CN113328434B - 一种满足风电场支撑要求的场级协同控制系统及方法 - Google Patents

一种满足风电场支撑要求的场级协同控制系统及方法 Download PDF

Info

Publication number
CN113328434B
CN113328434B CN202110534720.6A CN202110534720A CN113328434B CN 113328434 B CN113328434 B CN 113328434B CN 202110534720 A CN202110534720 A CN 202110534720A CN 113328434 B CN113328434 B CN 113328434B
Authority
CN
China
Prior art keywords
frequency
voltage
grid
less
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110534720.6A
Other languages
English (en)
Other versions
CN113328434A (zh
Inventor
朱长江
孙勇
许国东
朱博文
吴海列
陈凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Windey Co Ltd
Original Assignee
Zhejiang Windey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Windey Co Ltd filed Critical Zhejiang Windey Co Ltd
Priority to CN202110534720.6A priority Critical patent/CN113328434B/zh
Publication of CN113328434A publication Critical patent/CN113328434A/zh
Application granted granted Critical
Publication of CN113328434B publication Critical patent/CN113328434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种满足风电场支撑要求的场级协同控制系统及方法,包括依次相连的电网快速检测模块、场级协同控制器和通信连接装置,所述通信连接装置分别经过SCADA系统、能量管理系统、调频调压系统、数据转发系统与风电机组相连。上述技术方案根据电网实时状态,协同控制调节SCADA系统、能量管理系统、调频调压系统与数据转发系统与风电机组控制系统通讯速率,不会造成整个风电场环网通讯量的增加,可保障通讯可靠性,在电网需要快速主动支撑时,又能快速提供响应。

Description

一种满足风电场支撑要求的场级协同控制系统及方法
技术领域
本发明涉及风电场控制技术领域,尤其涉及一种满足风电场支撑要求的场级协同控制系统及方法。
背景技术
随着风电在电力系统占比逐渐提高,以传统电源为主的常规电网向高比例新能源电网的转型,电网安全稳定面临诸多新挑战。大规模新能源集中接入及特高压直流输电的引入,使电网运行方式发生深刻变化,对电网的安全运行和新能源的高效消纳带来显著挑战。为确保电网安全,提升新能源并网安全运行水平,电网公司已要求新能源应具备频率响应等主动支撑技术,且指标要求越来越高。目前,以东北电网为代表的电网公司已要求风电场整场一次调频调节时间不大于5s。
为了满足电网公司指标要求,风电场调频调压系统纷纷采用实时性更好的操作系统,调节更快的先进算法以及更快的通讯方法等。但是,在正常情况下,电网系统频率或电压均在额定值附近,采用该系统及控制方法将会造成平时整个风电场环网通讯量激增,势必会影响到风电场SCADA系统、能量管理系统、调频调压系统、数据转发等其它系统与风电机组的正常通讯,甚至无法正常使用;另外,大量的请求数据也将会增加风电机组控制系统平时处理负担,势必会导致风电机组控制系统不能及时响应风电场调频调压系统等指令,从而影响到风电场调频调压系统的调节时间,甚至在特殊情况下会导致风电机组控制系统死机,影响到整个风电场安全、稳定运行。
中国专利文献CN107671414A公开了一种“基于5G的端云协同风电运维诊断系统”。包括:数据采集网关、基于5G的边缘计算网络、风场控制中心系统、前置数据采集服务、运维诊断云平台。上述技术方案未考虑在调节过程中造成平时整个风电场环网通讯量激增,从而影响整个风电场安全、稳定运行。
发明内容
本发明主要解决原有的技术方案难以平衡好电网快速主动支撑所需的快速性与整个风电场通讯可靠性以及控制系统负担的技术问题,提供一种满足风电场支撑要求的场级协同控制系统及方法,根据电网实时状态,协同控制调节SCADA系统、能量管理系统、调频调压系统与数据转发系统与风电机组控制系统通讯速率,不会造成整个风电场环网通讯量的增加,可保障通讯可靠性,在电网需要快速主动支撑时,又能快速提供响应。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种满足风电场支撑要求的场级协同控制方法,包括以下步骤S1在场级协同控制器中分别内置一组与一次调频响应与通信速率协调控制有关的频率控制参数(f0,f1,f2,f3,f4,f5,f6)和一组与无功调压响应与通信速率协调控制有关的电压控制参数(u0,u 1,u2,u 3,u 4,u 5,u 6);
S2场级协同控制器实时读取电网系统频率与电压,并计算电网系统频率加速度与电网电压加速度;
S3设定计算条件1和计算条件2,若条件1或条件2任一条件满足,则进入S4,否则不做处理;
S4场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的较低的通讯速率V5、V6、V7与风电机组控制系统通讯,调频调压系统将以预设的较高的通信速率V8与风电机组通讯,其中,通信速率V5、V6、V7分别小于V1、V2、V3,通信速率V8大于V4
S5设定计算条件3和计算条件4,若条件3或条件4任一条件满足,则进入S6,否则不做处理;
S6场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的低的通讯速率V9、V10、V11与风电机组控制系统通讯,调频调压系统将以预设的高的通信速率V12与风电机组通讯,其中,通信速率V9、V10、V11分别小于V5、V6、V7,通信速率V12大于V8
S7设定计算条件5和计算条件6,若条件5或条件6任一条件满足,则进入S8,否则不做处理;
S8场级协同控制器将控制调节SCADA系统、能量管理系统、数据转发系统与调频调压系统均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯;S9确认完成后,进入S2重新循环。
作为优选,所述的步骤S1中,f0<f1<f2<f3<f4<f5<f6,f0和f6分别对应风电机组保护停机频率下限与上限阈值、f1和f5分别对应一次调频频率死区下限与上限阈值、f2和f4分别对应通信速率协调控制频率下限与上限阈值、f3为电网额定频率。
作为优选,所述的步骤S1中,u0<u 1<u 2<u 3<u 4<u 5<u 6,u 0和u 6分别对应风电机组保护停机电压下限与上限阈值、u 1和u 5分别对应无功调压电压死区下限与上限阈值、u2和u4分别对应通信速率协调控制电压下限与上限阈值、u3为电网额定电压。
作为优选,所述的步骤S2当电网系统频率大于f2且小于f4,且电网电压大于u2且小于u4时,则不做处理,即SCADA系统、能量管理系统、数据转发系统与调频调压系统均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯。
作为优选,所述的步骤S3中计算条件1:电网系统频率大于f4,且频率加速度大于0,或电网系统频率小于f2且频率加速度小于0;计算条件2:电网电压大于u4,且电网电压加速度大于0,或电网电压小于u2且电网电压加速度小于0。
作为优选,所述的步骤S5中计算条件3:电网系统频率大于f5或电网系统频率小于f1;计算条件4:电网电压大于u5,或电网电压小于u1
作为优选,所述的步骤S7中计算条件5:电网系统频率大于f6或电网系统频率小于f0;计算条件6:电网电压大于u6,或电网电压小于u0
作为优选,所述的f2和f4的值分别取0.9*f1和0.9*f5的阈值,u2和u4的值分别取0.9*u1和0.9*u5的阈值。
作为优选,所述的步骤S2、步骤S4和步骤S6中通讯速率V1、V2、V3、V4、V5、V6、V7、V8、V9、V10、V11、V12的关系如下:V12=2*V8=4*V4,V1=2*V5=4*V9,V2=2*V6=4*V10,V3=2*V7=4*V11
一种满足风电场支撑要求的场级协同控制系统,包括依次相连的电网快速检测模块、场级协同控制器和通信连接装置,所述通信连接装置分别经过SCADA系统、能量管理系统、调频调压系统、数据转发系统与风电机组相连。电网快速检测模块用于实时采集风电场母线上的电压与电流,计算出当前有功功率、无功功率、电网系统频率与电压等参数。场级协同控制器用于运行协同控制策略,并根据从电网快速检测模块读取到的电网系统频率与电压以及电网主动支撑要求,协同调节SCADA系统、能量管理系统、调频调压系统与数据转发系统与风电机组通讯速率。SCADA系统为风电场远程监控系统,用于监控风电机组运行,所述的能量管理系统是风电场有功功率、无功功率调节与分配控制系统,所述的调频调压系统为风电场一次调频与无功调压控制系统,所述的数据转发系统用于为第三方系统或平台转发风电场相关数据。
本发明的有益效果是:
1.风电场可以及时、快速、准确地提供电网主动支撑,提高电网安全。
2.保障风电场环网通讯量以及风电机组控制系统负担保持在合理水平,提高了整个风电场通讯可靠性与稳定性。
3.所述的控制系统及方法科学、可靠,可以应用于实际工程领域,易于推广。
附图说明
图1是本发明的一种原理连接结构图。
图2是本发明的一种一次调频曲线以及与频率相关阈值图。
图3是本发明的一种无功调压曲线以及与电压相关阈值图。
图中1电网快速检测模块,2场级协同控制器,3通讯连接装置,4SCADA系统,5能量管理系统,6调频调压系统,7数据转发系统,8风电机组。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:本实施例的一种满足风电场支撑要求的场级协同控制系统,如图1所示,包括依次相连的电网快速检测模块(1)、场级协同控制器(2)和通信连接装置(3),所述通信连接装置(3)分别经过SCADA系统(4)、能量管理系统(5)、调频调压系统(6)、数据转发系统(7)与风电机组(8)相连。
电网快速检测模块,用于实时采集风电场母线上的电压与电流,计算出当前有功功率、无功功率、电网系统频率与电压等参数。场级协同控制器,用于运行协同控制策略,并根据从电网快速检测模块读取到的电网系统频率与电压以及电网主动支撑要求,协同调节SCADA系统、能量管理系统、调频调压系统与数据转发系统与风电机组通讯速率。SCADA系统为风电场远程监控系统,用于监控风电机组运行;能量管理系统是风电场有功功率、无功功率调节与分配控制系统;调频调压系统为风电场一次调频与无功调压控制系统;数据转发系统是为第三方系统或平台转发风电场相关数据。
一种满足风电场支撑要求的场级协同控制方法,包括以下步骤:
S1在场级协同控制器2中分别内置一组与一次调频响应与通信速率协调控制有关的频率控制参数(f0,f1,f2,f3,f4,f5,f6)和一组与无功调压响应与通信速率协调控制有关的电压控制参数(u0,u 1,u 2,u 3,u 4,u 5,u 6);f0<f1<f2<f3<f4<f5<f6,,f0和f6分别对应电网公司规定的机组保护停机频率下限与上限阈值、f1和f5分别对应电网公司规定的一次调频频率死区下限与上限阈值、f2和f4分别对应通信速率协调控制频率下限与上限阈值,f3为电网额定频率,f2和f4的值分别取0.9*f1和0.9*f5;。u0<u 1<u 2<u 3<u 4<u 5<u 6,,u 0和u 6分别对应机组保护停机电压下限与上限阈值、u 1和u 5分别对应无功调压电压死区下限与上限阈值、u2和u4分别对应通信速率协调控制电压下限与上限阈值、u3为电网额定电压,u2和u4的值分别取0.9*u1和0.9*u5。其中,f1和f5以及u 1和u 5,须要根据电网公司规定的一次调频频率死区与无功调压电压死区进行设置,S1所述f0和f6以及u 0和u 6,须要根据电网公司规定的电网系统频率保护停机要求与电压保护停机要求进行设置。
S2场级协同控制器实时读取电网系统频率与电压,并计算电网系统频率加速度与电网电压加速度;当电网系统频率大于f2且小于f4,且电网电压大于u2且小于u4时,则不做处理,即SCADA系统4、能量管理系统5、数据转发系统6与调频调压系统7均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯。
S3设定计算条件1和计算条件2,计算条件1:电网系统频率大于f4,且频率加速度大于0,或电网系统频率小于f2且频率加速度小于0;计算条件2:电网电压大于u4,且电网电压加速度大于0,或电网电压小于u2且电网电压加速度小于0。若条件1或条件2任一条件满足,则进入S4,否则不做处理。
S4场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的较低的通讯速率V5、V6、V7与风电机组控制系统通讯,调频调压系统将以预设的较高的通信速率V8与风电机组通讯,其中,通信速率V5、V6、V7分别小于V1、V2、V3,通信速率V8大于V4
S5设定计算条件3和计算条件4,计算条件3:电网系统频率大于f5或电网系统频率小于f1;计算条件4:电网电压大于u5,或电网电压小于u1。若条件3或条件4任一条件满足,则进入S6,否则不做处理。
S6场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的低的通讯速率V9、V10、V11与风电机组控制系统通讯,调频调压系统将以预设的高的通信速率V12与风电机组通讯,其中,通信速率V9、V10、V11分别小于V5、V6、V7,通信速率V12大于V8。通讯速率V1、V2、V3、V4、V5、V6、V7、V8、V9、V10、V11、V12的关系如下:V12=2*V8=4*V4,V1=2*V5=4*V9,V2=2*V6=4*V10,V3=2*V7=4*V11
S7设定计算条件5和计算条件6,计算条件5:电网系统频率大于f6或电网系统频率小于f0;计算条件6:电网电压大于u6,或电网电压小于u0。若条件5或条件6任一条件满足,则进入S8,否则不做处理。
S8场级协同控制器将控制调节SCADA系统、能量管理系统、数据转发系统与调频调压系统均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯。
S9确认完成后,进入S2重新循环。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了场级协同控制器、电网快速检测模块等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (7)

1.一种满足风电场支撑要求的场级协同控制方法,其特征在于,包括以下步骤:S1在场级协同控制器(2)中分别内置一组与一次调频响应与通信速率协调控制有关的频率控制参数(f0,f1,f2,f3,f4,f5,f6)和一组与无功调压响应与通信速率协调控制有关的电压控制参数(u0,u 1,u 2,u 3,u 4,u 5,u 6);
S2场级协同控制器实时读取电网系统频率与电压,并计算电网系统频率加速度与电网电压加速度;
S3设定计算条件1和计算条件2,若条件1或条件2任一条件满足,则进入S4,否则不做处理,计算条件1:电网系统频率大于f4,且频率加速度大于0,或电网系统频率小于f2且频率加速度小于0;计算条件2:电网电压大于u4,且电网电压加速度大于0,或电网电压小于u2且电网电压加速度小于0;
S4场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的较低的通讯速率V5、V6、V7与风电机组控制系统通讯,调频调压系统将以预设的较高的通信速率V8与风电机组通讯,其中,通信速率V5、V6、V7分别小于V1、V2、V3,通信速率V8大于V4
S5设定计算条件3和计算条件4,若条件3或条件4任一条件满足,则进入S6,否则不做处理,计算条件3:电网系统频率大于f5或电网系统频率小于f1;计算条件4:电网电压大于u5,或电网电压小于u1
S6场级协同控制器将控制调节SCADA系统、能量管理系统与数据转发系统将分别以预设的低的通讯速率V9、V10、V11与风电机组控制系统通讯,调频调压系统将以预设的高的通信速率V12与风电机组通讯,其中,通信速率V9、V10、V11分别小于V5、V6、V7,通信速率V12大于V8
S7设定计算条件5和计算条件6,若条件5或条件6任一条件满足,则进入S8,否则不做处理,计算条件5:电网系统频率大于f6或电网系统频率小于f0;计算条件6:电网电压大于u6,或电网电压小于u0
S8场级协同控制器将控制调节SCADA系统、能量管理系统、数据转发系统与调频调压系统均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯;S9确认完成后,进入S2重新循环。
2.根据权利要求1所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,所述步骤S1中,f0<f1<f2<f3<f4<f5<f6,f0和f6分别对应风电机组保护停机频率下限与上限阈值、f1和f5分别对应一次调频频率死区下限与上限阈值、f2和f4分别对应通信速率协调控制频率下限与上限阈值、f3为电网额定频率。
3.根据权利要求1所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,所述步骤S1中,u0<u 1<u 2<u 3<u 4<u 5<u 6,u 0和u 6分别对应风电机组保护停机电压下限与上限阈值、u 1和u 5分别对应无功调压电压死区下限与上限阈值、u2和u4分别对应通信速率协调控制电压下限与上限阈值、u3为电网额定电压。
4.根据权利要求1所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,所述步骤S2当电网系统频率大于f2且小于f4,且电网电压大于u2且小于u4时,则不做处理,即SCADA系统(4)、能量管理系统(5)、数据转发系统(7)与调频调压系统(6)均按照平时正常通讯速率V1、V2、V3和V4与风电机组控制系统通讯。
5.根据权利要求1或2或3所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,所述f2和f4的值分别取0.9*f1和0.9*f5的阈值,u2和u4的值分别取0.9*u1和0.9*u5的阈值。
6.根据权利要求1所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,所述步骤S2、步骤S4和步骤S6中通讯速率V1、V2、V3、V4、V5、V6、V7、V8、V9、V10、V11、V12的关系如下:V12=2*V8=4*V4,V1=2*V5=4*V9,V2=2*V6=4*V10,V3=2*V7=4*V11
7.根据权利要求1所述的一种满足风电场支撑要求的场级协同控制方法,其特征在于,实现所述场级协同控制方法的系统包括依次相连的电网快速检测模块(1)、场级协同控制器(2)和通信连接装置(3),所述通信连接装置(3)分别经过SCADA系统(4)、能量管理系统(5)、调频调压系统(6)、数据转发系统(7)与风电机组(8)相连。
CN202110534720.6A 2021-05-17 2021-05-17 一种满足风电场支撑要求的场级协同控制系统及方法 Active CN113328434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110534720.6A CN113328434B (zh) 2021-05-17 2021-05-17 一种满足风电场支撑要求的场级协同控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110534720.6A CN113328434B (zh) 2021-05-17 2021-05-17 一种满足风电场支撑要求的场级协同控制系统及方法

Publications (2)

Publication Number Publication Date
CN113328434A CN113328434A (zh) 2021-08-31
CN113328434B true CN113328434B (zh) 2022-05-10

Family

ID=77415744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110534720.6A Active CN113328434B (zh) 2021-05-17 2021-05-17 一种满足风电场支撑要求的场级协同控制系统及方法

Country Status (1)

Country Link
CN (1) CN113328434B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9728969B2 (en) * 2011-05-31 2017-08-08 Vestas Wind Systems A/S Systems and methods for generating an inertial response to a change in the voltage of an electricial grid
DE102014200740A1 (de) * 2014-01-16 2015-07-16 Wobben Properties Gmbh Verfahren und Regel- und/oder Steuereinrichtung zum Betrieb einer Windenergieanlage und/oder eines Windparks sowie Windenergieanlage und Windpark
CN108242819B (zh) * 2016-12-26 2021-01-22 北京金风科创风电设备有限公司 用于风力发电场的测控装置、系统和方法
CN109861242B (zh) * 2017-11-30 2021-04-16 中国电力科学研究院有限公司 一种风电参与电网一次调频的功率协调控制方法及系统
CN211015091U (zh) * 2019-12-11 2020-07-14 武汉显明科技有限公司 一种基于数字变频的新能源站频率变化信号源
CN111740431B (zh) * 2020-06-11 2021-11-12 浙江运达风电股份有限公司 一种大型风电场参与电力系统调频控制方法
CN112366731B (zh) * 2020-11-05 2023-08-11 国能日新科技股份有限公司 一种电网频率调节方法、系统、服务器及存储介质

Also Published As

Publication number Publication date
CN113328434A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2018205315A1 (zh) 一种新能源站参与一次调频的快速功率协调控制方法
Zhang et al. Fully distributed coordination of multiple DFIGs in a microgrid for load sharing
CN102591278B (zh) 具有发电和负荷预测功能的微网控制系统的微网通讯控制方法
CN108695857B (zh) 风电场自动电压控制方法、装置及系统
CN106611965B (zh) 预防大规模风电频繁穿越的风电场协调控制方法及系统
CN104167763A (zh) 分为就地层、中间层和能量管理层的分布式能量管理装置和方法
CN104917204B (zh) 一种风电场有功功率优化控制方法
CN205829190U (zh) 一种发输电联合动态增容系统
CN112653154B (zh) 基于边缘计算的分布式光伏配电网无功优化控制方法
CN107069786A (zh) 一种提升风电消纳的系统及方法
CN108365627A (zh) 一种基于柔性协调因子的风储孤网供电系统协调控制方法
CN110198030A (zh) 考虑光伏发电功率快速调控的直流紧急协调控制方法及系统
CN109713716A (zh) 一种基于安全域的风电并网系统的机会约束经济调度方法
CN103928924A (zh) 计及有功功率变化最大值的风电场有功功率优化控制方法
CN106549418A (zh) 一种风电场有功功率控制方法
CN113300405B (zh) 一种具有孤岛故障穿越能力的孤岛保护方法及系统
CN106340893A (zh) 一种基于虚拟发电厂的分布式光伏发电功率控制方法
Li et al. A novel power control scheme for distributed DFIG based on cooperation of hybrid energy storage system and grid-side converter
CN105958535A (zh) 分布式电源集群控制系统及其控制方法
CN113328434B (zh) 一种满足风电场支撑要求的场级协同控制系统及方法
CN110778454B (zh) 一种风电机组协调控制方法和系统
CN102624034B (zh) 适用于高压电网的风电场调度配合型无功运行方法
CN116093931A (zh) 基于边缘计算源网荷储协调控制系统
CN115622081A (zh) 一种新能源配储调频方法及系统
CN105846462B (zh) 一种风电场的黑启动协调装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant