WO2018121211A1 - 一种资源配置方法及装置 - Google Patents

一种资源配置方法及装置 Download PDF

Info

Publication number
WO2018121211A1
WO2018121211A1 PCT/CN2017/115053 CN2017115053W WO2018121211A1 WO 2018121211 A1 WO2018121211 A1 WO 2018121211A1 CN 2017115053 W CN2017115053 W CN 2017115053W WO 2018121211 A1 WO2018121211 A1 WO 2018121211A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
symbols
subcarrier width
indication information
occupied
Prior art date
Application number
PCT/CN2017/115053
Other languages
English (en)
French (fr)
Inventor
张旭
薛丽霞
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/115053 priority Critical patent/WO2018121211A1/zh
Priority to JP2019533619A priority patent/JP2020503754A/ja
Priority to EP17888964.8A priority patent/EP3531770B1/en
Publication of WO2018121211A1 publication Critical patent/WO2018121211A1/zh
Priority to US16/436,227 priority patent/US11064464B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a resource configuration method and apparatus.
  • the Long Term Evolution (LTE) system standard developed by the 3rd Generation Partnership Project (3GPP) is considered to be the fourth generation wireless access system standard.
  • the control channel includes two types: a physical downlink control channel (PDCCH) and an enhanced physical downlink control channel (EPDCCH).
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the time-frequency resource region where the PDCCH is located is located in the first 0-3 Orthogonal Frequency Division Multiplexing (OFDM) symbols of one subframe, and the time-frequency resource region where the EPDCCH is located is occupied in one subframe.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time-frequency region where the PDCCH is located occupies the entire system bandwidth, and the time-frequency region where the EPDCCH is located occupies the frequency domain width of at least one physical resource block (PRB) in the frequency domain.
  • PRB physical resource block
  • the size of the time-frequency resource of the PDCCH in the prior art is indicated by the indication information carried in the physical control format indicator channel (PCFICH) channel and the system broadcast information carried in the PBCH channel, and is carried in the PCFICH channel.
  • the indication information includes 2 bits, which is only used to indicate the size of the time-domain OFDM symbol occupied by the time-frequency resource region where the PDCCH is located, and is generally 0-3 OFDM symbols; and the frequency domain size of the time-frequency resource where the PDCCH is located passes through the physical broadcast channel (
  • the system broadcast information carried in the Physical Broadcast Channel (PBCH) is indirectly indicated.
  • the indicator information indicating the bandwidth of the system in the PBCH channel can be utilized.
  • the frequency domain size of the area where the PDCCH is located is indirectly indicated.
  • the system bandwidth includes ⁇ 1.4Mhz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz ⁇ , and includes 3-bit information in the master information block (MIB) for Indicating the size of the system bandwidth, and further, the size of the frequency domain in which the PDCCH is located may also be according to the 3-bit information is obtained.
  • MIB master information block
  • the indication is performed by the high layer signaling (for example, RRC signaling), and the high layer signaling indicates the subframe where the EPDCCH is located and the frequency domain location of the PRB occupied by the EPDCCH; wherein the location of the PRB may be consecutively A frequency domain resource is occupied, and a plurality of non-contiguous PBR resource blocks in the frequency domain may also be discretely occupied.
  • the high layer signaling for example, RRC signaling
  • the subframe in the time domain in which the EPDCCH is located is a standard pre-defined subframe (for example, a subframe of a non-multicast channel, or a non-special subframe within a certain radio frame ratio), and the number of OFDM symbols occupied by the EPDCCH in the time domain. It also needs to be adjusted according to the received indication information of the PCFICH channel, that is, orthogonal to the time-frequency resource where the PDCCH is located.
  • the time-frequency resource in which the control channel is located may adopt one of a plurality of subcarrier widths or Multiple, and subcarrier widths can be predefined or configurable.
  • the control channel is in the same time domain position, but the used subcarrier width changes, for example, from the previous 15KHz to 30KHz, the number of OFDM symbols included in the control channel region also increases;
  • the maximum number of OFDM symbols indicated by the PCFICH is smaller than the number of OFDM symbols currently available to the system, so that the terminal cannot identify the control channel frequency domain region except the indicated 3 OFDM symbols. Therefore, how the terminal determines the time-frequency resources occupied by the control channel becomes an urgent problem to be solved.
  • the embodiment of the present application provides a resource configuration method and device, so that a terminal can determine a time-frequency resource occupied by a control channel, thereby improving resource utilization.
  • an embodiment of the present application provides a resource configuration method, including:
  • the terminal receives indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and the different sub The carrier width corresponds to a different maximum number of symbols;
  • the terminal may determine the subcarrier width used by the first control channel, thereby determining the number according to the maximum number of symbols corresponding to the subcarrier width used by the first control channel.
  • the number of symbols occupied by a control channel is determined to determine the time-frequency resources occupied by the first control channel, so that the terminal can quickly determine the information carried in the first control channel, so that the terminal can quickly access the network and improve resource utilization.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width;
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of the symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region where the first control channel is located, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the determining, by the terminal, the number of the symbols occupied by the first control channel includes:
  • the terminal determines the maximum number of symbols included in the time domain resource region as the number of symbols occupied by the first control channel.
  • the terminal directly determines the maximum number of symbols included in the time domain resource region as the number of symbols occupied by the first control channel, so as to quickly determine the time-frequency resource occupied by the first control channel.
  • the indication information is further used to indicate the number of symbols occupied by the first control channel.
  • the indication information is in the same time slot as the first control channel.
  • the determining, by the terminal, the number of symbols occupied by the first control channel includes:
  • the terminal is determined on the Mth time slot after receiving the time slot of the indication information. And determining a number of symbols occupied by the first control channel on the Mth time slot, where M is a positive integer greater than or equal to 1.
  • the subcarrier width and/or the number of occupied symbols used by the first control channel transmitted in the Mth time slot are indicated by the indication information sent in the time slot before the Mth time slot, thereby being more flexible.
  • the subcarrier width and/or the number of occupied symbols used by the first control channel resource transmitted in the Mth configuration are configured.
  • the terminal determines, according to the indication information, a number of symbols occupied by the first control channel, including:
  • the sub-carrier width and/or the number of occupied symbols used by the first control channel transmitted in each of the consecutive N time slots by the above method, and the indication information sent by the time slots before the N time slots The indication, so that the subcarrier width and/or the number of occupied symbols used by the first control channel resource transmitted in each of the N time slots can be more flexibly configured.
  • the N is a preset value, or the N is determined by the terminal according to the received high layer signaling configuration.
  • the terminal after determining, according to the indication information, the number of symbols occupied by the first control channel, the terminal further includes:
  • the terminal acquires control information on the first control channel, where the control information is used to indicate a subcarrier width used by the second control channel;
  • the terminal determines, according to the control information, a number of symbols occupied by the second control channel.
  • control information further indicates a time domain resource area occupied by the second control channel
  • Determining, by the terminal, the number of symbols occupied by the second control channel according to the control information including:
  • the terminal after determining, according to the indication information, the number of symbols occupied by the first control channel, the terminal further includes:
  • the terminal acquires control information on the first control channel, where the control information is used to indicate subcarrier width information used by a data channel where the second control channel is located;
  • the embodiment of the present application provides a resource configuration apparatus, including:
  • a transceiver unit configured to receive indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and is different The subcarrier width corresponds to a different maximum number of symbols;
  • a processing unit configured to determine, according to the indication information, a number of symbols occupied by the first control channel, where The number of symbols occupied by a control channel is less than or equal to the maximum number of symbols.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width;
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of the symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region where the first control channel is located, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • processing unit is specifically configured to:
  • the maximum number of symbols included in the time domain resource region is determined as the number of symbols occupied by the first control channel.
  • the indication information is further used to indicate the number of symbols occupied by the first control channel.
  • the indication information is in the same time slot as the first control channel.
  • the indication information may be physical layer broadcast signaling, for example, PCFICH signaling, and the physical layer broadcast signaling is used to indicate the number of symbols used by the control channel in the current time slot.
  • processing unit is specifically configured to:
  • processing unit is specifically configured to:
  • Determining, according to the indication information, the first control on each of the N time slots on consecutive N time slots starting from a P time slot after receiving the time slot of the indication information The number of symbols occupied by the channel, where P and N are positive integers greater than one.
  • the N is a preset value, or the N is determined by the apparatus according to the received high layer signaling configuration.
  • the transceiver unit is further configured to:
  • control information on the first control channel where the control information is used to indicate a subcarrier width used by the second control channel;
  • the processing unit is further configured to determine, according to the control information, a number of symbols occupied by the second control channel.
  • control information further indicates a time domain resource area occupied by the second control channel
  • the processing unit is specifically configured to:
  • the maximum number of symbols included in the time domain resource region occupied by the second control channel is determined as the number of symbols occupied by the second control channel.
  • the transceiver unit is further configured to:
  • control information on the first control channel where the control information is used to indicate subcarrier width information used by a data channel where the second control channel is located;
  • the processing unit is further configured to determine, according to a subcarrier width used by the data channel, a subcarrier width used by the second control channel; and determine, according to a subcarrier width used by the second control channel, The number of symbols occupied by the second control channel.
  • an embodiment of the present application provides a terminal, including:
  • a transceiver configured to receive indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and is different The subcarrier width corresponds to a different maximum number of symbols;
  • a processor configured to determine, according to the indication information, a number of symbols occupied by the first control channel, where the number of symbols occupied by the first control channel is less than or equal to the maximum number of symbols.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width;
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of the symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region where the first control channel is located, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the processor is specifically configured to:
  • the maximum number of symbols included in the time domain resource region is determined as the number of symbols occupied by the first control channel.
  • the indication information is further used to indicate the number of symbols occupied by the first control channel.
  • the indication information is in the same time slot as the first control channel.
  • the processor is specifically configured to:
  • the "Mth time slot after receiving the indication information" described herein does not include the time slot in which the indication information is received, and the number of symbols used by the first control channel in the Mth time slot may be changes happened.
  • the indication information may be downlink control indication information, and the downlink control indication information further includes indication information for indicating an M size.
  • the processor is specifically configured to:
  • Determining, according to the indication information, the first control on each of the N time slots on consecutive N time slots starting from a P time slot after receiving the time slot of the indication information The number of symbols occupied by the channel, where P and N are positive integers greater than one.
  • the "Pth time slot after receiving the indication information" described herein does not include a time slot for receiving the indication information, and the first control channel is consecutive N times starting from the Pth time slot.
  • the number of symbols used on the gap may change.
  • the indication information may be high layer signaling, for example, radio resource control RRC signaling, and the high layer signaling corresponds to a predefined P value.
  • the indication information may be downlink control indication information, where the indication information indicating the P and N sizes is included in the downlink control indication information.
  • the N is a preset value, or the N is determined by the apparatus according to the received high layer signaling configuration.
  • the transceiver is further configured to:
  • control information on the first control channel where the control information is used to indicate a subcarrier width used by the second control channel;
  • the processor is further configured to determine, according to the control information, a number of symbols occupied by the second control channel.
  • control information further indicates a time domain resource area occupied by the second control channel
  • the processor is specifically configured to:
  • the maximum number of symbols included in the time domain resource region occupied by the second control channel is determined as the number of symbols occupied by the second control channel.
  • the transceiver is further configured to:
  • control information on the first control channel where the control information is used to indicate subcarrier width information used by a data channel where the second control channel is located;
  • the processor is further configured to determine, according to a subcarrier width used by the data channel, a subcarrier width used by the second control channel; and determine, according to a subcarrier width used by the second control channel, The number of symbols occupied by the second control channel.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the resource configuration apparatus provided in the second aspect or the third aspect, which is configured to perform the foregoing first aspect. program of.
  • the embodiment of the present application provides a resource configuration method, including:
  • the access network device generates indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and different The subcarrier width corresponds to a different maximum number of symbols;
  • the access network device sends the indication information to the terminal.
  • the access network device indicates, by using the indication information, the subcarrier width used by the first control channel, so that the terminal can determine the subcarrier width used by the first control channel according to the subcarrier width used by the first control channel.
  • the corresponding maximum number of symbols enables the terminal to determine the time-frequency resource occupied by the first control channel, so that the terminal can quickly determine the information carried in the first control channel, so that the terminal can quickly access the network and improve resource utilization.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of symbols occupied by the first control channel is less than or equal to the time of the first control channel
  • the maximum number of symbols included in the domain resource region, where the time domain resource region is predefined, or the time domain resource region is indicated by system information, high layer signaling, or initial access information.
  • the indication information indicates a number of symbols occupied by the first control channel transmitted on a time slot in which the indication information is sent.
  • the indication information indicates the number of symbols occupied by the first control channel transmitted on the Mth time slot after the time slot in which the indication information is sent, where M is greater than or equal to 1. Integer.
  • the indication information indicates the number of symbols used by the first control channel in each of the consecutive N time slots starting from the Pth time slot after the time slot in which the indication information is sent.
  • P and N are positive integers greater than one.
  • the indication information is located in a first time slot of a subframe that sends the indication information
  • the indication information indicates that the time-frequency resource of the first control channel is transmitted on each time slot included in the subframe.
  • the method further includes:
  • the access network device sends control information by transmitting a time-frequency resource of the first control channel
  • the control information is used to indicate a subcarrier width used by the second control channel, or the control information is used to indicate subcarrier width information of a data channel where the second control channel is located.
  • control information further indicates a time domain resource area occupied by the second control channel.
  • the sending network device sends the indication information to the terminal, including:
  • the access network device sends the indication information to the terminal by using high layer signaling, for example, radio resource control RRC signaling; or
  • the access network device sends the indication information to the terminal by using downlink control information, for example, DCI; or
  • the access network device broadcasts signaling through the physical layer, for example, the physical control format indication channel PCFICH sends the indication information to the terminal.
  • the physical control format indication channel PCFICH sends the indication information to the terminal.
  • the embodiment of the present application provides a resource configuration apparatus, including:
  • a processing unit configured to generate indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and is different The subcarrier width corresponds to a different maximum number of symbols;
