WO2018121134A1 - 具有采集切向速度测量流量的方法及装置 - Google Patents

具有采集切向速度测量流量的方法及装置 Download PDF

Info

Publication number
WO2018121134A1
WO2018121134A1 PCT/CN2017/112332 CN2017112332W WO2018121134A1 WO 2018121134 A1 WO2018121134 A1 WO 2018121134A1 CN 2017112332 W CN2017112332 W CN 2017112332W WO 2018121134 A1 WO2018121134 A1 WO 2018121134A1
Authority
WO
WIPO (PCT)
Prior art keywords
tangential
flow
fluid
measuring tube
blade
Prior art date
Application number
PCT/CN2017/112332
Other languages
English (en)
French (fr)
Inventor
付涛
姜晓峰
戚清
Original Assignee
威海市天罡仪表股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海市天罡仪表股份有限公司 filed Critical 威海市天罡仪表股份有限公司
Priority to DE112017006535.6T priority Critical patent/DE112017006535T5/de
Publication of WO2018121134A1 publication Critical patent/WO2018121134A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3236Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using guide vanes as swirling means

Definitions

  • the invention relates to the technical field of flow measurement, in particular to a method and a device for collecting tangential velocity measurement flow.
  • ultrasonic measurement technology is more and more widely used in fluid flow measurement.
  • Ultrasonic water meters, ultrasonic heat meters, ultrasonic gas meters and ultrasonic flow meters have gradually become the mainstream products in the market.
  • the current ultrasonic flowmeter can roughly divide the propagation velocity difference method (including: direct time difference method, time difference method, phase difference method, frequency difference method), beam offset method, Doppler method, correlation method, Types such as spatial filtering and noise.
  • the conventional ultrasonic flowmeter arranges the transducers along the axial direction of the pipe body to obtain the flow velocity information of the fluid and calculate the fluid flow rate.
  • the existing ultrasonic flowmeter instrument has an effective measurement distance of at least 45 mm, and the minimum length of the meter body is 200mm, for the measurement of small flow, in order to achieve more accurate measurement accuracy, the first is to lengthen the measurement distance along the axial direction of the measuring pipe section, so that the effective measuring distance is greater than 45mm, and in order to achieve the long effective measuring distance, the conversion is usually adopted.
  • the tilting arrangement of the mounting seat is such that the angle of the extension line of the corresponding ultrasonic transducer group disposed along the axial direction becomes larger, and the occupied space is large, so that the number of installations of the ultrasonic transducer group on the measuring pipe section is limited. Not only the accuracy of the measurement is affected, but also the disassembly and maintenance of the ultrasonic transducer is very difficult, which greatly increases the cost of manufacturing, and makes the ultrasonic flowmeter more expensive. Second, it is disposed along the axial direction on the measuring pipe section.
  • At least two sets of ultrasonic transducers intersecting or paralleling each other not only increase the number of ultrasonic transducers installed Moreover, in the maintenance or replacement, the ultrasonic transducer installed on the measuring pipe section needs to be integrally disassembled together with the measuring pipe section, and the replacement and maintenance cost is greatly increased.
  • the mechanical flowmeter is still basically used in the engineering site to save construction and operation costs.
  • the working principle of this mechanical flowmeter is that the fluid flow drives the mechanical rotation of the impeller.
  • the substantial shortcoming of this structure is: The small flow can not push the impeller to rotate. Therefore, the data error under the minimum flow velocity is very large, which affects the measurement accuracy.
  • CN204788528U discloses an ultrasonic heat meter with a diversion cross.
  • the flow sensor comprises a tube body, an inlet ultrasonic transducer and a water outlet ultrasonic transducer, and the lumen of the tube body is composed of an inlet flow chamber, a middle flow chamber and an outlet flow chamber, and the central axis of the inlet flow chamber
  • the horizontal section is rectangular, the width of which is equal to the width of the horizontal section at the central axis of the central flow chamber; the vertical section at the central axis of the inlet flow chamber is trapezoidal, and the front end width is perpendicular to the central axis of the central flow chamber.
  • the width of the section is equal, and the width of the rear end is equal to the width of the horizontal section at the central axis of the central flow chamber.
  • the substantial disadvantage of this structure is that in order to ensure the measurement accuracy, the distance between the transducers of the ultrasonic flowmeter must ensure a sufficient effective length, which inevitably lengthens the length of the measuring pipe section, which necessitates the annual inspection or fault detection.
  • the measuring pipe section and the whole table are removed from the pipeline to be inspected or repaired or replaced, resulting in an increase in replacement cost.
  • the object of the present invention is to solve the deficiencies of the prior art, and to provide a novel structure, compact structure, high measurement precision, resistance to pre-table interference, convenient disassembly and replacement of parts, low maintenance cost, high modularity, and low installation cost.
  • a method for collecting a tangential velocity measurement flow characterized in that a tangential flow generator provided in a fluid inlet end of a measuring tube passes a fluid flowing linearly along an axial direction of the measuring tube body through a tangential flow generator to generate a direction change Forming a circumferentially rotating fluid, collecting tangential flow velocity signal information of the rotating fluid through the ultrasonic speed measuring component, and uploading it to a calculator for calculation, so that the corresponding ultrasonic speed measuring component is installed in a shorter axial direction than the shortest
  • the transmission and reception path can be arbitrarily lengthened as needed, which not only has the advantages of small occupied space and low manufacturing cost, but also significantly improves the measurement accuracy.
  • a device for collecting a tangential velocity measurement flow comprising a measuring tube body, wherein the measuring tube body is provided with an ultrasonic speed measuring component, wherein the measuring tube has a tangential flow generator at the inlet end of the fluid, so that The fluid that flows axially in the measuring tube body is deformed to form a circumferential rotating flow through the tangential flow generator, and the tangential flow generator is composed of a blade collar, a tangential flow fixing ring and a blade rotor, a tangential flow fixing ring is fixed at the end of the measuring tube body,
  • the vane collar and the tangential flow fixing ring are concentrically arranged, and the circumferential array of the vane collar and the tangential flow fixing ring is provided with a vane rotor, and the guiding surface of the vane rotor is inclined with the entering direction of the fluid to facilitate passage
  • the inclined blade rotor transforms the axial flow of the fluid into a circumferential rotating flow, so that the corresponding ultra
  • the inclined surface of the vane rotor of the present invention and the fluid entering direction of the measuring tube are inclined at an angle of 15° to 75°, so as to facilitate the fluid flowing in the axial direction through the vane rotor into a fluid that rotates in a circumferential direction to achieve Change the effect of the fluid direction.
