WO2018121075A1 - 一种具备串行接口oled显示屏的智能电容综合模块 - Google Patents

一种具备串行接口oled显示屏的智能电容综合模块 Download PDF

Info

Publication number
WO2018121075A1
WO2018121075A1 PCT/CN2017/109509 CN2017109509W WO2018121075A1 WO 2018121075 A1 WO2018121075 A1 WO 2018121075A1 CN 2017109509 W CN2017109509 W CN 2017109509W WO 2018121075 A1 WO2018121075 A1 WO 2018121075A1
Authority
WO
WIPO (PCT)
Prior art keywords
oled display
power
display screen
serial interface
voltage
Prior art date
Application number
PCT/CN2017/109509
Other languages
English (en)
French (fr)
Inventor
陈文俊
Original Assignee
常熟市五爱电器设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟市五爱电器设备有限公司 filed Critical 常熟市五爱电器设备有限公司
Publication of WO2018121075A1 publication Critical patent/WO2018121075A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the invention relates to the field of 0.4KV low voltage power grid reactive power compensation device, and particularly relates to a smart capacitor integrated module with a serial interface OLED display.
  • the existing smart capacitor technology solutions mostly use 8-bit single-chip microcomputer as the control core. Due to the weak computing power of 8-bit single-chip microcomputer and relatively limited hardware resources, the data acquisition of voltage, current and phase is realized by hardware + software. Low and poor precision make the current smart capacitor products have a slow response to load reactive changes and often cause malfunctions; and the 8-bit machine has poor computing power, unable to calculate system voltage and current harmonics, thus failing to achieve capacitor harmonics.
  • the protection function causes the power capacitor to quickly fail and damage in the harmonic environment; the low computing power of the 8-bit machine makes it impossible to adopt a complicated switching strategy algorithm, so the switching of the compensation capacitor can only be rough according to the power factor.
  • the control strategy cannot meet the increasing technical requirements of users for smart capacitors.
  • LCD liquid crystal screen is a display module used in many smart capacitor technology solutions. It is a transmissive display technology.
  • the transistor electrode made by thin film technology actively controls the opening and closing of display points by scanning. Thereby controlling the arrangement state of the liquid crystal molecules, thereby changing the shading and light transmission state for display purposes.
  • the LCD display technology is relatively mature at present, with the emergence of new technologies, many technical disadvantages have been exposed. For example, the LCD itself does not emit light, and a backlight is required. The brightness and contrast mainly depend on the distribution and brightness of the backlight.
  • the RS232 and SPI interfaces are the most widely used, but because the RS232 transmission speed is slow, only 115200bps, it is difficult to apply in the occasions where the display content needs to be frequently refreshed, and the RS232 connection does not have a synchronous clock, which is prone to transmission errors. Its reliability has therefore been questioned.
  • the SPI serial interface can reach 10Mbps and has SCLK synchronous clock, which can ensure the accuracy of data transmission. Therefore, its use effect and quality are obviously improved. Combined with its MCU interface, it can also save resources and reduce costs. Widely used.
  • the object of the present invention is to provide a smart capacitor integrated module with a serial interface OLED display screen, which solves the problem that the existing smart capacitor cannot meet the complex reactive power requirement of the current power supply system due to the low-end 8-bit single-chip microcomputer with weak computing capability as the control core.
  • the problem At the same time, it overcomes the shortcomings of the backward LCD display technology on the human-computer interaction level, and uses the SPI serial interface to connect with the MCU to improve the data transmission speed and ensure the accuracy of the data.
  • the technical solution of the present invention is to design a smart capacitor integrated module with a serial interface OLED display, which is based on a 32-bit ARM MCU, and is supplemented by a signal conditioning circuit, a digital-to-analog conversion circuit, a composite switch,
  • the network communication unit and the human-machine interaction unit form a reactive power compensation device.
  • the 32-bit ARM MCU directly performs A/D synchronous sampling conversion, and 64 points are sampled per power frequency, and the sampled data is filtered by FIR software, and then calculated by the FFT algorithm.
  • the human-machine interaction unit is composed of an OLED display screen, a button and a toggle switch, wherein the OLED display screen comprises an MCU interface, a graphic display data RAM, a display control unit, a command decoder, a timing generation unit, and the MCU interface.
  • the SPI serial interface is connected to the data, clock and read/write enable pins of the MCU and the OLED display.
  • the display control unit receives data or instructions through the SPI serial interface under the control of timing to realize OLED for corresponding timing control. The display content of the display is controlled.
  • the OLED display screen is separately powered by a power chip, and a common mode and a differential mode inductor are disposed in the circuit to eliminate common mode and differential mode interference of the circuit, and a power-off reset module is provided.
  • the OLED display screen is equipped with a corresponding software control strategy, and the protection function of the OLED display module is implemented in combination with the power-off reset module, thereby avoiding influence of large harmonics or smart capacitor switching in the circuit on the display module.
  • the OLED display screen automatically goes to sleep when there is no operation for 60s.
  • the 32-bit ARM MCU directly performs A/D synchronous sampling conversion, and 64 points are sampled per power frequency, and the sampled data is filtered by FIR software.
  • the FFT algorithm is used to calculate the phase difference between the voltage, current, voltage and current of each phase of the busbar system, and the harmonic components of the voltage and current, and calculate the reactive power, active power, apparent power and power factor of the busbar system.
  • the switching operation is performed by controlling the triac and the magnetic holding relay through the 32-bit ARM MCU.
  • an OLED display is used as a device display module, and the OLED display module includes MCU interface, graphic display data RAM, display control unit, command decoder, timing generation unit, its MCU interface is SPI serial interface and connects SDIN (data), SCLK (clock) and D/C of MCU and OLED display module (The read/write enable pin, the display control unit receives data or instructions through the SPI serial interface under the control of timing, and realizes display content control of the OLED display screen under the corresponding timing control.
  • the display module uses the power chip to supply power separately, and adds common mode and differential mode inductance in the circuit to eliminate the common mode and differential mode interference of the circuit, and has a power-off reset module.
  • the software aspect OLED has a corresponding reliability control strategy, and the protection function of the OLED display module is realized by combining the power-off reset module to avoid the influence of large harmonics or smart capacitor switching in the circuit on the display module, and no operation in 60s. In the case of the OLED display screen automatically enters the sleep state.
  • the invention has the advantages and advantages that the invention provides a smart capacitor integrated module with a serial interface OLED display screen, which solves the problem that the existing smart capacitor cannot meet the current power supply system due to the low-end 8-bit single-chip microcomputer with weak computing capability as the control core.
  • the problem of complex reactive demand is also known.
  • it overcomes the shortcomings of the backward LCD display technology on the human-computer interaction level, and uses the SPI serial interface to connect with the MCU to improve the data transmission speed and ensure the accuracy of the data.
  • the utility model adopts a highly optimized switching strategy, has high operational reliability, and provides a full-wave or fundamental wave algorithm to adjust the evaluation strategy of the reactive power of the system, and supports two kinds of reactive power compensation control: “voltage priority” and “reactive power priority”.
  • the strategy is to switch the capacitors to meet the different needs of the power supply site.
  • the OLED display module is connected to the MCU through the SPI serial interface, occupies fewer ports, has a simple circuit structure, is easy to implement, and has a SCLK synchronous clock to ensure the accuracy of data transmission.
  • the OLED display module is powered by a power chip separately, and has a power-off reset circuit, which combines the system reliability control strategy to realize the protection and anti-interference function of the display module.
  • OLED display core layer thickness is very thin, can be less than 1mm, 1/3 of the LCD screen, so the device can be miniaturized.
  • the OLED screen only needs to be powered by the unit that is lit, which is less power consumption and saves power than the traditional LCD plus backlight.
  • the OLED will emit light by itself and the luminescence conversion efficiency is high, it is much brighter than the LCD screen, the contrast is larger, and the OLED has no limitation of the viewing angle range, and the viewing angle can reach 170°, and it is not observed from the side. Will be distorted.
  • FIG. 1 is a structural block diagram of a smart capacitor integrated module system with a serial interface OLED display in implementation
  • FIG. 2 is a flow chart of data processing and control of a smart capacitor integrated module with a serial interface OLED display in implementation
  • FIG. 3 is a structural block diagram of an OLED display module system of a smart capacitor integrated module with a serial interface OLED display in implementation
  • FIG. 4 is a circuit diagram of a power supply pre-processing and a power management chip of an OLED display module of a smart capacitor integrated module with a serial interface OLED display;
  • FIG. 5 is a flow chart of a reliability control strategy of an OLED display module of a smart capacitor integrated module with a serial interface OLED display in implementation.
  • a smart capacitor with a 32-bit ARM MCU as the core is a 32-bit ARMMCU core, and is supplemented by a signal conditioning circuit, a digital-to-analog conversion circuit, a composite switching switch, and a network communication unit.
  • the human-machine interaction unit and the low-voltage compensation capacitor constitute a reactive power compensation device.
  • the busbar system voltage and current are converted to the original signal by the transformer.
  • the 32-bit ARM MCU directly performs A/D synchronous sampling conversion. Each power frequency cycle samples 64 points, and the sampled data is sampled.
  • the FIR software filters, and then uses the FFT algorithm to calculate the phase difference between the voltage, current, and voltage and current of each phase of the bus, the harmonic components of the voltage and current, and calculate the reactive, active, apparent power,
  • the power factor, the calculated reactive power is the system reactive power shortage, and as the basis for the compensation capacitor switching, the 32-bit ARM MCU completes the switching capacitor action by controlling the triac and the magnetic holding relay, and then The system reacquires and analyzes the current bus real-time reactive power state to achieve fast, real-time and accurate switching of the compensation capacitor.
  • the application of a serial interface OLED display screen of the present embodiment in a smart capacitor includes an MCU interface, a graphic display data RAM, a display control unit, a command decoder, and a timing generation unit, and is serially transmitted via SPI.
  • the interface connects the SDIN (data), SCLK (clock) and D/C (read and write enable) pins of the MCU and the OLED display module, and the display control unit receives data or instructions through the SPI serial interface under the control of the timing to realize the corresponding timing. Display content control for OLED display under control.
  • the circuit structure diagram of the power supply part of the OLED display module in this embodiment is shown, and the power supply chip is separately powered, and the common mode and differential mode inductance are added in the circuit to eliminate the common mode and differential mode interference of the circuit.
  • FIG. 5 it is a flowchart of the software reliability control strategy of the OLED display module under implementation, and the power-off reset module in the circuit is combined with the power-cutting action of the capacitor to cut off the power supply of the OLED display module, and the operation is resumed after the execution is completed.
  • the power supply prevents the capacitor switching from affecting the display module.
  • the OLED display screen automatically enters the sleep state to realize the protection function for the OLED display module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种具备串行接口OLED显示屏的智能电容综合模块,以32位ARM MCU为核心,同时辅以信号调理电路、数模转换电路、复合开关、网络通信单元和人机交互单元,组成无功补偿装置。母线电压、电流信号经信号调理电路处理后,由32位ARM MCU直接进行A/D同步采样转换,每工频周波采样64点,采样数据经FIR软件滤波,然后以FFT算法计算出母线各相系统电压、电流、电压和电流间的相位差、电压电流的各次谐波分量,并据此计算出系统无功、有功、视在功率和功率因数,所计算出的无功功率即为系统无功缺额,并作为补偿电容器的投切依据,投切动作的执行通过32位ARM MCU控制双向晶闸管及磁保持继电器实现。具有无功功率补偿算法精度高、速度快、电容器智能投切策略高度优化、运行可靠性高的显著特点。

Description

一种具备串行接口OLED显示屏的智能电容综合模块 技术领域
本发明涉属于0.4KV低压电网无功补偿装置领域,具体涉及一种具备串行接口OLED显示屏的智能电容综合模块。
背景技术
现有的智能电容器技术方案多为采用8位单片机作为控制核心,由于8位单片机运算能力弱,硬件资源相对有限,故电压、电流、相位的数据获取采用硬件+软件的方式来实现,运算速度低、精度差,使得目前智能电容器产品对负载无功变化响应速度慢,且常常导致误动作;且8位机运算能力很差,无法计算系统电压、电流谐波,从而无法实现电容器的谐波保护功能,导致电力电容器在大谐波环境下迅速失效、损坏;8位机低下的运算能力导致不可能采用复杂的投切策略算法,因此补偿电容器的投切只能按照功率因数的大小制定粗糙的控制策略,无法满足用户对智能电容器越来越高的技术要求。
LCD液晶屏幕是当下许多智能电容器技术方案中采用的显示模块,它是一种透射式显示技术,利用薄膜技术所做成的电晶体电极,采用扫描的方法主动地控制显示点的开和关,从而控制液晶分子的排列状态,进而改变遮光和透光状态以达到显示目的。虽然LCD显示技术目前已经比较成熟,但随着新技术的不断涌现也暴露出诸多技术层面的劣势,如:LCD本身不发光,需要背光源,其亮度及对比度主要取决于背光源的分布及亮度,因此其功耗较大,并造成电能的浪费;其输出光线的方向性导致其可视角度较小,从侧面观察会出现图像失真;体积大,显示内容少,无法实现装置的小型化;响应时间较长,大约几十毫秒,如超过40ms,就会造成拖影现象。以上这些弱点都使LCD显示屏在新形势下逐渐无法满足用户对显示技术日益增长的技术需求,同时,在工业应用领域,基于并行接口的显示装置虽然传输速度较快,但是在复杂的工业环境中很容易受到电磁干扰的影响,导致数据传输的错误,从而影响显示效果,因此,以串行接口控制和进行数据传输逐步得到越来越广泛的应用。
在串行接口中,RS232和SPI接口应用最为广泛,但由于RS232传输速度较慢,只有115200bps,很难在需要频繁刷新显示内容的场合进行应用,而且RS232连接没有同步时钟,很容易发生传输错误,其可靠性也因此受到质疑。而SPI串行接口传输速度能达到10Mbps,并具有SCLK同步时钟,可以保证数据传输的准确性,因此其使用效果和质量明显改观,结合其MCU接口还可以最大限度的节省资源,降低成本,因此得到广泛应用。
发明内容
本发明的目的在于提供一种具备串行接口OLED显示屏的智能电容综合模块,解决现有智能电容器因采用运算能力弱的低端8位单片机作为控制核心而无法满足目前供电系统复杂无功需求的问题。同时,克服落后的LCD显示技术在人机交互层面上的不足,并采用SPI串行接口与MCU连接,提高数据传输速度,保证数据的准确性。
为实现上述目的,本发明的技术方案是设计一种具备串行接口OLED显示屏的智能电容综合模块,以32位ARM MCU为核心,同时辅以信号调理电路、数模转换电路、复合开关、网络通信单元和人机交互单元,组成无功补偿装置。
优选的,母线电压、电流信号经信号调理电路处理后,由32位ARM MCU直接进行A/D同步采样转换,每工频周波采样64点,采样数据经FIR软件滤波,然后以FFT算法计算出母线各相系统电压、电流、电压和电流间的相位差、电压电流的各次谐波分量,并据此计算出系统无功、有功、视在功率和功率因数,所计算出的无功功率即为系统无功缺额,并作为补偿电容器的投切依据,投切动作的执行通过32位ARM MCU控制双向晶闸管及磁保持继电器实现。
优选的,所述人机交互单元由OLED显示屏、按键及拨动开关组成,其中OLED显示屏包括MCU接口、图形显示数据RAM、显示控制单元、命令解码器、时序产生单元,所述MCU接口为SPI串行接口并连接MCU与OLED显示屏的数据、时钟和读写使能针脚,所述显示控制单元在时序的控制下通过SPI串行接口接收数据或指令,实现对应时序控制下针对OLED显示屏的显示内容控制。
优选的,所述OLED显示屏采用电源芯片单独供电,电路中设置共模、差模电感,消除电路共模、差模干扰,并设有断电复位模块。
优选的,所述OLED显示屏配备相应软件控制策略,结合所述断电复位模块实现对OLED显示模块的保护功能,避免电路中的较大谐波或智能电容器投切对显示模块造成影响,在60s无操作的情况下OLED显示屏幕自动进入休眠状态。
更具体来说,本发明中母线电压、电流信号经装置信号调理电路处理后,由32位ARM MCU直接进行A/D同步采样转换,每工频周波采样64点,采样数据经FIR软件滤波后以FFT算法计算出母线系统各相电压、电流、电压和电流间的相位差、电压电流的各次谐波分量,据此计算出母线系统的无功、有功、视在功率和功率因数,并以此作为补偿电容器的投切依据,投切动作的执行是通过32位ARM MCU控制双向晶闸管及磁保持继电器来完成。在人机交互层面,采用OLED显示屏作为装置显示模块,所述OLED显示模块包括 MCU接口、图形显示数据RAM、显示控制单元、命令解码器、时序产生单元,其MCU接口为SPI串行接口并连接MCU与OLED显示模块的SDIN(数据)、SCLK(时钟)和D/C(读写使能)针脚,所述显示控制单元在时序的控制下通过SPI串行接口接收数据或指令,实现对应时序控制下对OLED显示屏的显示内容控制。同时,显示模块采用电源芯片单独供电,并在电路中增加共模、差模电感,消除电路共模、差模干扰,设有断电复位模块。软件方面OLED具有相应的可靠性控制策略,结合所述断电复位模块实现对OLED显示模块的保护功能,避免电路中的较大谐波或智能电容器投切对显示模块造成影响,在60s无操作的情况下OLED显示屏幕自动进入休眠状态。
本发明的优点和有益效果在于:提供一种具备串行接口OLED显示屏的智能电容综合模块,解决现有智能电容器因采用运算能力弱的低端8位单片机作为控制核心而无法满足目前供电系统复杂无功需求的问题。同时,克服落后的LCD显示技术在人机交互层面上的不足,并采用SPI串行接口与MCU连接,提高数据传输速度,保证数据的准确性。
本发明具有如下特点:
1、基于32位ARM MCU设计,较8位单片机其运算能力显著增强,因此可以对系统电压、电流进行精度更高的计算,所以能保证对负载的无功变化及时作出响应,避免因为运算能力弱带来的延迟所导致的电容器误动作。
2、基于32位ARM MCU设计,依托其强大的数据处理能力,快速实现对系统电压、电流的2-30次谐波分析运算,因此可以在智能电容器中实现谐波保护功能,消除高次谐波对电容器的影响,避免低压补偿电容器的损坏,延长其使用寿命,并可根据需要制作消除谐波型智能电容器,能有效的抑制高次谐波和涌流,保护电路及低压补偿电容器,避免过载。
3、基于32位ARM MCU设计,可以设计更加复杂高效的投切策略,实践证明低端8位单片机仅依据功率因数的大小所制定的控制策略无法满足当前供电系统日益复杂的无功需求,本实用新型采用高度优化投切策略,运行可靠性高,并提供全波或基波算法来调整系统无功功率的评估策略,支持“电压优先”和“无功功率优先”两种无功补偿控制策略进行电容器的投切,以满足供电现场不同的需求。
4、OLED显示模块通过SPI串行接口与MCU连接,占用端口少,电路结构简单,易于实现,并且具备SCLK同步时钟,可保证数据传输的准确性。
5、OLED显示模块采用电源芯片单独供电,并设有断电复位电路,结合系统可靠性控制策略实现对显示模块的保护和抗干扰功能。
6、OLED显示屏其核心层厚度很薄,可以小于1mm,为LCD屏幕的1/3,因此可以实现装置的小型化。
7、OLED屏幕只有需要点亮的单元才加电,较传统LCD加背光灯的方式功耗小、省电。
8、基于OLED屏幕设计,由于OLED会自行发光,发光转化效率高,所以较LCD屏要亮的多,对比度更大,且OLED没有视角范围的限制,视角可达到170°,从侧面观察也不会失真。
附图说明
图1为实施中的具备串行接口OLED显示屏的智能电容综合模块系统结构框图;
图2为实施中的具备串行接口OLED显示屏的智能电容综合模块数据处理及控制流程图;
图3为实施中的具备串行接口OLED显示屏的智能电容综合模块之OLED显示模块系统结构框图;
图4为实施中的具备串行接口OLED显示屏的智能电容综合模块之OLED显示模块电源前置处理及电源管理芯片电路结构图;
图5为实施中的具备串行接口OLED显示屏的智能电容综合模块之OLED显示模块可靠性控制策略流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明具体实施的技术方案是:
如图1所示,本实施例的一种以32位ARM MCU为核心的智能电容器,以32位ARMMCU为核心,同时辅以信号调理电路、数模转换电路、复合投切开关、网络通信单元、人机交互单元和低压补偿电容器构成无功补偿装置。
如图2所示,母线系统电压、电流经互感器转换为原始信号,经信号调理电路后,由32位ARM MCU直接进行A/D同步采样转换,每工频周波采样64点,采样数据经FIR软件滤波,然后以FFT算法计算出母线各相系统电压、电流、及电压和电流间的相位差、电压电流的各次谐波分量,据此计算出系统无功、有功、视在功率、功率因数,所计算出的无功功率即为系统无功缺额,并以此作为补偿电容器的投切依据,32位ARM MCU通过控制双向晶闸管及磁保持继电器来完成投切电容的动作执行,然后系统重新采集分析当前母线实时无功功率状态,以实现补偿电容器的快速、实时、精确投切。
如图3所示,本实施例的一种串行接口OLED显示屏在智能电容器中的应用,包括MCU接口、图形显示数据RAM、显示控制单元、命令解码器、时序产生单元,通过SPI串行接口连接MCU与OLED显示模块的SDIN(数据)、SCLK(时钟)和D/C(读写使能)针脚,显示控制单元在时序的控制下通过SPI串行接口接收数据或指令,实现对应时序控制下针对OLED显示屏的显示内容控制。
如图4所示,显示了本实施例中的OLED显示模块的供电部分电路结构图,采用电源芯片单独供电,电路中增加共模、差模电感,消除电路共模、差模干扰,同时设有断电复位模块。
如图5所示,为实施中的OLED显示模块的软件可靠性控制策略流程图,结合电路中的断电复位模块在电容器的投切动作执行的同时切断OLED显示模块供电,动作执行完毕后恢复其供电,避免电容器投切对显示模块造成影响,在60s无操作的情况下OLED显示屏幕自动进入休眠状态,实现对OLED显示模块的保护功能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种具备串行接口OLED显示屏的智能电容综合模块,其特征在于,以32位ARM MCU为核心,同时辅以信号调理电路、数模转换电路、复合开关、网络通信单元和人机交互单元,组成无功补偿装置。
  2. 根据权利要求1所述的一种具备串行接口OLED显示屏的智能电容综合模块,其特征在于,母线电压、电流信号经信号调理电路处理后,由32位ARM MCU直接进行A/D同步采样转换,每工频周波采样64点,采样数据经FIR软件滤波,然后以FFT算法计算出母线各相系统电压、电流、电压和电流间的相位差、电压电流的各次谐波分量,并据此计算出系统无功、有功、视在功率和功率因数,所计算出的无功功率即为系统无功缺额,并作为补偿电容器的投切依据,投切动作的执行通过32位ARM MCU控制双向晶闸管及磁保持继电器实现。
  3. 根据权利要求1所述的一种具备串行接口OLED显示屏的智能电容综合模块,其特征在于,所述人机交互单元由OLED显示屏、按键及拨动开关组成,其中OLED显示屏包括MCU接口、图形显示数据RAM、显示控制单元、命令解码器、时序产生单元,所述MCU接口为SPI串行接口并连接MCU与OLED显示屏的数据、时钟和读写使能针脚,所述显示控制单元在时序的控制下通过SPI串行接口接收数据或指令,实现对应时序控制下针对OLED显示屏的显示内容控制。
  4. 根据权利要求1所述的一种具备串行接口OLED显示屏的智能电容综合模块,其特征在于,所述OLED显示屏采用电源芯片单独供电,电路中设置共模、差模电感,消除电路共模、差模干扰,并设有断电复位模块。
  5. 根据权利要求1所述的一种具备串行接口OLED显示屏的智能电容综合模块,其特征在于,所述OLED显示屏配备相应软件控制策略,结合所述断电复位模块实现对OLED显示模块的保护功能,避免电路中的较大谐波或智能电容器投切对显示模块造成影响,在60s无操作的 情况下OLED显示屏幕自动进入休眠状态。
PCT/CN2017/109509 2016-12-30 2017-11-06 一种具备串行接口oled显示屏的智能电容综合模块 WO2018121075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611253465.3A CN106549401A (zh) 2016-12-30 2016-12-30 一种具备串行接口oled显示屏的智能电容综合模块
CN201611253465.3 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121075A1 true WO2018121075A1 (zh) 2018-07-05

Family

ID=58396413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109509 WO2018121075A1 (zh) 2016-12-30 2017-11-06 一种具备串行接口oled显示屏的智能电容综合模块

Country Status (2)

Country Link
CN (1) CN106549401A (zh)
WO (1) WO2018121075A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071511A (zh) * 2019-05-09 2019-07-30 浙江朗松智能电力设备有限公司 一种无功补偿控制装置及电容投切方法
CN114285047A (zh) * 2021-12-27 2022-04-05 国网江苏省电力有限公司连云港供电分公司 含分布式电源接入的有源配电网信息化交互平台和方法
CN114285047B (zh) * 2021-12-27 2024-05-31 国网江苏省电力有限公司连云港供电分公司 含分布式电源接入的有源配电网信息化交互平台和方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549401A (zh) * 2016-12-30 2017-03-29 常熟市五爱电器设备有限公司 一种具备串行接口oled显示屏的智能电容综合模块
CN109524884A (zh) * 2017-09-19 2019-03-26 石家庄裕兆科技有限公司 一种高压开关柜的安防智能控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070513A (ja) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp 進相コンデンサ制御装置、及び、力率調整器
CN203747427U (zh) * 2013-12-20 2014-07-30 淄博康润电气有限公司 高运算力智能电容器
CN204858574U (zh) * 2015-07-31 2015-12-09 淄博康润电气有限公司 新型超快速补偿装置
CN106549401A (zh) * 2016-12-30 2017-03-29 常熟市五爱电器设备有限公司 一种具备串行接口oled显示屏的智能电容综合模块
CN206135422U (zh) * 2016-08-11 2017-04-26 国网山东节能服务有限公司 基于32位arm mcu设计具备串行oled显示屏的智能电容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023046B (zh) * 2012-12-10 2016-01-27 乐山晟嘉电气有限公司 基于dsp芯片控制的过零投切滤波无功补偿装置
CN203056589U (zh) * 2012-12-10 2013-07-10 乐山晟嘉电气有限公司 基于dsp芯片控制的过零投切滤波无功补偿装置
CN203733447U (zh) * 2013-12-20 2014-07-23 淄博康润电气有限公司 带oled显示屏的智能电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070513A (ja) * 2011-09-22 2013-04-18 Mitsubishi Electric Corp 進相コンデンサ制御装置、及び、力率調整器
CN203747427U (zh) * 2013-12-20 2014-07-30 淄博康润电气有限公司 高运算力智能电容器
CN204858574U (zh) * 2015-07-31 2015-12-09 淄博康润电气有限公司 新型超快速补偿装置
CN206135422U (zh) * 2016-08-11 2017-04-26 国网山东节能服务有限公司 基于32位arm mcu设计具备串行oled显示屏的智能电容器
CN106549401A (zh) * 2016-12-30 2017-03-29 常熟市五爱电器设备有限公司 一种具备串行接口oled显示屏的智能电容综合模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071511A (zh) * 2019-05-09 2019-07-30 浙江朗松智能电力设备有限公司 一种无功补偿控制装置及电容投切方法
CN114285047A (zh) * 2021-12-27 2022-04-05 国网江苏省电力有限公司连云港供电分公司 含分布式电源接入的有源配电网信息化交互平台和方法
CN114285047B (zh) * 2021-12-27 2024-05-31 国网江苏省电力有限公司连云港供电分公司 含分布式电源接入的有源配电网信息化交互平台和方法

Also Published As

Publication number Publication date
CN106549401A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2018121075A1 (zh) 一种具备串行接口oled显示屏的智能电容综合模块
CN204967274U (zh) 一种低压无功补偿装置
CN102998554A (zh) 基于arm的电能质量检测装置
CN104104084A (zh) 基于双核处理器的有源电力滤波控制器
CN206135422U (zh) 基于32位arm mcu设计具备串行oled显示屏的智能电容器
CN203645622U (zh) 一种太阳能光伏直流控制器
CN105553074A (zh) 基于dsp+arm双核的太阳能光伏智能充电器人机交互系统
CN205081473U (zh) 基于dsp+fpga的双核逆变器模块通信系统的控制电路板
CN202975208U (zh) 一种电力能效监测装置
CN202421797U (zh) 低压静止无功发生装置测控单元
CN202815117U (zh) 一种低压动态补偿装置试验测试平台
CN201976063U (zh) 一种四象限级联型高压变频器功率单元测控装置
CN203747427U (zh) 高运算力智能电容器
CN204046172U (zh) 一种基于双核处理器的有源电力滤波控制器
CN202870205U (zh) 基于arm的电能质量检测装置
CN203733447U (zh) 带oled显示屏的智能电容器
CN204391754U (zh) 一种电压源型静止同步无功补偿装置控制电路
CN209283114U (zh) 一种适用于音视频开关电源线路
WO2018121074A1 (zh) 一种混合补偿智能电容装置
CN204947596U (zh) 一种户外型带无功调度功能的电力有源滤波装置
CN105515496A (zh) 一种基于plc控制器的光伏柴油互补型微电网系统
CN213243552U (zh) 基于dsp和arm组合全数字控制器的并联有源滤波装置
CN204830672U (zh) 一种用于冷水机组多模式控制系统
CN207663311U (zh) 一种温度控制器
CN204615696U (zh) 基于变频器和plc的照明多电机控制柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889203

Country of ref document: EP

Kind code of ref document: A1