  • a transceiver unit configured to send the indication information to the terminal.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region of the first control channel, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the indication information indicates a number of symbols occupied by the first control channel transmitted on a time slot in which the indication information is sent.
  • the indication information is transmitted on the Mth time slot after the time slot in which the indication information is sent.
  • M is a positive integer greater than or equal to 1.
  • the indication information indicates the number of symbols used by the first control channel in each of the consecutive N time slots starting from the Pth time slot after the time slot in which the indication information is sent.
  • P and N are positive integers greater than one.
  • the indication information is located in a first time slot of a subframe that sends the indication information
  • the indication information indicates that the time-frequency resource of the first control channel is transmitted on each time slot included in the subframe.
  • the transceiver unit is further configured to:
  • the control information is used to indicate a subcarrier width used by the second control channel, or the control information is used to indicate subcarrier width information of a data channel where the second control channel is located.
  • control information further indicates a time domain resource area occupied by the second control channel.
  • the embodiment of the present application provides an access network device, including:
  • a processor configured to generate indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and is different The subcarrier width corresponds to a different maximum number of symbols;
  • a transceiver configured to send the indication information to the terminal.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region of the first control channel, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the indication information indicates a number of symbols occupied by the first control channel transmitted on a time slot in which the indication information is sent.
  • the indication information indicates the number of symbols occupied by the first control channel transmitted on the Mth time slot after the time slot in which the indication information is sent, where M is greater than or equal to 1. Integer.
  • the indication information indicates the number of symbols used by the first control channel in each of the consecutive N time slots starting from the Pth time slot after the time slot in which the indication information is sent.
  • P and N are positive integers greater than one.
  • the indication information is located in a first time slot of a subframe that sends the indication information
  • the indication information indicates that the time-frequency resource of the first control channel is transmitted on each time slot included in the subframe.
  • the transceiver is further configured to:
  • the control information is used to indicate a subcarrier width used by the second control channel, or the control information is used to indicate subcarrier width information of a data channel where the second control channel is located.
  • control information further indicates a time domain resource area occupied by the second control channel.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the resource configuration apparatus provided in the sixth aspect or the seventh aspect, which is configured to perform the foregoing fifth aspect. program of.
  • FIG. 1 is a schematic flowchart of a resource configuration method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of resource indication according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of resource indication according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource indication according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of resource indication according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of resource indication according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • Code Division Multiple Access WCDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • eLTE evolved Long Term Evolution
  • a terminal also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • the access network device may be a common base station (such as a NodeB or an eNB), may be a new radio controller (NR controller), may be a gNB in a 5G system, or may be a centralized network element (
  • the centralized unit which may be a new radio base station, may be a radio remote unit, may be a micro base station, may be a relay, may be a distributed network unit, or may be a reception point (Transmission Reception Point, TRP) or Transmission Point (TP) or any other wireless access device, but embodiments of the present application are not limited thereto.
  • symbols including but not limited to Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, filtered orthogonal frequency division multiplexing (Filtered) Orthogonal Frequency Division Multiplexing, F-OFDM) symbol, non-positive
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • F-OFDM filtered orthogonal frequency division multiplexing
  • NOMA non-Orthogonal Multiple Access
  • Subframe A time-frequency resource that occupies the entire system bandwidth in the frequency domain and takes a fixed length of time in the time domain, for example, 1 millisecond (ms). At the same time, one subframe can also occupy consecutive K symbols, and K is a natural number greater than zero. The value of K can be determined according to actual conditions, and is not limited herein. For example, in LTE, 1 subframe occupies consecutive 14 OFDM symbols in the time domain.
  • Time slot refers to a basic time-frequency resource unit, which occupies consecutive L OFDM symbols in the time domain, and L is a natural number greater than zero.
  • the value of L can be determined according to actual conditions, for example, 7 OFDM symbols.
  • Physical Resource Block A unit of time-frequency resources, occupying 1 subframe or 1 time slot in the time domain, occupying consecutive M subcarriers in the frequency domain, and M is greater than A natural number of zero.
  • PRB Physical Resource Block
  • Subcarrier width The smallest granularity in the frequency domain. For example, in LTE, the subcarrier width of one subcarrier is 15 kHz.
  • FIG. 1 a schematic flowchart of a resource configuration method according to an embodiment of the present application is provided.
  • the method includes:
  • Step 101 The access network device generates indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width. And different subcarrier widths correspond to different maximum symbol numbers.
  • the subcarrier width used by the first control channel is the subcarrier width used to transmit the first control channel.
  • the subcarrier width of the first control channel is increased, the duration of each symbol occupied by the first control channel is shortened, but the total amount of time-frequency resources occupied by the first control channel remains unchanged.
  • the symbol occupied by the first control channel sent on the time slot is a continuous plurality of symbols from the start symbol (including the start symbol) in the time slot. For example, if the first control channel transmitted in slot n occupies 3 symbols, the symbol occupied by the first control channel is the first 3 symbols in slot n.
  • the first control channel includes, but is not limited to, a channel such as a PDCCH and an EPDCCH.
  • the maximum number of symbols occupied by the first control channel is the maximum number of symbols that can be used in the time-frequency resource where the first control channel is located.
  • the duration of each symbol occupied by the first control channel is shortened when the subcarrier width of the first control channel is increased, and the maximum symbol is fixed if the maximum time occupied by the first control channel in the time domain is fixed.
  • the number increases as the subcarrier width used by the first control channel increases.
  • the time-frequency resources in each time slot generally include a control area and a data area, the control area is used to transmit control information, and the data area is used to transmit data.
  • the time-frequency resource where the first control channel is located may be the time-frequency resource included in the control area of the time slot in which the first control channel is located.
  • Step 102 The access network device sends the indication information to the terminal.
  • the access network device may send the indication information in a plurality of manners.
  • the access network device sends the indication information to the terminal by using high layer signaling, for example, the high layer signaling. It includes a Master Information Block (MIB), a System Information Block (SIB), or Radio Resource Control (RRC) signaling, or other high-level signaling with similar features.
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • the access network device sends the indication information to the terminal by using Downlink Control Information (DCI), for example, sending the indication information in a common search space of the downlink control channel.
  • DCI Downlink Control Information
  • the time-frequency resource of the downlink control channel includes at least a start OFDM symbol of a time slot or a subframe An OFDM symbol; the search space is a partial time-frequency resource within the downlink control channel time-frequency resource; and the control information in the common search space may be received by one or all terminals in the cell.
  • the access network device sends the indication information to the terminal by using physical layer broadcast control signaling, for example, similar to broadcast signaling carried in a PCFICH channel in LTE; or
  • the time-frequency resource occupied by the physical layer broadcast control signaling includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe, and the physical layer broadcast control signaling may be detected by one or all terminals in the cell. receive.
  • the access network device can also send the indication information in other manners, and is not illustrated here one by one.
  • Step 103 The terminal receives indication information, where the indication information is used to indicate a subcarrier width used by the first control channel.
  • Step 104 The terminal determines, according to the indication information, a number of symbols occupied by the first control channel, where the number of symbols occupied by the first control channel is less than or equal to the maximum number of symbols.
  • the maximum number of symbols that the first control channel can occupy is four, and the number of symbols actually used by the first control channel can be two, and the number of symbols used by the first control channel is less than the maximum number of symbols.
  • the time domain resource region where the first control channel is located may be predefined between the access network device and the terminal, or may be forwarded by the access network device through system information, high layer signaling, or initial access information to the terminal.
  • the system information may be the most basic system information used for initial access, for example, a Master Information Block (MIB) in LTE, or called a Basic System Information Block in a next generation system (Essential System Information) Block, eSIB), System Information Block (SIB), etc.; initial access information may include Random Access Response (RAR), Message4, etc.
  • Message4 may refer to LTE, and the access network device sends The RRC setup or reestablishment command is given to the terminal.
  • the access network device may indicate, by using the RAR, the time domain resource region where the first control channel is located, where the RAR includes at least the Timing Advance (TA) indication information.
  • TA Timing Advance
  • the access network device can also indicate to the terminal the time domain resource region where the first control channel is located through the message 4.
  • the message 4 can refer to the RRC establishment or reestablishment command sent by the access network device to the terminal in the LTE.
  • At least the terminal identification indication information is included in Message 4.
  • the area of the time-frequency resource occupied by the first control channel remains unchanged, that is, the product of the duration of the time-frequency resource occupied by the first control channel in the time domain and the bandwidth width in the frequency domain remain unchanged.
  • the unit of the time domain resource is the number of OFDM symbols, and the unit of the bandwidth width is kHZ.
  • the subcarrier width may include the first subcarrier width and the second subcarrier width
  • the maximum number of symbols occupied by the first control channel may include the first maximum symbol number and the second maximum symbol number, a ratio of a maximum number of symbols to the second maximum number of symbols, equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second subcarrier width different.
  • the first maximum symbol number corresponds to the first subcarrier width
  • the second maximum symbol number corresponds to the second subcarrier width.
  • FIG. 2 to (c) of FIG. 2 a schematic diagram of a time-frequency resource provided by an embodiment of the present application.
  • the time-frequency resource size occupied by the first control channel is fixed, when the sub-carrier width used by the first control channel is different, the first control channel is The number of symbols occupied is also different.
  • the subcarrier width used by the first control channel is 15 kHz, occupying 1 symbol, and it is assumed that the 1 symbol is the first maximum symbol number, and 15 kHZ is the first subcarrier. Width; as shown in (b) of FIG. 2, the subcarrier width used by the first control channel is 30 kHz, occupying 2 symbols, assuming that the two symbols are the second largest symbol number, and 30 kHz is the second subcarrier width. .
  • the first maximum number of symbols and the second most The ratio of the large symbol number is 1/2, and the ratio of the first subcarrier width to the second subcarrier width is also 1/2.
  • the subcarrier used by the first control channel has a width of 60 kHz and occupies 4 symbols.
  • the subcarrier width in (c) of FIG. 2 is set to the first or second subcarrier width, and the number of symbols is set to the first or second maximum symbol number, compared with (a) in FIG. 2 .
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to the ratio of the first subcarrier width to the second subcarrier width.
  • the terminal determines the sub-use used by each time-frequency resource.
  • the maximum number of symbols mapped to the subcarrier width used by each time-frequency resource can be determined to determine the maximum number of symbols included in each time-frequency resource.
  • the access network device may use all resources in the time domain resource region where the first control channel is located to send the first control channel.
  • the terminal may first determine a subcarrier width used by the first control channel according to the indication information, and then determine a maximum number of symbols included in the time domain resource region according to the subcarrier width; And determining, by the terminal, the maximum number of symbols included in the time domain resource region as the number of symbols occupied by the first control channel.
  • the access network device may also use not all the resources in the time domain resource region where the first control channel is located to send the first control channel, so the number of symbols occupied by the first control channel is less than or equal to the foregoing.
  • the specific number of symbols occupied by the first control channel needs to be determined according to actual conditions. For example, the time domain resource region where the first control channel is located contains a maximum of four consecutive symbols, but the access network device only uses the first two symbols to send the first control channel, and the latter two symbols are used to transmit other data.
  • the indication information sent by the access network device may also be used to indicate the number of symbols occupied by the first control channel. It should be noted that, in this implementation manner, the indication information may be sent in the same time slot as the first control channel, or may be sent in different time slots.
  • the terminal may directly determine the number of symbols occupied by the first control channel according to the indication information.
  • the indication information Since the time-frequency resource region where the first control channel is located has been predefined between the access network device and the terminal, or the access network device notifies the terminal through high-layer signaling or initial access information high-level signaling, the indication information The number of symbols occupied by the indicated first control channel does not exceed the maximum number of symbols included in the time-frequency resource region where the first control channel is located. Therefore, signaling for transmitting the indication information is saved, thereby saving resources.
  • the indication information indicates both the subcarrier width used by the first control channel and the number of symbols occupied by the first control channel.
  • the indication information includes K bits, and when the K bits included in the indication information take different values, corresponding to different subcarrier widths and symbol numbers.
  • the correspondence between the indication information and the subcarrier width and the actual number of symbols can be as shown in Table 1.
  • the indication information may not only indicate the subcarrier width used by the first control channel and the number of symbols occupied by the first control channel that are sent in the same time slot as the indication information, and the indication information may also indicate The subcarrier width used by the first control channel and the number of symbols occupied by the first control channel, which are sent in different time slots with the indication information, are described in detail below according to different scenarios.
  • the indication information sent by the access network device may indicate a subcarrier width used by the first control channel transmitted on the Mth time slot after the time slot in which the indication information is sent, and a transmission on the Mth time slot. At least one of the number of symbols occupied by the first control channel, wherein M is a positive integer greater than or equal to one.
  • the number of symbols used in the first control channel on the n+Mth subframe is the number of symbols indicated by the indication information in the subframe n.
  • step 104 after receiving the indication information, the terminal determines, on the Mth time slot after the time slot in which the indication information is sent, the first time on the Mth time slot according to the indication information. At least one of a subcarrier width used by a control channel and a number of symbols occupied.
  • the “Mth time slot after receiving the indication information” described herein does not include the time slot for receiving the indication information, and the Mth time slot and the terminal receive the indication information.
  • the time slots are separated by M-1 time slots, and the number of symbols used by the first control channel in the Mth time slot may change.
  • the indication information may be downlink control indication information, and the downlink control indication information further includes indication information for indicating an M size.
  • M can also be a preset value, or M can be configured by the access network device by high layer signaling. When the M is configured by the access network device through high layer signaling, the terminal determines the value of M according to the received high layer signaling configuration.
  • FIG. 3 it is a schematic diagram of resource indication provided by an embodiment of the present application.
  • the subcarrier width used by the first control channel transmitted in the same time slot as the indication information is 60 kHz, the number of occupied symbols is 4; in the Mth time slot after the time slot in which the indication information is transmitted
  • the subcarrier used in the first channel has a width of 30 kHz and the number of occupied symbols is one.
  • the above information can be indicated by the indication information.
  • the indication information may be located in the DCI.
  • the subcarrier width and/or the number of occupied symbols used by the first control channel sent in one slot are indicated by the indication information sent in the slot before the slot, so that the configuration can be more flexibly configured.