  • the blade rotor of the present invention may adopt a twisted curved surface, that is, the blade root of the blade rotor has an inclination angle of 5° to 45° with respect to the axis of the measuring pipe body, and the inclination angle of the outer end of the blade rotor and the axis of the measuring pipe body is 35°.
  • the blade rotor 1 is formed by a smooth transition from 5° to 45° at the blade root to 35° to 75° outside the blade, and the blade rotor has a smooth edge at the c-side of the blade, and the flow guiding surface And the backflow surface is connected by a rounded corner transition, the trailing edge d of the blade is rounded and concave, and the rear end of the back surface e of the blade is an angle of rise f to achieve an axially flowing fluid under low pressure loss conditions.
  • the diversion produces the same tangential circular motion.
  • the invention may be provided with a splitter cone at the fluid inlet end of the vane collar, the axial section of the splitter cone being parabolic in shape to facilitate the splitting of the axially flowing fluid and through the adjacent vane rotor gap Enter the flow measurement installation ring to achieve the function of splitting.
  • the invention can form a steady flow axis axially along the axial end of the measuring pipe body at the rear end of the splitter cone to facilitate steady flow of the fluid deflected by the vane rotor after the flow axis is stabilized, so as to stabilize the flow.
  • Ultrasonic transducers on both sides of the shaft measure more accurately.
  • the measuring tube body of the present invention may be in the form of a ring or a tube, and the two sides of the measuring tube body are respectively fixedly connected with the tangential flow fixing ring of the tangential flow generator, so as to achieve no disassembly of the pipeline.
  • the function of the ultrasonic movement can be verified or replaced.
  • the reflecting surface in the ultrasonic speed measuring component of the present invention may be disposed along the circumferential direction of the inner wall of the measuring tube, and the mirror may be disposed along the circumferential direction of the inner wall of the measuring tube, or
  • the circumference of the inner wall of the measuring tube is machined into a mirror surface, and the ultrasonic transducer of the ultrasonic speed measuring member is circumferentially disposed on the measuring tube body, so that the transmitting and receiving path of the ultrasonic transducer and the reflecting surface is reflected in the measuring tube body
  • the fluid that has been rotated circumferentially after being redirected by the tangential flow generator is reflected by the ultrasonic transducer or reflected by the ultrasonic transducer to the ultrasonic transducer, and then reaches the other ultrasonic transducer.
  • the transmission and reception path is arbitrarily lengthened as needed to achieve a significant improvement in measurement accuracy.
  • the flow velocity and flow rate of the fluid are calculated by measuring the time difference between the forward and reverse flow of the fluid rotation direction, which not only solves the problem.
  • the substantial technical problem that the flow rate is difficult to accurately measure, and the equipment cost and installation cost of the plurality of sets of transducers disposed axially on the measuring tube body in the prior art are also greatly saved.
  • the installation manner of the ultrasonic speed measuring component in the measuring tube body is prior art, and details are not described herein again.
  • the invention adopts the above structure, and has the advantages of novel structure, compact structure, high measurement precision, resistance to pre-existing interference, convenient disassembly and replacement of parts, low maintenance cost, high modularity and low installation cost.
  • Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is a left side elevational view of one embodiment of Figure 1.
  • Figure 3 is a left side elevational view of another embodiment of Figure 1.
  • FIG. 4 is a schematic perspective view of an embodiment of the present invention.
  • Figure 5 is a schematic exploded view of Figure 4.
  • Figure 6 is a perspective view showing the three-dimensional structure of the blade rotor of the present invention.
  • Figure 7 is a right side view of Figure 6.
  • Figure 8 is a perspective view showing the structure of the tangential flow generator of the present invention.
  • a method for collecting a tangential velocity measurement flow characterized in that a tangential flow generator provided in a fluid inlet end of a measuring tube passes a fluid flowing linearly along an axial direction of the measuring tube body through a tangential flow generator to generate a direction change Forming a circumferentially rotating fluid, collecting tangential flow velocity signal information of the rotating fluid through the ultrasonic speed measuring component, and uploading it to a calculator for calculation, so that the corresponding ultrasonic speed measuring component is installed in a shorter axial direction than the shortest
  • the transmission and reception path can be arbitrarily lengthened as needed, which not only has the advantages of small occupied space and low manufacturing cost, but also significantly improves the measurement accuracy.
  • a device for collecting a tangential velocity measurement flow includes a measuring tube body having an ultrasonic velocity measuring member in the measuring tube body, wherein the measuring tube body 4 is fluid.
  • the inflow end is provided with a tangential flow generator 12 for causing a fluid that flows axially in the measuring tube body 4 to flow through the tangential flow generator 12 to form a circumferentially rotating flow, as shown in FIG.
  • the tangential flow generator 12 is composed of a vane collar 7, a tangential flow retaining ring 13 and a leaf
  • the blade rotor 1 is fixed to the end of the measuring pipe body, and the blade collar 7 and the tangential flow fixing ring 13 are concentrically arranged, the blade collar 7 and the tangential flow fixing ring 13
  • the circumferential array is provided with a blade rotor 1 whose inclined surface is inclined with respect to the incoming direction of the fluid to facilitate the transformation of the axial flow of the fluid into a circumferential rotational flow by the inclined blade rotor, so that the corresponding
  • the transmission and reception path can be arbitrarily lengthened according to requirements, which not only has the advantages of small occupied space and low manufacturing cost, but also significantly improves the measurement precision.
  • the inclined angle of the flow guiding surface of the blade rotor 1 and the fluid inlet direction of the measuring tube is 15°-75°, so as to facilitate the axially flowing fluid flowing through the blade rotor 1 into a circumferentially rotating fluid. In order to achieve the effect of changing the direction of the fluid.
  • the blade rotor 1 of the present invention can adopt a twisted curved surface, that is, the blade root of the blade rotor 1 and the axis of the measuring pipe body are inclined at an angle of 5° to 45°, and the blade rotor 1 is outside.
  • the angle of inclination of the end and the axis of the measuring tube is 35° to 75°
  • the blade rotor 1 is formed by a transition from 5° to 45° at the root of the blade to a smooth twist of 35° to 75° outside the blade, the blade rotor
  • the upstream end c edge is rounded and the flow guiding surface and the back flow surface are connected by a rounded corner.
  • the rear end d of the blade is rounded and grooved, and the back end of the back surface of the blade is raised by an angle f to achieve a low angle. Under the condition of pressure loss, the axially flowing fluid flow produces the same tangential circular motion.
  • the present invention may be provided with a diverting cone 5 at the fluid inlet end of the vane collar 7, the axial cross section of the diverting cone 5 being parabolic in shape to facilitate the splitting of the axially flowing fluid and passing adjacent
  • the blade rotor 1 gap enters the flow measurement mounting ring to achieve the shunt function.
  • the invention can extend axially along the axial center of the measuring pipe body 4 at the rear end of the dividing cone 5 to form a steady flow shaft 9 to facilitate the stabilization of the fluid deflected by the vane rotor 1 through the steady flow shaft 9.
  • the flow is such that the accuracy of the ultrasonic transducer 2 on both sides of the steady flow shaft 9 is more accurate.
  • the measuring tube body of the present invention may be in the form of a ring or a tube, and the two sides of the measuring tube body are respectively fixedly connected with the tangential flow fixing ring of the tangential flow generator, so as to achieve no disassembly of the pipeline.
  • the function of the ultrasonic movement can be verified or replaced.
  • the reflecting surface in the ultrasonic speed measuring component of the present invention can be circumferentially disposed along the inner wall of the measuring tube, and the mirror 3 is disposed.
  • the mirror surface may be disposed circumferentially along the inner wall of the measuring tube, or may be machined into a mirror surface in the circumferential direction of the inner wall of the measuring tube, and the ultrasonic transducer of the ultrasonic speed measuring component is circumferentially disposed on the measuring tube body to make the ultrasonic wave
  • the transceiving path 11 reflected by the transducer 2 and the reflecting surface 3 is on the same cross section of the measuring tube body to achieve the reflection of the ultrasonic signal by the ultrasonic transducer in the circumferential direction of the rotation of the tangential flow generator.
  • the transmission and reception path is arbitrarily lengthened as needed. Achieving the effect of significantly improving the measurement accuracy, and then calculating the flow velocity and flow rate of the fluid by measuring the time difference between the forward or reverse flow of the fluid rotation direction, not only solves the substantial technical problem that the small flow rate is difficult to accurately measure, but also greatly saves the economy.
  • the equipment cost and installation cost of multiple sets of transducer measurements are axially arranged on the measuring tube body.
  • the installation manner of the ultrasonic speed measuring component in the measuring tube body is prior art, and details are not described herein again.
  • a reflective surface is first mounted on the circumference of the measuring tube body.
  • the reflecting surface 3 can be inlaid circumferentially along the inner wall of the measuring tube, or the circumferential direction of the inner wall of the flow measuring mounting ring body 8 can be mechanically processed.
  • Mirror surface, the ultrasonic transducer 2 of the ultrasonic speed measuring component is disposed along the circumference of the measuring pipe body, and then the tangential flow generator is fixed to the measuring pipe body via the buckle 14 and the measuring pipe body to which the tangential flow generator is fixed
  • the seal is mounted in the body 6, and finally the ultrasonic transducer 2 is connected to the calculator.
  • the fluid enters the measuring tube body, the diverting cone 5 splits the axially flowing fluid, and the diverted fluid flows along the gap of the adjacent vane rotor 1 and is inclined under the pressure of the fluid.
  • the rotor 1 is deformed to form a circumferentially rotating fluid, and at the same time, the rotating fluid is rotated by the steady flow shaft 9 in the measuring tube body, and rotates circumferentially along the steady flow shaft 9 and the measuring tube body gap. At this time, an ultrasonic wave is exchanged.
  • the ultrasonic wave is emitted to the reflecting surface 3, and the ultrasonic transducer 2-1 is reflected by the reflecting surface 3 provided on the circumference of the inner wall of the measuring tube or reflected in the circumferential direction multiple times to reach the other ultrasonic transducer 2-2. Then, the ultrasonic transducer 2-2 is reversely emitted, reflected, and received by the ultrasonic transducer 2-1, so that the ultrasonic signal is operated in a circumferential direction of the fluid flowing in the circumferential direction of the measuring tube, and then collected by a calculator. The time to the direction of fluid rotation in the forward or reverse direction, so that the information of the time difference is doubled and uploaded to the calculator.
  • the calculator calculates the circumferential flow velocity and flow rate of the fluid through the difference between time and time.
  • the measurement accuracy is improved, and the prior art is designed to increase the measurement accuracy, and the axial measurement distance needs to be lengthened, thereby lengthening the substantial defects of the measuring tube body, thereby greatly saving equipment cost and replacement cost.
  • the sealing cover on the watch body When the instrument needs to be maintained, open the sealing cover on the watch body and open the buckle between the measuring tube body and the tangential flow generator to remove the measuring tube body and/or the tangential flow generator from the body. Replace the damaged parts; when the instrument needs to be re-checked, open the sealing cover on the body, and take the measuring tube and the tangential flow generator together, and install the new measuring tube and tangential direction.
  • the flow generator is sealed and sealed by a sealing cover and a fixing seat.
  • the ultrasonic signal forms a longer distance operation in the direction of fluid rotation under the action of the reflecting surface. Therefore, the magnitude of the acquired time information is increased, the calculated time and time difference is enlarged, and the accuracy of the small flow measurement is remarkably improved.
  • the axis is accurately measured by adding a plurality of sets of transducers axially on the measuring tube body. Substantial lack of speed.
  • a front tangential flow generator, a measuring tube body, and a measuring tube body are sequentially fixed in the body along the fluid inlet end in the axial direction.
  • a rear tangential flow generator, the front tangential flow generator and the rear tangential flow generator are snap-fitted to fix the flow measurement mounting ring body together to facilitate bidirectional metering of the fluid, when assembling the movement.
  • the tangential flow fixing ring of the flow measuring installation ring body and the tangential flow generator is installed in the installation groove of the flow measuring device of the watch body, and then the circumferential measuring ultrasonic flow measuring device is fixed in the watch body through the sealing cover, when needed For verification or damage repair, it is not necessary to remove the body from the pipe connection. Simply open the sealing cover, take the flow measurement mounting ring and the tangential flow generator together, and install the new flow measurement mounting ring. And the tangential flow generator, and then seal the sealing cover and the fixing seat.
  • the invention adopts the above structure, and has the advantages of novel structure, compact structure, high measurement precision, resistance to pre-existing interference, convenient disassembly and replacement of parts, low maintenance cost, high modularity and low installation cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种具有采集切向速度流量的方法及装置,在测量管体(4)内流体进入端设有切向流生成器(12),切向流生成器(12)将沿测量管体(4)轴向直线流动的流体变向形成周向旋转流动的流体,通过超声波测速部件(2)采集旋转流动的流体的切向流速度信号信息,并上传至计算器中进行计算,使相对应的超声波测速部件(2)在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长,具有测量精度高、抗表前干扰、拆装更换部件方便、维护成本低、结构紧凑、模块化程度高、施工成本低等优点。

Description

具有采集切向速度测量流量的方法及装置 技术领域
本发明涉及流量测量技术领域,具体地说是一种具有采集切向速度测量流量的方法及装置。
背景技术
目前,超声波测量技术在流体流量测量方面的应用越来越广泛,超声波水表、超声波热量表、超声波燃气表、超声波流量计逐步成为市场的主流产品,超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)、波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。为了准确获取流体的流速信息,传统的超声波流量计都是沿着管体轴向方向布置换能器,从而获取流体的流速信息,推算出流体流量。
众所周知,上述现有的超声波流量计的换能器之间的距离必须保证足够的有效长度,才能达到测量精度,现有的超声波流量计仪表有效测量距离最小为45mm,仪表表体的最小长度在200mm,对于小流量的测量,为了达到更精确的测量精度,一是采用在测量管段上沿轴向加长测量间距,使得有效测量距离大于45mm,而为了达到加长有效测量间距,通常采用将换能器安装座倾斜设置,使得沿轴向设置的相对应的超声波换能器组的延伸线的夹角变大,占用空间大,使得测量管段上的超声波换能器组的安装数量受到了限制,不但使测量的精度受到影响,而且还导致超声波换能器的拆装和维护非常困难,大大提高了生产制造的成本,令超声波流量计价格较高;二是在测量管段上沿轴向设有至少两组相交叉或平行的超声换能器组,不但使超声波换能器的安装数量增多,而且,在维护或更换时,需要将安装在测量管段上的超声波换能器连同测量管段整体拆卸,还大大增加了更换和维护成本。
因此工程现场基本上仍然采用机械式流量计,以节约施工与运行成本,这种机械式流量计的工作原理是流体流动带动叶轮机械的旋转,这种结构的实质性不足是:一是由于较小流动不能推动叶轮旋转,因此,极小流量流速下的数据误差很大,影响了计量精度;二是由于机械零件的相互摩擦,长时间运动导致叶轮轴磨损或结垢,也同样影响计量的准确度;三是由于机械表采用数字盘计数,只能显示累计流量,不能显示瞬时流速,很难实现无人抄表和远程控制。
为了解决上述技术问题,CN204788528U公开了一种具有导流十字架的超声波热量表 用流量传感器,包括管体、进水端超声波换能器和出水端超声波换能器,管体的管腔由进水流腔、中部流腔和出水流腔构成,所述进水流腔的中心轴线处的水平截面为矩形,其宽度与中部流腔的中心轴线处的水平截面的宽度相等;进水流腔的中心轴线处的垂直截面为梯形,其前端宽度与中部流腔的中心轴线处的垂直截面的宽度相等,其后端宽度与中部流腔的中心轴线处的水平截面的宽度相等。这种结构的实质性不足是:为了保证测量精度,超声波流量计的换能器之间的距离必须保证足够的有效长度,无形中加长了测量管段的长度,导致在年检或故障检测时,必须将测量管段连同整表从管路上拆卸,才能检定或维修、更换,导致更换成本增大。
而为了使得更换成本降到最低,虽然专利号:ZL2004 2 0111534.3/ZL 2005 2 0086674.3/ZL 2008 2 0102881.8公开了几种可拆式机械表,可在不拆卸管路上的表体管件的条件下,直接拆装机械表的机芯进行调校和更换机芯,一定程度的降低了使用维护成本。但机械表不能测量极小的流量;数据处理、传输不能满足智能化无人化的需求;目前常规的方式还是整表更换电磁式或超声波式仪表,但是更换成本高,安装成本高。
到目前为止,制造成本高、维护操作难与计量精度低、准确度低这几个问题还无法在一种流量计上得到解决。
发明内容
本发明的目的在于解决现有技术的不足,提供一种结构新颖、结构紧凑、测量精度高、抗表前干扰、拆装更换部件方便、维护成本低、模块化程度高、安装成本低的具有采集切向速度测量流量的装置。
本发明解决其技术问题所采用的技术方案是:
一种具有采集切向速度测量流量的方法,其特征在于通过测量管体内流体进入端设有的切向流生成器将沿测量管体轴向直线流动的流体经过切向流生成器产生变向形成周向旋转流动的流体,通过超声波测速部件采集旋转流动的流体的切向流速度信号信息,并上传至计算器中进行计算,使相对应的超声波测速部件在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长,不但具有占用空间小、制造成本低的作用,而且,还显著提高了测量精度高。
一种具有采集切向速度测量流量的装置,包括测量管体,所述测量管体内设有超声波测速部件,其特征在于所述测量管体内流体的进入端设有切向流生成器,以使进入测量管体内轴向直线流动的流体经过切向流生成器产生变向形成周向旋转流动,所述切向流生成器是由叶片轴环、切向流固定环和叶片旋翼组成,所述切向流固定环固定在测量管体端部,所述 叶片轴环和切向流固定环同心设置,所述叶片轴环和切向流固定环间圆周阵列设有叶片旋翼,所述叶片旋翼的导流面与流体的进入方向相倾斜,以利于通过倾斜的叶片旋翼将流体的轴向流动转变成周向旋转流动,使相对应的超声波测速部件在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长,不但具有占用空间小、制造成本低的作用,而且,还显著提高了测量精度高。
