WO2018120573A1 - 透镜及其制作方法、背光面板和显示装置 - Google Patents

透镜及其制作方法、背光面板和显示装置 Download PDF

Info

Publication number
WO2018120573A1
WO2018120573A1 PCT/CN2017/083420 CN2017083420W WO2018120573A1 WO 2018120573 A1 WO2018120573 A1 WO 2018120573A1 CN 2017083420 W CN2017083420 W CN 2017083420W WO 2018120573 A1 WO2018120573 A1 WO 2018120573A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
incident surface
light incident
bowl
Prior art date
Application number
PCT/CN2017/083420
Other languages
English (en)
French (fr)
Inventor
谭纪风
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/736,944 priority Critical patent/US11156870B2/en
Publication of WO2018120573A1 publication Critical patent/WO2018120573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a lens, a method of fabricating the same, a backlight panel, and a display device.
  • OLEDs Compared with traditional illumination sources, semiconductor light sources such as OLEDs have the advantages of energy saving, environmental protection, long service life, and fast response speed. The development, research and production of OLED lighting products and display devices have become a promising sunrise industry. Compared to conventional light sources, OLEDs emit light that is approximately Lambertian and therefore cannot be used directly in existing lighting or display systems.
  • LCD and OLED displays have a large range of illumination angles in space, so that only a small part of the light can be received by the human eye, which greatly reduces the utilization of light energy.
  • the embodiment of the invention provides a lens, a manufacturing method thereof, a backlight panel and a display device, which enhance the collimation of the light source beam and improve the utilization of light energy.
  • an embodiment of the invention provides a lens.
  • the lens includes: a light exit surface; a first light incident surface opposite to the light exit surface; a first surface surrounding the first light incident surface and located on a side of the first light incident surface facing away from the light exit surface a light incident surface; and a bowl-shaped free curved surface surrounding the second light incident surface and opposite to the light exit surface; the light exit surface, the first light incident surface, the second light incident surface, and the bowl free surface The lens is closed.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or the groove nearby.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface.
  • the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • the use of collimated beams allows for better control of the display orientation of the display device, thereby not only achieving better display performance, but also reducing power consumption and saving maintenance costs.
  • the light exit surface is a plane.
  • the use of a planar light exit surface facilitates the simplification of the design of the first light incident surface, the second light incident surface, and the bowl free surface.
  • the lens provided by the embodiments of the present invention can also be realized in a simpler manufacturing process than the light exiting surface having a complicated topography.
  • the light exiting surface can be used as a bottom surface, and the lens can be fabricated using processes such as photolithography, embossing, laser ablation, or electron beam direct writing (EBD).
  • the light exit surface may also be a curved surface such as a convex surface.
  • the lens may be formed using an injection molding process; for example, the first light incident surface, the second light may be formed first by a process such as photolithography, imprinting, laser ablation, or electron beam direct writing.
  • the incident surface and the bowl-shaped freeform surface form the light exit surface.
  • the first light incident surface has a convex surface.
  • the light having a smaller emission angle can be further collimated, so that the outgoing light beam has a smaller divergence angle.
  • the shape of the bowl-shaped free-form surface is determined by a recursive relationship:
  • the material of the lens is a transparent organic material.
  • a lens of an embodiment of the present invention can be produced using a transparent polymer material such as PMMA or resin.
  • an embodiment of the present invention provides a method for fabricating the lens of the above embodiment.
  • the method includes providing a substrate including a first substrate surface and a second substrate surface opposite the first substrate surface; the first substrate surface being disposed as the light exit surface; The first light incident surface, the second light incident surface, and the bowl-shaped free curved surface are formed on the surface of the second substrate by at least one of photolithography, imprinting, laser ablation, and electron beam direct writing.
  • an array of lenses or lenses as described in the embodiments of the present invention can be conveniently formed directly on a substrate.
  • an embodiment of the present invention provides a backlight panel.
  • the backlight panel includes: a light source substrate; a plurality of light sources disposed on the light source substrate; and a plurality of lenses as described in the above embodiments; each of the lenses corresponding to one of the plurality of light sources.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or in the vicinity of the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface. Thereby, the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • a modular structure adapted to various display devices or illumination devices can be conveniently formed.
  • the backlight panel further includes a base substrate, and the plurality of lenses are integrally formed on the base substrate.
  • the lens as described in the embodiment of the invention can be conveniently formed directly on the substrate Or an array of lenses.
  • the backlight panel further includes a filling material disposed between the plurality of lenses; the filling material has a refractive index lower than a refractive index of the lens.
  • an embodiment of the present invention provides a display device.
  • the display device includes a backlight panel as described in the above embodiments and a liquid crystal display panel disposed on a light exiting side of the backlight panel.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or in the vicinity of the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface.
  • the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • the use of collimated beams allows for better control of the display orientation of the display device, thereby not only achieving better display performance, but also reducing power consumption and saving maintenance costs.
  • the display device further includes a light control panel disposed between the backlight panel and the liquid crystal display panel.
  • the light control panel includes: a controllable liquid crystal lens; a first polarizer located on a light incident side of the adjustable liquid crystal lens; a determining unit configured to determine a light exiting direction of the light control panel; and a control unit configured to: Adjusting the liquid crystal tilt angle of the controllable liquid crystal lens according to the light emission direction determined by the determining unit, thereby controlling the traveling of the light to reach the determined exit direction.
  • the light control panel of the embodiment of the present invention can change the tilt angle of the liquid crystal layer liquid crystal by, for example, a voltage control method, and cooperate with the polarizing light film to control the traveling of the light to a direction determined by the light control panel.
  • control unit adjusts an electric field in one or more sub-regions of each region of the controllable liquid crystal lens according to the determined light emission direction, thereby regulating the one or more sub-regions The tilt angle of the liquid crystal.
  • the determining unit further includes: a user location collection module, configured to collect current location information of the user; the determining unit determines, according to current user location information collected by the user location collection module, the light control panel The direction of light emission.
  • a user location collection module configured to collect current location information of the user
  • the determining unit determines, according to current user location information collected by the user location collection module, the light control panel The direction of light emission.
  • the image sensing unit of the light control panel such as the camera senses the change of the user position and collects the user's movement.
  • the location information for example, collects the location information of the user's human eye, and transmits the location information to the processing unit of the light control panel, so that the processing unit determines the direction in which the light of the light control panel is emitted.
  • the determining unit further includes: a light intensity collecting module, configured to collect light intensity information of the environment; the determining unit determines light of the light control panel according to the light intensity information collected by the light intensity collecting module Direction of exit.
  • a light intensity collecting module configured to collect light intensity information of the environment
  • the determining unit determines light of the light control panel according to the light intensity information collected by the light intensity collecting module Direction of exit.
  • the light sensing unit of the light control panel such as the light intensity sensor or the brightness sensor senses the current environmental change and collects light dimming.
  • the information is then transmitted to the processing unit of the light control panel such that the processing unit determines the direction of the light path through the liquid crystal lens such that the exit direction of the light after passing through the light control panel is more divergent, thereby reducing visual brightness.
  • the light sensing unit senses the current environmental change and collects the light brightening information, and then transmits the information to the processing unit of the light control panel, so that the processing unit determines The direction in which the light controls the light exiting the panel.
  • FIG. 1 is a schematic cross-sectional view of a lens in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a lens according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing a design method of a lens according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a collimating effect of a lens according to an embodiment of the present invention.
  • 5(a) to 5(b) are schematic views showing a method of fabricating a lens according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a backlight panel in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a display device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a display device according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a light control panel in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic view of a controllable liquid crystal lens according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a light control panel according to another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a light control panel in accordance with yet another embodiment of the present invention.
  • an embodiment of the invention provides a lens.
  • 1 is a schematic cross-sectional view of a lens in accordance with an embodiment of the present invention.
  • the lens 100 includes: a light exit surface 101; a first light incident surface 102 opposite the light exit surface 101; surrounding the first light incident surface 102 and located at the first light incident surface 102 facing away from the light a second light incident surface 103 on one side of the exit surface 101; and a bowl-shaped free curved surface 104 surrounding the second light incident surface 103 and opposite to the light exit surface 101; the light exit surface 101, the first light incident The surface 102, the second light incident surface 103, and the bowl-shaped freeform surface 104 enclose the lens 100.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED (shown by reference numeral 30 in FIG. 1) may be disposed in the groove. In the middle or near the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface.
  • the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • the use of collimated beams allows for better control of the display orientation of the display device, thereby not only achieving better display performance, but also reducing power consumption and saving maintenance costs.
  • the light exit surface 101 is a flat surface.
  • the use of a planar light exit surface facilitates the simplification of the design of the first light incident surface, the second light incident surface, and the bowl free surface.
  • the lens provided by the embodiments of the present invention can also be realized in a simpler manufacturing process than the light exiting surface having a complicated topography.
  • the light exit surface can be used as a bottom surface, and the lens can be fabricated using processes such as photolithography, stamping, laser ablation, or electron beam direct writing.
  • the light exit surface may also be a curved surface such as a convex surface.
  • the lens may be formed using an injection molding process; for example, the first light incident surface, the second light may be formed first by a process such as photolithography, imprinting, laser ablation, or electron beam direct writing.
  • the incident surface and the bowl-shaped freeform surface form the light exit surface.
  • the first light incident surface 102 has a convex surface.
  • the light having a smaller emission angle can be further collimated, so that the outgoing light beam has a smaller divergence angle.
  • the first light incident surface 102' can also have a planar shape.
  • the following method can be used to design the bowl-shaped free-form surface of the lens of the embodiment of the present invention.
  • a coordinate system as shown in FIG. 3 is established.
  • the light source is an ideal point source
  • ⁇ max is a range of beam angles entering the lens via the second light incident surface.
  • the ⁇ max can be equally divided into M parts.
  • Q 0 (x 0 , y 0 ), Q 1 (x 1 , y 1 ), ..., Q i (x i , y i ) is the intersection of the light rays incident on the lens and the bus bar of the bowl-shaped free-form surface.
  • Equation 1 P is a constant and N 1 is a unit normal vector.
  • Equation 1 and Equation 2 Where K 1 is an unknown number.
  • Q 1 R is parallel to the y-axis, so its unit normal vector is (0, 1).
  • the normal vector at Q 1 on the bowl-shaped freeform surface be (N x1 , N y1 ).
  • FIG. 4 is a schematic diagram of a collimating effect of a lens according to an embodiment of the present invention, wherein the abscissa indicates an angular range of light intensity distribution, and the ordinate indicates normalized light intensity.
  • the material of the lens is a transparent organic material.
  • a lens of an embodiment of the present invention can be produced using a transparent polymer material such as PMMA or resin.
  • an embodiment of the present invention provides a method for fabricating the lens of the above embodiment.
  • the method includes providing a substrate 501 including a first substrate surface 502 and a second substrate surface 503 opposite the first substrate surface 502, as shown in Figure 5(a);
  • the first substrate surface 502 is disposed as the light exit surface; forming the first on the surface of the second substrate by at least one of photolithography, imprinting, laser ablation, and electron beam direct writing Light incident surface 102,
  • the second light incident surface 103 and the bowl-shaped free curved surface 104 are as shown in Fig. 5(b).
  • an array of lenses or lenses as described in the embodiments of the present invention can be conveniently formed directly on a substrate.
  • an embodiment of the present invention provides a backlight panel.
  • 6 is a schematic cross-sectional view of a backlight panel according to an embodiment of the present invention; the backlight panel 600 includes: a light source substrate 601; a plurality of light sources 602 disposed on the light source substrate 601; and a plurality of A lens 603; each of the lenses 603 corresponds to one of the plurality of light sources 602.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or in the vicinity of the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface. Thereby, the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • a modular structure adapted to various display devices or illumination devices can be conveniently formed.
  • the backlight panel 600 further includes a base substrate 604, and the plurality of lenses 603 are integrally formed on the base substrate 604.
  • an array of lenses or lenses as described in the embodiments of the present invention can be conveniently formed directly on a substrate.
  • the backlight panel 600 further includes a filling material 605 disposed between the plurality of lenses 603; the filling material 605 has a refractive index lower than a refractive index of the lens 603.
  • FIG. 7 is a schematic diagram of a display device in accordance with an embodiment of the present invention.
  • the display device 700 includes a backlight panel 701 as described in the above embodiment and a liquid crystal display panel 702 disposed on the light exit side of the backlight panel 701.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or in the vicinity of the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface.
  • the collimation of the light source beam is enhanced, and the utilization of light energy is improved.
  • the use of collimated beams allows for better control of the display orientation of the display device, thereby not only achieving better display performance, but also reducing power consumption and saving maintenance costs.
  • FIG. 8 is a schematic diagram of a display device according to another embodiment of the present invention; optionally, the display device 700 further includes a light control panel 703 disposed between the backlight panel 701 and the liquid crystal display panel 702.
  • 9 is a schematic diagram of a light control panel according to an embodiment of the present invention; the light control panel 703 includes: a controllable liquid crystal lens 7031; a first polarizer 7032 located on a light incident side of the adjustable liquid crystal lens 7031; a unit 7033 for determining a light exiting direction of the light control panel 703, and a control unit 7034 for controlling a liquid crystal tilt angle of the adjustable liquid crystal lens 7031 according to the light exiting direction determined by the determining unit 7033, thereby controlling the light The travel proceeds to the determined exit direction.
  • the light control panel of the embodiment of the present invention can change the tilt angle of the liquid crystal layer liquid crystal by, for example, a voltage control method, and cooperate with the polarizing light film to control the traveling of the light to a direction determined by the light control panel.
  • the various "units” and “modules” in the embodiments may be implemented by a computer or a combination of a computer and appropriate sensors, each of which may be processed, for example, by a processor in the computer. to realise.
  • the determining unit 7034 may include components such as a camera, a position sensor, or a displacement sensor.
  • control unit adjusts an electric field in one or more sub-regions of each region of the regulatable liquid crystal lens according to the determined light emission direction, thereby regulating An angle of inclination of the liquid crystal in the one or more sub-regions.
  • the control of the controllable liquid crystal lens 7031 is as shown in FIG. 10. Under the control of the electrode 1001, liquid crystal molecules having different tilt angles in different regions of the liquid crystal layer 1002 are arranged in a focused form to form an equivalent liquid crystal lens 1003.
  • the determining unit 7033 further includes: a user location collecting module 7035, configured to collect current location information of the user; and the determining unit 7033 is configured according to the current user collected by the user location acquiring module 7035.
  • the position information determines the light exiting direction of the light control panel 703.
  • the image sensing unit of the light control panel such as the camera senses the change of the user position and collects the user's movement.
  • the location information for example, collects the location information of the user's human eye, and transmits the location information to the processing unit of the light control panel, so that the processing unit determines the direction in which the light of the light control panel is emitted.
  • the determining unit 7033 further includes: a light intensity collecting module 7036, configured to collect light intensity information of the environment; and the determining unit 7033 is configured to collect light intensity according to the light intensity collecting module 7036. Information is used to determine the light exit direction of the light control panel 703.
  • the light sensing unit of the light control panel such as the light intensity sensor or the brightness sensor senses the current environmental change and collects light dimming.
  • the information is then transmitted to the processing unit of the light control panel such that the processing unit determines the direction of the light path through the liquid crystal lens such that the exit direction of the light after passing through the light control panel is more divergent, thereby reducing visual brightness.
  • the light sensing unit senses the current environmental change and collects the light brightening information, and then transmits the information to the processing unit of the light control panel, so that the processing unit determines The direction in which the light controls the light exiting the panel.
  • Embodiments of the present invention provide a lens, a manufacturing method thereof, a backlight panel, and a display device, which enhance the collimation of the light source beam and improve the utilization of light energy.
  • the lens provided by the embodiment of the present invention forms a groove by using the first light incident surface and the second light incident surface, and a light source such as an OLED may be disposed in the groove or in the vicinity of the groove.
  • a light source such as an OLED
  • light having a smaller emission angle can be passed through the first light incident surface and emitted from the light exit surface; light having a larger emission angle enters the lens from the second light incident surface, and is realized on the bowl free surface. Total internal reflection and exit through the light exit surface.
  • the collimation of the source beam improves the utilization of light energy.
  • the use of collimated beams allows for better control of the display orientation of the display device, thereby not only achieving better display performance, but also reducing power consumption and saving maintenance costs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种透镜(100)及其制作方法、背光面板(600)和显示装置(700),增强了光源光束的准直性,提高了光能利用率。所述透镜(100)包括:光出射表面(101);与所述光出射表面(101)相对的第一光入射表面(102);环绕所述第一光入射表面(102)并位于所述第一光入射表面(102)背离所述光出射表面(101)一侧的第二光入射表面(103);以及环绕所述第二光入射表面(103)并与所述光出射表面(101)相对的碗形自由曲面(104);所述光出射表面(101)、第一光入射表面(102)、第二光入射表面(103)和碗形自由曲面(104)封闭所述透镜(100)。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面(102)并从光出射表面(101)射出;发射角较大的光线从第二光入射表面(103)进入透镜(100),在碗形自由曲面(104)上实现全内反射,并经由所述光出射表面(101)射出。

Description

透镜及其制作方法、背光面板和显示装置
相关申请
本申请要求保护在2016年12月26日提交的申请号为201611217500.6的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本发明涉及显示技术领域,尤其涉及一种透镜及其制作方法、背光面板和显示装置。
背景技术
诸如OLED的半导体光源相对于传统照明光源具有节能、环保、使用寿命长、反应速度快等优点。OLED照明产品和显示装置的开发、研制、生产已成为发展前景广阔的朝阳产业。与传统光源相比,OLED发出的光近似朗伯型,因此不能直接用于现有的照明或显示系统。
并且,近年来,随着各类显示器件的快速发展,光能量的利用率得到了越来越多的关注。现阶段的LCD和OLED显示器在空间的发光视角范围较大,使得只有很少一部分的光能被人眼接收,大大减少了光能的利用率。
发明内容
有鉴于此,本发明实施例提出了一种透镜及其制作方法、背光面板和显示装置,增强了光源光束的准直性,提高了光能利用率。
根据本发明的一个方面,本发明的一个实施例提供了一种透镜。所述透镜包括:光出射表面;与所述光出射表面相对的第一光入射表面;环绕所述第一光入射表面并位于所述第一光入射表面背离所述光出射表面一侧的第二光入射表面;以及环绕所述第二光入射表面并与所述光出射表面相对的碗形自由曲面;所述光出射表面、第一光入射表面、第二光入射表面和碗形自由曲面封闭所述透镜。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的 附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。在诸如LCD和OLED显示装置的应用中,利用准直的光束可以更好地控制显示装置的显示指向,因此不仅可以实现更好的显示效果,还降低了能耗,节约了维护成本。
可选地,所述光出射表面是平面。
利用平面的光出射表面,有利于简化第一光入射表面、第二光入射表面和碗形自由曲面的设计。相比于具有复杂形貌的光出射表面,本发明实施例所提供的透镜还能够以更简单的制作工艺来实现。例如,可以将所述光出射表面作为底面,使用诸如光刻、压印、激光烧蚀(laser ablation)或电子束直写(EBD)等工艺来制作所述透镜。
然而,所述光出射表面也可以是诸如凸面的曲面。在这种情况下,可以使用注塑的工艺来形成所述透镜;例如,也可以利用诸如光刻、压印、激光烧蚀或电子束直写等工艺先形成第一光入射表面、第二光入射表面和碗形自由曲面,再形成所述光出射表面。
可选地,所述第一光入射表面具有凸状表面。
在该实施例中,利用凸透镜形式的第一光入射表面,发射角较小的光线可以进一步被准直,从而使出射光束具有更小的发散角。
可选地,所述碗形自由曲面的形状由递推关系式:
Figure PCTCN2017083420-appb-000001
所确定;其中(xi,yi)和(Nxi,Nyi)分别为碗形自由曲面上与入射角为θi的光束对应的点的坐标和该点处的法线矢量;r为所述第二光入射表面与原点的距离;n为透镜材料的折射率。
根据以上(xi,yi)与(xi+1,yi+1)的递推关系式,能够简化和优化透镜的设计。利用不同的N值,可以获得不同精度的碗形自由曲面和准直效果。
可选地,所述透镜的材料为透明有机材料。
例如,可以使用例如PMMA、树脂等透明高分子材料来制作本发明实施例的透镜。
根据本发明的另一个方面,本发明的一个实施例提供了一种用于制作以上实施例所述的透镜的方法。所述方法包括:提供衬底基板,所述衬底基板包括第一基板表面和与所述第一基板表面相对的第二基板表面;将所述第一基板表面设置为所述光出射表面;利用光刻、压印、激光烧蚀和电子束直写工艺中至少之一者,在所述第二基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面。
利用光刻、压印、激光烧蚀或电子束直写工艺在所述第二基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面,由此将所述衬底基板的一部分形成为所述透镜。利用这样的工艺,可以方便地在衬底基板上直接形成如本发明实施例所述的透镜或透镜的阵列。
根据本发明的又一个方面,本发明的一个实施例提供了一种背光面板。所述背光面板包括:光源基板;布置在所述光源基板上的多个光源;以及多个如以上实施例所述的透镜;每个所述透镜对应于所述多个光源之一。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。并且,将所述多个光源布置在所述光源基板上,可以方便地形成适配各种显示装置或照明装置的模块化结构。
可选地,所述背光面板还包括衬底基板,所述多个透镜整体地形成在所述衬底基板上。
利用光刻、压印、激光烧蚀或电子束直写工艺在所述衬底基板的一个基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面,由此将所述衬底基板的一部分形成为所述透镜。利用这样的工艺,可以方便地在衬底基板上直接形成如本发明实施例所述的透镜 或透镜的阵列。
可选地,所述背光面板还包括布置在所述多个透镜之间的填充材料;所述填充材料的折射率低于所述透镜的折射率。
利用具有较低折射率的填充材料,能够确保发射角较大的光线在碗形自由曲面上实现全内反射,从而进一步增加光的利用率。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示装置。所述显示装置包括如以上实施例所述的背光面板和设置在所述背光面板出光侧的液晶显示面板。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。在诸如LCD和OLED显示装置的应用中,利用准直的光束可以更好地控制显示装置的显示指向,因此不仅可以实现更好的显示效果,还降低了能耗,节约了维护成本。
可选地,所述显示装置进一步包括布置在所述背光面板和所述液晶显示面板之间的光控制面板。所述光控制面板包括:可调控型液晶透镜;位于所述可调控型液晶透镜入光侧的第一偏光片;确定单元,用于确定光控制面板的光出射方向;以及控制单元,用于根据所述确定单元确定的光出射方向调控所述可调控型液晶透镜的液晶倾斜角度,从而控制光的行进达到所确定的出射方向。
本发明实施例的光控制面板可以例如通过电压控制方式改变液晶层液晶的倾斜角,并和偏振光膜片配合使用,控制光的行进达到光控制面板所确定的方向。
可选地,所述控制单元根据所述确定的光出射方向,调控所述可调控型液晶透镜每个区域中的一个或多个子区域中的电场,从而调控所述一个或多个子区域中的液晶的倾斜角度。
可选地,所述确定单元还包括:用户位置采集模块,用于采集用户的当前位置信息;所述确定单元根据所述用户位置采集模块采集的当前用户位置信息来确定所述光控制面板的光出射方向。
当用户在光控制面板前的位置发生变化,例如由光控制面板的正前方移动到光控制面板的左前方时,光控制面板的图像感应单元如摄像机会感知用户位置变化并采集用户移动后的位置信息,例如采集该用户人眼所在的位置信息,并将该位置信息传送给光控制面板的处理单元,以便处理单元确定光控制面板光线的出射方向。
可选地,所述确定单元还包括:光强度采集模块,用于采集环境的光强度信息;所述确定单元根据所述光强度采集模块采集的光强度信息来确定所述光控制面板的光出射方向。
当光控制面板的周围环境光强度,例如光强度由大变小也即亮度由亮变暗时,光控制面板的光感应单元如光强传感器或亮度传感器会感知当前环境变化并采集光变暗信息,然后将该信息传送给光控制面板的处理单元,以便处理单元确定透过液晶透镜后的光线路径的方向,使得光透过光控制面板后的出射方向更为发散,从而降低视觉亮度。此外,若光强度由小变大也即亮度由暗变亮时,光感应单元会感知当前环境变化并采集光变亮信息,然后将该信息传送给光控制面板的处理单元,以便处理单元确定光控制面板光线的出射方向。
附图说明
图1为根据本发明实施例的透镜的截面示意图;
图2为根据本发明另一实施例的透镜的截面示意图;
图3为根据本发明实施例的透镜的设计方法示意图;
图4为根据本发明实施例的透镜的准直效果示意图;
图5(a)-图5(b)为根据本发明实施例的透镜的制作方法的示意图;
图6为根据本发明实施例的背光面板的截面示意图;
图7为根据本发明实施例的显示装置的示意图;
图8为根据本发明另一实施例的显示装置的示意图;
图9为根据本发明实施例的光控制面板的示意图;
图10为根据本发明实施例的可调控型液晶透镜的示意图;
图11为根据本发明另一实施例的光控制面板的示意图;以及
图12为根据本发明又一实施例的光控制面板的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明专利保护的范围。
根据本发明的一个方面,本发明的一个实施例提供了一种透镜。图1为根据本发明实施例的透镜的截面示意图。所述透镜100包括:光出射表面101;与所述光出射表面101相对的第一光入射表面102;环绕所述第一光入射表面102并位于所述第一光入射表面102背离所述光出射表面101一侧的第二光入射表面103;以及环绕所述第二光入射表面103并与所述光出射表面101相对的碗形自由曲面104;所述光出射表面101、第一光入射表面102、第二光入射表面103和碗形自由曲面104封闭所述透镜100。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源(如图1中的附图标记30所示)可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。在诸如LCD和OLED显示装置的应用中,利用准直的光束可以更好地控制显示装置的显示指向,因此不仅可以实现更好的显示效果,还降低了能耗,节约了维护成本。
可选地,如图1所示,所述光出射表面101是平面。
利用平面的光出射表面,有利于简化第一光入射表面、第二光入射表面和碗形自由曲面的设计。相比于具有复杂形貌的光出射表面,本发明实施例所提供的透镜还能够以更简单的制作工艺来实现。例如,可以将所述光出射表面作为底面,使用诸如光刻、压印、激光烧蚀或电子束直写等工艺来制作所述透镜。
然而,所述光出射表面也可以是诸如凸面的曲面。在这种情况下,可以使用注塑的工艺来形成所述透镜;例如,也可以利用诸如光刻、压印、激光烧蚀或电子束直写等工艺先形成第一光入射表面、第二光 入射表面和碗形自由曲面,再形成所述光出射表面。
可选地,如图1所示,所述第一光入射表面102具有凸状表面。
在该实施例中,利用凸透镜形式的第一光入射表面,发射角较小的光线可以进一步被准直,从而使出射光束具有更小的发散角。
对于发射角较小的光线来说,也可以不使用曲面来矫正光束。如图2所示,在一些实施例中,所述第一光入射表面102’也可以具有平面的形状。
为了获得理想的碗形自由曲面,简化和优化透镜的设计,可以使用以下方法来设计本发明实施例所述透镜的碗形自由曲面。
首先,建立如图3所示的坐标系。设定透镜中心轴为y轴,光源位置为坐标原点。假设光源为理想点光源,则从原点出射的光线先经过面(x=r)折射进入所述透镜,然后在碗形自由曲面处发生全内反射后变成平行于y轴的光并出射。θmax为经由所述第二光入射表面进入透镜的光束角度范围。可以将θmax平均分为M份。θi是光源发出的光线与y轴的夹角,则θi=90°-i*θmax/M,其中(i=1,2,...M)。P0,P1,...,Pi是入射角为θ0,θ1,...,θi的光束与直线x=r的交点。Q0(x0,y0),Q1(x1,y1),...,Qi(xi,yi)为光线入射至透镜后与碗形自由曲面的母线的交点。
进一步的,推导x1与x0的关系。由图3设P0(r,0),Q0(x0,y0)。θ0为OP0与y轴夹角,可知P0(r,rcotθ0)。对于Q1(x1,y1),设OP1的单位矢量为p1,P1Q1的单位方向向量为q1;则由斯涅尔定律(Snell′s Law)可以获得:nq1-p1=PN1(公式1),以及p1=(sinθ1,cosθ1)(公式2)。在公式1中:P为常量,N1为单位法向向量。
由公式1和公式2可以获得:
Figure PCTCN2017083420-appb-000002
其中K1为未知数。Q1R平行于y轴,因此它的单位法向矢量为(0,1)。设碗形自由曲面上Q1处的法线矢量为(Nx1,Ny1),根据全反射原理,对于光线P1Q1和Q1R1,有:n(0,1)-q1=N1=[-(K1+sinθ1),n-cosθ1](公式4)。
P1Q1平行于q1,则可得:P1Q1=k’q1,其中k’为常数。而P1Q1=(x1-r,y1-rcosθ1),由此可得:
Figure PCTCN2017083420-appb-000003
并且,由于Q0Q1与N1垂直,则有Q0Q1·N1=0,即得到(x1-x0)Nx1=(y1-y0)Ny1(公式6)。
根据折射定律,还可得到:
Figure PCTCN2017083420-appb-000004
由公式(4)(5)(6)(7)可求出x1与x0的关系式,代入(x0,y0)可求出(x1,y1)。类似地,可以得出(xi,yi)与(xi+1,yi+1)的递推关系式,即汇总的递推关系式:
Figure PCTCN2017083420-appb-000005
因此,可选地,所述碗形自由曲面的形状由以上递推关系式所确定;其中(xi,yi)和(Nxi,Nyi)分别为碗形自由曲面上与入射角为θi的光束对应的点的坐标和该点处的法线矢量;r为所述第二光入射表面与原点的距离;n为透镜材料的折射率;Pi是入射角为θi的光束与直线x=r的交点坐标;并且
Figure PCTCN2017083420-appb-000006
根据以上(xi,yi)与(xi+1,yi+1)的递推关系式,能够简化和优化透镜的设计。利用不同的N值,可以获得不同精度的碗形自由曲面和准直效果。
设r=50μm并假设θmax=60°,M=3000;使用PMMA(n=1.4935)制作所述透镜。将上述碗形自由曲面的模型导入诸如lighttools的软件中进行模拟,获得了准直度在-2°~+2°范围内的准直光束。图4为根据本发明实施例的透镜的准直效果示意图,其中横坐标表示光强分布的角度范围,纵坐标表示归一化的光强。
可选地,所述透镜的材料为透明有机材料。
例如,可以使用例如PMMA、树脂等透明高分子材料来制作本发明实施例的透镜。
根据本发明的另一个方面,本发明的一个实施例提供了一种用于制作以上实施例所述的透镜的方法。所述方法包括:提供衬底基板501,所述衬底基板501包括第一基板表面502和与所述第一基板表面502相对的第二基板表面503,如图5(a)所示;将所述第一基板表面502设置为所述光出射表面;利用光刻、压印、激光烧蚀和电子束直写工艺中至少之一者,在所述第二基板表面上形成所述第一光入射表面102、 第二光入射表面103和碗形自由曲面104,如图5(b)所示。
利用光刻、压印、激光烧蚀或电子束直写工艺在所述第二基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面,由此将所述衬底基板的一部分形成为所述透镜。利用这样的工艺,可以方便地在衬底基板上直接形成如本发明实施例所述的透镜或透镜的阵列。
根据本发明的又一个方面,本发明的一个实施例提供了一种背光面板。图6为根据本发明实施例的背光面板的截面示意图;所述背光面板600包括:光源基板601;布置在所述光源基板601上的多个光源602;以及多个如以上实施例所述的透镜603;每个所述透镜603对应于所述多个光源602之一。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。并且,将所述多个光源布置在所述光源基板上,可以方便地形成适配各种显示装置或照明装置的模块化结构。
可选地,如图6所示,所述背光面板600还包括衬底基板604,所述多个透镜603整体地形成在所述衬底基板604上。
利用光刻、压印、激光烧蚀或电子束直写工艺在所述衬底基板的一个基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面,由此将所述衬底基板的一部分形成为所述透镜。利用这样的工艺,可以方便地在衬底基板上直接形成如本发明实施例所述的透镜或透镜的阵列。
可选地,如图6所示,所述背光面板600还包括布置在所述多个透镜603之间的填充材料605;所述填充材料605的折射率低于所述透镜603的折射率。
利用具有较低折射率的填充材料,能够确保发射角较大的光线在碗形自由曲面上实现全内反射,从而进一步增加光的利用率。
根据本发明的另一个方面,本发明的一个实施例提供了一种显示 装置。图7为根据本发明实施例的显示装置的示意图。所述显示装置700包括如以上实施例所述的背光面板701和设置在所述背光面板701出光侧的液晶显示面板702。所述显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光源光束的准直性,提高了光能利用率。在诸如LCD和OLED显示装置的应用中,利用准直的光束可以更好地控制显示装置的显示指向,因此不仅可以实现更好的显示效果,还降低了能耗,节约了维护成本。
图8为根据本发明另一实施例的显示装置的示意图;可选地,所述显示装置700进一步包括布置在所述背光面板701和所述液晶显示面板702之间的光控制面板703。图9为根据本发明实施例的光控制面板的示意图;所述光控制面板703包括:可调控型液晶透镜7031;位于所述可调控型液晶透镜7031入光侧的第一偏光片7032;确定单元7033,用于确定光控制面板703的光出射方向;以及控制单元7034,用于根据所述确定单元7033确定的光出射方向调控所述可调控型液晶透镜7031的液晶倾斜角度,从而控制光的行进达到所确定的出射方向。
本发明实施例的光控制面板可以例如通过电压控制方式改变液晶层液晶的倾斜角,并和偏振光膜片配合使用,控制光的行进达到光控制面板所确定的方向。
在本发明的上下文中,实施例中的各个“单元”和“模块”可以由计算机或者计算机与适当传感器的结合来实现,各个单元、模块的处理过程均可以例如由所述计算机中的处理器来实现。
其中,确定单元7034可包括摄像头、位置传感器或位移传感器等元件。
可选地,所述控制单元根据所述确定的光出射方向,调控所述可调控型液晶透镜每个区域中的一个或多个子区域中的电场,从而调控 所述一个或多个子区域中的液晶的倾斜角度。对于可调控型液晶透镜7031的控制如图10所示,在电极1001的控制下,液晶层1002的不同区域具有不同倾斜角的液晶分子,按聚焦形态排列形成等效液晶透镜1003。
可选地,如图11所示,所述确定单元7033还包括:用户位置采集模块7035,用于采集用户的当前位置信息;所述确定单元7033根据所述用户位置采集模块7035采集的当前用户位置信息来确定所述光控制面板703的光出射方向。
当用户在光控制面板前的位置发生变化,例如由光控制面板的正前方移动到光控制面板的左前方时,光控制面板的图像感应单元如摄像机会感知用户位置变化并采集用户移动后的位置信息,例如采集该用户人眼所在的位置信息,并将该位置信息传送给光控制面板的处理单元,以便处理单元确定光控制面板光线的出射方向。
可选地,如图12所示,所述确定单元7033还包括:光强度采集模块7036,用于采集环境的光强度信息;所述确定单元7033根据所述光强度采集模块7036采集的光强度信息来确定所述光控制面板703的光出射方向。
当光控制面板的周围环境光强度,例如光强度由大变小也即亮度由亮变暗时,光控制面板的光感应单元如光强传感器或亮度传感器会感知当前环境变化并采集光变暗信息,然后将该信息传送给光控制面板的处理单元,以便处理单元确定透过液晶透镜后的光线路径的方向,使得光透过光控制面板后的出射方向更为发散,从而降低视觉亮度。此外,若光强度由小变大也即亮度由暗变亮时,光感应单元会感知当前环境变化并采集光变亮信息,然后将该信息传送给光控制面板的处理单元,以便处理单元确定光控制面板光线的出射方向。
本发明实施例提供了一种透镜及其制作方法、背光面板和显示装置,增强了光源光束的准直性,提高了光能利用率。本发明实施例提供的透镜利用所述第一光入射表面和第二光入射表面形成了凹槽,诸如OLED的光源可以布置在所述凹槽中或凹槽的附近。对于诸如OLED的光源,可以使发射角较小的光线穿过第一光入射表面并从光出射表面射出;发射角较大的光线从第二光入射表面进入透镜,在碗形自由曲面上实现全内反射,并经由所述光出射表面射出。由此,增强了光 源光束的准直性,提高了光能利用率。在诸如LCD和OLED显示装置的应用中,利用准直的光束可以更好地控制显示装置的显示指向,因此不仅可以实现更好的显示效果,还降低了能耗,节约了维护成本。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型。

Claims (14)

  1. 一种透镜,包括:
    光出射表面;
    与所述光出射表面相对的第一光入射表面;
    环绕所述第一光入射表面并位于所述第一光入射表面背离所述光出射表面一侧的第二光入射表面;以及
    环绕所述第二光入射表面并与所述光出射表面相对的碗形自由曲面;所述光出射表面、第一光入射表面、第二光入射表面和碗形自由曲面封闭所述透镜。
  2. 如权利要求1所述的透镜,其中所述光出射表面是平面。
  3. 如权利要求1所述的透镜,其中所述第一光入射表面具有凸状表面。
  4. 如权利要求1-3之一所述的透镜,其中所述碗形自由曲面的形状由递推关系式
    Figure PCTCN2017083420-appb-100001
    所确定;其中(xi,yi)和(Nxi,Nyi)分别为碗形自由曲面上与入射角为θi的光束对应的点的坐标和该点处的法线矢量;r为所述第二光入射表面与原点的距离;n为透镜材料的折射率。
  5. 如权利要求1-3之一所述的透镜,其中所述透镜的材料为透明有机材料。
  6. 一种如权利要求1-5所述的透镜的制作方法,包括:
    提供衬底基板,所述衬底基板包括第一基板表面和与所述第一基板表面相对的第二基板表面;
    将所述第一基板表面设置为所述光出射表面;
    利用光刻、压印、激光烧蚀和电子束直写工艺中至少之一者,在所述第二基板表面上形成所述第一光入射表面、第二光入射表面和碗形自由曲面。
  7. 一种背光面板,包括:
    光源基板;
    布置在所述光源基板上的多个光源;以及
    多个如权利要求1-5所述的透镜;每个所述透镜对应于所述多个光源之一。
  8. 如权利要求7所述的背光面板,还包括衬底基板,所述多个透镜整体地形成在所述衬底基板上。
  9. 如权利要求7或8所述的背光面板,还包括布置在所述多个透镜之间的填充材料;所述填充材料的折射率低于所述透镜的折射率。
  10. 一种显示装置,包括如权利要求7-9所述的背光面板和设置在所述背光面板出光侧的液晶显示面板。
  11. 如权利要求10所述的显示装置,进一步包括布置在所述背光面板和所述液晶显示面板之间的光控制面板;所述光控制面板包括:
    可调控型液晶透镜;
    位于所述可调控型液晶透镜入光侧的第一偏光片;
    确定单元,用于确定光控制面板的光出射方向;以及
    控制单元,用于根据所述确定单元确定的光出射方向调控所述可调控型液晶透镜的液晶倾斜角度,从而控制光的行进达到所确定的出射方向。
  12. 根据权利要求11所述的显示装置,其中所述控制单元根据所述确定的光出射方向,调控所述可调控型液晶透镜每个区域中的一个或多个子区域中的电场,从而调控所述一个或多个子区域中的液晶的倾斜角度。
  13. 根据权利要求11所述的显示装置,其中所述确定单元还包括:
    用户位置采集模块,用于采集用户的当前位置信息;
    所述确定单元根据所述用户位置采集模块采集的当前用户位置信息来确定所述光控制面板的光出射方向。
  14. 根据权利要求11所述的显示装置,其中所述确定单元还包括:
    光强度采集模块,用于采集环境的光强度信息;
    所述确定单元根据所述光强度采集模块采集的光强度信息来确定所述光控制面板的光出射方向。
PCT/CN2017/083420 2016-12-26 2017-05-08 透镜及其制作方法、背光面板和显示装置 WO2018120573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,944 US11156870B2 (en) 2016-12-26 2017-05-08 Lens and manufacturing method thereof, backlight panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611217500.6 2016-12-26
CN201611217500.6A CN106443846B (zh) 2016-12-26 2016-12-26 透镜及其制作方法、背光面板和显示装置

Publications (1)

Publication Number Publication Date
WO2018120573A1 true WO2018120573A1 (zh) 2018-07-05

Family

ID=58215902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083420 WO2018120573A1 (zh) 2016-12-26 2017-05-08 透镜及其制作方法、背光面板和显示装置

Country Status (3)

Country Link
US (1) US11156870B2 (zh)
CN (1) CN106443846B (zh)
WO (1) WO2018120573A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443846B (zh) * 2016-12-26 2018-05-08 京东方科技集团股份有限公司 透镜及其制作方法、背光面板和显示装置
CN108957601B (zh) * 2018-08-22 2023-08-22 杭州照相机械研究所有限公司 一种偏光透镜
CN111312762B (zh) * 2020-02-18 2023-04-28 京东方科技集团股份有限公司 显示面板及其显示方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990614A (zh) * 2008-12-16 2011-03-23 香港应用科技研究院有限公司 Led光整形装置和照明系统
JP2011085741A (ja) * 2009-10-15 2011-04-28 Hitachi Consumer Electronics Co Ltd 照明装置及び投写型映像表示装置
CN102262262A (zh) * 2011-07-01 2011-11-30 青岛海信电器股份有限公司 导光板、背光模组及显示装置
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
CN105785567A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 一种新型抬头显示仪及其光源系统
CN106443846A (zh) * 2016-12-26 2017-02-22 京东方科技集团股份有限公司 透镜及其制作方法、背光面板和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101561114B (zh) * 2008-04-17 2011-01-26 玉晶光电股份有限公司 全反射透镜
CN201837773U (zh) * 2010-10-30 2011-05-18 东莞市松毅电子有限公司 一种聚光透镜及透镜组
CN103511978B (zh) * 2012-06-29 2018-05-01 欧司朗股份有限公司 透镜、照明装置和灯箱
CN104180208A (zh) * 2013-05-24 2014-12-03 海洋王(东莞)照明科技有限公司 灯具及其透镜
CN204227312U (zh) * 2014-10-15 2015-03-25 惠州比亚迪实业有限公司 Led透镜
CN108375043B (zh) * 2016-11-24 2021-02-23 法雷奥照明湖北技术中心有限公司 光束调整装置、光学组件与照明和/或信号指示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990614A (zh) * 2008-12-16 2011-03-23 香港应用科技研究院有限公司 Led光整形装置和照明系统
JP2011085741A (ja) * 2009-10-15 2011-04-28 Hitachi Consumer Electronics Co Ltd 照明装置及び投写型映像表示装置
CN102262262A (zh) * 2011-07-01 2011-11-30 青岛海信电器股份有限公司 导光板、背光模组及显示装置
CN105785567A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 一种新型抬头显示仪及其光源系统
CN104777696A (zh) * 2015-05-08 2015-07-15 京东方科技集团股份有限公司 一种背光模组及显示装置
CN106443846A (zh) * 2016-12-26 2017-02-22 京东方科技集团股份有限公司 透镜及其制作方法、背光面板和显示装置

Also Published As

Publication number Publication date
CN106443846B (zh) 2018-05-08
US11156870B2 (en) 2021-10-26
US20180364524A1 (en) 2018-12-20
CN106443846A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2019210572A1 (zh) 一种用于屏幕下方的指纹识别模组
US9279560B2 (en) LED lens and LCD backlight screen
US7623293B2 (en) Optical element and the light source apparatus utilizing the same
WO2011065052A1 (ja) 面状照明装置およびそれを備えた表示装置
KR101335791B1 (ko) 디스플레이 장치의 백라이트 유닛 및 그를 이용한 디스플레이 장치
CN111679439B (zh) 光场调制器及其调制方法
WO2018120573A1 (zh) 透镜及其制作方法、背光面板和显示装置
WO2020233282A1 (zh) 透镜结构、光源结构、背光模组和显示装置
US20140301065A1 (en) Display apparatus
US10359668B2 (en) Display device and backlight module
CN108845460B (zh) 一种背光模组及显示装置
KR101419031B1 (ko) 발광장치 및 이를 구비하는 조명장치
WO2016127442A1 (zh) 背光模组及包含其的液晶显示装置
KR20190070973A (ko) 직하형 백라이트 유닛들을 갖는 디스플레이들
CN109284708A (zh) 一种指纹识别器件及显示装置
CN208547739U (zh) 导光板及背光模块
US10018766B2 (en) Light guide plate, backlight module and display device
TWI503581B (zh) 透鏡、光源裝置以及直下式光源模組
CN108803781B (zh) 具有光学成像传感器的平板显示器
TWI240831B (en) Small-angle light-emitting device at specific positions for back light module of liquid crystal display
KR20130140567A (ko) 둥근 팁 터닝 막들을 갖는 디스플레이들
CN110955083A (zh) 显示装置
TW201443520A (zh) 顯示裝置及其側光式背光模組
KR101355815B1 (ko) 발광장치 및 이를 구비하는 조명장치
CN206331133U (zh) 透镜、背光面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17887757

Country of ref document: EP

Kind code of ref document: A1