannot be obtained. there is a possibility. Moreover, since gas exists stably as a bubble, gas cannot be taken out as it is.
  • the external force supply unit 31 when an external force is applied by the external force supply unit 31, a large amount of gas held as bubbles in the liquid is dissolved in the liquid, and nano-sized bubbles are combined into micro-sized bubbles or more.
  • the released gas is released from the liquid, and the dissolved or released gas can be used.
  • the external force supply unit 31 includes a container 33 for storing the gas-liquid mixture and an external force applying means 32 for applying an external force to the gas-liquid mixture, and the gas-liquid mixture generation apparatus
  • the gas-liquid mixed solution containing nano-sized bubbles generated at 30 is sent to the container 33 in a desired amount batch-type.
  • an external force can be applied as an impact to the gas-liquid mixture using means such as temperature control, ultrasonic waves, infrared rays, microwaves, and stirring.
  • the external force applying means 32 is constituted by a heater such as a heater or a cooling heat exchanger when the temperature control means is used, by an ultrasonic vibrator when using the ultrasonic wave, and when using infrared rays.
  • a heater such as a heater or a cooling heat exchanger when the temperature control means is used
  • an ultrasonic vibrator when using the ultrasonic wave
  • infrared rays when using infrared rays.
  • an infrared irradiator and using a microwave it can be formed of a microwave oscillator.
  • the temperature of the gas-liquid mixture is changed by heating or cooling the gas-liquid mixture.
  • heating means such as a heater to raise the temperature of the gas-liquid mixture stored at room temperature and normal pressure.
  • the gas-liquid mixture whose temperature has been raised causes the interface structure to collapse due to the increase in internal energy, causing bubbles to collapse, or the bubbles to collide violently and form bubbles that are larger than micro size. Will occur. And this gas melt
  • the temperature to be heated can be appropriately set in accordance with the gas generation speed.
  • the stored gas-liquid mixture when the gas is generated by rapidly collapsing bubbles, the stored gas-liquid mixture is 10 When heating up to about 30 ° C or higher and gradually generating bubbles by causing bubbles to collapse, heat the stored gas-liquid mixture to rise to about 1-10 ° C or higher. To do.
  • cooling heat exchanger when applying external force by cooling, turn on the cooling heat exchanger to lower the temperature of the gas-liquid mixture stored at normal temperature and pressure.
  • the gas-liquid mixture whose temperature has been lowered increases the saturated dissolution concentration of the gas by cooling, and the bubbles collapse to dissolve more gas in the liquid.
  • the cooling temperature for example, cooling is performed so that the temperature of the gas-liquid mixture is about 1 to 30 ° C. and the temperature is lowered.
  • external force may be applied by alternately performing heating and cooling.
  • gas can be easily generated and used. That is, when the gas-liquid mixture is produced at room temperature, the gas-liquid mixture can be heated or cooled to collapse the nano-sized bubbles and dissolve or release the gas. When the gas / liquid mixture is produced at a low temperature, the gas / liquid mixture can be returned to room temperature to collapse the nano-sized bubbles to dissolve or release the gas. Therefore, it is possible to control the retention and generation of gas only by controlling the temperature of the gas-liquid mixture.
  • the ultrasonic generator when applying an external force with ultrasonic waves, when the ultrasonic generator is turned on, ultrasonic vibration is applied from the ultrasonic transducer to the gas-liquid mixture, and the internal energy of the vibrated gas-liquid mixture increases and the interface is increased.
  • the structure collapses and the bubbles collapse, or the bubbles collide violently and the bubbles merge to form a large micro-sized bubble or more, generating gas. And this gas melt
  • the frequency of the ultrasonic wave is preferably 16 kHz or more and less than 2.4 GHz. Even if the frequency range is larger or smaller than this, the effect of collapsing bubbles may be reduced.
  • gas can be easily generated and used.
  • the ultrasonic wave can be easily switched on and off, and an external force can be applied instantaneously, and the gas in the gas-liquid mixture can be obtained only in the required amount and time. Gas can be generated abruptly by a strong impact, and gas generation can be easily controlled.
  • infrared rays when external force is applied by infrared rays, when the infrared irradiator is turned on, infrared rays are given to the gas-liquid mixture from the irradiation port, the internal energy of the gas-liquid mixture irradiated with infrared rays increases, and the interface structure collapses. Bubbles collapse, or bubbles collide violently and bubbles merge to form large micro-sized or larger bubbles, generating gas. And this gas melt
  • the infrared wavelength is preferably 3 to 1000 ⁇ m. Even if the wavelength range is larger or smaller than this, the effect of collapsing bubbles may be reduced.
  • gas can be easily generated and used.
  • Infrared rays can be easily switched on and off, and the gas in the gas-liquid mixture can be obtained in a necessary amount and time.
  • the microwave generator when external force is applied by microwaves, when the microwave generator is turned on, microwave vibration is applied from the microwave oscillator to the gas-liquid mixture, and the internal energy of the gas-liquid mixture to which the vibration wave is applied is The interface structure collapses and the bubbles collapse, or the bubbles collide violently and the bubbles merge to form a large micro-sized bubble or more. And this gas melt
  • the frequency of the microwave is preferably a frequency of 915 KHz, 2.4 to 2.5 GHz, or 5.7 to 5.9 GHz. If the frequency range is out of this range, the effect of collapsing bubbles may be reduced.
  • gas can be easily generated and used. Further, the microwave can be easily switched on and off, and the gas in the gas-liquid mixture can be obtained in a necessary amount and time. Further, gas can be generated gradually or suddenly by microwaves, and gas generation can be easily controlled.
  • the gas-liquid mixture is present as bubbles by collapsing the bubbles of the gas-liquid mixture using the external force applying means 32 such as temperature control, ultrasonic waves, infrared rays, and microwaves.
  • the external force applying means 32 such as temperature control, ultrasonic waves, infrared rays, and microwaves.
  • a large amount of gas can be instantly dissolved in a liquid or released from the liquid by these means, and the gas can be generated and used easily and efficiently.
  • the external force applying means 32 is provided in contact with the gas-liquid mixed solution. However, the external force applying means 32 is provided outside the container 33 so that it is not contacted from the outside of the container 33. An external force may be applied to the gas-liquid mixture.
  • the external force application by the external force application means 32 may be continuous or intermittent.
  • When external force is continuously applied a large amount of gas in the gas-liquid mixture can be generated and used at once.
  • external force is intermittently applied, the gas can be gradually dissolved or released, and the gas in the liquid can be used continuously.
  • an external force is applied to the gas-liquid mixture at the desired timing to dissolve or release the gas, which is used for ozone sterilization, cleaning of precision parts, oxygen supply to the living body, etc. can do.
  • the gas can be confined for a long time with the gas-liquid mixture, and the gas can be taken out from the liquid and used by applying an external force at the timing of use, and can be used for storage, storage, transportation, etc. of the gas.
  • FIG. 10 is a schematic diagram showing another example of the embodiment of the gas utilization method using the gas-liquid mixture of the present invention, and shows an example of the gas utilization system.
  • This system includes a gas-liquid mixed liquid generating device 30 that generates a gas-liquid mixed liquid mixed with a liquid in the form of nano-sized bubbles in a cooled state, and a container 33 that stores the gas-liquid mixed liquid in a cooled state. Is provided.
  • the gas-liquid mixed liquid generating apparatus 30 is provided with a liquid cooling section 17 in a liquid flow path between the pipe connecting section 18 and the gas supply section 2. Further, in this system, unlike the system of FIG. 9, the external force applying means 32 is not provided in the container.
  • the liquid cooling unit 17 is formed, for example, by winding a cooling heat exchanger around the flow path 6 and attaching it. The liquid sent from the liquid supply source 16 is cooled by the liquid cooling unit 17, and a gas-liquid mixed solution is generated while being cooled. That is, the gas-liquid mixture is generated at a temperature lower than normal temperature. Then, this cooled gas-liquid mixture is discharged from the discharge portion 7 to the container 33 and stored.
  • the cooling temperature only needs to be such that the temperature of the liquid is not higher than room temperature, and can be, for example, 0 to 25 ° C.
  • the gas-liquid mixed liquid may be stored by cooling so as to maintain the cooling state, or may be stored without maintaining the cooling state. When stored with cooling, the bubbles can be stably held for a long time.
  • the gas may be used while the gas-liquid mixed liquid is stored in the container 33, or may be used by spraying the gas-liquid mixed liquid on an object such as a human body or a cleaning object. Then, the temperature of the gas-liquid mixture rises due to the outside air temperature or the temperature of the object, the bubbles in the liquid collapse, the gas dissolves, and the gas is released as bubbles of micro size or larger. This generated gas is used for various purposes.
  • the gas-liquid mixture in the cooled state comes into contact with the object, changes the temperature of the gas-liquid mixture at the temperature of the object, and the gas is dissolved or generated in the immediate vicinity of the object. And since gas can be utilized, the efficiency of gas utilization can be improved. Further, the gas-liquid mixture in a cooled state can be stored while being cooled, and the stored gas-liquid mixture can be given to the object. In that case, it is possible to use the gas-liquid mixed solution by moving it to a place where it is desired to use without moving the apparatus, and it is possible to easily use the gas.
  • the gas utilization method using the gas-liquid mixed solution a method using a gas utilization system in which the gas-liquid mixed solution generated from the gas-liquid mixed solution generating device 30 is put in a container and external force is applied as it is.
  • the utilization method of gas is not restricted to the method using the above-mentioned gas utilization system.
  • the produced gas / liquid mixture may be stored, the gas / liquid mixture may be taken out when necessary, and an external force may be applied to generate gas.
  • the gas-liquid mixture of the present invention holds a gas such as carbon dioxide, nitrogen, oxygen, ozone, and argon as fine bubbles in the liquid, and these gases are stably present in the liquid at a high concentration. Therefore, it can be used in the environmental field, the manufacturing / industrial field, the energy field, the agriculture / forestry / fishery field, the food field, the household field, the medical field, and other various fields.
  • a gas such as carbon dioxide, nitrogen, oxygen, ozone, and argon as fine bubbles in the liquid, and these gases are stably present in the liquid at a high concentration. Therefore, it can be used in the environmental field, the manufacturing / industrial field, the energy field, the agriculture / forestry / fishery field, the food field, the household field, the medical field, and other various fields.
  • the oxygen abundance in the water area is increased by supplying a gas-liquid mixture in which oxygen is bubbled and present in high concentrations in closed water areas such as the sea, rivers, lakes, ponds, and dam lakes.
  • Water purification can be performed, and similarly, it can be used for oxygen supply in septic tanks, sewerage facilities, and human waste processing facilities.
  • harmful substances and oil contamination can be treated by supplying oxygen to the soil.
  • the waste water can be subjected to ozone treatment.
  • it can utilize for oxygen supply for fermentation and culture
  • Oxygen and ozone for factory painting process circulating water, factory cleaning process circulating water, and cooling circulating water It can be used for purification by supply. Furthermore, a gas-liquid mixture is generated by mixing toxic gas generated in factories with water as bubbles, and the toxic gas is processed by processing the gas-liquid mixture containing this high-concentration toxic gas. You can also.
  • natural gas, hydrocarbons such as methane, butane, ethane, propane, etc., oxygen, nitrogen, hydrogen, ozone, etc. are present in the liquid as bubbles, so that these gases are stably maintained at a high concentration. be able to.
  • natural gas, hydrocarbons such as methane, butane, ethane, propane, etc.
  • oxygen, nitrogen, hydrogen, ozone, etc. are present in the liquid as bubbles, so that these gases are stably maintained at a high concentration. be able to.
  • by cooling or compressing such a gas-liquid mixture it is solidified or slurried to produce a gas hydrate, and by this gas hydrate, transportation of gas, storage and transportation of fresh food products, It can be used for plant cultivation, carbonated drinks, and fuel.
  • gas-liquid mixtures containing bubbles such as oxygen and carbon dioxide can be used as food processing water and food washing water, and there are bubbles of inert gases such as nitrogen, helium, and argon. It can be used to prevent food spoilage using a gas-liquid mixture.
  • wastewater treatment by improving the amount of oxygen can be performed efficiently by supplying a gas-liquid mixed solution containing oxygen bubbles at a high concentration to a septic tank for domestic wastewater.
  • a carbon dioxide bath can be formed by supplying a gas-liquid mixed liquid in which bubbles of carbon dioxide exist at a high concentration to the bathtub.
  • a gas-liquid liquid mixture can be utilized for drinks and cosmetics.
  • a gas-liquid mixed solution can be used as oxygen water for beverages and carbonated water for beverages.
  • a gas-liquid mixture can be used as ozone water used in various fields such as sterilization, decolorization, deodorization, and organic matter decomposition.
  • Example 1 [Production of gas-liquid mixture] Using the apparatus of FIG. 4, pure water was used as the liquid, and various gases described later were used as the gas to produce a gas-liquid mixed solution.
  • the gas-liquid mixing device an apparatus in which the pressurizing unit 1 and the gas-liquid mixing unit 3 are combined with a pump 11 was used.
  • a pump 11 a As shown in FIG.
  • the flow path 6 on the upstream side of the decompression unit 5 has an inner diameter of 20 mm.
  • the decompression unit 5 as shown in FIG. 6 (a), one having an inner diameter that gradually decreases in three stages is used. Specifically, the inner diameter is 14 mm, 8 mm, 4 mm, and each length is about 3.3 mm (decompression). The total length of the part 5 was approximately 1 cm) and was composed of three flow path pipe parts.
  • a hose having an inner diameter of 4 mm (outer diameter of 6 mm) is used as the flow path 6 and the extension flow path 10 on the downstream side of the decompression unit 5, and the combined length of the downstream flow path 6 and the extension flow path 10 is as follows. It was set to be 2 m.
  • the decompression unit 5 decompresses the gas-liquid mixture at a maximum decompression speed of 60 MPa / sec and a time of 0.0025 seconds, and further, 1 MPa / sec, time in the downstream channel 6 and the extension channel 10.
  • the gas-liquid mixed liquid was depressurized in 0.5 seconds, and a gas-liquid mixed liquid reduced in pressure to atmospheric pressure (0.1 MPa) was obtained from the discharge part 7 which is the tip of the hose. Note that, under such conditions, a gas-liquid mixed liquid in which gas is injected into the liquid exceeding the saturated dissolution concentration and the hydrogen bond distance is shortened and the structure of the bubble interface is strengthened can be stably generated. It is considered a thing.
  • This condition (decompression condition) is considered to be the best condition at the present time.
  • FIG. 1 shows the difference between an infrared absorption spectrum of a gas-liquid mixed solution (nitrogen mixed water) using pure water as a liquid and nitrogen as a gas and nitrogen saturated water in which nitrogen is dissolved in pure water at a saturated dissolution concentration. It is a graph to show. It is known that the infrared absorption band due to OH stretching vibration of water usually has an absorption maximum in the vicinity of 3400 cm ⁇ 1 , but as shown in the graph, the gas-liquid mixture of the present invention has an absorption maximum of OH stretching vibration. Is shifted to around 3200 cm ⁇ 1 . When the absorption maximum is 3400 cm ⁇ 1 , the hydrogen bond distance is 0.285 nm.
  • the hydrogen bond distance is known to be 0.277 nm, which is shorter than the normal hydrogen bond distance at room temperature and normal pressure, and is structured ice or hydrate. It was concluded that the water was close to the rate.
  • the set temperature of the hot stirrer was set to 25 ° C. at room temperature of 25 ° C., and the mixture was stirred for several hours so that a liquid having a saturated solubility of 25 ° C.
  • the mass of the vinyl bag in which gas and liquid were enclosed was measured.
  • the mass of the gas-liquid mixture and the amount of change in the mass of the liquid caused by the buoyancy caused by the gas separated from the gas-liquid mixture by heating and stirring were obtained from three mass measurements.
  • the mass change amount is the same as the mass of air having the same volume as the gas volume separated from the gas-liquid mixture, and the volume and mass of the separated gas can be calculated from this value.
  • FIG. 2 is a graph showing the gas volume measured in this way.
  • the lower region of each bar graph is the amount of gas that was present as the measured bubble, and the upper region is the saturated amount of gas that follows Henry's law.
  • As shown in the graph for example, in the case of a gas-liquid mixture using hydrogen and water, 17.6 mL of hydrogen is dissolved in 1 L of pure water at 25 ° C. as a saturated dissolution amount, and 528 mL of gas exists as fine bubbles. It was confirmed. That is, the amount of gas contained in the gas-liquid mixture was 30 times the saturated dissolution amount.
  • the amount of gas contained in the gas-liquid mixture with respect to the saturated dissolution amount was 36 times for nitrogen, 17 times for methane, 16 times for argon, and 1.9 times for carbon dioxide.
  • the gas-liquid mixed liquid can hold the gas in the liquid at a high concentration equal to or higher than the saturated dissolution concentration, and the high-concentration gas-liquid mixed liquid can be used in various fields. is there.
  • a gas-liquid mixture produced in the same manner as above was instantly frozen, cleaved with a cutter in a vacuum, and methane / ethylene flowed through the fractured surface to discharge, producing a hydrocarbon film (replica film) with transferred irregularities. .
  • a conductive osmium thin film was applied to the replica film, dried sufficiently, and observed with a scanning electron microscope (SEM).
  • FIG. 3 is an example of a photograph observed by SEM for a gas-liquid mixture of nitrogen and pure water. Similarly, by observing photographs, it was confirmed that when nitrogen, hydrogen, methane, argon, carbon dioxide was used as the gas, the bubble size of the gas-liquid mixture was 100 nm in diameter distribution peak. The bubbles in the gas-liquid mixture of the above gas and pure water could not be accurately detected by a particle size distribution measuring apparatus such as a dynamic scattering method using a laser.
  • the internal pressure of the gas in the bubbles is calculated by the following method.
  • PV (const) It is represented by
  • volume of bubbles in the gas-liquid mixture can be calculated from the density of the gas-liquid mixture,
  • the pressure value is as follows.
  • the internal pressure of bubbles is calculated as follows.
  • the bubbles are pressurized by the interfacial tension between the gas-liquid interface, and this interfacial tension is derived by Young Laplace's equation (the following equation).
  • ⁇ P 2 ⁇ / r ( ⁇ P: rising pressure, ⁇ : surface tension, r: bubble radius) According to this equation, for example, in the case of a bubble having a diameter of 100 nm, the bubble internal pressure is 3 MPa.
  • the internal pressure in the gas-liquid mixed liquid is 6.3 MPa in the case of nitrogen, for example, as shown in Table 1.
  • this gas-liquid mixed liquid bubbles having a diameter of 100 nm are dispersed as shown in the SEM photograph. Therefore, it was confirmed that the bubbles of the gas-liquid mixture had an internal pressure that was about twice or more the value calculated from the Young Laplace equation. Therefore, it was concluded that a stronger interface structure was formed at the bubble interface.
  • FIG. 11 is a conceptual explanatory diagram for explaining the mechanism by which the gas-liquid mixed liquid is stabilized.
  • a protective film M having a boundary film structure (crystal structure) is formed at the interface between the bubble B and the liquid Lq by bonding of strong water molecules such as ice or hydrate whose hydrogen bond distance is shorter than usual. Therefore, it is considered that the mass transfer between the gas and liquid is suppressed, and the bubbles are in a stable state.
  • the internal pressure of the bubbles (nanobubbles) in the gas-liquid mixture of nitrogen, methane, and argon is higher than the pressure obtained from the Young Laplace equation and is about twice or more.
  • the hydrogen bonding distance at the bubble interface is short and the internal pressure of the bubble is increased, so that the bubble becomes a stable gas-liquid mixture.
  • the internal pressure of the bubbles is high, when an external force that increases the internal pressure is applied, the bubbles are likely to collapse, the bubbles can be easily collapsed, and the gas can be dissolved and released, and the gas can be used. .
  • the number of bubbles per liter of water is calculated as 1.8 x 10 ⁇ 16 when the gas is methane and 1.7 x 10 ⁇ 16 when argon is used.
  • Is a symbol of “power”, and for example, “10 ⁇ n” is “10 n ” (10 to the power of n).
  • FIG. 12 shows the supersaturation as the gas abundance ratio in the gas-liquid mixture with respect to the saturated dissolution concentration when the gas-liquid mixture produced by mixing air with pure water is sealed in a glass bottle and stored at a constant temperature. It is a graph to display. From the graph, it can be seen that the degree of supersaturation is almost constant (about 6) even after 400 hours, and hardly changes. Since gas is dissolved at a saturated concentration in the liquid, the gas exceeding the saturated concentration is considered to be a bubble. Therefore, it was confirmed that the gas-liquid mixture of the present invention is stable.
  • FIG. 13 is a conceptual explanatory diagram illustrating a mechanism by which bubbles in the gas-liquid mixed liquid collapse.
  • This figure shows a case where ozone (O 3 ) is used as the gas.
  • Nano-sized bubbles B exist stably in the gas-liquid mixture as shown in (a), but as shown in (b), external force is applied as an impact by temperature control, ultrasonic waves, infrared rays, microwaves, etc. Bubbles collapse when pushed. At that time, a large amount of gas present in the bubbles is instantly dissolved in the liquid, and a gas saturated solution is generated. In addition, the bubbles are combined by collision and become bubbles of micro size or larger, and are lifted by buoyancy to release the gas.
  • a large amount of gas can be stored in the gas-liquid mixture, and this large amount of gas can be used by being dissolved or released at the timing at which it is desired to use. is there.
  • Example 2 [Cooled gas-liquid mixture] A gas / liquid mixture using air and water was generated in a cooled state (5 ° C.) using the gas / liquid mixture generating apparatus 30 of FIG. It was confirmed that when this gas-liquid mixture was stored in a container so as to be in contact with the atmosphere at normal temperature and pressure, the saturated dissolution concentration of gas in water could be maintained for one week or more. In other words, even if the dissolved gas is gradually released from the liquid, the nano-sized bubbles gradually collapse to compensate for the amount of released gas and dissolve in the liquid, so the liquid exists while maintaining the saturated dissolution concentration. It was confirmed that it can be made.

Abstract

Provided is a gas-liquid mixture wherein the gas in a solution is present as bubbles which remain stable over a long period of time. The gas-liquid mixture has bubbles present in a liquid comprising molecules that form hydrogen bonds, and the distance between hydrogen bonds in the molecule at the liquid-foam interface is made shorter than the distance between hydrogen bonds of the molecules that constitute the liquid when the liquid is at room temperature and normal pressure. This makes it possible to surround the bubbles with liquid molecules that form strong hydrogen bonds, and for the bubbles to exist in a stable manner within the liquid. Liquids that may be used include water, liquids comprising molecules having either an O-H bond, an N-H bond, a (halogen)-H bond or an S-H bond, and liquids comprising molecules having a carboxyl group.

Description

気液混合液Gas-liquid mixture
 本発明は、液体中に気体が安定な気泡となって存在する気液混合液に関するものである。 The present invention relates to a gas-liquid mixture in which gas is present as stable bubbles in the liquid.
 従来、微細な気泡が液体中に分散された気液混合液が知られている。特に、マイクロオーダーサイズの気泡が水に混合されたマイクロバブル水や、ナノオーダーサイズの気泡が水に混合されたナノバブル水は、気泡のサイズが通常の気泡に比べて極めて小さく、そのため特異な性質を有しており、様々な分野での利用が試みられている(例えば特許文献1参照)。 Conventionally, a gas-liquid mixture in which fine bubbles are dispersed in a liquid is known. In particular, micro-bubble water in which micro-order size bubbles are mixed with water and nano-bubble water in which nano-order size bubbles are mixed with water are extremely small in size compared to normal bubbles, and therefore have unique properties. And has been attempted to be used in various fields (see, for example, Patent Document 1).
 しかしながら、液体中の微細な気泡は、溶解したり合体したりすることにより消滅しやすく液体中に安定に存在させることが難しかった。そのため、液体に気体を連続的に供給してバブリングしたり、強度の力をかけて撹拌して気泡を発生させ、その発生した気泡が消滅しないように液体を使用したりすることが行われている。また、気泡がナノオーダー程度になり、気泡のサイズが微細になればなるほど、気泡が生成しにくいと共に消滅しやすくなり、気泡を分散した液体を利用することが一層難しかった。 However, the fine bubbles in the liquid tend to disappear when dissolved or coalesced, making it difficult to stably exist in the liquid. For this reason, gas is continuously supplied to the liquid for bubbling, or a strong force is applied to agitate to generate bubbles, and the liquid is used so that the generated bubbles do not disappear. Yes. Further, as the size of the bubbles becomes nano-order and the size of the bubbles becomes finer, the bubbles are more difficult to be generated and more easily disappeared, and it is more difficult to use the liquid in which the bubbles are dispersed.
 特許文献2~4には、微小気泡を急激に縮小させてナノバブルを安定化させることが開示されている。これらの文献の方法では、強度の力をかけてマイクロバブルの一部を縮小させ、気液界面に吸着したイオンと静電気的な引力により、界面近傍の水溶液に引き寄せられた反対符号を持つ両方のイオンが微小な体積の中に高濃度に濃縮することにより、微小気泡周囲を取り囲む殻の働きをし、微小気泡内の気体の水溶液への拡散を阻害することによってナノバブルを安定化させている。しかし、ナノバブルを安定化させるために、気液界面において静電気的な力を生成する必要があるため電解質の存在が不可欠であり、純水など、電解性物質が溶解していない溶液などではナノバブルを安定に存在させることができなかった。 Patent Documents 2 to 4 disclose that nanobubbles are stabilized by rapidly reducing microbubbles. In the methods of these documents, a part of microbubbles is reduced by applying a force of strength, and both ions having opposite signs attracted to an aqueous solution near the interface by ions adsorbed on the gas-liquid interface and electrostatic attractive force. The ions are concentrated in a minute volume at a high concentration to act as a shell surrounding the microbubbles, and the nanobubbles are stabilized by inhibiting diffusion of the gas in the microbubbles into the aqueous solution. However, in order to stabilize nanobubbles, it is necessary to generate an electrostatic force at the gas-liquid interface, so the presence of an electrolyte is indispensable. In solutions such as pure water in which an electrolytic substance is not dissolved, nanobubbles are prevented. It could not exist stably.
 また、マイクロバブルの一部のみを縮小させるため、ナノバブルの分布量が少なく効果が得られにくいという問題もあった。さらに、気泡の周囲を取り囲んだイオンでナノバブルを安定化させているため、気泡を溶解させたり合体させたりして気泡の安定状態を制御することが容易にできず、気液混合液の利用が限定されたものであった。 Also, since only a part of the microbubbles is reduced, there is a problem that the distribution amount of nanobubbles is small and it is difficult to obtain the effect. Furthermore, since the nanobubbles are stabilized by ions surrounding the bubble, it is not easy to control the stable state of the bubble by dissolving or coalescing the bubble, and the use of a gas-liquid mixture is not possible. It was limited.
 また、特許文献5には、水を電気分解した後、超音波を印加することによりナノ気泡を発生させることが開示されている。しかし、水の電気分解では気体が水素と酸素に限られ、また電気分解による気体の生成量は少なく、さらに生成した気泡が安定化されていないために気泡の自己収縮と拡散・溶解が短時間で生じて、気泡を長期間に亘って安定に維持することができなかった。 Patent Document 5 discloses that nanobubbles are generated by electrolyzing water and then applying ultrasonic waves. However, in the electrolysis of water, the gas is limited to hydrogen and oxygen, the amount of gas generated by electrolysis is small, and the generated bubbles are not stabilized. And the bubbles could not be stably maintained over a long period of time.
特開2008-156320号公報JP 2008-156320 A 特開2005-245817号公報JP 2005-245817 A 特開2005-246293号公報JP 2005-246293 A 特開2005-246294号公報JP 2005-246294 A 特開2003-334548号公報JP 2003-334548 A
 本発明は上記の点に鑑みてなされたものであり、液体中に気体が高密度で長期間に亘って安定な気泡となって存在する気液混合液を提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a gas-liquid mixture in which gas is present in a liquid as a high-density and stable bubble over a long period of time. is there.
 本発明の気液混合液は、水素結合を形成する分子からなる液体中に気泡が存在する気液混合液であって、液体の気泡との界面に存在する分子の水素結合の距離が、該液体が常温常圧であるときの液体を構成する分子の水素結合の距離よりも短いことを特徴とするものである。 The gas-liquid mixture of the present invention is a gas-liquid mixture in which bubbles are present in a liquid composed of molecules that form hydrogen bonds, and the distance between hydrogen bonds of molecules present at the interface with the liquid bubbles is It is characterized by being shorter than the hydrogen bond distance of the molecules constituting the liquid when the liquid is at normal temperature and pressure.
 上記の気液混合液にあっては、液体が水であることが好ましい。 In the above gas-liquid mixture, the liquid is preferably water.
 また、上記の気液混合液にあっては、液体が、O-H結合、N-H結合、(ハロゲン)-H結合、S-H結合のいずれか一種以上を有する分子からなる液体であることが好ましい。 In the gas-liquid mixture described above, the liquid is a liquid composed of molecules having at least one of OH bond, NH bond, (halogen) -H bond, and SH bond. It is preferable.
 また、上記の気液混合液にあっては、液体がカルボキシル基を有する分子からなる液体であることが好ましい。 Further, in the above gas-liquid mixture, the liquid is preferably a liquid composed of molecules having a carboxyl group.
 また、上記の気液混合液にあっては、気液混合液に含有されている気体の濃度が、液体の飽和溶解濃度以上であることが好ましい。 In the gas-liquid mixture, it is preferable that the concentration of the gas contained in the gas-liquid mixture is equal to or higher than the saturated dissolution concentration of the liquid.
 また、上記の気液混合液にあっては、気泡を形成している気体の圧力が0.12MPa以上であることが好ましい。 Moreover, in the gas-liquid mixture, it is preferable that the pressure of the gas forming the bubbles is 0.12 MPa or more.
 本発明の気液混合液によれば、気泡界面における水素結合の距離が短くなることにより、気泡の周囲を強固な水素結合を形成した液体分子で取り囲むことができ、この水素結合を形成した液体分子は強固な殻となって気泡を包み込むので、気泡同士が衝突しても崩壊することがないのと共に液体からの圧力に対して気泡内部からの応力で対抗でき、気泡を液体中で消滅させたり合体させたりすることなく安定に存在させることができるものである。そして、この水素結合は長期間に亘って安定であるので、気泡が安定に存在した気液混合液を長期間に亘って利用することが可能となるものである。また、ナノオーダーサイズの気泡を、従来レベルより遙かに超えた密度で生成し気液混合液に安定して存在させることが可能となるものである。 According to the gas-liquid mixture of the present invention, the distance between hydrogen bonds at the bubble interface is shortened, so that the bubbles can be surrounded by liquid molecules that form strong hydrogen bonds. Since the molecule forms a strong shell and encloses the bubble, it does not collapse even if the bubbles collide with each other, and can counteract the pressure from the liquid with the stress from the inside of the bubble, causing the bubble to disappear in the liquid It can exist stably without being combined with each other. And since this hydrogen bond is stable over a long period of time, it becomes possible to use the gas-liquid mixture in which bubbles existed stably over a long period of time. Further, nano-order size bubbles can be generated at a density far exceeding the conventional level and can be stably present in the gas-liquid mixture.
窒素と水を用いた気液混合液と窒素飽和水との赤外吸収スペクトルの差分を示すグラフである。It is a graph which shows the difference of the infrared absorption spectrum of the gas-liquid mixed liquid using nitrogen and water, and nitrogen saturated water. 気液混合液中に含まれる気体容量を示すグラフである。It is a graph which shows the gas volume contained in a gas-liquid liquid mixture. 走査型電子顕微鏡(SEM)による気液混合液の写真である。It is a photograph of the gas-liquid mixed solution by a scanning electron microscope (SEM). 気液混合液製造装置の一例を示す概略図であり、(a)は全体の概略図、(b)は一部の概略図である。It is the schematic which shows an example of a gas-liquid mixture manufacturing apparatus, (a) is the whole schematic, (b) is a partial schematic. (a)~(c)はそれぞれ、気液混合液製造装置の一部を示す概略図である。(A) to (c) are each a schematic view showing a part of the gas-liquid mixture manufacturing apparatus. (a)~(d)はそれぞれ、気液混合液製造装置の一部を示す概略図である。(A) to (d) are each a schematic view showing a part of the gas-liquid mixed liquid production apparatus. 気液混合液製造装置の一部を示す概略図である。It is the schematic which shows a part of gas-liquid mixture manufacturing apparatus. 気液混合液製造装置の他の一例を示す概略図である。It is the schematic which shows another example of a gas-liquid liquid mixture manufacturing apparatus. 気液混合液を利用した気体利用システムの一例を示す概略図である。It is the schematic which shows an example of the gas utilization system using a gas-liquid liquid mixture. 気液混合液を利用した気体利用システムの他の一例を示す概略図である。It is the schematic which shows another example of the gas utilization system using a gas-liquid liquid mixture. 気液混合液における気泡の気液界面の概念説明図である。It is a conceptual explanatory drawing of the gas-liquid interface of the bubble in a gas-liquid mixed liquid. 気液混合液の安定性を示すグラフである。It is a graph which shows stability of a gas-liquid liquid mixture. 気液混合液により気体を利用するモデルを示す概念説明図である。It is a conceptual explanatory drawing which shows the model which utilizes gas with a gas-liquid liquid mixture.
 以下、発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the invention will be described.
 本発明の気液混合液には水素結合を形成する分子からなる液体が用いられる。水素結合とは、電気陰性度の大きい原子と水素原子とを有している分子において、水素原子が他の分子の電気陰性度の大きい原子に接近し、系が安定化する結合のことである。そして、気液混合液を形成する液体中には気泡が存在し、この気泡の周囲、すなわち気泡との界面に存在する液体分子においては、分子の水素結合の距離が、この液体が常温常圧(25℃、1気圧(0.1013MPa))であるときの液体を構成する分子の水素結合の距離よりも短いものとなっている。このように、気液混合液が常温常圧の条件で存在する場合において、気泡界面における水素結合の距離が常温常圧での通常の水素結合の距離よりも短くなることにより、気泡の周囲を強固な水素結合を形成した液体分子で取り囲むことになる。そして、この水素結合を形成した液体分子は強固な殻となって気泡を包み込む。それによって、気泡同士が衝突しても崩壊することがなくなり、また、液体からの圧力に対して気泡内部からの応力で対抗できるので、気泡を液体中で消滅させたり合体させたりすることなく保持することができるものである。つまり、従来の表面張力で安定している気泡とは異なるものである。 For the gas-liquid mixture of the present invention, a liquid composed of molecules that form hydrogen bonds is used. A hydrogen bond is a bond that stabilizes the system in a molecule that has a high electronegativity atom and a hydrogen atom, because the hydrogen atom approaches the high electronegativity atom of another molecule. . Bubbles are present in the liquid forming the gas-liquid mixture, and in the liquid molecules existing around the bubbles, that is, at the interface with the bubbles, the distance of hydrogen bonding between the molecules is (25 ° C., 1 atm (0.1013 MPa)), which is shorter than the hydrogen bond distance of the molecules constituting the liquid. In this way, when the gas-liquid mixture exists under normal temperature and normal pressure conditions, the hydrogen bond distance at the bubble interface becomes shorter than the normal hydrogen bond distance at normal temperature and normal pressure, thereby It will be surrounded by liquid molecules that form strong hydrogen bonds. And the liquid molecule which formed this hydrogen bond turns into a firm shell, and encloses a bubble. As a result, even if the bubbles collide with each other, they will not collapse, and the pressure from the liquid can be countered by the stress from the inside of the bubbles, so the bubbles can be held without disappearing or coalescing in the liquid. Is something that can be done. In other words, it is different from conventional bubbles that are stable with surface tension.
 気液混合液に含まれる気泡の大きさとしては、特に限定されることはないが、微細なものである方が好ましく、マイクロオーダーである1000μm以下のもの(いわゆるマイクロバブル)を用いることが可能であり、またナノオーダーである1~1000nmのもの(いわゆるナノバブル)を好ましく用いることができる。ナノオーダーサイズの気泡には実質的に浮力が働かないため、気泡が上昇して液体から分離することがないので気泡を長期に亘って安定に存在させることができるものである。この範囲より気泡が小さくても大きくても気泡を安定化させることができなくなるおそれがある。なお、気泡の大きさは、走査型電子顕微鏡(SEM)により測定することができ、気泡の平均粒径は、測定によって得た気泡の粒径を平均して求めることができる。ところで、マイクロバブルが混合された液体は白濁するため目視により判別可能であるが、ナノバブルが混合された液体は無色透明(あるいは液体が有色の場合は液体の色)になり目視では判別することができない。 The size of the bubbles contained in the gas-liquid mixture is not particularly limited, but is preferably finer, and can be a micro-order of 1000 μm or less (so-called microbubbles). In addition, those having a nano-order of 1 to 1000 nm (so-called nanobubbles) can be preferably used. Since the buoyancy does not substantially act on the nano-order size bubbles, the bubbles do not rise and separate from the liquid, so that the bubbles can exist stably over a long period of time. Even if the bubble is smaller or larger than this range, the bubble may not be stabilized. In addition, the bubble size can be measured by a scanning electron microscope (SEM), and the average particle diameter of the bubbles can be obtained by averaging the particle diameters of the bubbles obtained by the measurement. By the way, the liquid mixed with microbubbles is cloudy and can be discriminated visually. However, the liquid mixed with nanobubbles is colorless and transparent (or the color of the liquid when the liquid is colored) and can be discriminated visually. Can not.
 気液混合液に好ましく用いられる液体の一つは水である。水分子は、O…Hの水素結合、つまり、ある水分子の酸素原子と他の水分子の水素原子との間に水素結合を形成するものであり、気液混合液の液体として水を用いると、気泡界面において液体中のこの水素結合が強固になって気泡をより安定化させることができる。また、水は、供給源が豊富で安定して得ることができ、また人体に安全で、さらに、気泡が分散した水は応用範囲が広いので、利用価値の高い気液混合液を得ることができるものである。本発明において、水としては純度の高い水に限られることはなく、上下水道、池、海水などをはじめ、あらゆる水を使用することが可能である。すなわち、液体として水を含むものであれば良い。 One of the liquids preferably used for the gas-liquid mixture is water. The water molecule is a hydrogen bond of O ... H, that is, a hydrogen bond is formed between an oxygen atom of one water molecule and a hydrogen atom of another water molecule, and water is used as the liquid of the gas-liquid mixture. Then, this hydrogen bond in the liquid becomes stronger at the bubble interface, and the bubbles can be further stabilized. In addition, water is abundant in supply sources, can be obtained stably, is safe for the human body, and since water with dispersed bubbles has a wide range of applications, it is possible to obtain a highly useful gas-liquid mixture. It can be done. In the present invention, the water is not limited to high-purity water, and any water can be used including water and sewage systems, ponds, seawater, and the like. That is, any material that contains water as a liquid may be used.
 このように、気液混合液にあっては、液体が水であることが好ましい形態の一つである。その場合、水分子が形成するO…Hの水素結合、つまり、ある水分子の酸素原子と他の水分子の水素原子との間の結合が強固になって気泡をより安定化させることができると共に、気泡が分散した水は応用範囲が広いので、利用価値の高い気液混合液を得ることができるものである。 As described above, in the gas-liquid mixed solution, it is one of preferable modes that the liquid is water. In that case, the hydrogen bonds of O ... H formed by water molecules, that is, the bonds between oxygen atoms of one water molecule and hydrogen atoms of another water molecule become stronger, and the bubbles can be further stabilized. At the same time, since water in which bubbles are dispersed has a wide range of applications, it is possible to obtain a gas-liquid mixture having high utility value.
 また、液体が、O-H結合、N-H結合、F-H結合やCl-H結合などの(ハロゲン)-H結合、S-H結合のいずれか一種以上を有する分子からなる液体であることも好ましい。これらの結合は、水素原子に対して電気陰性度が十分に大きい原子と水素原子との結合であり、O-H…O、N-H…N、F-H…FやCl-H…Clなどの(ハロゲン)-H…(ハロゲン)、S-H…Sといった強い水素結合を形成し、この水素結合により気泡を取り囲んで気泡を安定化させることができるものである。O-H結合を有する代表的な液体は水であるが、その他、過酸化水素やメタノール、エタノールなどのアルコール、グリセリンなどを例示することができる。また、N-H結合を有する液体としては、アンモニアなどを例示することができる。また、(ハロゲン)-H結合を有するものとしては、F-H結合を有するHF(フッ化水素)、Cl-H結合を有するHCl(塩化水素)を挙げることができる。また、S-H結合を有するものとしてはHS(硫化水素)を挙げることができる。 Further, the liquid is a liquid composed of molecules having at least one of (halogen) -H bond and SH bond such as OH bond, NH bond, FH bond and Cl-H bond. It is also preferable. These bonds are bonds between atoms and hydrogen atoms having a sufficiently large electronegativity with respect to hydrogen atoms, such as OH ... O, NH ... N, FH ... F and Cl-H ... Cl. (Halogen) -H ... (halogen), SH ... S, etc., are formed, and these hydrogen bonds can surround the bubbles and stabilize the bubbles. A typical liquid having an OH bond is water, but other examples include alcohols such as hydrogen peroxide, methanol and ethanol, and glycerin. Examples of the liquid having an N—H bond include ammonia. Examples of those having a (halogen) -H bond include HF (hydrogen fluoride) having an FH bond and HCl (hydrogen chloride) having a Cl-H bond. Moreover, H 2 S (hydrogen sulfide) can be given as an example having an S—H bond.
 このように、気液混合液にあっては、液体が、O-H結合、N-H結合、(ハロゲン)-H結合、S-H結合のいずれか一種以上を有する分子からなる液体であることが好ましい形態の一つである。その場合、O-H…O、N-H…N、(ハロゲン)-H…(ハロゲン)、S-H…Sといった強い水素結合により気泡を取り囲んで安定化させることができるので、安定に気泡が存在した気液混合液を得ることができるものである。 As described above, in the gas-liquid mixture, the liquid is a liquid composed of molecules having one or more of OH bond, NH bond, (halogen) -H bond, and SH bond. This is one of the preferred forms. In that case, the bubbles can be stabilized by surrounding the bubbles by strong hydrogen bonds such as OH ... O, NH ... N, (halogen) -H ... (halogen), and SH ... S. Can be obtained.
 液体がカルボキシル基を有する分子からなる液体であることも好ましい。カルボキシル基には、電気陰性度が大きいカルボニルの酸素原子が存在しており、あるカルボキシル基中のカルボニルの酸素原子と他のカルボキシル基中の水素原子とが強い水素結合を形成して気泡を取り囲むので、安定に気泡が存在した気液混合液を得ることができるものである。カルボキシル基を有する分子からなる液体としては、ギ酸、酢酸などのカルボン酸などを例示することができる。 It is also preferable that the liquid is a liquid composed of molecules having a carboxyl group. The carboxyl group has a carbonyl oxygen atom with high electronegativity, and the carbonyl oxygen atom in one carboxyl group and a hydrogen atom in another carboxyl group form a strong hydrogen bond to surround the bubble. Therefore, it is possible to obtain a gas-liquid mixture in which bubbles are stably present. Examples of the liquid composed of molecules having a carboxyl group include carboxylic acids such as formic acid and acetic acid.
 このように、気液混合液にあっては、液体がカルボキシル基を有する分子からなる液体であることが好ましい形態の一つである。その場合、カルボキシル基中の酸素原子と他のカルボキシル基中の水素原子とが強い水素結合を形成して気泡を取り囲むので、安定に気泡が存在した気液混合液を得ることができるものである。 As described above, in the gas-liquid mixed solution, it is one of preferable modes that the liquid is a liquid composed of molecules having a carboxyl group. In that case, since the oxygen atom in the carboxyl group and the hydrogen atom in the other carboxyl group form a strong hydrogen bond and surround the bubble, a gas-liquid mixture in which the bubble is stably present can be obtained. .
 気液混合液に用いる気体としては、特に限定されるものではなく、種々の気体を用いることが可能である。例えば、空気、二酸化炭素、窒素、酸素、オゾン、アルゴン、水素、ヘリウム、メタン、プロパン、ブタンなどの気体を単一で又は混合して用いることができる。 The gas used for the gas-liquid mixture is not particularly limited, and various gases can be used. For example, gases such as air, carbon dioxide, nitrogen, oxygen, ozone, argon, hydrogen, helium, methane, propane, and butane can be used singly or in combination.
 気液混合液に含有されている気体の濃度は、液体の飽和溶解濃度以上であることが好ましい。飽和溶解量又はそれを超える多量の気体を液体中に保持すれば、液体中に含有された高濃度の気体を利用することができ、気液混合液の利用価値を高めることができるものである。さらに好ましくは、気液混合液の液体中には飽和溶解量の気体が溶解しており、その飽和溶解液に気泡が存在しているものである。飽和溶解量で気体が溶解していれば、気泡となった気体を溶解させることなく安定化して気泡として液体中に保持することがより可能となるものである。すなわち、飽和溶解量以上に気体が存在する気液混合液は、液体中に飽和濃度で気体が溶解しており、気泡が崩壊したり溶解したりすることがなく、より安定に気泡を液体中に存在させることができるものである。このように気液混合液に含有されている気体の濃度が高くなると、水素結合の距離を短くした状態で気泡を安定化することができ、また各種の活性(生理活性、洗浄力等)の作用が強力になって、利用価値をさらに上げることができるものである。気液混合液中の気体量は、後述の実施例で示すように気液混合液から気体を分離し、質量変化量から算出することができる。 The gas concentration contained in the gas-liquid mixture is preferably equal to or higher than the saturated dissolution concentration of the liquid. If a saturated gas amount or a large amount of gas exceeding it is held in the liquid, a high-concentration gas contained in the liquid can be used, and the utility value of the gas-liquid mixture can be increased. . More preferably, a saturated dissolved amount of gas is dissolved in the gas-liquid mixed liquid, and bubbles are present in the saturated dissolved liquid. If the gas is dissolved in the saturated dissolution amount, it becomes possible to stabilize the gas in the form of bubbles without dissolving them and to hold them in the liquid as bubbles. In other words, a gas-liquid mixed solution in which a gas is present in excess of the saturated dissolution amount has a gas dissolved at a saturated concentration in the liquid, and the bubbles do not collapse or dissolve, and the bubbles are more stably contained in the liquid. Can be present. Thus, when the concentration of the gas contained in the gas-liquid mixture increases, the bubbles can be stabilized in a state where the distance of hydrogen bonding is shortened, and various activities (physiological activity, detergency, etc.) The action becomes stronger and the utility value can be further increased. The amount of gas in the gas-liquid mixture can be calculated from the amount of mass change by separating the gas from the gas-liquid mixture as shown in the examples described later.
 このように、気液混合液にあっては、気液混合液に含有されている気体の濃度が、液体の飽和溶解濃度以上であることが好ましい。その場合、飽和溶解量又はそれを超える多量の気体を液体中に保持することにより、気泡界面で距離の短くなった水素結合を安定化させると共に、液体中に含有された高濃度の気体を利用することができ、気液混合液の利用価値を高めることができるものである。 Thus, in the gas-liquid mixture, it is preferable that the concentration of the gas contained in the gas-liquid mixture is equal to or higher than the saturated dissolution concentration of the liquid. In that case, by maintaining a large amount of gas in or above the saturated dissolution amount in the liquid, the hydrogen bond with a short distance at the bubble interface is stabilized, and a high concentration gas contained in the liquid is used. It is possible to increase the utility value of the gas-liquid mixture.
 また、上記の気液混合液にあっては、気泡を形成している気体の圧力が0.12MPa以上であることが好ましい。その場合、気泡が高い内部圧で維持されることによってより強固な界面構造を形成することができ、静置状態においては安定な気泡を形成すると共に、一旦、気液混合液に衝撃が加えられると、内部圧の力により水素結合で形成された液体の殻が崩壊して、気泡が合体して発泡するため、この発泡を利用することができ、気液混合液の利用価値を高めることが可能となるものである。 Moreover, in the gas-liquid mixture, it is preferable that the pressure of the gas forming the bubbles is 0.12 MPa or more. In that case, a stronger interface structure can be formed by maintaining the bubbles at a high internal pressure, and in the stationary state, stable bubbles are formed and an impact is once applied to the gas-liquid mixture. Then, the shell of the liquid formed by hydrogen bonds collapses due to the force of the internal pressure, and the bubbles merge and foam, so this foaming can be used and the utility value of the gas-liquid mixture can be increased. It is possible.
 このように、気泡を形成している気体の圧力、すなわち気泡の内圧は0.12MPa以上であることが好ましいものであるが、さらにヤングラプラスの式(次式)で与えられる気泡の内圧より高い圧力であることが好ましい。 As described above, it is preferable that the pressure of the gas forming the bubbles, that is, the internal pressure of the bubbles is 0.12 MPa or more, but it is higher than the internal pressure of the bubbles given by the Young Laplace equation (the following equation). A pressure is preferred.
  ヤングラプラスの式
   ΔP=2σ/r
   [ΔP:気泡内部の上昇圧力、 σ:表面張力、 r:気泡半径]
 
 気泡の内圧がこのような圧力になると気泡がさらに高い内部圧で維持されることになり、より強固な界面構造を形成することができるので、静置状態において安定な気泡を形成することができる。一方、一旦、気液混合液に衝撃が加えられると、内部圧の力の均衡が崩されて水素結合が形成された液体の殻が崩壊し、気泡が合体し発泡して液体中から抜け出ようとするため、この発泡を利用することができるものである。気液混合液中の気泡の内圧は、後述の実施例で示すように気液混合液中の気体総量と密度から計算した気体容量とを気体の状態方程式に当てはめることにより算出することができる。
Young Laplace's formula ΔP = 2σ / r
[ΔP: rising pressure inside the bubble, σ: surface tension, r: bubble radius]

When the internal pressure of the bubbles becomes such a pressure, the bubbles are maintained at a higher internal pressure, and a stronger interface structure can be formed. Therefore, stable bubbles can be formed in a stationary state. . On the other hand, once an impact is applied to the gas-liquid mixture, the balance of the internal pressure force is disrupted, the liquid shell in which hydrogen bonds are formed collapses, the bubbles merge, foam and escape from the liquid Therefore, this foaming can be used. The internal pressure of the bubbles in the gas-liquid mixed liquid can be calculated by applying the total gas amount in the gas-liquid mixed liquid and the gas volume calculated from the density to the gas equation of state as shown in the examples described later.
 気泡との界面における液体分子の水素結合の距離としては、用いる液体により適宜設定され得るものであるが、常温常圧での水素結合の距離を100%とした場合に、99%以下であることが好ましい。水素結合の距離がこの範囲になることにより、気泡を水素結合の硬い殻で取り囲んで安定化させることができるものである。水素結合の距離がこれより長いと気泡を安定化させて存在させることができなくなるおそれがある。原子間距離を考慮すると、水素結合の距離の下限は95%である。気液混合液中の気泡界面における水素結合の距離は、後述の実施例で示すように、気液混合液の赤外吸収スペクトル(IR)を解析することにより算出することができる。 The distance between the hydrogen bonds of the liquid molecules at the interface with the bubbles can be set as appropriate depending on the liquid used, but is 99% or less when the distance between hydrogen bonds at room temperature and normal pressure is 100%. Is preferred. When the hydrogen bond distance falls within this range, the bubbles can be surrounded and stabilized by a hard shell of hydrogen bonds. If the distance between hydrogen bonds is longer than this, there is a possibility that bubbles cannot be stabilized and exist. Considering the interatomic distance, the lower limit of the hydrogen bond distance is 95%. The hydrogen bond distance at the bubble interface in the gas-liquid mixture can be calculated by analyzing the infrared absorption spectrum (IR) of the gas-liquid mixture as shown in the examples described later.
 ところで、水素結合の距離が上記の距離にある水は、通常、氷やハイドレート結晶構造になるものであるが、本発明の気液混合液においては、気泡界面において局所的に上記のような距離の短い水素結合を形成し、それ以外の液体中は通常の水素結合を形成している。すなわち、気泡界面では距離の短い水素結合により液体分子の硬い殻を形成して、気泡同士が合体することや消滅することを防止すると共に、気泡界面以外では通常の状態で液体が存在して常温常圧では流動性を確保しており、安定な気泡が存在している液体を利用しやすくするものである。 By the way, water having a hydrogen bond distance of the above-mentioned distance usually has an ice or hydrate crystal structure. However, in the gas-liquid mixed liquid of the present invention, the above-mentioned locally at the bubble interface. A hydrogen bond with a short distance is formed, and a normal hydrogen bond is formed in other liquids. That is, a hard shell of liquid molecules is formed by hydrogen bonds at a short distance at the bubble interface to prevent the bubbles from coalescing and disappearing, and at other than the bubble interface, liquid exists in a normal state and normal temperature At normal pressure, fluidity is ensured, and it is easy to use liquid in which stable bubbles are present.
 また本発明の気液混合液は、液体として水を用いた場合、ゼータ電位がマイナスとなり、例えば、後述の実施例では、体積1cm中に存在する気泡界面の面積は0.6乃至1.2m程度となる。このような特性を各分野で利用することも可能である。 In the gas-liquid mixture of the present invention, when water is used as the liquid, the zeta potential becomes negative. For example, in the examples described later, the area of the bubble interface existing in a volume of 1 cm 3 is 0.6 to 1. the 2m 2 about. Such characteristics can be used in various fields.
 次に、本発明の気液混合液の製造について説明する。 Next, the production of the gas / liquid mixture of the present invention will be described.
 気液混合液の製造にあっては、気体が注入された液体を0.17MPa/sec以上の加圧速度ΔP/t(ΔP:圧力増加量、t:時間)で加圧する。その際、加圧により液体の圧力を0.15MPa以上にする。その後、該液体を送りながら配管全域での減圧速度ΔP/t(ΔP:減圧量、t:時間)の上限を2000MPa/sec以下にして徐々に大気圧まで減圧する。それにより、ナノサイズの気泡が混合された液体を生成することができる。 In the production of the gas-liquid mixture, the liquid into which the gas has been injected is pressurized at a pressure rate ΔP 1 / t (ΔP 1 : pressure increase, t: time) of 0.17 MPa / sec or more. At that time, the pressure of the liquid is set to 0.15 MPa or more by pressurization. Thereafter, the pressure is gradually reduced to atmospheric pressure by setting the upper limit of the pressure reduction rate ΔP 2 / t (ΔP 2 : pressure reduction amount, t: time) in the entire piping while feeding the liquid. Thereby, a liquid in which nano-sized bubbles are mixed can be generated.
 図4は、気液混合液を製造する装置の一例を示す概略図である。この気液混合液製造装置は、液体を圧送して連続的に気液混合液を製造する装置であり、液体貯留槽12から大気圧(0.1MPa)で保持されている液体を取り出し圧送して加圧する加圧部1と、液体に気体を供給する気体供給部2と、供給された気体を微細な気泡にして液体と混合させる気液混合部3と、気液混合部3中の液体に存在する大きな気泡を除去する脱気泡部4と、脱気泡部4により大きな気泡が取り除かれた液体の圧力を、大きな気泡を発生させることなく徐々に大気圧まで減圧させる減圧部5と、減圧された液体を吐出する吐出部7とを備え、各部は流路6に接続して設けられている。 FIG. 4 is a schematic view showing an example of an apparatus for producing a gas-liquid mixed solution. This gas-liquid mixed liquid manufacturing apparatus is an apparatus for continuously manufacturing a gas-liquid mixed liquid by pumping liquid, taking out the liquid held at atmospheric pressure (0.1 MPa) from the liquid storage tank 12 and pumping it. A pressurizing unit 1 that pressurizes the gas, a gas supply unit 2 that supplies a gas to the liquid, a gas-liquid mixing unit 3 that mixes the supplied gas with fine liquids, and a liquid in the gas-liquid mixing unit 3 A defoaming section 4 for removing large bubbles present in the gas, a decompression section 5 for gradually depressurizing the liquid from which the large bubbles have been removed by the defoaming section 4 to an atmospheric pressure without generating large bubbles, And a discharge portion 7 for discharging the liquid, and each portion is provided connected to the flow path 6.
 加圧部1は気液混合部3に液体を圧送するものであり、例えば、この装置のように、液体貯留槽12から液体を吸い上げるポンプ11などで構成できるが、水道配管等、液体を加圧して送り出す配管などで構成することもできる。気体供給部2は、流路6に接続されることにより液体に気体を供給するものであり、例えば気体として空気を供給する場合には、一端を大気中に開放させた管体の他端を流路6に接続して気体供給部2を形成することができる。あるいは気体として酸素、オゾン、水素、窒素、二酸化炭素、アルゴン等を供給する場合には、これらの気体を封入したボンベなどを流路6に接続して気体供給部2を形成することもできる。また、オゾンを供給する場合は、気体供給部2をオゾン発生機に接続し、空気から生成したオゾンを供給するようにしてもよい。流路6への気体供給部2の接続位置は、気液混合部3よりも上流側の位置であればよく、この装置のように加圧部1より上流側の流路6に接続するようにしても、あるいは加圧部1より下流側の流路6に接続するようにしてもいずれでもよい。 The pressurizing unit 1 pumps the liquid to the gas-liquid mixing unit 3 and can be constituted by, for example, a pump 11 that sucks the liquid from the liquid storage tank 12 as in this device. It can also be composed of piping that sends out pressure. The gas supply unit 2 supplies gas to the liquid by being connected to the flow path 6. For example, when supplying air as gas, the other end of the tubular body whose one end is opened to the atmosphere is connected. The gas supply unit 2 can be formed by connecting to the flow path 6. Or when supplying oxygen, ozone, hydrogen, nitrogen, a carbon dioxide, argon etc. as gas, the gas supply part 2 can also be formed by connecting the cylinder etc. which enclosed these gas to the flow path 6. FIG. Moreover, when supplying ozone, you may make it connect the gas supply part 2 to an ozone generator, and supply the ozone produced | generated from air. The connection position of the gas supply unit 2 to the flow path 6 may be a position upstream of the gas-liquid mixing section 3 and is connected to the flow path 6 upstream of the pressurizing section 1 as in this device. Alternatively, it may be either connected to the flow path 6 on the downstream side of the pressurizing unit 1.
 気液混合部3は圧送された液体とこの液体に供給された気体とを混合し、加圧により気体を微細な気泡にして液体中に分散・混合させるものである。気液混合部3としては、流路の断面積変化などで撹拌力を与えるもので構成することもできるし、また液体が撹拌された状態で流路6を流れているのであれば単に流路6で構成することもできる。この装置のように気体供給部2が加圧部1より上流側の流路6にある場合は、ポンプ11などで構成された加圧部1を気液混合部3と兼用してもよい。 The gas-liquid mixing unit 3 mixes the pumped liquid and the gas supplied to the liquid, and converts the gas into fine bubbles by pressurization to disperse and mix in the liquid. The gas-liquid mixing unit 3 can be configured by applying a stirring force by changing the cross-sectional area of the flow path, or if the liquid is flowing in the flow path 6 with the liquid being stirred, 6 can also be configured. When the gas supply unit 2 is in the flow path 6 on the upstream side of the pressurizing unit 1 as in this apparatus, the pressurizing unit 1 constituted by the pump 11 or the like may also be used as the gas-liquid mixing unit 3.
 気液の加圧及び混合をポンプ11により行った場合、液体を急激に加圧・混合することができるので、気泡界面の構造が強固な気液混合液を確実に生成することができる。また、気液混合部3をベンチュリ管で構成することも好ましい。その場合、簡単な構成で液体を急激に加圧・混合することができる。 When pressurization and mixing of gas and liquid are performed by the pump 11, the liquid can be rapidly pressurized and mixed, so that a gas-liquid mixture having a strong bubble interface structure can be reliably generated. Moreover, it is also preferable that the gas-liquid mixing unit 3 is constituted by a Venturi tube. In that case, the liquid can be rapidly pressurized and mixed with a simple configuration.
 気液混合部3内においては液体と気体が高圧条件で混合される。それにより、気泡の周囲に結合距離が短くなった水素結合が形成され、この水素結合の殻で気泡を覆うことができ、気体を微細な気泡として安定化することができるものである。 In the gas-liquid mixing unit 3, the liquid and gas are mixed under high pressure conditions. As a result, hydrogen bonds having a shorter bond distance are formed around the bubbles, and the bubbles can be covered with the shell of the hydrogen bonds, and the gas can be stabilized as fine bubbles.
 上記のような加圧部1及び気液混合部3により、気体が注入された液体に急激に強力な圧力が加わって、液体中に存在している気泡は微細なナノサイズの気泡へと細分されて液体に分散される。また、急激な圧力変化により高圧になった気泡の界面には液体分子により強固な界面構造が形成される。その際、加圧速度ΔP/t(ΔP:圧力増加量、t:時間)が0.17MPa/sec以上になることにより、気泡を細分化させて微細なナノサイズの気泡を生成することができ、気液混合部3から脱気泡部4に送り出される際の気液混合液の圧力が0.15MPa以上になることにより、気泡の界面が強固な構造となったナノサイズの気泡を生成することができるものである。実質的な加圧条件を考慮すると、加圧速度ΔP/tの上限は167MPa/secであり、加圧された気液混合液の圧力の上限は50MPaである。 By the pressurization unit 1 and the gas-liquid mixing unit 3 as described above, a strong pressure is suddenly applied to the liquid into which the gas is injected, and the bubbles existing in the liquid are subdivided into fine nano-sized bubbles. And dispersed in the liquid. In addition, a strong interface structure is formed by liquid molecules at the interface of the bubbles that have become high pressure due to a sudden pressure change. At that time, when the pressurization rate ΔP 1 / t (ΔP 1 : pressure increase, t: time) is 0.17 MPa / sec or more, the bubbles are subdivided to generate fine nano-sized bubbles. The pressure of the gas-liquid mixed liquid when it is sent out from the gas-liquid mixing part 3 to the defoaming part 4 becomes 0.15 MPa or more, thereby generating nano-sized bubbles with a strong structure at the bubble interface Is something that can be done. In consideration of substantial pressurization conditions, the upper limit of the pressurization rate ΔP 1 / t is 167 MPa / sec, and the upper limit of the pressure of the pressurized gas-liquid mixture is 50 MPa.
 図4(b)は、ポンプ11の具体的な形態の一例を示す要部の概略図である。このポンプ11aは回転体21の回転により液体を加圧するものであり、回転体21に取り付けられた回転翼22が連続的に回転してポンプ入口26からポンプ流路室23を介してポンプ出口27への流れ方向へ液体を送り出し加圧するものである。図において白抜き矢印は液体の流れ方向を示し、実線矢印は回転体21の回転方向を示している。このポンプ11aでは4枚の回転翼22が備えられている。また回転体21の回転軸25は、円筒状に形成されたポンプ壁24の円筒中心よりもポンプ出口27側に偏って配置され、偏心軸となって設けられている。そして、回転軸21の偏心によりポンプ流路室23の第二流路室23bの容積は、第一流路室23aの容積よりも小さく形成されており、液体の流れ方向に沿ってポンプ流路室23の容積が順次小さくなっている。 FIG. 4B is a schematic view of the main part showing an example of a specific form of the pump 11. The pump 11 a pressurizes the liquid by the rotation of the rotating body 21, and the rotating blades 22 attached to the rotating body 21 continuously rotate to pump the pump outlet 27 through the pump passage chamber 23 from the pump inlet 26. The liquid is sent out in the direction of flow to and pressurized. In the figure, the white arrow indicates the flow direction of the liquid, and the solid line arrow indicates the rotation direction of the rotating body 21. The pump 11a includes four rotary blades 22. Further, the rotating shaft 25 of the rotating body 21 is arranged so as to be deviated toward the pump outlet 27 side from the cylindrical center of the pump wall 24 formed in a cylindrical shape, and is provided as an eccentric shaft. The volume of the second flow path chamber 23b of the pump flow path chamber 23 is formed smaller than the volume of the first flow path chamber 23a due to the eccentricity of the rotary shaft 21, and the pump flow path chamber is arranged along the liquid flow direction. The volume of 23 is gradually reduced.
 そして、ポンプ流路室23に送り出された液体は、回転翼22で送り出され加圧され、急激な圧力変化により大きな気泡Bが細分化されて微細なナノサイズの気泡Bが生成される。すなわち、回転体21の回転と共に第一流路室23aから第二流路室23bに送られた液体は、ポンプ流路室23の容積が小さくなることにより急速に圧縮されて加圧され、この加圧力によりナノサイズの気泡Bが生成される。また、図示のポンプ11aでは、ポンプ壁24の内面と回転翼22の先端部との間を液体が通過するときに剪断力が与えられて、液体をクリアランスで剪断しながら加圧する。このとき、液体に混合されている気体(大きな気泡B)は液体に与えられた剪断力によって剪断されて、より微細なナノサイズの気泡(B)になる。ここで、ポンプ壁24の内面と回転翼22の先端部との間の最も狭くなる部分の距離、すなわちクリアランス距離Lは、5μm~2mmであることが好ましい。このように、回転体21を用いたポンプ11aによれば、回転体21で急激に強い力で加圧すると共に液体に注入された気体を剪断してナノサイズの気泡を形成することができるので、気泡界面の構造が強固な気液混合液をより確実に生成することができるものである。 Then, the liquid fed to the pump flow passage chamber 23 is pressurized is fed by rotating blades 22, large bubbles B B due to rapid pressure changes bubbles B N of subdivided by fine nano-sized generated . That is, the liquid sent from the first flow path chamber 23a to the second flow path chamber 23b along with the rotation of the rotating body 21 is rapidly compressed and pressurized as the volume of the pump flow path chamber 23 becomes smaller. Nano-sized bubbles BN are generated by the pressure. Further, in the illustrated pump 11a, a shearing force is applied when the liquid passes between the inner surface of the pump wall 24 and the tip of the rotor blade 22, and the liquid is pressurized while being sheared by the clearance. At this time, the gas (large bubbles B B ) mixed in the liquid is sheared by the shearing force applied to the liquid and becomes finer nano-sized bubbles (B N ). The distance narrowest part between the inner surface of the pump wall 24 and the tip portion of the rotor blades 22, i.e. the clearance distance L C is preferably 5 [mu] m ~ 2 mm. Thus, according to the pump 11a using the rotator 21, it is possible to form nano-sized bubbles by shearing the gas injected into the liquid while being rapidly pressurized with the rotator 21 with a strong force. A gas-liquid mixture having a strong bubble interface structure can be generated more reliably.
 ポンプ11の回転体21の回転数は100rpm以上であることが好ましい。このとき、0.3秒に1/2回転以上となる。このような回転数となることにより、飽和溶解濃度以上の気体を液体に注入させて水素結合距離が短縮したナノサイズの気泡を確実に生成することができるものである。 It is preferable that the rotational speed of the rotating body 21 of the pump 11 is 100 rpm or more. At this time, it becomes 1/2 rotation or more in 0.3 seconds. By having such a rotational speed, it is possible to reliably generate nano-sized bubbles in which the hydrogen bond distance is shortened by injecting a gas having a saturation dissolution concentration or more into the liquid.
 加圧部1及び気液混合部3による加圧は、加圧部1又は気液混合部3を複数設けて、複数回加圧することができる。液体を送りながら複数回加圧することにより、加圧を複数のポンプ11やベンチュリ管によって行うことができ、液体を強力に加圧して、気泡界面の構造が強固な気液混合液を生成することができるものである。具体的には、加圧部1を図4のようにポンプ11で構成すると共に、気液混合部3を一つ又は二つ以上のポンプ11又はベンチュリ管で構成することができるものである。 Pressurization by the pressurizing unit 1 and the gas-liquid mixing unit 3 can be performed multiple times by providing a plurality of pressurizing units 1 or gas-liquid mixing units 3. By pressurizing the liquid a plurality of times while feeding the liquid, the pressurization can be performed by a plurality of pumps 11 and venturi pipes, and the liquid is strongly pressurized to generate a gas-liquid mixture having a strong bubble interface structure. It is something that can be done. Specifically, the pressurizing unit 1 can be configured with a pump 11 as shown in FIG. 4, and the gas-liquid mixing unit 3 can be configured with one or more pumps 11 or Venturi tubes.
 脱気泡部4は上記のようにして気体が混合された液体から、比較的大きな気泡を取り除くものであり、気泡をそれ自身の浮力で上昇させて取り除くようにした管体などで構成することができる。取り除かれた気泡は気体となって上部に集積するので、この除去された気体を気体除去部8により取り除くことができる。浮力により上昇する気泡としてはマイクロオーダーサイズ、すなわち直径1μmを超えるサイズの気泡であり、このような比較的大きい気泡が取り除かれて微細な気泡であるナノサイズの気泡が液体中に存在することにより、界面構造が強固な気液混合液を得ることができるものである。 The defoaming section 4 removes relatively large bubbles from the liquid mixed with the gas as described above, and may be composed of a tubular body or the like in which the bubbles are removed by raising their buoyancy. it can. Since the removed bubbles become gas and accumulate on the upper part, the removed gas can be removed by the gas removing unit 8. Bubbles rising by buoyancy are micro-order sizes, that is, bubbles having a diameter exceeding 1 μm, and by removing such relatively large bubbles, nano-sized bubbles that are fine bubbles are present in the liquid. Thus, a gas-liquid mixed solution having a strong interface structure can be obtained.
 脱気泡部4としては、具体的には、図5のような構成にすることができる。(a)は、気液混合部3と連続して地表面に略水平(重力方向に対して略垂直な平面上)になるように形成し、液体Lq中の気泡Bをその浮力によって液面まで上昇させて気泡Bを取り除くようにした管体の例を示している。また、(b)は、気液混合部3と連続すると共に気液混合部3と合わせた形状が正面視逆L字型になるように形成し、液体Lqの流れ方向を下方向(重力方向と略同方向)にして液体Lq中の気泡Bをその浮力によって液面まで上昇させて気泡Bを取り除くようにした管体の例を示している。また、(c)は、気液混合部3とは別体にし、液体Lqの流れ方向を下方向(重力方向と略同方向)にして液体Lq中の気泡Bをその浮力によって液面まで上昇させて気泡Bを取り除くようにした管体の例を示している。 Specifically, the degassing part 4 can be configured as shown in FIG. (A) is formed so as to be substantially horizontal to the ground surface (on a plane substantially perpendicular to the direction of gravity) continuously with the gas-liquid mixing unit 3, and the bubbles B in the liquid Lq are It shows an example of a tubular body that is lifted up to remove bubbles B. (B) is formed so that the shape combined with the gas-liquid mixing unit 3 and the gas-liquid mixing unit 3 is a reverse L-shape when viewed from the front, and the flow direction of the liquid Lq is downward (the direction of gravity) In this example, the bubbles B are removed by raising the bubbles B in the liquid Lq to the liquid level by the buoyancy. Further, (c) is separated from the gas-liquid mixing unit 3, and the flow direction of the liquid Lq is set downward (substantially the same direction as the direction of gravity), and the bubbles B in the liquid Lq are raised to the liquid level by the buoyancy. This shows an example of a tubular body that is made to remove bubbles B.
 減圧部5は気体が混合された液体の圧力を、大きな気泡を発生させることなく徐々に大気圧まで減圧させるものである。上記のようにして加圧により気体と混合された液体は、高圧な状態にありそのまま大気圧下にある外部に排出されると、急激な圧力低下によって、気液混合液中の気泡が合体して気体になって液体から排出されるおそれがあり、またキャビテーションが発生することがある。そこで、減圧部5を設け、加圧された状態の気液混合液を送り出す際に、減圧部5で大気圧まで徐々に減圧をした後に吐出するようにしているものである。減圧部5は、気体が混合された液体を送りながら配管全域での減圧速度ΔP/t(ΔP:減圧量、t:時間)の上限を2000MPa/sec以下にして減圧するように構成されている。それにより、強固な気泡界面の構造を維持させたまま、ナノサイズの気泡を消滅させたり合体させたりすることなく気液混合液を取り出すことができるものである。 The decompression unit 5 gradually reduces the pressure of the liquid mixed with gas to atmospheric pressure without generating large bubbles. When the liquid mixed with gas by pressurization as described above is in a high-pressure state and is discharged to the outside under atmospheric pressure as it is, bubbles in the gas-liquid mixture are combined due to a sudden pressure drop. May become a gas and be discharged from the liquid, and cavitation may occur. Therefore, the decompression unit 5 is provided, and when the gas-liquid mixture in a pressurized state is sent out, the decompression unit 5 gradually reduces the pressure to atmospheric pressure and then discharges it. The decompression unit 5 is configured to decompress while reducing the upper limit of the decompression speed ΔP 2 / t (ΔP 2 : decompression amount, t: time) over the entire piping while sending a liquid in which gas is mixed. ing. Thus, the gas-liquid mixture can be taken out without erasing or coalescing the nano-sized bubbles while maintaining the structure of the strong bubble interface.
 減圧部5としては、図6のような構成にすることができ、具体的には、(a)のように流路断面積が段階的に徐々に小さくなる流路6や、(b)のように流路断面積が連続的に徐々に小さくなる流路6や、(c)のように加圧された液体が流路6内を流れる圧力損失により高圧状態(P)の気液混合液の圧力を徐々に低下させて(P、P、・・・)大気圧(P)まで減圧するように流路長さ(L)が調整された流路6や、(d)のように流路6に設けられた複数の圧力調整弁9などにより構成することができる。 The decompression unit 5 can be configured as shown in FIG. 6, and specifically, the flow path 6 whose flow path cross-sectional area gradually decreases as shown in FIG. In this way, the flow path 6 in which the cross-sectional area of the flow path gradually decreases gradually, or the gas-liquid mixing in the high pressure state (P 1 ) due to the pressure loss in which the pressurized liquid flows in the flow path 6 as in (c). The flow path 6 whose flow path length (L) is adjusted so as to reduce the pressure of the liquid gradually (P 2 , P 3 ,...) To the atmospheric pressure (P n ), and (d) Thus, it can be configured by a plurality of pressure regulating valves 9 provided in the flow path 6.
 例えば図6(a)又は(b)のような減圧部5を用いた場合、減圧部5よりも上流側の流路6を内径20mmにし、減圧部5を、流路長さが約1cm~10mで、内径が20mmから4mmにまで徐々に小さくなることにより流路断面積が小さくなる管体により構成することができる。なお、減圧部5は、入口内径/出口内径=2~10程度に設定したり、1cmあたりの内径減少値を1~20mm程度に設定したりすることができる。このとき、減圧部5に気液混合液を流速4×10-6m/s以上で送ると、最高減圧速度2000MPa/sec以下で、ナノサイズの気泡を消滅させることなく1.0MPa減圧することができ、気液混合液を大気圧にまで減圧することができるものである。 For example, when the decompression unit 5 as shown in FIG. 6A or 6B is used, the flow path 6 upstream of the decompression unit 5 has an inner diameter of 20 mm, and the decompression unit 5 has a channel length of about 1 cm to At 10 m, the inner diameter can be gradually reduced from 20 mm to 4 mm so that the cross-sectional area of the flow path can be reduced. The decompression section 5 can be set to have an inlet inner diameter / outlet inner diameter = 2 to 10 or an inner diameter reduction value per cm can be set to about 1 to 20 mm. At this time, when the gas-liquid mixture is sent to the decompression unit 5 at a flow rate of 4 × 10 −6 m / s or more, the pressure is reduced by 1.0 MPa at a maximum decompression speed of 2000 MPa / sec or less without erasing nano-sized bubbles. The gas-liquid mixture can be depressurized to atmospheric pressure.
 吐出部7は、減圧された液体を吐出するものである。なお、図7のように、この吐出部7と減圧部5との間に、加圧部1における液体の押し込み圧を十分に確保するために延長流路10を設けることもできる。すなわち、減圧部5を含めた全体の圧力損失を算出し、加圧部1からの押し込み圧によって気液混合部3内で液体と気体を加圧するのに必要な圧力と、全体の圧力損失との差を算出し、さらにこの差の圧力損失が生じるように流路長さを調整した延長流路10を流路6に付加するようにしてもよい。押し込み圧の確保には絞り部などを設けることも考えられるが、絞り部などで押し込み圧を調整すると急激な圧力変化により気泡が崩壊するおそれがある。しかし、このように延長流路10を設ければ気泡を安定化させたまま気液混合液を吐出することができるものである。 The discharge part 7 discharges the decompressed liquid. As shown in FIG. 7, an extension channel 10 can be provided between the discharge unit 7 and the decompression unit 5 in order to ensure a sufficient pressure of the liquid in the pressurization unit 1. That is, the total pressure loss including the decompression unit 5 is calculated, the pressure required to pressurize the liquid and gas in the gas-liquid mixing unit 3 by the indentation pressure from the pressurization unit 1, and the total pressure loss The extended flow path 10 may be added to the flow path 6 with the flow path length adjusted so that the pressure loss of this difference occurs. In order to secure the indentation pressure, it may be possible to provide a throttling portion or the like. However, if the indentation pressure is adjusted by the throttling portion or the like, bubbles may collapse due to a sudden pressure change. However, if the extension channel 10 is provided in this way, the gas-liquid mixture can be discharged while the bubbles are stabilized.
 上記のように構成された気液混合液製造装置にあっては、加圧部1で液体を圧送し、気体供給部2により液体に気体を供給して注入する。そして、気体が注入された液体を、加圧部1及び気液混合部3によって0.17MPa/sec以上の加圧速度ΔP/t(ΔP:圧力増加量、t:時間)で加圧し、液体の圧力を0.15MPa以上にする。すなわち、気液混合部3から脱気泡部4へ送り出される際の液体の圧力は0.15MPa以上になっている。その後、脱気泡部4で気液混合液中のナノサイズを超える気泡を取り除いた後、該液体を減圧部5及び下流側の流路6に送りながら最高減圧速度2000MPa/sec以下の減圧速度ΔP/t(ΔP:減圧量、t:時間)で徐々に大気圧まで減圧する。それにより、ナノサイズの気泡が安定に存在した気液混合液を生成することができ、本発明の気液混合液を得ることができるものである。 In the gas-liquid mixed liquid manufacturing apparatus configured as described above, the liquid is pumped by the pressurizing unit 1, and the gas is supplied to the liquid by the gas supply unit 2 and injected. Then, the liquid into which the gas has been injected is pressurized by the pressurizing unit 1 and the gas-liquid mixing unit 3 at a pressurization rate ΔP 1 / t (ΔP 1 : pressure increase, t: time) of 0.17 MPa / sec or more. The liquid pressure is set to 0.15 MPa or more. That is, the pressure of the liquid when being sent out from the gas-liquid mixing unit 3 to the defoaming unit 4 is 0.15 MPa or more. Thereafter, after removing bubbles exceeding the nano size in the gas-liquid mixture in the degassing part 4, a pressure reduction rate ΔP having a maximum pressure reduction rate of 2000 MPa / sec or less while sending the liquid to the pressure reduction part 5 and the downstream flow path 6. The pressure is gradually reduced to atmospheric pressure at 2 / t (ΔP 2 : reduced pressure amount, t: time). Thereby, a gas-liquid mixed liquid in which nano-sized bubbles are stably present can be generated, and the gas-liquid mixed liquid of the present invention can be obtained.
 気液混合部3における圧力は適宜設定され得るものであるが、絶対圧0.1MPa(大気圧)を超えることが好ましい。それにより、水素結合の距離を確実に短くすることができる。また気液混合部3よりも下流側の流路6は内径2~50mm程度の管体などに形成することができる。それにより、比較的太い流路断面積で気液混合液を吐出することができ、細路により流路6を構成する場合のような配管の詰まりを防止して、気液混合液を利用しやすくすることができる。 Although the pressure in the gas-liquid mixing part 3 can be set as appropriate, it is preferable that the absolute pressure exceeds 0.1 MPa (atmospheric pressure). Thereby, the distance of a hydrogen bond can be shortened reliably. The flow path 6 on the downstream side of the gas-liquid mixing unit 3 can be formed in a tube having an inner diameter of about 2 to 50 mm. As a result, the gas-liquid mixture can be discharged with a relatively thick channel cross-sectional area, and the clogging of the pipe as in the case where the channel 6 is configured by a narrow path can be prevented, and the gas-liquid mixture can be used. It can be made easier.
 図8は、気液混合液を製造する装置の他の一例を示す概略図である。この気液混合液製造装置は、加圧部1と気液混合部3とが兼用されて気液混合槽13として構成されており、この気液混合槽13において気体が供給された液体を0.17MPa/sec以上の加圧速度ΔP/t(ΔP:圧力増加量、t:時間)で加圧して、液体の圧力を0.15MPa以上にすることにより界面構造の強固な気泡が含有される気液混合液をバッチ式で生成し、この気液混合液から大きな気泡を脱気泡部4で取り除いた後、この気液混合液を減圧部5に送り出してその圧力を最高減圧速度2000MPa/sec以下の減圧速度ΔP/t(ΔP:減圧量、t:時間)で大気圧まで減圧し、吐出部7から気液混合液を吐出するようにしたものである。閉鎖系である気液混合槽13にはバッチ式で液体と気体とが送り出されて加圧されるとともに、気液混合槽13に設けられた撹拌翼14などにより撹拌されて液体Lqと気体とが高圧条件で混合される。それにより、気泡の周囲に結合距離が短くなった水素結合が形成され、この水素結合の殻で気泡を覆うことができ、気体を微細な気泡として安定化することができるものである。そして、生成した気液混合液を図4の装置と同じように構成された脱気泡部4、減圧部5及び吐出部7に送り出すことにより、本発明の気液混合液を得ることができるものである。 FIG. 8 is a schematic view showing another example of an apparatus for producing a gas-liquid mixed solution. This gas-liquid mixture manufacturing apparatus is configured as a gas-liquid mixing tank 13 in which the pressurizing unit 1 and the gas-liquid mixing unit 3 are combined, and the liquid supplied with gas in the gas-liquid mixing tank 13 is set to 0.・ Pressure is applied at a pressure rate ΔP 1 / t (ΔP 1 : pressure increase, t: time) of 17 MPa / sec or more, and the liquid pressure is increased to 0.15 MPa or more to contain bubbles having a strong interface structure. The gas-liquid mixture to be produced is produced in a batch system, and after removing large bubbles from the gas-liquid mixture at the defoaming section 4, the gas-liquid mixture is sent to the decompression section 5 and the pressure is reduced to a maximum decompression speed of 2000 MPa. The pressure is reduced to atmospheric pressure at a pressure reduction rate ΔP 2 / t (ΔP 2 : pressure reduction amount, t: time) of / sec or less, and the gas-liquid mixture is discharged from the discharge part 7. The gas-liquid mixing tank 13 which is a closed system is sent out and pressurized in a batch manner, and is stirred by a stirring blade 14 or the like provided in the gas-liquid mixing tank 13 so that the liquid Lq and the gas are mixed. Are mixed under high pressure conditions. As a result, hydrogen bonds having a shorter bond distance are formed around the bubbles, and the bubbles can be covered with the shell of the hydrogen bonds, and the gas can be stabilized as fine bubbles. Then, the gas-liquid mixed liquid of the present invention can be obtained by sending the generated gas-liquid mixed liquid to the defoaming section 4, the decompression section 5 and the discharge section 7 configured in the same manner as the apparatus of FIG. It is.
 次に、気液混合液中の気体を利用する「気液混合液の利用方法」について説明する。 Next, a description will be given of “a method of using a gas-liquid mixture” that uses a gas in the gas-liquid mixture.
 本発明の気液混合液は、上記のように、気泡が水素結合の殻で覆われたものであるが、この水素結合の殻は外力によって崩壊するものであり、外力を付与することにより気体を発生させ、この発生した気体を種々の用途に利用することができるものである。すなわち、水素結合の強固な殻で気体が包み込まれ、安定に液体中に保持された気泡は内圧が高くなっており、外力が与えられると気泡が崩壊して気体を発生させて液体に溶解したり液体から放出したりする。この発生した気体を種々の用途に利用するこができるので、大量の気体を液体中に保持することができると共に、液体から効率よく気体を発生させて利用することができるものである。 As described above, the gas-liquid mixture of the present invention is one in which bubbles are covered with a hydrogen bond shell, but this hydrogen bond shell collapses due to external force, and gas is applied by applying external force. The generated gas can be used for various purposes. In other words, the gas is enveloped by a strong shell of hydrogen bonds, and the bubbles stably held in the liquid have a high internal pressure.When an external force is applied, the bubbles collapse to generate gas and dissolve in the liquid. Or release from liquid. Since the generated gas can be used for various purposes, a large amount of gas can be held in the liquid, and the gas can be efficiently generated from the liquid and used.
 気液混合液に与える外力としては、温度を変化させる温度制御や、超音波、赤外線、マイクロ波の照射などが挙げられる。これらの外力を付与することによって、気液混合液中の気体を効率よく発生させることが可能である。 Examples of the external force applied to the gas-liquid mixture include temperature control for changing the temperature, irradiation with ultrasonic waves, infrared rays, and microwaves. By applying these external forces, it is possible to efficiently generate gas in the gas-liquid mixture.
 図9は、気液混合液を利用した気体利用システムの一例である。気体利用システムは、液体中に気体がナノサイズの気泡になって存在する気液混合液を生成し、その気液混合液から気体を発生させて、気泡となって存在する気液混合液中の気体を液体に溶解したり放出したりして、気体を利用するものである。 FIG. 9 is an example of a gas utilization system using a gas-liquid mixture. The gas utilization system generates a gas-liquid mixture in which the gas is present as nano-sized bubbles in the liquid, generates gas from the gas-liquid mixture, and in the gas-liquid mixture present as bubbles The gas is used by dissolving or releasing the gas in a liquid.
 この気体利用システムでは、気体がナノサイズの気泡となって液体に混合された気液混合液を生成する気液混合液生成装置30と、気液混合液生成装置30によって生成された気液混合液に外力を与え、気泡を崩壊させて気体を液体に溶解したり液体から気体を発生させたりする外力供与部31とを備えている。気液混合液生成装置30と外力供与部31とは連続して配置されており、そのため、この気体利用システムでは、気液混合液の生成と気体の利用とを簡単に行うことができる。 In this gas utilization system, a gas-liquid mixed liquid generating device 30 that generates a gas-liquid mixed liquid mixed with a liquid in the form of bubbles of nano-size gas, and a gas-liquid mixed generated by the gas-liquid mixed liquid generating apparatus 30 An external force supply unit 31 is provided that applies external force to the liquid and breaks bubbles to dissolve the gas into the liquid or generate the gas from the liquid. The gas-liquid mixed liquid generating device 30 and the external force donating unit 31 are continuously arranged. Therefore, in this gas utilization system, it is possible to easily generate the gas-liquid mixed liquid and use the gas.
 気液混合液生成装置30は、気液混合液を生成するものであり、図4や図8の気液混合液製造装置と同様の構成のものを用いることができる。図示では気液混合液を連続して生成する図4の装置とほぼ同じ構成の装置となっているが、図4の装置と異なっている点について説明する。 The gas-liquid mixed liquid generating apparatus 30 generates a gas-liquid mixed liquid, and can have the same configuration as the gas-liquid mixed liquid manufacturing apparatus in FIGS. In the drawing, the apparatus has substantially the same configuration as that of the apparatus of FIG. 4 that continuously generates the gas-liquid mixed liquid, but the points that are different from the apparatus of FIG. 4 will be described.
 この気液混合液生成装置30は、流路6を装置外部にある液体供給源16に接続する配管連結部18を備えている。この配管連結部18は、開閉して水量や水圧を調節できる調節弁などによって構成されるものである。また、液体供給源16は液体貯留槽12や水道配管16aなどによって構成されている。また、加圧部1と気液混合部3とは同体となってポンプ11により構成されている。また、気体除去部8と気体供給部2との間には気体返入部15が設けられている。気体返入部15は、気体除去部8からの気体を気体供給部2に返して再び入れるためのものであり、気体を送る管体などで形成されるものである。図示の形態では、気体返入部15は気体供給部2の気体経路に接続してある。このように気体返入部15を設けることにより、気泡にならなかった気体を捨てることなく有効利用することができ、しかも気体として有害なものや危険なものを用いた場合には気体が外部に漏れて環境を汚染したり危険を招いたりすることを防ぐことができるものである。 The gas-liquid mixed liquid generating apparatus 30 includes a pipe connecting portion 18 that connects the flow path 6 to a liquid supply source 16 outside the apparatus. This pipe connection part 18 is comprised by the adjustment valve etc. which can be opened and closed and can adjust water quantity and water pressure. The liquid supply source 16 is constituted by the liquid storage tank 12, the water pipe 16a, and the like. Further, the pressurizing unit 1 and the gas-liquid mixing unit 3 are constituted by a pump 11 in the same body. Further, a gas return unit 15 is provided between the gas removal unit 8 and the gas supply unit 2. The gas return part 15 is for returning the gas from the gas removal part 8 to the gas supply part 2 and putting it in again, and is formed by a pipe body for sending the gas. In the illustrated form, the gas return unit 15 is connected to the gas path of the gas supply unit 2. By providing the gas return portion 15 in this way, the gas that has not been bubbled can be used effectively without being discarded, and when a harmful or dangerous gas is used, the gas leaks to the outside. This can prevent the environment from being polluted and dangerous.
 外力供与部31は、気液混合液生成装置30によって生成された気液混合液に外力を与え、気液混合液中の気泡を崩壊させて気体を発生させて、気体を液体に溶解したり液体から気体を放散させたりするものである。液体中に気泡となった気体をそのまま用いて洗浄や殺菌や酸素供給などに利用しようとしても、気体が気泡となっているために気体が対象物と接触せず、所望の効果が得られない可能性がある。また、気体は気泡となって安定に存在しているのでそのままの状態では気体を取り出すことができない。しかし、この外力供与部31で外力を与えることにより、液体中に気泡となって保持された気体が液体に多量に溶解し、また、ナノサイズの気泡が合体してマイクロサイズ以上の気泡となった気体が液体から放出し、この溶解したり放出したりした気体を利用することができるものである。 The external force providing unit 31 applies an external force to the gas / liquid mixture generated by the gas / liquid mixture generation apparatus 30 to break up bubbles in the gas / liquid mixture to generate gas, and dissolve the gas in the liquid. A gas is diffused from a liquid. Even if you try to use the gas that has become bubbles in the liquid as it is for cleaning, sterilization, oxygen supply, etc., because the gas is in bubbles, the gas does not contact the object, and the desired effect cannot be obtained. there is a possibility. Moreover, since gas exists stably as a bubble, gas cannot be taken out as it is. However, when an external force is applied by the external force supply unit 31, a large amount of gas held as bubbles in the liquid is dissolved in the liquid, and nano-sized bubbles are combined into micro-sized bubbles or more. The released gas is released from the liquid, and the dissolved or released gas can be used.
 図9の形態では、外力供与部31は、気液混合液を貯留する容器33と気液混合液に外力を付与する外力付与手段32とを備えて構成されており、気液混合液生成装置30で生成したナノサイズの気泡を含む気液混合液は、容器33に所望量バッチ式で送られる。外力付与手段32としては、温度制御、超音波、赤外線、マイクロ波、撹拌などの手段を用いて気液混合液に外力を衝撃として与えるものにすることができる。例えば、外力付与手段32としては、温度制御手段を用いる場合はヒーターなどの加温器や冷却熱交換器で構成し、超音波を用いる場合は超音波振動子で構成し、赤外線を用いる場合は赤外線照射器で構成し、マイクロ波を用いる場合はマイクロ波発振子で構成することができる。 In the form of FIG. 9, the external force supply unit 31 includes a container 33 for storing the gas-liquid mixture and an external force applying means 32 for applying an external force to the gas-liquid mixture, and the gas-liquid mixture generation apparatus The gas-liquid mixed solution containing nano-sized bubbles generated at 30 is sent to the container 33 in a desired amount batch-type. As the external force applying means 32, an external force can be applied as an impact to the gas-liquid mixture using means such as temperature control, ultrasonic waves, infrared rays, microwaves, and stirring. For example, the external force applying means 32 is constituted by a heater such as a heater or a cooling heat exchanger when the temperature control means is used, by an ultrasonic vibrator when using the ultrasonic wave, and when using infrared rays. In the case of using an infrared irradiator and using a microwave, it can be formed of a microwave oscillator.
 温度制御で外力を与える場合、気液混合液を加温したり冷却したりして気液混合液の温度を変化させる。 When applying external force with temperature control, the temperature of the gas-liquid mixture is changed by heating or cooling the gas-liquid mixture.
 加温により外力を与える場合、ヒーターなどの加温手段をオンにして常温常圧で貯留された気液混合液の温度を上昇させる。温度が上昇された気液混合液は内部エネルギーの増加によって界面構造が崩れて気泡が崩壊したり、気泡が激しく衝突して気泡が合体して大きなマイクロサイズ以上の気泡になったりして、気体が発生する。そしてこの気体が液体に溶解し、また気体が液体から放出するものである。加温する温度としては、気体発生の速度に合わせて適宜に設定し得るものであるが、例えば、急激に気泡を崩壊させて気体を発生させる場合は、貯留している気液混合液を10~30℃程度以上に上昇するように加温し、徐々に気泡を崩壊させて気体を発生させる場合は、貯留している気液混合液を1~10℃程度以上に上昇するように加温する。 When applying external force by heating, turn on heating means such as a heater to raise the temperature of the gas-liquid mixture stored at room temperature and normal pressure. The gas-liquid mixture whose temperature has been raised causes the interface structure to collapse due to the increase in internal energy, causing bubbles to collapse, or the bubbles to collide violently and form bubbles that are larger than micro size. Will occur. And this gas melt | dissolves in a liquid, and gas discharge | releases from a liquid. The temperature to be heated can be appropriately set in accordance with the gas generation speed. For example, when the gas is generated by rapidly collapsing bubbles, the stored gas-liquid mixture is 10 When heating up to about 30 ° C or higher and gradually generating bubbles by causing bubbles to collapse, heat the stored gas-liquid mixture to rise to about 1-10 ° C or higher. To do.
 また、冷却により外力を与える場合、冷却熱交換器をオンにして常温常圧で貯留された気液混合液の温度を低下させる。温度が低下された気液混合液は、冷却により気体の飽和溶解濃度が上がり気泡が崩壊して液体に気体がより多く溶解するようになる。冷却する温度としては、例えば、気液混合液の温度が1~30℃程度で温度が低下するように冷却する。また、加温と冷却を交互に行って外力を与えてもよい。 Also, when applying external force by cooling, turn on the cooling heat exchanger to lower the temperature of the gas-liquid mixture stored at normal temperature and pressure. The gas-liquid mixture whose temperature has been lowered increases the saturated dissolution concentration of the gas by cooling, and the bubbles collapse to dissolve more gas in the liquid. As the cooling temperature, for example, cooling is performed so that the temperature of the gas-liquid mixture is about 1 to 30 ° C. and the temperature is lowered. Alternatively, external force may be applied by alternately performing heating and cooling.
 このように、温度制御により気体を発生させることにより、簡単に気体を発生させて利用することができるものである。すなわち、気液混合液を常温で製造した場合には、気液混合液を加温や冷却することによりナノサイズの気泡を崩壊させて気体を溶解したり放出したりすることができる。また、気液混合液を低温状態で製造した場合には、この気液混合液を常温に戻すことによりナノサイズの気泡を崩壊させて気体を溶解したり放出したりすることができる。したがって、気液混合液の温度をコントロールするだけで気体の保持と発生を制御することができるものである。 Thus, by generating gas by temperature control, gas can be easily generated and used. That is, when the gas-liquid mixture is produced at room temperature, the gas-liquid mixture can be heated or cooled to collapse the nano-sized bubbles and dissolve or release the gas. When the gas / liquid mixture is produced at a low temperature, the gas / liquid mixture can be returned to room temperature to collapse the nano-sized bubbles to dissolve or release the gas. Therefore, it is possible to control the retention and generation of gas only by controlling the temperature of the gas-liquid mixture.
 また、超音波により外力を与える場合、超音波発生器をオンにすると超音波振動子から気液混合液に超音波振動が与えられ、振動された気液混合液の内部エネルギーが増加して界面構造が崩れて気泡が崩壊したり、気泡が激しく衝突して気泡が合体して大きなマイクロサイズ以上の気泡になったりして、気体が発生する。そしてこの気体が液体に溶解し、また、気体が液体から放出するものである。超音波の周波数としては、周波数16KHz以上2.4GHz未満であることが好ましい。周波数の範囲がこれより大きくても小さくても気泡を崩壊する効果が低下するおそれがある。 Also, when applying an external force with ultrasonic waves, when the ultrasonic generator is turned on, ultrasonic vibration is applied from the ultrasonic transducer to the gas-liquid mixture, and the internal energy of the vibrated gas-liquid mixture increases and the interface is increased. The structure collapses and the bubbles collapse, or the bubbles collide violently and the bubbles merge to form a large micro-sized bubble or more, generating gas. And this gas melt | dissolves in a liquid, and gas discharge | releases from a liquid. The frequency of the ultrasonic wave is preferably 16 kHz or more and less than 2.4 GHz. Even if the frequency range is larger or smaller than this, the effect of collapsing bubbles may be reduced.
 このように、超音波で外力を与えることにより、気体を簡単に発生させて利用することができるものである。また、超音波はオンとオフの切替を容易に行って外力を瞬時に与えることができ、気液混合液中の気体を必要な量や時間だけ得ることが可能であり、また、超音波の強力な衝撃により気体を急激に発生させることが可能であり、気体の発生を簡単に制御することができるものである。 Thus, by applying an external force with ultrasonic waves, gas can be easily generated and used. In addition, the ultrasonic wave can be easily switched on and off, and an external force can be applied instantaneously, and the gas in the gas-liquid mixture can be obtained only in the required amount and time. Gas can be generated abruptly by a strong impact, and gas generation can be easily controlled.
 また、赤外線により外力を与える場合、赤外線照射器をオンにすると照射口から気液混合液に赤外線が与えられ、赤外線が照射された気液混合液の内部エネルギーが増加して界面構造が崩れて気泡が崩壊したり、気泡が激しく衝突して気泡が合体して大きなマイクロサイズ以上の気泡になったりして、気体が発生する。そしてこの気体が液体に溶解し、また、気体が液体から放出するものである。赤外線の波長としては、波長3~1000μmであることが好ましい。波長の範囲がこれより大きくても小さくても気泡を崩壊する効果が低下するおそれがある。 In addition, when external force is applied by infrared rays, when the infrared irradiator is turned on, infrared rays are given to the gas-liquid mixture from the irradiation port, the internal energy of the gas-liquid mixture irradiated with infrared rays increases, and the interface structure collapses. Bubbles collapse, or bubbles collide violently and bubbles merge to form large micro-sized or larger bubbles, generating gas. And this gas melt | dissolves in a liquid, and gas discharge | releases from a liquid. The infrared wavelength is preferably 3 to 1000 μm. Even if the wavelength range is larger or smaller than this, the effect of collapsing bubbles may be reduced.
 このように、赤外線で外力を与えることにより、気体を簡単に発生させて利用することができるものである。また、赤外線はオンとオフの切替を容易に行うことができ、気液混合液中の気体を必要な量や時間だけ得ることが可能となるものである。また、赤外線により気体を徐々に発生させることが可能であり、気体を持続して発生させて利用することができるものである。 Thus, by applying an external force with infrared rays, gas can be easily generated and used. Infrared rays can be easily switched on and off, and the gas in the gas-liquid mixture can be obtained in a necessary amount and time. Moreover, it is possible to gradually generate gas by infrared rays, and it is possible to continuously generate and use the gas.
 また、マイクロ波により外力を与える場合、マイクロ波発生器をオンにするとマイクロ波発振子から気液混合液にマイクロ波の振動が与えられ、振動波を与えられた気液混合液の内部エネルギーが増加して界面構造が崩れて気泡が崩壊したり、気泡が激しく衝突して気泡が合体して大きなマイクロサイズ以上の気泡になったりして、気体が発生する。そしてこの気体が液体に溶解し、また、気体が液体から放出するものである。マイクロ波の周波数としては、周波数915KHz、2.4~2.5GHz、5.7~5.9GHzのいずれかであることが好ましい。周波数の範囲がこの範囲を外れると気泡を崩壊する効果が低下するおそれがある。 In addition, when external force is applied by microwaves, when the microwave generator is turned on, microwave vibration is applied from the microwave oscillator to the gas-liquid mixture, and the internal energy of the gas-liquid mixture to which the vibration wave is applied is The interface structure collapses and the bubbles collapse, or the bubbles collide violently and the bubbles merge to form a large micro-sized bubble or more. And this gas melt | dissolves in a liquid, and gas discharge | releases from a liquid. The frequency of the microwave is preferably a frequency of 915 KHz, 2.4 to 2.5 GHz, or 5.7 to 5.9 GHz. If the frequency range is out of this range, the effect of collapsing bubbles may be reduced.
 このように、マイクロ波で外力を与えることにより、気体を簡単に発生させて利用することができるものである。また、マイクロ波はオンとオフの切替を容易に行うことができ、気液混合液中の気体を必要な量や時間だけ得ることが可能となるものである。また、マイクロ波により気体を徐々に発生させたり、急激に発生させたりすることが可能であり、気体の発生を簡単に制御することができるものである。 Thus, by applying an external force with microwaves, gas can be easily generated and used. Further, the microwave can be easily switched on and off, and the gas in the gas-liquid mixture can be obtained in a necessary amount and time. Further, gas can be generated gradually or suddenly by microwaves, and gas generation can be easily controlled.
 気液混合液にあっては、上記のように、温度制御、超音波、赤外線、マイクロ波などといった外力付与手段32を用いて気液混合液の気泡を崩壊させることによって、気泡として存在している大量の気体をこれらの手段で瞬時に多量に液体に溶解させたり、液体から放出させたりすることができ、簡単に効率よく気体を発生させて利用することができるものである。 In the gas-liquid mixture, as described above, the gas-liquid mixture is present as bubbles by collapsing the bubbles of the gas-liquid mixture using the external force applying means 32 such as temperature control, ultrasonic waves, infrared rays, and microwaves. A large amount of gas can be instantly dissolved in a liquid or released from the liquid by these means, and the gas can be generated and used easily and efficiently.
 なお、図示の形態では、外力付与手段32は気液混合液に接触して設けられているが、外力付与手段32を容器33の外側に設けて容器33の外側から非接触で容器33内部の気液混合液に外力を与えるようにしてもよい。 In the illustrated embodiment, the external force applying means 32 is provided in contact with the gas-liquid mixed solution. However, the external force applying means 32 is provided outside the container 33 so that it is not contacted from the outside of the container 33. An external force may be applied to the gas-liquid mixture.
 外力付与手段32による外力の付与は、連続的であってもよいし、断続的であってもよい。連続的に外力を与える場合は、気液混合液中の大量の気体を一気に発生させて利用することができる。一方、断続的に外力を与える場合は、気体を徐々に溶解したり放出したりすることができ、液体中の気体を持続して利用することができる。 The external force application by the external force application means 32 may be continuous or intermittent. When external force is continuously applied, a large amount of gas in the gas-liquid mixture can be generated and used at once. On the other hand, when external force is intermittently applied, the gas can be gradually dissolved or released, and the gas in the liquid can be used continuously.
 図9のシステムでは、利用したいタイミングで気液混合液に外力を与えて気体を溶解したり放出したりして、オゾンによる殺菌や、精密部品の洗浄や、生体への酸素の供給などに利用することができる。また、気液混合液で気体を長期に閉じ込め、利用したいタイミングで外力を与えて気体を液体から取り出して利用することができ、気体の保存、貯蔵、運搬などに用いることができる。 In the system shown in FIG. 9, an external force is applied to the gas-liquid mixture at the desired timing to dissolve or release the gas, which is used for ozone sterilization, cleaning of precision parts, oxygen supply to the living body, etc. can do. Further, the gas can be confined for a long time with the gas-liquid mixture, and the gas can be taken out from the liquid and used by applying an external force at the timing of use, and can be used for storage, storage, transportation, etc. of the gas.
 図10は、本発明の気液混合液を用いた気体の利用方法の実施の形態の他の一例を示す概略図であり、気体利用システムの一例が示されている。このシステムは、気体がナノサイズの気泡となって液体に混合された気液混合液を冷却状態で生成する気液混合液生成装置30と、冷却状態の気液混合液を貯留する容器33とを備えるものである。 FIG. 10 is a schematic diagram showing another example of the embodiment of the gas utilization method using the gas-liquid mixture of the present invention, and shows an example of the gas utilization system. This system includes a gas-liquid mixed liquid generating device 30 that generates a gas-liquid mixed liquid mixed with a liquid in the form of nano-sized bubbles in a cooled state, and a container 33 that stores the gas-liquid mixed liquid in a cooled state. Is provided.
 気液混合液生成装置30は、図9の装置のものに加えて、液体冷却部17が配管連結部18と気体供給部2との間の液体流路に設けられている。また、このシステムでは、図9のシステムと異なり、外力付与手段32を容器に備えていない。液体冷却部17は、例えば、流路6に冷却熱交換器を巻き付けて取り付けるなどして形成してある。液体供給源16から送られた液体は液体冷却部17で冷却され、冷却された状態のまま気液混合液が生成される。すなわち、気液混合液は常温よりも温度が低い状態で生成される。そして、この冷却状態の気液混合液を吐出部7から容器33に吐出して貯留する。冷却温度としては、液体の温度が常温以下となるようにする程度であればよく、例えば、0~25℃にすることができる。気液混合液の貯留は、冷却状態を保つように冷却して貯留してもよいし、冷却状態を維持せずに貯留してもよい。冷却したまま貯留すると、気泡を長期に安定に保持することができる。気液混合液を容器33に貯留したまま気体を利用してもよいし、人体や洗浄物などの対象物に気液混合液を吹きつけたりして利用してもよい。そして、外気温や対象物の温度により気液混合液の温度が上昇して液中の気泡が崩壊して気体が溶解し、またマイクロサイズ以上の気泡となって気体が放出する。この発生した気体を種々の用途に利用するものである。 In addition to the apparatus shown in FIG. 9, the gas-liquid mixed liquid generating apparatus 30 is provided with a liquid cooling section 17 in a liquid flow path between the pipe connecting section 18 and the gas supply section 2. Further, in this system, unlike the system of FIG. 9, the external force applying means 32 is not provided in the container. The liquid cooling unit 17 is formed, for example, by winding a cooling heat exchanger around the flow path 6 and attaching it. The liquid sent from the liquid supply source 16 is cooled by the liquid cooling unit 17, and a gas-liquid mixed solution is generated while being cooled. That is, the gas-liquid mixture is generated at a temperature lower than normal temperature. Then, this cooled gas-liquid mixture is discharged from the discharge portion 7 to the container 33 and stored. The cooling temperature only needs to be such that the temperature of the liquid is not higher than room temperature, and can be, for example, 0 to 25 ° C. The gas-liquid mixed liquid may be stored by cooling so as to maintain the cooling state, or may be stored without maintaining the cooling state. When stored with cooling, the bubbles can be stably held for a long time. The gas may be used while the gas-liquid mixed liquid is stored in the container 33, or may be used by spraying the gas-liquid mixed liquid on an object such as a human body or a cleaning object. Then, the temperature of the gas-liquid mixture rises due to the outside air temperature or the temperature of the object, the bubbles in the liquid collapse, the gas dissolves, and the gas is released as bubbles of micro size or larger. This generated gas is used for various purposes.
 このシステムにあっては、冷却状態の気液混合液が対象物と接触して、対象物の温度で気液混合液の温度を変化させ、対象物の直近で気体が溶解したり発生したりして、気体を利用することができるので、気体利用の効率を向上することができるものである。また、冷却状態の気液混合液を冷却したまま保存しておき、この保存された気液混合液を対象物に与えることもできる。その場合、装置を移動することなく、気液混合液を利用したい場所に移動させて利用することができ、簡単に気体を利用することができる。 In this system, the gas-liquid mixture in the cooled state comes into contact with the object, changes the temperature of the gas-liquid mixture at the temperature of the object, and the gas is dissolved or generated in the immediate vicinity of the object. And since gas can be utilized, the efficiency of gas utilization can be improved. Further, the gas-liquid mixture in a cooled state can be stored while being cooled, and the stored gas-liquid mixture can be given to the object. In that case, it is possible to use the gas-liquid mixed solution by moving it to a place where it is desired to use without moving the apparatus, and it is possible to easily use the gas.
 上記の気液混合液を用いた気体の利用方法にあっては、気液混合液生成装置30から生成した気液混合液を容器に入れてそのまま外力を付与する気体利用システムを用いた方法を説明したが、気体の利用方法は上記の気体利用システムを用いた方法に限られるものではない。例えば、製造した気液混合液を貯蔵しておき、必要なときに気液混合液を取り出し、外力を付与して気体を発生させるようにしてもよい。 In the gas utilization method using the gas-liquid mixed solution, a method using a gas utilization system in which the gas-liquid mixed solution generated from the gas-liquid mixed solution generating device 30 is put in a container and external force is applied as it is. Although explained, the utilization method of gas is not restricted to the method using the above-mentioned gas utilization system. For example, the produced gas / liquid mixture may be stored, the gas / liquid mixture may be taken out when necessary, and an external force may be applied to generate gas.
 本発明の気液混合液は、二酸化炭素、窒素、酸素、オゾン、アルゴンなどの気体を微細な気泡として液体中に保持するものであり、これらの気体を高濃度で安定に液体中に存在させることができるので、環境分野、製造・産業分野、エネルギー分野、農林水産分野、食品分野、家庭用分野、医療分野や、その他の各種の分野において利用することができるものである。 The gas-liquid mixture of the present invention holds a gas such as carbon dioxide, nitrogen, oxygen, ozone, and argon as fine bubbles in the liquid, and these gases are stably present in the liquid at a high concentration. Therefore, it can be used in the environmental field, the manufacturing / industrial field, the energy field, the agriculture / forestry / fishery field, the food field, the household field, the medical field, and other various fields.
 例えば環境分野では、海、河川、湖、池、ダム湖等の閉鎖水域に、酸素が気泡となって高濃度で存在する気液混合液を供給することによって、水域における酸素存在量を高めて水浄化を行なうことができるものであり、同様に浄化槽、下水道施設、し尿処理施設において、酸素供給に利用することができる。また土壌への酸素供給によって有害物質や油汚染等を処理することができる。 For example, in the environmental field, the oxygen abundance in the water area is increased by supplying a gas-liquid mixture in which oxygen is bubbled and present in high concentrations in closed water areas such as the sea, rivers, lakes, ponds, and dam lakes. Water purification can be performed, and similarly, it can be used for oxygen supply in septic tanks, sewerage facilities, and human waste processing facilities. Moreover, harmful substances and oil contamination can be treated by supplying oxygen to the soil.
 製造・産業分野では、酸素の気泡が高濃度で存在する気液混合液を噴射や浸漬することによって、精密部品の洗浄などに利用することができる。また、工場排水処理施設に、酸素の気泡が高濃度で存在する気液混合液を供給することによって、酸素量の向上による排水処理を行なうことができ、あるいはオゾンの気泡が高濃度で存在する気液混合液を供給することによって、排水をオゾン処理することができる。また食品工場での発酵食品の発酵と培養促進のための、酸素供給に利用することができる。また業務用浴場、プール、水族館等の循環水ろ過システムへの酸素やオゾンの供給に利用することができ、工場の塗装工程循環水、工場の洗浄工程循環水、冷却循環水への酸素やオゾン供給による浄化に利用することができる。さらに工場等で発生した有毒ガスを気泡として水に混合させることにより気液混合液を生成して、この高濃度の有毒ガスが存在する気液混合液を処理することにより有毒ガスを処理することもできる。 In the manufacturing and industrial fields, it can be used for cleaning precision parts by jetting or dipping a gas-liquid mixture containing oxygen bubbles in high concentration. In addition, by supplying a gas-liquid mixture in which oxygen bubbles are present at a high concentration to a factory wastewater treatment facility, wastewater treatment can be performed by improving the amount of oxygen, or ozone bubbles are present at a high concentration. By supplying the gas-liquid mixture, the waste water can be subjected to ozone treatment. Moreover, it can utilize for oxygen supply for fermentation and culture | cultivation promotion of fermented food in a food factory. It can also be used to supply oxygen and ozone to circulating water filtration systems such as commercial baths, pools, and aquariums. Oxygen and ozone for factory painting process circulating water, factory cleaning process circulating water, and cooling circulating water It can be used for purification by supply. Furthermore, a gas-liquid mixture is generated by mixing toxic gas generated in factories with water as bubbles, and the toxic gas is processed by processing the gas-liquid mixture containing this high-concentration toxic gas. You can also.
 エネルギー分野では、天然ガス、メタン、ブタン、エタン、プロパン等の炭化水素、酸素、窒素、水素、オゾンなどを気泡として液体中に存在させることにより、これらの気体を安定して高濃度に保持することができる。そして、このような気液混合液を冷却又は圧縮するなどして固形化又はスラリー化することによりガスハイドレートを生成し、このガスハイドレートにより、ガスの運送、生鮮食料品の保存と運搬、植物栽培、炭酸飲料への利用や、燃料としての利用を図ることができる。 In the energy field, natural gas, hydrocarbons such as methane, butane, ethane, propane, etc., oxygen, nitrogen, hydrogen, ozone, etc. are present in the liquid as bubbles, so that these gases are stably maintained at a high concentration. be able to. And, by cooling or compressing such a gas-liquid mixture, it is solidified or slurried to produce a gas hydrate, and by this gas hydrate, transportation of gas, storage and transportation of fresh food products, It can be used for plant cultivation, carbonated drinks, and fuel.
 農林水産分野では、農業排水、水産排水、畜産排水に酸素の気泡が高濃度で存在する気液混合液を供給することによって、酸素存在量を向上させて水浄化や汚物の浮上分離に利用することができる。また酸素の気泡が高濃度で存在する気液混合液を農業用水や水産用水として用いることによって、植物の発芽促進や成長促進、魚介類の成長促進を図ることができる。さらに生簀に高濃度で酸素の気泡が存在する気液混合液を供給することによって、活魚輸送などの際の酸素供給を行なうことができる。また、農業廃水処理にも利用することができる。 In the agriculture, forestry and fisheries field, by supplying a gas-liquid mixture with high concentration of oxygen bubbles to agricultural, fishery and livestock wastewater, the oxygen content is improved and used for water purification and flotation separation of filth. be able to. In addition, by using a gas-liquid mixed solution in which oxygen bubbles are present at a high concentration as agricultural water or fishery water, it is possible to promote the germination and growth of plants and the growth of seafood. Furthermore, by supplying a gas-liquid mixed liquid in which oxygen bubbles are present at a high concentration in the ginger, oxygen can be supplied during transport of live fish. It can also be used for agricultural wastewater treatment.
 食品分野では、酸素や二酸化炭素などの気泡が存在する気液混合液を食品加工水や食品洗浄水として利用することができ、また、窒素、ヘリウム、アルゴンなどの不活性気体の気泡が存在する気液混合液を用いて食品の腐敗防止などに利用することができる。 In the food field, gas-liquid mixtures containing bubbles such as oxygen and carbon dioxide can be used as food processing water and food washing water, and there are bubbles of inert gases such as nitrogen, helium, and argon. It can be used to prevent food spoilage using a gas-liquid mixture.
 家庭用分野では、生活排水の浄化槽などに酸素の気泡が高濃度で存在する気液混合液を供給することによって、酸素量の向上による排水処理を効率良く行なうことができる。また二酸化炭素の気泡が高濃度で存在する気液混合液を浴槽に供給することによって、炭酸ガス風呂を形成することができる。また、気液混合液を飲料用に、美容用に利用することができる。 In the household field, wastewater treatment by improving the amount of oxygen can be performed efficiently by supplying a gas-liquid mixed solution containing oxygen bubbles at a high concentration to a septic tank for domestic wastewater. Moreover, a carbon dioxide bath can be formed by supplying a gas-liquid mixed liquid in which bubbles of carbon dioxide exist at a high concentration to the bathtub. Moreover, a gas-liquid liquid mixture can be utilized for drinks and cosmetics.
 医療分野では、酸素の気泡が高濃度で存在する気液混合液や、二酸化炭素の気泡が高濃度で存在する気液混合液を、飲料用、癌治療用、結石破壊用などに利用することができる。 In the medical field, use gas-liquid mixtures with high concentrations of oxygen bubbles and gas-liquid mixtures with high concentrations of carbon dioxide bubbles for beverages, cancer treatment, stone destruction, etc. Can do.
 その他の分野では、飲料用の酸素水、飲料用の炭酸水として気液混合液を利用することができる。さらに殺菌用、脱色用、脱臭用、有機物分解用など多分野で使用されるオゾン水として気液混合液を利用することができる。 In other fields, a gas-liquid mixed solution can be used as oxygen water for beverages and carbonated water for beverages. Furthermore, a gas-liquid mixture can be used as ozone water used in various fields such as sterilization, decolorization, deodorization, and organic matter decomposition.
 以下、本発明を実施例により説明する。 Hereinafter, the present invention will be described by way of examples.
 〔実施例1〕
 [気液混合液の製造]
 図4の装置を用いて、液体として純水を用い、気体として後述する各種の気体を用い、気液混合液を生成した。
[Example 1]
[Production of gas-liquid mixture]
Using the apparatus of FIG. 4, pure water was used as the liquid, and various gases described later were used as the gas to produce a gas-liquid mixed solution.
 気液混合装置としては、加圧部1と気液混合部3とがポンプ11で兼用されて構成されたものを用いた。ポンプ11としては回転体21により加圧する図4(b)のようなポンプ11aを用いた。 As the gas-liquid mixing device, an apparatus in which the pressurizing unit 1 and the gas-liquid mixing unit 3 are combined with a pump 11 was used. As the pump 11, a pump 11 a as shown in FIG.
 気体と液体の比(液体に対する気体の注入量)は、容量比(体積比)で1:1に設定した。また、ポンプ11の回転体21の回転数は1700rpmに設定した。この条件により大気圧(0.1MPa)の水に気体が注入された後、加圧速度ΔP/t=28.3MPa/secで加圧されて、気液混合部3から脱気泡部4に送り出される際の気液混合液の圧力が0.6MPaになった。なお、このような条件により、飽和溶解濃度を超えて気体が液体に注入されて水素結合距離が短くなり強固な気泡界面の構造が形成されるものと考えられる。この条件(加圧条件)は現時点における最良の条件であると考えられる。 The ratio of gas to liquid (the amount of gas injected into the liquid) was set to 1: 1 as a volume ratio (volume ratio). Moreover, the rotation speed of the rotary body 21 of the pump 11 was set to 1700 rpm. Under this condition, gas is injected into water at atmospheric pressure (0.1 MPa) and then pressurized at a pressure rate ΔP 1 /t=28.3 MPa / sec. The pressure of the gas-liquid mixture at the time of delivery became 0.6 MPa. Under such conditions, it is considered that the gas is injected into the liquid exceeding the saturated dissolution concentration, the hydrogen bond distance is shortened, and a strong bubble interface structure is formed. This condition (pressurizing condition) is considered to be the best condition at present.
 また、減圧部5よりも上流側の流路6を内径20mmのものにした。減圧部5としては図6(a)のような、3段階で内径が徐々に小さくなるものを用い、具体的には、内径が14mm、8mm、4mmで長さが各約3.3mm(減圧部5の全長として約1cm)の三つの流路管部からなるものを用いた。また、減圧部5よりも下流側の流路6及び延長流路10として、内径4mm(外径6mm)のホースを用い、下流側の流路6と延長流路10とを合わせた長さが2mとなるように設定した。この条件により、減圧部5において、最高減圧速度60MPa/sec、時間0.0025秒で気液混合液を減圧し、さらに、下流側の流路6及び延長流路10において、1MPa/sec、時間0.5秒で気液混合液を減圧し、ホース先端部である吐出部7から、大気圧(0.1MPa)まで減圧された気液混合液が得られた。なお、このような条件により、飽和溶解濃度を超えて気体が液体に注入されると共に水素結合距離が短くなり気泡界面の構造が強固になった気液混合液を安定して生成することができるものと考えられる。この条件(減圧条件)は現時点における最良の条件であると考えられる。 Further, the flow path 6 on the upstream side of the decompression unit 5 has an inner diameter of 20 mm. As the decompression unit 5, as shown in FIG. 6 (a), one having an inner diameter that gradually decreases in three stages is used. Specifically, the inner diameter is 14 mm, 8 mm, 4 mm, and each length is about 3.3 mm (decompression). The total length of the part 5 was approximately 1 cm) and was composed of three flow path pipe parts. In addition, a hose having an inner diameter of 4 mm (outer diameter of 6 mm) is used as the flow path 6 and the extension flow path 10 on the downstream side of the decompression unit 5, and the combined length of the downstream flow path 6 and the extension flow path 10 is as follows. It was set to be 2 m. Under this condition, the decompression unit 5 decompresses the gas-liquid mixture at a maximum decompression speed of 60 MPa / sec and a time of 0.0025 seconds, and further, 1 MPa / sec, time in the downstream channel 6 and the extension channel 10. The gas-liquid mixed liquid was depressurized in 0.5 seconds, and a gas-liquid mixed liquid reduced in pressure to atmospheric pressure (0.1 MPa) was obtained from the discharge part 7 which is the tip of the hose. Note that, under such conditions, a gas-liquid mixed liquid in which gas is injected into the liquid exceeding the saturated dissolution concentration and the hydrogen bond distance is shortened and the structure of the bubble interface is strengthened can be stably generated. It is considered a thing. This condition (decompression condition) is considered to be the best condition at the present time.
 [水素結合の距離]
 図1は、液体として純水、気体として窒素を使用した気液混合液(窒素混合水)と、窒素が純水に飽和溶解濃度で溶解した窒素飽和水との赤外吸収スペクトルとの差分を示すグラフである。水のOH伸縮振動による赤外吸収帯としては通常3400cm-1付近に吸収極大があることが知られているが、グラフに示されるように本発明の気液混合液はOH伸縮振動の吸収極大が3200cm-1付近にずれている。吸収極大が3400cm-1にある場合、水素結合の距離は0.285nmである。一方、吸収極大が3200cm-1にある場合、水素結合の距離は0.277nmであることが知られており、常温常圧下における通常の水素結合の距離よりも短くなり構造化された氷またはハイドレートに近い水と結論づけられた。
[Hydrogen bond distance]
FIG. 1 shows the difference between an infrared absorption spectrum of a gas-liquid mixed solution (nitrogen mixed water) using pure water as a liquid and nitrogen as a gas and nitrogen saturated water in which nitrogen is dissolved in pure water at a saturated dissolution concentration. It is a graph to show. It is known that the infrared absorption band due to OH stretching vibration of water usually has an absorption maximum in the vicinity of 3400 cm −1 , but as shown in the graph, the gas-liquid mixture of the present invention has an absorption maximum of OH stretching vibration. Is shifted to around 3200 cm −1 . When the absorption maximum is 3400 cm −1 , the hydrogen bond distance is 0.285 nm. On the other hand, when the absorption maximum is 3200 cm −1 , the hydrogen bond distance is known to be 0.277 nm, which is shorter than the normal hydrogen bond distance at room temperature and normal pressure, and is structured ice or hydrate. It was concluded that the water was close to the rate.
 [気体量]
 液体として純水を、気体として窒素、水素、メタン、アルゴン、二酸化炭素のいずれかを使用し、この気液混合液中に気泡として存在する気体量を次の方法により測定した。気液混合液の製造は、上記と同様に気液混合液製造装置を用いて行った。
(1)25℃、導電率0.1μS/cmの純水に、各種の気体を混合させ気液混合液を得た。
(2)直径1μm以上の大きな気泡を水から分離するために、気液混合液を25℃で1日静置した。なお、静置時間について、ストークスの法則から
 気泡上昇速度: V=d×g/(18×γ)
 (d:気泡直径、g:重力加速度、γ:動粘性係数)
の式が成立し、この式より1μmの気泡の上昇速度は約2.4×10-4m/sであるので、例えば静置時の容器の水深が50mmの場合、1日静置すれば気泡を除去することができる。
(3)最小測定値1mgの分析天秤で気液混合液の質量を測定した。
(4)ガス透過度及び透湿度の低いPE+ナイロン樹脂製のビニル袋に気液混合液とスタラーの撹拌子を入れ、空気を追い出して袋に空気が無い状態でシーラーにてビニル袋を密封した。
(5)密封直後に、分析天秤で気液混合液が封入されたビニル袋の質量を測定した。
(6)ホットスタラーにより25℃の気液混合液が密封されたビニル袋を45℃に昇温して気液混合液を約5時間撹拌した。この昇温と撹拌により、微細気泡や、45℃の飽和溶解濃度以上で溶解していた気体が気液混合液から分離されビニル袋の上部に集まった。
(7)室温25℃の条件でホットスタラーの設定温度を25℃にし、25℃の飽和溶解度の液体になるよう数時間撹拌を行った。
(8)分析天秤で、気体と液体が封入されたビニル袋の質量を測定した。
(9)計3回の質量測定から気液混合液の質量と、昇温および撹拌によって気液混合液から分離された気体による浮力によって生じる液体の質量変化量とを得た。質量変化量は、気液混合液から分離された気体容積と同容積の空気の質量と同じであり、この値から分離された気体の容量と質量を算出することができる。
[Gas volume]
Pure water was used as the liquid, and nitrogen, hydrogen, methane, argon, or carbon dioxide was used as the gas, and the amount of gas present as bubbles in the gas-liquid mixture was measured by the following method. The production of the gas / liquid mixture was performed using the gas / liquid mixture production apparatus in the same manner as described above.
(1) Various gases were mixed with pure water having a conductivity of 0.1 μS / cm at 25 ° C. to obtain a gas-liquid mixture.
(2) In order to separate large bubbles having a diameter of 1 μm or more from water, the gas-liquid mixture was allowed to stand at 25 ° C. for 1 day. As for the standing time, from the Stokes' law, the bubble rising speed: V = d 2 × g / (18 × γ)
(D: bubble diameter, g: gravitational acceleration, γ: kinematic viscosity coefficient)
From this equation, the rate of rise of bubbles of 1 μm is about 2.4 × 10 −4 m / s. For example, if the water depth of the container at rest is 50 mm, Bubbles can be removed.
(3) The mass of the gas-liquid mixture was measured with an analytical balance having a minimum measured value of 1 mg.
(4) A gas-liquid mixture and a stirrer of a stirrer are placed in a PE + nylon resin vinyl bag with low gas permeability and moisture permeability, and the vinyl bag is sealed with a sealer in a state where there is no air in the bag. .
(5) Immediately after sealing, the mass of the vinyl bag in which the gas-liquid mixture was sealed was measured with an analytical balance.
(6) The vinyl bag in which the gas / liquid mixture at 25 ° C. was sealed by a hot stirrer was heated to 45 ° C., and the gas / liquid mixture was stirred for about 5 hours. By this temperature rise and stirring, fine bubbles and gas dissolved at a saturated dissolution concentration of 45 ° C. or higher were separated from the gas-liquid mixture and collected on the top of the vinyl bag.
(7) The set temperature of the hot stirrer was set to 25 ° C. at room temperature of 25 ° C., and the mixture was stirred for several hours so that a liquid having a saturated solubility of 25 ° C.
(8) Using an analytical balance, the mass of the vinyl bag in which gas and liquid were enclosed was measured.
(9) The mass of the gas-liquid mixture and the amount of change in the mass of the liquid caused by the buoyancy caused by the gas separated from the gas-liquid mixture by heating and stirring were obtained from three mass measurements. The mass change amount is the same as the mass of air having the same volume as the gas volume separated from the gas-liquid mixture, and the volume and mass of the separated gas can be calculated from this value.
 図2は、このようにして測定された気体容量を示すグラフである。各棒グラフの下部領域は、測定された気泡として存在していた気体の量であり、上部領域はヘンリー則に従う気体の飽和溶解量である。グラフに示すように、例えば水素と水を用いた気液混合液の場合、25℃の純水1Lに水素が、飽和溶解量として17.6mL溶解し、528mLの気体が微細な気泡として存在することが確認された。すなわち、気液混合液に含有する気体量は飽和溶解量の30倍であった。また同様に、飽和溶解量に対して気液混合液に含有する気体量は、窒素では36倍、メタンでは17倍、アルゴンでは16倍、二酸化炭素では1.9倍であった。このように、気液混合液は飽和溶解濃度以上の高濃度で気体を液体中に保持することが可能であり、この高濃度の気液混合液を各種の分野に利用することができるものである。 FIG. 2 is a graph showing the gas volume measured in this way. The lower region of each bar graph is the amount of gas that was present as the measured bubble, and the upper region is the saturated amount of gas that follows Henry's law. As shown in the graph, for example, in the case of a gas-liquid mixture using hydrogen and water, 17.6 mL of hydrogen is dissolved in 1 L of pure water at 25 ° C. as a saturated dissolution amount, and 528 mL of gas exists as fine bubbles. It was confirmed. That is, the amount of gas contained in the gas-liquid mixture was 30 times the saturated dissolution amount. Similarly, the amount of gas contained in the gas-liquid mixture with respect to the saturated dissolution amount was 36 times for nitrogen, 17 times for methane, 16 times for argon, and 1.9 times for carbon dioxide. As described above, the gas-liquid mixed liquid can hold the gas in the liquid at a high concentration equal to or higher than the saturated dissolution concentration, and the high-concentration gas-liquid mixed liquid can be used in various fields. is there.
 [気泡のサイズ]
 上記と同様にして製造した気液混合液を瞬間凍結し、真空中においてカッターで割断し、その割断面にメタン・エチレンを流し放電させ、凹凸を転写した炭化水素膜(レプリカ膜)を作製した。このレプリカ膜に導電性オスミウム薄膜を張り、十分乾燥させて、走査型電子顕微鏡(SEM)で観測した。
[Bubble size]
A gas-liquid mixture produced in the same manner as above was instantly frozen, cleaved with a cutter in a vacuum, and methane / ethylene flowed through the fractured surface to discharge, producing a hydrocarbon film (replica film) with transferred irregularities. . A conductive osmium thin film was applied to the replica film, dried sufficiently, and observed with a scanning electron microscope (SEM).
 図3は、窒素と純水の気液混合液について、SEMにより観測された写真の一例である。同様に写真観察することにより、気体として窒素、水素、メタン、アルゴン、二酸化炭素を用いた場合、いずれも気液混合液の気泡サイズは、直径の分布ピークが100nmであることが確認された。なお、上記の気体と純水の気液混合液の気泡はレーザーを用いた動的散乱法等の粒子径分布測定装置では正確な検知ができなかった。 FIG. 3 is an example of a photograph observed by SEM for a gas-liquid mixture of nitrogen and pure water. Similarly, by observing photographs, it was confirmed that when nitrogen, hydrogen, methane, argon, carbon dioxide was used as the gas, the bubble size of the gas-liquid mixture was 100 nm in diameter distribution peak. The bubbles in the gas-liquid mixture of the above gas and pure water could not be accurately detected by a particle size distribution measuring apparatus such as a dynamic scattering method using a laser.
 [気泡の内圧]
 気液混合液中の気体総量から気泡内部の圧力を算出した。表1は、窒素、メタン、又はアルゴンと25℃の純水との気液混合液における、気体総量と、気体総量から算出した気泡の内圧を示している。
[Internal pressure of bubbles]
The pressure inside the bubbles was calculated from the total amount of gas in the gas-liquid mixture. Table 1 shows the total amount of gas and the internal pressure of bubbles calculated from the total amount of gas in a gas-liquid mixed solution of nitrogen, methane, or argon and 25 ° C. pure water.
 気泡における気体の内部圧力は次の方法で算出される。
気体の状態方程式は、
 PV/T=(const)
 (P:内部圧力、V:容積、T:内部温度)
で表され、Tが一定の場合、特に
 PV=(const)
で表される。
The internal pressure of the gas in the bubbles is calculated by the following method.
The equation of state of gas is
PV / T = (const)
(P: internal pressure, V: volume, T: internal temperature)
When T is constant, PV = (const)
It is represented by
 そして、気液混合液の密度から気液混合液中の気泡の容積が計算でき、上式から、
 大気圧 × 気体総体積量 = 気泡の内圧 × 液中の気体総体積量
の関係が成立し、この関係式に上記で測定した気体量を当てはめて気泡における気体の内圧が計算され、表1のような圧力値となる。
And the volume of bubbles in the gas-liquid mixture can be calculated from the density of the gas-liquid mixture,
The relationship of atmospheric pressure × total gas volume = bubble internal pressure × total gas volume in liquid is established, and the internal gas pressure in the bubbles is calculated by applying the above measured gas amount to this relational expression. The pressure value is as follows.
 例えば気体が窒素の場合、
 気液混合液1リットル中における、水体積がw1リットル、水中での気体体積がw2リットルであると仮定すると、
 体積については次の関係式が成り立つ。
For example, if the gas is nitrogen,
Assuming that the volume of water in 1 liter of gas-liquid mixture is w1 liter and the volume of gas in water is w2 liter,
The following relational expression holds for the volume.
 w1 + w2 =1リットル   (式A)
 
 また、質量については次の関係式が成り立つ。
w1 + w2 = 1 liter (Formula A)

In addition, the following relational expression holds for the mass.
 w1 × 水の密度 + w2÷22.4(リットル)×28(分子量)=測定質量  (式B)
   水の密度    :常温常圧の純水では997.1g/L
   22.4リットル  :気体1モルの体積
   測定質量    :表1の値で988.3
 
 上記の2式(式A,B)の方程式を解くと、
 w2=8.84×10^(-3)  が算出されるので、
 
 気体の内圧=大気圧 × 気体総体積量 ÷ 液中の気体総体積量
      =0.1×(表1の値)÷w2
      =0.1×0.56÷(8.84×10^(-3))
      =6.3MPa
となる。
w1 × density of water + w2 ÷ 22.4 (liter) × 28 (molecular weight) = measured mass (Formula B)
Water density: 997.1g / L for pure water at normal temperature and pressure
22.4 liters: volume of 1 mol of gas Measured mass: 988.3 as shown in Table 1

Solving the above two equations (Equations A and B),
Since w2 = 8.84 × 10 ^ (-3) is calculated,

Internal pressure of gas = atmospheric pressure x total volume of gas ÷ total volume of gas in liquid = 0.1 x (value in Table 1) ÷ w2
= 0.1 × 0.56 ÷ (8.84 × 10 ^ (-3))
= 6.3 MPa
It becomes.
 なお、上記の計算では、気泡の内部温度が一定(常温)であるとして考えたが、実際の気泡の内部温度は大気の温度(常温)よりも高いことも予想され、その場合、気泡の内部圧は上記算出結果より更に高いことが気体の状態方程式から予測できる。 In the above calculation, it was assumed that the internal temperature of the bubble was constant (normal temperature), but the actual internal temperature of the bubble is also expected to be higher than the atmospheric temperature (normal temperature). It can be predicted from the gas state equation that the pressure is higher than the above calculation result.
 ところで、一般には、気泡の内圧は次のようにして算出される。気泡は気液相界面間の界面張力により加圧され、この界面張力はヤングラプラスの式(下記式)で導かれる。 By the way, generally, the internal pressure of bubbles is calculated as follows. The bubbles are pressurized by the interfacial tension between the gas-liquid interface, and this interfacial tension is derived by Young Laplace's equation (the following equation).
 ΔP=2σ/r
 (ΔP:上昇圧力、σ:表面張力、r:気泡半径)
 この式によれば、例えば、直径100nmのサイズの気泡の場合、気泡内部圧力は3MPaになる。
ΔP = 2σ / r
(ΔP: rising pressure, σ: surface tension, r: bubble radius)
According to this equation, for example, in the case of a bubble having a diameter of 100 nm, the bubble internal pressure is 3 MPa.
 一方、気液混合液中の内部圧力は、表1の通り、例えば窒素の場合6.3MPaであり、この気液混合液はSEM写真にて示されるように直径100nmサイズの気泡が分散しているものであることから、気液混合液の気泡は、ヤングラプラスの式から算出される値の約2倍以上の内部圧力を有していることが確認された。したがって、より強固な界面構造が気泡界面において形成されていると結論づけられた。 On the other hand, the internal pressure in the gas-liquid mixed liquid is 6.3 MPa in the case of nitrogen, for example, as shown in Table 1. In this gas-liquid mixed liquid, bubbles having a diameter of 100 nm are dispersed as shown in the SEM photograph. Therefore, it was confirmed that the bubbles of the gas-liquid mixture had an internal pressure that was about twice or more the value calculated from the Young Laplace equation. Therefore, it was concluded that a stronger interface structure was formed at the bubble interface.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 図11は、気液混合液が安定化されるメカニズムを説明する概念説明図である。図示のように、気泡Bと液体Lqの界面には水素結合距離が通常よりも短い氷やハイドレートのような強固な水分子の結合で境膜構造(結晶構造体)の保護膜Mが形成されており、気液相互の物質移動が抑制されて気泡が安定な状態になったものと考えられる。そして、窒素、メタン、アルゴンの気液混合液内の気泡(ナノバブル)の内圧は、ヤングラプラスの式から求められる圧力よりも高くなっており約2倍以上である。このように気泡界面の水素結合距離が短く、気泡の内圧が高くなることによって、気泡が安定した気液混合液となるものである。また、気泡の内圧が高いために内圧を上昇させる外力を与えると気泡が崩壊しやすく、気泡を容易に崩壊させて気体を溶解・放出することができ、気体を利用することができるものである。 FIG. 11 is a conceptual explanatory diagram for explaining the mechanism by which the gas-liquid mixed liquid is stabilized. As shown in the drawing, a protective film M having a boundary film structure (crystal structure) is formed at the interface between the bubble B and the liquid Lq by bonding of strong water molecules such as ice or hydrate whose hydrogen bond distance is shorter than usual. Therefore, it is considered that the mass transfer between the gas and liquid is suppressed, and the bubbles are in a stable state. The internal pressure of the bubbles (nanobubbles) in the gas-liquid mixture of nitrogen, methane, and argon is higher than the pressure obtained from the Young Laplace equation and is about twice or more. As described above, the hydrogen bonding distance at the bubble interface is short and the internal pressure of the bubble is increased, so that the bubble becomes a stable gas-liquid mixture. In addition, since the internal pressure of the bubbles is high, when an external force that increases the internal pressure is applied, the bubbles are likely to collapse, the bubbles can be easily collapsed, and the gas can be dissolved and released, and the gas can be used. .
 [気泡の分布量]
 気泡の分布量(個数)は表1から算出した。
[Bubble distribution]
The amount of bubble distribution (number) was calculated from Table 1.
 気体が窒素の場合、大気中(0.1MPa)に戻した気泡総量が0.56Lであり、気泡の内圧が6.3MPaであるので、水中での気泡総体積量V1は、等温変化と仮定し、PV=constより
    V1=0.56×0.1÷6.3
 となる。
When the gas is nitrogen, the total amount of bubbles returned to the atmosphere (0.1 MPa) is 0.56 L, and the internal pressure of the bubbles is 6.3 MPa. Therefore, the total volume V1 of bubbles in water is assumed to change isothermally, PV From = const V1 = 0.56 × 0.1 ÷ 6.3
It becomes.
 また、気泡は半径r=50nmの球体であるから、気泡1個当たりの体積V2は
    V2=4/3×π×r^3
 となる。
Since the bubbles are spheres with a radius r = 50 nm, the volume V2 per bubble is V2 = 4/3 × π × r ^ 3.
It becomes.
 以上より、水1L当たりの気泡の個数n=V1÷V2=1.7×10^16個と算出される。 From the above, the number of bubbles per liter of water n = V1 ÷ V2 = 1.7 × 10 ^ 16 is calculated.
 同じように水1L当たりの気泡の個数は、気体がメタンの場合は1.8×10^16個、アルゴンの場合は1.7×10^16個と算出される。 Similarly, the number of bubbles per liter of water is calculated as 1.8 x 10 ^ 16 when the gas is methane and 1.7 x 10 ^ 16 when argon is used.
 なお、「^」は「乗」の記号であり、例えば「10^n」は、「10n」(10のn乗)のことである。 “^” Is a symbol of “power”, and for example, “10 ^ n” is “10 n ” (10 to the power of n).
 [気液混合液の安定性]
 図12は、空気を純水に混合させて生成した気液混合液について、ガラスビンに密封し一定温度で保管した場合の、飽和溶解濃度に対する気液混合液中の気体存在量比を過飽和度として表示するグラフである。グラフから、過飽和度は400時間経過してもほぼ一定(6程度)であり、ほとんど変化していないことが分かる。液体には飽和濃度で気体が溶解しているため、飽和濃度を超える気体は気泡になっているものと考えられる。よって、本発明の気液混合液が安定であることが確認された。
[Stability of gas-liquid mixture]
FIG. 12 shows the supersaturation as the gas abundance ratio in the gas-liquid mixture with respect to the saturated dissolution concentration when the gas-liquid mixture produced by mixing air with pure water is sealed in a glass bottle and stored at a constant temperature. It is a graph to display. From the graph, it can be seen that the degree of supersaturation is almost constant (about 6) even after 400 hours, and hardly changes. Since gas is dissolved at a saturated concentration in the liquid, the gas exceeding the saturated concentration is considered to be a bubble. Therefore, it was confirmed that the gas-liquid mixture of the present invention is stable.
 [加温による外力]
 上記のように製造した気液混合液をヒーターにより加温し、気液混合液の温度を25℃から40℃に昇温すると、温度の上昇に伴ってナノサイズの気泡が崩壊して目視で確認できるマイクロサイズ以上となった気泡が発生した。そして、液体がマイクロオーダーの気泡で白濁し、液体表面から気体が放出されるのが確認された。
[External force by heating]
When the gas-liquid mixture prepared as described above is heated by a heater and the temperature of the gas-liquid mixture is increased from 25 ° C. to 40 ° C., the nano-sized bubbles collapse with the increase in temperature, and are visually observed. Bubbles that were larger than the micro size that could be confirmed were generated. It was confirmed that the liquid became cloudy with micro-order bubbles and gas was released from the liquid surface.
 図13は、気液混合液中の気泡が崩壊するメカニズムを説明する概念説明図である。この図では、気体としてオゾン(O)を用いた場合を示している。ナノサイズの気泡Bは、気液混合液中では(a)のように安定に存在しているが、(b)のように温度制御、超音波、赤外線、マイクロ波等により外力が衝撃として与えられると気泡が崩壊する。その際、気泡の中に存在していた多量の気体は瞬時に液体に溶解し、気体飽和溶解液が生成する。また、気泡が衝突により合体してマイクロサイズ以上の気泡となって浮力によって上昇して気体を放出する。このように気液混合液によれば、多量の気体を気液混合液に蓄えることが可能で、この多量の気体を利用したいタイミングで溶解させたり放出したりして利用することができるものである。 FIG. 13 is a conceptual explanatory diagram illustrating a mechanism by which bubbles in the gas-liquid mixed liquid collapse. This figure shows a case where ozone (O 3 ) is used as the gas. Nano-sized bubbles B exist stably in the gas-liquid mixture as shown in (a), but as shown in (b), external force is applied as an impact by temperature control, ultrasonic waves, infrared rays, microwaves, etc. Bubbles collapse when pushed. At that time, a large amount of gas present in the bubbles is instantly dissolved in the liquid, and a gas saturated solution is generated. In addition, the bubbles are combined by collision and become bubbles of micro size or larger, and are lifted by buoyancy to release the gas. Thus, according to the gas-liquid mixture, a large amount of gas can be stored in the gas-liquid mixture, and this large amount of gas can be used by being dissolved or released at the timing at which it is desired to use. is there.
 [超音波による外力]
 上記のように製造した気液混合液に、40kHzランジュバン型振動子を用い出力100Wで超音波を照射した。時間0.05秒程度の瞬間照射で、ナノサイズの気泡が崩壊して目視で確認できるマイクロサイズ以上となった気泡が瞬間的に発生した。数秒間(0.5~30秒程度)超音波を照射することにより、ほぼ全てのナノサイズの気泡が崩壊して目視で確認できるマイクロサイズ以上となった気泡が急激に発生した。そして、液体がマイクロオーダーの気泡で白濁し、液体表面から気体が放出されるのが確認された。
[External force by ultrasonic waves]
The gas-liquid mixed solution produced as described above was irradiated with ultrasonic waves at an output of 100 W using a 40 kHz Langevin type vibrator. With the instantaneous irradiation of about 0.05 seconds, the nano-sized bubbles collapsed and bubbles of a micro size or larger that can be visually confirmed were instantaneously generated. By irradiating ultrasonic waves for several seconds (about 0.5 to 30 seconds), almost all of the nano-sized bubbles collapsed and bubbles of micro-size or larger that can be visually confirmed were rapidly generated. It was confirmed that the liquid became cloudy with micro-order bubbles and gas was released from the liquid surface.
 同様に100、200、400、800kHzの超音波発生器で超音波を照射した場合も液体表面から気体が放出されるのが確認できた。一方、2.4GHzの超音波照射では気体の放出が確認できなかった。 Similarly, it was confirmed that gas was released from the liquid surface when the ultrasonic wave was irradiated with an ultrasonic generator of 100, 200, 400, or 800 kHz. On the other hand, the release of gas could not be confirmed by ultrasonic irradiation at 2.4 GHz.
 [マイクロ波による外力]
 2450MHz帯の出力300W~300kWのマイクロ波電力応用装置を使用し、数秒間(0.1~20秒程度)照射したところ出力全域で液体表面から気体が放出されるのが確認された。
[External force by microwave]
Using a microwave power application device with an output of 300 W to 300 kW in the 2450 MHz band and irradiation for several seconds (about 0.1 to 20 seconds), it was confirmed that gas was released from the liquid surface over the entire output.
 マグネトロンによるマイクロ波の照射では、液体分子の分子間の振動子が振動エネルギーを吸収し振動するためにエネルギー準位が上がり、水素結合が切れる状態が発生し、気体が放出されると考えられる。周波数915KHzまたは5.7~5.9GHzのマイクロ波においても気泡の界面の水素結合が不安定になり気泡が崩壊し、液体表面から気体が放出されると考えられる。 In the microwave irradiation by magnetron, it is considered that the energy level rises because the vibrator between the molecules of the liquid molecule absorbs the vibration energy and vibrates, the hydrogen bond is broken, and the gas is released. Even in a microwave with a frequency of 915 KHz or 5.7 to 5.9 GHz, hydrogen bonding at the bubble interface becomes unstable, the bubble collapses, and gas is considered to be released from the liquid surface.
 [赤外線による外力]
 特に波長3μmから1mmまでの遠赤外線は気泡界面で電磁波を吸収し、熱エネルギーが与えられるため強固な水素結合の結合距離が長くなるとともに気泡内部温度が上昇する。このため、気泡が当然に崩壊するのであり、遠赤外線にて気泡を崩壊させ、液体表面から気体を放出できる。
[External force by infrared rays]
In particular, far-infrared rays having a wavelength of 3 μm to 1 mm absorb electromagnetic waves at the bubble interface and are given thermal energy, so that the bond distance of strong hydrogen bonds is increased and the bubble internal temperature is increased. For this reason, the bubble collapses naturally, and the bubble can be collapsed by far-infrared rays to release the gas from the liquid surface.
 〔実施例2〕
 [冷却状態の気液混合液]
 図10の気液混合液生成装置30を用い、冷却状態(5℃)で空気と水とを用いた気液混合液を生成した。この気液混合液を常温常圧で大気と接触するように容器に貯留し放置すると、水に対する気体の飽和溶解濃度が1週間以上維持できることが確認できた。すなわち、溶解している気体が液体から徐々に放出されてもナノサイズの気泡が徐々に崩壊して放出された気体量を補って液体に溶解するので、飽和溶解濃度を維持して液体を存在させることができることが確認された。
[Example 2]
[Cooled gas-liquid mixture]
A gas / liquid mixture using air and water was generated in a cooled state (5 ° C.) using the gas / liquid mixture generating apparatus 30 of FIG. It was confirmed that when this gas-liquid mixture was stored in a container so as to be in contact with the atmosphere at normal temperature and pressure, the saturated dissolution concentration of gas in water could be maintained for one week or more. In other words, even if the dissolved gas is gradually released from the liquid, the nano-sized bubbles gradually collapse to compensate for the amount of released gas and dissolve in the liquid, so the liquid exists while maintaining the saturated dissolution concentration. It was confirmed that it can be made.
 1  加圧部
 2  気体供給部
 3  気液混合部
 4  脱気泡部
 5  減圧部
 6  流路
 7  吐出部
 8  気体除去部
 11 ポンプ
 17 液体冷却部
 21 回転体
 30 気液混合液生成装置
 31 外力供与部
 32 外力付与手段
 33 容器
DESCRIPTION OF SYMBOLS 1 Pressurization part 2 Gas supply part 3 Gas-liquid mixing part 4 Defoaming part 5 Depressurization part 6 Channel 7 Discharge part 8 Gas removal part 11 Pump 17 Liquid cooling part 21 Rotor 30 Gas-liquid mixed-liquid production | generation apparatus 31 External force provision part 32 External force applying means 33 Container

Claims (6)

  1.  水素結合を形成する分子からなる液体中に気泡が存在する気液混合液であって、液体の気泡との界面に存在する分子の水素結合の距離が、該液体が常温常圧であるときの液体を構成する分子の水素結合の距離よりも短いことを特徴とする気液混合液。 A gas-liquid mixture in which bubbles are present in a liquid composed of molecules that form hydrogen bonds, and the distance between hydrogen bonds of molecules present at the interface with the liquid bubbles is determined when the liquid is at normal temperature and pressure. A gas-liquid mixed liquid characterized by being shorter than the hydrogen bond distance of molecules constituting the liquid.
  2.  液体が水であることを特徴とする請求項1に記載の気液混合液。 The gas-liquid mixture according to claim 1, wherein the liquid is water.
  3.  液体が、O-H結合、N-H結合、(ハロゲン)-H結合、S-H結合のいずれか一種以上を有する分子からなる液体であることを特徴とする請求項1に記載の気液混合液。 2. The gas-liquid according to claim 1, wherein the liquid is a liquid composed of molecules having any one or more of OH bond, NH bond, (halogen) -H bond, and SH bond. Mixture.
  4.  液体がカルボキシル基を有する分子からなる液体であることを特徴とする請求項1に記載の気液混合液。 The gas-liquid mixture according to claim 1, wherein the liquid is a liquid composed of molecules having a carboxyl group.
  5.  気液混合液に含有されている気体の濃度が、液体の飽和溶解濃度以上であることを特徴とする請求項1~4のいずれか1項に記載の気液混合液。 The gas-liquid mixture according to any one of claims 1 to 4, wherein the concentration of the gas contained in the gas-liquid mixture is equal to or higher than the saturated dissolution concentration of the liquid.
  6.  気泡を形成している気体の圧力が0.12MPa以上であることを特徴とする請求項1~5のいずれか1項に記載の気液混合液。 6. The gas-liquid mixed liquid according to claim 1, wherein the pressure of the gas forming the bubbles is 0.12 MPa or more.
PCT/JP2010/058464 2009-05-19 2010-05-19 Gas-liquid mixture WO2010134551A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514437A JPWO2010134551A1 (en) 2009-05-19 2010-05-19 Gas-liquid mixture

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009121260 2009-05-19
JP2009-121259 2009-05-19
JP2009-121260 2009-05-19
JP2009121259 2009-05-19
JP2009174595 2009-07-27
JP2009-174595 2009-07-27

Publications (1)

Publication Number Publication Date
WO2010134551A1 true WO2010134551A1 (en) 2010-11-25

Family

ID=43126228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058464 WO2010134551A1 (en) 2009-05-19 2010-05-19 Gas-liquid mixture

Country Status (2)

Country Link
JP (1) JPWO2010134551A1 (en)
WO (1) WO2010134551A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161327A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Sterilization treatment method, preparation for sterilization use, frozen body for sterilization use and method and apparatus for producing same, and method for producing liquid for sterilization use
WO2015147048A1 (en) * 2014-03-26 2015-10-01 トスレック株式会社 Nanobubble-producing device
CN112714757A (en) * 2018-06-28 2021-04-27 微巨营农组合法人 Fermentation treatment device for organic waste

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153139A (en) * 1998-11-19 2000-06-06 Pre-Tech Co Ltd Method and apparatus for producing ozone water
JP2004283683A (en) * 2003-03-20 2004-10-14 Mitsubishi Electric Corp Apparatus and method for producing foam
JP2007000861A (en) * 2005-05-24 2007-01-11 Joho Kagaku Kenkyusho:Kk Hydrogen supersaturated colloid simple treatment method for water, and treatment system therefor
JP2007229695A (en) * 2006-02-27 2007-09-13 Techno 21:Kk Manufacturing method of hydrogen-bonded water and manufacturing apparatus of hydrogen-bonded water
JP2008149209A (en) * 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system
JP2008307522A (en) * 2006-10-30 2008-12-25 Sekisui Chem Co Ltd Desalting method, desalting apparatus, and bubble generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000153139A (en) * 1998-11-19 2000-06-06 Pre-Tech Co Ltd Method and apparatus for producing ozone water
JP2004283683A (en) * 2003-03-20 2004-10-14 Mitsubishi Electric Corp Apparatus and method for producing foam
JP2007000861A (en) * 2005-05-24 2007-01-11 Joho Kagaku Kenkyusho:Kk Hydrogen supersaturated colloid simple treatment method for water, and treatment system therefor
JP2007229695A (en) * 2006-02-27 2007-09-13 Techno 21:Kk Manufacturing method of hydrogen-bonded water and manufacturing apparatus of hydrogen-bonded water
JP2008307522A (en) * 2006-10-30 2008-12-25 Sekisui Chem Co Ltd Desalting method, desalting apparatus, and bubble generator
JP2008149209A (en) * 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161327A1 (en) * 2012-04-27 2013-10-31 国立大学法人大阪大学 Sterilization treatment method, preparation for sterilization use, frozen body for sterilization use and method and apparatus for producing same, and method for producing liquid for sterilization use
WO2015147048A1 (en) * 2014-03-26 2015-10-01 トスレック株式会社 Nanobubble-producing device
JP2015186781A (en) * 2014-03-26 2015-10-29 トスレック株式会社 Nano-bubble manufacturing apparatus
US10596528B2 (en) 2014-03-26 2020-03-24 Tosslec Co., Ltd. Nanobubble-producing apparatus
CN112714757A (en) * 2018-06-28 2021-04-27 微巨营农组合法人 Fermentation treatment device for organic waste

Also Published As

Publication number Publication date
JPWO2010134551A1 (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP2011152513A (en) Gas-liquid mixture liquid generating apparatus
JP2011088050A (en) Biologically active water, apparatus for producing biologically active water, and biological activation method
US10598447B2 (en) Compositions containing nano-bubbles in a liquid carrier
JP2011062669A (en) Drinking water, using method of drinking water, refining method of drinking water and drinking water generating device
US11007496B2 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
KR101150740B1 (en) Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method
JP2011088076A (en) Method and apparatus for generating gas-liquid mixed liquid
JP2011004990A (en) Apparatus and method for ozone sterilization
WO2015064159A1 (en) Microbubble formation method, and microbubble formation device
WO2006088207A1 (en) Ozone water production apparatus, gas/liquid mixing structure for use therein, method of producing ozone water, and ozone water
JP2011020097A (en) Purification device and method
JP7218016B2 (en) Fine bubble forming device
WO2010134551A1 (en) Gas-liquid mixture
JP2007326101A (en) Ozone water treating method
JP2007167830A (en) Ozone water producing method and apparatus, and ozone water
JP2010269218A (en) Method of generating gas/liquid mixed solution
JP2011025202A (en) Functional mist generator
JP2004344859A (en) Automatic oxidation reduction system by colloid solution of hydrogen gas and oxygen gas dissolved under vacuum and pressure
JP2009066467A (en) Manufacturing method of aqueous solution of dissolved ozone and supersaturated dissolved oxygen of three or more times of saturated concentration, and use method thereof
JP2011063561A (en) Liquid for external use, method of using the same and unit for manufacturing the same
JP2011011126A (en) Apparatus for producing functional liquid
JP2019072707A (en) Ultrafine bubble-containing liquid generated by quick gas filling device using ultrafine bubble nozzle
JP2009178702A (en) Gas-liquid mixing equipment
JP2011011127A (en) Apparatus for producing functional liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011514437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777784

Country of ref document: EP

Kind code of ref document: A1