WO2020048332A1 - 探测参考信号传输方法、终端设备和网络设备 - Google Patents

探测参考信号传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020048332A1
WO2020048332A1 PCT/CN2019/102510 CN2019102510W WO2020048332A1 WO 2020048332 A1 WO2020048332 A1 WO 2020048332A1 CN 2019102510 W CN2019102510 W CN 2019102510W WO 2020048332 A1 WO2020048332 A1 WO 2020048332A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
resource indication
dci
occupied
srs transmission
Prior art date
Application number
PCT/CN2019/102510
Other languages
English (en)
French (fr)
Inventor
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020048332A1 publication Critical patent/WO2020048332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a sounding reference signal (SRS) transmission method, a terminal device, and a network device.
  • SRS sounding reference signal
  • the resources occupied by SRS are configured through radio resource control (Radio Resource Control (RRC) signaling).
  • RRC Radio Resource Control
  • reconfiguration of high-level signaling will cause a large delay, resulting in flexibility in SRS resource configuration. Worse. Therefore, in order to enhance the coverage performance and capacity of SRS and improve the performance of SRS channel estimation, it is necessary to support a more flexible SRS resource configuration scheme.
  • the purpose of the embodiments of the present disclosure is to provide an SRS transmission method, a terminal device, and a network device to solve the problem of poor flexibility of SRS resource configuration in the related art.
  • an embodiment of the present disclosure provides an SRS transmission method applied to a terminal device.
  • the method includes: receiving Downlink Control Information (DCI), the DCI includes a resource indication field, and the resource indication
  • the domain includes at least one of a frequency domain resource indicator domain and a time domain resource indicator domain.
  • the frequency domain resource indicator domain is used to indicate frequency domain resources occupied by SRS transmission, and the time domain resource indicator domain is used to indicate the SRS.
  • an embodiment of the present disclosure provides an SRS transmission method, which is applied to a network device.
  • the method includes: sending DCI, the DCI includes a resource indication field, and the resource indication field includes a frequency domain resource indication field and time At least one of a domain resource indication domain, the frequency domain resource indication domain is used to indicate frequency domain resources occupied by SRS transmission, and the time domain resource indication domain is used to indicate time domain resources occupied by SRS transmission; Receiving the SRS on a resource indicated by the resource indication domain.
  • an embodiment of the present disclosure provides a terminal device.
  • the terminal device includes a receiving module configured to receive DCI, the DCI includes a resource indication domain, and the resource indication domain includes a frequency domain resource indication domain and a time domain. At least one of a resource indication domain, the frequency domain resource indication domain is used to indicate frequency domain resources occupied by SRS transmission, and the time domain resource indication domain is used to indicate time domain resources occupied by SRS transmission; a resource determination module For determining a resource occupied by the SRS transmission based on the resource indication domain; and a sending module for sending the SRS on the resource.
  • an embodiment of the present disclosure provides a network device.
  • the network device includes a sending module configured to send DCI, the DCI includes a resource indication domain, and the resource indication domain includes a frequency domain resource indication domain and a time domain. At least one of a resource indication domain, the frequency domain resource indication domain is used to indicate frequency domain resources occupied by SRS transmission, and the time domain resource indication domain is used to indicate time domain resources occupied by SRS transmission; a receiving module, Configured to receive the SRS on a resource indicated by the resource indication domain.
  • an embodiment of the present disclosure provides a terminal device.
  • the terminal device includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the program is processed by the processor. When executed, the steps of the SRS transmission method according to the first aspect are implemented.
  • an embodiment of the present disclosure provides a network device.
  • the network device includes a processor, a memory, and a program stored on the memory and executable on the processor.
  • the program is processed by the processor. When executed, the steps of the SRS transmission method according to the second aspect are implemented.
  • an embodiment of the present disclosure provides a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the SRS according to the first aspect and the second aspect is implemented Steps of the transfer method.
  • the resources occupied by SRS transmission are configured by DCI instead of RRC signaling.
  • DCI configuration is convenient and flexible, and solves the problems of poor flexibility and large delay of SRS resource configuration caused by RRC signaling configuration.
  • the terminal device can realize flexible transmission of the SRS through the dynamic SRS resource indication mode, which is convenient for improving the coverage performance and capacity of the SRS.
  • FIG. 1 is a schematic flowchart of an SRS transmission method according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of frequency domain resource indication of an SRS transmission method according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a time domain resource indication of an SRS transmission method according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of time division transmission of different signals provided by an SRS transmission method according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram of different signal conflict discards provided by an SRS transmission method according to some embodiments of the present disclosure
  • FIG. 6 is a schematic flowchart of an SRS transmission method according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal device according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network device according to some embodiments of the present disclosure.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the terminal device may include, but is not limited to, a mobile station (MS), a mobile terminal (Mobile), a mobile phone (Mobile), a user equipment (UE), and a handset (handset).
  • MS mobile station
  • Mobile mobile terminal
  • UE user equipment
  • handset handset
  • portable equipment portable equipment, vehicles
  • the terminal equipment can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal equipment can be a mobile phone (or (Referred to as a "cellular" phone), a computer with wireless communication functions, etc.
  • the terminal device may also be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device.
  • the network device is a device that is deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station capabilities may vary.
  • eNB Evolved NodeB
  • 3G 3rd Generation
  • Node B Node B
  • Network equipment, etc. but the wording does not constitute a restriction.
  • some embodiments of the present disclosure provide an SRS transmission method 100, which can be applied to a terminal device and includes the following steps: S102, S104, and S106.
  • S102 Receive DCI, where the DCI includes a resource indication field.
  • the above-mentioned resource indication domain includes at least one of a frequency domain resource indication domain and a time domain resource indication domain, that is, the DCI sent by the network device may include only the frequency domain resource indication domain; or it may only include the time domain resources.
  • Indication domain it may also include both a frequency domain resource indication domain and a time domain resource indication domain.
  • the frequency domain resource indication field may be used to indicate frequency domain resources occupied by SRS transmission; the time domain resource indication field may be used to indicate time domain resources occupied by SRS transmission.
  • the SRS mentioned in the embodiment of the present disclosure may be an aperiodic sounding reference signal (AP-SRS) or a semi-persistent sounding reference signal (SP-SRS).
  • AP-SRS aperiodic sounding reference signal
  • SP-SRS semi-persistent sounding reference signal
  • the format of the DCI received in each embodiment of the present disclosure is the same as the DCI format indicating Physical Uplink Shared Channel (PUSCH) or Physical Downlink Shared Channel (PDSCH) transmission. That is, the format of the DCI received in this step is a DCI format for multiplexing indication PUSCH transmission, or a DCI format for multiplexing indication PDSCH transmission.
  • PUSCH Physical Uplink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • the above-mentioned DCI format may also be another predefined format.
  • the predefined format mentioned here is different from the DCI format indicating PUSCH or indicating PDSCH transmission, and may specifically be a newly defined DCI format in a subsequent evolved communication system. , Or other DCI formats in existing communication systems, and so on.
  • the above DCI format is other predefined formats, which facilitates the flexible implementation of DCI.
  • S104 Determine a resource occupied by the SRS transmission based on the resource indication domain.
  • the resources occupied by the SRS transmission determined in this step may specifically include time domain resources and frequency domain resources, as follows:
  • the frequency domain resources occupied by SRS transmission may be determined based on the frequency domain resource indication domain.
  • the time domain resources occupied by SRS transmission are configured by higher layer signaling.
  • the time domain resources occupied by SRS transmission may be determined based on the time domain resource indication domain.
  • the frequency domain resources occupied by SRS transmission are configured by higher layer signaling.
  • a frequency domain resource occupied by SRS transmission can be determined based on the frequency domain resource indication domain, and a time domain occupied by SRS transmission is determined based on the time domain resource indication domain. Resources.
  • S106 Send the SRS on the resource.
  • other related parameters of SRS transmission can be semi-statically configured through high-level signaling.
  • the other parameters include, for example, the maximum number of comb teeth and the number of comb teeth occupied by actual transmission; cyclic shift; and special subframe occupation symbols Number; period and time domain offset; initial occupied resource block; frequency hopping bandwidth and antenna port, etc.
  • the total bandwidth of the SRS transmission may be notified through high-level signaling.
  • the resources occupied by SRS transmission are configured by DCI instead of RRC signaling.
  • DCI configuration is convenient and flexible, and solves the problem of poor flexibility and large delay of SRS resource configuration caused by RRC signaling configuration problem.
  • the terminal device can realize flexible transmission of the SRS, which is convenient for improving the coverage performance and capacity of the SRS.
  • the SRS does not occupy symbols used for DeModulation Reference Signal (DMRS) transmission, that is, the symbols used for the SRS transmission are different from the symbols used for the DMRS transmission.
  • DMRS DeModulation Reference Signal
  • the DCI may indicate resources occupied by SRS transmission in at least one carrier.
  • the DCI indicates the resources occupied by the SRS transmission of at least one carrier, which can save signaling overhead.
  • the DCI can indicate the resources occupied by the SRS transmission across the carriers, and realizes flexible indication.
  • the DCI may indicate resources occupied by SRS transmission in at least one time slot or at least one subframe.
  • the DCI indicates resources occupied by SRS transmission of at least one time slot or at least one subframe, which can save signaling overhead.
  • step S104 in the embodiment shown in FIG. 1 may Do as follows:
  • the frequency domain resource indicator field can be used to indicate the number of physical resource blocks occupied by SRS transmission (the starting physical resource block can be configured by high-level signaling); it can also be used to indicate the starting physical resource blocks (physical resources) occupied by SRS transmission.
  • the number of blocks can be configured by high-level signaling); it can also be used to indicate the number of starting physical resource blocks and physical resource blocks occupied by SRS transmission.
  • the terminal device first receives DCI from the network device.
  • the DCI may be in format 0, that is, the DCI format of the DCI multiplexing indication PUSCH transmission.
  • the received DCI triggers AP-SRS transmission.
  • the cyclic redundancy check (Cyclic Redundancy Check, CRC) of the DCI is scrambled through a first wireless network temporary identity (RNTI), and the first RNTI may be one of the following three: One:
  • SRS-RNTI Sounding Reference Signal Temporary-Radio Network Temporary Identity
  • Aperiodic Sounding Reference Signal-Radio Network Temporary Identity AP-SRS-RNTI
  • SP-SRS-RNTI semi-persistent sounding reference signal wireless network temporary identification
  • the above DCI includes a frequency domain resource indication field, which indicates the starting physical resource block position 0 occupied by the SRS transmission and the number of physical resource blocks occupied 4, as shown in FIG. 2.
  • the terminal device can transmit the AP-SRS on the physical resource block according to the starting physical resource block position 0 and the occupied physical resource block number 4 indicated by the SRS resource indication field, that is, 0- AP-SRS is transmitted on a total of 4 physical resource blocks (Physical Resource Blocks, PRB).
  • PRB Physical Resource Blocks
  • step S104 in the embodiment shown in FIG. 1 is specifically performed as follows:
  • the frequency domain resources occupied by the SRS transmission are determined based on the frequency hopping bandwidths B SRS and C SRS .
  • B SRS and C SRS frequency hopping bandwidths
  • the terminal device first receives DCI from the network device.
  • the DCI may be in format 8, that is, the DCI format is a newly defined format.
  • the received DCI triggers AP-SRS transmission.
  • the CRC of the DCI is scrambled by using a first RNTI.
  • the first RNTI includes one of the following: SRS-RNTI, AP-SRS-RNTI, or SP-SRS-RNTI.
  • the above DCI includes a frequency domain resource indication field, which indicates that the frequency hopping bandwidth B SRS occupied by SRS transmission is 0 and C SRS is 0.
  • the terminal device after receiving the DCI, the terminal device obtains AP-SRS transmission occupying frequency-domain resources according to the value of the frequency hopping bandwidth B SRS and C SRS , that is, a total of 96 PRBs from 0-95. SRS.
  • the number of physical resource blocks occupied by SRS transmission may be a positive integer multiple of n, where n is a positive integer greater than 1, and in a specific embodiment, the foregoing n is equal to 4.
  • DCI can indicate multiple physical resource blocks at the same time, which is convenient for saving signaling overhead.
  • the DCI includes a resource indication field
  • the resource indication field may include both a frequency domain resource indication field and a time domain resource indication field.
  • Step S104 in the embodiment shown in FIG. 1 can also be used to determine the time domain resources occupied by SRS transmission.
  • the specific implementation is as follows:
  • At least one of the number of symbols occupied by SRS transmission and the starting symbol identifier is determined based on the time domain resource indicator field, and the instant domain resource indicator field may be used to indicate the number of symbols occupied by SRS transmission (the starting symbol identifier may be (Configured by high-level signaling); it can also be used to indicate the start symbol identifier occupied by SRS transmission (the number of symbols can be configured by high-level signaling); it can also be used to indicate the start symbol identifier and symbol occupied by SRS transmission Number.
  • the starting symbol identifier may be (Configured by high-level signaling); it can also be used to indicate the start symbol identifier occupied by SRS transmission (the number of symbols can be configured by high-level signaling); it can also be used to indicate the start symbol identifier and symbol occupied by SRS transmission Number.
  • the terminal device first receives DCI from the network device.
  • the DCI may be format 8, that is, the DCI format is a newly defined format, and the received DCI triggers AP-SRS transmission.
  • the CRC of the DCI can be scrambled by using SRS-RNTI, AP-SRS-RNTI, or SP-SRS-RNTI.
  • the DCI includes a time domain resource indication field. As shown in FIG. 3, the time domain resource indication field indicates a start symbol identifier 0 and a number of symbols 4 occupied by SRS transmission.
  • the terminal device can send AP- on the above four symbols according to the starting symbol identifier 0 and the number of symbols 4 indicated by the SRS time domain resource indication domain, that is, 0-3. SRS.
  • the CRC of the DCI received by the embodiment of the present disclosure is scrambled through the first RNTI.
  • the network device may also send a preset DCI, and the CRC of the preset DCI is scrambled by the second RNTI.
  • the above-mentioned preset DCI may be used to indicate the resources occupied by the preset SRS transmission.
  • the SRS transmission method provided by the embodiment is disclosed.
  • preset DCI and preset SRS are only for distinguishing from DCI and SRS in the SRS transmission method provided in the embodiment of the present disclosure, and the word “preset” does not represent a specific meaning.
  • the first RNTI and the second RNTI are different.
  • the second RNTI may be an RNTI other than the SRS-RNTI, the AP-SRS-RNTI, and the SP-SRS-RNTI.
  • the SRS and the preset SRS can be time-division multiplexed.
  • the following description will be made with reference to the embodiment shown in FIG. 4.
  • the legacy SRS (LTE R8 SRS, also referred to as the preset SRS mentioned above) and the evolved SRS (LTE Rel-16 SRS, that is, SRS mentioned in the embodiment of the present disclosure) use time division multiplexing
  • the legacy SRS occupies the last symbol for transmission
  • the evolved SRS occupies 4 symbols for transmission before the last symbol.
  • the SRS if the SRS conflicts with the transmission of time domain resources occupied by the preset SRS, the SRS is preferentially transmitted, the preset SRS is not sent or the preset SRS is discarded; or, the preset SRS is not sent. Or discarding the partial signal, wherein a symbol occupied by the partial signal overlaps with a symbol occupied by the SRS.
  • the preset SRS is transmitted preferentially, the SRS is not sent or the SRS is discarded; or the SRS is not sent. Or discarding the partial signal, wherein a symbol occupied by the partial signal overlaps with a symbol for the preset SRS. For detailed description, it will be described below with reference to the embodiment shown in FIG. 5.
  • the legacy SRS (LTE R8 SRS, that is, the preset SRS) and the evolved SRS (LTE Rel-16 SRS, that is, the SRS mentioned in the embodiment of the present disclosure.
  • LTE R8 SRS that is, the preset SRS
  • LTE Rel-16 SRS that is, the SRS mentioned in the embodiment of the present disclosure.
  • the Enhanced SRS is shown in FIG. 5 If at least one symbol overlaps in the occupied time domain resources, the legacy SRS is transmitted first, and the evolved SRS is discarded.
  • the time domain position counter of the SRS transmission includes at least the symbol identifier occupied by the SRS transmission.
  • the SRS includes an SP-SRS or a periodic sounding reference signal P-SRS
  • a transmission time domain position of the SP-SRS or P-SRS may be determined based on the following two formulas:
  • the above formula 1 is applicable to the SRS period of a Time Division Duplexing (TDD) system of 2 milliseconds, and the above formula 2 is applicable to situations other than the formula 1.
  • TDD Time Division Duplexing
  • n SRS represents a time domain location of the SRS transmission
  • l indicates the position of the SRS in the subframe, that is, the symbol identifier occupied by the SRS transmission
  • n f represents the wireless frame number
  • n s represents a time slot number in a radio frame
  • N SP represents the number of switching points in the radio frame
  • T SRS represents a period of the SRS
  • T offset represents a subframe offset of the SRS
  • T offset_max represents the maximum value of T offset .
  • the value of l ranges from [0,13] or [0,12] or [0,3] or [10,13] or [9,13] or [9,12] Or at least one of [0, 2] or [4, 9] or [11, 13];
  • the value of l ranges from [0,11] or [0,10] or [0,3] or [8,11] or [7,11] or [7,10] or [0, 1] or at least one of [3, 7] or [9, 11].
  • FIG. 6 is a schematic flowchart of the SRS transmission method according to the embodiment of the present disclosure, and can be applied to the network device side. As shown in FIG. 6, the method 600 includes steps S602 and S604.
  • S602 Send DCI, where the DCI includes a resource indication domain, and the resource indication domain includes at least one of a frequency domain resource indication domain and a time domain resource indication domain.
  • the frequency domain resource indication field is used to indicate frequency domain resources occupied by SRS transmission
  • the time domain resource indication field is used to indicate time domain resources occupied by SRS transmission.
  • S604 Receive an SRS on a resource indicated by the resource indication domain.
  • the resources occupied by SRS transmission are configured by DCI instead of RRC signaling.
  • DCI configuration is convenient and flexible, and solves the problem of poor flexibility and large delay of SRS resource configuration caused by RRC signaling configuration. problem.
  • the terminal device can realize flexible transmission of the SRS, which is convenient for improving the coverage performance and capacity of the SRS.
  • the resource indication field includes a frequency domain resource indication field, and the frequency domain resource indication field indicates at least one of a number of physical resource blocks occupied by the SRS transmission and a starting physical resource block. That is, the frequency domain resource indicator field can be used to indicate the number of physical resource blocks occupied by SRS transmission (the starting physical resource block can be configured by high-level signaling); it can also be used to indicate the starting physical resource blocks (physical resources) occupied by SRS transmission. The number of blocks can be configured by high-level signaling); it can also be used to indicate the number of starting physical resource blocks and physical resource blocks occupied by SRS transmission. For details, refer to the embodiment shown in FIG. 2
  • the resource indication field includes a frequency domain resource indication field, and the frequency domain resource indication field indicates frequency hopping bandwidths B SRS and C SRS occupied by the SRS transmission, so that the terminal device is based on the frequency hopping bandwidth B SRS and C SRS determine the frequency domain resources occupied by the SRS transmission.
  • the resource indication field includes a time domain resource indication field, and the time domain resource indication field indicates at least one of a number of symbols occupied by the SRS transmission and a start symbol identifier.
  • the real-time resource indicator field can also be used to indicate the number of symbols occupied by SRS transmission (the starting symbol identification can be configured by higher-level signaling); it can also be used to indicate the starting symbol identification of SRS transmission occupation (the number of symbols can be determined by higher-level (Signaling configuration); it can also be used to indicate the starting symbol identifier and the number of symbols occupied by SRS transmission, see the embodiment shown in FIG. 3.
  • the number of physical resource blocks occupied by the SRS transmission is a positive integer multiple of n, where n is a positive integer greater than 1.
  • n is equal to four.
  • the DCI may indicate resources occupied by SRS transmission in at least one carrier.
  • the DCI indicates the resources occupied by the SRS transmission of at least one carrier, which can save signaling overhead.
  • the DCI can indicate the resources occupied by the SRS transmission across the carriers, and realizes flexible indication.
  • the DCI may indicate resources occupied by SRS transmission in at least one time slot or at least one subframe.
  • the DCI indicates resources occupied by SRS transmission of at least one time slot or at least one subframe, which can save signaling overhead.
  • the format of the DCI is the same as the DCI format indicating PUSCH or PDSCH transmission.
  • the format of the DCI received in this step is to multiplex the DCI format indicating PUSCH transmission, or to multiplex the DCI format indicating PDSCH transmission.
  • the format of the DCI is a predefined format, wherein the predefined format is different from a DCI format indicating PUSCH or PDSCH transmission. Specifically, it may be a newly defined DCI format in a subsequent evolved communication system, or another DCI format in an existing communication system, and so on.
  • the above DCI format is other predefined formats, which facilitates the flexible implementation of DCI.
  • the cyclic redundancy check CRC of the DCI is scrambled by a first RNTI, and the first RNTI includes: SRS-RNTI, AP-SRS-RNTI, or SP-SRS-RNTI.
  • the SRS and the preset SRS are time-multiplexed for transmission, wherein the resources occupied by the preset SRS transmission are indicated by a preset DCI, and the CRC of the preset DCI is scrambled by a second RNTI, so The first RNTI and the second RNTI are different.
  • the time domain position counter of the SRS transmission includes at least a symbol identifier occupied by the SRS transmission.
  • the above SRS does not occupy symbols used for DMRS transmission.
  • the SRS transmission method according to the embodiment of the present disclosure has been described in detail above with reference to FIGS. 1 to 6.
  • the terminal device according to the embodiment of the present disclosure will be described in detail below with reference to FIG. 7.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 7, the terminal device 700 includes:
  • the receiving module 702 may be configured to receive DCI, where the DCI includes a resource indication domain, and the resource indication domain includes at least one of a frequency domain resource indication domain and a time domain resource indication domain, where the frequency domain resource indication domain is used for Indicating frequency domain resources occupied by SRS transmission, and the time domain resource indication domain is used to indicate time domain resources occupied by SRS transmission;
  • the resource determining module 704 may be configured to determine a resource occupied by the SRS transmission based on the resource indication domain;
  • the sending module 706 may be configured to send the SRS on the resource.
  • the resources occupied by SRS transmission are configured by DCI instead of RRC signaling.
  • DCI configuration is convenient and flexible, and solves the problems of poor flexibility and delay of SRS resource configuration caused by RRC signaling configuration.
  • the terminal device can realize flexible transmission of the SRS, which is convenient for improving the coverage performance and capacity of the SRS.
  • the resource indication domain includes a frequency domain resource indication domain
  • determining the resource occupied by the SRS transmission based on the resource indication domain includes:
  • the frequency domain resource indicator field can be used to indicate the number of physical resource blocks occupied by SRS transmission (the starting physical resource block can be configured by high-level signaling); it can also be used to indicate the starting physical resource blocks (physical resources) occupied by SRS transmission.
  • the number of blocks can be configured by high-level signaling); it can also be used to indicate the number of starting physical resource blocks and physical resource blocks occupied by SRS transmission.
  • the resource indication domain includes a frequency domain resource indication domain
  • determining the resource occupied by the SRS transmission based on the resource indication domain includes:
  • the frequency domain resources occupied by the SRS transmission are determined based on the frequency hopping bandwidth B SRS and C SRS .
  • the resource indication domain includes a time domain resource indication domain
  • determining the resources occupied by the SRS transmission based on the resource indication domain includes:
  • the real-time resource indicator field can also be used to indicate the number of symbols occupied by SRS transmission (the starting symbol identification can be configured by higher-level signaling); it can also be used to indicate the starting symbol identification of SRS transmission occupation (the number of symbols can be determined by higher-level (Signaling configuration); can also be used to indicate the start symbol identifier and the number of symbols occupied by SRS transmission.
  • the starting symbol identification can be configured by higher-level signaling
  • the starting symbol identification of SRS transmission occupation the number of symbols can be determined by higher-level (Signaling configuration
  • the number of physical resource blocks occupied by the SRS transmission is a positive integer multiple of n, where n is a positive integer greater than 1, and in a specific embodiment, the foregoing n is equal to 4.
  • DCI can indicate multiple physical resource blocks at the same time, which is convenient for saving signaling overhead.
  • the DCI may indicate resources occupied by SRS transmission in at least one carrier.
  • the DCI indicates the resources occupied by the SRS transmission of at least one carrier, which can save signaling overhead.
  • the DCI can indicate the resources occupied by the SRS transmission across the carriers, and realizes flexible indication.
  • the DCI may indicate resources occupied by SRS transmission in at least one time slot or at least one subframe.
  • the DCI indicates resources occupied by SRS transmission of at least one time slot or at least one subframe, which can save signaling overhead.
  • the format of the DCI is the same as the DCI format indicating the physical uplink shared channel PUSCH or the physical downlink shared channel PDSCH transmission.
  • the format of the DCI is a predefined format, where the predefined format is different from a DCI format indicating PUSCH or PDSCH transmission.
  • the cyclic redundancy check CRC of the DCI is scrambled through a first wireless network temporary identifier RNTI, and the first RNTI includes: SRS-RNTI, AP-SRS-RNTI, or SP- SRS-RNTI.
  • the SRS and the preset SRS are time-multiplexed and transmitted, where:
  • the resources occupied by the preset SRS transmission are indicated by a preset DCI, and a CRC of the preset DCI is scrambled by a second RNTI, and the first RNTI and the second RNTI are different.
  • the SRS if the SRS conflicts with the time domain resource transmission occupied by the preset SRS, then
  • Preferentially transmitting the SRS not sending the preset SRS or discarding the preset SRS; or not sending or discarding part of the signals in the preset SRS, wherein the symbols occupied by the part of the signals Overlap with the symbol occupied by the SRS.
  • the SRS if the SRS conflicts with the time domain resource transmission occupied by the preset SRS, then
  • the time domain position counter of the SRS transmission includes at least a symbol identifier occupied by the SRS transmission.
  • the above SRS does not occupy symbols used for DMRS transmission.
  • the terminal device 700 may refer to the process corresponding to the method 100 of the embodiment of the present disclosure, and each unit / module in the terminal device 700 and the other operations and / or functions described above are implemented to implement the corresponding method in the method 100. For the sake of brevity, we will not repeat them here.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 8, the network device 800 includes:
  • the sending module 802 may be configured to send DCI, where the DCI includes a resource indication domain, and the resource indication domain includes at least one of a frequency domain resource indication domain and a time domain resource indication domain, where the frequency domain resource indication domain is used for Indicating frequency domain resources occupied by SRS transmission, and the time domain resource indication domain is used to indicate time domain resources occupied by SRS transmission;
  • the receiving module 804 may be configured to receive the SRS on a resource indicated by the resource indication domain.
  • the resources occupied by SRS transmission are configured by DCI instead of RRC signaling.
  • DCI configuration is convenient and flexible, and solves the problems of poor flexibility and delay of SRS resource configuration caused by RRC signaling configuration.
  • the terminal device can realize flexible transmission of the SRS, which is convenient for improving the coverage performance and capacity of the SRS.
  • the resource indication field includes a frequency domain resource indication field, and the frequency domain resource indication field indicates at least one of a number of physical resource blocks occupied by the SRS transmission and a starting physical resource block. .
  • the resource indication field includes a frequency domain resource indication field, and the frequency domain resource indication field indicates a frequency hopping bandwidth B SRS and C SRS occupied by the SRS transmission, so that the terminal device is based on the The frequency hopping bandwidths B SRS and C SRS determine frequency domain resources occupied by the SRS transmission.
  • the resource indication field includes a time domain resource indication field, and the time domain resource indication field indicates at least one of a number of symbols occupied by the SRS transmission and a start symbol identifier.
  • the number of physical resource blocks occupied by the SRS transmission is a positive integer multiple of n, where n is a positive integer greater than 1.
  • the DCI may indicate resources occupied by SRS transmission in at least one carrier.
  • the DCI indicates the resources occupied by the SRS transmission of at least one carrier, which can save signaling overhead.
  • the DCI can indicate the resources occupied by the SRS transmission across the carriers, and realizes flexible indication.
  • the DCI may indicate resources occupied by SRS transmission in at least one time slot or at least one subframe.
  • the DCI indicates resources occupied by SRS transmission of at least one time slot or at least one subframe, which can save signaling overhead.
  • the format of the DCI is the same as the DCI format indicating the physical uplink shared channel PUSCH or PDSCH transmission.
  • the format of the DCI is a predefined format, where the predefined format is different from a DCI format indicating PUSCH or PDSCH transmission.
  • the cyclic redundancy check CRC of the DCI is scrambled through a first wireless network temporary identifier RNTI, and the first RNTI includes:
  • the SRS and the preset SRS are time-multiplexed and transmitted, where:
  • the resources occupied by the preset SRS transmission are indicated by a preset DCI, and a CRC of the preset DCI is scrambled by a second RNTI, and the first RNTI and the second RNTI are different.
  • the time domain position counter of the SRS transmission includes at least a symbol identifier occupied by the SRS transmission.
  • the above SRS does not occupy symbols used for DMRS transmission.
  • the network device 800 may refer to the process corresponding to the method 600 of the embodiment of the present disclosure, and each unit / module in the network device 800 and the other operations and / or functions described above are implemented in order to implement the corresponding method 600. For the sake of brevity, we will not repeat them here.
  • FIG. 9 is a block diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 900 shown in FIG. 9 includes: at least one processor 901, a memory 902, at least one network interface 904, and a user interface 903.
  • the various components in the terminal device 900 are coupled together by a bus system 905. It can be understood that the bus system 905 is used to implement connection and communication between these components.
  • the bus system 905 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, various buses are marked as the bus system 905 in FIG. 9.
  • the user interface 903 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touch pad, or a touch screen).
  • a pointing device for example, a mouse, a trackball, a touch pad, or a touch screen.
  • the memory 902 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct RAMbus RAM Direct RAMbus RAM
  • the memory 902 of the systems and methods described in embodiments of the present disclosure is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 902 stores the following elements, executable modules or data structures, or a subset of them, or their extended set: an operating system 9021 and an application program 9022.
  • the operating system 9021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 9022 includes various application programs, such as a media player (Player), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 9022.
  • the terminal device 900 further includes a program stored in the memory 902 and executable on the processor 901.
  • steps of the method 100 are implemented as follows.
  • the methods disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 901, or implemented by the processor 901.
  • the processor 901 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using hardware integrated logic circuits or instructions in the form of software in the processor 901.
  • the above-mentioned processor 901 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed by a hardware decoding processor, or may be executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the computer-readable storage medium is located in the memory 902, and the processor 901 reads information in the memory 902 and completes the steps of the foregoing method in combination with its hardware.
  • a program is stored on the computer-readable storage medium, and when the program is executed by the processor 901, each step of the method 100 embodiment is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPs), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, other for performing functions described in this disclosure Electronic unit or combination thereof.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPs digital signal processing devices
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller microcontroller
  • microprocessor other for performing functions described in this disclosure Electronic unit or combination thereof.
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the terminal device 900 can implement the processes implemented by the terminal device in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • FIG. 10 is a structural diagram of a network-side device applied in an embodiment of the present disclosure, which can implement the details of method embodiment 600 and achieve the same effect.
  • the network-side device 1000 includes: a processor 1001, a transceiver 1002, a memory 1003, and a bus interface, where:
  • the network-side device 1000 further includes a program stored in the memory 1003 and executable on the processor 1001, and the steps of the method 600 are implemented when the program is executed by the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 1002 may be multiple elements, including a transmitter and a receiver, providing a unit for communicating with various other devices over a transmission medium.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a program is stored on the computer-readable storage medium, and when the program is executed by a processor, each process of the foregoing method embodiment 100 and method embodiment 600 is implemented, and can achieve the same Technical effects, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on this understanding, the technical solution of the present disclosure that is essentially or contributes to the existing technology can be embodied in the form of a software product that is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present disclosure.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种SRS传输方法、终端设备和网络设备。所述方法包括:接收下行控制信息DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;基于所述资源指示域确定所述SRS发送占用的资源;在所述资源上发送所述SRS。

Description

探测参考信号传输方法、终端设备和网络设备
相关申请的交叉引用
本申请主张在2018年9月5日在中国提交的中国专利申请No.201811034161.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信领域,尤其涉及一种探测参考信号(Sounding Reference Signal,SRS)传输方法、终端设备和网络设备。
背景技术
现有移动通信系统中,SRS占用的资源通是过无线资源控制(Radio Resource Control,RRC)信令进行配置,然而,高层信令重配会导致时延较大,导致SRS资源配置的灵活性较差。因此,为增强SRS的覆盖性能和容量,提升SRS信道估计性能,需要支持更加灵活的SRS资源配置方案。
发明内容
本公开实施例的目的是提供一种SRS传输方法、终端设备和网络设备,用以解决相关技术中SRS资源配置灵活性差的问题。
第一方面,本公开实施例提供了一种SRS传输方法,应用于终端设备,所述方法包括:接收下行控制信息(Downlink Control Information,DCI),所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;基于所述资源指示域确定所述SRS发送占用的资源;在所述资源上发送所述SRS。
第二方面,本公开实施例提供了一种SRS传输方法,应用于网络设备,所述方法包括:发送DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送 占用的时域资源;在所述资源指示域指示的资源上接收所述SRS。
第三方面,本公开实施例提供了一种终端设备,该终端设备包括:接收模块,用于接收DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;资源确定模块,用于基于所述资源指示域确定所述SRS发送占用的资源;发送模块,用于在所述资源上发送所述SRS。
第四方面,本公开实施例提供了一种网络设备,该网络设备包括:发送模块,用于发送DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;接收模块,用于在所述资源指示域指示的资源上接收所述SRS。
第五方面,本公开实施例提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的SRS传输方法的步骤。
第六方面,本公开实施例提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的SRS传输方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储程序,所述程序被处理器执行时实现如第一方面和第二方面所述的SRS传输方法的步骤。
在本公开上述各个实施例中,SRS发送占用的资源是由DCI配置而非RRC信令配置,DCI配置方便灵活,解决了RRC信令配置导致的SRS资源配置灵活性差、时延较大的问题。同时,本公开实施例可以通过动态的SRS资源指示方式,终端设备能够实现SRS的灵活传输,便于提高SRS的覆盖性能和容量。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部 分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开的一些实施例的SRS传输方法的示意性流程图;
图2是根据本公开的一些实施例的SRS传输方法频域资源指示示意图;
图3是根据本公开的一些实施例的SRS传输方法时域资源指示示意图;
图4是根据本公开的一些实施例的SRS传输方法提供的不同信号时分传输示意图;
图5是根据本公开的一些实施例的SRS传输方法提供的不同信号冲突丢弃示意图;
图6是根据本公开的一些实施例的SRS传输方法的示意性流程图;
图7是根据本公开的一些实施例的终端设备的结构示意图;
图8是根据本公开的一些实施例的网络设备的结构示意图;
图9是根据本公开的一些实施例的终端设备的结构示意图;
图10是根据本公开的一些实施例的网络设备的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide  Interoperability for Microwave Access,WiMAX)通信系统、第五代(5-th Generation、5G)移动通信系统,或者说新无线(New Radio,NR)系统,或者为后续演进通信系统。
在本公开实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本公开实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(Evolved NodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信系统中的网络设备等等,然用词并不构成限制。
如图1所示,本公开的一些实施例提供一种SRS传输方法100,该方法可以应用于终端设备,包括如下步骤:S102、S104和S106。
S102:接收DCI,所述DCI包括资源指示域。
该步骤中,上述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,也即网络设备发送的DCI中可以仅包含频域资源指示域;也可以仅包含时域资源指示域;还可以同时包括频域资源指示域和时域资源指示域。
上述频域资源指示域可以用来指示SRS发送占用的频域资源;时域资源指示域可以用来指示SRS发送占用的时域资源。
本公开实施例中提到的SRS,可以具体是非周期触发的探测参考信号(Aperiodic Sounding Reference Signal,AP-SRS),或者是半持续探测参考信号(Semi-persistent Sounding Reference Signal,SP-SRS)。
可选地,本公开各个实施例中接收的DCI的格式,与指示物理上行共享 信道(Physical Uplink Shared Channel,PUSCH)或指示物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的DCI格式相同,也即:该步骤中接收的DCI的格式是复用指示PUSCH传输的DCI格式,或者复用指示PDSCH传输的DCI格式。
通过上述DCI格式复用的方式,避免网络设备配置较多的DCI格式。
可选地,上述DCI的格式还可以为其它的预定义格式,该处提到的预定义格式与指示PUSCH或指示PDSCH传输的DCI格式不同,具体可以是后续演进通信系统中新定义的DCI格式,或者是现有通信系统中的其他DCI格式等等。通过上述DCI格式为其它的预定义格式的方式,方便DCI的灵活实现。
S104:基于所述资源指示域确定所述SRS发送占用的资源。
该步骤中确定的SRS发送占用的资源,具体可以包括时域资源和频域资源,具体如下:
如果DCI中仅包含频域资源指示域,则可以基于该频域资源指示域确定SRS发送占用的频域资源。SRS发送占用的时域资源由高层信令配置。
如果DCI中仅包含时域资源指示域,则可以基于该时域资源指示域确定SRS发送占用的时域资源。SRS发送占用的频域资源由高层信令配置。
如果DCI中同时包括频域资源指示域和时域资源指示域,则可以基于该频域资源指示域确定SRS发送占用的频域资源,同时基于该时域资源指示域确定SRS发送占用的时域资源。
S106:在所述资源上发送所述SRS。
该实施例中,可选地,SRS传输的其他相关参数可以通过高层信令进行半静态配置,上述其他参数例如包括:最大梳齿数和实际传输占用梳齿数;循环移位;特殊子帧占用符号数;周期和时域偏移量;起始占用资源块;跳频带宽和天线端口等。可选地,SRS传输的总带宽可以通过高层信令通知。
本公开实施例提供的SRS传输方法,SRS发送占用的资源是由DCI配置而非RRC信令配置,DCI配置方便灵活,解决了RRC信令配置导致的SRS资源配置灵活性差、时延较大的问题。同时,本公开实施例通过动态的SRS资源指示方式,终端设备能够实现SRS的灵活传输,便于提高SRS的覆盖性能和容量。
可选地,本公开实施例中,上述SRS不占用解调参考信号(DeModulation Reference Signal,DMRS)传输使用的符号,也即上述SRS传输使用的符号和DMRS传输使用的符号不同。
可选地,本公开实施例中,上述DCI可以指示至少一个载波中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个载波的SRS发送占用的资源,能够节约信令开销,同时,DCI可跨载波指示SRS发送占用资源,实现灵活指示。
可选地,本公开实施例中,上述DCI可以指示至少一个时隙或至少一个子帧中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个时隙或至少一个子帧的SRS发送占用的资源,能够节约信令开销。
在图1所示的实施例中提到,终端设备接收到的DCI中包括资源指示域,该资源指示域可以包括频域资源指示域,这样,图1所示的实施例中的步骤S104可以执行如下:
基于所述频域资源指示域确定所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。也即频域资源指示域可以用来指示SRS发送占用的物理资源块数(起始物理资源块可以由高层信令配置);还可以用来指示SRS发送占用的起始物理资源块(物理资源块数可以由高层信令配置);还可以同时用来指示SRS发送占用的起始物理资源块和物理资源块数。
为详细说明,参见图2所示的实施例。该实施例中,终端设备首先接收来自于网络设备的DCI,该DCI可以是格式0,也即该DCI复用指示PUSCH传输的DCI格式,上述接收到的DCI触发AP-SRS发送。
可选地,该DCI的循环冗余校验(Cyclic Redundancy Check,CRC)通过第一无线网络临时标识(Radio Network Temporary Identity,RNTI)进行加扰,所述第一RNTI可以是如下三者中的一种:
探测参考信号无线网络临时标识(Sounding Reference Signal-Radio Network Temporary Identity,SRS-RNTI)、非周期触发的探测参考信号无线网络临时标识(Aperiodic Sounding Reference Signal-Radio Network Temporary Identity,AP-SRS-RNTI)以及半持续探测参考信号无线网络临时标识(Semi-persistent Sounding Reference Signal-Radio Network Temporary Identity, SP-SRS-RNTI)。
上述DCI中包含频域资源指示域,该频域资源指示域指示了SRS发送占用的起始物理资源块位置0和占用的物理资源块数4,具体见图2。
这样,终端设备在接收到DCI后,根据SRS资源指示域指示的起始物理资源块位置0和占用的物理资源块数4,即可在上述物理资源块上传输AP-SRS,即在0-3共4个物理资源块(Physical Resource Block,PRB)上传输AP-SRS。
在图1所示的实施例中提到接收到的DCI中包括资源指示域,该资源指示域可以包括频域资源指示域,这样,图1所示的实施例中的步骤S104具体执行如下:
基于所述频域资源指示域确定所述SRS发送占用的跳频带宽B SRS和C SRS
基于所述跳频带宽B SRS和C SRS确定所述SRS发送占用的频域资源,为详细说明,以下将结合一个具体的实施例进行描述。
该实施例中,终端设备首先接收来自于网络设备的DCI,该DCI可以是格式8,也即该DCI格式为新定义格式,上述接收到的DCI触发AP-SRS发送。
可选地,该DCI的CRC通过第一RNTI进行加扰,该第一RNTI包括如下一种:SRS-RNTI、AP-SRS-RNTI或SP-SRS-RNTI。
上述DCI中包含频域资源指示域,该频域资源指示域指示了SRS发送占用的跳频带宽B SRS为0,C SRS为0。
这样,终端设备在接收到DCI后,根据跳频带宽B SRS和C SRS取值得到AP-SRS传输占用频域资源,即0-95共96个PRB,则可以在上述资源块上发送AP-SRS。
在上述几个实施例中,SRS发送占用的物理资源块数可以是n的正整数倍,其中,n是大于1的正整数,在一个具体的实施例中,上述n等于4。通过上述设置,DCI可以一次同时指示多个物理资源块,便于节约信令开销。
上述几个实施例中提到DCI包括资源指示域,该资源指示域可以同时包括频域资源指示域和时域资源指示域,这样,除了前文几个实施例介绍的频域资源确定方式之外,图1所示的实施例中的步骤S104还可以用来确定SRS 发送占用的时域资源,具体执行如下:
基于所述时域资源指示域确定SRS发送占用的符号个数和起始符号标识中的至少一种,也即时域资源指示域可以用来指示SRS发送占用的符号个数(起始符号标识可以由高层信令配置);还可以是用来指示SRS发送占用的起始符号标识(符号个数可以由高层信令配置);还可以是同时用来指示SRS发送占用的起始符号标识和符号个数。为详细说明,参见图3所示的实施例。
该实施例中,终端设备首先接收来自于网络设备的DCI,该DCI可以是格式8,也即该DCI格式为新定义格式,接收到的DCI触发AP-SRS发送。
上述DCI的CRC可以采用SRS-RNTI、AP-SRS-RNTI或SP-SRS-RNTI进行加扰。
上述DCI中包含时域资源指示域,如图3所示,该时域资源指示域指示了SRS发送占用的起始符号标识0和符号个数为4。
这样,终端设备在接收到DCI后,根据SRS时域资源指示域指示的起始符号标识0和符号个数4,即0-3共4个符号,则可以在上述四个符号上发送AP-SRS。
在前文几个实施例中介绍了本公开实施例接收到的DCI的CRC是通过第一RNTI进行加扰。可选地,网络设备还可以发送预设DCI,该预设DCI的CRC通过第二RNTI进行加扰,上述预设DCI可以用来指示预设SRS发送占用的资源,具体的指示方式可以参照本公开实施例提供的SRS传输方法。
需要说明的,上述提到的预设DCI和预设SRS,只是为了和本公开实施例提供的SRS传输方法中的DCI和SRS进行区分,其中的“预设”两字不代表具体含义。
上述第一RNTI和所述第二RNTI不同,具体地,第二RNTI可以是SRS-RNTI、AP-SRS-RNTI以及SP-SRS-RNTI之外的其他RNTI。
这样,上述SRS和预设SRS可以时分复用传输,为详细说明,以下将结合图4所示的实施例进行介绍。
如图4所示,Legacy SRS(LTE R8 SRS,也即上述提到的预设SRS)与演进的SRS(LTE Rel-16 SRS,也即本公开实施例中提到的SRS)采用时分复用方式传输,在一个子帧内,Legacy SRS占用最后一个符号传输,演进的 SRS占用最后一个符号之前的4个符号传输。
可选地,如果SRS与预设SRS占用的时域资源发送冲突,则优先传输所述SRS,不发送所述预设SRS或丢弃所述预设SRS;或者,不发送所述预设SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述SRS占用的符号重叠。
可选地,如果所述SRS与所述预设SRS占用的时域资源发送冲突,则优先传输所述预设SRS,不发送所述SRS或丢弃所述SRS;或者,不发送所述SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述预设SRS用的符号重叠。为详细说明,以下将结合图5所示的实施例进行介绍。
如图5所示,Legacy SRS(LTE R8 SRS,也即预设SRS)与演进的SRS(LTE Rel-16 SRS,也即本公开实施例中提到的SRS,图5中显示的是Enhanced SRS)占用的时域资源中,至少有一个符号发生重叠,则Legacy SRS优先传输,演进的SRS全部丢弃。
在前文几个实施例中,SRS传输的时域位置计数器至少包含SRS传输占用的符号标识。具体地,如果所述SRS包括SP-SRS或周期性探测参考信号P-SRS,则可以基于如下两个公式确定所述SP-SRS或P-SRS的传输时域位置:
Figure PCTCN2019102510-appb-000001
Figure PCTCN2019102510-appb-000002
上述公式1适用于时分双工(Time Division Duplexing,TDD)系统SRS周期为2毫秒,上述公式2适用于公式1之外的其它情况。
在上述公式1和公式2中:
n SRS表示所述SRS传输的时域位置;
l表示所述SRS在子帧中的位置,也即SRS传输占用的符号标识;
n f表示无线帧号;
n s表示无线帧中的时隙号;
N SP表示无线帧中的切换点数;
T SRS表示所述SRS的周期;
T offset表示所述SRS的子帧偏移量;
T offset_max表示T offset的最大值。
可选地,对于普通循环前缀,l的取值范围为[0,13]或[0,12]或[0,3]或[10,13]或[9,13]或[9,12]或[0,2]或[4,9]或[11,13]中至少之一;
对于扩展循环前缀,l的取值范围为[0,11]或[0,10]或[0,3]或[8,11]或[7,11]或[7,10]或[0,1]或[3,7]或[9,11]中至少之一。
以上各个实施例介绍的SRS传输方法均可以应用于终端设备侧,图6是本公开实施例的SRS传输方法实现流程示意图,可以应用在网络设备侧。如图6所示,该方法600包括:步骤S602和S604。
S602:发送DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种。
所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源。
该步骤的其他公开不足之处可以对应参见图1所示的实施例的步骤S102。
S604:在所述资源指示域指示的资源上接收SRS。
本公开实施例提供的SRS传输方法,SRS发送占用的资源是由DCI配置而非RRC信令配置,DCI配置方便灵活,解决了RRC信令配置导致的SRS资源配置灵活性差、时延较大的问题。同时,本公开实施例通过动态的SRS资源指示方式,终端设备能够实现SRS的灵活传输,便于提高SRS的覆盖性能和容量。
可选地,所述资源指示域包括频域资源指示域,所述频域资源指示域指示所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。也即频域资源指示域可以用来指示SRS发送占用的物理资源块数(起始物理资源块可以由高层信令配置);还可以用来指示SRS发送占用的起始物理资源块(物理资源块数可以由高层信令配置);还可以同时用来指示SRS发送占用的起始物理资源块和物理资源块数。具体可以参见图2所示的实施例
可选地,所述资源指示域包括频域资源指示域,所述频域资源指示域指示所述SRS发送占用的跳频带宽B SRS和C SRS,以使终端设备基于所述跳频带宽 B SRS和C SRS确定所述SRS发送占用的频域资源。
可选地,所述资源指示域包括时域资源指示域,所述时域资源指示域指示所述SRS发送占用的符号个数和起始符号标识中的至少一种。也即时域资源指示域可以用来指示SRS发送占用的符号个数(起始符号标识可以由高层信令配置);还可以用来指示SRS发送占用的起始符号标识(符号个数可以由高层信令配置);还可以同时用来指示SRS发送占用的起始符号标识和符号个数,可以参见图3所示的实施例。
可选地,所述SRS发送占用的物理资源块数是n的正整数倍,其中,n是大于1的正整数。在一个具体的实施例中,上述n等于4。通过上述设置,DCI可以一次同时指示多个物理资源块,便于节约信令开销。
可选地,本公开实施例中,上述DCI可以指示至少一个载波中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个载波的SRS发送占用的资源,能够节约信令开销,同时,DCI可跨载波指示SRS发送占用资源,实现灵活指示。
可选地,本公开实施例中,上述DCI可以指示至少一个时隙或至少一个子帧中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个时隙或至少一个子帧的SRS发送占用的资源,能够节约信令开销。
可选地,所述DCI的格式与指示PUSCH或PDSCH传输的DCI格式相同。该步骤中接收的DCI的格式是复用指示PUSCH传输的DCI格式,或者复用指示PDSCH传输的DCI格式。
通过上述DCI格式复用的方式,避免网络设备配置较多的DCI格式。
可选地,所述DCI的格式为预定义格式,其中,所述预定义格式与指示PUSCH或PDSCH传输的DCI格式不同。具体可以是后续演进通信系统中新定义的DCI格式,或者是现有通信系统中的其他DCI格式等等。通过上述DCI格式为其它的预定义格式的方式,方便DCI的灵活实现。
可选地,所述DCI的循环冗余校验CRC通过第一RNTI进行加扰,所述第一RNTI包括:SRS-RNTI、AP-SRS-RNTI或SP-SRS-RNTI。
可选地,所述SRS和预设SRS时分复用传输,其中,所述预设SRS发送占用的资源是由预设DCI指示,所述预设DCI的CRC通过第二RNTI进 行加扰,所述第一RNTI和所述第二RNTI不同。
可选地,所述SRS传输的时域位置计数器至少包含所述SRS传输占用的符号标识。
可选地,作为一些实施例,上述SRS不占用DMRS传输使用的符号。
以上结合图1至图6详细描述了根据本公开实施例的SRS传输方法。下面将结合图7详细描述根据本公开实施例的终端设备。
图7是根据本公开实施例的终端设备的结构示意图。如图7所示,终端设备700包括:
接收模块702,可以用于接收DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
资源确定模块704,可以用于基于所述资源指示域确定所述SRS发送占用的资源;
发送模块706,可以用于在所述资源上发送所述SRS。
本公开实施例提供的终端设备,SRS发送占用的资源是由DCI配置而非RRC信令配置,DCI配置方便灵活,解决了RRC信令配置导致的SRS资源配置灵活性差、时延较大的问题。同时,本公开实施例通过动态的SRS资源指示方式,终端设备能够实现SRS的灵活传输,便于提高SRS的覆盖性能和容量。
可选地,作为一些实施例,所述资源指示域包括频域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
基于所述频域资源指示域确定所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。也即频域资源指示域可以用来指示SRS发送占用的物理资源块数(起始物理资源块可以由高层信令配置);还可以用来指示SRS发送占用的起始物理资源块(物理资源块数可以由高层信令配置);还可以同时用来指示SRS发送占用的起始物理资源块和物理资源块数。
可选地,作为一些实施例,所述资源指示域包括频域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
基于所述频域资源指示域确定所述SRS发送占用的跳频带宽B SRS和C SRS
基于所述跳频带宽B SRS和C SRS确定所述SRS发送占用的频域资源。
可选地,作为一些实施例,所述资源指示域包括时域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
基于所述时域资源指示域确定所述SRS发送占用的符号个数和起始符号标识中的至少一种。也即时域资源指示域可以用来指示SRS发送占用的符号个数(起始符号标识可以由高层信令配置);还可以用来指示SRS发送占用的起始符号标识(符号个数可以由高层信令配置);还可以同时用来指示SRS发送占用的起始符号标识和符号个数。为详细说明,参见图3所示的实施例。
可选地,作为一些实施例,所述SRS发送占用的物理资源块数是n的正整数倍,其中,n是大于1的正整数,在一个具体的实施例中,上述n等于4。通过上述设置,DCI可以一次同时指示多个物理资源块,便于节约信令开销。
可选地,本公开实施例中,上述DCI可以指示至少一个载波中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个载波的SRS发送占用的资源,能够节约信令开销,同时,DCI可跨载波指示SRS发送占用资源,实现灵活指示。
可选地,本公开实施例中,上述DCI可以指示至少一个时隙或至少一个子帧中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个时隙或至少一个子帧的SRS发送占用的资源,能够节约信令开销。
可选地,作为一些实施例,所述DCI的格式与指示物理上行共享信道PUSCH或物理下行共享信道PDSCH传输的DCI格式相同。
可选地,作为一些实施例,所述DCI的格式为预定义格式,其中,所述预定义格式与指示PUSCH或PDSCH传输的DCI格式不同。
可选地,作为一些实施例,所述DCI的循环冗余校验CRC通过第一无线网络临时标识RNTI进行加扰,所述第一RNTI包括:SRS-RNTI、AP-SRS-RNTI或SP-SRS-RNTI。
可选地,作为一些实施例,所述SRS和预设SRS时分复用传输,其中,
所述预设SRS发送占用的资源是由预设DCI指示,所述预设DCI的CRC通过第二RNTI进行加扰,所述第一RNTI和所述第二RNTI不同。
可选地,作为一些实施例,如果所述SRS与所述预设SRS占用的时域资源发送冲突,则
优先传输所述SRS,不发送所述预设SRS或丢弃所述预设SRS;或者,不发送所述预设SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述SRS占用的符号重叠。
可选地,作为一些实施例,如果所述SRS与所述预设SRS占用的时域资源发送冲突,则
优先传输所述预设SRS,不发送所述SRS或丢弃所述SRS;或者,不发送所述SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述预设SRS用的符号重叠。
可选地,作为一些实施例,所述SRS传输的时域位置计数器至少包含所述SRS传输占用的符号标识。
可选地,作为一些实施例,上述SRS不占用DMRS传输使用的符号。
根据本公开实施例的终端设备700可以参照对应本公开实施例的方法100的流程,并且,该终端设备700中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,为了简洁,在此不再赘述。
图8是根据本公开实施例的网络设备的结构示意图。如图8所述,网络设备800包括:
发送模块802,可以用于发送DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
接收模块804,可以用于在所述资源指示域指示的资源上接收所述SRS。
本公开实施例提供的网络设备,SRS发送占用的资源是由DCI配置而非RRC信令配置,DCI配置方便灵活,解决了RRC信令配置导致的SRS资源配置灵活性差、时延较大的问题。同时,本公开实施例通过动态的SRS资源指示方式,终端设备能够实现SRS的灵活传输,便于提高SRS的覆盖性能和容量。
可选地,作为一些实施例,所述资源指示域包括频域资源指示域,所述 频域资源指示域指示所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。
可选地,作为一些实施例,所述资源指示域包括频域资源指示域,所述频域资源指示域指示所述SRS发送占用的跳频带宽B SRS和C SRS,以使终端设备基于所述跳频带宽B SRS和C SRS确定所述SRS发送占用的频域资源。
可选地,作为一些实施例,所述资源指示域包括时域资源指示域,所述时域资源指示域指示所述SRS发送占用的符号个数和起始符号标识中的至少一种。
可选地,作为一些实施例,所述SRS发送占用的物理资源块数是n的正整数倍,其中,n是大于1的正整数。
可选地,本公开实施例中,上述DCI可以指示至少一个载波中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个载波的SRS发送占用的资源,能够节约信令开销,同时,DCI可跨载波指示SRS发送占用资源,实现灵活指示。
可选地,本公开实施例中,上述DCI可以指示至少一个时隙或至少一个子帧中SRS发送占用的资源。通过上述实施方式,DCI指示至少一个时隙或至少一个子帧的SRS发送占用的资源,能够节约信令开销。
可选地,作为一些实施例,所述DCI的格式与指示物理上行共享信道PUSCH或PDSCH传输的DCI格式相同。
可选地,作为一些实施例,所述DCI的格式为预定义格式,其中,所述预定义格式与指示PUSCH或PDSCH传输的DCI格式不同。
可选地,作为一些实施例,所述DCI的循环冗余校验CRC通过第一无线网络临时标识RNTI进行加扰,所述第一RNTI包括:
探测参考信号无线网络临时标识SRS-RNTI、非周期触发的探测参考信号无线网络临时标识AP-SRS-RNTI或半持续探测参考信号无线网络临时标识SP-SRS-RNTI。
可选地,作为一些实施例,所述SRS和预设SRS时分复用传输,其中,
所述预设SRS发送占用的资源是由预设DCI指示,所述预设DCI的CRC通过第二RNTI进行加扰,所述第一RNTI和所述第二RNTI不同。
可选地,作为一些实施例,所述SRS传输的时域位置计数器至少包含所述SRS传输占用的符号标识。
可选地,作为一些实施例,上述SRS不占用DMRS传输使用的符号。
根据本公开实施例的网络设备800可以参照对应本公开实施例的方法600的流程,并且,该网络设备800中的各个单元/模块和上述其他操作和/或功能分别为了实现方法600中的相应流程,为了简洁,在此不再赘述。
图9是本公开另一些实施例的终端设备的框图。图9所示的终端设备900包括:至少一个处理器901、存储器902、至少一个网络接口904和用户接口903。终端设备900中的各个组件通过总线系统905耦合在一起。可理解,总线系统905用于实现这些组件之间的连接通信。总线系统905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统905。
其中,用户接口903可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器902可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器902旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器902存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统9021和应用程序9022。
其中,操作系统9021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序9022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序9022中。
在本公开实施例中,终端设备900还包括:存储在存储器上902并可在处理器901上运行的程序,程序被处理器901执行时实现如下方法100的步骤。
上述本公开实施例揭示的方法可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器901可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有程序,程序被处理器901执行时实现如上述方法100实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device, DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备900能够实现前述实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
请参阅图10,图10是本公开实施例应用的网络侧设备的结构图,能够实现方法实施例600的细节,并达到相同的效果。如图10所示,网络侧设备1000包括:处理器1001、收发机1002、存储器1003和总线接口,其中:
在本公开实施例中,网络侧设备1000还包括:存储在存储器上1003并可在处理器1001上运行的程序,程序被处理器1001、执行时实现方法600的步骤。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有程序,该程序被处理器执行时实现上述方法实施例100和方法实施例600的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意 在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (32)

  1. 一种探测参考信号SRS传输方法,应用于终端设备,包括:
    接收下行控制信息DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
    基于所述资源指示域确定所述SRS发送占用的资源;
    在所述资源上发送所述SRS。
  2. 如权利要求1所述的方法,其中,所述资源指示域包括频域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
    基于所述频域资源指示域确定所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。
  3. 如权利要求1所述的方法,其中,所述资源指示域包括频域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
    基于所述频域资源指示域确定所述SRS发送占用的跳频带宽B SRS和C SRS
    基于所述跳频带宽B SRS和C SRS确定所述SRS发送占用的频域资源。
  4. 如权利要求1至3中任一项所述的方法,其中,所述资源指示域包括时域资源指示域,所述基于所述资源指示域确定所述SRS发送占用的资源包括:
    基于所述时域资源指示域确定所述SRS发送占用的符号个数和起始符号标识中的至少一种。
  5. 如权利要求4所述的方法,其中,所述SRS发送占用的物理资源块数是n的正整数倍,其中,n是大于1的正整数。
  6. 如权利要求1所述的方法,其中,
    所述DCI指示至少一个载波的SRS发送占用的资源。
  7. 如权利要求1所述的方法,其中,
    所述DCI指示至少一个时隙或子帧的SRS发送占用的资源。
  8. 如权利要求1所述的方法,其中,
    所述DCI的格式与指示物理上行共享信道PUSCH或物理下行共享信道PDSCH传输的DCI格式相同。
  9. 如权利要求1所述的方法,其中,
    所述DCI的格式为预定义格式,其中,所述预定义格式与指示PUSCH或PDSCH传输的DCI格式不同。
  10. 如权利要求8或9所述的方法,其中,所述DCI的循环冗余校验CRC通过第一无线网络临时标识RNTI进行加扰,所述第一RNTI包括探测参考信号无线网络临时标识SRS-RNTI、非周期触发的探测参考信号无线网络临时标识AP-SRS-RNTI或半持续探测参考信号无线网络临时标识SP-SRS-RNTI。
  11. 如权利要求10所述的方法,其中,所述SRS和预设SRS时分复用传输,其中,
    所述预设SRS发送占用的资源是由预设DCI指示,所述预设DCI的CRC通过第二RNTI进行加扰,所述第一RNTI和所述第二RNTI不同。
  12. 如权利要求11所述的方法,其中,
    如果所述SRS与所述预设SRS占用的时域资源发送冲突,则
    优先传输所述SRS,不发送所述预设SRS或丢弃所述预设SRS;或者,不发送所述预设SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述SRS占用的符号重叠。
  13. 如权利要求11所述的方法,其中,
    如果所述SRS与所述预设SRS占用的时域资源发送冲突,则
    优先传输所述预设SRS,不发送所述SRS或丢弃所述SRS;或者,不发送所述SRS中的部分信号或丢弃所述部分信号,其中,所述部分信号占用的符号与所述预设SRS用的符号重叠。
  14. 如权利要求1所述的方法,其中,
    所述SRS传输的时域位置计数器至少包含所述SRS传输占用的符号标识。
  15. 如权利要求1所述的方法,其中,
    所述SRS不占用解调参考信号DMRS传输使用的符号。
  16. 一种SRS传输方法,应用于网络设备,包括:
    发送下行控制信息DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
    在所述资源指示域指示的资源上接收所述SRS。
  17. 如权利要求16所述的方法,其中,所述资源指示域包括频域资源指示域,所述频域资源指示域指示所述SRS发送占用的物理资源块数和起始物理资源块中的至少一种。
  18. 如权利要求16所述的方法,其中,所述资源指示域包括频域资源指示域,所述频域资源指示域指示所述SRS发送占用的跳频带宽B SRS和C SRS,以使终端设备基于所述跳频带宽B SRS和C SRS确定所述SRS发送占用的频域资源。
  19. 如权利要求16至18中任一项所述的方法,其中,所述资源指示域包括时域资源指示域,所述时域资源指示域指示所述SRS发送占用的符号个数和起始符号标识中的至少一种。
  20. 如权利要求19所述的方法,其中,所述SRS发送占用的物理资源块数是n的正整数倍,其中,n是大于1的正整数。
  21. 如权利要求16所述的方法,其中,
    所述DCI指示至少一个载波的SRS发送占用的资源。
  22. 如权利要求16所述的方法,其中,
    所述DCI指示至少一个时隙或子帧的SRS发送占用的资源。
  23. 如权利要求16所述的方法,其中,
    所述DCI的格式与指示PUSCH或PDSCH传输的DCI格式相同。
  24. 如权利要求16所述的方法,其中,
    所述DCI的格式为预定义格式,其中,所述预定义格式与指示PUSCH或PDSCH传输的DCI格式不同。
  25. 如权利要求23或24所述的方法,其中,所述DCI的CRC通过第一RNTI进行加扰,所述第一RNTI包括SRS-RNTI、AP-SRS-RNTI或SP-SRS-RNTI。
  26. 如权利要求25所述的方法,其中,所述SRS和预设SRS时分复用传输,其中,
    所述预设SRS发送占用的资源是由预设DCI指示,所述预设DCI的CRC通过第二RNTI进行加扰,所述第一RNTI和所述第二RNTI不同。
  27. 如权利要求16所述的方法,其中,
    所述SRS传输的时域位置计数器至少包含所述SRS传输占用的符号标识。
  28. 一种终端设备,包括:
    接收模块,用于接收下行控制信息DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
    资源确定模块,用于基于所述资源指示域确定所述SRS发送占用的资源;
    发送模块,用于在所述资源上发送所述SRS。
  29. 一种网络设备,包括:
    发送模块,用于发送下行控制信息DCI,所述DCI包括资源指示域,所述资源指示域包括频域资源指示域和时域资源指示域中的至少一种,所述频域资源指示域用于指示SRS发送占用的频域资源,所述时域资源指示域用于指示所述SRS发送占用的时域资源;
    接收模块,用于在所述资源指示域指示的资源上接收所述SRS。
  30. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至15中任一项所述的SRS传输方法的步骤。
  31. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求16至27中任一项所述的SRS传输方法的步骤。
  32. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如权利要求1至15中任一项所述的SRS传输方法的步骤、或如权利要求16至27中任一项所述的SRS传输方法的步骤。
PCT/CN2019/102510 2018-09-05 2019-08-26 探测参考信号传输方法、终端设备和网络设备 WO2020048332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811034161.7 2018-09-05
CN201811034161.7A CN110880960B (zh) 2018-09-05 2018-09-05 探测参考信号传输方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2020048332A1 true WO2020048332A1 (zh) 2020-03-12

Family

ID=69722727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102510 WO2020048332A1 (zh) 2018-09-05 2019-08-26 探测参考信号传输方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN110880960B (zh)
WO (1) WO2020048332A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337946A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 探测参考信号配置方法、终端及网络侧设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541899B (zh) * 2020-04-21 2023-07-04 维沃移动通信有限公司 Srs的频域参数更新方法和设备
CN113541901A (zh) * 2020-04-22 2021-10-22 维沃移动通信有限公司 非周期srs的时隙偏移指示方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站
CN102083033A (zh) * 2010-09-13 2011-06-01 大唐移动通信设备有限公司 非周期探测参考信号的传输指示及传输方法、设备
CN102104973A (zh) * 2010-05-31 2011-06-22 电信科学技术研究院 非周期srs的传输方法和设备
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500242B (zh) * 2008-02-01 2010-10-27 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN101827444B (zh) * 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
US8488529B2 (en) * 2011-01-05 2013-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Efficient information mapping for transmission grants
CN105490788B (zh) * 2014-09-18 2018-12-28 中国移动通信集团公司 一种基于异构网络的探测参考信号复用方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104973A (zh) * 2010-05-31 2011-06-22 电信科学技术研究院 非周期srs的传输方法和设备
CN101867403A (zh) * 2010-06-13 2010-10-20 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端和基站
CN102083033A (zh) * 2010-09-13 2011-06-01 大唐移动通信设备有限公司 非周期探测参考信号的传输指示及传输方法、设备
CN103096346A (zh) * 2011-11-03 2013-05-08 华为技术有限公司 测量参考信号srs发送和信道检测的方法、装置及终端
US20160050667A1 (en) * 2014-08-18 2016-02-18 Samsung Electronics Co., Ltd. Communication on licensed and unlicensed bands

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114337946A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 探测参考信号配置方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN110880960B (zh) 2022-06-03
CN110880960A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
US20190082453A1 (en) Downlink Control Information Transmission Method and Apparatus
US11206054B2 (en) Communication method and device
US10856283B2 (en) Data transmission method, terminal device, and network device
EP3567966A1 (en) Semi-static scheduling method, network device and terminal device
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2020082304A1 (zh) 切换资源池的方法、终端设备和通信设备
EP3621222A1 (en) Method for transmitting downlink control information, terminal, and network side device
WO2020025040A1 (zh) 资源配置的方法和终端设备
TWI737843B (zh) 用於傳輸上行訊號的方法和裝置
EP3582565B1 (en) Data transmission method, and computer-readable storage medium
WO2020048332A1 (zh) 探测参考信号传输方法、终端设备和网络设备
WO2018202012A1 (zh) 确定时隙格式的方法、终端设备和网络设备
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
EP3567930A1 (en) Wireless communication method and device
CN113541901A (zh) 非周期srs的时隙偏移指示方法和设备
TW202041072A (zh) 通訊方法和終端設備
KR20200065059A (ko) 무선 통신 방법, 단말 및 네트워크 기기
US11991684B2 (en) Data transmission method and apparatus
WO2017173660A1 (zh) 传输资源的传输方向的配置方法、装置和通信系统
WO2018082173A1 (zh) 传输上行控制信号的方法和装置
CN113207161B (zh) 一种信号传输方法及装置、终端、网络设备
WO2021062665A1 (zh) 系统信息的传输方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857231

Country of ref document: EP

Kind code of ref document: A1