WO2018120956A1 - 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法 - Google Patents

花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法 Download PDF

Info

Publication number
WO2018120956A1
WO2018120956A1 PCT/CN2017/104480 CN2017104480W WO2018120956A1 WO 2018120956 A1 WO2018120956 A1 WO 2018120956A1 CN 2017104480 W CN2017104480 W CN 2017104480W WO 2018120956 A1 WO2018120956 A1 WO 2018120956A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
cooling
wet
tower
dry
Prior art date
Application number
PCT/CN2017/104480
Other languages
English (en)
French (fr)
Inventor
高明
史月涛
何锁盈
孙奉仲
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2018120956A1 publication Critical patent/WO2018120956A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface

Definitions

  • the invention relates to the field of energy and power engineering, in particular to a dry-wet mixing large-scale cooling tower, a cooling system and a method for a petal-like packing arrangement.
  • Air-cooled thermal power generating units are generally used. Air-cooled units are generally equipped with small wet cooling towers or mechanically ventilated wet cooling towers for wet-cooled units for the following reasons:
  • Small steam turbines generally adopt the form of steam drive. The change of the ambient temperature will cause the vacuum of the main steam turbine to decrease. If the small steam turbine shares the condenser with the main steam turbine, the power of the small steam turbine is highly susceptible to the ambient wind. In the limit case, it is not enough to drive the unit feed water pump, so that the unit load Restricted; so small steam turbines are generally equipped with independent small natural ventilation wet cooling towers or mechanical ventilation wet cooling towers, making the whole system more complex, investment and cost, increasing the workload of maintenance and maintenance.
  • Rotating machinery in the power plant almost all need cooling water with suitable temperature to prevent the temperature of all kinds of bearing bushes from being too high, which leads to burnt tile accidents.
  • Air-cooled units are not able to provide the right temperature of cooling water, so power plants are typically designed with dedicated small wet cooling towers or mechanically ventilated wet cooling towers to provide cooling water.
  • air-cooled condensers and dry cooling towers are generally equipped, plus small natural-ventilated wet cooling towers or mechanically-ventilated wet cooling towers, with functionally identical components. Repetitive design, large floor space, complex system, large maintenance and maintenance workload.
  • a first object of the present invention is to provide a dry-wet mixing large-sized cooling tower in which a petal-like packing arrangement is provided, the cooling tower tower is provided with a wet cooling zone at the bottom of the dry cooling tower tower, and the dry cooling zone is provided with a structure different first The zone and the second zone, the air entering the wet zone from the first zone and from the second zone have different temperatures, which contribute to the formation of a temperature difference in the wet cooling zone, which can enhance the heat exchange effect, and the cooling zone filler is
  • the hollow shape of the petals greatly reduces the ventilation resistance of the packing area, which saves filler material and reduces investment.
  • a second object of the present invention is to provide a cooling system for a thermal power plant, which is provided with a cooling tower in which the cooling efficiency of the cooling system is effectively increased by the arrangement of the cooling tower, and the cooling tower is arranged in the petal-like packing
  • the dry and wet mixed large cooling tower effectively improves the heat transfer effect of the cooling tower.
  • a third object of the present invention is to provide a method for improving the cooling efficiency of a cooling tower.
  • the method effectively improves the heat exchange efficiency of the cooling tower by using the above-described cooling tower tower device, and has a good cooling effect while saving existing resources.
  • a dry-wet mixed large cooling tower arranged with a petal-like packing including a cooling tower tower, the bottom of the bottom of the cooling tower is a wet cooling zone, a dry cooling zone around the wet cooling zone, and the dry cooling zone includes respective sectors.
  • the first zone and the second zone, the first zone and the second zone are adjacent to each other and arranged around the wet cooling zone, and the circumferential side of the second zone is provided with a first cooling unit and an air inlet provided at the air inlet of the second zone.
  • a cooling unit having a second cooling unit at the top of the first zone, the air entering the first zone and/or the second zone for dry cooling, and in the dry zone portion, the cold air passing through the first zone passes only the second cooling of the top
  • the unit performs heat exchange, and the cold air passing through the second zone only exchanges heat through the air inlet cooling unit, ensuring uniform and stable flow of the circumferential air in the dry zone, and reducing the ventilation resistance of the dry zone.
  • the air entering the wet zone from the first zone does not undergo heat exchange, and the air entering the wet zone through the second zone passes through the air inlet cooling tower unit for heat exchange, so the first zone and the second zone enter the wet cooling zone.
  • the air has different temperatures, and thus the temperature difference is formed in the wet cooling zone, which can effectively overcome the resistance of the wet zone, increase the air flow driving force in the wet zone, strengthen the air flow, improve the heat exchange effect, and reduce the cooling of the wet cooling zone.
  • the filler In the wet cooling zone, the filler is arranged in a petal shape, the filler is annular in shape, and the middle of the filler is hollow, that is, no filler is arranged at the center of the tower, that is, there is a filler hollow zone in the tower core, which greatly reduces the ventilation resistance of the filler zone. Under the premise of ensuring the cooling effect, the filler material can be saved and the investment can be reduced.
  • the wet cooling zone includes a wet sump disposed at the bottom of the cooling tower tower, a rain zone is disposed above the wet sump, a packing zone is disposed above the rain zone, and a water distribution system is disposed above the packing zone.
