WO2018120688A1 - 激光光源及显示设备 - Google Patents

激光光源及显示设备 Download PDF

Info

Publication number
WO2018120688A1
WO2018120688A1 PCT/CN2017/089847 CN2017089847W WO2018120688A1 WO 2018120688 A1 WO2018120688 A1 WO 2018120688A1 CN 2017089847 W CN2017089847 W CN 2017089847W WO 2018120688 A1 WO2018120688 A1 WO 2018120688A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
emitting units
light
light emitting
light source
Prior art date
Application number
PCT/CN2017/089847
Other languages
English (en)
French (fr)
Inventor
谢颂婷
杨佳翼
陈红运
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018120688A1 publication Critical patent/WO2018120688A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity

Definitions

  • the invention relates to a laser light source and a display device.
  • laser light sources are becoming more and more widely used. Since laser light sources have the advantages of high energy density and small optical expansion, laser light sources have gradually replaced bulbs and LED light sources in the field of high-intensity light sources. . Among them, the laser light source is used to excite the phosphor to generate the desired light (such as blue laser excitation red, green phosphor to produce white light), which has become the mainstream of application because of its high luminous efficiency, good stability and low cost.
  • the light generated by a laser source composed of multiple lasers causes speckle on the display screen due to coherence characteristics.
  • speckle phenomenon makes the image display bright and dark. Both, resulting in an unsatisfactory image display quality.
  • Some manufacturers in the industry have proposed to transmit laser light through optical fiber to achieve the effect of dissipating the speckle.
  • the cost of the optical fiber is not only high, but also causes problems such as large volume of the light source and high light loss, making the optical fiber transmission laser scheme difficult to popularize.
  • the display device has poor image display performance due to laser coherence, it is necessary to provide a laser light source capable of improving laser coherence, and it is also necessary to provide a display device with better display image effect.
  • a laser light source comprising at least two light emitting units, each light emitting unit comprising a laser, the driving signals of the lasers of the at least two light emitting units being different, such that the wavelength of the laser light emitted by the laser of the at least two light emitting units The main peak or wavelength range is different.
  • the amplitude of the driving signal of the laser of any one of the at least two lighting units is always fixed.
  • the amplitude of the drive signal of the laser of any one of the at least two illumination units changes periodically.
  • the driving signal period of the laser of any one of the light emitting units includes a continuous first time period, ..., a kth time period, and k is a natural number greater than or equal to 2, the arbitrary
  • the amplitude of the driving signal of the laser of one light-emitting unit is fixed in any one of the first time period, ..., the k-th period, and the total light-emitting intensity of all the light-emitting units of the laser light source Always the same.
  • the amplitude of the driving signal of the laser of any one of the light emitting units is any two time periods in the first time period of the driving signal period, ..., the kth time period different.
  • any one of the at least two illumination units is a single laser or a laser array having at least two lasers.
  • the at least two illumination units are all laser arrays, and the driving signals of the at least two illumination units are different, such that the driving signals of the lasers of the at least two illumination units are different.
  • the at least two light emitting units are all laser arrays, and the driving signals of the at least two light emitting units are the same, but the number of lasers or the serial connection of the at least two light emitting units are different.
  • the drive signals of the lasers of the at least two light emitting units are made different.
  • the at least two light emitting units are all laser arrays
  • the laser array includes a substrate
  • the substrates of the laser arrays of the at least two light emitting units are disposed independently of each other such that the at least two light emitting The units are set independently of each other.
  • a display device comprising a light source, the light source being a laser light source comprising at least two light emitting units, each light emitting unit comprising a laser, the driving signals of the lasers of the at least two light emitting units being different, such that the at least The lasers emitted by the lasers of the two illumination units have different wavelength peaks or wavelength ranges.
  • the driving signals of the lasers of the at least two light emitting units are different, such that the lasers emitted by the lasers of the at least two light emitting units have different main peak wavelengths or wavelength ranges, and further
  • the spectrum of the laser light emitted by the laser light source is wide, and the coherence of the laser light emitted by the laser light source is weakened, so that the screen of the display device of the laser light source is less prone to speckle, that is, the display device using the laser light source.
  • the image display effect can be improved.
  • the driving signal of the laser of any one of the light emitting units changes periodically, which can effectively improve the service life of the laser and avoid the adverse effects caused by driving the laser with a fixed driving signal for a long time.
  • FIG. 1 is a schematic view showing the structure of a laser light source according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a driving signal of the laser light source of FIG. 1.
  • FIG. 3 is a schematic view of a laser spectrum emitted by the laser light source of FIG. 1.
  • FIG. 4 is a schematic view showing a driving signal of a laser light source according to a second embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a laser light source according to a third embodiment of the present invention.
  • Fig. 6 is a schematic view showing a driving signal of the laser light source shown in Fig. 5.
  • Fig. 7 is a schematic diagram showing driving signals of a laser light source according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a laser light source 10 according to a first embodiment of the present invention.
  • the laser light source 10 includes a substrate 12 and at least two light emitting units 11 disposed on the substrate 12 .
  • the at least two light emitting units 11 may be sequentially arranged in the first direction X.
  • the number of the at least two light emitting units is n, wherein n is a natural number greater than or equal to 2. In the present embodiment, the n is 6, but it can be understood that in the modified embodiment, the number of the light emitting units It is not limited to the above, and may be selected according to actual needs.
  • Each of the light emitting units 11 includes a laser 111, and the lasers 111 of each of the light emitting units 11 may be arranged in a second direction Y perpendicular to the first direction X, so that the lasers 111 of the respective light emitting units 11 may be arranged in a matrix.
  • the number of the lasers 111 of each of the light-emitting units 11 is m, where m is a natural number greater than or equal to 2. In the present embodiment, the m is 3, but it can be understood that in the modified embodiment, the light-emitting unit 11 The number is not limited to the above, and may be selected according to actual needs.
  • the colors of the laser light emitted by all the lasers 111 of the n light-emitting units 11 may be the same, such as emitting blue laser light but not limited to blue laser light.
  • the laser 111 may be a semiconductor laser diode fixed on the substrate 12, and all the lasers 111 of the n light-emitting units 11 may be arranged in series but not limited to a series connection, such as parallel or series-parallel connection. Mixed connection and other methods.
  • the substrate 12 may be a circuit substrate having a conductive line inside thereof, so that all the lasers 111 of the n light-emitting units 11 are electrically connected in series, in parallel, or in series and parallel mixing through the conductive lines. Further, in the present embodiment, all of the lasers 111 of the n light-emitting units 11 have substantially the same wavelength main peak and wavelength range of the laser light emitted when the driving signal and the operating temperature are the same.
  • FIG. 2 is a schematic diagram of driving signals of the n light-emitting units 11 of the laser light source 10 of FIG.
  • LD1 to LDn respectively represent driving signals of the lasers 111 of the n light-emitting units 11, wherein the driving signals of all the lasers 111 of each of the light-emitting units 11 may be the same, such as driving of m lasers applied to each of the light-emitting units 11 The signals are all the same.
  • the laser 111 driving signal amplitude of any one of the n light-emitting units 11 can be always fixed (ie, does not change with time), but the lasers of the n light-emitting units 11
  • the driving signals of the lasers 111 of the n light-emitting units 11 may be sequentially increased in the first direction X.
  • the laser 111 driving signal amplitudes of the n light-emitting units 11 may also be sequentially decreased in the first direction X, and are not limited to the above-mentioned manner.
  • the driving signal may refer to a driving current signal of the laser 111, and may also be referred to as an operating current of the laser 111.
  • the driving signal may also be understood as a driving voltage signal. The change in the applied drive voltage achieves the purpose of different drive current signals.
  • the driving signal of the laser 111 applied to each of the light-emitting units 11 is always fixed, that is, a DC signal of a fixed value, but is applied to a laser of a different light-emitting unit (ie, any two light-emitting units).
  • the magnitude of the drive signal of 111 is different.
  • FIG. 3 is a schematic diagram of the laser spectrum emitted by the laser light source 10 of FIG.
  • the laser light emitted by the laser 111 of the n light-emitting units 11 can be made by applying different driving signals LD1, . . . , LDn to the lasers 111 of the n light-emitting units 11.
  • the wavelength main peak, the wavelength range and the illuminance are different, the total spectrum of the laser light emitted by the laser light source 10 is wide, and the coherence of the laser light emitted by the laser light source 10 is weakened, and the display device using the laser light source 10 is used.
  • the image display effect can be improved.
  • the drive signals LD1, ..., LDn of the lasers 111 applied to the n light-emitting units 11 are different, so that the wavelengths of the laser light emitted by the lasers 111 of the n light-emitting units 11 are different.
  • the main peak or the wavelength range is different, and the spectrum of the laser light emitted by the laser light source 10 is wider, and the coherence of the laser light emitted by the laser light source 10 is weakened, so that the screen of the display device of the laser light source 30 is less prone to speckle. That is, the image display effect of the display device using the laser light source 10 can be improved.
  • FIG. 4 is a schematic diagram of driving signals of the laser light source according to the second embodiment of the present invention.
  • the laser light source of the second embodiment is substantially the same as the laser light source 10 of the first embodiment, and the main difference between the two is that the amplitude of the driving signal of the laser 111 of any one of the n light-emitting units 11 is periodically changed.
  • the driving signal period of the laser 111 of any one of the light emitting units 11 includes a continuous first time period, ..., a kth time period, and k is greater than or equal to 2.
  • the driving signal LDi of the laser 111 applied to any one of the light-emitting units 11 is fixed at any one of the first time period, ..., the k-th period (i is greater than or equal to 1 or less than or equal to a natural number of n), but the drive signal LDi of the laser 111 applied to any one of the light-emitting units 11 is in any of the first time period of the drive signal period, ..., the k-th period
  • the total light intensity of all the lasers 111 of the n light-emitting units 11 is always constant.
  • the drive signal LDi of the laser 111 applied to any one of the light-emitting units 11 includes p different drive signal amplitudes, and p is a natural number greater than or equal to 2.
  • the driving signal amplitudes of the lasers 111 of the n light-emitting units 11 are different in any one of the first time period, ..., and the k-th time period.
  • the driving signals LD1 to LDn of the lasers 111 of the n light-emitting units 11 have different amplitudes as in the first period of time illustrated in the figure; in the second time period, the n light-emitting units 11
  • the amplitudes of the drive signals LD1 to LDn of the laser 111 are different from the previous period, and the amplitudes of the drive signals LD1 to LDn of the lasers 111 of the n light-emitting units 11 are different.
  • the number n of the light emitting units 11 and the number k of the time periods of each of the driving periods and the number p of the driving signals may be the same, that is, n, so that the n pieces are provided.
  • the switching timing control of the driving module of different driving signals is easier, and the resources of the driving module are saved more, and the laser 111 having the same driving signal amplitude applied to the light emitting unit 11 in one driving signal period does not occur twice.
  • the phenomenon that a driving signal amplitude is not applied to the laser 111 of the light emitting unit 11 in one driving signal period, but each driving signal amplitude is sequentially applied to the driving signal period.
  • the lasers 111 of the n light-emitting units 11 are described once, not only is the timing control easier, but also the total light-emitting intensity of all the lasers 111 of the n light-emitting units 11 is always constant.
  • the driving module of the laser light source 10 can be driven by program setting such that the amplitudes of the driving signals LD1 to LDn of the laser 111 supplied to the n light emitting units 11 by the driving module are different and periodically changed.
  • the drive signals LD1 to LDn of the lasers 111 of the n light-emitting units 11 are different at any time, and the drive signal LDi of the laser 111 of any one of the light-emitting units 11 is different.
  • the amplitude changes periodically with time. This method can effectively improve the service life of the laser and avoid the adverse effects caused by driving the laser with a fixed amplitude driving signal for a long time.
  • FIG. 5 is a schematic structural diagram of a laser light source 30 according to a third embodiment of the present invention.
  • the laser light source 30 includes n light-emitting units 30a, n is a natural number greater than or equal to 2.
  • the n light-emitting units 30a are all laser arrays, and the substrates 32 are independent of each other, so that the n light-emitting units 30a are independent of each other. Settings.
  • the n light emitting units 30a may be sequentially arranged in the direction Y.
  • the n light emitting units 30a may each include q lasers 31, where q is a natural number greater than or equal to 2.
  • the driving signals applied to the n light emitting units 30a are different such that the driving signals of the lasers 31 of the n light emitting units 30a are different, wherein the driving signals of the q lasers 31 in each of the excitation light units 30a are different.
  • the wavelengths of the lasers emitted by the n light-emitting units 30a are different from the wavelength range, so that the spectrum of the laser light emitted by the laser light source 30 is wider, and the coherence of the laser light emitted by the laser light source 30 is further Attenuated, the image display effect of the display device using the laser light source 30 can be improved.
  • the driving signal may refer to a driving current signal of the laser 111, and may also be an operating current of the laser 111.
  • the amplitude of the driving signal applied to any one of the n light emitting units 30a may be periodically changed, but the total light outgoing intensity of the n light emitting units 30a may remain unchanged at all times. Further, the amplitude of the driving signal applied to the any one of the light-emitting units 30a may be periodically changed, and the amplitude of the driving signal of the laser 31 may be periodically changed with time, which can effectively improve the laser 31. And using the lifetime of the light-emitting unit 30a of the laser 31, avoiding the adverse effects caused by driving the laser with a fixed amplitude drive signal for a long time.
  • the driving signal period applied to the any one of the light emitting units 30a includes a continuous first time period, ..., a kth time period, and k is a natural number greater than or equal to 2.
  • the drive signal applied to any one of the light-emitting units 30a is fixed at any one of the first time period, ..., the k-th time period, but is applied to any one of the light-emitting units 30a
  • the driving signal is different for any two of the first time period, ..., the kth time period, and the total light output intensity of all the light emitting units 30a of the laser light source 30 is always constant.
  • the driving signal applied to any one of the light emitting units 30a includes p different driving signals, and p is a natural number greater than or equal to 2.
  • the driving signals of all the n light emitting units 30a are different.
  • the number of the light emitting units 30a is different.
  • n and the number of time periods k of each of the driving cycles and the number of the driving signals p may be the same, that is, n, so that the switching timing control of the driving module providing the n different driving signals is more
  • the phenomenon that the same driving signal amplitude is applied to the light emitting unit 30a twice in one driving signal period does not occur, and a driving signal amplitude does not appear in one driving.
  • the signal period is not applied to the light emitting unit 30a, but each driving signal amplitude is sequentially applied to the n light emitting units 30a once in one driving signal period, which is not only easier to control in timing but also more It is easy to realize that the total light output of all the lasers 311 of the n light-emitting units 30a is always constant.
  • the driving module of the laser light source 30 can be driven by program setting such that the driving signals supplied to the n light emitting units 30a by the driving module have different amplitudes and periodic changes.
  • the first light emitting unit 30a and the nth light emitting unit 30a have different driving signal amplitudes in the first time period as shown in FIG. 6; in the second time period, the first light emitting The amplitudes of the driving signals of the unit 30a and the nth light emitting unit 30a are different from the previous period, and the driving signal amplitudes of the first lighting unit 30a and the nth lighting unit 30a are also different. Specifically, in the first and second time periods, the driving signals of the first light emitting unit 30a and the nth light emitting unit 30a may be interchanged.
  • the first light emitting unit 30a and the nth light emitting unit 30a have different driving signals as in the first time period shown in FIG. 7; in the second time period, the first light emitting unit 30a The driving signals of the nth light emitting unit 30a are different from the previous time period, and the driving signals of the first light emitting unit 30a and the nth light emitting unit 30a are different; in the third time period, The driving signals of the first lighting unit 30a and the nth lighting unit 30a are different from the previous two periods, and the driving signals of the first lighting unit 30a and the nth lighting unit 30a are different.
  • the driving signal may refer to a driving voltage signal or a driving current signal of the light emitting unit 30a, and the driving signal causes driving currents of the lasers 31 of the n light emitting units 30a to be different, thereby issuing The wavelength of the main peak of the laser is different from the wavelength range.
  • the lasers emitted by the lasers 31 of the n light emitting units 30a have different wavelength main peaks or wavelength ranges, and the laser light source is further
  • the spectrum of the laser light emitted by 30 is wider, and the coherence of the laser light emitted by the laser light source 30 is weakened, so that the screen of the display device of the laser light source 30 is less prone to speckle, that is, the display device using the laser light source 30.
  • the image display effect can be improved.
  • the present invention also provides a display device, which may be a projection device, such as an LCD, DLP, LCOS projection device, the display device may include a light source, a light modulation device, and a projection lens, and the light source adopts any one of the above implementations.
  • the light modulating device is configured to output a modulated image light according to the light emitted by the light source and the input image data
  • the projection lens is configured to display the projected image according to the modulated image light.
  • the display device using the above-described laser light source and the laser light source according to the embodiment thereof has high light uniformity and a good projection image effect.
  • the laser light source of the present invention and the laser light source of the modified embodiment can also be used for a stage light system, an in-vehicle illumination system, a surgical illumination system, and the like, and are not limited to the above-described projection apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光光源及显示设备,其中,激光光源(10,30)包括至少两个发光单元(11,30a),每个发光单元(11,30a)均包括激光器(111,31),至少两个发光单元(11,30a)的激光器(111,31)的驱动信号(LD)不同,使得至少两个发光单元(11,30a)的激光器(111,31)发出的激光的波长主峰值或波长范围不同,采用这种激光光源(10,30)的显示设备的图像显示效果较好,不易出现散斑。

Description

激光光源及显示设备 技术领域
本发明涉及一种激光光源及显示设备。
背景技术
目前,在显示领域(如投影领域)开始越来越广泛的应用激光光源,由于激光光源具有能量密度高、光学扩展量小的优势,在高亮度光源领域,激光光源已经逐渐取代灯泡和LED光源。而在这其中,采用激光光源激发荧光粉产生所需光(如蓝光激光激发红色、绿色荧光粉产生白光)的光源,以其光效高、稳定性好、成本低等优点成为应用的主流。
技术问题
然而,激光由于其固有的特性:相干光特性,会使得具有多颗激光器构成的激光光源产生的光因相干特性而在后面的显示屏幕上出现散斑的现象,散斑现象使得图像显示明暗不均,从而导致图像显示质量无法提高。业界一些厂商提出通过光纤来传输激光,以达到消散斑的效果,但是光纤的成本不仅较高,并且也造成了光源体积大,光损失较多等问题,使得光纤传输激光的方案难于普及。
技术解决方案
为解决现有显示设备因激光相干性导致显示图像效果不佳的技术问题,有必要提供一种可改善激光相干性的激光光源,也有必要提供一种显示图像效果较佳的显示设备。
一种激光光源,其包括至少两个发光单元,每个发光单元均包括激光器,所述至少两个发光单元的激光器的驱动信号不同,使得所述至少两个发光单元的激光器发出的激光的波长主峰值或波长范围不同。
在一种实施方式中,所述至少两个发光单元中任意一个发光单元的激光器的驱动信号的幅值始终固定不变。
在一种实施方式中,所述至少两个发光单元中任意一个发光单元的激光器的驱动信号的幅值周期性变化。
在一种实施方式中,所述任意一个发光单元的激光器的驱动信号周期包括连续的第1时间段、......、第k时间段,k为大于等于2的自然数,所述任意一个发光单元的激光器的驱动信号的幅值在第1时间段、......、第k时间段中任意一个时间段内固定不变,所述激光光源的所有发光单元的出光总强度始终不变。
在一种实施方式中,所述任意一个发光单元的激光器的驱动信号的幅值在每个驱动信号周期的第1时间段、......、第k时间段中任意两个时间段不同。
在一种实施方式中,所述至少两个发光单元中任意一个发光单元为单颗激光器或者为具有至少两个激光器的激光器阵列。
在一种实施方式中,所述至少两个发光单元均为激光器阵列,所述至少两个发光单元的驱动信号不同,使得所述至少两个发光单元的激光器的驱动信号不同。
在一种实施方式中,所述至少两个发光单元均为激光器阵列,所述至少两个发光单元的驱动信号相同,但所述至少两个发光单元的激光器的数量或串并连接方式不同,使得所述至少两个发光单元的激光器的驱动信号不同。
在一种实施方式中,所述至少两个发光单元均为激光器阵列,所述激光器阵列包括基板,所述至少两个发光单元的激光器阵列的基板均相互独立设置,使得所述至少两个发光单元均相互独立设置。
一种显示设备,其包括光源,所述光源为激光光源,其包括至少两个发光单元,每个发光单元均包括激光器,所述至少两个发光单元的激光器的驱动信号不同,使得所述至少两个发光单元的激光器发出的激光的波长主峰值或波长范围不同。
有益效果
相较于现有技术,本发明激光光源中,所述至少两个发光单元的激光器的驱动信号不同,使得所述至少两个发光单元的激光器发出的激光的波长主峰值或波长范围不同,进而所述激光光源发出的激光的光谱较宽,进而所述激光光源发出的激光的相干性减弱,从而所述激光光源的显示设备的屏幕不易出现散斑,即使用所述激光光源的显示设备的图像显示效果可以提高。
进一步地,所述任意一个发光单元的激光器的驱动信号呈周期性变化,此种方式可以有效提高所述激光器的使用寿命,避免长时间使用固定不变的驱动信号驱动激光器造成的不利影响。
附图说明
图1是本发明第一实施方式的激光光源的结构示意图。
图2是图1所述激光光源的驱动信号示意图。
图3是图1所述激光光源的发出的激光光谱示意图。
图4是本发明第二实施方式的激光光源的驱动信号示意图。
图5是本发明第三实施方式的激光光源的结构示意图。
图6是图5所示激光光源的驱动信号示意图。
图7是本发明第四实施方式的激光光源的驱动信号示意图。
主要元件符号说明
激光光源 10、30
激光器 111、31
基板 12、32
发光单元 11、30a
方向 X、Y
驱动信号 LD1、LDi、LDn
如下具体实施方式将结合上述附图进一步说明本发明。
本发明的最佳实施方式
请参阅图1,图1是本发明第一实施方式的激光光源10的结构示意图。所述激光光源10包括基板12及设置于所述基板12上的至少两个发光单元11。
所述至少两个发光单元11可以沿第一方向X依次排列。设所述至少两个发光单元的数量为n个,其中n为大于等于2的自然数,本实施方式中,所述n为6,但是可以理解,在变更实施方式中,所述发光单元的数量并不限于上述,也可以根据实际需要选择。
每个发光单元11均包括激光器111,每个发光单元11的激光器111可以沿垂直于所述第一方向X的第二方向Y排列,从而所述各个发光单元11的激光器111可以呈矩阵排列。设每个发光单元11的激光器111的数量为m个,其中m为大于等于2的自然数,本实施方式中,所述m为3,但是可以理解,在变更实施方式中,所述发光单元11的数量并不限于上述,也可以根据实际需要选择。
所述n个发光单元11的所有激光器111发出的激光的颜色可以均相同,如均发出蓝色激光但不限于蓝色激光。具体地,所述激光器111可以为半导体激光二极管,其固定于所述基板12上,且所述n个发光单元11的所有激光器111可以串联设置但不限于串联,如也可以为并联或串联并联混合连接等方式。所述基板12可以为电路基板,其内部具有导电线路,使得所述n个发光单元11的所有激光器111通过所述导电线路实现串联、并联或者串联与并联混合等方式的电性连接。另外,本实施方式中,所述n个发光单元11的所有激光器111在驱动信号、工作温度等条件均相同的情况下发出的激光的波长主峰值与波长范围均基本相同。
请参阅图2,图2是图1所述激光光源10的n个发光单元11的驱动信号示意图。其中LD1至LDn分别代表所述n个发光单元11的激光器111的驱动信号,其中每个发光单元11的所有激光器111的驱动信号可以相同,如施加至每个发光单元11的m个激光器的驱动信号均相同。本实施方式中,所述n个发光单元11的任意一个发光单元11的激光器111驱动信号幅值可以始终固定不变(即不随时间的变化而变化),但是所述n个发光单元11的激光器111的驱动信号各不相同,具体地,所述n个发光单元11的激光器111的驱动信号幅值可以沿所述第一方向X依次增大,但是,可以理解,在变更实施方式中,所述n个发光单元11的激光器111驱动信号幅值也可以沿所述第一方向X依次减小,并不限于上述提及的方式。可以理解,本实施方式中,所述驱动信号可以指所述激光器111的驱动电流信号,也可以说是所述激光器111的工作电流,但是,所述驱动信号也可以理解为驱动电压信号,通过施加的驱动电压的变化达到驱动电流信号不同的目的。
进一步地,本实施方式中,施加至每个发光单元11的激光器111的驱动信号始终固定不变,即为固定值的直流信号,但施加至不同发光单元(即任意两个发光单元)的激光器111的驱动信号的幅值不同。
请参阅图3,图3是图1所述激光光源10的发出的激光光谱示意图。从图示可以看出,通过对所述n个发光单元11的激光器111施加不同的驱动信号LD1、......、LDn,可以使得所述n个发光单元11的激光器111发出的激光的波长主峰值、波长范围与发光强度均不同,所述激光光源10发出激光的总光谱较宽,进而所述激光光源10发出的激光的相干性减弱,使用所述激光光源10的显示设备的图像显示效果可以提高。
本发明激光光源10中,施加至所述n个发光单元11的激光器111的驱动信号LD1、......、LDn不同,使得所述n个发光单元11的激光器111发出的激光的波长主峰值或波长范围不同,进而所述激光光源10发出的激光的光谱较宽,进而所述激光光源10发出的激光的相干性减弱,从而所述激光光源30的显示设备的屏幕不易出现散斑,即使用所述激光光源10的显示设备的图像显示效果可以提高。
请参阅图4,图4是本发明第二实施方式的激光光源的驱动信号示意图。所述第二实施方式的激光光源与第一实施方式的激光光源10基本相同,二者的主要差别为:施加n个发光单元的任意一个发光单元11的激光器111的驱动信号幅值周期性变化。具体地,在一种实施方式中,所述任意一个发光单元11的激光器111的驱动信号周期包括连续的第1时间段、......、第k时间段,k为大于等于2的自然数,施加至任意一个发光单元11的激光器111的驱动信号LDi在第1时间段、......、第k时间段中任意一个时间段的固定不变(i为大于等于1小于等于n的自然数),但施加至任意一个发光单元11的激光器111的驱动信号LDi在每个驱动信号周期的第1时间段、......、第k时间段中任意两个时间段的幅值不同,所述n个发光单元11的所有激光器111的出光总强度始终不变。
进一步地,本实施方式中,施加至任意一个发光单元11的激光器111的驱动信号LDi包括p个不同的驱动信号幅值,且p为大于等于2的自然数。在所述第1时间段、......、第k时间段中任意一个时间段,所述n个发光单元11的激光器111的驱动信号幅值各不相同。如在图示所述的第1时间段,所述n个发光单元11的激光器111的驱动信号LD1至LDn幅值各不相同;在所述第2时间段,所述n个发光单元11的激光器111的驱动信号LD1至LDn幅值均与上一时段不同,且所述n个发光单元11的激光器111的驱动信号LD1至LDn幅值各不相同。
进一步来讲,由于所述发光单元11的数量n与所述每个驱动周期的时间段的数量k以及所述驱动信号的数量p可以均相同,即均为n个,使得提供所述n个不同的驱动信号的驱动模块的开关时序控制更为容易,也更节省驱动模块的资源,不会出现同一个驱动信号幅值在一个驱动信号周期内施加到所述发光单元11的激光器111两次的现象,也不会出现一个驱动信号幅值在一个驱动信号周期内未被施加到所述发光单元11的激光器111,而是每个驱动信号幅值在一个驱动信号周期内依序施加到所述n个发光单元11的激光器111一次,不仅时序上控制更为容易,也更容易实现所述n个发光单元11的所有激光器111的出光总强度始终不变。
具体地,可以通过程序设定驱动所述激光光源10的驱动模块,使得驱动模块提供到所述n个发光单元11的激光器111的驱动信号LD1至LDn的幅值各不相同且周期性变化。
相较于第一实施方式,所述第二实施方式中,任意时刻,所述n个发光单元11的激光器111的驱动信号LD1至LDn不同,并且任意一个发光单元11的激光器111的驱动信号LDi的幅值随时间呈周期性变化,此种方式可以有效提高所述激光器的使用寿命,避免长时间使用幅值固定不变的驱动信号驱动激光器造成的不利影响。
请参阅图5,图5是本发明第三实施方式的激光光源30的结构示意图。所述激光光源30包括n个发光单元30a,n为大于等于2的自然数,所述n个发光单元30a均为激光器阵列,其基板32均相互独立,使得所述n个发光单元30a均相互独立设置。本实施方式中,所述n个发光单元30a可以沿方向Y依次排列。其中所述n个发光单元30a可以均包括q个激光器31,其中q为大于等于2的自然数。
请参阅图6,施加至所述n个发光单元30a的驱动信号不同使得所述n个发光单元30a的激光器31的驱动信号不同,其中每个激发光单元30a中的q个激光器31的驱动信号可以均相同,进而所述n个发光单元30a发出的激光的波长主峰值与波长范围不同,使得所述激光光源30发出的激光的光谱较宽,进而所述激光光源30发出的激光的相干性减弱,使用所述激光光源30的显示设备的图像显示效果可以提高。可以理解,本实施方式中,所述驱动信号可以指所述激光器111的驱动电流信号,也可以说是所述激光器111的工作电流。
具体地,但施加至所述n个发光单元30a中任意一个发光单元30a的驱动信号幅值可以呈周期性变化,但是所述n个发光单元30a的总体的出光总强度可以始终保持不变。进一步地说,施加至所述任意一个发光单元30a的驱动信号幅值可以呈周期性变化,可使激光器31的驱动信号幅值随时间呈周期性变化,此种方式可以有效提高所述激光器31及使用所述激光器31的发光单元30a的使用寿命,避免长时间使用幅值固定不变的驱动信号驱动激光器造成的不利影响。
具体地,在一种实施方式中,施加至所述任意一个发光单元30a的驱动信号周期包括连续的第1时间段、......、第k时间段,k为大于等于2的自然数,施加至所述任意一个发光单元30a的驱动信号在第1时间段、......、第k时间段中任意一个时间段的固定不变,但施加至所述任意一个发光单元30a的驱动信号在第1时间段、......、第k时间段中任意两个时间段不同,所述激光光源30的所有发光单元30a的出光总强度始终不变。
进一步地,本实施方式中,施加至任意一个发光单元30a的驱动信号包括p个不同的驱动信号,p为大于等于2的自然数。在所述第1时间段、......、第k时间段中任意一个时间段,所有n个发光单元30a的驱动信号各不相同,本实施方式中,所述发光单元30a的数量n与所述每个驱动周期的时间段的数量k以及所述驱动信号的数量p可以均相同,即均为n个,使得提供所述n个不同的驱动信号的驱动模块的开关时序控制更为容易,也更节省驱动模块的资源,不会出现同一个驱动信号幅值在一个驱动信号周期内施加到所述发光单元30a两次的现象,也不会出现一个驱动信号幅值在一个驱动信号周期内未被施加到所述发光单元30a,而是每个驱动信号幅值在一个驱动信号周期内依序施加到所述n个发光单元30a一次,不仅时序上控制更为容易,也更容易实现所述n个发光单元30a的所有激光器311的出光总强度始终不变。
具体地,可以通过程序设定驱动所述激光光源30的驱动模块,使得驱动模块提供到所述n个发光单元30a的驱动信号幅值各不相同且周期性变化。
如在图6所示所述的第1时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号幅值不相同;在所述第2时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号幅值均与上一时段不同,且所述第一发光单元30a与所述第n发光单元30a的驱动信号幅值也各不相同。具体地,在第1与第2时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号可以互换。
如在图7所示所述的第1时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号不相同;在所述第2时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号均与上一时段不同,且所述第一发光单元30a与所述第n发光单元30a的驱动信号不相同;在所述第3时间段,所述第一发光单元30a与所述第n发光单元30a的驱动信号均与上两个时段都不同,且所述第一发光单元30a与所述第n发光单元30a的驱动信号不相同。可以理解,本实施方式中,所述驱动信号可以指所述发光单元30a的驱动电压信号或者驱动电流信号,所述驱动信号使得所述n个发光单元30a的激光器31的驱动电流不同,进而发出的激光的波长主峰值与波长范围均不同。
本发明激光光源30中,通过控制施加到所述n个发光单元30a的驱动信号,使得所述n个发光单元30a的激光器31发出的激光的波长主峰值或波长范围不同,进而所述激光光源30发出的激光的光谱较宽,进而所述激光光源30发出的激光的相干性减弱,进而使得所述激光光源30的显示设备的屏幕不易出现散斑,即使用所述激光光源30的显示设备的图像显示效果可以提高。
本发明还提供一种显示设备,所述显示设备可以为投影设备,如LCD、DLP、LCOS投影设备,所述显示设备可以包括光源、光调制装置及投影镜头,所述光源采用上述任意一实施方式的激光光源或者上述提到的激光光源的变更实施方式的激光光源。所述光调制装置用于依据所述光源发出的光线及输入图像数据调制图像而输出调制图像光线,所述投影镜头用于依据所述调制图像光线进行投影而显示投影图像。采用上述激光光源及其变更实施方式的激光光源的显示设备的光均匀性较高,投影图像效果较好。
另外,可以理解,本发明激光光源及其变更实施方式的激光光源还可以用于舞台灯系统、车载照明系统及手术照明系统等,并不限于上述的投影设备。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种激光光源,其包括至少两个发光单元,每个发光单元均包括激光器,其特征在于:所述至少两个发光单元的激光器的驱动信号不同,使得所述至少两个发光单元的激光器发出的激光的波长主峰值或波长范围不同。
2.如权利要求1所述的激光光源,其特征在于,所述至少两个发光单元中任意一个发光单元的激光器的驱动信号的幅值始终固定不变。
3.如权利要求1所述的激光光源,其特征在于,所述至少两个发光单元中任意一个发光单元的激光器的驱动信号的幅值周期性变化。
4.如权利要求3所述的激光光源,其特征在于,所述任意一个发光单元的激光器的驱动信号周期包括连续的第1时间段、......、第k时间段,k为大于等于2的自然数,所述任意一个发光单元的激光器的驱动信号的幅值在第1时间段、......、第k时间段中任意一个时间段内固定不变,所述激光光源的所有发光单元的出光总强度始终不变。
5.如权利要求4所述的激光光源,其特征在于,所述任意一个发光单元的激光器的驱动信号的幅值在每个驱动信号周期的第1时间段、......、第k时间段中任意两个时间段不同。
6.如权利要求1所述的激光光源,其特征在于,所述至少两个发光单元中任意一个发光单元为单颗激光器或者为具有至少两个激光器的激光器阵列。
7.如权利要求6所述的激光光源,其特征在于,所述至少两个发光单元均为激光器阵列,所述至少两个发光单元的驱动信号不同,使得所述至少两个发光单元的激光器的驱动信号不同。
8.如权利要求6所述的激光光源,其特征在于,所述至少两个发光单元均为激光器阵列,所述至少两个发光单元的驱动信号相同,但所述至少两个发光单元的激光器的数量或串并连接方式不同,使得所述至少两个发光单元的激光器的驱动信号不同。
9.如权利要求6所述的激光光源,其特征在于,所述至少两个发光单元均为激光器阵列,所述激光器阵列包括基板,所述至少两个发光单元的激光器阵列的基板均相互独立设置,使得所述至少两个发光单元均相互独立设置。
10.一种显示设备,其包括光源,其特征在于,所述光源采用权利要求1-9项任意一项所述的激光光源。
PCT/CN2017/089847 2016-12-30 2017-06-23 激光光源及显示设备 WO2018120688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611264863.5 2016-12-30
CN201611264863.5A CN108267916B (zh) 2016-12-30 2016-12-30 激光光源及显示设备

Publications (1)

Publication Number Publication Date
WO2018120688A1 true WO2018120688A1 (zh) 2018-07-05

Family

ID=62707800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089847 WO2018120688A1 (zh) 2016-12-30 2017-06-23 激光光源及显示设备

Country Status (2)

Country Link
CN (1) CN108267916B (zh)
WO (1) WO2018120688A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201408315Y (zh) * 2009-03-06 2010-02-17 上海三鑫科技发展有限公司 激光光学引擎
CN103368067A (zh) * 2012-03-30 2013-10-23 索尼公司 激光驱动电路及驱动方法、投影仪装置和使用激光的装置
JP2014059513A (ja) * 2012-09-19 2014-04-03 Casio Comput Co Ltd プロジェクタ
CN105378543A (zh) * 2013-07-22 2016-03-02 英特尔公司 用于减少散斑效应的方法
CN105453545A (zh) * 2013-06-06 2016-03-30 瑞尔D股份有限公司 用于使屏幕振动以减少散斑的系统和方法
CN105467733A (zh) * 2014-08-25 2016-04-06 深圳市绎立锐光科技开发有限公司 投影显示系统及其控制方法
CN106410602A (zh) * 2015-07-28 2017-02-15 海信集团有限公司 一种半导体激光器驱动方法及驱动电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8226241B2 (en) * 2009-05-15 2012-07-24 Alcatel Lucent Image projector employing a speckle-reducing laser source
JP5501187B2 (ja) * 2010-10-04 2014-05-21 日立コンシューマエレクトロニクス株式会社 レーザプロジェクタ
CN205067954U (zh) * 2015-10-08 2016-03-02 杭州虹视科技有限公司 激光照明装置、激光投影系统及激光显示系统
CN106019620A (zh) * 2016-07-01 2016-10-12 中国科学院光电研究院 一种抑制激光散斑的装置及激光投影装置
CN106125481A (zh) * 2016-08-31 2016-11-16 张剑 一种适用于商用家用的投影光源

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201408315Y (zh) * 2009-03-06 2010-02-17 上海三鑫科技发展有限公司 激光光学引擎
CN103368067A (zh) * 2012-03-30 2013-10-23 索尼公司 激光驱动电路及驱动方法、投影仪装置和使用激光的装置
JP2014059513A (ja) * 2012-09-19 2014-04-03 Casio Comput Co Ltd プロジェクタ
CN105453545A (zh) * 2013-06-06 2016-03-30 瑞尔D股份有限公司 用于使屏幕振动以减少散斑的系统和方法
CN105378543A (zh) * 2013-07-22 2016-03-02 英特尔公司 用于减少散斑效应的方法
CN105467733A (zh) * 2014-08-25 2016-04-06 深圳市绎立锐光科技开发有限公司 投影显示系统及其控制方法
CN106410602A (zh) * 2015-07-28 2017-02-15 海信集团有限公司 一种半导体激光器驱动方法及驱动电路

Also Published As

Publication number Publication date
CN108267916B (zh) 2020-09-29
CN108267916A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
JP4922046B2 (ja) Ledを用いるバックライトユニット
WO2018107634A1 (zh) 光源系统及投影装置
KR100691628B1 (ko) Led 어레이 구동 장치
US8449130B2 (en) Solid state lighting panels with limited color gamut and methods of limiting color gamut in solid state lighting panels
WO2015149700A1 (zh) 一种光源系统及投影系统
KR20030020912A (ko) 조명 시스템 및 디스플레이 장치
JP2005003900A (ja) プロジェクタ
JP2008269947A (ja) 液晶表示装置
CN105334687A (zh) 投影系统
CN206585194U (zh) 激光光源、以及设置有激光光源的投影仪
WO2017012537A1 (zh) 合光的控制系统及投影机
KR20110105298A (ko) 디밍 신호를 이용한 dc-dc 컨버터용 pwm 신호 발생회로 및 방법과 이를 구비한 백라이트용 led 구동 회로
JP2013004398A (ja) Led照明装置およびled配置方法
TW201435435A (zh) 發光模組及電子裝置
WO2018113226A1 (zh) 一种投影显示系统
CN203240331U (zh) 基于阵列分布的可调光led集成光源
WO2018095019A1 (zh) 光源系统、投影系统及照明装置
WO2018120688A1 (zh) 激光光源及显示设备
WO2019024213A1 (zh) 光源系统及投影装置
WO2018006656A1 (zh) 一种光源系统及舞台灯
JP2005129877A (ja) 発光ダイオードの配列、結線方法
CN203240329U (zh) 基于环形分布的可调光led集成光源
TW202211193A (zh) 背光模組及其液晶顯示器
CN102858054B (zh) 固态发光装置、固态发光光源、照明装置及其控制方法
CN103697417A (zh) 一种大功率高显色性可调光的led灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888524

Country of ref document: EP

Kind code of ref document: A1