WO2018120637A1 - 一种心电信号的降噪方法及装置 - Google Patents

一种心电信号的降噪方法及装置 Download PDF

Info

Publication number
WO2018120637A1
WO2018120637A1 PCT/CN2017/086502 CN2017086502W WO2018120637A1 WO 2018120637 A1 WO2018120637 A1 WO 2018120637A1 CN 2017086502 W CN2017086502 W CN 2017086502W WO 2018120637 A1 WO2018120637 A1 WO 2018120637A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
filtering
filtered signal
noise
Prior art date
Application number
PCT/CN2017/086502
Other languages
English (en)
French (fr)
Inventor
包磊
Original Assignee
深圳市善行医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市善行医疗科技有限公司 filed Critical 深圳市善行医疗科技有限公司
Publication of WO2018120637A1 publication Critical patent/WO2018120637A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Definitions

  • the invention belongs to the field of signal processing, and in particular relates to a noise reduction method and device for an electrocardiogram signal.
  • Electrocardiography is one of the most widely used methods of instrumentation in clinical practice.
  • the electrocardiogram not only visually reflects the heart health of the examiner, but also reflects the emotional fluctuations of the examiner.
  • the ECG is based on the ECG waveform, so the quality of the ECG signal is especially critical.
  • An object of the present invention is to provide a method and a device for reducing noise of an electrocardiogram signal, which aim to solve the problem that the calculation method of the existing ECG signal denoising method is huge and the system performance is too high.
  • the embodiment of the present invention is implemented by the method for reducing noise of an electrocardiogram signal, including:
  • Another object of the present invention is to provide a noise reduction device for an electrocardiographic signal, including:
  • An initialization unit configured to perform initialization processing on the first filter according to the preset parameter value
  • a first acquiring unit configured to acquire an ECG signal
  • a building unit configured to construct a mirrored extension signal of the ECG signal
  • a first filtering unit configured to perform dual bilateral filtering after inputting the image extension signal into the first filter to obtain a first filtered signal that does not include power frequency noise.
  • the image extension signal of the electrocardiographic signal is input into the first filter to perform double bilateral filtering processing, that is, the power frequency noise in the ECG signal can be removed. , to achieve the noise reduction of the ECG signal. Since the method is simple in steps, the amount of calculation is small, and the system performance requirements are low. The method can be applied to various electrocardiographs, and the quality of the electrocardiogram signal is improved to some extent relative to the original electrocardiographic signal, and a better electrocardiogram imaging effect is obtained, which is beneficial to hardware implementation.
  • FIG. 1 is a flowchart of implementing a method for reducing noise of an electrocardiogram signal according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a specific implementation of a method for reducing noise of an electrocardiogram signal S101 according to an embodiment of the present invention
  • FIG. 3 is a specific implementation flowchart of a method for reducing noise of an electrocardiogram signal S104 according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an implementation of a method for reducing noise of an electrocardiogram signal according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of implementing a method for reducing noise of an electrocardiogram signal according to another embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a noise reduction device for an electrocardiogram signal according to an embodiment of the present invention.
  • the method and device for reducing noise of the ECG signal can be applied to a terminal device integrated with an ECG signal analysis function, including an ECG device such as an ECG monitor, an electrocardiograph, and a wearable ECG detecting device.
  • the terminal device may further include a display screen, configured to generate an electrocardiogram according to the acquired electrocardiogram signal, and implement an electrocardiogram display function.
  • FIG. 1 is a flowchart showing an implementation process of a method for reducing noise of an electrocardiogram signal according to an embodiment of the present invention, which is described in detail as follows:
  • the first filter is initialized according to the preset parameter value.
  • the filter is mainly a band rejection filter, which includes a trap for attenuating certain ranges of frequency components to an extremely low level when a large number of frequency components pass through the filter, thereby filtering out
  • the required frequency component has a relatively large stopband range.
  • FIG. 2 shows a specific implementation process of the noise reduction method S101 of the ECG signal provided by the embodiment of the present invention, which is described in detail as follows:
  • the number of points at which the ECG device collects the ECG signal voltage per second is the sampling rate.
  • the sampling rate is a storage sampling rate, that is, a sampling rate used when storing data. The higher the sampling rate, the shorter the sampling period and the smaller the error of the ECG signal.
  • the collected ECG data can more accurately represent the continuous ECG waveform shape, which is closer to the true physiological condition of the examiner.
  • the reading process of the ECG signal can be directly read in the preparation stage of the noise reduction process. Take the value of this sampling rate.
  • the noise reduction device requests to acquire the sampling rate set by the signal acquisition device before acquiring the original data of the ECG signal, so that the acquisition device Send the acquisition rate set by the user to the noise reduction device.
  • the sampling rate is between 128hz and 1024hz.
  • the difference between the upper limit frequency of the stop band of the first filter and the lower limit frequency of the stop band is the first stop band width. If the frequency component of the ECG signal falls within the frequency range indicated by the stopband width or is equal to the notch frequency, the frequency component is filtered out.
  • the notch frequency and the first stopband width are also set by the user.
  • the notch frequency is preset to 50 hz.
  • each parameter in the original filter is calculated according to the sampling rate, the notch frequency, and the first stopband width, to obtain the first filter.
  • f s is the sampling rate
  • f 0 is the notch frequency
  • ⁇ f is the first stop band width
  • the original model of the filter is as shown above, and after the three values of the sampling rate, the notch frequency, and the first stop band width are acquired through steps S201 to S202, the value is substituted into the original filter. According to the above formula, a first filter containing specific parameter values is obtained.
  • the ECG signal can be obtained from a variety of sources. For example, after the ECG signal is collected by other terminal devices or the feature data about the ECG signal is collected, it is transmitted to the noise reduction device by wire or wirelessly.