  • the above cooling tower is provided with a wet cooling zone in the inner area of the dry cooling tower tower, which replaces the function of the small natural ventilation wet cooling tower tower or mechanical ventilation wet cooling tower existing in the existing air cooling unit system, and simplifies the cooling of the air cooling unit.
  • the system reduces equipment investment and forms an integrated wet and dry hybrid cooling tower system.
  • B zone there is no cooling unit at the top of the second zone (B zone), which ensures that the air flow in both parts of the dry zone is even and stable.
  • the air passing through the first zone is heat-exchanged through the second cooling unit at the top, and flows out of the tower upwards.
  • the air passing through the second zone passes through the air inlet cooling unit to exchange heat, and then flows out of the tower along the axial direction, thus entering the dry zone.
  • the cold air can pass through the heat exchange surface, ensuring uniform heating of the air passing through the two areas in the dry zone.
  • the reason for the temperature difference in the wet zone is that the cold air in the first zone can enter the wet zone directly along the radial direction. This part of the air does not pass through the heat absorption of the dry zone, and the temperature is low; the air in the second zone passes through the dry zone. After the tuyere cooling unit absorbs heat, it enters the wet area along the radial direction. This part of the air has a high temperature; the two parts of the air meet in the wet area, and there is a temperature difference, which increases the flow driving force and effectively alleviates the flow resistance in the wet area.
  • the filler zone and the rain zone have a diameter d, the sump diameter is d 1 , and the bottom of the cooling tower tower has a diameter D, and the three diameters satisfy the following relationship: d ⁇ d 1 ⁇ D.
  • the top of the filler in the wet cooling zone is provided with a top cover for shielding the hollow portion of the middle portion of the filler and the gap between adjacent petal-like fillers;
  • the outer diameter of the filler is d
  • the inner diameter is d 2
  • the diameter of the sump is d 1
  • the diameter of the bottom of the entire cooling tower is D
  • the four diameters satisfy the following relationship: d 2 ⁇ d ⁇ d 1 ⁇ D.
  • the height of the packing zone is between 1.0m and 2.0m.
  • the specific size needs to be determined according to the condition of the unit and the amount of cooling water required by the power plant. The more cooling water is needed, the higher the height of the packing zone.
  • the height of the rain zone is the same as the height of the first cooling unit and the air inlet cooling unit of the second zone, and the H and H values are determined by considering the specific conditions of the unit.
  • the first cooling unit on the circumferential side of the second zone is arranged by a cooling triangle, and the cooling triangle is provided in plurality, the plurality of sizes are the same and arranged in the same arrangement manner, and the outside cold air enters through the air inlet cooling unit. After entering the second zone, they enter the left space and the right space of the second zone respectively, and complete the heat exchange with the water in all the cooling units of the second zone to achieve the purpose of cooling.
  • the top of the first zone is provided with a second cooling unit, the second cooling unit is horizontally disposed and the second cooling unit is composed of a cooling triangle, and the first cooling unit is vertically disposed, so that after the outside cold air enters the first zone, there are three directions.
  • the flow direction that is, the left space, the right space, and the upper space of the first area.
  • the arrangement of the first zone and the second zone cooling unit can ensure that the outside cold air flows through a group of cooling units when flowing in the dry cooling zone, and the resistance at different positions in the dry cooling zone is guaranteed to a certain extent. Uniformity and uniformity of wind temperature balance the pressure difference at different locations in the dry zone to achieve uniform heat transfer within the dry zone.
  • the second solution provided by the present invention is:
  • a cooling system of a thermal power plant in which a cooling tower is installed, and the cooling tower is a dry-wet mixed large cooling tower arranged by the petal-like packing, thereby effectively improving the heat exchange effect of the cooling tower.
  • the third solution provided by the present invention is:
  • a method for improving the cooling efficiency of a cooling tower which comprises a dry-wet mixed large cooling tower arranged with the petal-like packing.
  • the present invention simplifies air cooling by providing a wet cooling zone at the bottom of the dry cooling tower tower instead of the existing small natural ventilated wet cooling tower tower or mechanically ventilated wet cooling tower tower in the existing air cooling unit system.
  • Crew Cooling system reduces equipment investment.
  • the present invention sets the first zone and the second zone of different structures, so that a temperature difference is generated in the wet cooling zone, the air flow is enhanced, the heat exchange effect is improved, and the cooling water temperature in the wet cooling zone is lowered.
  • the cooling tower of the large-scale unit has a large diameter, and it is difficult for the outside cold air to enter the center of the tower. If a packing (a circular hollow area with a diameter of d 2 ) is provided at the center of the tower, the air cannot enter the center of the packed area, and the filler cannot be realized. Full utilization, so no packing is placed at the center of the tower, that is, there is a filler hollow zone in the tower core, which greatly reduces the ventilation resistance of the filler zone. Under the premise of ensuring the cooling effect, the filler material can be saved and the investment can be reduced.
  • Figure 1 is a vertical view of the wet and dry mixed cooling tower tower
  • Figure 2 is a cross-sectional view of a certain height of the inlet and outlet of the tower of the wet and dry mixed cooling tower (C-C view in Fig. 1);
  • Figure 5 is a top plan view of the top cover
  • Figure 6 is a detailed layout of the petal-like filler
  • 1 cooling tower tower 2 first cooling unit; 3 packing area; 4 air inlet cooling unit; 5 second cooling unit; 6 wet collecting pool; 7 hollow area hollow area; 8 wet water distribution area; Plate; 10 void zone; 11 wet rain zone; A first zone; B second zone.
  • a dry-wet mixed large cooling tower with a petal-like packing arrangement As shown in Fig. 1 and Fig. 2, a dry-wet mixed large cooling tower with a petal-like packing arrangement, the bottom center of the cooling tower tower 1 is a wet cooling zone, and a dry cooling zone in the direction of the wet cooling zone, a dry cooling zone
  • the first zone and the second zone B are respectively arranged in a fan shape, and the first zone and the second zone are adjacent to each other and arranged around the wet cooling zone.
  • the circumferential side of the second zone is provided with the first cooling unit 2 and the second zone.
  • the air inlet cooling unit 4 at the air inlet of the zone, the first zone A and the second zone B share a vertical cooling unit, and the air enters the first zone A and/or the second zone B for dry cooling, from the first zone A and the slave zone Second Zone B
  • the air entering the wet cooling zone has different temperatures, thereby forming a temperature difference in the wet cooling zone, enhancing the air flow, improving the heat exchange effect, and achieving the purpose of reducing the cooling water temperature in the wet cooling zone.
  • the wet cooling zone includes a wet sump 6 disposed at the bottom of the cooling tower tower 1, a rain zone 11 disposed above the wet sump 6, a packing zone 3 disposed above the rain zone 11, and a wet zone above the packing zone 3.
  • the filling zone 3 is in the shape of a petal.
  • the above cooling tower is provided with a wet cooling zone in the inner area of the dry cooling tower tower, instead of the function of the small natural ventilation wet cooling tower tower or the mechanically ventilated wet cooling tower tower existing in the existing air cooling unit system, simplifying the air cooling unit
  • the cooling system reduces equipment investment and forms an integrated dry and wet mixing cooling tower tower.
  • the filler zone and the rain zone have a diameter d, the sump diameter is d 1 , and the bottom diameter of the cooling tower tower is D, and the three diameters satisfy the following relationship: d ⁇ d 1 ⁇ D.
  • the height of the packing zone 3 is between 1.0m and 2.0m, and the specific size needs to be determined according to the condition of the unit and the amount of cooling water required by the power plant. The more cooling water is required, the higher the height of the packing zone, as shown in FIG. 2
  • the filler in the wet cooling zone is petal-like, and the middle of the filler is hollow, including filler I, filler II, filler III, filler IV, filler V and filler VI.
  • the volume and shape of the six-part filler are the same, and any part of the filler Center angle 40 ° ⁇ 50 °, the corresponding gap between the two-flap filler is 10 ° ⁇ 20 °, the outer diameter of the packing is d, the inner diameter is d 2 , the diameter of the sump is d 1 , the entire cooling tower The bottom diameter is D, and the four diameters satisfy the following relationship: d 2 ⁇ d ⁇ d 1 ⁇ D.
  • a top cover plate 9 is added at the annular packing zone of the wet zone, as shown in FIG. 5, preventing the cold air from flowing out of the hollow zone directly without the filler. outer.
  • the top cover 9 is to completely block the hollow zone 7 and the void zone 10, and the material thereof may be a FRP product or a steel structure frame.
  • the filler in the wet zone of the dry-wet mixing cooling tower adopts a petal-like arrangement, as shown in FIG. 2; after the outside cold air absorbs heat through the dry zone, the temperature rises slightly, and then enters the rain zone 11 and the filler zone of the wet zone. 3 and the water distribution zone 8 performs further heat absorption and moisture absorption, thereby reducing the water temperature in the wet zone and generating cooling water that meets the requirements of the power plant.
  • the height of the rain zone 11 is the same as the height of the first zone cooling unit 2 and the air inlet port cooling unit 4 of the second zone, and the values of H and H need to be comprehensively considered in consideration of the specific conditions of the unit.
  • the first cooling unit on the circumferential side of the second zone is arranged by the cooling triangle, and the cooling triangle is provided in plurality, the plurality of sizes are the same and arranged in the same arrangement manner, and the outside cold air passes through the air inlet cooling unit 4 After entering the second zone B, the space enters the left space and the right space of the second zone B, and heat is exchanged for the water in the cooling unit of the second zone to achieve the purpose of cooling.
  • the top of the first area A is provided with a second cooling unit 5, the second cooling unit 5 is horizontally disposed, and the first cooling unit 2 is vertically disposed, so that after the outside cold air enters the first area A, there are three directions of flow direction, That is, the left space, the right space, and the upper space of the first area.
  • the arrangement of the first zone and the second zone is different, and it can be ensured that the outside cold air flows through a group of cooling units when flowing from bottom to top in the dry cooling zone, that is, the second cooling unit or the second flowing through the first zone.
  • the air inlet cooling unit of the area ensures the consistency of the resistance and the uniformity of the air temperature at different positions in the dry cooling zone to a certain extent, thereby balancing the pressure difference at different positions in the dry zone, and realizing the internal change of the dry zone. Heat evenly.
  • a cooling system of a thermal power plant in which a cooling tower is installed, and the cooling tower is a dry-wet mixed large cooling tower arranged by the petal-like packing, thereby effectively improving the heat exchange effect of the cooling tower.
  • a method for improving the cooling efficiency of a cooling tower which comprises the dry-wet mixed large cooling tower arranged by the petal-like packing described in Embodiment 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法,冷却塔中从第一区(A)和第二区(B)进入到湿式冷却区的空气具有不同的温度,进而在湿式冷却区内形成温差,且湿式冷却区内填料的花瓣状布置,可强化湿式冷却区空气流动,提高湿式冷却区的冷却效果,通过在干式冷却塔塔筒内底部设置湿式冷却区,代替现有空冷机组系统中原有的小型自然通风湿式冷却塔塔筒或机械通风湿式冷却塔塔筒的功能,简化空冷机组的冷却系统,减少设备投资。

Description

花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法 技术领域
本发明涉及能源与动力工程领域,尤其涉及花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法。
背景技术
在我国富煤少水的地区,例如内蒙、甘肃、山西、新疆等地。由于这些地区水资源比较匮乏,一般采用空冷火力发电机组。相对于湿冷机组而言,空冷机组一般还要配置小型湿式冷却塔或机械通风湿式冷却塔,原因如下:
1、小汽轮机一般采用汽动驱动形式。环境温度的变化将导致主汽轮机真空降低,如果小汽轮机与主汽轮机共用凝汽器,小汽轮机的功率极易受到环境风的影响,在极限情况下,不足以驱动机组给水泵,使得机组的负荷受到限制;所以小汽轮机一般配备独立的小型自然通风湿式冷却塔或机械通风湿式冷却塔,使得整个系统较为复杂,投资和造价高,增加了维修维护的工作量。
2、电厂里的转动机械(主汽轮机、小汽轮机、磨煤机及所有的泵与风机)几乎都需要温度合适的冷却水进行冷却,防止出现各类轴瓦温度超高,以至于导致烧瓦事故。空冷机组无法提供温度合适的冷却水,因此电厂一般会设计有专门的小型湿冷冷却塔或机械通风湿式冷却塔提供冷却水源。
由上所知,空冷机组设计及建造过程中,一般配备空冷凝汽器和干式冷却塔(又叫空冷塔),外加小型自然通风湿式冷却塔或机械通风湿式冷却塔,存在功能相同的部件重复设计、占地面积大、系统复杂、维修维护工作量大等缺点。
发明内容
本发明第一目的是提供花瓣状填料布置的干湿混合大型冷却塔,该冷却塔塔筒通过在干式冷却塔塔筒内底部设置湿式冷却区,且干式冷却区设置结构不同的第一区和第二区,从第一区和从第二区进入到湿式冷却区的空气具有不同的温度,有助于在湿式冷却区内形成温度差,可强化换热效果,且冷却区填料为空心且花瓣形状,大大降低了填料区通风阻力,可节省填料材料,降低投资。
本发明第二目的是提供一种火电厂的冷却系统,该系统通过上述冷却塔的设置,可有效提高冷却系统的冷却效率内安装有冷却塔,所述冷却塔为所述的花瓣状填料布置的干湿混合大型冷却塔,有效提高冷却塔的换热效果。
本发明的第三目的是提供一种提高冷却塔冷却效率的方法,该方法通过采用上述的冷却塔塔筒装置,有效提高了冷却塔换热效率,冷却效果好,同时节约现有资源。
为了达成上述目的,本发明提供的第一个技术方案:
花瓣状填料布置的干湿混合大型冷却塔,包括冷却塔塔筒,冷却塔塔筒底部中心为湿式冷却区,在湿式冷却区的四周方向为干式冷却区,干式冷却区包括各自呈扇形的第一区和第二区,第一区与第二区相互邻接围绕湿式冷却区设置一圈,第二区的周侧设有第一冷却单元及设于第二区进风口处的进风口冷却单元,第一区的顶部设有第二冷却单元,空气进入第一区和/或第二区进行干式冷却,在干区部分,经过第一区的冷空气只通过顶部的第二冷却单元进行换热,经过第二区的冷空气只通过进风口冷却单元换热,保证了干区部分周向空气均匀、稳定流动,减小干区的通风阻力。从第一区进入湿区的空气不经过换热,而通过第二区进入湿区的空气经过进风口冷却塔单元进行换热,因此从第一区和从第二区进入到湿式冷却区的空气具有不同的温度,进而在湿式冷却区内形成温度差,可有效克服湿区的阻力,增加了湿区的空气流动驱动力,强化空气流动,提高了换热效果,达到降低湿式冷却区冷却水温的目的;
湿式冷却区中填料是花瓣状设置的,填料整体呈环形,且填料中部是空心的,即在塔心位置处不布置填料,即在塔心存在填料空心区,大大降低了填料区的通风阻力,在保证冷却效果的前提下,可节省填料材料,降低投资。
所述湿式冷却区包括设于冷却塔塔筒底部的湿式集水池,在湿式集水池的上方设置雨区,在雨区上方设置填料区,在填料区的上方设置配水系统。
上述冷却塔,在干式冷却塔塔筒内部区域设置湿式冷却区,代替了现有空冷机组系统中原有的小型自然通风湿式冷却塔塔筒或机械通风湿式冷却塔的功能,简化空冷机组的冷却系统,减少设备投资,形成集成化的干湿混合冷却塔系统。
此外,第二区(B区)顶部不设置冷却单元,这样可保证干区部分两部分空气流动均匀稳定。经过第一区的空气通过顶部的第二冷却单元进行换热后,向上流出塔外,经过第二区的空气通过进风口冷却单元换热,而后沿着轴向流出塔外,这样进入干区的冷空气均可通过换热面,可保证通过两个区域的空气在干区部分的受热均匀。
而造成湿区温差的原因是:第一区的冷空气可直接沿着径向进入湿区,这部分空气没有经过干区的吸热,温度低;第二区的空气是经过干区的进风口冷却单元吸热之后,再沿着径向进入湿区,这部分空气温度高;两部分空气在湿区汇合,有温差,增加了流动驱动力,有效缓解湿区的流动阻力。
所述填料区和雨区直径为d,集水池直径为d1,冷却塔塔筒的底部直径为D,三个直径满足如下关系:d<d1<D。
为了得到最优的冷却效果,所述填料区直径d=(0.2-0.5)D,在这范围内冷却塔冷却能力达到最优,具体尺寸需要根据机组情况和电厂所需冷却水量而确定。
所述湿式冷却区中填料顶部设置用于遮挡填料中部空心处以及相邻花瓣状填料之间空隙的顶部盖板;
进一步地,填料的外径为d,内径为d2,集水池直径为d1,整个冷却塔的底部直径为D,四个直径满足如下关系:d2<d<d1<D。
所述填料区的高度在1.0m~2.0m之间,具体尺寸需要根据机组情况和电厂所需冷却水量而确定,需要冷却水量越多,填料区的高度越高。
所述雨区的高度与所述第二区第一冷却单元和进风口冷却单元的高度相同,均为H,H值需综合考虑机组具体情况而定。
所述第二区周侧的第一冷却单元由冷却三角排布设置,冷却三角设有多个,多个尺寸相同且按照相同的排布方式进行排布,外界冷空气通过进风口冷却单元进入到第二区后,分别进入到第二区的左侧空间和右侧空间,与第二区所有冷却单元内的水完成热交换实现冷却的目的。
所述第一区顶部设有第二冷却单元,第二冷却单元水平设置且第二冷却单元由冷却三角构成,第一冷却单元竖直设置,这样外界冷空气进入第一区后,有三个方向的流动方向,即左侧空间、右侧空间及第一区的上部空间。
第一区与第二区冷却单元布置方式的不同,可保证外界冷风在干式冷却区内流动时均流经一组冷却单元,在一定程度保证了干式冷却区内的不同位置处阻力的一致性和风温的均匀性,从而均衡了干区内不同位置处的压差,实现干区内部的换热均匀。
本发明提供的第二方案是:
一种火电厂的冷却系统,该冷却系统内安装有冷却塔,所述冷却塔为所述的花瓣状填料布置的干湿混合大型冷却塔,有效提高冷却塔的换热效果。
本发明提供的第三方案是:
一种提高冷却塔冷却效率的方法,采用所述的花瓣状填料布置的干湿混合大型冷却塔。
本发明具有以下优点:
1)本发明通过在干式冷却塔塔筒内底部设置湿式冷却区,代替了现有空冷机组系统中原有的小型自然通风湿式冷却塔塔筒或机械通风湿式冷却塔塔筒的功能,简化空冷机组的 冷却系统,可减少设备投资。
2)本发明通过设置不同结构的第一区和第二区,使得在湿式冷却区内产生温度差,强化空气流动,提高了换热效果,达到降低湿式冷却区冷却水温的目的。
3)大型机组的冷却塔直径大,外界冷风较难进入塔心位置,塔心位置处若设置填料(直径为d2的圆形空心区),空气无法进入填料区的中心位置,无法实现填料的充分利用,因此塔心位置处不布置填料,即在塔心存在填料空心区,大大降低了填料区的通风阻力,在保证冷却效果的前提下,可节省填料材料,降低投资。
4)填料采取花瓣状布置后,任意两部分填料之间存在空隙区,因此流经干区的空气可在阻力较小的情况下进入空隙区(图2中流经区域B的空气),然后向左右两侧进入花瓣状填料区(如图6所示),可均匀填料区换热,提高填料区的传热传质性能,进一步提高湿区的冷却效率。
附图说明
图1干湿混合冷却塔塔筒立面图;
图2干湿混合冷却塔塔筒进风口某高度处横截面图(图1中的C-C视图);
图3图2中D-D视图;
图4图2中E-E视图;
图5顶部盖板俯视图;
图6花瓣状填料局部布置详图;
其中,1冷却塔塔筒;2第一冷却单元;3填料区;4进风口冷却单元;5第二冷却单元;6湿式集水池;7湿区的空心区;8湿式配水区;9顶部盖板;10空隙区;11湿式雨区;A第一区;B第二区。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
实施例1
如图1和图2所示,花瓣状填料布置的干湿混合大型冷却塔,冷却塔塔筒1底部中心为湿式冷却区,在湿式冷却区的四周方向为干式冷却区,干式冷却区包括各自呈扇形的第一区A和第二区B,第一区与第二区相互邻接围绕湿式冷却区设置一圈,第二区的周侧设有第一冷却单元2及设于第二区进风口处的进风口冷却单元4,第一区A和第二区B共用垂直冷却单元,空气进入第一区A和/或第二区B进行干式冷却,从第一区A和从第二区B 进入到湿式冷却区的空气具有不同的温度,进而在湿式冷却区内形成温度差,强化空气流动,提高了换热效果,达到降低湿式冷却区冷却水温的目的。
所述湿式冷却区包括设于冷却塔塔筒1底部的湿式集水池6,在湿式集水池6的上方设置雨区11,在雨区11上方设置填料区3,在填料区3的上方设置湿式配水区8,填料区3为花瓣状。
上述冷却塔,在干式冷却塔塔筒内部区域设置湿式冷却区,代替了现有空冷机组系统中原有的小型自然通风湿式冷却塔塔筒或机械通风湿式冷却塔塔筒的功能,简化空冷机组的冷却系统,减少设备投资,形成集成化的干湿混合冷却塔塔筒。
为了便于湿式冷却区的冷却,所述填料区和雨区直径为d,集水池直径为d1,冷却塔塔筒的底部直径为D,三个直径满足如下关系:d<d1<D。
为了得到最优的冷却效果,所述填料区直径d=(0.2-0.5)D,具体尺寸需要根据机组情况和电厂所需冷却水量而确定。
所述填料区3的高度在1.0m~2.0m之间,具体尺寸需要根据机组情况和电厂所需冷却水量而确定,需要冷却水量越多,填料区的高度越高,如图2所示,湿式冷却区中填料是花瓣状设置的,且填料中部是空心的,包括填料Ⅰ、填料Ⅱ、填料Ⅲ、填料Ⅳ、填料Ⅴ和填料Ⅵ,六部分填料的体积和形状相同,任一部分填料的圆心角
Figure PCTCN2017104480-appb-000001
为40°~50°,对应的两瓣填料之间的空隙区的夹角为10°~20°,填料的外径为d,内径为d2,集水池直径为d1,整个冷却塔的底部直径为D,四个直径满足如下关系:d2<d<d1<D。
为保证流经干区后的冷风全部通过湿区的环形填料部分,在湿区的环形填料区位置增设顶部盖板9,如图5所示,防止冷风不经填料而直接从空心区流出塔外。
顶部盖板9要全部遮挡空心区7和空隙区10,其材质可为玻璃钢制品或者钢结构构架。
所述干湿混合冷却塔湿区部分的填料采用花瓣状布置方式,如图2所示;外界冷风经过干区吸热之后,温度略有升高,然后进入湿区的雨区11、填料区3和配水区8进行进一步的吸热吸湿,从而降低湿区的水温,产生满足电厂要求的冷却水。
所述雨区11的高度与所述第二区第一冷却单元2和进风口冷却单元4的高度相同,均为H,H值需综合考虑机组具体情况而定。
所述第二区周侧的第一冷却单元由冷却三角排布设置,冷却三角设有多个,多个尺寸相同且按照相同的排布方式进行排布,外界冷空气经过进风口冷却单元4进入到第二区B后,进入到第二区B的左侧空间和右侧空间,对第二区冷却单元内的水进行热交换实现冷却的目的。
所述第一区A顶部设有第二冷却单元5,第二冷却单元5水平设置,第一冷却单元2竖直设置,这样外界冷空气进入第一区A后,有三个方向的流动方向,即左侧空间、右侧空间及第一区的上部空间。
第一区与第二区布置方式的不同,可保证外界冷风在干式冷却区内自下而上流动时均流经一组冷却单元,即流经第一区的第二冷却单元或者第二区的进风口冷却单元,在一定程度保证了干式冷却区内的不同位置处阻力的一致性和风温的均匀性,从而均衡了干区内不同位置处的压差,实现干区内部的换热均匀。
实施例2
一种火电厂的冷却系统,该冷却系统内安装有冷却塔,所述冷却塔为所述的花瓣状填料布置的干湿混合大型冷却塔,有效提高冷却塔的换热效果。
实施例3
一种提高冷却塔冷却效率的方法,采用实施例1所述的花瓣状填料布置的干湿混合大型冷却塔。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 花瓣状填料布置的干湿混合大型冷却塔,包括冷却塔塔筒,其特征在于,冷却塔塔筒底部中心为湿式冷却区,在湿式冷却区的四周方向为干式冷却区,干式冷却区包括各自呈扇形的第一区和第二区,第一区与第二区相互邻接围绕湿式冷却区设置一圈,第二区的周侧设有第一冷却单元及设于第二区进风口处的进风口冷却单元,第一区的顶部设有第二冷却单元,空气进入第一区和/或第二区进行干式冷却,从第一区和从第二区进入到湿式冷却区的空气具有不同的温度,进而在湿式冷却区内形成温度差,强化空气流动;
    湿式冷却区中填料是花瓣状设置的,且填料中部是空心的。
  2. 如权利要求1所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述湿式冷却区包括设于冷却塔塔筒底部的湿式集水池,在湿式集水池的上方设置环形雨区,在环形雨区上方设置所述的环形填料区,在环形填料区的上方设置环形配水系统。
  3. 如权利要求2所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述填料区和雨区直径为d,集水池直径为d1,冷却塔塔筒的底部直径为D,三个直径满足如下关系:d<d1<D。
  4. 如权利要求3所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述填料区直径d=(0.2-0.5)D;
    进一步地,所述填料区的高度在1.0m~2.0m之间。
  5. 如权利要求1所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述湿式冷却区中填料顶部设置用于遮挡填料中部空心处以及相邻花瓣状填料之间空隙的顶部盖板;
    进一步地,填料的外径为d,内径为d2,集水池直径为d1,整个冷却塔的底部直径为D,四个直径满足如下关系:d2<d<d1<D。
    进一步地,顶部盖板采用玻璃钢制品或者钢结构构架。
  6. 如权利要求2所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述雨区的高度与所述第二区第一冷却单元和进风口冷却单元的高度相同。
  7. 如权利要求1所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述第二区周侧的第一冷却单元由冷却三角按照相同的方式排布设置。
  8. 如权利要求1所述的花瓣状填料布置的干湿混合大型冷却塔,其特征在于,所述第一区顶部设有第二冷却单元,第二冷却单元水平设置,第一冷却单元竖直设置。
  9. 一种火电厂的冷却系统,该冷却系统内安装有冷却塔,其特征在于:所述冷却塔为权利要求1-8任一项所述的花瓣状填料布置的干湿混合大型冷却塔。
  10. 一种提高冷却塔冷却效率的方法,其特征在于,采用权利要求1-8中任一项所述的花瓣状填料布置的干湿混合大型冷却塔。
PCT/CN2017/104480 2016-12-28 2017-09-29 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法 WO2018120956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611233243.5A CN106766990B (zh) 2016-12-28 2016-12-28 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法
CN201611233243.5 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018120956A1 true WO2018120956A1 (zh) 2018-07-05

Family

ID=58921359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104480 WO2018120956A1 (zh) 2016-12-28 2017-09-29 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法

Country Status (2)

Country Link
CN (1) CN106766990B (zh)
WO (1) WO2018120956A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506489A (zh) * 2018-11-26 2019-03-22 中国电力工程顾问集团西北电力设计院有限公司 一种导风型高位收水冷却塔
CN110645810A (zh) * 2019-10-31 2020-01-03 大唐郓城发电有限公司 一种冬季可以远程自动调节冷却塔水温度的装置
CN111189335A (zh) * 2020-02-16 2020-05-22 福建立信换热设备制造股份公司 一种消雾型干湿联合冷却塔
CN114692327A (zh) * 2022-02-24 2022-07-01 西安交通大学 一种多进风型复合冷却塔风量计算方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766990B (zh) * 2016-12-28 2019-04-23 山东大学 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法
CN107543447B (zh) * 2017-09-30 2024-01-26 华北电力大学(保定) 自然通风湿式冷却塔通风装置
CN110307736A (zh) * 2019-07-19 2019-10-08 双良节能系统股份有限公司 一种自然通风的干湿联合冷却塔

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208486A (ja) * 2000-01-25 2001-08-03 Ntt Data Corp 空水冷式冷却塔
KR20100069065A (ko) * 2008-12-16 2010-06-24 민승기 냉각탑용 청소장치
CN101970966A (zh) * 2008-05-19 2011-02-09 斯必克冷却技术公司 干湿式冷却塔和冷却方法
CN202002545U (zh) * 2010-10-19 2011-10-05 宜兴市环球水处理设备有限公司 冷却塔点滴式淋水填料
EP2722627A1 (en) * 2009-11-04 2014-04-23 Evapco, INC. Hybrid heat exchange apparatus
CN104165532A (zh) * 2014-07-31 2014-11-26 中化工程沧州冷却技术有限公司 空冷湿冷联合式节水消雾冷却塔
CN104729317A (zh) * 2015-03-31 2015-06-24 山东大学 一种冷却三角花瓣状布置的间接冷却塔
CN104729318A (zh) * 2015-03-31 2015-06-24 山东大学 一种带有分隔墙的双层湿冷塔
CN105509504A (zh) * 2016-01-12 2016-04-20 张文军 混合式循环冷却系统
CN106643205A (zh) * 2016-12-28 2017-05-10 山东大学 环形填料布置的干湿混合大型冷却塔及火电厂冷却系统
CN106766990A (zh) * 2016-12-28 2017-05-31 山东大学 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208486A (ja) * 2000-01-25 2001-08-03 Ntt Data Corp 空水冷式冷却塔
CN101970966A (zh) * 2008-05-19 2011-02-09 斯必克冷却技术公司 干湿式冷却塔和冷却方法
KR20100069065A (ko) * 2008-12-16 2010-06-24 민승기 냉각탑용 청소장치
EP2722627A1 (en) * 2009-11-04 2014-04-23 Evapco, INC. Hybrid heat exchange apparatus
CN202002545U (zh) * 2010-10-19 2011-10-05 宜兴市环球水处理设备有限公司 冷却塔点滴式淋水填料
CN104165532A (zh) * 2014-07-31 2014-11-26 中化工程沧州冷却技术有限公司 空冷湿冷联合式节水消雾冷却塔
CN104729317A (zh) * 2015-03-31 2015-06-24 山东大学 一种冷却三角花瓣状布置的间接冷却塔
CN104729318A (zh) * 2015-03-31 2015-06-24 山东大学 一种带有分隔墙的双层湿冷塔
CN105509504A (zh) * 2016-01-12 2016-04-20 张文军 混合式循环冷却系统
CN106643205A (zh) * 2016-12-28 2017-05-10 山东大学 环形填料布置的干湿混合大型冷却塔及火电厂冷却系统
CN106766990A (zh) * 2016-12-28 2017-05-31 山东大学 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506489A (zh) * 2018-11-26 2019-03-22 中国电力工程顾问集团西北电力设计院有限公司 一种导风型高位收水冷却塔
CN109506489B (zh) * 2018-11-26 2024-02-06 中国电力工程顾问集团西北电力设计院有限公司 一种导风型高位收水冷却塔
CN110645810A (zh) * 2019-10-31 2020-01-03 大唐郓城发电有限公司 一种冬季可以远程自动调节冷却塔水温度的装置
CN110645810B (zh) * 2019-10-31 2024-06-11 大唐郓城发电有限公司 一种冬季可以远程自动调节冷却塔水温度的装置
CN111189335A (zh) * 2020-02-16 2020-05-22 福建立信换热设备制造股份公司 一种消雾型干湿联合冷却塔
CN111189335B (zh) * 2020-02-16 2024-06-07 福建立信换热设备制造股份公司 一种消雾型干湿联合冷却塔
CN114692327A (zh) * 2022-02-24 2022-07-01 西安交通大学 一种多进风型复合冷却塔风量计算方法
CN114692327B (zh) * 2022-02-24 2024-01-16 西安交通大学 一种多进风型复合冷却塔风量计算方法

Also Published As

Publication number Publication date
CN106766990A (zh) 2017-05-31
CN106766990B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2018120956A1 (zh) 花瓣状填料布置的干湿混合大型冷却塔、冷却系统及方法
CN105403068A (zh) 采用自然通风及复合运行模式的干湿联合冷却塔及其应用
CN106610232B (zh) 连续填料布置的干湿混合大型冷却塔、冷却系统及方法
CN107152877A (zh) 一种空冷塔以及间接空冷系统
CN106591887A (zh) 一种基于有机闪蒸循环的铝电解槽侧壁余热发电装置
CN104729317B (zh) 一种冷却三角花瓣状布置的间接冷却塔
CN206685451U (zh) 一种电动汽车环形强制风冷散热并联电池模组及电动汽车
CN107120980A (zh) 一种空冷凝汽器塔外垂直布置的混合通风直接空冷系统
CN203454840U (zh) 冷却塔循环水发电系统
CN106643205B (zh) 环形填料布置的干湿混合大型冷却塔及火电厂冷却系统
CN203605793U (zh) 一种带有补风管的冷却塔
CN203454834U (zh) 机力通风空气冷却凝汽器
CN207113644U (zh) 一种翅片倾斜布置的自然通风直接空冷系统
CN212030262U (zh) 一种引风式辅助通风直接空冷系统
CN210533087U (zh) 一种自然通风湿式冷却塔
CN109708488B (zh) 一种内外协调优化进风的新型湿式冷却塔
CN208720854U (zh) 一种节水型自然通风冷却塔
CN207350627U (zh) 一种干燥炎热地区用板管式间接-直接蒸发冷却冷水机组
CN209310546U (zh) 一种流体系统能源综合利用装置
CN206269621U (zh) 一种智能自控凉水塔
CN202110831U (zh) 核电站冷却系统
CN205919700U (zh) 适用于地下单向气流空间内的冷却塔
CN104848728A (zh) 一种高位收水冷却塔非均匀填料系统
CN104697356A (zh) 一种带有斜置冷却三角的间接冷却塔
CN104713386B (zh) 一种双层间接冷却塔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886004

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17886004

Country of ref document: EP

Kind code of ref document: A1