  • the indication information sent by the access network device may indicate the subcarrier used by the first control channel transmitted in each time slot of the consecutive N time slots starting from the P time slot after the time slot in which the indication information is sent.
  • step 104 the terminal determines, among the N time slots, according to the indication information, on consecutive N time slots starting from the Pth time slot after receiving the time slot of the indication information.
  • the “Pth time slot after receiving the indication information” described herein does not include a time slot for receiving the indication information, and the Pth time slot and the terminal receive the indication information.
  • the time slots are separated by P-1
  • the number of symbols used by the first control channel on consecutive N time slots starting from the Pth time slot may change.
  • the Pth time slot is included in the N time slots.
  • P and/or N may be preset values; the P and/or N may also be configured by the access network device by higher layer signaling.
  • the terminal determines the value of P and/or N according to the received high layer signaling configuration.
  • the indication information is in the time slot n, and after receiving the indication information, the number of symbols occupied by the first control channel on the time slot n+P can be indicated by the indication information carried on the time slot n; The number of symbols used by the first control channel in each slot from the slot n+P to the slot N+P+N-1 is carried by the slot n. Indicated by the indication information.
  • the indication information is located in slot 0, and the consecutive N slots starting from the Pth slot after slot 0 are slot 1 to slot 4, respectively.
  • the indication information in slot 0 indicates the subcarrier width and/or the number of symbols used by the first control channel of each slot in slot 1 to slot 4.
  • the indication information may also indicate a subcarrier width and/or a number of symbols used by the first control channel in the same time slot as the indication information.
  • the sub-carrier width used by the first control channel in slot 0 is 15 kHz, and the number of occupied symbols is 1.
  • the sub-carrier width used by the first control channel of each slot in slot 1 to slot 4 is 30KHz, 15KHz, 30KHz, 60KHz; the number of symbols occupied by the first control channel of each slot in slot 1 to slot 4 is 2, 1, 2, and 4, respectively.
  • the time slot in which the indication information is sent may be the first time slot in the subframe.
  • one radio frame is composed of 10 subframes, which are subframe 0 to subframe 9, respectively.
  • Subframe 0 includes slot 0 to slot 4.
  • the subcarrier width used by the first control channel in each slot in subframe 0 and/or the number of symbols occupied may be indicated by the indication information in slot 0.
  • the sub-carrier width used by the first control channel of each slot in the slot 0 to the slot 4 is 15 kHz, 30 kHz, 15 kHz, 30 kHz, 60 kHz, and the time slot 0 to slot 4
  • the number of symbols occupied by a control channel is 1, 2, 1, 2, and 4, respectively.
  • a second control channel that is transmitted along the data channel in the data area is also included.
  • the access network device may send the control information by using the first control channel, so that the subcarrier width used by the second control channel is indicated by the control information.
  • the time-frequency resource in the second control channel is in the data channel area, and the data channel area is a time domain resource other than the time domain resource occupied by the first control channel of the time slot, as shown in FIG. 6 .
  • the time domain resource occupied by the second control channel may be any OFDM symbol in the data region.
  • the data area in slot 0 and slot 1 is the area of the time domain resource occupied by the data channel.
  • the second control channel occupies 2 symbols of the data region in the slot, and the used subcarrier width is 30 KHz; in slot 1, the second control channel occupies data in the slot.
  • the 4 symbols of the area, and the subcarrier width used is 60KHz.
  • the time domain resource occupied by the second control channel in slot 0 and the time domain resource occupied by the second control channel in slot 1 can all be indicated by the first control channel in slot 0.
  • control information is used to indicate a subcarrier width used by the second control channel.
  • the terminal may determine the subcarrier width used by the second control channel, so that the second may be determined according to the subcarrier width used by the second control channel.
  • the number of symbols occupied by the control channel may be determined according to the subcarrier width used by the second control channel.
  • the control information of the first control channel may be used to indicate a subcarrier width of a second control channel located on a same time slot as the first control channel, and may also be used to indicate a time slot located after the time slot in which the first control channel is located. Second The subcarrier width of the control channel.
  • the terminal may first determine a subcarrier width used by the second control channel according to the control information, and then determine a time domain resource region occupied by the second control channel according to a subcarrier width used by the second control channel.
  • the maximum number of symbols included; finally, the maximum number of symbols included in the time domain resource region occupied by the second control channel by the terminal is determined as the number of symbols occupied by the second control channel.
  • control information is used to indicate a subcarrier width used by a data channel in which the second control channel is located.
  • the subcarrier width used by the second control channel is the same as the subcarrier width used by the data channel in which the second control channel is located.
  • the terminal may first determine the subcarrier width used by the second control channel according to the subcarrier width used by the data channel, that is, the used by the data channel.
  • the subcarrier width is used as a subcarrier width used by the second control channel; then, the terminal determines, according to the subcarrier width used by the second control channel, a maximum symbol included in the time domain resource region occupied by the second control channel Finally, the terminal determines the maximum number of symbols included in the time domain resource region occupied by the second control channel as the number of symbols occupied by the second control channel.
  • the embodiment of the present application further provides a resource configuration apparatus, which can execute the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of a resource configuration apparatus according to an embodiment of the present application.
  • the device includes:
  • the transceiver unit 701 is configured to receive indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and Different of the subcarrier widths correspond to different maximum number of symbols.
  • the subcarrier width used by the first control channel is the subcarrier width used for transmitting the first control channel.
  • the subcarrier width of the first control channel is increased, the duration of each symbol occupied by the first control channel is shortened, but the total amount of time-frequency resources occupied by the first control channel remains unchanged.
  • the maximum number of symbols occupied by the first control channel is the maximum number of symbols that can be used in the time-frequency resource where the first control channel is located.
  • the processing unit 702 is configured to determine, according to the indication information, a number of symbols occupied by the first control channel, where the number of symbols occupied by the first control channel is less than or equal to the maximum number of symbols.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width;
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of the symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region where the first control channel is located, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the access network device may use part of the resources in the time domain resource region where the first control channel is located to send the first control. Therefore, the number of symbols occupied by the first control channel is less than or equal to the maximum number of symbols included in the time domain resource region where the first control channel is located. For details, refer to the description in step 102, and details are not described herein. .
  • the system information may be the most basic system information used for initial access, for example, a primary information block in LTE, or a basic system information block, a system information block, etc. in a next generation system; initial access information may be Including the random access response, the message 4, and the like, the message 4 may be an RRC establishment or reestablishment command sent by the access network device to the terminal in the LTE.
  • the high-level signaling may include a primary information block, a system information block, or RRC signaling, or other high-level signaling with similar features.
  • RRC signaling or other high-level signaling with similar features.
  • processing unit 702 is specifically configured to:
  • the maximum number of symbols included in the time domain resource region is determined as the number of symbols occupied by the first control channel.
  • the access network device may use all resources in the time domain resource region where the first control channel is located to send the first control channel, so the number of symbols occupied by the first control channel is equal to the time domain resource where the first control channel is located.
  • the number of symbols occupied by the first control channel is equal to the time domain resource where the first control channel is located.
  • the indication information is further used to indicate the number of symbols occupied by the first control channel.
  • the indication information is in the same time slot as the first control channel.
  • the indication information may be physical layer broadcast signaling, for example, PCFICH signaling, where the physical layer broadcast signaling is used to indicate the number of symbols used by the control channel in the current time slot.
  • the indication information includes K bits, and when the K bits included in the indication information take different values, corresponding to different subcarrier widths and symbol numbers.
  • step 103 For other contents of the indication information, reference may be made to the descriptions in step 103 and step 104, and details are not described herein again.
  • processing unit 702 is specifically configured to:
  • the “Mth time slot after receiving the indication information” described herein does not include the time slot for receiving the indication information, and the Mth time slot and the terminal receive the indication information.
  • the slots are separated by M-1 slots.
  • processing unit 702 is specifically configured to:
  • Determining, according to the indication information, the first control on each of the N time slots on consecutive N time slots starting from a P time slot after receiving the time slot of the indication information The number of symbols occupied by the channel, where P and N are positive integers greater than one.
  • the “Pth time slot after receiving the indication information” described herein does not include a time slot for receiving the indication information, and the Pth time slot and the terminal receive the indication information. There are P-1 time slots between time slots.
  • the N is a preset value, or the N is determined by the apparatus according to the received high layer signaling configuration.
  • the transceiver unit 701 is further configured to:
  • control information on the first control channel where the control information is used to indicate a subcarrier width used by the second control channel;
  • the processing unit 702 is further configured to determine, according to the control information, a number of symbols occupied by the second control channel.
  • step 104 For the other content of the control information, refer to the description in step 104, and details are not described herein again.
  • control information further indicates a time domain resource area occupied by the second control channel
  • the processing unit 702 is specifically configured to:
  • the maximum number of symbols included in the time domain resource region occupied by the second control channel is determined as the number of symbols occupied by the second control channel.
  • the transceiver unit 701 is further configured to:
  • control information on the first control channel where the control information is used to indicate subcarrier width information used by a data channel where the second control channel is located;
  • the processing unit 702 is further configured to determine, according to a subcarrier width used by the data channel, a subcarrier width used by the second control channel; and determine, according to a subcarrier width used by the second control channel, The number of symbols occupied by the second control channel.
  • the transceiver unit 701 can be implemented by a transceiver
  • the processing unit 702 can be implemented by a processor.
  • terminal 800 can include a processor 801, a transceiver 802, and a memory 803.
  • the memory 803 can be used to store the program/code pre-installed when the terminal 800 is shipped from the factory, or to store the code and the like for the execution of the processor 801.
  • the terminal 800 according to the embodiment of the present application may correspond to the terminal in the resource configuration method according to the embodiment of the present application and the terminal 800 of the embodiment of the present application, and the foregoing and other operations of each unit in the terminal 800 and/or The functions are respectively implemented in order to implement the corresponding processes of the method shown in FIG. 1. For brevity, details are not described herein again.
  • the embodiment of the present application further provides a resource configuration apparatus, which can execute the foregoing method embodiments.
  • FIG. 9 a schematic structural diagram of a resource configuration apparatus is provided in this embodiment of the present application.
  • the device includes:
  • the processing unit 901 is configured to generate indication information, where the indication information is used to indicate a subcarrier width used by the first control channel, where a maximum number of symbols occupied by the first control channel is determined by the subcarrier width, and Different of the subcarrier widths correspond to different maximum number of symbols.
  • the subcarrier width used by the first control channel is the subcarrier width used for transmitting the first control channel.
  • the subcarrier width of the first control channel is increased, the duration of each symbol occupied by the first control channel is shortened, but the total amount of time-frequency resources occupied by the first control channel remains unchanged.
  • the maximum number of symbols occupied by the first control channel is the maximum number of symbols that can be used in the time-frequency resource where the first control channel is located.
  • the transceiver unit 902 is configured to send the indication information to the terminal.
  • the transceiver unit 902 can send the indication information in a plurality of manners.
  • the transceiver unit 902 can send the indication information to the terminal by using the high layer signaling.
  • the transceiver unit The 902 may send the indication information to the terminal by using the DCI.
  • the transceiver unit 902 may send the indication information to the terminal by using physical layer broadcast control signaling.
  • the subcarrier width includes a first subcarrier width and a second subcarrier width
  • the maximum number of symbols occupied by the first control channel includes a first maximum symbol number and a second maximum symbol number, where The first maximum symbol number corresponds to the first subcarrier width, and the second maximum symbol number corresponds to the second subcarrier width.
  • the different subcarrier widths correspond to different maximum symbol numbers, including:
  • the ratio of the first maximum symbol number to the second maximum symbol number is equal to a ratio of the first subcarrier width to the second subcarrier width, and the first subcarrier width and the second The subcarrier width is different.
  • the number of symbols occupied by the first control channel is less than or equal to a maximum number of symbols included in a time domain resource region of the first control channel, where the time domain resource region is predefined.
  • the time domain resource area is indicated by system information, high layer signaling, or initial access information.
  • the device may use part of the resources in the time domain resource region where the first control channel is located to send the first control channel, so the number of symbols occupied by the first control channel is less than or equal to the time domain of the first control channel.
  • the maximum number of symbols included in the resource area refer to the description in step 102, and details are not described herein.
  • the system information may be the most basic system information used for initial access, for example, a primary information block in LTE, or a basic system information block, a system information block, etc. in a next generation system; initial access information may be Including the random access response, the message 4, and the like, the message 4 may be an RRC establishment or reestablishment command sent by the access network device to the terminal in the LTE.
  • the indication information indicates a number of symbols occupied by the first control channel transmitted on a time slot in which the indication information is sent.
  • the indication information includes K bits, and when the K bits included in the indication information take different values, corresponding to different sub-carrier widths and symbol numbers.
  • the indication information indicates the number of symbols occupied by the first control channel transmitted on the Mth time slot after the time slot in which the indication information is sent, where M is greater than or equal to 1. Integer.
  • the indication information indicates the number of symbols used by the first control channel in each of the consecutive N time slots starting from the Pth time slot after the time slot in which the indication information is sent.
  • P and N are positive integers greater than one.
  • the indication information is located in a first time slot of a subframe that sends the indication information
  • the indication information indicates that the time-frequency resource of the first control channel is transmitted on each time slot included in the subframe.
  • the transceiver unit 902 is further configured to:
  • the control information is used to indicate a subcarrier width used by the second control channel, or the control information is used to indicate subcarrier width information of a data channel where the second control channel is located.
  • control information further indicates a time domain resource area occupied by the second control channel.
  • the transceiver unit 902 can be implemented by a transceiver
  • the processing unit 901 can be implemented by a processor.
  • the access network device 1000 can include a processor 1001, a transceiver 1002, and a memory 1003.
  • the memory 1003 may be used to store a program/code pre-installed when the access network device 1000 is shipped from the factory, or may store a code or the like for execution of the processor 1001.
  • the access network device 1000 may correspond to the access network device in the resource configuration method according to the embodiment of the present application and the access network device 1000 in the embodiment of the present application, and the access network device 1000
  • the above-mentioned and other operations and/or functions of the respective units in order to implement the corresponding processes of the method shown in FIG. 1 are omitted for brevity.
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory may include a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile memory).
  • read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, Abbreviation: SSD); the memory may also include a combination of the above types of memory.
  • bus interface which may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源配置方法及装置,包括:终端接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。

