WO2018121130A1 - 一种细胞筛选装置和细胞筛选方法 - Google Patents

一种细胞筛选装置和细胞筛选方法 Download PDF

Info

Publication number
WO2018121130A1
WO2018121130A1 PCT/CN2017/112177 CN2017112177W WO2018121130A1 WO 2018121130 A1 WO2018121130 A1 WO 2018121130A1 CN 2017112177 W CN2017112177 W CN 2017112177W WO 2018121130 A1 WO2018121130 A1 WO 2018121130A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
flow channel
flow
cell
solution
Prior art date
Application number
PCT/CN2017/112177
Other languages
English (en)
French (fr)
Inventor
何宇涵
关一民
Original Assignee
上海新微技术研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新微技术研发中心有限公司 filed Critical 上海新微技术研发中心有限公司
Priority to US16/481,008 priority Critical patent/US11371001B2/en
Publication of WO2018121130A1 publication Critical patent/WO2018121130A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet

Definitions

  • the present application relates to the field of biomedical technology, and in particular, to a cell screening device and a cell screening method.
  • Flow Cetometry is a device for automatic analysis and screening of cells.
  • the principle is to stain the target cells with a specific fluorescent dye against the specific biomarker of the target cells.
  • the specific biomarker may be, for example, a protein or an antibody on a cell membrane.
  • 1 is a schematic diagram of staining a target cell with a fluorescent dye. As shown in FIG. 1, the surface of the target cell 100 has a specific bio-marker 101, and the fluorescent dye molecule 102 can be associated with a specific biomarker 101. Binding to thereby stain the target cell 100.
  • FIG. 2 is a schematic illustration of a prior art cell sorting system.
  • the existing cell sorting system generally uses an ultrasonic pressure crystal and a high voltage electrostatic field.
  • the ultrasonic pressure crystal device is placed on the cell flow chamber, and the ultrasonic pressure crystal generates high frequency vibration after being energized, so that micro droplets are generated in the cell flow chamber 200.
  • 201 a droplet containing a cell 202 to be detected.
  • the laser 203 irradiates the droplet 201 with laser light.
  • the fluorescence analyzer 204 detects that the droplet emits fluorescence corresponding to the fluorescent dye, it indicates that the cell contains the target biomarker, and then the droplet is charged, and when passing through the deflecting plate 205, Under the traction of high-voltage electrostatic field, the cell droplets will fall to the left or to the right and fall to the target container for collection; otherwise, for the target biomarker The cells will not be charged, and the droplets will fall directly to the intermediate waste collection.
  • the inventors of the present application found that the conventional charging and electrostatic field cell sorting method is an open system, and it is impossible to achieve sample detection with a need for full-close detection, and that charging of cells containing cells may be performed during the sorting process. Cells cause damage or cause changes inside the cell.
  • the present application provides a cell screening device and a cell screening method for detecting a cell-containing solution flowing in a flow channel, and pushing cells conforming to the detection result into adjacent flow channels, thereby enabling full-close detection of the sample, Less damage to cells and lower cost.
  • a cell screening device for screening different cells wherein the cell screening device has:
  • At least two flow channels for flowing through a solution containing cells At least two flow channels for flowing through a solution containing cells
  • a detecting unit for detecting a type of cells in the solution flowing in the flow channel
  • a screening actuator that generates a driving force according to a detection result of the detecting unit to push a cell in the solution flowing in the flow channel into the adjacent one of the flow channels via the communication path.
  • the screening actuator generates gas a bubble that pushes cells in the solution into the adjacent flow channel via the communication pathway.
  • the cell screening device further includes:
  • a driver is located at the beginning and/or end of the flow channel for driving the solution to flow in the flow channel.
  • the cell screening device further includes:
  • a collection unit is located at the end of the flow channel for collecting solutions and cells flowing to the end of the flow channel.
  • the screening actuator and the communication passage are disposed opposite each other on both sides of the flow passage in a flow direction of the solution.
  • the at least two flow channels include a first flow channel and a second flow channel, wherein the first flow channel flows through a solution containing at least two cells, the detection unit Detecting a cell species in the first flow channel, the screening actuator generating a driving force to pass the first predetermined species of cells via the first in the case of detecting a first predetermined type of cells A communication passage between a flow passage and the second flow passage is pushed into the second flow passage, and cells other than the first predetermined kind of cells continue to flow along the first flow passage.
  • a cell screening method for screening different cells comprises:
  • the cells in the solution flowing in the flow channel are pushed into the adjacent flow channel via the communication path.
  • the cell screening method further comprises: driving the solution to flow in the flow channel.
  • the beneficial effects of the present application are that the sample can be fully enclosed, the damage to the cells is small, and the cost is low.
  • Figure 2 is a schematic view of a prior art cell sorting system
  • FIG. 3 is a schematic view of a cell screening device of an embodiment of the present application.
  • Figure 4 is a schematic view of the hot injection actuator of the present application.
  • Fig. 5 is a schematic view showing cell selection by the cell sorting apparatus of the present embodiment.
  • Embodiment 1 of the present application provides a cell screening device for screening different cells.
  • FIG. 3 is a schematic diagram of the cell screening device 300. As shown in FIG. 3, the cell screening device 300 has at least two flow channels 301, a communication channel 303, a detection unit 304, and a screening actuator 305.
  • the at least two flow channels 301 are used to flow through a solution containing cells; the communication path 303 is used to communicate between adjacent flow channels 301; and the detecting unit 304 is configured to detect cells in a solution flowing in the flow channel 301.
  • the sorting actuator 305 generates a pushing force according to the detection result of the detecting unit 304 to push the cells in the solution flowing in the flow channel 301 into the adjacent flow channel 301 via the communication path 303.
  • the cells are in a flow channel or a communication pathway, so that the cells can be completely closed-screened, and the cells are not subjected to electric shock or the like, so that damage to the cells is small. Moreover, there is no need for a conventional deflection device or the like. So the cost is lower.
  • the number of flow channels can be determined according to the type of cells to be screened, and the more species to be screened, the more the number of flow channels can be.
  • the flow channel 301 can be fabricated using a microelectromechanical system (MEMS) fabrication process, and the flow cross section of the flow channel 301 can be tens to hundreds of microns in size, thereby forming a microchannel.
  • the material of the flow channel 301 may be a material commonly used in MEMS technology, such as silicon, silicon oxide or silicon nitride.
  • the communication passages 303 are used to connect adjacent flow passages, so the number of communication passages 303 can be set according to the number of flow passages.
  • the dimensions of the flow cross section of the communication passage, the material, and the description of the manufacturing process reference may be made to the flow passage 301.
  • the detecting unit 304 can be used to detect the kind of cells in the flow channel 301.
  • the detecting unit can be composed of a pair of lasers and a fluorescence detector, and the cells in the solution can be dyed by various fluorescent dyes.
  • the cells can be irradiated with laser light to the flow channel 301, and the fluorescence detector can detect whether the position irradiated by the laser emits a specific fluorescence, and if a specific fluorescence is emitted, the position where the laser is irradiated flows through a specific kind of cell.
  • the embodiment is not limited thereto, and other kinds of detecting units may be used to detect the kind of cells in the solution.
  • the detecting unit 304 can also be set according to the number of flow channels.
  • the detecting unit can be disposed in the vicinity of the flow channel where the type of the cells needs to be detected.
  • the screening actuator 305 can generate a bubble that can push cells in the solution into the adjacent flow channel 301 via the communication path 303.
  • the screening actuator 305 can have a heating unit that can heat the solution to create bubbles that push cells in the solution into adjacent flow channels.
  • the screening actuator 305 can be, for example, a hot injection actuation 4 is a schematic view of the hot-injection actuator of the present application.
  • the hot-injection actuator 400 may include a substrate 401, a cover 402, and a heating unit 403, wherein the cover The body 402 is disposed in a spaced relationship from the surface of the substrate 401, and a liquid flow path 404 is formed between the cover 402 and the surface of the substrate 401; a heating unit 403 is formed on the surface of the substrate 401 for the liquid flow path 404 The flowing solution is heated.
  • the heating unit 403 heats up to generate the bubble D to push the liquid B containing the cells to be ejected from the opening 405, thereby entering the communication path.
  • the opening 405 may communicate with the communication passage 303, and the liquid flow passage 404 may communicate with the flow passage 301, and an arrow A in FIG. 4 indicates the flow direction of the liquid in the liquid flow passage 404.
  • the heating unit 403 may be heated in an intermittent heating manner to generate bubbles, for example, each heating for a duration of several microseconds, and the solution is heated to several hundred degrees in a short time to generate bubbles.
  • the cell screening device 300 may further have a driver 306, which may be located at the beginning and/or the end of the flow channel 301 for driving liquid to flow in the flow channel 301.
  • the driver 306 may also have the structure of the hot-injection actuator 400 as shown in FIG. 4, wherein the opening 405 of the hot-injection actuator 400 may be on the downstream side of the liquid flow, thereby being thermally activated.
  • the heater 400 heats up to generate bubbles and ejects droplets from the opening 405, thereby generating a driving force that drives the flow of the liquid.
  • the cell screening device 300 may further have a collecting unit 307 located at the end of the flow channel 301 for collecting the solution and cells flowing to the end of the flow channel.
  • the screening actuator 305 and the communication passage 303 are oppositely disposed on both sides of the flow channel 301 in the flow direction of the solution, thereby facilitating screening.
  • Actuator 305 pushes the cells into communication 303.
  • the at least two flow channels include a first flow channel and a second flow channel, wherein the first flow channel flows through a solution containing at least two kinds of cells; and the detecting unit 304 performs the cell species in the first flow channel. Detecting that, in the case where the first predetermined kind of cells is detected, the screening actuator 305 generates a pushing force to push the first predetermined kind of cells through the communication path between the first flow channel and the second flow channel The second flow channel, the cells outside the first predetermined kind of cells can continue to flow along the first flow channel.
  • more flow channels, more detection units, and more screening actuators may be provided. .
  • Fig. 5 is a schematic diagram of cell screening using the cell screening apparatus of the present embodiment for screening A cells, B cells, and normal cells from mixed cell samples.
  • a solution of a mixed cell sample sufficiently mixed with a Bio-marker fluorescent dye corresponding to A cells and B cells is injected into the first flow channel 3011 from 501; and is detected based on the fluorescence signal when flowing through the first detecting unit 3041.
  • the cells are A cells or B cells or normal cells.
  • a cells and B cells are pushed into the communication pathway by the first screening actuator 3051 and enter the adjacent cells.
  • the sieve-selecting actuator 3051 does not work and does not generate bubbles, so the normal cell along The primary flow path enters the first collection unit 3071; when the A cells and B cells entering the second flow channel 3012 pass through the second detection unit 3042 in the second flow channel 3012, the cells whose detection result is A pass the second
  • the actuator 3052 is screened, it is pushed into the third flow channel 3013 by the bubble.
  • the second screening actuator 3052 does not work and does not generate. The bubbles, therefore, B cells flow directly into the second collection unit 3072, and the A cells enter the third collection unit 3073 along the third flow channel 3013.
  • the bottommost water flow channel 502 has a driver 306 at the head and tail, one for propelling the liquid, and one for sucking the generated bubbles away from the passage 502.
  • a seed cell screening method is also provided, which performs cell screening using the cell screening device of FIG.
  • the cell screening method can include:
  • Step 601 flowing a solution containing a plurality of cells in a flow channel
  • Step 602 detecting a type of cells in the solution flowing in the flow channel
  • Step 603 according to the detection result of the kind of the cell, push the cells in the solution flowing in the flow channel into the adjacent flow channel via the communication path.
  • the method can also include driving the solution to flow in the flow channel.

Abstract

提供一种细胞筛选装置和筛选方法,用于对不同细胞进行筛选,该细胞筛选装置具有:至少两条流动通道,用于流过含有细胞的溶液;连通通路,用于使相邻的所述流动通道之间连通;检测单元,其用于检测所述流动通道中流动的所述溶液中细胞的种类;筛选致动器,其根据所述检测单元的检测结果产生推动力,以推动所述流动通道中流动的所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。

Description

一种细胞筛选装置和细胞筛选方法 技术领域
本申请涉及生物医药技术领域,尤其涉及一种细胞筛选装置和细胞筛选方法。
背景技术
流式细胞仪(Flow Cetometry)是一种对细胞进行自动分析和筛选的装置,原理为用针对目标细胞的特定生物标记物(bio-marker)的特异性的荧光染剂,将目标细胞染色后,经由微流道对单个细胞进行荧光检测,进而筛选出目标细胞,使之与其他细胞分离的技术。其中,该特定生物标记物例如可以是细胞膜上的蛋白或抗体。图1是利用荧光染剂对目标细胞进行染色的一个示意图,如图1所示,目标细胞100表面具有特定生物标记物(bio-marker)101,荧光染剂分子102可以与特定生物标记物101结合,从而对目标细胞100染色。
图2是现有的细胞分选系统的一个示意图。现有的细胞分选系统一般使用超声压晶体与高压静电场,例如,将超声压晶体装置在细胞流动室上,通电后超声压晶体产生高频率振动,使细胞流动室200内生成微液滴201,一个液滴内含一个待检测的细胞202。激光器203向液滴201照射激光,若由荧光分析仪204检测到液滴发出与荧光染剂对应的荧光,则显示该细胞含有目标生物标记物,则给液滴充电,通过偏转板205时在高压静电场的牵引下细胞液滴会往左或往右偏而下落,落至目标容器中予以收集;反之,对于不含目标生物标记物 的细胞将不给予充电,液滴直接落至中间的废液收集处。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本申请的发明人发现,传统的充电及静电场细胞分选法为开放式的系统,无法达成有全封闭检测需求的样本检测,并且,其分选过程中对含有细胞的液滴充电可能对细胞造成损伤,或是造成细胞内部的变化。
本申请提供一种细胞筛选装置和细胞筛选方法,对流动通道中流动的含有细胞的溶液进行检测,将符合检测结果的细胞推入邻近的流动通道,由此,能够对样本进行全封闭检测、对细胞的伤害较小、并且成本较低。
根据本申请实施例的一个方面,提供一种细胞筛选装置,用于对不同细胞进行筛选,其特征在于,该细胞筛选装置具有:
至少两条流动通道,用于流过含有细胞的溶液;
连通通路,用于使相邻的所述流动通道之间连通;
检测单元,其用于检测所述流动通道中流动的所述溶液中细胞的种类;以及
筛选致动器,其根据所述检测单元的检测结果产生推动力,以推动所述流动通道中流动的所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。
根据本申请实施例的另一个方面,其中,所述筛选致动器产生气 泡,所述气泡推动所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。
根据本申请实施例的另一个方面,其中,所述细胞筛选装置还包括:
驱动器,其位于所述流动通道的起始端和/或末端,用于驱动所述溶液在所述流动通道中流动。
根据本申请实施例的另一个方面,其中,所述细胞筛选装置还包括:
收集单元,其位于所述流动通道的末端,用于收集流动到所述流动通道末端的溶液和细胞。
根据本申请实施例的另一个方面,其中,所述筛选致动器和所述连通通路在所述流动通道的沿所述溶液流动方向的两侧相对设置。
根据本申请实施例的另一个方面,其中,所述至少两条流动通道包括第一流动通道和第二流动通道,所述第一流动通道中流过含有至少两种细胞的溶液,所述检测单元对所述第一流动通道中的细胞种类进行检测,在检测到第一预定种类的细胞的情况下,所述筛选致动器产生推动力以将所述第一预定种类的细胞经由所述第一流动通道和所述第二流动通道之间的连通通路推入所述第二流动通道,所述第一预定种类的细胞之外的细胞沿所述第一流动通道继续流动。
根据本申请实施例的另一个方面,提供一种细胞筛选方法,用于对不同细胞进行筛选,其特征在于,该细胞筛选方法包括:
使含有多种细胞的溶液在流动通道中流动;
检测所述流动通道中流动的所述溶液中细胞的种类;以及
根据对细胞的种类的检测结果,推动所述流动通道中流动的所述溶液中的细胞经由连通通路流入邻近的流动通道。
根据本申请实施例的另一个方面,其中,所述细胞筛选方法还包括:驱动所述溶液在所述流动通道中流动。
本申请的有益效果在于:能够对样本进行全封闭检测、对细胞的伤害较小、并且成本较低。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是利用荧光染剂对目标细胞进行染色的一个示意图;
图2是现有的细胞分选系统的一个示意图;
图3是本申请实施例的细胞筛选装置的一个示意图;
图4是本申请的热注式致动器的一个示意图;
图5是利用本实施例的细胞筛选装置进行细胞筛选的一个示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
实施例1
本申请实施例1提供一种细胞筛选装置,用于对不同细胞进行筛选。
图3是该细胞筛选装置300的一个示意图。如图3所示,该细胞筛选装置300具有:至少两条流动通道301,连通通道303,检测单元304,以及筛选致动器305。
其中,该至少两条流动通道301用于流过含有细胞的溶液;连通通路303,用于使相邻的流动通道301之间连通;检测单元304用于检测流动通道301中流动的溶液中细胞的种类;筛选致动器305根据检测单元304的检测结果产生推动力,以推动流动通道301中流动的溶液中的细胞经由连通通路303流入邻近的流动通道301。
在本实施例的细胞筛选装置中,细胞处于流动通道或连通通路中,所以,能够对细胞进行全封闭式的筛选,并且,不会对细胞进行电击等处理,所以对细胞的伤害较小,而且,无需传统的偏转装置等, 所以成本较低。
在本实施例中,流动通道的数量可以根据需要筛选的细胞的种类来确定,需要筛选的种类越多,流动通道的数量可以越多。在本实施例中,流动通道301可以使用微机电系统(MEMS)的制造工艺来制造,流动通道301的流通截面的尺寸可以是几十到上百微米,由此形成微流道。并且,流动通道301的材料可以是MEMS技术中常用的材料,例如硅、氧化硅或氮化硅等。
在本实施例中,连通通路303用于使相邻的流动通道连通,所以,可以根据流动通道的数量来设定,连通通路303的数量。关于连通通路的流通截面的尺寸,材料,以及制造工艺的说明,可以参考流动通道301。
在本实施例中,检测单元304可以用来检测流动通道301中细胞的种类,例如,检测单元可以由一对激光器和荧光检测器构成,并且溶液中的细胞可以是经过多种荧光染剂染色过的细胞,其中,激光器可以向流动通道301照射激光,而荧光检测器可以检测被激光器照射的位置是否发出特定的荧光,如果发出特定的荧光,说明激光器照射的位置流过特定种类的细胞。此外,本实施例不限于此,也可以使用其它种类的检测单元来检测溶液中细胞的种类。
在本实施例中,检测单元304也可以根据流动通道的数量来设定,例如,可以在需要检测细胞的种类的流动通道附近设置检测单元。
在本实施例中,筛选致动器305可以产生气泡,该气泡可以推动溶液中的细胞经由连通通路303流入相邻的流动通道301。例如,该筛选致动器305可以具有加热单元,该加热单元可以对溶液加热,以产生气泡,推动溶液中的细胞流入相邻的流动通道。
在一个实施方式中,该筛选致动器305例如可以是热注式致动 器,图4是本申请的热注式致动器的一个示意图,如图4所示,热注式致动器400可以包括:衬底401,盖体402,以及加热单元403,其中,盖体402以与衬底401表面之间具有间隔的方式而设置,盖体402与衬底401表面之间形成液体流动通道404;加热单元403形成于衬底401表面,用于对液体流动通道404中流动的溶液进行加热。加热单元403加热产生气泡D,以推动含有细胞的液体B从开口405喷出,从而进入连通通路。在本实施例中,开口405可以与连通通路303连通,液体流动通道404可以与流动通道301连通,图4中的箭头A表示液体流动通道404中液体的流动方向。
在本实施例中,加热单元403可以以间断加热的方式进行加热,以产生气泡,例如,每次加热持续时间为几微秒,在短时间内将溶液加热到数百度,从而产生气泡。
在本实施例中,可以不限于此,筛选致动器305可以采用其他的结构和其他的致动原理。
在本实施例中,如图3所示,细胞筛选装置300还可以具有驱动器306,驱动器306可以位于流动通道301的起始端和/或末端,用于驱动液体在流动通道301中流动。该驱动器306也可以具有如图4所示的热注式致动器400的结构,其中,热注式致动器400的开口405可以处于液体流动的下游侧,由此,热注式致动器400加热产生气泡并从开口405喷出液滴,从而产生驱动液体流动的驱动力。
在本实施例中,如图3所示,细胞筛选装置300还可以具有收集单元307,其位于流动通道301的末端,用于收集流动到流动通道末端的溶液和细胞。
在本实施例中,如图3所示,筛选致动器305和连通通路303在流动通道301的沿溶液流动方向的两侧相对设置,由此,便于筛选 致动器305将细胞推入连通通到303。
在本实施例中,至少两条流动通道包括第一流动通道和第二流动通道,第一流动通道中流过含有至少两种细胞的溶液;检测单元304对该第一流动通道中的细胞种类进行检测,在检测到第一预定种类的细胞的情况下,筛选致动器305产生推动力以将第一预定种类的细胞经由该第一流动通道和该第二流动通道之间的连通通路推入该第二流动通道,该第一预定种类的细胞之外的细胞可以沿第一流动通道继续流动。
为了对该第一预定种类的细胞之外的细胞和/或该第一预定种类的细胞进行更进一步地分类,可以设置更多的流动通道、更多的检测单元和更多的筛选致动器。
图5是利用本实施例的细胞筛选装置进行细胞筛选的一个示意图,用于从混合细胞样本中筛选出A细胞、B细胞和正常细胞。
在图5中,与对应A细胞与B细胞的Bio-marker荧光染剂充分混合的混合细胞样本的溶液从501处注入第一流动通道3011;流经第一个检测单元3041时依据荧光信号检测细胞为A细胞或B细胞或正常细胞,例如,当检测结果为A细胞和B细胞的情况下,A细胞和B细胞被第一个筛选致动器3051推入连通通路并进入相邻的第二流动通道3012中,当第一个检测单元3041的检测结果为正常细胞时,细胞流过第一个筛选致动器3051时,筛改选致动器3051不工作不产生气泡,因此正常细胞沿原流道进入第一个收集单元3071;进入第二流动通道3012的A细胞和B细胞顺在第二流动通道3012中经过第二个检测单元3042时,检测结果为A的细胞经过第二个筛选致动器3052时被气泡推入第三流动通道3013,检测结果为B的细胞流经第二个筛选致动器3052时,第二个筛选致动器3052时不工作不产生 气泡,所以,B细胞直接流入第二个收集单元3072,而A细胞顺着第三流动通道3013进入第三个收集单元3073。
在图5中,最底部的水流通道502头尾各一个驱动器306,一个负责推进液体,一个负责将产生的气泡吸走避免通道502堵塞。
图5中,各收集单元3071、3072、3073分选好的三种细胞可进行下一步分析。
根据本申请实施例,还提供种细胞筛选方法,该方法使用图3的细胞筛选装置进行细胞筛选。
该细胞筛选方法可以包括:
步骤601、使含有多种细胞的溶液在流动通道中流动;
步骤602、检测所述流动通道中流动的所述溶液中细胞的种类;以及
步骤603、根据对细胞的种类的检测结果,推动所述流动通道中流动的所述溶液中的细胞经由连通通路流入邻近的流动通道。
该方法还可以包括:驱动所述溶液在所述流动通道中流动。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围内。

Claims (9)

  1. 一种细胞筛选装置,用于对不同细胞进行筛选,其特征在于,该细胞筛选装置具有:
    至少两条流动通道,用于流过含有细胞的溶液;
    连通通路,用于使相邻的所述流动通道之间连通;
    检测单元,其用于检测所述流动通道中流动的所述溶液中细胞的种类;以及
    筛选致动器,其根据所述检测单元的检测结果产生推动力,以推动所述流动通道中流动的所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。
  2. 如权利要求1所述的细胞筛选装置,其特征在于,
    所述筛选致动器产生气泡,所述气泡推动所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。
  3. 如权利要求1所述的细胞筛选装置,其特征在于,所述细胞筛选装置还包括:
    驱动器,其位于所述流动通道的起始端和/或末端,用于驱动所述溶液在所述流动通道中流动。
  4. 如权利要求1所述的细胞筛选装置,其特征在于,所述细胞筛选装置还包括:
    收集单元,其位于所述流动通道的末端,用于收集流动到所述流动通道末端的溶液和细胞。
  5. 如权利要求1所述的细胞筛选装置,其特征在于,
    所述筛选致动器和所述连通通路在所述流动通道的沿所述溶液流动方向的两侧相对设置。
  6. 如权利要求1所述的细胞筛选装置,其特征在于,
    所述至少两条流动通道包括第一流动通道和第二流动通道,
    所述第一流动通道中流过含有至少两种细胞的溶液,
    所述检测单元对所述第一流动通道中的细胞种类进行检测,
    在检测到第一预定种类的细胞的情况下,所述筛选致动器产生推动力以将所述第一预定种类的细胞经由所述第一流动通道和所述第二流动通道之间的连通通路推入所述第二流动通道,
    所述第一预定种类的细胞之外的细胞沿所述第一流动通道继续流动。
  7. 一种细胞筛选方法,用于对不同细胞进行筛选,其特征在于,该细胞筛选方法包括:
    使含有多种细胞的溶液在流动通道中流动;
    检测所述流动通道中流动的所述溶液中细胞的种类;以及
    根据对细胞的种类的检测结果,推动所述流动通道中流动的所述溶液中的细胞经由连通通路流入邻近的流动通道。
  8. 如权利要求7所述的细胞筛选方法,其特征在于,
    通过产生气泡推动所述溶液中的细胞经由所述连通通路流入邻近的所述流动通道。
  9. 如权利要求7所述的细胞筛选方法,其特征在于,所述细胞筛选方法还包括:
    驱动所述溶液在所述流动通道中流动。
PCT/CN2017/112177 2016-12-29 2017-11-21 一种细胞筛选装置和细胞筛选方法 WO2018121130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/481,008 US11371001B2 (en) 2016-12-29 2017-11-21 Cell screening device and cell screening method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611245966.7A CN108251291A (zh) 2016-12-29 2016-12-29 一种细胞筛选装置和细胞筛选方法
CN201611245966.7 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018121130A1 true WO2018121130A1 (zh) 2018-07-05

Family

ID=62706869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112177 WO2018121130A1 (zh) 2016-12-29 2017-11-21 一种细胞筛选装置和细胞筛选方法

Country Status (3)

Country Link
US (1) US11371001B2 (zh)
CN (1) CN108251291A (zh)
WO (1) WO2018121130A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718962B (zh) * 2020-06-11 2021-02-11 威光自動化科技股份有限公司 液管內之氣泡篩選器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735466A (zh) * 2002-09-16 2006-02-15 塞通诺米公司 颗粒分选的设备和方法
US20120190104A1 (en) * 2011-01-21 2012-07-26 Innovative Micro Technology MEMS Particle sorting actuator and method of manufacturing
CN103586221A (zh) * 2012-08-16 2014-02-19 索尼公司 微粒分选方法和用于微粒分选的微芯片
CN103998394A (zh) * 2011-08-01 2014-08-20 德诺弗科学公司 细胞捕获系统和使用方法
CN105008895A (zh) * 2012-10-15 2015-10-28 纳诺赛莱克特生物医药股份有限公司 颗粒分选的系统、设备和方法
WO2016007635A1 (en) * 2014-07-10 2016-01-14 Kinetic River Corp. Flow cytometry apparatus and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025266A2 (en) * 2002-09-16 2004-03-25 Cytonome, Inc Method and apparatus for sorting particles
US20110001963A1 (en) * 2009-07-02 2011-01-06 Durack Gary P System and method for the measurement of multiple emissions from multiple parallel flow channels in a flow cytometry system
WO2011005778A1 (en) * 2009-07-06 2011-01-13 Sony Corporation Microfluidic device
CN102472697A (zh) * 2009-07-06 2012-05-23 索尼公司 微流体装置
US8941062B2 (en) * 2010-11-16 2015-01-27 1087 Systems, Inc. System for identifying and sorting living cells
CN103725599B (zh) * 2014-01-14 2015-05-27 刘韬 一种流体膜过滤细胞分离装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735466A (zh) * 2002-09-16 2006-02-15 塞通诺米公司 颗粒分选的设备和方法
US20120190104A1 (en) * 2011-01-21 2012-07-26 Innovative Micro Technology MEMS Particle sorting actuator and method of manufacturing
CN103998394A (zh) * 2011-08-01 2014-08-20 德诺弗科学公司 细胞捕获系统和使用方法
CN103586221A (zh) * 2012-08-16 2014-02-19 索尼公司 微粒分选方法和用于微粒分选的微芯片
CN105008895A (zh) * 2012-10-15 2015-10-28 纳诺赛莱克特生物医药股份有限公司 颗粒分选的系统、设备和方法
WO2016007635A1 (en) * 2014-07-10 2016-01-14 Kinetic River Corp. Flow cytometry apparatus and methods

Also Published As

Publication number Publication date
CN108251291A (zh) 2018-07-06
US11371001B2 (en) 2022-06-28
US20190390148A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US11896973B2 (en) Thermal activated microfluidic switching
US11345951B2 (en) System and method for capturing and analyzing cells
JP2022191270A (ja) システムおよび方法
US10488321B2 (en) Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip
KR101615177B1 (ko) 마이크로칩, 유로 구조, 유체 분석 장치, 미소입자 분별 장치 및 송액 방법
JP5175105B2 (ja) 粒子を水力学的に仕分けするための方法および装置
US8246805B2 (en) Micro-fluidic chip and flow sending method in micro-fluidic chip
US8487273B2 (en) Microchip and particulate fractional collection apparatus
US9849456B2 (en) Microfluidic device
JP2020513576A (ja) マイクロ流体チャネルを使用してマイクロ粒子のバルク選別を行う方法及び装置
US20160231223A1 (en) Fluidic chip for flow cytometry and methods of use
EP3209419A1 (en) High definition microdroplet printer
US20220283078A1 (en) Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof
US20140014192A1 (en) Method of controlling a flow
JP2007315772A (ja) 蛍光検出装置および生化学反応分析装置
WO2018121130A1 (zh) 一种细胞筛选装置和细胞筛选方法
US20210107005A1 (en) Liquid handling device, liquid handling method, and liquid handling system
US20210291186A1 (en) Method of determining the transfection status of a plurality of cells
US11701658B2 (en) Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves
JP4745755B2 (ja) 分画マイクロチップ及び分画装置
US20210162413A1 (en) Microfluidic immunoassays
Taylor The design and evaluation of a microfluidic cell sorting chip
Mutafopulos Microfluidic Device Technology for Cell and Droplet Sorting, Encapsulation, Storage, and Lysis
JP2022000611A (ja) 粒子ソーター、粒子分取方法およびマイクロ流路カートリッジ
Perch-Nielsen Sample pretretment in microsystems: μFACS, dielectrophoresis and electrothermal induced fluid flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888683

Country of ref document: EP

Kind code of ref document: A1