TWI812200B - 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 - Google Patents
具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 Download PDFInfo
- Publication number
- TWI812200B TWI812200B TW111116549A TW111116549A TWI812200B TW I812200 B TWI812200 B TW I812200B TW 111116549 A TW111116549 A TW 111116549A TW 111116549 A TW111116549 A TW 111116549A TW I812200 B TWI812200 B TW I812200B
- Authority
- TW
- Taiwan
- Prior art keywords
- heart rate
- state
- dynamic
- peak parameter
- alert
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 55
- 238000003860 storage Methods 0.000 title claims abstract description 14
- 238000005070 sampling Methods 0.000 claims abstract description 52
- 238000011084 recovery Methods 0.000 claims description 59
- 230000008859 change Effects 0.000 claims description 46
- 230000009467 reduction Effects 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 16
- 238000007781 pre-processing Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 238000013186 photoplethysmography Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010989 Bland-Altman Methods 0.000 description 2
- 238000009532 heart rate measurement Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
- A61B5/721—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Cardiology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
一種具有心率偵測之穿戴式裝置包含一心率偵測組件及一處理器。心率偵測組件用以依據一預設頻率獲得多個動態心率訊號。處理器包含一有限狀態機和一儲存器。儲存器用以儲存該些動態心率訊號,有限狀態機依據一取樣參數及該些動態心率訊號決定一心率狀態。處理器依據心率狀態獲得一權重,並依據權重獲得一動態心率值。
Description
本發明涉及一種穿戴式裝置,尤指一種可偵測動態心率的穿戴式裝置。
隨著穿戴式裝置的興起,人們對於穿戴式裝置的功能要求也逐漸提升,目前已有穿戴式裝置結合心率偵測功能之產品,使用者將穿戴式裝置配戴於身體後,即可透過穿戴式裝置即時偵測自身心率狀態。在正常使用狀態下,穿戴式裝置會偵測到人體在靜態的心率訊號及人體在活動中的心率訊號,然而,當人體處於活動中,穿戴式裝置所偵測到的心率訊號包含大量的運動雜訊,這些運動雜訊會嚴重干擾到心率的判讀。對於夾帶運動雜訊的心率訊號,穿戴式裝置需要更複雜的計算,且需要增加記憶體容量,以確保複雜的計算可以正常運行,如此將大幅增加製造成本,同時,過於複雜的計算亦會造成心率計算的困難。
有鑑於此,在一些實施例中,一種具有心率偵測之穿戴式裝置包含心率偵測組件及處理器。心率偵測組件用以依據一預設頻率獲得多個動態心率訊號。處理器包含有限狀態機(finite state machine,FSM)和儲存器,儲存器用以儲存該些動態心率訊號,有限狀態機依據取樣參數及該些動態心率訊號決定心率狀態。其中,該心率狀態包含穩定狀態、警戒狀態、恢復狀態及未知狀態,處理器依據該心率狀態獲得權重,並依據權重獲得動態心率值。
在一些實施例中,有限狀態機用以於初始時,決定該心率狀態為該穩定狀態。當該心率狀態為該穩定狀態時,當心率變化率大於或等於心率變化率閾值、且波峰參數大於或等於波峰參數閾值,有限狀態機決定心率狀態為穩定狀態。反之,則決定心率狀態為警戒狀態。其中,心率變化率為當前動態心率值與前刻動態心率值之差值。
在一些實施例中,當心率狀態為警戒狀態時,當波峰參數小於波峰參數閾值,且警戒計數值達到警戒狀態計數閾值,有限狀態機決定心率狀態為未知狀態且將警戒計數值歸零。當波峰參數大於或等於波峰參數閾值,有限狀態機決定心率狀態為恢復狀態且將警戒計數值歸零。反之,有限狀態機決定心率狀態為警戒狀態、且當波峰參數小於波峰參數閾值時,警戒計數值加一。
在一些實施例中,當心率狀態為未知狀態時,當波峰參數大於或等於波峰參數閾值,且未知計數值達到未知狀態計數閾值,有限狀態機決定心率狀態為警戒狀態且將未知計數值歸零。當波峰參數小於一波峰參數閾值,該有限狀態機決定心率狀態為未知狀態且將未知計數
值歸零。反之,有限狀態機決定心率狀態為未知狀態、且當波峰參數大於或等於波峰參數閾值時,未知計數值加一。
在一些實施例中,當心率狀態為恢復狀態時,當波峰參數大於或等於波峰參數閾值、心率變化率小於或等於心率變化率閾值、且一恢復計數值達到一恢復狀態計數閾值,有限狀態機決定心率狀態為穩定狀態且將恢復計數值歸零。當波峰參數小於第一波峰參數閾值,有限狀態機決定心率狀態為警戒狀態且將恢復計數值歸零。反之,有限狀態機決定心率狀態為恢復狀態、且當波峰參數大於或等於第一波峰參數閾值時,恢復計數值加一。
在一些實施例中,一種動態心率偵測方法,包含:依據一取樣參數的多個動態心率訊號,獲得一波峰參數及一估測心率。依據波峰參數及估測心率,獲得一權重。依據權重與估測心率,獲得一動態心率值。
綜上所述,依據一些實施例,處理器透過有限狀態機對心率狀態區別出穩定狀態、警戒狀態、未知狀態及恢復狀態後,處理器即可依據不同心率狀態給予相對應的權重,使處理器在不同狀態下的估測心率依據權重獲得動態心率值,且動態心率值可接近真實的心率數值,此外,透過給予不同心率狀態,亦可以降低處理器的心率估測的複雜度,藉此降低處理器及儲存器的運行負擔。
100:具有心率偵測之穿戴式裝置
101:心率偵測組件
102:處理器
103:有限狀態機
104:儲存器
105:心率感測器
106:訊號處理電路
107:三軸感測器
108:雜訊濾波器
HR1:真實動態心率
HR2:動態心率值
L1:差值上限
L2:差值下限
L3:差值平均值
F1:頻域數據
F2:降噪數據
MA:運動雜訊
TR:估測區間
S80、S82、S84、S85、S86:步驟
[圖1]為根據本發明一些實施例,穿戴式裝置的立體圖。
[圖2]為根據本發明一些實施例,穿戴式裝置的系統方塊圖。
[圖3]為根據本發明一些實施例,動態心率偵測方法流程圖。
[圖4A]為尚未去除運動雜訊的頻域數據圖。
[圖4B]為根據圖4A去除運動雜訊後的降噪數據圖。
[圖5]為根據本發明一些實施例,有限狀態機的狀態判斷流程圖。
[圖6]為根據本發明一些實施例,心率誤差與波峰參數的關係圖。
[圖7]為根據本發明一些實施例,估測區間的示意圖。
[圖8]為根據本發明一些實施例,動態心率值與真實動態心率的數據對比圖。
[圖9]為根據本發明一些實施例,動態心率值與真實動態心率的布蘭德-奧特曼差異圖。
以下提出各種實施例進行詳細說明,然而,實施例僅用以作為範例說明,並不會限縮本發明欲保護之範圍。此外,實施例中的圖式省略部份元件,以清楚顯示本發明的技術特點。在所有圖式中相同的標號將用於表示相同或相似的元件。
請參閱圖1,圖1為根據本發明一些實施例,穿戴式裝置的立體圖。請參閱圖2,圖2為根據本發明一些實施例,穿戴式裝置的系統方塊圖。如圖1所示,在一些實施例中,具有心率偵測之穿戴式裝置100包含一心率偵測組件101及一處理器102。心率偵測組件101用以依據一預設頻率獲得多個動態心率訊號。處理器102包含一有限狀態機(finite state machine,FSM)103和一儲存器104。儲存器104用以儲存該些動
態心率訊號,有限狀態機103依據一取樣參數及該些動態心率訊號決定一心率狀態,處理器102依據心率狀態獲得一權重,並依據權重獲得一動態心率值。
在一些實施例中,穿戴式裝置100可以是但不限於是耳機、手環或手錶等電子裝置,在圖1中穿戴式裝置100為耳機,其中,心率偵測組件101之一部分外露於耳機(容後說明),使心率偵測組件101可以在使用者佩戴穿戴式裝置100(耳機)後,量測使用者的動態心率訊號。在一些實施例中,穿戴式裝置100可連接於一行動資訊裝置,以將獲得到的動態心率值傳送至行動資訊裝置顯示,以供使用者可以即時查看動態心率值,行動資訊裝置可以是但不限於平板電腦、手機或筆記型電腦。
在一些實施例中,如圖2所示,心率偵測組件101包含一心率感測器105及一訊號處理電路106。心率感測器105可以是光體積變化描述(Photoplethysmography,PPG)感測器,用以獲得一光體積描述訊號(下稱動態心率訊號)。心率感測器105可外露於穿戴式裝置100。心率感測器105在運作狀態下,可以依據預設頻率獲得多個動態心率訊號,並將量測到的動態心率訊號傳送至訊號處理電路106進行處理。在一些實施例中,預設頻率可以固定頻率或變動頻率。固定頻率例如但不限於每秒獲得10次、30次、50次、60次、或80次的動態心率訊號。訊號處理電路106用以接收心率感測器105所測得的動態心率訊號,且對動態心率訊號執行例如但不限於:類比數位轉換、放大、濾波以及其他各種訊號處理作業。訊號處理電路106可以是類比前端(analog front end)
電路,訊號處理電路106可以依據一預處理頻段對該些動態心率訊號進行濾波,接著,處理器102將一取樣區段內的已濾波動態心率訊號進行一時域轉頻域轉換獲得頻域訊號(容後說明)。其中,預處理頻段可以是人體心率的合理範圍,預處理頻段例如但不限於為50BPM(bit per minute,每分鐘50次)至240BPM。據此,訊號處理電路106依據預處理頻段(50BPM至240BPM),先濾除非人體心率範圍的動態心率訊號,避免非心率之訊號(例如運動雜訊)干擾動態心率訊號。
在一些實施例中,儲存器104可以是但不限於揮發性記憶體(如隨機存取記憶體(RAM))、揮發性記憶體(如唯讀記憶體(ROM))、硬碟(Hard disk drive,HDD)或固態硬碟(Solid-state disk,SSD)等,儲存器104可供儲存心率感測器105連續測量到的多個動態心率訊號,以及處理器102依據估測心率及心率狀態所獲得的動態心率值。
在一些實施例中,取樣參數包含一取樣頻率及一取樣區段。其中,取樣頻率是指處理器102計算心率之頻率(每隔多少時間計算一次動態心率值),例如取樣頻率是每2秒一次,即表示處理器102以每2秒一次的頻率更新動態心率值。取樣區段指的是處理器102每次計算心率時,所要使用的動態心率訊號的時間長度,例如,取樣區段為6秒,即表示處理器102每次計算心率時,以6秒時間長度的動態心率訊號作為計算的資料內容。取樣區段為6秒的起迄點可以是處理器102計算心率的時間點為迄點,起點為迄點往前推6秒,例如處理器102計算時間點為10點5分20秒,取樣區段為10點5分14秒至10點5分20秒的動態心率訊號。但本發明並不以此為限,取樣區段的起迄點亦可視需求而調整。此
外,在一些實施例中,取樣區段亦可以資料筆數為單位,例如,在計算時間點最新的300筆動態心率訊號資料。以前述心率感測器105之預設頻率為每秒50次為例,300筆動態心率訊號資料即對應於6秒的取樣區段。
另以心率感測器105已獲得10秒的動態心率訊號為例,處理器102在第6秒時,依據取樣頻率(2秒)更新一次動態心率訊號,此時處理器102依據取樣區段(6秒),於儲存器104擷取第0秒至第6秒的動態心率訊號,於此,在心率感測器105不斷獲取動態心率訊號下,處理器102雖以2秒的取樣頻率更新動態心率值,但每一次計算中都會使用到最新6秒的動態心率訊號,增加心率判斷的穩定性與準確性。取樣頻率及取樣區段不以前述舉例為限,設計者可以依需求或應用調整。
在一些實施例中,初始時,心率感測器105可先量測使用者靜態時一段時間的動態心率訊號,並將動態心率訊號儲存至儲存器104。處理器102再依據取樣頻率進行取樣,如此在具有心率偵測之穿戴式裝置100初始運作時,處理器102即能取得所設定取樣區段的動態心率訊號之數據,其中,初始時靜態量測可以是但不限於5秒。
請參閱圖3,圖3為根據本發明一些實施例,動態心率偵測方法流程圖。處理器102用以在取樣頻率,依據下述動態心率偵測方法獲得動態心率值:步驟S82:依據一取樣參數的多個動態心率訊號,獲得一波峰參數及一估測心率;步驟S84:依據波峰參數及估測心率,獲得一權重;及步驟S86:依據權重與估測心率,獲得一動態心率值。
在一些實施例中,心率偵測方法更包含步驟S80:「依據取樣區段內的該些動態心率訊號,獲得一頻域數據」。處理器102在取樣時間點(依取樣頻率),將該取樣區段內的該些動態心率訊號(例如6秒的時域訊號)進行時域轉頻域轉換,而獲得頻域數據。其中,時域轉頻域轉換可以是但不限於一快速傅立葉轉換(Fast Fourier Transform,FFT)或傅立葉轉換,處理器102依據快速傅立葉轉換將時域的動態心率訊號轉換為頻域數據。
請合併參閱圖4A及圖4B,圖4A為尚未去除運動雜訊的頻域數據圖。圖4B為根據圖4A去除運動雜訊後的降噪數據圖。如圖4A所示,處理器102獲得一頻域數據F1(步驟S80)後,此刻的頻域數據F1係包含一運動雜訊MA,前述步驟S82之「依據取樣參數的多個動態心率訊號,獲得波峰參數及估測心率」,更包含:「依據一取樣區段內的多個動態心率訊號,獲得頻域數據F1」、「對頻域數據F1進行一降噪處理獲得一降噪數據」及「依據降噪數據獲得波峰參數及估測心率」,其中「對頻域數據F1進行一降噪處理獲得一降噪數據」可以是去除頻域數據F1中的運動雜訊MA。請再參考圖2,具有心率偵測之穿戴式裝置100更包含一三軸感測器107,三軸感測器107用以獲得一三軸運動數據。當使用者配戴具有心率偵測之穿戴式裝置100時,三軸感測器107即偵測使用者的運動狀態,並將運動狀態紀錄為三軸運動數據。所獲取的三軸運動數據可視為前述運動雜訊MA。處理器102依據三軸運動數據及頻域數據F1,獲得一降噪數據F2(如圖4B)。處理器102包含一雜訊濾波器108,依據雜訊濾波器108、三軸運動數據及頻域數據F1,獲得降噪數據F2,
其中,雜訊濾波器108依據以下公式,獲得降噪數據F2:
,其中
W(f)為雜訊濾波器;PXX(f)為頻域數據;Pss(f)為降噪數據;Pnn(f)為三軸運動數據之平均值。
處理器102透過雜訊濾波器108,可將頻域數據F1所包含的運動雜訊MA(即三軸運動數據)濾除,使處理器102可依據降噪數據F2獲取波峰參數及估測心率(步驟S82),並且降噪數據F2已濾除三軸運動數據,可降低儲存器104的儲存負擔。其中,波峰參數(Crest Factor,CF)是波峰對於整體波型的比例,可作為估測心率的訊號品質指標,處理器102可依據下列公式,獲得波峰參數:,其中:CF(i)為當前估測心率的峰波參數;x peak (i)為當前估測心率的峰值;x rms (i)為當前估測心率的均方根值。
在一些實施例中,雜訊濾波器108是維納濾波器(Wiener filter)。維納濾波器是一種基於最小均方誤差(Minimum mean-square error,MMSE)的濾波系統,從輸入數據中濾除噪聲(在此為運動雜訊MA)以及干擾,用以提取處理器102所需要的降噪數據F2,其原理是假設雜訊為平穩的隨機訊號,期望輸出與實際輸出之間的差值為誤差,對該誤差求均方誤差,均方誤差越小,雜訊濾除效果就越好。維納濾波
器可以依據X(f)=S(f)+N(f)公式推導而得。其中,X(f)表示受運動雜訊MA干擾的輸入訊號(即含有運動雜訊MA的頻域數據F1),S(f)表示未被運動雜訊MA干擾之訊號(即估測心率),N(f)表示雜訊(即運動雜訊MA)。由維納濾波器給出的估測心率值為:
在頻域上的維納濾波器為:
其中P XX (f)表示受運動雜訊MA干擾的動態心率訊號之頻譜能量(即頻域數據F1)。P SS (f)表示未被運動雜訊MA干擾之動態心率訊號的頻譜能量(即降噪數據F2)。P NN (f)表示運動雜訊MA之頻譜能量,其為三軸運動數據之平均值(即運動雜訊MA)。
在一些實施例中,雜訊濾波器108是多個維納濾波器組成,如下:
其中,依據維納濾波器(w1),w 1(t,k)表示維納濾波器在第k個頻率點,時間t之參數,頻譜能量都以最大值做正規化,以確保估算輸入與噪聲之間的一致性。前述二個維納濾波器都可以看到輸入訊號平均前C個頻譜包絡線,在一些實施例中,C可以是指15個頻譜包絡線。依據維納濾波器w 2 ,w 2未被運動雜訊MA干涉之頻譜(即降噪數據F2),可由前面所計算的維納濾波輸出平均可得。其中,兩個維納濾波器之參數皆會除以自
身的標準差,並且組合兩種維納濾波器之輸出結果,可得到未被運動雜訊MA干涉之動態心率訊號之頻譜。
關於前述「依據降噪數據F2獲得波峰參數及估測心率」之步驟包含:依據一估測區間及降噪數據F2,獲得估測心率。估測區間可以是一固定值,亦可以依據心率狀態而調整(容後說明)。處理器102可以在降噪數據F2設定一段估測區間,並擷取在估測區間內降噪數據F2的心率作為估測心率。
請參閱圖5,圖5為根據本發明一些實施例,有限狀態機的狀態判斷流程圖。依據步驟S84之「依據波峰參數及估測心率,獲得權重」之步驟更包含:「依據波峰參數及估測心率,獲得一心率狀態,其中,心率狀態包含一穩定狀態(Stable state)、一警戒狀態(Alert state)、一恢復狀態(Recovery state)及一未知狀態(Uncertain state)」及「依據心率狀態獲得權重」。在一些實施例中,處理器102透過有限狀態機103獲得心率狀態,其中,有限狀態機103用以於初始時,決定心率狀態為穩定狀態。在處理器102在取樣頻率下,依據取樣區段內的該些動態心率訊號,有限狀態機103依據連續的取樣區段取得波峰參數及估測心率進行心率狀態的判斷。
在一些實施例中,於心率狀態為穩定狀態時,依據該些動態心率訊號的一心率變化率及波峰參數,決定心率狀態為警戒狀態或穩定狀態。於心率狀態為警戒狀態時,依據該些動態心率訊號的波峰參數,決定心率狀態為未知狀態或恢復狀態。於心率狀態為未知狀態下,依據該些動態心率訊號的波峰參數,決定心率狀態為未知狀態或警戒狀
態。於心率狀態為恢復狀態下,依據該些動態心率訊號的心率變化率及波峰參數,決定心率狀態為警戒狀態或穩定狀態。
心率變化率可以是估測心率與真實動態心率的差值,在一些實施例中,處理器102具有一心率變化率閾值,心率變化率閾值可以依據取樣頻率獲得,心率變化率閾值也可以經由實驗決定,在一些實施例中,心率變化閾值是5BPM至13BPM之間,以下以心率變化率閾值以5BPM為例說明。請參照H.Chung,H.Lee and J.Lee,"Finite State Machine Framework for Instantaneous Heart Rate Validation Using Wearable Photoplethysmography During Intensive Exercise," in IEEE Journal of Biomedical and Health Informatics,vol.23,no.4,該篇論文係有關心率變化趨勢之研究。該論文依據3204個樣本觀察,在2秒內的心率變化,有99%的人的心率變化率在5.025BPM;在4秒內的心率變化,有99%的人心率變化率在9.180BPM;在6秒內的心率變化,有99%的人心率變化率在12.894BPM。因此,取樣頻率若設為每2秒一次,若量測到的心率變化率在5.025BPM內,代表所量測到的心率具有較高的信任度。據此,在一些實施例中,處理器102依據取樣頻率,心率變化率閾值可以設定為5BPM。
在一些實施例中,波峰參數可以為4。請合併參閱圖6,為根據本發明一些實施例,心率誤差與波峰參數的關係圖,其中橫軸為波峰參數,縱軸為心率變化率,即估測心率與真實動態心率之差值。當波峰參數(圖中橫軸)越高,心率變化率(圖中縱軸)變化越小。從圖中可以看出,當波峰參數為2時,心率變化率具有較大變化範圍(或稱誤
差範圍),即估測心率的訊號品質較差。當波峰參數為4時,心率變化率相對變化較小,即估測心率的訊號品質較佳。
再如圖5所示,當心率狀態為穩定狀態時,當心率變化率小於或等於心率變化率閾值、且波峰參數大於或等於波峰參數閾值,有限狀態機103決定心率狀態為穩定狀態。反之,在未達到前述條件時,則決定心率狀態為警戒狀態,其中,心率變化率為動態心率值與前刻動態心率值之一差值(差值為絕對值)。例如,有限狀態機103取得當前估測心率後,在當前估測心率(第一筆估測心率)的心率變化率為六、且波峰參數為4時,由於當前估測心率的心率變化率及波峰參數皆符合條件,因此有限狀態機103決定心率狀態為穩定狀態。在有限狀態機103取得下刻估測心率後,當下刻估測心率的心率變化率為七、且波峰參數為三時,由於下刻估測心率(第二筆估測心率)不符合條件,則有限狀態機103決定下刻估測心率為警戒狀態。簡言之,決定為穩定狀態的估測心率必須同時符合心率變化率及波峰參數的條件,若有其中一個條件不符,則有限狀態機103會將心率狀態由穩定狀態變更為警戒狀態。
在一些實施例中,當心率狀態為警戒狀態時,當波峰參數小於波峰參數閾值,且一警戒計數值達到一警戒狀態計數閾值,有限狀態機103決定心率狀態為未知狀態且將警戒計數值歸零。當波峰參數大於或等於波峰參數閾值,有限狀態機103決定心率狀態為恢復狀態且將警戒計數值歸零。反之,在前述條件均未達到時,有限狀態機103決定心率狀態為警戒狀態、且當波峰參數小於波峰參數閾值時,警戒計數值加一。在一些實施例中,警戒計數值的計數單位可以是2秒。在一些實
施例中,有限狀態機103在初始化時,有限狀態機103會先將警戒計數值歸零,以防止在初始化時,警戒計數值存有前次計數紀錄干涉心率狀態的判斷。在一些實施例中,警戒狀態計數閾值可以是5,單位可以是秒。例如,當心率狀態被決定為警戒狀態時,警戒計數值加一,即警戒計數值計數至2秒,下二秒後,有限狀態機103取得當前估測心率(第一筆估測心率)後,且波峰參數不符條件,警戒計數值會繼續計數,此時警戒計數值已累計計數至4秒,有限狀態機103取得下刻估測心率(第二筆估測心率),下刻估測心率的波峰參數仍不符條件,警戒計數值繼續計數,此刻警戒計數值已累計至6秒,由於警戒計數值已達到警戒狀態計數閾值,因此有限狀態機103會決定心率狀態由警戒狀態變更為未知狀態,並清除警戒計數值。在一些實施例中,在警戒狀態下,當警戒計數值尚未達到警戒狀態計數閾值,且波峰參數已符合條件時,有限狀態機103會將心率狀態由警戒狀態變更為恢復狀態,恢復計數值加一,且清除清除警戒計數值。
在一些實施例中,當心率狀態為未知狀態時,當波峰參數大於或等於波峰參數閾值,且一未知計數值達到一未知狀態計數閾值,有限狀態機103決定心率狀態為警戒狀態且將未知計數值歸零。當波峰參數小於波峰參數閾值,有限狀態機103決定心率狀態為未知狀態且將未知計數值歸零。反之,在前述條件均未達到,有限狀態機103決定心率狀態為未知狀態、且當波峰參數大於或等於波峰參數閾值時,未知計數值加一。在一些實施例中,未知狀態計數閾值可以為3,單位可以是秒。在一些實施例中,未知計數值的計數單位可以是2秒。例如,當心
率狀態被決定為未知狀態時,未知計數值加一,即未知計數值計數至2秒,當有限狀態機103取得下刻估測心率(第二筆估測心率),下刻估測心率的波峰參數仍未符合條件時,有限狀態機103會清空未知計數值,若下二刻估測心率(第三筆估測心率)的波峰參數符合條件時,未知計數值加一。若下刻估測心率(第二筆估測心率)的波峰參數已符合條件,未知計數值再加一,此刻未知計數值已累計計數為2,意即在未知狀態待滿4秒,已達到未知狀態計數閾值,有限狀態機103會決定心率狀態由未知狀態變更為警戒狀態,且警戒計數值加一,並清除未知計數值。
在一些實施例中,當心率狀態為恢復狀態時,當波峰參數大於或等於波峰參數閾值、心率變化率小於或等於心率變化率閾值、且一恢復計數值達到一恢復狀態計數閾值,有限狀態機103決定心率狀態為穩定狀態且將恢復計數值歸零。當波峰參數小於波峰參數閾值,有限狀態機103決定心率狀態為警戒狀態且將恢復計數值歸零。反之,在前述條件均未達到,有限狀態機103決定心率狀態為恢復狀態、且當波峰參數大於或等於波峰參數閾值時,恢復計數值加一。在一些實施例中,恢復狀態計數閾值可以為4,單位可以是秒。在一些實施例中,恢復計數值的計數單位可以是2秒。例如,當心率狀態被決定為恢復狀態時,恢復計數值加一,即未知計數值計數至2秒,當有限狀態機103取得下刻估測心率(第二筆估測心率),下刻估測心率的波峰參數仍符合條件時,恢復計數值再加一,此刻恢復計數值已累計計數為2,意即在未知狀態待滿4秒,已達到恢復狀態計數閾值,且心率變化率小於或等於心率變
化率閾值時,有限狀態機103會決定心率狀態為穩定狀態,並清除恢復計數值。在一些實施例中,若下刻估測心率(第二筆估測心率)的波峰參數不符合條件時,有限狀態機103會決定心率狀態為警戒狀態,警戒計數值加一、且清除恢復計數值。
關於前述步驟S84之「依據心率狀態獲得權重」,處理器102依據不同心率狀態獲得到不同權重。意即有限狀態機103決定估測心率的心率狀態後,處理器102依據不同心率狀態下的估測心率可以獲得相對應心率狀態之權重。接著,處理器102可依據估測心率及權重獲得動態心率值(容後說明)。在一些實施例中,當心率狀態為未知狀態時,權重為1。當心率狀態為警戒狀態時,權重為大於等於0.8且小於1。當心率狀態為恢復狀態時,權重為大於或等於0.3至小於或等於0.5。當心率狀態為穩定狀態時,權重為0。
關於前述步驟S86之「依據權重與估測心率,獲得動態心率值」,其中,處理器102可依據以下公式,獲得動態心率值:HRest=W*HRlinReg+(1-W)*HRcur,其中HRest為動態心率值,W為權重,HRlinReg為前刻動態心率值,HRcur為估測心率。
再如圖3所示,關於前述步驟S84之「依據波峰參數及估測心率,獲得心率狀態」結束後,動態心率偵測方法更包含步驟S85:「依據一估測區間及降噪數據F2,獲得估測心率」。
其中,估測區間可以是依據警戒狀態及恢復狀態而調整。請參閱圖7所示,為根據本發明一些實施例,估測區間的示意圖。在一些實施例中,一估測區間TR可以是依據心率狀態而調整。當心率狀態為警戒狀態或恢復狀態時,有限狀態機103依據連續的兩前刻動態心率值間的一最大心率誤差,調整一估測區間TR。其中,當前刻動態心率值小於心率變化率閾值時(表示前刻動態心率變動激烈),擴大估測區間TR,當前刻動態心率值大於或等於該心率變化率閾值時(表示心率變化穩定),縮小估測區間TR。其中,估測區間TR可以是大於或等於±5BPM。在一些實施例中,估測區間TR可依據以下公式獲得:τ i =max{|HR(t)-HR(t-1)|:S<t<i}±5BPM,其中:τi為估測區間;HR(t)為前一刻的動態心率值;HR(t-1)為後一刻的動態心率值;t為前刻時間;i為當前時間;S為前刻時間預設範圍,在一些實施例中,S可以是30秒。
請參閱圖8,為根據本發明一些實施例,動態心率值與真實動態心率值的數據對比圖。如圖8標示有真實動態心率HR1與動態心率值HR2,其中,真實動態心率HR1為心電圖(Electrocardiography,ECG)監測受測者的心率圖,真實動態心率HR1可以視為受測者真實狀態下的動態心率數值。動態心率值HR2為處理器102經過動態心率偵測方法所獲得的動態心率值HR2。其中,如圖8中所示,在2秒內的心率變
化數據,對比動態心率值HR2與真實動態心率HR1可知,動態心率值HR2與真實動態心率HR1幾乎達到一致,於此處理器102依據心率偵測方法所獲得的動態心率值HR2,可認為與真實動態心率HR1相同。請再參閱圖9,為根據本發明一些實施例,動態心率值與真實動態心率的布蘭德-奧特曼差異圖(Bland-Altman difference plot)。圖9所示為估測心率與真實動態心率的平均誤差,圖中上下兩條水平虛線為差值上限L1及差值下限L2代表95%差值的上限及下限,中間的虛線為差值平均值L3,代表估測心率與真實動態心率HR1的誤差之平均值,中間的虛線越接近0表示真實動態心率HR1與估測心率的一致性越高,由圖中可知,真實動態心率HR1與估測心率的差值大部份都落於2BPM之內。
一種非暫態電腦可讀取儲存媒體,用於儲存一或多個軟體程式,該一或多個軟體程式包括多個指令,當該些指令由一電子裝置的一或多個處理電路執行時,將使該電子裝置進行一動態心率偵測方法,動態心率偵測方法包括:步驟S82:依據一取樣參數的多個動態心率訊號,獲得一波峰參數及一估測心率;步驟S84:依據該波峰參數及該估測心率,獲得一權重;及步驟S86:依據該權重與該估測心率,獲得一動態心率值。
綜上所述,依據一些實施例,處理器透過有限狀態機對心率狀態區別出穩定狀態、警戒狀態、未知狀態及恢復狀態後,處理器即可依據不同心率狀態給予相對應的權重,使處理器在不同狀態下的估測心率依據權重獲得動態心率值,且動態心率值可接近真實的動態心率數值,此外,處理器在接收頻域數據後,可依據三軸運動數據濾除頻域數
據的運動雜訊得到降噪數據,處理器可進一步依據降噪數據取得波峰參數及估測心率,據此,處理器即可避免對運動雜訊進行處理,可降低處理器運行負擔,亦可減少儲存器的儲存空間。
以上所述的實施例僅為說明本案的技術思想及特點,其目的在使熟悉此項技術者能夠瞭解本案的內容並據以實施,當不能以之限定本案的專利範圍,即但凡依本案所揭示的精神所作的均等變化或修飾,仍應涵蓋在本案的申請專利範圍內。
100:具有心率偵測之穿戴式裝置
101:心率偵測組件
102:處理器
103:有限狀態機
104:儲存器
105:心率感測器
106:訊號處理電路
107:三軸感測器
108:雜訊濾波器
Claims (20)
- 一種具有心率偵測之穿戴式裝置,包含:一心率偵測組件,用以依據一預設頻率獲得多個動態心率訊號;以及一處理器,包含一有限狀態機和一儲存器,該儲存器用以儲存該些動態心率訊號,該有限狀態機依據一取樣參數及該些動態心率訊號決定一心率狀態,該心率狀態包含一穩定狀態、一警戒狀態、一恢復狀態及一未知狀態;其中,該處理器依據該心率狀態獲得一權重,並依據該權重及一估測心率,獲得一動態心率值。
- 如請求項1所述的具有心率偵測之穿戴式裝置,其中,該取樣參數包含一取樣頻率及一取樣區段,該處理器用以在該取樣頻率下:依據該取樣區段內的該些動態心率訊號,獲得一頻域數據;對該頻域數據進行一降噪處理,獲得一降噪數據;依據該降噪數據,獲得一波峰參數及該估測心率;及依據該心率狀態獲得該權重,並依據該權重及該估測心率,獲得該動態心率值。
- 如請求項2所述的具有心率偵測之穿戴式裝置,其中,該處理器用以依據以下公式,獲得該動態心率值:HRest=W*HRlinReg+(1-W)*HRcur 其中,HRest為該動態心率值、W為該權重、HRlinReg為一前刻動態心率值、HRcur為該估測心率;其中,在該心率狀態為該未知狀態時,W為1;當該心率狀態為該警戒狀態時,W為大於等於0.8且小於1;當該心率狀態為該恢復狀態時,W為大於或等於0.3至小於或等於0.5;當該心率狀態為該穩定狀態時,W為0。
- 如請求項3所述的具有心率偵測之穿戴式裝置,其中,該有限狀態機用以:於初始時,決定該心率狀態為該穩定狀態;當該心率狀態為該穩定狀態時,當一心率變化率小於或等於一心率變化率閾值、且該波峰參數大於或等於一波峰參數閾值,該有限狀態機決定該心率狀態為該穩定狀態;以及反之,則決定該心率狀態為該警戒狀態;其中,該心率變化率為該動態心率值與該前刻動態心率值之一差值。
- 如請求項4所述的具有心率偵測之穿戴式裝置,其中,當該心率狀態為該警戒狀態時,當該波峰參數小於該波峰參數閾值,且一警戒計數值達到一警戒狀態計數閾值,該有限狀態機決定該心率狀態為該未知狀態且將該警戒計數值歸零;當該波峰參數大於或等於該波峰參數閾值,該有限狀態機決定該心率狀態為該恢復狀態且將該警戒計數值歸零;以及 反之,該有限狀態機決定該心率狀態為該警戒狀態、且當該波峰參數小於該波峰參數閾值時,該警戒計數值加一。
- 如請求項5所述的具有心率偵測之穿戴式裝置,其中,當該心率狀態為該未知狀態時,當該波峰參數大於或等於該波峰參數閾值,且一未知計數值達到一未知狀態計數閾值,該有限狀態機決定該心率狀態為該警戒狀態且將該未知計數值歸零;當該波峰參數小於該波峰參數閾值,該有限狀態機決定該心率狀態為該未知狀態且將該未知計數值歸零;以及反之,該有限狀態機決定該心率狀態為該未知狀態、且當該波峰參數大於或等於該波峰參數閾值時,該未知計數值加一。
- 如請求項6所述的具有心率偵測之穿戴式裝置,其中,當該心率狀態為該恢復狀態時,當該波峰參數大於或等於該波峰參數閾值、該心率變化率小於或等於該心率變化率閾值、且一恢復計數值達到一恢復狀態計數閾值,該有限狀態機決定該心率狀態為該穩定狀態且將該恢復計數值歸零;當該波峰參數小於該波峰參數閾值,該有限狀態機決定該心率狀態為該警戒狀態且將該恢復計數值歸零;以及反之,該有限狀態機決定該心率狀態為該恢復狀態、且當該波峰參數大於或等於該波峰參數閾值時,該恢復計數值加一。
- 如請求項7所述的具有心率偵測之穿戴式裝置,其中,該心率偵測組件包含一訊號處理電路,該訊號處理電路依據一預處理頻段對該些動態心率訊號進行濾波,該預處理頻段為50BPM至240BPM。
- 如請求項8所述的具有心率偵測之穿戴式裝置,其中,該處理器對該取樣區段內的該些動態心率訊號進行一時域轉頻域轉換,而獲得該頻域數據。
- 如請求項10所述的具有心率偵測之穿戴式裝置,其中,該心率狀態為該警戒狀態或該恢復狀態時,該有限狀態機依據連續的兩該前刻動態心率值間的一最大心率誤差,調整一估測區間,其中,當該前刻動態心率值小於該心率變化率閾值時,擴大該估測區間,當該前刻動態心率值大於或等於該心率變化率閾值時,縮小該估測區間;且該估測區間大於或等於±5BPM。
- 一種動態心率偵測方法,包含: 依據一取樣參數的多個動態心率訊號,獲得一波峰參數及一估測心率;依據該波峰參數及該估測心率,獲得一心率狀態,該心率狀態包含一穩定狀態、一警戒狀態、一恢復狀態及一未知狀態;依據該心率狀態獲得一權重;以及依據該權重與該估測心率,獲得一動態心率值。
- 如請求項12所述的動態心率偵測方法,其中,該「依據該取樣參數的多個該動態心率訊號,獲得該波峰參數及該估測心率」之步驟包含:依據一取樣區段內的多個該動態心率訊號,獲得一頻域數據;以及對該頻域數據進行一降噪處理獲得該波峰參數及該估測心率;以及該「依據該波峰參數及該估測心率,獲得該權重」之步驟包含:依據該波峰參數及該估測心率,獲得一心率狀態,其中,該心率狀態包含一穩定狀態、一警戒狀態、一恢復狀態及一未知狀態;以及依據該心率狀態獲得該權重。
- 如請求項13所述的動態心率偵測方法,其中,於初始時,決定該心率狀態為該穩定狀態; 當該心率狀態為該穩定狀態時,當一心率變化率大於或等於一心率變化率閾值、且該波峰參數大於或等於一波峰參數閾值,該心率狀態為該穩定狀態;以及反之,則決定該心率狀態為該警戒狀態。
- 如請求項14所述的動態心率偵測方法,其中,當該心率狀態為該警戒狀態時,當該波峰參數小於該波峰參數閾值,且一警戒計數值達到一警戒狀態計數閾值,該心率狀態為該未知狀態且將該警戒計數值歸零;當該波峰參數大於或等於該波峰參數閾值,該心率狀態為該恢復狀態且將該警戒計數值歸零;以及反之,該心率狀態為該警戒狀態、且當該波峰參數小於該波峰參數閾值時,該警戒計數值加一。
- 如請求項15所述的動態心率偵測方法,其中,當該心率狀態為該未知狀態時,當該波峰參數大於或等於該波峰參數閾值,且一未知計數值達到一未知狀態計數閾值,一有限狀態機決定該心率狀態為該警戒狀態且將該未知計數值歸零;當該波峰參數小於該波峰參數閾值,該有限狀態機決定該心率狀態為該未知狀態且將該未知計數值歸零;以及反之,該有限狀態機決定該心率狀態為該未知狀態、且當該波峰參數大於或等於該波峰參數閾值時,該未知計數值加一。
- 如請求項16所述的動態心率偵測方法,其中, 當該心率狀態為該恢復狀態時,當該波峰參數大於或等於該波峰參數閾值,且一恢復計數值達到一恢復狀態計數閾值,該有限狀態機決定該心率狀態為該穩定狀態且將該恢復計數值歸零;當該波峰參數小於該波峰參數閾值,該有限狀態機決定該心率狀態為該警戒狀態且將該恢復計數值歸零;以及反之,該有限狀態機決定該心率狀態為該恢復狀態、且當該波峰參數大於或等於該波峰參數閾值時,該恢復計數值加一。
- 如請求項17所述的動態心率偵測方法,更包含:對該取樣區段內的該些動態心率訊號進行一時域轉頻域轉換,而獲得該頻域數據;該「依據該取樣參數的多個該動態心率訊號,獲得該波峰參數及該估測心率」之步驟包含:對該頻域數據進行該降噪處理獲得一降噪數據,依據該降噪數據獲得該波峰參數及該估測心率;以及該「依據該降噪數據獲得該波峰參數及該估測心率」之步驟包含:依據一估測區間及該降噪數據,獲得該估測心率。
- 如請求項18所述的動態心率偵測方法,其中,當該心率狀態為該警戒狀態或該恢復狀態,調整該估測區間。
- 一種非暫態電腦可讀取儲存媒體,用於儲存一或多個軟體程式,該一或多個軟體程式包括多個指令,當該些指令由一電子裝置的一或多個處理電路執行時,將使該電子裝置進行一動態心率偵測方法,該動態心率偵測方法包括:依據一取樣參數的多個動態心率訊號, 獲得一波峰參數及一估測心率;依據該波峰參數及該估測心率,獲得一心率狀態,該心率狀態包含一穩定狀態、一警戒狀態、一恢復狀態及一未知狀態;依據該心率狀態獲得一權重;以及依據該權重與該估測心率,獲得一動態心率值。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111116549A TWI812200B (zh) | 2022-04-29 | 2022-04-29 | 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 |
CN202210544405.6A CN116999043A (zh) | 2022-04-29 | 2022-05-18 | 穿戴式装置、动态心率侦测方法及存储媒体 |
US17/899,800 US20230346235A1 (en) | 2022-04-29 | 2022-08-31 | Wearable device with heart rate detection, dynamic heart rate detection method and non-transitory computer-readable storage medium |
EP22204900.9A EP4268715A1 (en) | 2022-04-29 | 2022-11-01 | Wearable device with heart rate detection, dynamic heart rate detection method and non-transitory computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW111116549A TWI812200B (zh) | 2022-04-29 | 2022-04-29 | 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI812200B true TWI812200B (zh) | 2023-08-11 |
TW202341923A TW202341923A (zh) | 2023-11-01 |
Family
ID=84047541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111116549A TWI812200B (zh) | 2022-04-29 | 2022-04-29 | 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230346235A1 (zh) |
EP (1) | EP4268715A1 (zh) |
CN (1) | CN116999043A (zh) |
TW (1) | TWI812200B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201740879A (zh) * | 2016-04-02 | 2017-12-01 | 英特爾股份有限公司 | 壓縮感測稀疏取樣光體積變化描述(ppg)量測技術 |
TWI687203B (zh) * | 2019-09-03 | 2020-03-11 | 緯創資通股份有限公司 | 適應性生理資訊偵測方法與系統 |
TW202135724A (zh) * | 2020-03-18 | 2021-10-01 | 英業達股份有限公司 | 動態切換血壓量測模型的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018032042A1 (en) * | 2016-08-15 | 2018-02-22 | Resmed Limited | Apparatus and methods for monitoring cardio-respiratory disorders |
EP3687392A4 (en) * | 2017-10-17 | 2021-07-07 | Whoop, Inc. | APPLIED DATA QUALITY METRICS FOR PHYSIOLOGICAL MEASUREMENTS |
EP3849407B1 (en) * | 2018-09-14 | 2024-01-31 | Chronisense Medical Ltd. | System and method for monitoring respiratory rate and oxygen saturation |
-
2022
- 2022-04-29 TW TW111116549A patent/TWI812200B/zh active
- 2022-05-18 CN CN202210544405.6A patent/CN116999043A/zh active Pending
- 2022-08-31 US US17/899,800 patent/US20230346235A1/en active Pending
- 2022-11-01 EP EP22204900.9A patent/EP4268715A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201740879A (zh) * | 2016-04-02 | 2017-12-01 | 英特爾股份有限公司 | 壓縮感測稀疏取樣光體積變化描述(ppg)量測技術 |
TWI687203B (zh) * | 2019-09-03 | 2020-03-11 | 緯創資通股份有限公司 | 適應性生理資訊偵測方法與系統 |
TW202135724A (zh) * | 2020-03-18 | 2021-10-01 | 英業達股份有限公司 | 動態切換血壓量測模型的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230346235A1 (en) | 2023-11-02 |
CN116999043A (zh) | 2023-11-07 |
EP4268715A1 (en) | 2023-11-01 |
TW202341923A (zh) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6761265B2 (ja) | 光電式容積脈波信号のノイズ除去方法とシステム | |
US11051745B2 (en) | Adaptive selection of digital ECG filter | |
US20170215756A1 (en) | Devices and methods for real-time denoising of electrocardiograms | |
JP6230607B2 (ja) | マルチレートecg処理を使用するr−r間隔の測定 | |
Jang et al. | A real-time pulse peak detection algorithm for the photoplethysmogram | |
JP6310401B2 (ja) | 生理的リズムを表す信号を処理する方法、システム及びコンピュータプログラム | |
WO2019041772A1 (zh) | 一种基于脑电信号的麻醉深度的监测方法及系统 | |
WO2018120637A1 (zh) | 一种心电信号的降噪方法及装置 | |
Sundar et al. | A comprehensive assessment of the performance of modern algorithms for enhancement of digital volume pulse signals | |
CN108992054A (zh) | 一种脉搏信号峰值点检测方法及装置 | |
US20210186430A1 (en) | Heart rate correction method and system and computer readable medium | |
EP3949833A1 (en) | Contact state detection device and wearable apparatus | |
John et al. | A generalized signal quality estimation method for IoT sensors | |
CN111920429A (zh) | 精神压力检测方法、装置和电子设备 | |
TWI812200B (zh) | 具有心率偵測之穿戴式裝置、動態心率偵測方法及非暫態電腦可讀取儲存媒體 | |
WO2019006631A1 (zh) | 质量评估方法及装置、模型建立方法及模块、穿戴设备 | |
Lin et al. | A characteristic filtering method for pulse wave signal quality assessment | |
JP2014073159A (ja) | 脈波検出装置、脈波検出プログラム及び脈波検出方法 | |
CN116369888B (zh) | 一种非接触式心率变异性数据获取方法和装置 | |
Liu et al. | Power and area efficient wavelet-based on-chip ECG processor for WBAN | |
KR102276614B1 (ko) | 비접촉식 생체신호 측정 방법 및 장치와 이를 이용하는 의류 | |
KR102214686B1 (ko) | 유한 상태 머신을 기반으로 정확하고 일관된 심박수를 추정하는 방법 및 이를 위한 장치 | |
Wu et al. | An ECG extraction and reconstruction system with dynamic EMG filtering implemented on an ARM chip | |
JP2022106705A (ja) | 自律型フルスペクトル生体モニタリング | |
Rezaei et al. | Comparison of two low-power signal processing algorithms for optical heart rate monitoring |