Description

一种资源配置方法及装置
本申请要求在2016年12月31日提交国家专利局、申请号为201611261986.3、发明名称为“一种资源配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法及装置。
背景技术
由第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)系统标准被认为是第四代无线接入系统标准。现有LTE系统中,控制信道包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)和增强下行物理控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)两类。在时域上,PDCCH所在时频资源区域位于一个子帧的前0-3个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,EPDCCH所在时频资源区域为一个子帧内占除PDCCH以外的全部下行OFDM符号;在频域上,PDCCH所在时频区域占用整个系统带宽,EPDCCH所在时频区域占用频域上至少一个物理资源块(Physical Resource Block,PRB)的频域宽度。
现有技术中PDCCH所在时频资源的大小,通过物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH)信道中承载的指示信息和PBCH信道中承载的系统广播信息进行指示,在PCFICH信道中承载的指示信息包括2比特,仅用于指示PDCCH所在时频资源区域占用时域OFDM符号数量的大小,一般为0-3个OFDM符号;而PDCCH所在时频资源的频域大小通过物理广播信道(Physical Broadcast Channel,PBCH)中承载的系统广播信息进行间接指示,因为标准中预定义PDCCH区域的频域大小与系统带宽大小相等,因此可以利用PBCH信道中的承载的指示系统带宽大小的指示信息对PDCCH所在区域的频域大小进行间接指示;其中系统带宽大小包括{1.4Mhz,3MHz,5MHz,10MHz,15MHz,20MHz},在主信息块(master information block,MIB)中包括3比特信息,用于指示系统带宽的大小,进而PDCCH所在频域的大小也可以根据所述3比特信息获得。
对于EPDCCH所在频域资源的大小,通过高层信令进行指示(例如RRC信令),高层信令指示EPDCCH所在的子帧以及EPDCCH所占用的PRB的频域位置;其中PRB的位置可以为连续地占用一段频域资源,也可以离散地占用频域上非连续的多个PBR资源块。EPDCCH所在时域的子帧为标准预定义的子帧(例如,非多播信道的子帧,或某些无线帧配比内的非特殊子帧),而EPDCCH在时域所占的OFDM符号数量也需要根据接收到的PCFICH信道的指示信息进行调整,即与PDCCH所在时频资源正交。
在下一代无线通信系统中,例如:在NR(New Radio)中,系统支持多种子载波宽度,例如:15kHz,30kHz,60kHz,120kHz,且任意两个子载波宽度的比值等于2n,其中n=-N,…-2,-1,1,2,…,N。进而,控制信道所在时频资源可采用多种子载波宽度中的一种或 多种,且子载波宽度可为预定义的或可配置的。此时,当控制信道所在时域位置不变,但所使用的子载波宽度变化,例如,从之前的15KHz变为了30KHz,则控制信道区域内所包含的OFDM符号数量也会增大;若采用PCFICH的方式,PCFICH所指示指示的最大OFDM符号数小于系统当前可使用的OFDM符号数量,导致终端无法识别除所指示的3个OFDM符号之外的控制信道频域区域。因此,终端如何确定控制信道所占用的时频资源成为亟待解决的问题。
发明内容
本申请实施例提供一种资源配置方法及装置,使得终端能够确定控制信道所占的时频资源,从而提高资源利用率。
第一方面,本申请实施例提供一种资源配置方法,包括:
终端接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
根据本申请实施例提供的方法,终端接收到指示信息之后,可以确定第一控制信道所使用的子载波宽度,从而根据第一控制信道所使用的子载波宽度所对应的最大符号数,确定第一控制信道所占用的符号数,从而确定第一控制信道所占的时频资源,使得终端能够快速确定第一控制信道中承载的信息,使得终端快速接入网络,提高资源利用率。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述终端确定所述第一控制信道所占用的所述符号数,包括:
所述终端根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
所述终端将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
通过上述方法,终端直接将时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数,从而实现快速确定第一控制信道所占的时频资源。
可选的,所述指示信息还用于指示所述第一控制信道占用的符号数。
可选的,所述指示信息与所述第一控制信道位于同一时隙。
可选的,所述终端确定所述第一控制信道所占用的符号数,包括:
所述终端在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确 定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
通过上述方法,第M个时隙中发送的第一控制信道使用的子载波宽度和/或占用的符号数,由第M个时隙之前的时隙中发送的指示信息指示,从而可以更加灵活的配置第M个中发送的第一控制信道资源使用的子载波宽度和/或占用的符号数。
可选的,所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,包括:
所述终端在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
通过上述方法,连续N个时隙中每个时隙中发送的第一控制信道使用的子载波宽度和/或占用的符号数,由所述N个时隙之前的时隙中发送的指示信息指示,从而可以更加灵活的配置所述N个时隙中每个时隙发送的第一控制信道资源使用的子载波宽度和/或占用的符号数。
可选的,所述N为预设值,或者,所述N由所述终端根据接收到的高层信令配置确定。
可选的,所述终端根据所述指示信息确定所述第一控制信道所占用的符号数之后,还包括:
所述终端在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
所述终端根据所述控制信息确定所述第二控制信道所占用的符号数。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
所述终端根据所述控制信息确定第二控制信道所占用的符号数,包括:
所述终端根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
所述终端将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
可选的,所述终端根据所述指示信息确定所述第一控制信道所占用的符号数之后,还包括:
所述终端在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
所述终端根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;
所述终端根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
第二方面,本申请实施例提供了一种资源配置装置,包括:
收发单元,用于接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
处理单元,用于根据所述指示信息确定所述第一控制信道所占用的符号数,所述第 一控制信道所占用的所述符号数小于或等于所述最大符号数。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述处理单元具体用于:
根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
可选的,所述指示信息还用于指示所述第一控制信道占用的符号数。
可选的,所述指示信息与所述第一控制信道位于同一时隙。
所述指示信息可以为物理层广播信令,例如,PCFICH信令,所述物理层广播信令用于指示当前时隙内控制信道所使用的符号数。
可选的,所述处理单元具体用于:
在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
可选的,所述处理单元具体用于:
在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
可选的,所述N为预设值,或者,所述N由所述装置根据接收到的高层信令配置确定。
可选的,所述收发单元还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
所述处理单元还用于,根据所述控制信息确定所述第二控制信道所占用的符号数。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
所述处理单元具体用于:
根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
可选的,所述收发单元还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
所述处理单元还用于,根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
第三方面,本申请实施例提供了一种终端,包括:
收发机,用于接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
处理器,用于根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述处理器具体用于:
根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
可选的,所述指示信息还用于指示所述第一控制信道占用的符号数。
可选的,所述指示信息与所述第一控制信道位于同一时隙。
可选的,所述处理器具体用于:
在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
这里所描述的“接收到指示信息之后的第M个时隙”,不包括接收所述指示信息的时隙,所述第一控制信道在所述第M个时隙中所使用的符号数可能发生改变。所述指示信息可以为下行控制指示信息,在所述下行控制指示信息中,还包括用于指示M大小的指示信息。
可选的,所述处理器具体用于:
在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
这里描述的“所述接收到指示信息之后第P个时隙”,不包括接收所述指示信息的时隙,所述第一控制信道在所述第P个时隙起始的连续N个时隙上所使用的符号数可能发生改变。
所述指示信息可以为高层信令,例如:无线资源控制RRC信令,所述高层信令对应一个预定义的P值。
可选的,所述指示信息可以为下行控制指示信息,在所述下行控制指示信息中包括用于指示P和N大小的指示信息。
可选的,所述N为预设值,或者,所述N由所述装置根据接收到的高层信令配置确定。
可选的,所述收发机还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
所述处理器还用于,根据所述控制信息确定所述第二控制信道所占用的符号数。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
所述处理器具体用于:
根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
可选的,所述收发机还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
所述处理器还用于,根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
第四方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第二方面或第三方面提供的资源配置装置所用的计算机软件指令,其包含用于执行上述第一方面所设计的程序。
第五方面,本申请实施例提供一种资源配置方法,包括:
接入网设备生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
所述接入网设备向终端发送所述指示信息。
通过上述方法,接入网设备通过指示信息指示第一控制信道所使用的子载波宽度,从而使得终端可以根据第一控制信道所使用的子载波宽度确定第一控制信道所使用的子载波宽度所对应的最大符号数,使得终端能够确定第一控制信道所占的时频资源,使得终端能够快速确定第一控制信道中承载的信息,使得终端快速接入网络,提高资源利用率。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度,
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时 域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述指示信息指示出发送所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
可选的,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
可选的,所述方法还包括:
所述接入网设备通过传输所述第一控制信道的时频资源发送控制信息;
所述控制信息用于指示第二控制信道所使用的子载波宽度,或者,所述控制信息用于指示第二控制信道所在的数据信道的子载波宽度信息。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域。
可选的,所述接入网设备向终端发送所述指示信息,包括:
所述接入网设备通过高层信令,例如,无线资源控制RRC信令,向终端发送所述指示信息;或者
所述接入网设备通过下行控制信息,例如,DCI,向终端发送所述指示信息;或者
所述接入网设备通过物理层广播信令,例如,物理控制格式指示信道PCFICH向终端发送所述指示信息。
第六方面,本申请实施例提供一种资源配置装置,包括:
处理单元,用于生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
收发单元,用于向终端发送所述指示信息。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度,
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述指示信息指示出发送所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的 所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