  • the device directly collects an ECG signal, receives an ECG signal, or constructs a complete ECG signal based on the feature data.
  • a mirrored extension signal of the ECG signal is constructed.
  • the image extension signal can be obtained by time reversal and the like. That is, assuming that the curve corresponding to the electrocardiographic signal is drawn to the right of the y-axis of the xy coordinate system, a new coordinate point on the left side of the y-axis is generated, and the abscissa of each new coordinate point and each abscissa of the electrocardiographic signal are mutually The opposite numbers, and the two abscissas that are opposite to each other correspond to the same ordinate.
  • the signal value corresponding to the ECG signal at the last time point becomes the first value of its image extension signal.
  • the image extension signal After taking the inverse of the abscissa, a mirror symmetrical signal drawn on the left side of the y-axis of the x-y coordinate system is obtained, and the original electrocardiographic signal is superimposed with the mirror symmetrical signal to become the image extension signal. Therefore, the image extension signal will last twice as long on the x-axis as the original ECG signal.
  • the dual bidirectional filtering indicates that two bidirectional filtering actions need to be performed.
  • S104 is specifically:
  • performing forward filtering on the image extension signal can be regarded as moving the signal from left to right, that is, forward transmission to the filter circuit where the first filter is located, in accordance with the chronological order, by the first
  • the filtering circuit performs stepwise filtering on the mirrored extension signal, so that the filtered signal is used as the first forward filtered signal.
  • inverse filtering is performed on the first forward filtered signal to obtain a first inverse filtered signal.
  • Performing the inverse filtering action on the first forward filtered signal can be regarded as transmitting the signal from right to left, that is, inversely to the filter circuit where the first filter is located, according to the chronological order, by the first filtering
  • the circuit performs stepwise filtering on the first forward filtered signal, thereby using the filtered signal as the first inverse filtered signal.
  • the pulse signal which causes the ringing artifacts (RAs) to be located on both sides of the pulse signal.
  • the first inverse filtered signal is iteratively input to the first filter, and the forward filtering is performed to obtain a second forward filtered signal.
  • the first filtered signal includes an effective signal component and a residual component.
  • the residual component will no longer contain the PLI in the original ECG signal, only the RAs and the broadband noise located in the stop band.
  • the image extension signal of the electrocardiographic signal is input into the first filter to perform double bilateral filtering processing, that is, the power frequency noise in the ECG signal can be removed. , to achieve the noise reduction of the ECG signal. Since the method is simple in steps, the amount of calculation is small, and the system performance requirements are low. The method can be applied to various electrocardiographs, and the quality of the electrocardiographic signal is improved to some extent relative to the original electrocardiographic signal, and a better electrocardiogram imaging effect is obtained.
  • the method further includes:
  • a vibration ring noise of a residual component in the first filtered signal is located, and the residual component includes a plurality of heartbeat pulse signals.
  • the method for positioning the RAs in this embodiment includes, but is not limited to, methods such as differential, low-pass filtering, and threshold. Since such methods are common to those skilled in the art, the specific implementation principle will not be described again.
  • the located RAs is located to the right of the heartbeat pulse signal, it indicates that the right end of the heartbeat pulse signal has been contaminated by RAs, and the other end of the signal, that is, the left end is not contaminated by RAs. Therefore, the coefficient at the left end of the heartbeat pulse signal is obtained.
  • the value corresponding to the coefficient is larger than the preset threshold in the noise reduction device, it indicates that the heartbeat pulse signal belongs to the non-valid signal, and the signal needs to be eliminated from the obtained residual component, thereby realizing filtering of the RAs. .
  • the effective signal component of the first filtered signal is distorted due to the transient effect of the noise reduction device itself, and the distortion only lasts within a few seconds after the filtering is completed, the distortion effect will also be processed together.
  • the pulse coefficient on the opposite side of the RAs can be obtained, and when the coefficient is greater than the preset threshold, the RAs carried by the ECG pulse signal are filtered.
  • the elimination of the vibration ring noise in the original ECG signal is realized, the noise reduction effect of the ECG signal is further improved, and the final display ECG signal can reduce the distortion, which is more in line with the actual ECG detection condition of the user.
  • the method further includes:
  • the acquisition principle of the second stopband width and the third stopband width is the same as the first stopband width, and is set by the user in the noise reduction device. The difference is that the values of the three stopband widths are different.
  • Different filters can be obtained by changing the parameters of the original model of the filter.
  • the first stop band width is replaced by the second stop band width and the third stop band width, respectively, and the corresponding value is substituted by using the sampling rate and the notch frequency obtained in steps S201 and S202.
  • Original In the filter. According to the prototype formula of the above filter, a second filter and a third filter including different parameter values are obtained.
  • the second stopband width is a relatively large stopband width value, and the value is specifically 6hz or more; the third stopband width is a relatively small stopband width value, and the value is specifically 6hz or less.
  • the value of the second stop band width is 10 hz, and the value of the third stop band width is 4 hz.
  • the double bilateral filtering is performed to obtain a second filtered signal, where the second filtered signal includes an effective signal component and a residual component.
  • the residual portion of the output third filtered signal has a noise intensity lower than the original black electric signal with four levels of noise, and only contains weak and continuous intensity.
  • Short time RAs The RAs basically reached a level that can be ignored. Therefore, the final output signal obtained is an ECG signal with good noise reduction effect, which improves the quality of the ECG signal and obtains a better ECG imaging effect, enabling the medical staff to make a more accurate diagnosis for the ECG examiner. result.
  • the PLI and RAs can be eliminated at the same time, which is a real-time noise reduction process, which improves the efficiency of the ECG signal reduction process.
  • the wearable ECG monitoring device is specifically as follows:
  • the silver-chloride electrode on the conventional electrocardiographic detection device is replaced by a polymer-based fabric electrode and sewn into the clothes worn by the user.
  • the collected ECG signals are sent to mobile terminal devices such as smart phones to display the original ECG waveform, and the ECG information is forwarded to the cloud for storage and analysis. Feedback and early warning No. Noise reduction processing.
  • the user can ensure that the ECG signal is processed in the background while being comfortable to wear, thereby improving the accuracy of the ECG signal measurement, and better meeting the multi-scene application and the personalized and precise medical requirements.
  • the wearable electrocardiographic detecting device uses a magnet spring needle as a connector for electrode connection, and since the magnet has a large magnetic force, the interface can be firmly sucked, and therefore, even if the user wears the electrocardiographic detecting device When any movement occurs, the electrode can be firmly attached and not dropped, so that the collected ECG signal is more stable, less noise, and better signal quality.
  • the wearable electrocardiogram detecting device can also be an electrocardiogram monitoring device made of a conductive cloth.
  • the conductive cloth can form an electrode based on the peak shape, which increases the pressure between the electrode and the skin, reduces the contact resistance, and thus obtains an ECG signal with less noise and better quality.
  • FIG. 6 is a structural block diagram of the noise reduction device of the ECG signal provided by the embodiment of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus includes:
  • the initializing unit 61 is configured to perform initialization processing on the first filter according to the preset parameter value.
  • the first obtaining unit 62 is configured to acquire an ECG signal.
  • a building unit 63 is configured to construct a mirrored extension signal of the ECG signal.
  • the first filtering unit 64 is configured to perform dual bilateral filtering after the image extension signal is input to the first filter to obtain a first filtered signal that does not include power frequency noise.
  • the initializing unit 61 includes:
  • a first acquiring subunit configured to acquire a sampling rate about the ECG signal.
  • a second acquiring subunit configured to acquire a preset notch frequency and a first stopband width.
  • a calculating subunit configured to calculate each parameter in the original filter according to the sampling rate, the notch frequency, and the first stopband width to obtain the first filter.
  • f s is the sampling rate
  • f 0 is the notch frequency
  • ⁇ f is the first stop band width
  • the device further includes:
  • a second acquiring unit configured to acquire a preset second stopband width and a third stopband width.
  • a calculating unit configured to recalculate respective parameters in the original filter according to the sampling rate, the notch frequency, the second stopband width, and the third stopband width, respectively, to obtain a second Filter and third filter.
  • a second filtering unit configured to perform the double bilateral filtering after the first filtered signal is input to the second filter, to obtain a second filtered signal, where the second filtered signal includes an effective signal component and a residual component .
  • a third filtering unit configured to perform the double bilateral filtering after the residual component in the second filtered signal is input to the third filter to obtain a third filtered signal.
  • the first filtering unit 64 includes:
  • a first forward filtering subunit configured to perform forward filtering after the image extension signal is input to the first filter to obtain a first forward filtering signal.
  • a first inverse filtering subunit configured to perform inverse filtering on the first forward filtered signal to obtain a first inverse filtered signal.
  • a second forward filtering subunit configured to iteratively input the first inverse filtered signal into the first filter, perform the forward filtering, and acquire a second forward filtered signal.
  • a second inverse filtering subunit configured to perform the inverse filtering on the second forward filtered signal to obtain the first filtered signal that does not include power frequency noise.
  • the device further includes:
  • a positioning unit configured to locate a ringing noise of a residual component in the first filtered signal, where the residual component includes a plurality of heartbeat pulse signals.
  • a third acquiring unit configured to acquire, according to the positioning, a coefficient of one end of each of the heartbeat pulse signals that is not contaminated by the ringing noise.
  • a eliminating unit configured to filter, when the coefficient is greater than a preset threshold, one of the heartbeat pulse signals corresponding to the coefficient from the residual component.
  • the image extension signal of the electrocardiographic signal is input into the first filter to perform double bilateral filtering processing, that is, the power frequency noise in the ECG signal can be removed. , to achieve the noise reduction of the ECG signal. Since the method is simple in steps, the amount of calculation is small, and the system performance requirements are low. The method can be applied to various electrocardiographs, and the quality of the electrocardiographic signal is improved to some extent relative to the original electrocardiographic signal, and a better electrocardiogram imaging effect is obtained.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated as The components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Psychiatry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种心电信号的降噪方法和装置,方法包括:根据预设的参数值,对第一滤波器进行初始化处理(S101);获取心电信号(S102);构建心电信号的镜像延拓信号(S103);将镜像延拓信号输入第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号(S104)。只需将第一滤波器初始化,并将心电信号的镜像延拓信号输入第一滤波器,以进行双重双边滤波处理,即可以将心电信号中的工频噪声去除,实现了心电信号的降噪。方法步骤简单,因此计算量较少,对系统性能的要求较低。相对于原始心电信号来说,在一定程度上提升了心电信号的质量,得到了更好的心电图成像效果。

Description

一种心电信号的降噪方法及装置 技术领域
本发明属于信号处理领域,尤其涉及一种心电信号的降噪方法及装置。
背景技术
心电图检查是临床上广泛应用的器械检查方法之一。心电图不仅能够直观地反映检查者的心脏健康,还能够体现检查者的情绪波动状况。心电图检查以心电波形为基础,故心电信号的质量尤为关键。
当前,由于可穿戴式心电检测装置的便携性以及强大的数据收集能力,其在家庭保健中占据了越来越重要的地位。用户仅需穿戴该心电检测装置,即可以长时间地对自身的心电信号进行采集。然而,在使用穿戴式心电监测仪的过程中,常常会伴随着用户持续不断地运动,从而导致电极脱落或不服贴等状况,因此,采集得到的心电信号容易产生不稳定的现象,并伴随有多种类型的噪声,强烈的噪声会影响用户病情的诊断。
在穿戴式心电检测装置中,工频噪声和振环噪声是心电信号噪声的主要来源之一,基于小波变换的心电信号降噪方法拥有较好的降噪效果,但是对信号处理的计算量庞大,导致对系统性能的要求过高。
发明内容
本发明实施例的目的在于提供一种心电信号的降噪方法及装置,旨在解决现有心电信号的降噪方法中计算量庞大,对系统性能的要求过高的问题。
本发明实施例是这样实现的,一种心电信号的降噪方法,包括:
根据预设的参数值,对第一滤波器进行初始化处理;
获取心电信号;
构建所述心电信号的镜像延拓信号;
将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号;
本发明实施例的另一目的在于提供一种心电信号的降噪装置,包括:
初始化单元,用于根据预设的参数值,对第一滤波器进行初始化处理;
第一获取单元,用于获取心电信号;
构建单元,用于构建所述心电信号的镜像延拓信号;
第一滤波单元,用于将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号。
本发明实施例中,只需将第一滤波器初始化,并将心电信号的镜像延拓信号输入第一滤波器,以进行双重双边滤波处理,即可以将心电信号中的工频噪声去除,实现了心电信号的降噪。由于该方法步骤简单,因此计算量较少,对系统性能的要求较低。该方法能够被应用于各种心电仪之中,相对于原始心电信号来说,在一定程度上提升了心电信号的质量,得到了更好的心电图成像效果,有利于硬件的实现。
附图说明
图1是本发明实施例提供的心电信号的降噪方法的实现流程图;
图2是本发明实施例提供的心电信号的降噪方法S101的具体实现流程图;
图3是本发明实施例提供的心电信号的降噪方法S104的具体实现流程图;
图4是本发明另一实施例提供的心电信号的降噪方法的实现流程图;
图5是本发明又一实施例提供的心电信号的降噪方法的实现流程图;
图6是本发明实施例提供的心电信号的降噪装置的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅 仅用以解释本发明,并不用于限定本发明。
本发明实施例提供的心电信号的降噪方法及装置可以应用于集成了心电信号分析功能的终端设备中,包括心电监测仪、心电图机以及可穿戴式心电检测装置等心电设备,进一步地,所述终端设备还可以包括显示屏,用于根据获取到的心电信号生成心电图,并实现心电图的展示功能。
图1示出了本发明实施例提供的心电信号的降噪方法的实现流程,详述如下:
在S101中,根据预设的参数值,对第一滤波器进行初始化处理。
应当注意的是,“第一”、“第二”以及“第三”仅为了区分不同的作用对象,便于用户理解。
在本实施例中,滤波器主要为带阻滤波器,其包括陷波器,用于在大量频率分量通过该滤波器时,将某些范围的频率分量衰减到极低水平,从而滤除不需要的频率分量,具有相对较大的阻带范围。
对第一滤波器进行初始化处理,表示在确认了一个固定的滤波器模型之后,选取适用于对心电信号进行降噪处理的模型参数,从而将参数调节后的滤波器模型应用于后续的降噪过程当中。
作为本发明的一个实施例,图2示出了本发明实施例提供的心电信号的降噪方法S101的具体实现流程,详述如下:
在S201中,获取关于所述心电信号的采样率。
心电设备每秒钟采集心电信号电压的点数即为采样率。具体地,该采样率为存储采样率,即存储数据时候采用的采样率大小。采样率越高,采样周期就越短,得到心电信号的误差就越小,所采集到的心电数据就能更加精确地表示连续的心电波形形态,越接近检查者的真实生理状况。
若心电信号的采集过程与降噪过程在同一终端设备上完成,则在接收到用户根据实际所需而调节的采样率后,在对心电信号进行降噪处理的准备阶段,可以直接读取该采样率的数值。
若心电信号的采集过程与降噪过程在不同的终端设备上完成,则降噪装置在获取心电信号的原始数据之前,先请求获取信号采集装置所设置的采样率,以使该采集装置将用户所设置的采集率发送至降噪装置。
通常情况下,该采样率在128hz至1024hz之间。
在S202中,获取预设的陷波频率以及第一阻带宽度。
第一滤波器的阻带的上限频率与阻带的下限频率之差为第一阻带宽度。若心电信号的频率分量属于该阻带宽度所表示的频率范围内或等于陷波频率,则该频率分量被滤除。
陷波频率以及第一阻带宽度同样由用户设定。优选地,为了去除工频干扰噪声,陷波频率预设为50hz。
在S203中,根据所述采样率、所述陷波频率以及所述第一阻带宽度,计算原始滤波器中的各个参数,得到所述第一滤波器。
其中,所述原始滤波器为:
Figure PCTCN2017086502-appb-000001
fs为所述采样率,f0为所述陷波频率,Δf为所述第一阻带宽度。
滤波器的原始模型如上述所示,通过步骤S201至S202获取到采样率、陷波频率以及第一阻带宽度三个数值后,将该数值代入原始滤波器中。根据上述公式,得到包含具体参数值的第一滤波器。
在S102中,获取心电信号。
本实施例中,心电信号可从多种途径获得。例如可以是,由其他终端设备采集得到心电信号或者采集得到关于心电信号的特征数据后,通过有线或无线的方式传输至本降噪装置中。
例如,还可以是,由本装置直接采集心电信号、接收心电信号或根据特征数据构建完整的心电信号。
在S103中,构建所述心电信号的镜像延拓信号。
对于原始的心电信号,利用时间反向等方法可获得其镜像延拓信号。即,假设把心电信号对应的曲线描绘于x-y坐标系的y轴右侧,则生成y轴左侧的新坐标点,每一个新坐标点的横坐标与心电信号的每个横坐标互为相反数,且互为相反数的两个横坐标对应相同的纵坐标。从而使得心电信号在最后一个时间点对应的信号值,成为了其镜像延拓信号的第一个值。将横坐标取相反数后,得到描绘于x-y坐标系的y轴左侧的镜像对称信号,将原始心电信号与该镜像对称信号叠加,成为所述镜像延拓信号。因此,镜像延拓信号在x轴上持续的时间长度将是原始心电信号的两倍。
在S104中,将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号。
作为本发明的一个实施例,所述双重双向滤波表示需要执行两次双向滤波动作。如图3所示,S104具体为:
在S301中,将所述镜像延拓信号输入所述第一滤波器后,执行正向滤波,得到第一正向滤波信号。
本实施例中,对镜像延拓信号执行正向滤波,可看做是将该信号从左至右,即正向传输至第一滤波器所在的滤波电路中,依照时间顺序,由该第一滤波电路来对镜像延拓信号执行逐步滤波,从而将滤除后得到的信号作为第一正向滤波信号。
在S302中,对所述第一正向滤波信号执行反向滤波,得到第一反向滤波信号。
对第一正向滤波信号执行反向滤波的动作,可看做是将该信号从右至左,即反向传输至第一滤波器所在的滤波电路中,依照时间顺序,由该第一滤波电路来对第一正向滤波信号执行逐步滤波,从而将滤除后得到的信号作为第一反向滤波信号。
由于第一滤波器可看做是一个因果系统,因此,该滤波过程中的同一个心 跳脉冲信号,其造成的振环噪声(ringing artifacts,RAs)会位于脉冲信号的两侧。
在S303中,将所述第一反向滤波信号迭代输入所述第一滤波器,执行所述正向滤波,获取第二正向滤波信号。
在S304中,对所述第二正向滤波信号执行所述反向滤波,得到所述不包含工频噪声PLI的第一滤波信号。
双重双向滤波处理后,第一滤波信号包含有效信号分量以及残余分量。其中,该残余分量将不再包含原始心电信号中的PLI,仅包含RAs以及位于阻带内的宽带噪声。
本发明实施例中,只需将第一滤波器初始化,并将心电信号的镜像延拓信号输入第一滤波器,以进行双重双边滤波处理,即可以将心电信号中的工频噪声去除,实现了心电信号的降噪。由于该方法步骤简单,因此计算量较少,对系统性能的要求较低。该方法能够被应用于各种心电仪之中,相对于原始心电信号来说,在一定程度上提升了心电信号的质量,得到了更好的心电图成像效果。
作为本发明的另一实施例,如图4所示,所述方法还包括:
在S401中,对所述第一滤波信号中残余分量的振环噪声进行定位,所述残余分量中包含有多个心跳脉冲信号。
因第一滤波器滤波的作用,在每个心跳脉冲信号的其中一端,将会产生附加多余的RAs。较强及重叠的RAs会干扰脉冲信号的检测,因此,需要在心跳脉冲信号中将产生RAs的一端确定出来,以进行进一步地滤除。
本实施例对RAs进行定位的方法包含但不限于差分、低通滤波及阈值等方法。由于此类方法为本领域的技术人员所通用的方法,因此其具体实现原理不再赘述。
在S402中,根据所述定位,获取每个所述心跳脉冲信号中未被所述振环噪声所污染的一端的系数。
若定位出的RAs位于心跳脉冲信号的右侧,表示该心跳脉冲信号的右端已被RAs所污染,其信号的另一端,即左端未被RAs所污染。因此,获取该心跳脉冲信号左端的系数。
在S403中,当所述系数大于预设的阈值时,从所述残余分量中滤除所述系数对应的一个所述心跳脉冲信号。
若该系数对应的值比在降噪装置中的预设阈值要大,则表示该心跳脉冲信号属于非有效信号,需要从得到的残余分量中将该信号消除,从而实现了对RAs的滤除。
若由于降噪装置自身的暂态效应而造成第一滤波信号中有效信号分量的失真,且该失真仅持续于滤波完成之后的几秒之内,则该失真效果也将会被一同处理。
在本实施例中,通过对第一滤波信号中携带的RAs进行定位,可以获取出RAs相反侧的脉冲系数,并在该系数大于预设阈值时,将该心电脉冲信号携带的RAs进行过滤,实现了对原始心电信号中振环噪声的消除,进一步提高了心电信号的降噪效果,保证了最终显示的心电信号能够降低失真,更加符合了用户实际的心电检测状况。
作为本发明的又一实施例,如图5所示,所述方法还包括:
在S501中,获取预设的第二阻带宽度以及第三阻带宽度。
第二阻带宽度以及第三阻带宽度的获取原理与第一阻带宽度相同,均由用户设置在降噪装置中。其区别在于,这三个阻带宽度的数值不同。
在S502中,根据所述采样率、所述陷波频率、所述第二阻带宽度以及所述第三阻带宽度,分别计算所述原始滤波器中的各个参数,以获得第二滤波器以及第三滤波器。
通过变更滤波器原始模型的参数,能够获得不同的滤波器。为了变更该参数值,通过以第二阻带宽度以及第三阻带宽度来分别替代第一阻带宽度,并利用步骤S201和S202中获取到的采样率以及陷波频率,将对应的数值代入原始 滤波器中。根据上述滤波器的原型公式,得到包含不同参数值的第二滤波器和第三滤波器。
其中,第二阻带宽度为一个相对较大的阻带宽度值,该值具体为6hz以上;第三阻带宽度为一个相对较小的阻带宽度值,该值具体为6hz以下。
优选地,第二阻带宽度的值为10hz,第三阻带宽度的值为4hz。
在S503中,将所述第一滤波信号输入所述第二滤波器后,执行所述双重双边滤波,以得到第二滤波信号,所述第二滤波信号包括有效信号分量以及残余分量。
完成第一次迭代双重双边滤波后,输出的第二滤波信号的残差部分中,仅包含了强度较大但持续时间较短的RAs。
在S504中,将所述第二滤波信号中的残余分量输入所述第三滤波器后,执行所述双重双边滤波,以得到第三滤波信号。
完成第二次迭代双重双边滤波后,输出的第三滤波信号中残差部分所具有的噪声强度比原始心电信号所具有的噪声强度低了四个级别,且仅包含有强度较弱且持续时间较短的RAs。该RAs基本上达到了可被忽略不计的水平。因此,得到的最终输出信号为具有良好降噪效果的心电信号,提升了心电信号的质量,得到了更好的心电图成像效果,使得医护人员能够对心电检查者作出更为正确的诊断结果。
当上述各个滤波器中的低通滤波系数设置为整数时,能够同时消除PLI及RAs,是一个能够实时进行的降噪过程,提高了心电信号降噪过程中的效率。
上述各个发明实施例提供的方法可以应用于穿戴式心电检测装置当中。作为本发明的一个实施示例,该穿戴式心电监测装置具体如下:
采用基于高聚物织物电极替代传统心电检测装置上的氯化银电极,并将其缝制于用户日常穿着的衣服当中。通过4.0版本的蓝牙技术或蓝牙低能耗技术,将采集得到的心电信号发送至智能手机等移动终端设备中,用以显示原始的心电波形,并将心电信息转发到云端进行存储、分析、反馈预警,从而对心电信 号进行降噪处理。由此,保证了用户能够在舒适穿戴的情况下,在后台对心电信号进行处理,提高了心电信号测量的准确性,更好地满足多场景应用及个性化、精准化医疗需求。
特别地,该穿戴式心电检测装置使用磁铁弹簧针做为电极连线的接插件,由于磁铁具有较大的磁力,能够把接口牢牢吸住,因此,即使用户在穿戴使用心电检测装置时发生了任何运动,也能保证电极稳固地贴合、不掉落,从而使得采集到的心电信号更稳定、噪声更少、信号质量更佳。
此外,该穿戴式心电检测装置还能是采用导电布制成的心电监测服。导电布能够基于波峰形态来形成电极,增大了电极与皮肤之间的压力,减小了接触电阻,从而也得到了噪声较少、质量更好的心电信号。
对应于本发明实施例所提供的心电信号的降噪方法,图6示出了本发明实施例提供的心电信号的降噪装置的结构框图。为了便于说明,仅示出了与本实施例相关的部分。
参照图6,该装置包括:
初始化单元61,用于根据预设的参数值,对第一滤波器进行初始化处理。
第一获取单元62,用于获取心电信号。
构建单元63,用于构建所述心电信号的镜像延拓信号。
第一滤波单元64,用于将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号。
可选地,所述初始化单元61包括:
第一获取子单元,用于获取关于所述心电信号的采样率。
第二获取子单元,用于获取预设的陷波频率以及第一阻带宽度。
计算子单元,用于根据所述采样率、所述陷波频率以及所述第一阻带宽度,计算原始滤波器中的各个参数,得到所述第一滤波器。
其中,所述原始滤波器为:
Figure PCTCN2017086502-appb-000002
fs为所述采样率,f0为所述陷波频率,Δf为所述第一阻带宽度。
可选地,所述装置还包括:
第二获取单元,用于获取预设的第二阻带宽度以及第三阻带宽度。
计算单元,用于根据所述采样率、所述陷波频率、所述第二阻带宽度以及所述第三阻带宽度,分别重新计算所述原始滤波器中的各个参数,以获得第二滤波器以及第三滤波器。
第二滤波单元,用于将所述第一滤波信号输入所述第二滤波器后,执行所述双重双边滤波,以得到第二滤波信号,所述第二滤波信号包括有效信号分量以及残余分量。
第三滤波单元,用于将所述第二滤波信号中的残余分量输入所述第三滤波器后,执行所述双重双边滤波,以得到第三滤波信号。
可选地,所述第一滤波单元64包括:
第一正向滤波子单元,用于将所述镜像延拓信号输入所述第一滤波器后,执行正向滤波,得到第一正向滤波信号。
第一反向滤波子单元,用于对所述第一正向滤波信号执行反向滤波,得到第一反向滤波信号。
第二正向滤波子单元,用于将所述第一反向滤波信号迭代输入所述第一滤波器,执行所述正向滤波,获取第二正向滤波信号。
第二反向滤波子单元,用于对所述第二正向滤波信号执行所述反向滤波,得到所述不包含工频噪声的第一滤波信号。
可选地,所述装置还包括:
定位单元,用于对所述第一滤波信号中残余分量的振环噪声进行定位,所述残余分量中包含有多个心跳脉冲信号。
第三获取单元,用于根据所述定位,获取每个所述心跳脉冲信号中未被所述振环噪声所污染的一端的系数。
消除单元,用于当所述系数大于预设的阈值时,从所述残余分量中滤除所述系数对应的一个所述心跳脉冲信号。
本发明实施例中,只需将第一滤波器初始化,并将心电信号的镜像延拓信号输入第一滤波器,以进行双重双边滤波处理,即可以将心电信号中的工频噪声去除,实现了心电信号的降噪。由于该方法步骤简单,因此计算量较少,对系统性能的要求较低。该方法能够被应用于各种心电仪之中,相对于原始心电信号来说,在一定程度上提升了心电信号的质量,得到了更好的心电图成像效果。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为 单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种心电信号的降噪方法,其特征在于,包括:
    根据预设的参数值,对第一滤波器进行初始化处理;
    获取心电信号;
    构建所述心电信号的镜像延拓信号;
    将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号;
  2. 如权利要求1所述的方法,其特征在于,所述根据预设的参数值,对第一滤波器进行初始化处理包括:
    获取关于所述心电信号的采样率;
    获取预设的陷波频率以及第一阻带宽度;
    根据所述采样率、所述陷波频率以及所述第一阻带宽度,计算原始滤波器中的各个参数,得到所述第一滤波器;
    其中,所述原始滤波器为:
    Figure PCTCN2017086502-appb-100001
    fs为所述采样率,f0为所述陷波频率,Δf为所述第一阻带宽度。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    获取预设的第二阻带宽度以及第三阻带宽度;
    根据所述采样率、所述陷波频率、所述第二阻带宽度以及所述第三阻带宽度,分别计算所述原始滤波器中的各个参数,以获得第二滤波器以及第三滤波器;
    将所述第一滤波信号输入所述第二滤波器后,执行所述双重双边滤波,以得到第二滤波信号,所述第二滤波信号包括有效信号分量以及残余分量;
    将所述第二滤波信号中的残余分量输入所述第三滤波器后,执行所述双重 双边滤波,以得到第三滤波信号。
  4. 如权利要求1所述的方法,其特征在于,所述将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号包括:
    将所述镜像延拓信号输入所述第一滤波器后,执行正向滤波,得到第一正向滤波信号;
    对所述第一正向滤波信号执行反向滤波,得到第一反向滤波信号;
    将所述第一反向滤波信号迭代输入所述第一滤波器,执行所述正向滤波,获取第二正向滤波信号;
    对所述第二正向滤波信号执行所述反向滤波,得到所述不包含工频噪声的第一滤波信号。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    对所述第一滤波信号中残余分量的振环噪声进行定位,所述残余分量中包含有多个心跳脉冲信号;
    根据所述定位,获取每个所述心跳脉冲信号中未被所述振环噪声所污染的一端的系数;
    当所述系数大于预设的阈值时,从所述残余分量中滤除所述系数对应的所述心跳脉冲信号。
  6. 一种心电信号的降噪装置,其特征在于,包括:
    初始化单元,用于根据预设的参数值,对第一滤波器进行初始化处理;
    第一获取单元,用于获取心电信号;
    构建单元,用于构建所述心电信号的镜像延拓信号;
    第一滤波单元,用于将所述镜像延拓信号输入所述第一滤波器后,执行双重双边滤波,以得到不包含工频噪声的第一滤波信号。
  7. 如权利要求6所述的装置,其特征在于,所述初始化单元包括:
    第一获取子单元,用于获取关于所述心电信号的采样率;
    第二获取子单元,用于获取预设的陷波频率以及第一阻带宽度;
    计算子单元,用于根据所述采样率、所述陷波频率以及所述第一阻带宽度,计算原始滤波器中的各个参数,得到所述第一滤波器;
    其中,所述原始滤波器为:
    Figure PCTCN2017086502-appb-100002
    fs为所述采样率,f0为所述陷波频率,Δf为所述第一阻带宽度。
  8. 如权利要求7所述的装置,其特征在于,所述装置还包括:
    第二获取单元,用于获取预设的第二阻带宽度以及第三阻带宽度;
    计算单元,用于根据所述采样率、所述陷波频率、所述第二阻带宽度以及所述第三阻带宽度,分别重新计算所述原始滤波器中的各个参数,以获得第二滤波器以及第三滤波器;
    第二滤波单元,用于将所述第一滤波信号输入所述第二滤波器后,执行所述双重双边滤波,以得到第二滤波信号,所述第二滤波信号包括有效信号分量以及残余分量;
    第三滤波单元,用于将所述第二滤波信号中的残余分量输入所述第三滤波器后,执行所述双重双边滤波,以得到第三滤波信号。
  9. 如权利要求6所述的装置,其特征在于,所述第一滤波单元包括:
    第一正向滤波子单元,用于将所述镜像延拓信号输入所述第一滤波器后,执行正向滤波,得到第一正向滤波信号;
    第一反向滤波子单元,用于对所述第一正向滤波信号执行反向滤波,得到第一反向滤波信号;
    第二正向滤波子单元,用于将所述第一反向滤波信号迭代输入所述第一滤波器,执行所述正向滤波,获取第二正向滤波信号;
    第二反向滤波子单元,用于对所述第二正向滤波信号执行所述反向滤波, 得到所述不包含工频噪声的第一滤波信号。
  10. 如权利要求6所述的装置,其特征在于,所述装置还包括:
    定位单元,用于对所述第一滤波信号中残余分量的振环噪声进行定位,所述残余分量中包含有多个心跳脉冲信号;
    第三获取单元,用于根据所述定位,获取每个所述心跳脉冲信号中未被所述振环噪声所污染的一端的系数;
    消除单元,用于当所述系数大于预设的阈值时,从所述残余分量中滤除所述系数对应的所述心跳脉冲信号。
PCT/CN2017/086502 2016-12-30 2017-05-29 一种心电信号的降噪方法及装置 WO2018120637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611255096.1A CN106667439B (zh) 2016-12-30 2016-12-30 一种心电信号的降噪方法及装置
CN201611255096.1 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018120637A1 true WO2018120637A1 (zh) 2018-07-05

Family

ID=58872748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086502 WO2018120637A1 (zh) 2016-12-30 2017-05-29 一种心电信号的降噪方法及装置

Country Status (2)

Country Link
CN (1) CN106667439B (zh)
WO (1) WO2018120637A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112966566A (zh) * 2021-02-05 2021-06-15 武汉中旗生物医疗电子有限公司 一种心电信号基线滤除方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106667439B (zh) * 2016-12-30 2018-07-27 深圳市善行医疗科技有限公司 一种心电信号的降噪方法及装置
WO2019047165A1 (zh) * 2017-09-08 2019-03-14 曼森伯格(深圳)科技发展有限公司 滤除工频干扰信号的控制方法及系统
CN110141216B (zh) * 2019-05-29 2022-09-30 清华大学深圳研究生院 一种心电信号qrs特征波的识别方法、训练方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015532A1 (en) * 2007-04-25 2011-01-20 Siemens Medical Solutions Usa, Inc. Denoising and Artifact Rejection For Cardiac Signal in a Sensis System
CN102940489A (zh) * 2012-11-29 2013-02-27 天津开发区奥金高新技术有限公司 一种微弱电生理信号的滤波器设计方法及滤波方法
US20130245479A1 (en) * 2012-03-13 2013-09-19 Industry-Academic Cooperation Foundation Yonsei University Apparatus and method for removing noise from biosignals
CN104783780A (zh) * 2015-04-13 2015-07-22 深圳市飞马与星月科技研究有限公司 心电信号除噪方法及装置
CN106667439A (zh) * 2016-12-30 2017-05-17 包磊 一种心电信号的降噪方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297557A (en) * 1992-10-14 1994-03-29 Del Mar Avionics Stress test system with bidirectional filter
CN101385645A (zh) * 2008-10-14 2009-03-18 中国民航大学 基于量子简单递归神经网络心电图智能检测法
US8554311B2 (en) * 2011-06-17 2013-10-08 General Electric Company System and method of noise reduction in an electrocardiology study
CN103405227B (zh) * 2013-08-02 2015-07-22 重庆邮电大学 基于双层形态学滤波的心电信号预处理方法
CN104706350B (zh) * 2014-11-13 2017-04-26 华中科技大学 一种心电信号降噪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110015532A1 (en) * 2007-04-25 2011-01-20 Siemens Medical Solutions Usa, Inc. Denoising and Artifact Rejection For Cardiac Signal in a Sensis System
US20130245479A1 (en) * 2012-03-13 2013-09-19 Industry-Academic Cooperation Foundation Yonsei University Apparatus and method for removing noise from biosignals
CN102940489A (zh) * 2012-11-29 2013-02-27 天津开发区奥金高新技术有限公司 一种微弱电生理信号的滤波器设计方法及滤波方法
CN104783780A (zh) * 2015-04-13 2015-07-22 深圳市飞马与星月科技研究有限公司 心电信号除噪方法及装置
CN106667439A (zh) * 2016-12-30 2017-05-17 包磊 一种心电信号的降噪方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, LIPING: "Research on Diagnosis of Sudden Cardiac Death Based on ECG Signals and TWA", CHINA MASTER'S THESES FULL-TEXT DATABASE, 31 January 2012 (2012-01-31) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112966566A (zh) * 2021-02-05 2021-06-15 武汉中旗生物医疗电子有限公司 一种心电信号基线滤除方法及装置
CN112966566B (zh) * 2021-02-05 2023-07-07 武汉中旗生物医疗电子有限公司 一种心电信号基线滤除方法及装置

Also Published As

Publication number Publication date
CN106667439A (zh) 2017-05-17
CN106667439B (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
WO2018120637A1 (zh) 一种心电信号的降噪方法及装置
KR101821967B1 (ko) 생리적 신호의 자동화된 품질 평가
Lee et al. Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry
US11116453B2 (en) Apparatus and method for measuring biosignals
TW201806370A (zh) 提供即時訊號分段和基準點對準架構的系統與方法
WO2018120636A1 (zh) 一种心电监测方法及系统
BRPI1100261A2 (pt) Processo e dispositivo para interface cérebro-computador
Lee et al. Development of a mobile phone based e-health monitoring application
Barbara et al. A comparison of EOG baseline drift mitigation techniques
JP2015211829A (ja) 動脈拍動波伝搬時間のvpgおよびecg/ekg信号からの判定
WO2018120635A1 (zh) 生理数据的监测方法及装置
Damasevicius et al. BoostEMD: an extension of EMD method and its application for denoising of EMG signals
JP4945309B2 (ja) 脳波測定方法及び脳波測定装置並びに記録媒体
JP5466316B2 (ja) 磁気共鳴イメージングにおける導電ループを用いたノイズ減少
Qiao et al. Revise: Remote vital signs measurement using smartphone camera
US10448896B2 (en) Method and apparatus for processing bio-signals using recursive estimation
Smaoui et al. Single scale CWT algorithm for ECG beat detection for a portable monitoring system
Kim et al. A wearable ECG monitoring system using adaptive EMD filter based on activity status
CN110236532A (zh) 生物电信号处理方法、装置、计算机设备和存储介质
Al-Omary et al. Heart disease monitoring system using web and smartphone
CN114947754A (zh) 用于确定睡眠数据的方法和装置
Anwer et al. Evaluation of Data Processing and Artifact Removal Approaches Used for Physiological Signals Captured Using Wearable Sensing Devices during Construction Tasks
Zhao Design and Application of Human Movement Respiratory and ECG Signal Acquisition System
TWI812200B (zh) 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體
WO2017096597A1 (zh) 心电信号处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888286

Country of ref document: EP

Kind code of ref document: A1