本发明所述叶片旋翼的导流面与测量管体内流体进入方向的倾斜角度在15°~75°,以利于通过叶片旋翼将轴向直线流动的流体转变成周向旋转流动的流体,以达到改变流体方向的作用。
本发明所述叶片旋翼可以采用扭曲曲面,即所述叶片旋翼的叶片根部与测量管体轴线的倾斜角度为5°~45°,叶片旋翼的外端与测量管体轴线的倾斜角度为35°~75°,所述叶片旋翼1由叶片根部的5°~45°逐渐向叶片外部的35°~75°圆滑扭曲过渡而成,所述叶片旋翼迎流端c边缘圆滑突起,且导流面和背流面经圆角过渡连接,所述叶片后端d边缘圆滑凹线,叶片的背流面e后端为升角f,以达到在低压力损失的条件下,将轴向流动的流体导流产生相同切向圆周运动的作用。
本发明可在所述叶片轴环的流体进入端设有分流锥体,所述分流锥体的轴向剖面呈抛物线形,以利于对轴向流动的流体进行分流,并通过相邻叶片旋翼间隙进入到流量测量安装环体内,达到分流的作用。
本发明可在所述分流锥体后端沿所述测量管体轴心轴向延伸形成稳流轴,以利于通过稳流轴将叶片旋翼导流后变向的流体进行稳流,使稳流轴两侧的超声波换能器测得的精度更为精确。
本发明所述测量管体可以呈环状,也可以呈管状,所述测量管体两侧分别经卡扣与切向流生成器的切向流固定环固定连接,以达到不拆卸管路,即可检定或更换超声波机芯的作用。
当所述测量管体呈环状时,本发明所述超声波测速部件中的反射面可沿测量管体内壁周向设置,所述反射镜可以采用镜面沿测量管体内壁周向设置,也可以在测量管体内壁周向通过机械加工成镜面,所述超声波测速部件的超声波换能器在测量管体上周向设置,使所述超声波换能器和反射面反射的收发路径在测量管体的同一横断面上,以达到对经过切向流生成器变向后周向旋转的流体通过超声波换能器将超声波信号在反射面反射或多次反射后到达另一超声波换能器中,使收发路径根据需要任意加长,达到显著提高测量精度的作用,再通过测量与流体旋转方向顺向或逆向流动的时间差来推算出流体的流速和流量,不但解决了小 流量难以精确计量的实质性技术问题,而且还大大节约了现有技术中在测量管体上轴向设置多组换能器测量的设备成本和安装成本。
当所述测量管体呈管状时,所述测量管体内的超声波测速部件的安装方式为现有技术,此不再赘述。
本发明由于采用上述结构,具有结构新颖、结构紧凑、测量精度高、抗表前干扰、拆装更换部件方便、维护成本低、模块化程度高、安装成本低等优点。
附图说明
图1是本发明的结构示意图。
图2是图1的一种实施例的左视图。
图3是图1的另一种实施例的左视图。
图4是本发明实施例的立体结构示意图。
图5是图4的分解结构示意图。
图6是本发明中叶片旋翼的立体结构示意图。
图7是图6的右视图。
图8是本发明切向流生成器的立体结构示意图。
附图标记:叶片旋翼1、超声波换能器组2、超声波换能器2-1、超声波换能器2-2、反射面3、测量管体4、分流锥体5、表体6、叶片轴环7、流量测量安装环体8、稳流轴9、叶片旋翼固定环10、收发路径11切向流生成器12、切向流固定环13卡扣14密封盖15
具体实施方式
下面结合附图对本发明进行说明。
一种具有采集切向速度测量流量的方法,其特征在于通过测量管体内流体进入端设有的切向流生成器将沿测量管体轴向直线流动的流体经过切向流生成器产生变向形成周向旋转流动的流体,通过超声波测速部件采集旋转流动的流体的切向流速度信号信息,并上传至计算器中进行计算,使相对应的超声波测速部件在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长,不但具有占用空间小、制造成本低的作用,而且,还显著提高了测量精度高。
如附图1、2、3所示,一种具有采集切向速度测量流量的装置,包括测量管体,所述测量管体内设有超声波测速部件,其特征在于所述测量管体4内流体的进入端设有切向流生成器12,以使进入测量管体4内轴向直线流动的流体经过切向流生成器12产生变向形成周向旋转流动,如附图8所示,所述切向流生成器12是由叶片轴环7、切向流固定环13和叶 片旋翼1组成,所述切向流固定环13固定在测量管体端部,所述叶片轴环7和切向流固定环13同心设置,所述叶片轴环7和切向流固定环13间圆周阵列设有叶片旋翼1,所述叶片旋翼1的导流面与流体的进入方向相倾斜,以利于通过倾斜的叶片旋翼将流体的轴向流动转变成周向旋转流动,使相对应的超声波测速部件在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长,不但具有占用空间小、制造成本低的作用,而且,还显著提高了测量精度高。
本发明所述叶片旋翼1的导流面与测量管体内流体进入方向的倾斜角度在15°~75°,以利于通过叶片旋翼1将轴向直线流动的流体转变成周向旋转流动的流体,以达到改变流体方向的作用。
如附图6、7所示,本发明所述叶片旋翼1可以采用扭曲曲面,即所述叶片旋翼1的叶片根部与测量管体轴线的倾斜角度为5°~45°,叶片旋翼1的外端与测量管体轴线的倾斜角度为35°~75°,所述叶片旋翼1由叶片根部的5°~45°逐渐向叶片外部的35°~75°圆滑扭曲过渡而成,所述叶片旋翼迎流端c边缘圆滑突起,且导流面和背流面经圆角过渡连接,所述叶片后端d边缘圆滑凹线,叶片的背流面e后端为升角f,以达到在低压力损失的条件下,将轴向流动的流体导流产生相同切向圆周运动的作用。
本发明可在所述叶片轴环7的流体进入端设有分流锥体5,所述分流锥体5的轴向剖面呈抛物线形,以利于对轴向流动的流体进行分流,并通过相邻叶片旋翼1间隙进入到流量测量安装环体内,达到分流的作用。
本发明可在所述分流锥体5后端沿所述测量管体4轴心轴向延伸形成稳流轴9,以利于通过稳流轴9将叶片旋翼1导流后变向的流体进行稳流,使稳流轴9两侧的超声波换能器2测得的精度更为精确。
本发明所述测量管体可以呈环状,也可以呈管状,所述测量管体两侧分别经卡扣与切向流生成器的切向流固定环固定连接,以达到不拆卸管路,即可检定或更换超声波机芯的作用。
如附图2、3、4、5所示,当所述测量管体呈环状时,本发明所述超声波测速部件中的反射面可沿测量管体内壁周向设置,所述反射镜3可以采用镜面沿测量管体内壁周向设置,也可以在测量管体内壁周向通过机械加工成镜面,所述超声波测速部件的超声波换能器在测量管体上周向设置,使所述超声波换能器2和反射面3反射的收发路径11在测量管体的同一横断面上,以达到对经过切向流生成器变向后周向旋转的流体通过超声波换能器将超声波信号在反射面反射或多次反射后到达另一超声波换能器2-2中,使收发路径根据需要任意加长, 达到显著提高测量精度的作用,再通过测量与流体旋转方向顺向或逆向流动的时间差来推算出流体的流速和流量,不但解决了小流量难以精确计量的实质性技术问题,而且还大大节约了现有技术中在测量管体上轴向设置多组换能器测量的设备成本和安装成本。
当所述测量管体呈管状时,所述测量管体内的超声波测速部件的安装方式为现有技术,此不再赘述。
本发明在安装安装时,先在测量管体内圆周安装反射面,所述反射面3可以采用镜面沿测量管体内壁周向镶嵌,也可以将流量测量安装环体8内壁周向通过机械加工成镜面,将超声波测速部件的超声波换能器2沿测量管体圆周设置,然后将切向流生成器经卡扣14固定在测量管体上,并将固定有切向流生成器的测量管体密封安装在表体6内,最后将超声波换能器2与计算器相连接。
本发明在测量流体时,流体进入测量管体中,分流锥体5将轴向流动的流体分流,分流的流体顺着相邻叶片旋翼1的间隙流入并在流体的压力作用下被倾斜的叶片旋翼1变向形成周向旋转的流体,同时,旋转的流体在测量管体内被稳流轴9稳流后,沿着稳流轴9和测量管体间隙周向旋转,此时,一超声波换能器将超声波信号发射给反射面3,超声波换能器2-1通过测量管体内壁圆周设有的反射面3的反射或周向多次反射后到达另一超声波换能器2-2中,再通过超声波换能器2-2逆向发射、反射并被超声波换能器2-1接收,使超声波信号在测量管体内沿周向流动的流体旋转方向圆周长距离运行,再通过计算器采集到流体旋转方向顺向或逆向流动的时间,从而使时差的信息加倍累积,并上传至计算器,计算器通过时间与时间的差值,计算出流体的周向流速和流量,不但显著提高了测量精度,而且大大节约了现有技术中为了提高测量精度,需要加长轴向测量距离,进而加长测量管体的实质性不足,大大节约了设备成本和更换成本。
当需要维护仪表时,打开表体上的密封盖,将测量管体与切向流生成器之间的卡扣打开,即可将测量管体和/或切向流生成器从表体中取出,将损坏零件进行更换;当需要复检定仪表时,打开表体上的密封盖,可将测量管体和切向流生成器一起取出,再安装经过检定的新的测量管体和切向流生成器,并通过密封盖和固定座密封固定。
如附图3所示,本发明的一种实施例,所述测量管体内设置有五块反射面(镜),使超声波信号在反射面的作用下,在流体旋转方向形成更长距离的运行,从而使采集的时间信息的数量级加大,计算的时间与时间差放大,显著提高了小流量测量精度,替代了现有技术通过在测量管体上轴向增加多组换能器来精确测量轴向速度的实质性不足。
附图4所示,在表体内沿流体进入端沿轴向依次固定有前切向流生成器、测量管体、 后切向流生成器,所述前切向流生成器和后切向流生成器经卡扣将流量测量安装环体固定在一起,以利于实现对流体进行双向计量,在装配机芯时,流量测量安装环体和切向流生成器的切向流固定环安装在表体的流量测量装置安装槽中,然后,通过密封盖将周向测量的超声波流量测量装置固定在表体内,当需要检定或损坏维修时,无需将表体从管路连接上拆卸,只需打开密封盖,将流量测量安装环体和切向流生成器一起取出,再安装经过检定的新的流量测量安装环体和切向流生成器,再将密封盖与固定座密封固定即可。
本发明由于采用上述结构,具有结构新颖、结构紧凑、测量精度高、抗表前干扰、拆装更换部件方便、维护成本低、模块化程度高、安装成本低等优点。

Claims (10)

  1. 一种具有采集切向速度测量流量的方法,其特征在于通过测量管体内流体进入端设有的切向流生成器将沿测量管体轴向直线流动的流体经过切向流生成器产生变向形成周向旋转流动的流体,通过超声波测速部件采集旋转流动的流体的切向流速度信号信息,并上传至计算器中进行计算,使相对应的超声波测速部件在短于最短的标准轴向安装距离时,其收发路径能够根据需要任意加长。
  2. 一种具有采集切向速度测量流量的装置,包括测量管体,所述测量管体内设有超声波测速部件,其特征在于所述测量管体内流体的进入端设有切向流生成器,以使进入测量管体内轴向直线流动的流体经过切向流生成器产生变向形成周向旋转流动,所述切向流生成器是由叶片轴环、切向流固定环和叶片旋翼组成,所述切向流固定环固定在测量管体端部,所述叶片轴环和切向流固定环同心设置,所述叶片轴环和切向流固定环间圆周阵列设有叶片旋翼,所述叶片旋翼的导流面与流体的进入方向相倾斜。
  3. 根据权利要求2所述的一种具有采集切向速度测量流量的装置,其特征在于所述叶片旋翼的导流面与测量管体内流体进入方向的倾斜角度在15°~75°。
  4. 根据权利要求3所述的一种具有采集切向速度测量流量的装置,其特征在于所述叶片旋翼采用扭曲曲面,即所述叶片旋翼的叶片根部与测量管体轴线的倾斜角度为5°~45°,叶片旋翼的外端与测量管体轴线的倾斜角度为35°~75°,所述叶片旋翼1由叶片根部的5°~45°逐渐向叶片外部的35°~75°圆滑扭曲过渡而成,所述叶片旋翼迎流端c边缘圆滑突起,且导流面和背流面经圆角过渡连接,所述叶片后端d边缘圆滑凹线,叶片的背流面e后端为升角f。
  5. 根据权利要求2或3或4所述的一种具有采集切向速度测量流量的装置,其特征在于所述叶片轴环的流体进入端设有分流锥体,所述分流锥体的轴向剖面呈抛物线形。
  6. 根据权利要求5所述的一种具有采集切向速度测量流量的装置,其特征在于所述分流锥体后端沿所述测量管体轴心轴向延伸形成稳流轴。
  7. 根据权利要求2所述的一种具有采集切向速度测量流量的装置,其特征在于所述测量管体两侧分别经卡扣与切向流生成器的切向流固定环固定连接。
  8. 根据权利要求7所述的一种具有采集切向速度测量流量的装置,其特征在于所述测量管体呈环状。
  9. 根据权利要求7所述的一种具有采集切向速度测量流量的装置,其特征在于所述测量管体呈管状。
  10. 根据权利要求8所述的一种具有采集切向速度测量流量的装置,其特征在于当所述测量 管体呈环状时,所述超声波测速部件中的反射面可沿测量管体内壁周向设置,所述超声波测速部件的超声波换能器在测量管体上周向设置,使所述超声波换能器和反射面反射的收发路径在测量管体的同一横断面上。
PCT/CN2017/112332 2016-12-26 2017-11-22 具有采集切向速度测量流量的方法及装置 WO2018121134A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017006535.6T DE112017006535T5 (de) 2016-12-26 2017-11-22 Verfahren und Vorrichtung zum Messen des Durchflusses mit Sammeln von Tangentialgeschwindigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611218402.4A CN106768105B (zh) 2016-12-26 2016-12-26 采集切向速度测量流量的方法及装置
CN201611218402.4 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018121134A1 true WO2018121134A1 (zh) 2018-07-05

Family

ID=58926040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112332 WO2018121134A1 (zh) 2016-12-26 2017-11-22 具有采集切向速度测量流量的方法及装置

Country Status (3)

Country Link
CN (1) CN106768105B (zh)
DE (1) DE112017006535T5 (zh)
WO (1) WO2018121134A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681668A (zh) * 2019-02-22 2019-04-26 凯瑞特阀业有限公司 球阀
CN112432678A (zh) * 2020-11-23 2021-03-02 西安航天动力研究所 一种用于推力室周向均布单孔流量自动同步检测装置
US20220178728A1 (en) * 2020-12-05 2022-06-09 Itron Global Sarl Ultrasonic channel
CN116202657A (zh) * 2023-03-06 2023-06-02 青岛乾程科技股份有限公司 一种超声波热量表

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768105B (zh) * 2016-12-26 2019-12-31 威海市天罡仪表股份有限公司 采集切向速度测量流量的方法及装置
CN107268543A (zh) * 2017-08-14 2017-10-20 北京航天福道高技术股份有限公司 一种分布式一体化闸门系统
CN114046831B (zh) * 2021-11-12 2024-08-16 合肥工业大学 一种地下水水量监测设备
EP4428501A1 (de) * 2023-03-10 2024-09-11 SICK Engineering GmbH Durchflussmessvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238615A (en) * 1989-12-01 1991-06-05 Ws Atkins Engineering Sciences Swirl flowmeter for multiphase fluid streams
CN1643346A (zh) * 2002-03-14 2005-07-20 恩德斯+豪斯流量技术股份有限公司 具有旋涡发生器的科里奥利质量流量计
CN202853663U (zh) * 2012-08-13 2013-04-03 河南精科仪表科技有限公司 一种改进的旋进漩涡流量计
CN203935832U (zh) * 2014-04-24 2014-11-12 浙江工业大学 带导流翅片的旋涡流空化器
CN106768105A (zh) * 2016-12-26 2017-05-31 威海市天罡仪表股份有限公司 具有采集切向速度测量流量的方法及装置
CN206269870U (zh) * 2016-12-26 2017-06-20 威海市天罡仪表股份有限公司 具有采集切向速度测量流量装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204788528U (zh) 2015-07-27 2015-11-18 山东力创科技有限公司 一种具有导流十字架的超声波热量表用流量传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238615A (en) * 1989-12-01 1991-06-05 Ws Atkins Engineering Sciences Swirl flowmeter for multiphase fluid streams
CN1643346A (zh) * 2002-03-14 2005-07-20 恩德斯+豪斯流量技术股份有限公司 具有旋涡发生器的科里奥利质量流量计
CN202853663U (zh) * 2012-08-13 2013-04-03 河南精科仪表科技有限公司 一种改进的旋进漩涡流量计
CN203935832U (zh) * 2014-04-24 2014-11-12 浙江工业大学 带导流翅片的旋涡流空化器
CN106768105A (zh) * 2016-12-26 2017-05-31 威海市天罡仪表股份有限公司 具有采集切向速度测量流量的方法及装置
CN206269870U (zh) * 2016-12-26 2017-06-20 威海市天罡仪表股份有限公司 具有采集切向速度测量流量装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681668A (zh) * 2019-02-22 2019-04-26 凯瑞特阀业有限公司 球阀
CN112432678A (zh) * 2020-11-23 2021-03-02 西安航天动力研究所 一种用于推力室周向均布单孔流量自动同步检测装置
CN112432678B (zh) * 2020-11-23 2023-06-23 西安航天动力研究所 一种用于推力室周向均布单孔流量自动同步检测装置
US20220178728A1 (en) * 2020-12-05 2022-06-09 Itron Global Sarl Ultrasonic channel
US11940308B2 (en) * 2020-12-05 2024-03-26 Itron Global Sarl Insert forming an ultrasonic channel for a fluid meter and including reflector mirrors and a flow stabilizer
CN116202657A (zh) * 2023-03-06 2023-06-02 青岛乾程科技股份有限公司 一种超声波热量表
CN116202657B (zh) * 2023-03-06 2024-05-17 青岛乾程科技股份有限公司 一种超声波热量表

Also Published As

Publication number Publication date
DE112017006535T5 (de) 2019-10-10
CN106768105A (zh) 2017-05-31
CN106768105B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2018121134A1 (zh) 具有采集切向速度测量流量的方法及装置
EP2687828A1 (en) Ultrasonic wedge and method for determining the speed of sound in same
CN103196504B (zh) 一种多声道超声波流量测量方法及装置
CN202547705U (zh) 一种超声波流量测量计
EP3094947B1 (en) Self-checking flow meter and method
CN103323064A (zh) 超声波多点反射流量计
CN104457871A (zh) 一种流量计及流体测量方法
AU2013308378B2 (en) Flow meter with acoustic array
WO2010002432A1 (en) Insertable ultrasonic meter and method
JP2002520583A (ja) マルチコード流量計
CN206269870U (zh) 具有采集切向速度测量流量装置
CN203704996U (zh) 一种超声波热量表管道
CN219624829U (zh) 一种超声波流量计管道结构
Treenuson et al. Accurate flowrate measurement on the double bent pipe using ultrasonic velocity profile method
US20180340808A1 (en) Torque Based Flowmeter Device and Method
CN110486296B (zh) 轴流泵导叶体整流效果测试装置及其测试方法
Waluś Mathematical modelling of an ultrasonic flowmeter primary device
Gouin et al. Experimental investigation of draft tube flow of an axial turbine by laser doppler velocimetry
RU2678210C1 (ru) Турбинный преобразователь расхода
CN101672671A (zh) 超声流量、热量表换能器用z型管段
CN105115555A (zh) 一种水轮机组水导轴承润滑油油量测量方法
KR102718998B1 (ko) 습식 다회선 초음파 유량계의 현장 교정방법
CN205562077U (zh) 一种超声波热量表管道及超声波热量表
CN105716744B (zh) 一种超声波热量表管道及超声波热量表
RING JET OPERATING CHAMBER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889210

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17889210

Country of ref document: EP

Kind code of ref document: A1