可选的,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
可选的,所述收发单元还用于:
通过传输所述第一控制信道的时频资源发送控制信息;
所述控制信息用于指示第二控制信道所使用的子载波宽度,或者,所述控制信息用于指示第二控制信道所在的数据信道的子载波宽度信息。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域。
第七方面,本申请实施例提供一种接入网设备,包括:
处理器,用于生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
收发机,用于向终端发送所述指示信息。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度,
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
可选的,所述指示信息指示出发送所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
可选的,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
可选的,所述收发机还用于:
通过传输所述第一控制信道的时频资源发送控制信息;
所述控制信息用于指示第二控制信道所使用的子载波宽度,或者,所述控制信息用于指示第二控制信道所在的数据信道的子载波宽度信息。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域。
第八方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第六方面或第七方面提供的资源配置装置所用的计算机软件指令,其包含用于执行上述第五方面所设计的程序。
附图说明
图1为本申请实施例提供的一种资源配置方法流程示意图;
图2为本申请实施例提供的一种资源指示示意图;
图3为本申请实施例提供的一种资源指示示意图;
图4为本申请实施例提供的一种资源指示示意图;
图5为本申请实施例提供的一种资源指示示意图;
图6为本申请实施例提供的一种资源指示示意图;
图7为本申请实施例提供的一种资源配置装置结构示意图;
图8为本申请实施例提供的一种终端结构示意图;
图9为本申请实施例提供的一种资源配置装置结构示意图;
图10为本申请实施例提供的一种接入网设备结构示意图。
具体实施方式
本申请实施例可以应用于各种移动通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、演进的长期演进(evolved Long Term Evolution,eLTE)系统、5G等其它移动通信系统。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、接入网设备,可以是普通的基站(如NodeB或eNB),可以是新无线控制器(New Radio controller,NR controller),可以是5G系统中的gNB,可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
3)、符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正 交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
4)、子帧:一个子帧在频域上占用整个系统带宽的时频资源、在时域上上占用固定的时间长度,例如1毫秒(ms)。同时一个子帧也可占用连续的K个符号,K为大于零的自然数。K的取值可以根据实际情况确定,在此并不限定。例如,LTE中,1个子帧在时域上占用连续的14个OFDM符号。
5)、时隙:时隙是指一个基本的时频资源单元,在时域上占用连续的L个OFDM符号,L为大于零的自然数。L的取值可以根据实际情况确定,例如,7个OFDM符号。
6)、物理资源块(Physical Resource Block,PRB):一种时频资源的单位,在时域上占用1个子帧或1个时隙,在频域上占用连续的M个子载波,M为大于零的自然数。LTE中,在时域上占一个子帧中连续的14个OFDM符号,频域上占用连续的12个子载波。
7)子载波宽度:频域上最小的粒度。例如,LTE中,1个子载波的子载波宽度为15kHZ。
基于上述描述,如图1所示,为本申请实施例提供的一种资源配置方法流程示意图。
参见图1,该方法包括:
步骤101:接入网设备生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数。
第一控制信道所使用的子载波宽度为发送所述第一控制信道所用的子载波宽度。当传输第一控制信道的子载波宽度增大,该第一控制信道占用的每个符号的持续时间缩短,但第一控制信道所占的时频资源的总量保持不变。
需要说明的是,在一个时隙中,该时隙上发送的第一控制信道占用的符号是从该时隙中的起始符号(包括该起始符号)算起,连续的多个符号。例如,在时隙n中发送的第一控制信道占用3个符号,则该第一控制信道占用的符号为时隙n中最开始的3个符号。
需要说明的是,本申请实施例中,第一控制信道包括但不限于PDCCH、EPDCCH等信道。
本申请实施例中,所述第一控制信道占用的最大符号数为第一控制信道所在的时频资源内可使用的最大的符号数量。由于当传输第一控制信道的子载波宽度增大,该第一控制信道占用的每个符号的持续时间缩短,若第一控制信道在时域上所占的最大时间固定,则所述最大符号数随第一控制信道所使用的子载波宽度的增大而增大。
每个时隙中的时频资源一般包括控制区域和数据区域,控制区域用来发送控制信息,数据区域用来发送数据。本申请实施例中,第一控制信道所在的时频资源可以是指该第一控制信道所处的时隙的控制区域所包括的时频资源。
步骤102:所述接入网设备向终端发送所述指示信息。
接入网设备可以通过多种方式发送所述指示信息,第一种可能的实现方式中,所述接入网设备通过高层信令向终端发送所述指示信息,例如,所述高层信令,包括主信息块(Master Information Block,MIB),系统信息块(System Information Block,SIB),或无线资源控制(Radio Resource Control,RRC)信令,或其他具有类似特征的高层信令。
第二种可能的实现方式中,所述接入网设备通过下行控制信息(Downlink Control Information,DCI)向终端发送所述指示信息,例如,在下行控制信道的公共搜索空间内,发送指示信息。所述下行控制信道的时频资源,包括时隙或子帧的起始OFDM符号的至少 一个OFDM符号;所述搜索空间为所述下行控制信道时频资源内的部分时频资源;所述公共搜索空间内的控制信息可以被小区内一组或全部终端接收。
第三种可能的实现方式中,所述接入网设备通过物理层广播控制信令向终端发送所述指示信息,例如,类似于在LTE中的PCFICH信道中承载的广播信令;或者,所述物理层广播控制信令所占用的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号,所述物理层广播控制信令可被小区内一组或全部终端检测和接收。
当然,接入网设备还可以通过其他方式发送所述指示信息,在此不再逐一举例说明。
步骤103:终端接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度。
步骤104:所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
例如,第一控制信道可以占用的最大符号数为4,而第一控制信道实际所使用的符号数可以为2,此时第一控制信道所使用的符号数小于最大符号数。
步骤101中,第一控制信道所在的时域资源区域可以是由接入网设备与终端之间预定义,也可以是由接入网设备通过系统信息、高层信令或初始接入信息向终端进行指示的。其中,系统信息可以为用于初始接入的最基本系统信息,例如,LTE中的主信息块(Master information Block,MIB),或者在下一代系统中被称为基本系统信息块(Essential System Information Block,eSIB)、系统信息块(System Information Block,SIB)等;初始接入信息可以包括随机接入响应(Random Access Response,RAR)、Message4等,Message4可以是指LTE中,接入网设备发给终端的RRC建立或重建命令。
举例来说,接入网设备可以通过RAR向终端进行指示第一控制信道所在的时域资源区域,其中,在RAR中,至少包括上行定时提前(Timing Advance,TA)指示信息。
接入网设备还可以通过Message4向终端进行指示第一控制信道所在的时域资源区域,Message4可以是指LTE中,接入网设备发给终端的RRC建立或重建命令。在Message4中至少包括终端标识指示信息。
本申请实施例中,第一控制信道占用的时频资源的面积保持不变,即第一控制信道占用的时频资源在时域上的持续时长与频域上的带宽宽度的乘积保持不变,其中,时域资源的单位为OFDM符号的个数,带宽宽度的单位为kHZ。具体的,若子载波宽度可以包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数可以包括第一最大符号数和第二最大符号数,此时第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度。
举例来说,如图2中的(a)至图2中的(c),为本申请实施例提供的一种时频资源示意图。如图2中的(a)至图2中的(c)所示,第一控制信道占用的时频资源大小固定时,第一控制信道所使用的子载波宽度不同时,第一控制信道所占用的符号数也不同。
具体的,如图2中的(a)所示,第一控制信道所使用的子载波宽度为15KHz,占用1个符号,假设此1个符号为第一最大符号数,15kHZ为第一子载波宽度;如图2中的(b)所示,第一控制信道所使用的子载波宽度为30KHz,占用2个符号,假设此2个符号为第二最大符号数,30kHZ为第二子载波宽度。根据上述假设,第一最大符号数与所述第二最 大符号数的比值为1/2,第一子载波宽度与所述第二子载波宽度的比值同样为1/2。
如图2中的(c)所示,第一控制信道所使用的子载波宽度为60KHz,占用4个符号。同理,将图2中的(c)中的子载波宽度设为第一或第二子载波宽度,符号数设为第一或第二最大符号数,相比与图2中的(a)或图2中的(b),同样符合规定,即第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值。
结合前面的描述,本申请实施例中,一个时频资源所使用的子载波宽度与该时频资源所包含的最大符号数之间存在映射关系,终端在确定每个时频资源所使用的子载波宽度之后,可以确定与每个时频资源所使用的子载波宽度映射的最大符号数,从而确定每个时频资源所包含的最大符号数。
本申请实施例中,接入网设备可能将第一控制信道所在的时域资源区域中的所有资源都用来发送第一控制信道。此时,在步骤104中,终端可以先根据所述指示信息确定第一控制信道所使用的子载波宽度,然后根据所述子载波宽度确定所述时域资源区域所包含的最大符号数;最后,终端将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
可选的,接入网设备也可将第一控制信道所在的时域资源区域中的所有资源不全部用来发送第一控制信道,因此第一控制信道所占用的符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数。第一控制信道所占用的符号的具体数量,需要根据实际情况确定。举例来说,第一控制信道所在的时域资源区域最大包含连续的4个符号,但接入网设备只采用前面2个符号发送第一控制信道,后面的2个符号用来传输其他数据。
此时,接入网设备发送的指示信息还可以用于指示所述第一控制信道占用的符号数。需要说明的是,在该实现方式中,指示信息与第一控制信道可以位于同一时隙中发送,也可以位于不同时隙中发送。
此时在步骤104中,终端可以直接根据指示信息确定第一控制信道占用的符号数。
由于第一控制信道所在的时频资源区域已经由接入网设备与终端之间预定义,或者,由接入网设备通过高层信令或初始接入信息高层信令通知了终端,因此指示信息指示的第一控制信道占用的符号数不会超过第一控制信道所在的时频资源区域所包含的最大符号数,因此,用于发送指示信息的信令得到了节省,从而节省了资源。
指示信息同时指示第一控制信道使用的子载波宽度以及第一控制信道占用的符号数的实现方式可以有多种。一种可能的实现方式中,指示信息包括K个比特位,所述指示信息所包括的K个比特位取不同值时,对应不同的子载波宽度以及符号数。
举例来说,指示信息与子载波宽度以及实际符号数的对应关系可以如表1所示。
表1
Figure PCTCN2017115053-appb-000001
当然,以上只是示例,指示信息与子载波宽度以及实际符号数的对应关系还可以有其他形式,在此不再逐一举例。
本申请实施例中,指示信息不仅可以指示与所述指示信息处于同一时隙发送的第一控制信道使用的子载波宽度和/或第一控制信道占用的符号数,所述指示信息还可以指示与所述指示信息处于不同时隙发送的第一控制信道使用的子载波宽度和/或第一控制信道占用的符号数,下面分别根据不同场景详细描述。
第一种场景:
接入网设备发送的指示信息,可以指示发送所述指示信息的时隙之后的第M个时隙上传输的第一控制信道使用的子载波宽度,以及所述第M个时隙上传输的第一控制信道所占用的符号数中的至少一种,其中,M为大于或等于1的正整数。
例如,所述指示信息在子帧n,在接收到指示信息后,在第n+M个子帧上的第一控制信道所示用的符号数为子帧n中指示信息所指示的符号数。
此时,在步骤104中,终端在接收到指示信息之后,在发送所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所使用的子载波宽度以及所占用的符号数中的至少一种。
需要说明的是,这里所描述的“接收到指示信息之后的第M个时隙”,不包括接收所述指示信息的时隙,所述第M个时隙与终端接收到所述指示信息的时隙之间间隔M-1个时隙,所述第一控制信道在所述第M个时隙中所使用的符号数可能发生改变。
可选的,所述指示信息可以为下行控制指示信息,在所述下行控制指示信息中,还包括用于指示M大小的指示信息。当然M还可以为预设值,或者M可以由接入网设备通过由高层信令进行配置。所述M由接入网设备通过高层信令进行配置时,终端根据接收到的高层信令配置确定M的值。
举例来说,如图3所示,为本申请实施例提供的一种资源指示示意图。图3中,与指示信息位于同一时隙发送的第一控制信道所使用的子载波宽度为60KHz、占用的符号数为4;发送所述指示信息的时隙之后的第M个时隙中的第一信道所使用的子载波宽度为30KHz、占用的符号数为1。上述信息均可以由所述指示信息进行指示。
可选的,所述指示信息可以位于DCI中。
在该场景下,一个时隙中发送的第一控制信道使用的子载波宽度和/或占用的符号数,由该时隙之前的时隙中发送的指示信息指示,从而可以更加灵活的配置第一控制信道资源使用的子载波宽度和占用的符号数。
第二种场景:
接入网设备发送的指示信息,可以指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙上每个时隙中传输的第一控制信道使用的子载波宽度,和/或所述连续N个时隙上每个时隙中传输的第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
此时,在步骤104中,所述终端在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数。
需要说明的是,这里描述的“所述接收到指示信息之后第P个时隙”,不包括接收所述指示信息的时隙,所述第P个时隙与终端接收到所述指示信息的时隙之间间隔P-1个时 隙,所述第一控制信道在所述第P个时隙起始的连续N个时隙上所使用的符号数可能发生改变。同时,所述N个时隙中包括所述第P个时隙。P和/或N可以为预设值;所述P和/或N还可以由接入网设备通过由高层信令进行配置。所述P和/或N由接入网设备通过高层信令进行配置时,终端根据接收到的高层信令配置确定P和/或N的值。
例如,所述指示信息在时隙n,在接收到指示信息后,在时隙n+P上的第一控制信道所占用的符号数可以通过时隙n上承载的指示信息进行指示;而且,从时隙n+P开始,到时隙n+P+N-1为止的连续N个时隙上,每个时隙中的第一控制信道所使用的符号数均由时隙n上承载的指示信息所指示。
举例来说,如图4所示,为本申请实施例提供的一种资源指示示意图。图4中,指示信息位于时隙0,时隙0之后第P个时隙起始的连续N个时隙分别为时隙1至时隙4。时隙0中的指示信息指示出时隙1至时隙4中每个时隙的第一控制信道使用的子载波宽度和/或所占用的符号数。所述指示信息还可以指示出与指示信息处于同一时隙的第一控制信道使用的子载波宽度和/或所占用的符号数。其中,时隙0中的第一控制信道使用的子载波宽度为15KHz、占用的符号数为1;时隙1至时隙4中每个时隙的第一控制信道使用的子载波宽度分别为30KHz、15KHz、30KHz、60KHz;时隙1至时隙4中每个时隙的第一控制信道占用的符号数分别为2、1、2、4。
可选的,在该场景下,发送指示信息的时隙可以为子帧中的第一个时隙。
举例来说,如图5所示,为本申请实施例提供的一种资源指示示意图。图5中,一个无线帧由10个子帧构成,分别为子帧0至子帧9。子帧0包括时隙0至时隙4。子帧0中每个时隙中的第一控制信道使用的子载波宽度和/或所占用的符号数可以通过时隙0中的指示信息进行指示。其中,时隙0至时隙4中每个时隙的第一控制信道使用的子载波宽度分别为15KHz、30KHz、15KHz、30KHz、60KHz;时隙0至时隙4中每个时隙的第一控制信道占用的符号数分别为1、2、1、2、4。
可选的,在一个时隙内,除了在每个时隙的起始位置发送的第一控制信道外,还包括在数据区域内随数据信道发送的第二控制信道。
本申请实施例中,接入网设备可以通过第一控制信道发送控制信息,从而通过控制信息指示出第二控制信道所使用的子载波宽度。
所述第二控制信道所在时频资源在数据信道区域内,所述数据信道区域为本时隙第一控制信道所占时域资源以外的时域资源,如图6所示。第二控制信道所占时域资源可以为数据区域内任意OFDM符号上。图6中,时隙0以及时隙1中数据区域即为数据信道所占的时域资源的区域。在时隙0中,第二控制信道占用该时隙中的数据区域的2个符号,且所使用的子载波宽度为30KHz;在时隙1中,第二控制信道占用该时隙中的数据区域的4个符号,且所使用的子载波宽度为60KHz。时隙0中的第二控制信道所占的时域资源和时隙1中的第二控制信道所占的时域资源均可以通过时隙0中的第一控制信道进行指示。
第一种可能的场景中,所述控制信息用于指示第二控制信道所使用的子载波宽度。
在该场景下,终端在第一控制信道上获取控制信息之后,可以确定第二控制信道所使用的子载波宽度,从而可以根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
所述第一控制信道的控制信息可以用于指示位于与第一控制信道相同时隙上的第二控制信道的子载波宽度,也可以用于指示位于第一控制信道所在时隙之后的时隙上的第二 控制信道的子载波宽度。
如前所述,本申请实施例中,一个时频资源所使用的子载波宽度与该时频资源所包含的最大符号数之间存在映射关系。因此,终端可以先根据所述控制信息确定第二控制信道所使用的子载波宽度,然后根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的时域资源区域所包含的最大符号数;最后,终端将在所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
第二种可能的场景中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度。
在该场景中,第二控制信道所使用的子载波宽度与第二控制信道所在的数据信道所使用的子载波宽度相同。终端在所述第一控制信道上获取控制信息之后,可以先根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度,即将所述数据信道所使用的子载波宽度作为第二控制信道所使用的子载波宽度;然后,终端根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的时域资源区域所包含的最大符号数;最后,终端将在所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
基于相同的技术构思,本申请实施例还提供一种资源配置装置,该装置可执行上述方法实施例。
如图7所示,为本申请实施例提供一种资源配置装置结构示意图。
参见图7,该装置包括:
收发单元701,用于接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数。
需要说明的是,第一控制信道所使用的子载波宽度为发送所述第一控制信道所用的子载波宽度。当传输第一控制信道的子载波宽度增大,该第一控制信道占用的每个符号的持续时间缩短,但第一控制信道所占的时频资源的总量保持不变。
本申请实施例中,所述第一控制信道占用的最大符号数为第一控制信道所在的时频资源内可使用的最大的符号数量。
关于收发单元701中的其他内容,可以参考步骤103中的描述,在此不再赘述。
处理单元702,用于根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
接入网设备可以将第一控制信道所在的时域资源区域中的部分资源用来发送第一控 制信道,因此第一控制信道所占用的符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,具体内容可以参考步骤102中的描述,在此不再赘述。
其中,系统信息可以为用于初始接入的最基本系统信息,例如,LTE中的主信息块,或者在下一代系统中被称为基本系统信息块、系统信息块等;初始接入信息可以包括随机接入响应、Message4等,Message4可以是指LTE中,接入网设备发给终端的RRC建立或重建命令。
上述内容具体可以参考步骤102中的描述,在此不再赘述。
所述高层信令,可以包括主信息块,系统信息块,或RRC信令,或其他具有类似特征的高层信令,具体可以参考步骤104中的描述,在此不再赘述。
可选的,所述处理单元702具体用于:
根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
接入网设备可以将第一控制信道所在的时域资源区域中的全部资源用来发送第一控制信道,因此第一控制信道所占用的符号数等于所述第一控制信道所在的时域资源区域所包含的最大符号数,具体内容可以参考步骤102中的描述,在此不再赘述。
可选的,所述指示信息还用于指示所述第一控制信道占用的符号数。
可选的,所述指示信息与所述第一控制信道位于同一时隙。
一种可能的实现方式中,所述指示信息可以为物理层广播信令,例如,PCFICH信令,所述物理层广播信令用于指示当前时隙内控制信道所使用的符号数。
一种可能的实现方式中,指示信息包括K个比特位,所述指示信息所包括的K个比特位取不同值时,对应不同的子载波宽度以及符号数。
指示信息的其他内容可以参考步骤103以及步骤104中的描述,在此不再赘述。
可选的,所述处理单元702具体用于:
在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
需要说明的是,这里所描述的“接收到指示信息之后的第M个时隙”,不包括接收所述指示信息的时隙,所述第M个时隙与终端接收到所述指示信息的时隙之间间隔M-1个时隙。
可选的,所述处理单元702具体用于:
在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
需要说明的是,这里描述的“所述接收到指示信息之后第P个时隙”,不包括接收所述指示信息的时隙,所述第P个时隙与终端接收到所述指示信息的时隙之间间隔P-1个时隙。
可选的,所述N为预设值,或者,所述N由所述装置根据接收到的高层信令配置确定。
可选的,所述收发单元701还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
所述处理单元702还用于,根据所述控制信息确定所述第二控制信道所占用的符号数。
关于控制信息的其他内容,可以参考步骤104中的描述,在此不再赘述。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
所述处理单元702具体用于:
根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
可选的,所述收发单元701还用于:
在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
所述处理单元702还用于,根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元701可以由收发机实现,处理单元702可以由处理器实现。如图8所示,终端800可以包括处理器801、收发机802和存储器803。其中,存储器803可以用于存储终端800出厂时预装的程序/代码,也可以存储用于处理器801执行时的代码等。
应理解,根据本申请实施例的终端800可对应于根据本申请实施例的资源配置方法中的终端以及本申请实施例的终端800,并且终端800中的各个单元的上述和其它操作和/或功能分别为了实现图1所示方法的相应流程,为了简洁,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种资源配置装置,该装置可执行上述方法实施例。
如图9所示,为本申请实施例提供一种资源配置装置结构示意图。
参见图9,该装置包括:
处理单元901,用于生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数。
需要说明的是,第一控制信道所使用的子载波宽度为发送所述第一控制信道所用的子载波宽度。当传输第一控制信道的子载波宽度增大,该第一控制信道占用的每个符号的持续时间缩短,但第一控制信道所占的时频资源的总量保持不变。
本申请实施例中,所述第一控制信道占用的最大符号数为第一控制信道所在的时频资源内可使用的最大的符号数量。
关于第一控制信道的其他内容,可以参考步骤101中的描述,在此不再赘述。
收发单元902,用于向终端发送所述指示信息。
收发单元902可以通过多种方式发送所述指示信息,第一种可能的实现方式中,收发单元902可以通过高层信令向终端发送所述指示信息;第二种可能的实现方式中,收发单元902可以通过DCI向终端发送所述指示信息;第三种可能的实现方式中,收发单元902可以通过物理层广播控制信令向终端发送所述指示信息。上述实现方式的具体内容可以参考步骤102中的描述,在此不再赘述。
可选的,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度。
所述不同的所述子载波宽度对应不同的最大符号数,包括:
所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
可选的,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
所述装置可以将第一控制信道所在的时域资源区域中的部分资源用来发送第一控制信道,因此第一控制信道所占用的符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,具体内容可以参考步骤102中的描述,在此不再赘述。
其中,系统信息可以为用于初始接入的最基本系统信息,例如,LTE中的主信息块,或者在下一代系统中被称为基本系统信息块、系统信息块等;初始接入信息可以包括随机接入响应、Message4等,Message4可以是指LTE中,接入网设备发给终端的RRC建立或重建命令。
上述内容具体可以参考步骤102中的描述,在此不再赘述。
可选的,所述指示信息指示出发送所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
举例来说,指示信息包括K个比特位,所述指示信息所包括的K个比特位取不同值时,对应不同的子载波宽度以及符号数。
指示信息的其他内容可以参考步骤103中的描述,在此不再赘述。
可选的,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
可选的,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
可选的,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
可选的,所述收发单元902还用于:
通过传输所述第一控制信道的时频资源发送控制信息;
所述控制信息用于指示第二控制信道所使用的子载波宽度,或者,所述控制信息用于指示第二控制信道所在的数据信道的子载波宽度信息。
可选的,所述控制信息还指示所述第二控制信道所占用的时域资源区域。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元902可以由收发机实现,处理单元901可以由处理器实现。如图10所示,接入网设备1000可以包括处理器1001、收发机1002和存储器1003。其中,存储器1003可以用于存储接入网设备1000出厂时预装的程序/代码,也可以存储用于处理器1001执行时的代码等。
应理解,根据本申请实施例的接入网设备1000可对应于根据本申请实施例的资源配置方法中的接入网设备以及本申请实施例的接入网设备1000,并且接入网设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图1所示方法的相应流程,为了简洁,在此不再赘述。
本申请实施例中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器还可以包括上述种类的存储器的组合。
图8和图10中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (41)

  1. 一种资源配置方法,其特征在于,包括:
    终端接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
    所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
  2. 根据权利要求1所述的方法,其特征在于,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
    所述不同的所述子载波宽度对应不同的最大符号数,包括:
    所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述终端确定所述第一控制信道所占用的所述符号数,包括:
    所述终端根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
    所述终端将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
  5. 根据权利要求1或2所述的方法,其特征在于,所述指示信息还用于指示所述第一控制信道占用的符号数。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息与所述第一控制信道位于同一时隙。
  7. 根据权利要求5所述的方法,其特征在于,所述终端确定所述第一控制信道所占用的符号数,包括:
    所述终端在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
  8. 根据权利要求1或2所述的方法,其特征在于,所述终端根据所述指示信息确定所述第一控制信道所占用的符号数,包括:
    所述终端在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述N为预设值,或者,所述N由所述终端根据接收到的高层信令配置确定。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述终端根据所述指示信息 确定所述第一控制信道所占用的符号数之后,还包括:
    所述终端在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
    所述终端根据所述控制信息确定所述第二控制信道所占用的符号数。
  11. 根据权利10所述的方法,其特征在于,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
    所述终端根据所述控制信息确定第二控制信道所占用的符号数,包括:
    所述终端根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
    所述终端将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
  12. 根据权利要求1至9任一所述的方法,其特征在于,所述终端根据所述指示信息确定所述第一控制信道所占用的符号数之后,还包括:
    所述终端在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
    所述终端根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;
    所述终端根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
  13. 一种资源配置方法,其特征在于,包括:
    接入网设备生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
    所述接入网设备向终端发送所述指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度,
    所述不同的所述子载波宽度对应不同的最大符号数,包括:
    所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
  16. 根据权利要求13至15任一所述的方法,其特征在于,所述指示信息指示出发送所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
  17. 根据权利要求13至15任一所述的方法,其特征在于,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
  18. 根据权利要求13至15任一所述的方法,其特征在于,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
  19. 根据权利要求13至15任一所述的方法,其特征在于,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
    所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
  20. 根据权利要求13至19任一所述的方法,其特征在于,所述方法还包括:
    所述接入网设备通过传输所述第一控制信道的时频资源发送控制信息;
    所述控制信息用于指示第二控制信道所使用的子载波宽度,或者,所述控制信息用于指示第二控制信道所在的数据信道的子载波宽度信息。
  21. 根据权利20所述的方法,其特征在于,所述控制信息还指示所述第二控制信道所占用的时域资源区域。
  22. 一种资源配置装置,其特征在于,包括:
    收发单元,用于接收指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
    处理单元,用于根据所述指示信息确定所述第一控制信道所占用的符号数,所述第一控制信道所占用的所述符号数小于或等于所述最大符号数。
  23. 根据权利要求22所述的装置,其特征在于,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度;
    所述不同的所述子载波宽度对应不同的最大符号数,包括:
    所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
  24. 根据权利要求22或23所述的装置,其特征在于,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道所在的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
  25. 根据权利要求22至24任一所述的装置,其特征在于,所述处理单元具体用于:
    根据所述子载波宽度确定在所述时域资源区域所包含的最大符号数;
    将在所述时域资源区域所包含的最大符号数确定为所述第一控制信道占用的符号数。
  26. 根据权利要求22或23所述的装置,其特征在于,所述指示信息还用于指示所述第一控制信道占用的符号数。
  27. 根据权利要求26所述的装置,其特征在于,所述指示信息与所述第一控制信道位于同一时隙。
  28. 根据权利要求26所述的装置,其特征在于,所述处理单元具体用于:
    在接收到所述指示信息的时隙之后的第M个时隙上,根据所述指示信息确定所述第M个时隙上的第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
  29. 根据权利要求22或23所述的装置,其特征在于,所述处理单元具体用于:
    在接收到所述指示信息的时隙之后第P个时隙起始的连续N个时隙上,根据所述指示信息确定所述N个时隙中每个时隙上的所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
  30. 根据权利要求29所述的装置,其特征在于,所述N为预设值,或者,所述N由所述装置根据接收到的高层信令配置确定。
  31. 根据权利要求22至30任一所述的装置,其特征在于,所述收发单元还用于:
    在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所使用的子载波宽度;
    所述处理单元还用于,根据所述控制信息确定所述第二控制信道所占用的符号数。
  32. 根据权利31所述的装置,其特征在于,所述控制信息还指示所述第二控制信道所占用的时域资源区域;
    所述处理单元具体用于:
    根据所述第二控制信道所使用的子载波宽度确定在所述第二控制信道所占用的时域资源区域所包含的最大符号数;
    将所述第二控制信道所占用的时域资源区域所包含的最大符号数确定为所述第二控制信道占用的符号数。
  33. 根据权利要求22至32任一所述的装置,其特征在于,所述收发单元还用于:
    在所述第一控制信道上获取控制信息,其中,所述控制信息用于指示第二控制信道所在的数据信道所使用的子载波宽度信息;
    所述处理单元还用于,根据所述数据信道所使用的子载波宽度,确定所述第二控制信道所使用的子载波宽度;根据所述第二控制信道所使用的子载波宽度确定所述第二控制信道所占用的符号数。
  34. 一种资源配置装置,其特征在于,包括:
    处理单元,用于生成指示信息,所述指示信息用于指示第一控制信道所使用的子载波宽度,其中,所述第一控制信道占用的最大符号数由所述子载波宽度确定,且不同的所述子载波宽度对应不同的最大符号数;
    收发单元,用于向终端发送所述指示信息。
  35. 根据权利要求34所述的装置,其特征在于,所述子载波宽度包括第一子载波宽度和第二子载波宽度,并且,所述第一控制信道占用的最大符号数包括第一最大符号数和第二最大符号数,其中,所述第一最大符号数对应所述第一子载波宽度,所述第二最大符号数对应所述第二子载波宽度,
    所述不同的所述子载波宽度对应不同的最大符号数,包括:
    所述第一最大符号数与所述第二最大符号数的比值,等于所述第一子载波宽度与所述第二子载波宽度的比值,且所述第一子载波宽度与所述第二子载波宽度不同。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第一控制信道所占用的所述符号数小于或等于所述第一控制信道的时域资源区域所包含的最大符号数,其中,所述时域资源区域为预定义的,或者,所述时域资源区域由系统信息,高层信令或初始接入信息指示。
  37. 根据权利要求34至36任一所述的装置,其特征在于,所述指示信息指示出发送 所述指示信息的时隙上传输的所述第一控制信道所占用的符号数。
  38. 根据权利要求34至37任一所述的装置,其特征在于,所述指示信息指示出发送所述指示信息的时隙之后的第M个时隙上传输的所述第一控制信道所占用的符号数,其中,M为大于或等于1的正整数。
  39. 根据权利要求34至38任一所述的装置,其特征在于,所述指示信息指示出发送所述指示信息的时隙之后第P个时隙起始的连续N个时隙中每个时隙上传输所述第一控制信道所占用的符号数,其中,P和N为大于1的正整数。
  40. 根据权利要求34至39任一所述的装置,其特征在于,所述指示信息位于发送所述指示信息的子帧的第一个时隙;
    所述指示信息指示出所述子帧所包括的每个时隙上传输所述第一控制信道的时频资源。
  41. 一种计算机存储介质,其特征在于,其上储存有计算机程序指令,当所述计算机程序指令被处理器执行时,实现权利要求1-21任一项所述的方法。
PCT/CN2017/115053 2016-12-31 2017-12-07 一种资源配置方法及装置 WO2018121211A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2017/115053 WO2018121211A1 (zh) 2016-12-31 2017-12-07 一种资源配置方法及装置
JP2019533619A JP2020503754A (ja) 2016-12-31 2017-12-07 リソース構成方法および装置
EP17888964.8A EP3531770B1 (en) 2016-12-31 2017-12-07 Resource configuration method and device
US16/436,227 US11064464B2 (en) 2016-12-31 2019-06-10 Resource configuration method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201611261986.3A CN108271257B (zh) 2016-12-31 2016-12-31 一种资源配置方法及装置
CN201611261986.3 2016-12-31
PCT/CN2017/115053 WO2018121211A1 (zh) 2016-12-31 2017-12-07 一种资源配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/436,227 Continuation US11064464B2 (en) 2016-12-31 2019-06-10 Resource configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018121211A1 true WO2018121211A1 (zh) 2018-07-05

Family

ID=62706878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115053 WO2018121211A1 (zh) 2016-12-31 2017-12-07 一种资源配置方法及装置

Country Status (5)

Country Link
US (1) US11064464B2 (zh)
EP (1) EP3531770B1 (zh)
JP (1) JP2020503754A (zh)
CN (1) CN108271257B (zh)
WO (1) WO2018121211A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016004900A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Methods for enb, ue uplink transmission and reception
US20160135185A1 (en) * 2014-11-07 2016-05-12 Cisco Technology, Inc. Methods for long term evolution (lte) transmission bursts to improve spectral efficiency in unlicensed frequency channels and indoor scenarios
CN105827383A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
US20160352551A1 (en) * 2015-06-01 2016-12-01 Liqing Zhang System and scheme of scalable ofdm numerology

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110243090A1 (en) 2008-12-15 2011-10-06 Nokia Corporation Downlink control and physical hybrid arq indicator channel (phich) configuration for extended bandwidth system
US8369793B2 (en) 2009-10-02 2013-02-05 Telefonaktiebolaget L M Ericsson (Publ) Channel-dependent scheduling and link adaptation
EP2509366B1 (en) 2009-11-30 2019-10-09 LG Electronics Inc. Terminal device for receiving signal in wireless communication system for supporting a plurality of component carriers and method thereof
US9031028B2 (en) 2011-01-26 2015-05-12 Lg Electronics Inc. Method for transmitting and receiving downlink control information in wireless communication system and device therefor
WO2013023290A1 (en) 2011-08-12 2013-02-21 Research In Motion Limited Methods of channel state information feedback and transmission in coordinated multi-point wireless communications system
KR101892688B1 (ko) 2011-11-07 2018-10-05 삼성전자 주식회사 다중 안테나를 위한 제어 채널 검색 방법 및 장치
US9935702B2 (en) 2015-03-04 2018-04-03 Lg Electronics Inc. Method and apparatus for feeding back channel state information for 3D MIMO in wireless communication system
US10476650B2 (en) * 2016-08-19 2019-11-12 Qualcomm Incorporated Control channel with flexible numerology
EP3480988B1 (en) * 2016-08-21 2022-05-25 LG Electronics Inc. Method for uplink transmission in wireless communication system, and device therefor
KR102110639B1 (ko) * 2016-09-30 2020-05-14 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 다수의 뉴머롤로지들을 위한 제어 채널을 수신하는 방법 및 장치
PT3547773T (pt) * 2016-11-25 2022-06-01 Ntt Docomo Inc Terminal de utilizador e método de comunicação sem fios
WO2018128786A1 (en) * 2017-01-06 2018-07-12 Intel IP Corporation Transmission scheme for common control message with multi-beam operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827383A (zh) * 2011-03-25 2016-08-03 北京新岸线移动多媒体技术有限公司 无线通信系统中导频的配置方法及装置
WO2016004900A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Methods for enb, ue uplink transmission and reception
US20160135185A1 (en) * 2014-11-07 2016-05-12 Cisco Technology, Inc. Methods for long term evolution (lte) transmission bursts to improve spectral efficiency in unlicensed frequency channels and indoor scenarios
US20160352551A1 (en) * 2015-06-01 2016-12-01 Liqing Zhang System and scheme of scalable ofdm numerology

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "3GPP TSG RAN WG 1 Meeting #85 R1-164131", PRACH TRANSMISSION FOR ELAA, 27 May 2016 (2016-05-27), XP051090085 *
See also references of EP3531770A4
ZTE ET AL.: "3GPP TSG RAN WG 1 Meeting #87 R1-1611292", NR DL CONTROL CHANNEL STRUCTURE, 18 November 2016 (2016-11-18), XP051175273 *

Also Published As

Publication number Publication date
EP3531770A4 (en) 2020-03-11
US20190297616A1 (en) 2019-09-26
EP3531770B1 (en) 2021-09-15
CN108271257A (zh) 2018-07-10
JP2020503754A (ja) 2020-01-30
CN108271257B (zh) 2021-07-09
US11064464B2 (en) 2021-07-13
EP3531770A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
US11184139B2 (en) Resource configuration method, method for determining bandwidth part, method for indicating bandwidth part, and device
US10645642B2 (en) System information transmission method, base station, and user equipment
EP3225060B1 (en) Methods, base station and user equipment
WO2017193980A1 (zh) 传输下行控制信息的方法和装置
US11350440B2 (en) Information transmission method, terminal apparatus, and network apparatus
BR112020009816A2 (pt) método de acesso aleatório, terminal, e dispositivo de rede
WO2019137407A1 (zh) 信号检测的方法和装置
US11038734B2 (en) Mini-slot configuration for data communication
WO2020057463A1 (zh) 一种侧行信息的传输方法、通信设备和网络设备
TWI757359B (zh) 調度終端設備的方法、網路設備和終端設備
EP3557806A1 (en) Sending and receiving method and apparatus for reference signal
WO2016138841A1 (zh) 数据传输的方法、反馈信息传输方法及相关设备
EP3606252A1 (en) Methods and devices for determining downlink resource set and sending resource position information
TW201826747A (zh) 資源映射的方法和通訊設備
WO2020048332A1 (zh) 探测参考信号传输方法、终端设备和网络设备
WO2019029385A1 (zh) 一种控制信息的发送、接收方法及设备
WO2018112933A1 (zh) 传输信息的方法、网络设备和终端设备
TWI754051B (zh) 無線通訊的方法和終端設備
EP3554164B1 (en) Method and device for determining candidate control channel resource
WO2018121211A1 (zh) 一种资源配置方法及装置
WO2017036236A9 (zh) 一种基于tdd的m2m系统的通信方法、装置与系统
WO2018126969A1 (zh) 一种时隙类型指示方法、确定方法及装置
WO2019134608A1 (zh) 无线通信的方法和设备
WO2018082365A1 (zh) 传输控制方法、装置及系统存储介质
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017888964

Country of ref document: EP

Effective date: 20190524

ENP Entry into the national phase

Ref document number: 2019533619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE