WO2018120694A1 - 用于风力发电场的测控装置、系统和方法 - Google Patents

用于风力发电场的测控装置、系统和方法 Download PDF

Info

Publication number
WO2018120694A1
WO2018120694A1 PCT/CN2017/090542 CN2017090542W WO2018120694A1 WO 2018120694 A1 WO2018120694 A1 WO 2018120694A1 CN 2017090542 W CN2017090542 W CN 2017090542W WO 2018120694 A1 WO2018120694 A1 WO 2018120694A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency modulation
wind
energy storage
storage battery
command
Prior art date
Application number
PCT/CN2017/090542
Other languages
English (en)
French (fr)
Inventor
叶楠
张毅
乔元
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to KR1020187015934A priority Critical patent/KR102158419B1/ko
Priority to EP17868489.0A priority patent/EP3376629A4/en
Priority to US15/778,916 priority patent/US11581731B2/en
Priority to AU2017352550A priority patent/AU2017352550C1/en
Publication of WO2018120694A1 publication Critical patent/WO2018120694A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J13/0062
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to the field of power control technologies, and in particular, to a monitoring and control apparatus, system and method for a wind power plant.
  • the existing measurement and control methods for wind power mainly use the traditional control method of thermal power generation. Due to the unstable nature of the wind, the voltage output of the wind turbine in the wind farm is unstable. In addition, since wind turbines are distributed in a wind farm, the electrical energy generated by these wind turbines is not synchronized. In order to improve the grid's ability to accept distributed wind power, people have attempted to synchronize distributed wind power with a virtual synchronous generator. Since the virtual synchronous generator requires a strict continuous and stable voltage, the effect of the virtual synchronous generator synchronization is not satisfactory.
  • the existing wind turbines and virtual synchronous generators for wind farms are unable to provide a continuous and stable voltage, and cannot effectively perform the task of frequency modulation and work.
  • embodiments of the present invention provide a measurement and control apparatus, system, and method for a wind farm.
  • a monitoring and control apparatus for a wind farm comprising a wind turbine, a first energy storage battery disposed on a DC bus side of the wind turbine, and a second disposed in the wind farm An energy storage battery and a reactive power compensation device, the measurement and control device comprising:
  • the first communication interface is used for connecting with the power grid dispatching server
  • the second communication interface is used for connecting with the wind power generator set
  • the processor board is respectively connected with the first communication interface and the second communication interface
  • the processor board receives the frequency modulation command issued by the power grid dispatching server through the first communication interface, receives the running information of the wind power generating unit through the second communication interface, and calculates the wind power generating unit is not put into the first according to the running information of the wind power generating unit.
  • the first frequency modulation capability under the condition of energy storage battery, when the first frequency modulation capability of the wind power generator meets the frequency modulation command, the frequency modulation command is sent for the wind power generator, and the first energy storage battery is not activated.
  • a measurement and control system for a wind farm comprising:
  • a method for controlling a wind farm comprising:
  • the frequency modulation command is directly sent to the wind power generator, and the first energy storage battery is not activated.
  • the monitoring and control apparatus, system and method for a wind power plant may enable a wind power plant to output a continuous and stable voltage using only the wind turbine generator's own frequency modulation capability in the case where the wind speed varies but the frequency modulation requirement can be met.
  • the FM task can be successfully completed without starting the battery, which not only improves the reliability of the FM, but also saves battery power.
  • the measurement and control device and system for a wind power field can work stably and efficiently, ensure that the measurement and control precision and time meet the requirements of the virtual synchronous generator, thereby matching the external characteristics of the conventional wind power generation set, and making the wind power generation field
  • the whole power generation situation is close to the traditional thermal power generating units, meeting the national requirements for new energy grid-connected, and the grid can also operate stably with the increasing proportion of new energy.
  • FIG. 1 is a schematic structural view of a measurement and control system for a wind farm according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • FIG 3 is another schematic structural view of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of still another structure of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for measuring and controlling a wind farm according to an embodiment of the present invention.
  • FIG. 6 is another flow chart of a method for measuring and controlling a wind farm according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a process for measuring the frequency of an alternating current in accordance with an embodiment of the present invention.
  • Fig. 8 is a schematic diagram showing the waveform of the alternating current in Fig. 7.
  • FIG. 1 is a schematic structural view of a measurement and control system for a wind farm according to an embodiment of the present invention.
  • the measurement and control system 1000 for a wind farm may include a measurement and control device 100 for a wind farm and a wind farm device 200, wherein the measurement and control device for the wind farm
  • the set 100 can exchange the power flow information with the power grid dispatching server 300 outside the system 1000, thereby completing the frequency modulation task (ie, frequency hopping instruction) or the work task delivered by the power grid dispatching server 300.
  • the power grid dispatching server 300 can monitor and schedule the power grid dispatching automation system and the power marketing system.
  • each province will have a grid dispatch server 300.
  • the power grid dispatching server 300 of each province exchanges power information with each power generating field in the province, and issues tasks such as frequency modulation or work for each power generating field.
  • the wind farm apparatus 200 may include wind turbines 201 and 202 (each wind turbine may be connected by a collecting circuit), first energy storage batteries 203 and 204 disposed on the DC bus side of the wind turbines 201 and 202, respectively, and reactive power Compensation device 205 and second energy storage battery 206.
  • the first energy storage battery 203 can be used for a single wind turbine and the second energy storage battery 206 can be used for the entire wind farm.
  • the second energy storage battery 206 is a large energy storage battery that has a much larger capacity than the first energy storage battery 203.
  • the reactive power compensation device 205 may be, for example, an SVC (Static Var Compensator) and an SVG (Static Var Generator).
  • system 1000 can include only measurement and control device 100 for a wind farm.
  • system 1000 can also include ancillary equipment for a wind farm, where the auxiliary equipment can include cables, switches, protection devices, and the like.
  • auxiliary equipment can include cables, switches, protection devices, and the like.
  • FIG. 2 is a schematic structural view of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • the measurement and control device 100 for a wind farm may include a first communication interface 110, a second communication interface 120, and a processor board 130, wherein the first communication interface 110 is used to connect to the grid dispatch server 300.
  • the second communication interface 120 is for connecting to the wind power generators 201 and 202, and the processor board 130 is connected to the first communication interface 110 and the second communication interface 120, respectively.
  • the first communication interface 110 and the second communication interface 120 may be, for example, an Ethernet interface
  • the processor board 130 may be, for example, a CPU board.
  • the processor board 130 receives the FM command issued by the grid dispatching server 300 through the first communication interface 110, and receives the running information of the wind turbines 201 and 202 through the second communication interface 120, based on The operational information of the wind turbines 201 and 202 calculates the first frequency modulation capability of the wind turbines 201 and 202 without the first energy storage batteries 203 and 204, and the first frequency modulation capability of the wind turbines 201 and 202 satisfies the grid.
  • the frequency modulation command is sent to the wind turbines 201 and 202, and the first energy storage batteries 203 and 204 are not activated.
  • the wind farm can be changed in wind speed but can meet the frequency modulation requirement (that is, when the wind power of the wind farm is large and the frequency modulation capability of the wind power generator is large), only the wind power generation capability of the wind turbine itself is utilized.
  • Continuous and stable voltage without the need to start the battery, can complete the FM task satisfactorily, which not only improves the reliability of the frequency modulation, but also saves battery energy.
  • the processor board 130 when the first frequency modulation capability of the wind turbines 201 and 202 does not meet the requirements of the frequency modulation command issued by the grid dispatching server 300, the processor board 130 further calculates the wind turbines 201 and 202. In the second frequency-modulating capability of the first energy storage battery 203 and 204, it is determined whether the second frequency modulation capability meets the requirements of the frequency modulation command issued by the power grid dispatching server 300, and the second frequency modulation capability is met by the power grid dispatching server 300.
  • the FM command sends a frequency modulation command to the wind turbines 201 and 202 and activates the first energy storage batteries 203 and 204. In this way, the wind power generation field can be used to complete the frequency modulation task by using the first energy storage battery when the wind power generation and the frequency modulation capability of the wind power generator cannot complete the frequency modulation task by itself.
  • the processor board 130 activates the first energy storage battery 203.
  • the second energy storage battery 206 is also activated in addition to 204 and transmits frequency modulation commands to wind turbines 201 and 202.
  • the wind power generation field can be further used to complete the frequency modulation task by using the second energy storage battery when the wind power is small, the wind power generator set and the first energy storage battery work together and the frequency modulation task cannot be completed.
  • FIG 3 is another schematic structural view of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • the embodiment shown in Figure 3 adds a third communication interface 140 to the embodiment shown in Figure 2.
  • the third communication interface 140 and the reactive power compensation device 205 The second communication interface 120 is connected to the second energy storage battery 206.
  • the processor board 130 also receives an active power demand command from the grid dispatch server 300 via the first communication interface 110, and meets the active power demand at the first frequency modulation capability of the wind turbines 201 and 202.
  • An active power demand command is sent to wind turbines 201 and 202 as required by the command.
  • the processor board 130 receives the reactive power demand command from the power grid dispatching server 300 through the first communication interface 110, and acquires the running information of the reactive power compensation device 205 through the third communication interface 140. Calculating the capability information of the reactive power compensation device 205 based on the operation information of the reactive power compensation device 205, and transmitting the reactive power demand command to the reactive power compensation device 205 when the capability information of the reactive power compensation device 205 satisfies the requirement of the reactive power demand command .
  • FIG. 4 is another schematic structural view of a measurement and control device for a wind farm according to an embodiment of the present invention.
  • the embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 3 in that an AC analog board 150, a DC analog board 160, and an in board are added to the embodiment shown in FIG. 170.
  • the board 180, the power supply 190, and the front panel 1100 are opened.
  • the processor board 130 includes an ARM (Advanced RISC Machines) module 131 and a DSP (Digital Signal Processing) module 132.
  • the ARM module 131 is coupled to the first communication interface 110, the second communication interface 120, and the DSP module 132.
  • the DSP module 132 is connected to the third communication interface 140, the AC analog card 150, the DC analog card 160, the open card 170, and the open card 180.
  • the power supply 190 and the front panel 1100 are connected to the processor board 130, respectively.
  • a communication bus connection is used between the ARM module 131 and the DSP module 132, which may be, for example, an SPI bus.
  • the AC analog board 150 is coupled to the processor board 130.
  • the AC analog board 150 is used to collect voltage and current information of the high voltage side of the main transformer of the wind farm and the low voltage side of the main transformer (ie, the AC analog quantity information in the wind farm), and through, for example, the communication bus of the measurement and control system.
  • the collected AC analog information is sent to the processor board 130 for calculation and processing by the processor board 130.
  • the amount of change in the AC analog quantity is periodic, and the typical amount of the AC analog quantity is a sinusoidal quantity of 1000 Hz.
  • the DC analog board 160 is coupled to the processor board 130.
  • the DC analog board 160 is used to collect the DC analog information of the equipment in the wind farm, and send the collected DC analog information to the processor board 130 for the processor board through, for example, the communication bus of the measurement and control system.
  • Card 130 performs calculations and processing.
  • the DC analog quantity is a continuously varying amount that changes slowly, its change is continuous and slow, or the amount of change in the DC analog quantity can be considered constant.
  • the drive-in card 170 is coupled to the processor board 130.
  • the switch-in board 170 is used to collect switch state information of devices in the wind farm and transmit the collected switch state information to the processor board 130.
  • the board 170 can collect the switch status information of the switch and the energy storage battery in the wind farm, and transmit the collected switch status information to the processor board 130 through the communication bus of the measurement and control system for calculation and processing.
  • the opening card 180 is coupled to the processor board 130.
  • the outgoing card 180 is used to receive an outgoing signal from the processor board 130 and to transmit the outgoing information to the devices within the wind farm.
  • the open card 180 can output an open signal based on the calculation and control strategy of the processor board 130, controlling the switches within the wind farm, and the switching of the plurality of energy storage battery packs.
  • the implementation of the function board shown in FIG. 4 may be hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, plug-ins, function cards, and the like.
  • ASIC application specific integrated circuit
  • the elements of the present invention are programs or code segments that are used to perform the required tasks.
  • the program or code segments can be stored in a machine readable medium or transmitted over a transmission medium or communication link through a data signal carried in the carrier.
  • a "machine-readable medium” can include any medium that can store or transfer information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • the code segments can be downloaded via a computer network such as the Internet, an intranet, and the like.
  • the front panel 1100 is coupled to the processor board 130.
  • the front panel 1100 is used to display measurement and control information for measuring and controlling the wind farm.
  • the front panel 1100 (LCD) is used as a human-machine interface of the measurement and control device 100, and the processor board 130 (which may be a CPU)
  • the board communicates through the serial port and can be used to control the overall power generation of the wind farm (current system status: normal, remote light, local light, equipment fault, system fault, TV/TA (current transformer/voltage) Transformer) disconnection, strategy lockout lights, etc.) through the LCD display, allowing operators and maintenance personnel to view the power supply situation very conveniently.
  • the power supply 190 is coupled to the processor board 130, the front panel 1100, and the DC power panel (not shown) of the wind farm, respectively.
  • the power supply 190 can be taken from a DC power supply panel of the wind farm. In the case of AC power loss, it can also ensure a stable power supply for the entire measurement and control system.
  • processor board 130 can have three types of interfaces: Ethernet port 1, Ethernet port 2, and 485 communication interface.
  • the processor board 130 can communicate with the grid dispatching server 300 through the Ethernet port 1 to exchange power flow information (eg, active power demand information, frequency modulation information).
  • the Ethernet port 2 of the processor board 130 communicates with the fiber optic network of the wind farm to receive the following information for all wind turbines within the wind farm: voltage, current, active power, reactive power, power factor, frequency, Alarm information and error information.
  • the processor board 130 issues active power demand, reactive power demand, and frequency modulation information to all wind turbines.
  • the processor board 130 communicates with the SVC and SVG devices in the wind farm through the 485 communication interface (two paths) and the CAN communication interface (two paths), and the following reactive power adjustment and control commands are reached.
  • the ARM module 131 in the processor board 130 is used for information interaction with the grid dispatching server 300, the wind turbines 201 and 202, the reactive power compensation device 205, and the DSP module 132 to transmit FM commands, active power.
  • the ARM computing unit ie, ARM module 131
  • the ARM computing unit can perform transient responses and communicate with grid dispatch servers, wind turbines, and large energy storage battery packs and the like.
  • the task for example, the frequency modulation task
  • the task can be switched less than 1 ms, which can ensure the timeliness of the task response and meet the requirement that the overall frequency modulation requirement is less than 100 ms.
  • the DSP module 132 in the processor board 130 can be based on a frequency modulation command, an active power demand command, a reactive power demand command, and an instruction to activate the first energy storage battery and the second energy storage battery.
  • Generator set, reactive power compensation device, and first energy storage battery and The second energy storage battery issues an open command (which can be achieved by opening the board 170 and opening the board 180).
  • the DSP computing unit can perform a transient response.
  • the DSP calculation unit can quickly switch the energy storage battery to achieve frequency adjustment, power quality management, and the like.
  • the DSP calculation unit ie, DSP module
  • fast open command can quickly and timely adjust the equipment in the wind farm to complete the FM command.
  • the DSP module when a large energy storage battery pack is required for switching and participating in frequency modulation, the DSP module quickly opens the interface to meet the requirements of the fast switching battery pack.
  • the 485 communication interface of the DSP module and the CAN (Controller Area Network) communication interface can communicate with the SVC/SVG in the wind farm to control the voltage situation of the wind farm in real time with the SVC/SVG. To ensure that the output voltage is stable.
  • the specified power quality threshold for example, 2, 3, 5, 7, and 9 harmonic voltages, current exceeds the preset software threshold
  • Switching the corresponding battery unit allows the power quality to meet the specified software threshold (eg, 20%).
  • the accuracy performance index and response speed of the measurement and control device can meet the following requirements:
  • voltage level is 100V
  • 0.2S level current 5A (1A optional) 0.2S
  • power is 0.5S
  • frequency is 0.01Hz
  • power factor is 0.01.
  • Transient response time of the system to the grid ⁇ 30ms (voltage and current), ⁇ 100ms (frequency);
  • the voltage stability strategy and the frequency modulation strategy can be given by the ARM calculation unit.
  • FIG. 5 is a flow chart of a method for measuring and controlling a wind farm according to an embodiment of the present invention. As shown in FIG. 5, the measurement and control method includes:
  • the FM command can be from the grid dispatching server 300 in FIG.
  • the current wind speed information of the wind turbine may be current wind speed information around each wind turbine, or may be an average value of wind speed values collected from blades of each wind power generator, or may be from each wind power generator set. The average of the wind speed values collected in any part of the surrounding area.
  • the current wind speed information of a specific wind turbine generator can be actively collected or passively received according to actual needs, and the content is not limited in this aspect.
  • the frequency modulation capability of the wind turbine can be selected according to the principle of greater than or equal to the requirements of the FM command and as close as possible to the requirements of the FM command, so that the requirements of the FM command can be met or the power can be wasted.
  • the frequency adjustment task can be completed accurately and reliably without starting the battery in the abnormal situation of the wind speed change.
  • step S230 (calculating the first frequency modulation capability of the wind turbine set under the condition that the first energy storage battery is not input based on the current wind speed information, and determining whether the first frequency modulation capability satisfies the requirement of the frequency modulation instruction) may include the substep S231 to S232.
  • the wind farm includes only three wind turbines (wind turbine 201, wind turbine 202, wind turbine 203).
  • the calculation method of frequency modulation capability is only three wind turbines (wind turbine 201, wind turbine 202, wind turbine 203).
  • the frequency modulation capabilities N1, N2, and N3 of the wind turbine 201, the wind turbine 202, and the wind turbine 203 are calculated without being put into the first energy storage battery.
  • the calculated plurality of wind turbines are combined in a plurality of combinations of the first frequency modulation capability without the first energy storage battery, and a plurality of first combined frequency modulation capabilities are calculated.
  • the first combined frequency modulation capability with the first frequency modulation capability of N1+N2 is obtained.
  • the wind power generation capability of the wind power generator set 201 and the wind power generator set 203 under the condition that the first energy storage battery is not used is combined to obtain the first combined frequency modulation capability with the second frequency modulation capability of N1+N3.
  • the frequency modulation capability of the wind turbine set 202 and the wind power generator set 203 under the condition that the first energy storage battery is not input is combined to obtain the first combined frequency modulation capability with the third frequency modulation capability of N2+N3.
  • the first combination of the fourth frequency modulation capability of N1+N2+N3 is obtained. Frequency modulation capability.
  • the data table of the first combined frequency modulation capability may be as shown in the following table (1):
  • the wind power generation field can be used to output a continuous and stable voltage by using the wind power generation capability of the wind power generator under abnormal conditions of the wind speed change. You don't need to start the battery to complete the FM task. This not only improves the reliability of the FM, but also saves battery power.
  • the first energy storage battery may be a storage battery of 200 KW on the DC bus side of the wind power generator.
  • the specific configuration of the energy storage battery may be flexibly adjusted according to actual needs.
  • the frequency modulation capability of the wind turbine can be selected according to the principle of greater than or equal to the FM command and as close as possible to the requirements of the FM command, so that the requirements of the FM command can be met or the power can be wasted.
  • the first energy storage battery can be activated in time to enable the wind power plant to output a continuous and stable voltage even when the wind power is small.
  • step S250 (when the first frequency modulation capability cannot satisfy the requirements of the frequency modulation instruction To calculate the time, further calculating the second frequency modulation capability of the wind power generator under the condition of inputting the first energy storage battery and determining whether the second frequency modulation capability satisfies the requirements of the frequency modulation command may include sub-steps S251 to S252.
  • the frequency modulation capabilities M1, M2, and M3 of the wind turbine 201, the wind turbine 202, and the wind turbine 203 under the condition of the first energy storage battery are calculated, respectively.
  • the calculated plurality of wind turbines are combined in a plurality of combinations of the second frequency modulation capability under the condition of the first energy storage battery, and a plurality of second combined frequency modulation capabilities are calculated.
  • the data table of the second combined frequency modulation capability can be as shown in the following table (2):
  • the energy storage battery is used to assist the frequency modulation, so that the wind farm can also output a continuous and stable voltage in this extreme case.
  • the first energy storage battery may be a 200 KW energy storage battery on the DC bus side of the wind turbine
  • the second energy storage battery may be a large energy storage battery in the wind power generation field.
  • the specific configuration of the energy storage battery can be flexibly adjusted according to actual needs, and there is no limitation in this aspect.
  • the voltage frequency modulation strategy may include the following three common situations:
  • the torque of each wind turbine (excluding the energy storage battery of 200KW on the DC bus side of a single machine) can support the frequency modulation tasks of each wind turbine itself.
  • the converter of the wind turbine does not output the electric energy of the energy storage battery of 200 KW, that is, the energy storage battery of each wind power generator does not input the frequency modulation work.
  • each wind turbine In the case of small winds, the torque of each wind turbine (excluding the energy storage battery of 200KW on the DC bus side of a single machine) cannot support the frequency modulation task of each wind turbine itself, and 200KW energy storage is put into the DC bus of the wind turbine.
  • the battery as the backup energy of the wind turbine, supports the frequency modulation torque. That is, the energy storage batteries of the respective wind turbines are put into frequency modulation work.
  • the large-scale energy storage battery pack in the wind power field can be switched by the ARM (microprocessor) calculation unit to support the power system frequency modulation task.
  • a plurality of frequency modulation methods for combining wind turbines can also be used according to actual conditions.
  • a wind turbine that is put into an energy storage battery is combined with a wind turbine that has not been put into an energy storage battery.
  • this aspect will not be described again.
  • the measurement and control method includes:
  • a power demand instruction is received, and the power demand instruction includes an active power demand instruction and a reactive power demand instruction.
  • This embodiment mainly describes a voltage stabilization strategy.
  • the implementation of the voltage stabilization strategy can be as follows.
  • the parameter information (voltage, current, active power, reactive power, power factor, frequency, alarm information, error information, etc.) in the wind farm is received.
  • the parameter information in the received wind farm is processed by the ARM module.
  • the wind power generators are allocated the active power and the reactive power, and then the power command or the reactive command is issued to all the wind turbines in the wind farm to complete the power demand of the wind farm dispatched by the power grid dispatching server. task.
  • the above frequency modulation strategy can be used to design multiple tables for power requirements to select a preferred work plan.
  • this aspect will not be described again.
  • the embodiment shown in Fig. 6 can be combined with the embodiment shown in Fig. 5.
  • the FM operation is performed first, and then the power operation is performed; or the power operation is performed first, and then the frequency adjustment operation is performed, and the content is not limited in this aspect.
  • the operation of measuring the frequency of the alternating current generated by each wind turbine can be added to the embodiment shown in Fig. 2 or Fig. 3.
  • FIG. 7 is a flow chart of a process for measuring the frequency of an alternating current in accordance with an embodiment of the present invention. As shown in Figure 7, the process of measuring the frequency of the alternating current includes:
  • Fig. 8 is a schematic view showing the waveform of the above alternating current.
  • the seven vectors acquired are vectors A, B, C, D, E, F, and G, respectively.
  • the imaginary part of A is 220
  • the imaginary part of B is 5
  • the imaginary part of C is 0
  • the imaginary part of D is -5
  • the imaginary part of E is -6
  • the imaginary part of F The value is 0, and the imaginary part of G is 6.
  • the imaginary part values of the plurality of vectors are respectively compared with the zero value, and at least two sets of comparison values are obtained, and at least two sets of comparison values each include two adjacent vectors whose imaginary part value is greater than zero value and less than zero value.
  • the two sets of comparison values may be comparison values of (B, D) and (E, F).
  • the time corresponding to the four vectors may be time T1 of B, time T2 of D, time T3 of E, and time T4 of G.
  • the AC power is calculated for at least two zero-crossing times based on the time corresponding to the at least four vectors.
  • the two zero crossing times may be the zero crossing time of the two points C and F.
  • the frequency of the alternating current is calculated based on at least two zero-crossing times of the alternating current.
  • the DSP calculation unit can quickly acquire signals to achieve accurate calculation of voltage, current, power, and frequency.
  • the voltage and current collection methods can directly collect the secondary side transformers for rapid acquisition and calculation.
  • the acquisition data can be updated every 20ms to ensure the timeliness of the entire system and ensure the accuracy and real-time control.
  • the frequency accuracy can reach 0.01 Hz, and the accuracy of the frequency modulation task of the wind farm can be ensured when the wind farm participates in the secondary frequency modulation. It can be seen that the influence of harmonics and DC components can be eliminated by the software frequency measurement method, and the calculated frequency values are small in dispersion and high in precision, thereby ensuring the power quality of the wind farm.
  • the measurement and control method of each of the above embodiments can also be applied to a virtual synchronous generator. Therefore, through the above design, the power generation situation of the entire wind farm can be brought close to the traditional thermal power generating unit, and the state meets the requirements for new energy grid-connected. Under the condition that the proportion of new energy is increasing, the power grid can also Stable operation.
  • the processor board can be used to measure the frequency of the alternating current generated by the work performed by the wind power generator.
  • the specific measurement process includes: continuously collecting the waveform of the alternating current generated by the wind power generator after the work is performed.
  • the imaginary part of multiple vectors; the imaginary part of multiple vectors The values are compared with the zero values respectively, and at least two sets of comparison values are obtained, and at least two sets of comparison values include: two adjacent vectors whose imaginary part value is greater than zero value and less than zero value; and at least four vectors of the two sets of comparison values are obtained.
  • the corresponding time calculating the alternating current at least two zero-crossing time based on the time corresponding to the at least four vectors; calculating the frequency of the alternating current based on the alternating current at least two zero-crossing times.
  • the measurement and control device of each of the above embodiments can be used as an execution body in the measurement and control method of the above embodiments, and corresponding processing in each measurement and control method can be implemented.
  • a person skilled in the art can clearly understand that the specific working process of the hardware, the device, and the like described above may refer to the corresponding processes in the foregoing method embodiments, and details are not described herein again.
  • the measurement and control device of each of the above embodiments can also be applied to a virtual synchronous generator.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interface, indirect coupling or communication connection of the device, or electrical, mechanical or other form of connection.
  • hardware for example, various calculators in various embodiments of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.

Abstract

一种用于风力发电场的测控装置(100)、系统(1000)和方法。该测控装置(100)包括第一通讯接口(110)、第二通讯接口(120)和处理器板卡(130),其中,处理器板卡(130)分别与第一通讯接口(110)和第二通讯接口(120)连接;处理器板卡(130)通过第一通讯接口(110)接收电网调度服务器(300)下发的调频指令,通过第二通讯接口(120)接收风力发电机组(201、202)的运行信息,基于风力发电机组(201、202)的运行信息计算风力发电机组(201、202)在未投入第一储能电池(203、204)条件下的第一调频能力,并在风力发电机组(201、202)的第一调频能力满足调频指令的要求时向风力发电机组(201、202)发送调频指令,并不启动第一储能电池(203、204)。该测控装置可以使得风力发电场在风速满足调频要求时,利用风力发电机组(201、202)自身的调频能力输出持续且稳定的电压、完成调频任务,这不仅可以提高调频的可靠性还可以节约电池能源。

Description

用于风力发电场的测控装置、系统和方法 技术领域
本发明涉及电力控制技术领域,尤其涉及一种用于风力发电场的测控装置、系统和方法。
背景技术
随着社会经济的发展,电力资源已经成为人们生活的必需品。用于提供电力资源的发电方式除了传统的火力发电和水力发电等方式之外,还存在新兴的风力发电和核发电等方式。由于风力发电具有清洁、可再生、不破坏地理环境等优点,受到了人们的广泛关注。
现有的风力发电的测控方法主要采用传统的火力发电的控制方式。由于风力的不稳定特性,导致风力发电场内的风力发电机组输出的电压不稳定。此外,由于风力发电机组在风力发电场内是分布式布置的,这些风力发电机组所发的电能是不同步的。为了提升电网对分布式的风力电能的接纳能力,人们尝试采用虚拟同步发电机将分布式的风力电能进行同步。由于虚拟同步发电机需要严格的持续、稳定的电压,所以虚拟同步发电机同步的效果并不理想。
现有的用于风力发电场的风力发电机组及虚拟同步发电机无法提供持续、稳定的电压,无法有效完成调频任务以及做功的任务。
发明内容
鉴于以上所述的一个或多个问题,本发明实施例提供了一种用于风力发电场的测控装置、系统和方法。
一方面,提供了一种用于风力发电场的测控装置,其中,风力发电场包括风力发电机组、设置在风力发电机组直流母线侧的第一储能电池、设置在风力发电场内的第二储能电池和无功补偿装置,该测控装置包括:
第一通讯接口、第二通讯接口和处理器板卡,其中,
第一通讯接口用于与电网调度服务器连接,第二通讯接口用于与风力发电机组连接,处理器板卡分别与第一通讯接口和第二通讯接口连接;
处理器板卡通过第一通讯接口接收电网调度服务器下发的调频指令,通过第二通讯接口接收风力发电机组的运行信息,并基于风力发电机组的运行信息,计算风力发电机组在未投入第一储能电池条件下的第一调频能力,当风力发电机组的第一调频能力满足调频指令时,为风力发电机组发送调频指令,并不启动第一储能电池。
又一方面,提供了一种用于风力发电场的测控系统,包括:
上述的用于风力发电场的测控装置。
另一方面,提供了一种用于风力发电场的测控方法,其中,风力发电场包括风力发电机组、设置在风力发电机组直流母线侧的第一储能电池、设置在风力发电场内的第二储能电池和无功补偿装置,该测控方法包括:
接收调频指令;
接收风力发电场的当前风速信息;
基于当前风速信息,计算未投入第一储能电池的条件下的风力发电机组的第一调频能力,并判断第一调频能力是否能满足调频指令的要求;
当第一调频能力满足调频指令的要求时,直接向风力发电机组发送调频指令,并且不启第一动储能电池。
根据本发明实施例的用于风力发电场的测控装置、系统和方法可以使得风力发电场在风速变化但可以满足调频要求的情况下,仅利用风力发电机组自身的调频能力输出持续且稳定的电压,而不需要启动电池就可以圆满完成调频任务,这不仅可以提高调频的可靠性,还可以节约电池能源。
根据本发明实施例的用于风力发电场的测控装置和系统能够稳定、高效地工作,保证测控精度与时间满足虚拟同步发电机的要求,从而匹配传统风力发电机组的外特性,使风力发电场整场的发电情况与传统火力发电机组靠拢,达到国家对新能源并网的要求,在新能源占比不断增加的情况下,使电网也能稳定运行。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的用于风力发电场的测控系统的结构示意图。
图2是根据本发明实施例的用于风力发电场的测控装置的结构示意图。
图3是根据本发明实施例的用于风力发电场的测控装置的另一结构示意图。
图4是根据本发明实施例的用于风力发电场的测控装置的又一结构示意图。
图5是根据本发明实施例的用于风力发电场的测控方法的流程图。
图6是根据本发明实施例的用于风力发电场的测控方法的另一流程图。
图7是根据本发明实施例的对交流电的频率进行测量的过程的流程图。
图8是图7中的交流电的波形示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。本领域技术人员应能理解,在权利要求书中,术语“包括”并不排除其他装置或步骤;不定冠词“一个”不排除多个;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。
另外,需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合,步骤顺序可以相互调整。为了描述简洁,各个实施例中相同或者相似的内容将不再赘述,本申请中的各个实施例可以相互参考引用。下面将参考附图并结合实施例来详细说明本申请。
图1是根据本发明实施例的用于风力发电场的测控系统的结构示意图。
如图1所示,用于风力发电场的测控系统1000可以包括用于风力发电场的测控装置100和风电场设备200,其中,用于风力发电场的测控装 置100可以与系统1000外部的电网调度服务器300交互潮流信息,从而完成电网调度服务器300下发的调频任务(即,跳频指令)或者做功任务。
这里,电网调度服务器300可以对电网调度自动化系统及电力营销系统进行监控和调度。通常,每个省都会设立一个电网调度服务器300。各省的电网调度服务器300与省内的各个发电场进行电力信息交互,向各个发电场下发调频或者做功等任务。
风电场设备200可以包括风力发电机组201和202(各台风力发电机组可以通过汇集电路连接)、分别设置在风力发电机组201和202直流母线侧的第一储能电池203和204、以及无功补偿装置205和第二储能电池206。
在一些实施例中,第一储能电池203可以用于单个风力发电机组,第二储能电池206可以用于整个风力发电场。通常,第二储能电池206是大型储能电池,其容量要远远大于第一储能电池203。无功补偿装置205可以是例如,SVC(Static Var Compensator,静止型无功补偿装置)和SVG(Static Var Generator,静止型动态无功补偿装置)等。
可以理解,上述系统内的硬件设备的数量是示意性的,并且可以根据实际需要进行调整,即可以在系统1000内增加或者减少一些硬件设备。例如,系统1000可以仅包括用于风力发电场的测控装置100。又如,系统1000还可以包括用于风力发电场的辅助设备,其中,辅助设备可以包括电缆、交换机、保护设备等。下面的各个实施例均可以应用于系统1000。为了描述简洁,各实施例可以相互参考和引用,相同或者相似的内容不再赘述。
图2是根据本发明实施例的用于风力发电场的测控装置的结构示意图。
如图2所示,用于风力发电场的测控装置100可以包括第一通讯接口110、第二通讯接口120和处理器板卡130,其中,第一通讯接口110用于与电网调度服务器300连接,第二通讯接口120用于与风力发电机组201和202连接,处理器板卡130分别与第一通讯接口110和第二通讯接口120连接。这里,第一通讯接口110和第二通讯接口120可以是例如,以太网接口,处理器板卡130可以是例如,CPU板卡。
在图2所示的实施例中,处理器板卡130通过第一通讯接口110接收电网调度服务器300下发的调频指令,通过第二通讯接口120接收风力发电机组201和202的运行信息,基于风力发电机组201和202的运行信息计算风力发电机组201和202在未投入第一储能电池203和204条件下的第一调频能力,并在风力发电机组201和202的第一调频能力满足电网调度服务器300下发的调频指令的要求时向风力发电机组201和202发送调频指令,并不启动第一储能电池203和204。这样,可以使得风力发电场在风速变化但可以满足调频要求(即,在风力发电场的风力较大、风力发电机组的调频能力较大)的情况下,仅利用风力发电机组自身的调频能力输出持续且稳定的电压,而不需要启动电池就可以圆满完成调频任务,这不仅可以提高调频的可靠性,还可以节约电池能源。
在图2所示的实施例中,当风力发电机组201和202的第一调频能力不满足电网调度服务器300下发的调频指令的要求时,处理器板卡130进一步计算风力发电机组201和202在投入第一储能电池203和204条件下的第二调频能力,判断第二调频能力是否满足电网调度服务器300下发的调频指令的要求,并在第二调频能力满足电网调度服务器300下发的调频指令的要求时向风力发电机组201和202发送调频指令,并启动第一储能电池203和204。这样,可以使得风力发电场在风力一般、风力发电机组的调频能力无法独自完成调频任务时,借助第一储能电池来完成调频任务。
在图2所示的实施例中,当风力发电机组201和202的第二调频能力不满足电网调度服务器300下发的调频指令的要求时,处理器板卡130除了启动第一储能电池203和204以外还启动第二储能电池206,并向风力发电机组201和202发送调频指令。这样,可以使得风力发电场在风力较小、风力发电机组和第一储能电池二者协同工作也无法完成调频任务时,进一步借助第二储能电池来完成调频任务。
图3是根据本发明实施例的用于风力发电场的测控装置的另一结构示意图。
图3所示的实施例是在图2所示的实施例的基础上增加了第三通讯接口140。在图3所示的实施例中,第三通讯接口140与无功补偿装置205 连接,第二通讯接口120与第二储能电池206连接。
在图3所示的实施例中,处理器板卡130还通过第一通讯接口110从电网调度服务器300接收有功功率需求指令,并在风力发电机组201和202的第一调频能力满足有功功率需求指令的要求时向风力发电机组201和202发送有功功率需求指令。
在图3所示的实施例中,处理器板卡130还通过第一通讯接口110从电网调度服务器300接收无功功率需求指令,通过第三通讯接口140获取无功补偿装置205的运行信息,基于无功补偿装置205的运行信息计算无功补偿装置205的能力信息,并在无功补偿装置205的能力信息满足无功功率需求指令的要求时向无功补偿装置205发送无功功率需求指令。
图4是根据本发明实施例的用于风力发电场的测控装置的另一结构示意图。
图4所示的实施例与图3所示的实施例的区别在于,在图3所示的实施例的基础上增加了交流模拟量板卡150、直流模拟量板卡160、开入板卡170、开出板卡180、电源190和前面板1100,处理器板卡130包括ARM(Advanced RISC Machines,微处理器)模块131和DSP(Digital Signal Processing,数字信号处理)模块132。
在图4所示的实施例中,ARM模块131与第一通讯接口110、第二通讯接口120和DSP模块132连接。DSP模块132与第三通讯接口140、交流模拟量板卡150、直流模拟量板卡160、开入板卡170和开出板卡180连接。电源190和前面板1100分别与处理器板卡130连接。ARM模块131和DSP模块132之间采用通信总线连接,该通信总线可以为例如,SPI总线。
在图4所示的实施例中,交流模拟量板卡150与处理器板卡130连接。交流模拟量板卡150用于采集风力发电场的主变压器高压侧和主变压器低压侧的电压和电流信息(即,风力发电场内的交流模拟量信息),并通过例如,测控系统的通讯总线将所采集的交流模拟量信息发送给处理器板卡130,供处理器板卡130进行计算和处理。其中,交流模拟量的变化量是周期性的,交流模拟量的典型量是1000HZ的正弦量。
在图4所示的实施例中,直流模拟量板卡160与处理器板卡130连接。直流模拟量板卡160用于采集风力发电场内的设备的直流模拟量信息,并通过例如,测控系统的通讯总线将所采集的直流模拟量信息发送给处理器板卡130,供处理器板卡130进行计算和处理。通常,直流模拟量是缓慢变化的连续量,它的变化是连续且缓慢的,或者可以认为直流模拟量的变化量是恒定的。
在图4所示的实施例中,开入板卡170与处理器板卡130连接。开入板卡170用于采集风力发电场内的设备的开关状态信息,并将所采集的开关状态信息发送给处理器板卡130。例如,开入板卡170可以采集风力发电场内的开关、储能电池的开关状态信息,并通过测控系统的通讯总线将所采集的开关状态信息传给处理器板卡130进行计算和处理。
在图4所示的实施例中,开出板卡180与处理器板卡130连接。开出板卡180用于接收处理器板卡130的开出信号,并将开出信息发送给风力发电场内的设备。例如,开出板卡180可以基于处理器板卡130的计算和控制策略输出开出信号,控制风力发电场内的开关、以及多个储能电池组的投切。
需要说明的是,图4中所示的功能板卡的实现方式可以为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
在图4所示的实施例中,前面板1100与处理器板卡130连接。前面板1100用于显示对风力发电场进行测控的测控信息。这里,前面板1100(LCD)用作测控装置100的人机界面,与处理器板卡130(可以是CPU 板卡)之间通过串口进行通讯,可以用于把风力发电场的整体发电情况(当前系统状态:正常,远方灯,就地灯,设备故障,系统故障,TV/TA(电流互感器/电压互感器)断线,策略闭锁灯等)通过LCD显示,让运行维护人员能够非常方便地查看供电情况。
在图4所示的实施例中,电源190分别与处理器板卡130、前面板1100和风力发电场的直流电源屏柜(图中未标注)连接。电源190可以取自风力发电场的直流电源屏柜。在交流失电的情况下,也能保证整个测控系统有稳定的供电。
在一些实施例中,处理器板卡130可以有3类接口:以太网口1、以太网口2和485通讯接口。处理器板卡130可以通过以太网口1与电网调度服务器300进行通讯,以交互潮流信息(例如,有功功率需求信息、调频信息)。处理器板卡130的以太网口2与风力发电场的光纤网络通讯,以接收风力发电场内的所有风力发电机组的以下信息:电压、电流、有功功率、无功功率、功率因数、频率、告警信息和错误信息等。然后,处理器板卡130给所有风力发电机组下达有功功率需求、无功功率需求和调频信息等。接着,处理器板卡130通过485通讯接口(两路)和CAN通讯接口(两路)与风力发电场内的SVC和SVG设备通讯,以下达无功功率调节和控制命令。
在一些实施例中,处理器板卡130中的ARM模块131用于与电网调度服务器300、风力发电机组201和202、无功补偿装置205和DSP模块132进行信息交互,以发送调频指令、有功功率需求指令、无功功率需求指令、以及启动第一储能电池和第二储能电池的指令。
在一些实施例中,ARM计算单元(即,ARM模块131)可以进行暂态响应,并与电网调度服务器、风力发电机组和大型储能电池组等进行通讯。在图4所示的实施例中,任务(例如,调频任务)切换可以小于1ms,这样可以保证任务响应的及时性,满足调频总体需求小于100ms的要求。
在一些实施例中,处理器板卡130中的DSP模块132可以基于调频指令、有功功率需求指令、无功功率需求指令、以及启动第一储能电池和第二储能电池的指令,向风力发电机组、无功补偿装置以及第一储能电池和 第二储能电池发出开出命令(可以通过开入板卡170和开出板卡180来实现)。
在一些实施例中,DSP计算单元(即,DSP模块132)可以进行暂态响应。在进行暂态响应时,DSP计算单元可以对储能电池进行快速投切,以实现频率调节、电能质量管理等。针对紧急任务(暂态响应),通过DSP计算单元(即,DSP模块)和快速的开出命令,能够快速及时地调节风力发电场内的设备,完成调频指令。
在一些实施例中,在需要大型储能电池组进行投切并参与调频时,DSP模块快速开出接口,以满足快速投切电池组的要求。具体地,可以通过DSP模块的485通讯接口和CAN(Controller Area Network,控制器局域网络)通讯接口与风力发电场内的SVC/SVG通讯,实时地与SVC/SVG协同控制风力发电场的电压情况,保证输出电压稳定。
当电网出现波动或异常、风力发电场整场的电能质量超出规定的电能质量阀值时(例如,2、3、5、7、9次谐波电压、电流超出预设的软件阀值),投切相应的电池组单元可以使电能质量满足规定的软件阀值(例如20%)要求。
在图4所示的实施例中,通过ARM模块和DSP模块配合,测控装置的精度性能指标和响应速度可以达到如下要求:
(1)测量精度
对于测量:电压等级为100V,0.2S级别,电流5A(1A选配)0.2S,功率为0.5S,频率为0.01Hz,功率因数0.01。
对于控制:电压:35kV>0.5kV,110kV->2kV;220kV->3kV;无功:1.0MVar;功率因数:0.01。
(2)响应速度(可以针对任务执行及切换任务,DSP紧急任务和ARM通讯及常规任务)
系统对于电网的稳态响应时间:<6S;
系统对于电网的暂态响应时间:<30ms(电压和电流),<100ms(频率);
对于紧急任务(暂态响应),通过DSP计算单元和快速的开出命令, 能够快速及时地调节风力发电场内的设备,从而完成电网调度服务器的调度命令。
对于一般任务(稳态响应),通过ARM计算单元,能够给出电压稳定策略、调频策略。
图5是根据本发明实施例的用于风力发电场的测控方法的流程图。如图5所示,该测控方法包括:
在S210中,接收调频指令。
其中,调频指令可以来自图1中的电网调度服务器300。
在S220中,接收风力发电机组的当前风速信息。
其中,风力发电机组的当前风速信息可以是各个风力发电机组周边的当前风速信息,也可以是从各个风力发电机组的叶片上所采集的风速值的平均值,还可以是从各个风力发电机组的周边任意一个地方所采集的风速值的平均值。具体的风力发电机组的当前风速信息可以根据实际需求进行主动采集或者被动接收,此方面内容不做限制。
在S230中,基于当前风速信息,计算风力发电机组在未投入第一储能电池条件下的的第一调频能力,并判断第一调频能力是否能满足调频指令的要求。该步骤的具体实现方式将在下文进行详细描述。
在S240中,当第一调频能力满足调频指令的要求时,向风力发电机组发送调频指令,并不启动第一储能电池。
具体地,可以根据大于等于调频指令的要求,并且尽量接近调频指令的要求的原则来选择风力发电机组的调频能力,以使得既可以满足调频指令的要求也不浪费电能。
由此,通过基于当前风速信息计算风力发电机组在未投入电池条件下的调频能力,使得在风速变化的异常情况下,可以不启动电池来精确、可靠地完成调频任务。
在一些实施例中,步骤S230(基于当前风速信息计算风力发电机组在未投入第一储能电池条件下的第一调频能力,并判断第一调频能力是否满足调频指令的要求)可以包括子步骤S231至S232。
在S231中,计算多个风力发电机组在未投入第一储能电池条件下的 第一调频能力。
为了计算简单且说理清楚,在下面的各个实施例中仅示意性地列举为风力发电场只包括3台风力发电机组(风力发电机组201、风力发电机组202、风力发电机组203)时的各种调频能力的计算方式。
例如,分别计算出风力发电机组201、风力发电机组202、风力发电机组203在未投入第一储能电池条件下的调频能力N1、N2和N3。
在S232中,将计算出的多个风力发电机组在未投入第一储能电池条件下的第一调频能力进行多种组合,计算得到多个第一组合调频能力。
例如,将风力发电机组201和风力发电机组202在未投入第一储能电池条件下的调频能力进行组合,得到第1个调频能力为N1+N2的第一组合调频能力。
又如,将风力发电机组201和风力发电机组203在未投入第一储能电池条件下的调频能力进行组合,得到第2个调频能力为N1+N3的第一组合调频能力。
又如,将风力发电机组202和风力发电机组203在未投入第一储能电池的条件下的调频能力进行组合,得到第3个调频能力为N2+N3的第一组合调频能力。
再如,将风力发电机组201、风力发电机组202和风力发电机组203在未投入第一储能电池条件下的调频能力进行组合,得到第4个调频能力为N1+N2+N3的第一组合调频能力。
具体地,在未投入第一储能电池时,第一组合调频能力的数据表可以如下面的表(1)所示:
Figure PCTCN2017090542-appb-000001
Figure PCTCN2017090542-appb-000002
表(1)
其中,上表中的具体数值的单位等信息省略。可以理解,风力发电机组的数量可以不做限制,计算方式也可以灵活变化。例如,多种调频能力值可以根据实际需要进行不同的组合。
由此,通过基于当前风速信息计算风力发电机组在未投入电池条件下的调频能力,可以使得风力发电场在风速变化的异常情况下,利用风力发电机组自身的调频能力输出持续且稳定的电压,而不需要启动电池就可以圆满完成调频任务。这不仅可以提高调频的可靠性,还可以节约电池能源。
作为图5所示的实施例的第一个变形,可以在图5所示的实施例的基础上增加以下步骤:
S250,当第一调频能力不满足调频指令的要求时,进一步计算风力发电机组在投入第一储能电池条件下的第二调频能力,并判断第二调频能力是否满足调频指令的要求。该步骤的具体实现方式将在下文进行详细描述。
S260,当第二调频能力满足调频指令的要求时,向风力发电机组发送调频指令,并启动第一储能电池。
在图5所示的实施例中,第一储能电池可以是风力发电机组直流母线侧200KW的储能电池,储能电池的具体配置方式可以根据实际需要进行灵活调整。同理,可以根据大于等于调频指令的要求,并且尽量接近调频指令的要求的原则来选择风力发电机组的调频能力,以使得既可以满足调频指令的要求也不浪费电能。
由此可见,通过在风力发电机组无法满足调频要求时及时启动第一储能电池来辅助调频,可以使得风力发电场在风力小的情况下也能够输出持续、稳定的电压。
在一些实施例中,步骤S250(当第一调频能力不能满足调频指令的要 求时,进一步计算风力发电机组在投入第一储能电池条件下的第二调频能力,并判断第二调频能力是否满足调频指令的要求)可以包括子步骤S251至S252。
在S251中,计算多个风力发电机组在投入第一储能电池条件下的第二调频能力。
例如,分别计算出风力发电机组201、风力发电机组202、风力发电机组203在投入第一储能电池条件下的调频能力M1、M2和M3。
在S252中,将所计算出的多个风力发电机组在投入第一储能电池条件下的第二调频能力进行多种组合,计算得到多个第二组合调频能力。
同理,在进行组合后,在投入第一储能电池时,第二组合调频能力的数据表可以如下面的表(2)所示:
Figure PCTCN2017090542-appb-000003
表(2)
作为图5所示的实施例的第二个变形,可以在上述第一个变形的实施例的基础上增加以下步骤:
S270,当第二调频能力不满足调频指令的要求时,除了启动第一储能电池以外进一步启动第二储能电池,并向风力发电机组发送调频指令。
由此,可以在风力发电场的整体风力较小的极端情况下,通过及时启 动储能电池来辅助调频,使得风力发电场在该极端情况下也能够输出持续、稳定的电压。
在一些实施例中,第一储能电池可以是风力发电机组直流母线侧200KW的储能电池,第二储能电池可以是风力发电场内的大型储能电池。储能电池的具体配置方式可以根据实际需要进行灵活调整,此方面内容不做限制。
上述图5所示的实施例及其变形实施例主要说明了电压调频策略。具体地,电压调频策略可以包括以下常见的三种情况:
在风大的情况下,各个风力发电机组(不包含单台机直流母线侧200KW的储能电池)的扭矩能支撑各个风力发电机组自身的调频任务。此时,风力发电机组的变流器不输出200KW的储能电池的电能,即各个风力发电机组的储能电池不投入调频工作。
在风小的情况下,各个风力发电机组(不包含单台机直流母线侧200KW的储能电池)的扭矩不能支撑各个风力发电机组自身的调频任务,在风力发电机组的直流母线投入200KW储能电池,作为风力发电机组的后备能量支撑调频扭矩。即,各个风力发电机组的储能电池投入调频工作。
在整个风场的风都小、无法完成调频的能量支撑时,可以通过ARM(微处理器)计算单元使得风力发电场内的大型储能电池组进行投切,支撑电力系统调频任务。
可以理解,也可以根据实际情况,使用对风力发电机组进行组合的多种调频方式。例如,将投入储能电池的风力发电机组与未投入储能电池的风力发电机组进行不同方式的组合,为了描述简洁,此方面内容不再赘述。
图6是根据本发明实施例的用于风力发电场的测控方法的另一流程。如图6所示,该测控方法包括:
在S310中,接收功率需求指令,功率需求指令包括有功功率需求指令和无功功率需求指令。
在S320中,基于当前风速信息,计算各个风力发电机组的做功能力值。
在S330中,基于功率需求指令和各个风力发电机组的做功能力值, 计算各个风力发电机组需要完成的有功功率和/或无功功率,并向各个风力发电机组发出按需要完成的有功功率和/或无功功率进行做功的指示。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本实施例主要说明了电压稳定策略。具体地,电压稳定策略的实现方式可以如下所示。
首先,接收风力发电场内的参数信息(电压、电流、有功功率、无功功率、功率因数、频率、告警信息和错误信息等)。
接着,接收的风力发电场内的参数信息由ARM模块进行运算处理。
然后,对各个风力发电机组进行有功功率和无功功率的分配,再对风力发电场内的所有风力发电机组下达有功指令或者无功指令,从而完成电网调度服务器下发的风力发电场的功率需求任务。
更具体地,可以参见上述调频策略为功率需求设计多个表格,以备选取较佳的做功方案。为了描述简洁,此方面内容不再赘述。
由此可知,在接收到功率需求信息后,通过基于当前风速信息精确计算各个风力发电机组的做功能力,不仅可以实现精确做功,而且在异常情况下也可以从容、精确、可靠地完成做功任务,从而提高了风力发电场的电能质量。
作为图6所示的实施例的一个变形,可以将图6所示的实施例与图5所示的实施例进行结合。例如,先执行调频操作,再执行做功操作;或者先执行做功操作,再执行调频操作等,此方面内容不做限制。
作为图5或者图6所示的实施例的一个变形,可以在图2或者图3所示的实施例的基础上增加对各个风力发电机组所发的交流电的频率进行测量的操作。
图7是根据本发明实施例的对交流电的频率进行测量的过程的流程图。如图7所示,对交流电的频率进行测量的过程包括:
在S401中,连续采集风力发电机组做功所产生的交流电的波形中的多个向量的虚部值。
图8是上述交流电的波形示意图。
如图8所示,采集的7个向量分别是向量A、B、C、D、E、F和G。其中,例如,A的虚部值是220,B的虚部值是5,C的虚部值是0,D的虚部值是-5,E的虚部值是-6,F的虚部值是0,G的虚部值是6。
在S402中,将多个向量的虚部值分别与零值比较,获取至少两组比较值,至少两组比较值均包括虚部值大于零值和小于零值的两个相邻向量。
具体地,两组比较值可以为(B,D)和(E,F)的比较值。
在S403中,获取两组比较值中的至少四个向量所对应的时间。
具体地,四个向量所对应的时间可以是B的时间T1,D的时间T2,E的时间T3和G的时间T4。
在S404中,基于至少四个向量所对应的时间,计算交流电至少两次过零时间。
具体地,两次过零时间可以是C和F这两点的过零时间。
在S405中,基于交流电至少两次过零时间,计算交流电的频率。
本实施例可以通过DSP计算单元快速采集信号,实现对电压、电流、功率、频率的精确计算。具体地,电压、电流采集方法可以直接采集二次侧互感器的方法来快速采集并计算。每20ms可以更新一次采集数据,以保证整个系统的数据的及时性,确保控制的精确度与实时性。
采用软件测频方法,频率精度可以达到0.01Hz,在风力发电场参与二次调频时能保证风力发电场的调频任务的精度。由此可知,通过软件测频方法可以消除谐波、直流分量的影响,计算的频率值离散小、精度高,从而可以保证风力发电场的电能质量。
上述各实施例的测控方法也可以应用于虚拟同步发电机。由此,通过上述的设计,可以使风力发电场整场的发电情况与传统火力发电机组靠拢,达到国家对新能源并网的要求,在新能源占比不断增加的情况下,使电网也能稳定运行。
在又一个实施例中,处理器板卡可以用于对风力发电机组所做功产生的交流电的频率进行测量,具体的测量过程包括:连续采集风力发电机组做功后所产生的交流电的波形中的多个向量的虚部值;将多个向量的虚部 值分别与零值比较,获取至少两组比较值,至少两组比较值均包括:虚部值大于零值和小于零值的两个相邻向量;获取两组比较值中的至少四个向量所对应的时间;基于至少四个向量所对应的时间,计算交流电至少两次过零时间;基于交流电至少两次过零时间,计算交流电的频率。
需要说明的是,上述各实施例的测控装置可作为上述各实施例的用于测控方法中的执行主体,可以实现各个测控方法中的相应处理。本领域的技术人员可以清楚地了解到,上述描述的装置、器件等硬件的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
上述各实施例的测控装置也可以应用于虚拟同步发电机。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
另外,在本发明各个实施例中的硬件(例如各种计算器)可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (18)

  1. 一种用于风力发电场的测控装置,所述风力发电场包括风力发电机组、设置在所述风力发电机组直流母线侧的第一储能电池、设置在所述风力发电场内的第二储能电池和无功补偿装置,其特征在于,所述测控装置包括:
    第一通讯接口、第二通讯接口和处理器板卡,其中,
    所述第一通讯接口与电网调度服务器连接,所述第二通讯接口与风力发电机组连接,所述处理器板卡分别与所述第一通讯接口和所述第二通讯接口连接;
    所述处理器板卡通过所述第一通讯接口接收所述电网调度服务器下发的调频指令,通过所述第二通讯接口接收所述风力发电机组的运行信息,并基于所述风力发电机组的运行信息,计算所述风力发电机组在未投入第一储能电池条件下的第一调频能力,当所述风力发电机组的第一调频能力满足所述调频指令时,为所述风力发电机组发送所述调频指令,并不启动所述第一储能电池。
  2. 根据权利要求1所述的测控装置,其特征在于,
    当所述第一调频能力不能满足所述调频指令要求时,所述处理器板卡还进一步计算投入所述第一储能电池条件下的风力发电机组的第二调频能力,并判断所述第二调频能力是否能满足所述调频指令的要求;
    当所述第二调频能力满足所述调频指令的要求时,所述处理器板卡还向所述风力发电机组发送所述调频指令,并且启动所述第一储能电池。
  3. 根据权利要求2所述的测控装置,其特征在于,
    当所述第二调频能力不满足所述调频指令的要求时,所述处理器板卡启动所述第一储能电池和所述第二储能电池,并向所述风力发电机组发送所述调频指令。
  4. 根据权利要求1所述的测控装置,其特征在于,还包括:
    所述处理器板卡还通过所述第一通讯接口接收所述电网调度服务器下发的有功功率需求指令,并在所述第一调频能力满足所述有功功率需求指令的要求时向所述风力发电机组发送所述有功功率需求指令。
  5. 根据权利要求4所述的测控装置,其特征在于,还包括:
    分别与所述处理器板卡和所述无功补偿装置连接的第三通讯接口,其中,
    所述处理器板卡还通过所述第一通讯接口接收所述电网调度服务器下发的无功功率需求指令,通过所述第三通讯接口获取所述无功补偿装置的运行信息,基于所述无功补偿装置的运行信息计算所述无功补偿装置的能力信息,并在所述无功补偿装置的能力信息满足所述无功功率需求指令的要求时向所述无功补偿装置发送所述无功功率需求指令。
  6. 根据权利要求5所述的测控装置,其特征在于,还包括:
    与所述处理器板卡连接的交流模拟量板卡,所述交流模拟量板卡采集所述风力发电场的主变压器高压侧和主变压器低压侧的电压和电流信息,并将所采集的电压和电流信息发送给所述处理器板卡。
  7. 根据权利要求6所述的测控装置,其特征在于,还包括:
    与所述处理器板卡连接的直流模拟量板卡,所述直流模拟量板卡采集所述风力发电场内的设备的直流模拟量信息,并将所采集的直流模拟量信息发送给所述处理器板卡。
  8. 根据权利要求7所述的测控装置,其特征在于,还包括:
    与所述处理器板卡连接的开入板卡,所述开入板卡采集所述风力发电场内的设备的开关状态信息,并将所采集的开关状态信息发送给所述处理器板卡。
  9. 根据权利要求8所述的测控装置,其特征在于,还包括:
    与所述处理器板卡连接的开出板卡,所述开出板卡接收所述处理器板卡的开出信号,并将所述开出信息发送给所述风力发电场内的设备。
  10. 根据权利要求9所述的测控装置,其特征在于,所述处理器板卡包括ARM模块和DSP模块,其中,所述ARM模块分别与所述第一通讯接口、所述第二通讯接口和所述DSP模块连接,所述DSP模块分别与所述第三通讯接口、所述交流模拟量板卡、所述直流模拟量板卡、所述开入板卡和所述开出板卡连接,所述ARM模块和所述DSP模块之间采用通信总线连接;
    所述ARM模块与所述电网调度服务器、所述风力发电机组、所述无功补偿装置和所述DSP模块进行信息交互,发送所述调频指令、所述有功功率需求指令、所述无功功率需求指令、以及启动所述第一储能电池和所述第二储能电池的指令;
    所述DSP模块基于所述调频指令、所述有功功率需求指令、所述无功功率需求指令、以及启动所述第一储能电池和所述第二储能电池的指令,向所述风力发电机组、所述无功补偿装置和所述第一储能电池和所述第二储能电池发出开出命令。
  11. 一种用于风力发电机组的测控系统,其特征在于,包括:
    根据权利要求1-10中任意一项所述的用于风力发电场的测控装置。
  12. 根据权利要求11所述的系统,其特征在于,还包括以下各项中的至少一种:
    风力发电机组、设置在所述风力发电机组直流母线侧的第一储能电池、设置在所述风力发电场内的第二储能电池和无功补偿装置。
  13. 一种用于风力发电场的测控方法,所述风力发电场包括风力发电机组、设置在所述风力发电机组直流母线侧的第一储能电池、设置在所述风 力发电场内的第二储能电池和无功补偿装置,其特征在于,所述方法包括以下步骤:
    接收调频指令;
    接收风力发电场的当前风速信息;
    基于所述当前风速信息,计算未投入所述第一储能电池的条件下的所述风力发电机组的第一调频能力,并判断所述第一调频能力是否能满足所述调频指令的要求;
    当所述第一调频能力满足所述调频指令的要求时,向所述风力发电机组发送所述调频指令,并且不启动所述第一储能电池。
  14. 根据权利要求13所述的方法,其特征在于,还包括以下步骤:
    当所述第一调频能力不能满足所述调频指令要求时,进一步计算投入所述第一储能电池条件下的所述风力发电机组的第二调频能力,并判断所述第二调频能力是否能满足所述调频指令的要求;
    当所述第二调频能力满足所述调频指令的要求时,向所述风力发电机组发送所述调频指令,并且启动所述第一储能电池。
  15. 根据权利要求14所述的方法,其特征在于,还包括以下步骤:
    当所述第二调频能力不满足所述调频指令的要求时,启动所述第一储能电池和所述第二储能电池,并向所述风力发电机组发送所述调频指令。
  16. 根据权利要求13-15中任意一项所述的方法,其特征在于,还包括以下步骤:
    接收功率需求指令,所述功率需求指令包括有功功率需求指令和无功功率需求指令;
    基于所述当前风速信息,计算各个风力发电机组的做功能力值;
    基于所述功率需求指令和各个风力发电机组的做功能力值,计算各个风力发电机组需要完成的有功功率和/或无功功率,并向各个风力发电机组发出按所述需要完成的有功功率和/或无功功率进行做功的指示。
  17. 根据权利要求16所述的方法,其特征在于,还包括以下步骤:
    连续采集所述风力发电机组做功所产生的交流电的波形中的多个向量的虚部值;
    将所述多个向量的虚部值分别与零值比较,获取至少两组比较值,所述至少两组比较值均包括虚部值大于零值和小于零值的两个相邻向量;
    获取所述两组比较值中的至少四个向量所对应的时间;
    基于所述至少四个向量所对应的时间,计算所述交流电至少两次过零时间;
    基于所述交流电至少两次过零时间,计算所述交流电的频率。
  18. 根据权利要求17所述的方法,其特征在于,所述方法应用于虚拟同步发电机。
PCT/CN2017/090542 2016-12-26 2017-06-28 用于风力发电场的测控装置、系统和方法 WO2018120694A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187015934A KR102158419B1 (ko) 2016-12-26 2017-06-28 풍력 발전소용 시험 및 제어 장치, 시스템 및 방법
EP17868489.0A EP3376629A4 (en) 2016-12-26 2017-06-28 MEASURING AND CONTROL DEVICE, SYSTEM AND METHOD FOR A WIND FARM
US15/778,916 US11581731B2 (en) 2016-12-26 2017-06-28 Test and control apparatus, system and method for wind farm
AU2017352550A AU2017352550C1 (en) 2016-12-26 2017-06-28 Test and control apparatus, system and method for wind farm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611217583.9A CN108242819B (zh) 2016-12-26 2016-12-26 用于风力发电场的测控装置、系统和方法
CN201611217583.9 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018120694A1 true WO2018120694A1 (zh) 2018-07-05

Family

ID=62705032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090542 WO2018120694A1 (zh) 2016-12-26 2017-06-28 用于风力发电场的测控装置、系统和方法

Country Status (6)

Country Link
US (1) US11581731B2 (zh)
EP (1) EP3376629A4 (zh)
KR (1) KR102158419B1 (zh)
CN (1) CN108242819B (zh)
AU (1) AU2017352550C1 (zh)
WO (1) WO2018120694A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145358A (zh) * 2020-10-30 2020-12-29 上海电气风电集团股份有限公司 风力发电机组及其风玫瑰图的校准方法
CN112968480A (zh) * 2021-03-31 2021-06-15 国网山东省电力公司电力科学研究院 基于机组负荷响应能力的风火电联合优化调度方法及系统
CN113937790A (zh) * 2021-10-12 2022-01-14 云南电网有限责任公司电力科学研究院 一种用于电化学储能系统一次调频与二次调频的配合方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494768A (zh) * 2018-12-20 2019-03-19 国网青海省电力公司电力科学研究院 集中式光伏电站及其参与电网调频的控制方法、控制系统
CN110286605B (zh) * 2019-06-17 2022-04-05 东方电气风电股份有限公司 一种风电场实时测试与评估系统及其方法
KR20220009526A (ko) 2020-07-15 2022-01-25 윤상훈 개인 응급처치가 가능한 복합 응급 키트
KR20220009129A (ko) 2020-07-15 2022-01-24 정용준 미세먼지 환경에서 원활한 활동이 가능한 스마트 마스크
KR20220009169A (ko) 2020-07-15 2022-01-24 강성구 소비자의 신체 사이즈와 선호도를 고려한 의류 사이즈 추천 시스템
CN112821469B (zh) * 2021-03-09 2022-10-25 中国南方电网有限责任公司 基于调频消纳域分析的日前发电调度优化方法及装置
CN113328434B (zh) * 2021-05-17 2022-05-10 浙江运达风电股份有限公司 一种满足风电场支撑要求的场级协同控制系统及方法
CN114050586A (zh) * 2021-11-22 2022-02-15 国网冀北电力有限公司电力科学研究院 柔直新能源场站功率控制性能测试方法及装置
CN114583767B (zh) * 2022-03-10 2023-03-17 中国电力科学研究院有限公司 一种数据驱动的风电场调频响应特性建模方法及系统
CN116699298B (zh) * 2023-08-09 2023-10-20 西安高压电器研究院股份有限公司 一种光伏储能复合电站并网测试装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794997A (zh) * 2010-04-02 2010-08-04 中国海洋石油总公司 一种兆瓦级风电蓄电池组合独立电源系统
CN102792581A (zh) * 2011-03-04 2012-11-21 三菱重工业株式会社 风力发电系统及风力发电装置
US20120306202A1 (en) * 2011-05-30 2012-12-06 Hitachi Engineering & Services Co., Ltd. Wind Power Generation System and Method for Additional Installation of Wind Power Generator Therein
CN205139222U (zh) * 2015-10-29 2016-04-06 山东泰开自动化有限公司 一种智能化新能源测控装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608937B1 (en) * 2008-09-30 2009-10-27 General Electric Company Power generation system and method for storing electrical energy
WO2012171532A2 (en) 2011-06-14 2012-12-20 Vestas Wind Systems A/S Selective droop response control for a wind turbine power plant
WO2013013174A2 (en) * 2011-07-20 2013-01-24 Inventus Holdings, Llc Dispatchable renewable energy generation, control and storage facility
CN102510092A (zh) * 2011-12-19 2012-06-20 国网电力科学研究院 一种风电变流器分布式实时控制单元
CN202435050U (zh) * 2012-01-16 2012-09-12 华锐风电科技(集团)股份有限公司 风电场的分布式储能系统
WO2014071948A1 (en) 2012-09-17 2014-05-15 Vestas Wind Systems A/S A method of determining individual set points in a power plant controller, and a power plant controller
GB2510804B (en) * 2012-12-04 2016-06-22 Moixa Energy Holdings Ltd Distributed smart battery systems, methods and devices for electricity optimization
CN103094926B (zh) * 2013-01-09 2014-12-10 清华大学 一种用于微电网群的多元复合储能容量配置方法
JP2015080378A (ja) * 2013-10-18 2015-04-23 三菱重工業株式会社 電力安定化装置及びそれを備えた発電システム並びに電力安定化方法
CN104333037B (zh) * 2014-11-02 2016-08-24 中国科学院电工研究所 风储集群参与电力系统调频调压的协同控制方法
CN104600742B (zh) * 2014-12-25 2017-05-17 华中科技大学 一种利用储能装置补偿风电场虚拟惯量的方法
US9991716B2 (en) * 2015-02-26 2018-06-05 General Electric Company Delivery of multiple grid services with energy storage system
CN106159980B (zh) * 2015-04-14 2020-08-04 通用电气公司 发电系统和能量管理方法
CN106300407B (zh) * 2015-05-26 2020-03-17 通用电气公司 发电系统
US10283964B2 (en) * 2015-07-01 2019-05-07 General Electric Company Predictive control for energy storage on a renewable energy system
US9960637B2 (en) * 2015-07-04 2018-05-01 Sunverge Energy, Inc. Renewable energy integrated storage and generation systems, apparatus, and methods with cloud distributed energy management services
US9991714B2 (en) * 2015-08-20 2018-06-05 General Electric Company Opposing contactors for energy storage device isolation
US20170060113A1 (en) * 2015-08-24 2017-03-02 Robert A. Kaucic Controlling a dispatch operation of an energy storage system
US11384733B2 (en) * 2015-12-17 2022-07-12 Vestas Wind Systems A/S Modulating wind power plant output using different frequency modulation components for damping grid oscillations
US20170298904A1 (en) * 2016-04-18 2017-10-19 Siemens Aktiengesellschaft Method for responding to a grid event
US10141744B2 (en) * 2016-05-17 2018-11-27 General Electric Company Cable arrangement of an energy storage system
CN108054770B (zh) * 2017-12-31 2019-04-23 北京金风科创风电设备有限公司 光伏发电厂及其一次调频控制方法
CN108336761B (zh) * 2018-04-03 2019-04-02 北京金风科创风电设备有限公司 风电场的功率控制方法、装置、系统和计算机设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794997A (zh) * 2010-04-02 2010-08-04 中国海洋石油总公司 一种兆瓦级风电蓄电池组合独立电源系统
CN102792581A (zh) * 2011-03-04 2012-11-21 三菱重工业株式会社 风力发电系统及风力发电装置
US20120306202A1 (en) * 2011-05-30 2012-12-06 Hitachi Engineering & Services Co., Ltd. Wind Power Generation System and Method for Additional Installation of Wind Power Generator Therein
CN205139222U (zh) * 2015-10-29 2016-04-06 山东泰开自动化有限公司 一种智能化新能源测控装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376629A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145358A (zh) * 2020-10-30 2020-12-29 上海电气风电集团股份有限公司 风力发电机组及其风玫瑰图的校准方法
CN112145358B (zh) * 2020-10-30 2021-07-23 上海电气风电集团股份有限公司 风力发电机组及其风向玫瑰图的校准方法
CN112968480A (zh) * 2021-03-31 2021-06-15 国网山东省电力公司电力科学研究院 基于机组负荷响应能力的风火电联合优化调度方法及系统
CN112968480B (zh) * 2021-03-31 2023-08-08 国网山东省电力公司电力科学研究院 基于机组负荷响应能力的风火电联合优化调度方法及系统
CN113937790A (zh) * 2021-10-12 2022-01-14 云南电网有限责任公司电力科学研究院 一种用于电化学储能系统一次调频与二次调频的配合方法
CN113937790B (zh) * 2021-10-12 2024-02-06 云南电网有限责任公司电力科学研究院 一种用于电化学储能系统一次调频与二次调频的配合方法

Also Published As

Publication number Publication date
CN108242819A (zh) 2018-07-03
CN108242819B (zh) 2021-01-22
KR102158419B1 (ko) 2020-09-22
US11581731B2 (en) 2023-02-14
AU2017352550B2 (en) 2019-11-14
KR20180090805A (ko) 2018-08-13
AU2017352550A1 (en) 2018-07-12
AU2017352550C1 (en) 2020-09-24
EP3376629A4 (en) 2019-03-20
US20210079888A1 (en) 2021-03-18
EP3376629A1 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
WO2018120694A1 (zh) 用于风力发电场的测控装置、系统和方法
WO2018014450A1 (zh) 基于rt-lab的真实微电网运行动态仿真测试平台
Kaur et al. A review on microgrid central controller
CN103516051B (zh) 风电场集中监控系统平台
WO2021068320A1 (zh) 一种用于储能调频系统的信号测量方法
WO2013040837A1 (zh) 微电网系统计算机监控方法
CN106410966B (zh) 一种应用于多能互补系统的能量管理装置
CN104578187A (zh) 一种多端柔性直流输电系统级协调控制装置
CN201523238U (zh) 微网电能质量综合控制系统
CN104852407A (zh) 一种交直流混合微电网中ic的双向下垂控制方法
CN104065104A (zh) 一种基于三相独立调节的微电网快速并网方法
CN218482665U (zh) 一种用于大容量储能系统的冗余协调控制装置
Tur et al. A review of active power and frequency control in smart grid
CN104934966A (zh) 一种基于云的微电网广域协调控制系统
Chen et al. Distributed cooperative control for economic dispatch and SOC balance in DC microgrids with vanadium redox batteries
Mingsheng et al. Hierarchical control strategy for microgrid
Bani-Ahmed et al. Design and development of a true decentralized control architecture for microgrid
CN103595043A (zh) 一种基于广域量测的电力系统动态稳定性评估方法
Cha et al. Multi-agent based controller for islanding operation of active distribution networks with distributed generation (DG)
CN114123237A (zh) 云边协同的火电及新能源调频、惯量在线监测系统及方法
Li et al. Real-time control and monitoring technologies used for multi-type energy storage laboratory in Zhangbei
Ruifeng et al. Application analysis and prospect of cloud platform in operation control of new energy power system
Liu et al. Information modeling and implementation of monitoring and control system in large scale battery energy storage system
Zare et al. An improved priority-based load shedding scheme in hybrid ac/dc microgrids using micro-pmudata
Yuqiang et al. Operation control strategy of improved master-slave control for microgrid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187015934

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017352550

Country of ref document: AU

Date of ref document: 20170628

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE