WO2018120566A1 - 波束选择方法、装置及系统 - Google Patents

波束选择方法、装置及系统 Download PDF

Info

Publication number
WO2018120566A1
WO2018120566A1 PCT/CN2017/083096 CN2017083096W WO2018120566A1 WO 2018120566 A1 WO2018120566 A1 WO 2018120566A1 CN 2017083096 W CN2017083096 W CN 2017083096W WO 2018120566 A1 WO2018120566 A1 WO 2018120566A1
Authority
WO
WIPO (PCT)
Prior art keywords
end device
correspondence
signal
reference signal
physical channel
Prior art date
Application number
PCT/CN2017/083096
Other languages
English (en)
French (fr)
Inventor
张治�
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2019123979A priority Critical patent/RU2736601C1/ru
Priority to DK17889008.3T priority patent/DK3565132T3/da
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to MX2019007896A priority patent/MX2019007896A/es
Priority to AU2017387238A priority patent/AU2017387238B2/en
Priority to CA3048932A priority patent/CA3048932C/en
Priority to SG11201906126QA priority patent/SG11201906126QA/en
Priority to EP21169575.4A priority patent/EP3886330A3/en
Priority to EP17889008.3A priority patent/EP3565132B1/en
Priority to MYPI2019003813A priority patent/MY197588A/en
Priority to CN201780081269.9A priority patent/CN110121913B/zh
Priority to ES17889008T priority patent/ES2878195T3/es
Priority to BR112019013665A priority patent/BR112019013665A2/pt
Priority to JP2019536028A priority patent/JP7053628B2/ja
Priority to KR1020197022502A priority patent/KR102307317B1/ko
Priority to TW106143686A priority patent/TWI757390B/zh
Publication of WO2018120566A1 publication Critical patent/WO2018120566A1/zh
Priority to US16/458,461 priority patent/US10992365B2/en
Priority to PH12019501546A priority patent/PH12019501546A1/en
Priority to ZA2019/05019A priority patent/ZA201905019B/en
Priority to US17/215,267 priority patent/US11764852B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a beam selection method, apparatus, and system.
  • the 5th generation mobile communication (5G) system is also known as the new radio (NR) system.
  • Beamforming is one of the key technologies introduced by 5G systems.
  • Beamforming refers to the formation of specific spatial directivity by superimposing signals transmitted by multiple antennas by assigning specific weights to a plurality of transmitting antennas.
  • the transmitting device can transmit beam signals to multiple receiving devices simultaneously through different beams, thereby achieving repeated use of the same time-frequency resources in different spaces (ie, space division multiplexing). Increased system capacity.
  • a receiving device may simultaneously detect multiple beams sent by the transmitting device, and the receiving device needs to separately perform multiple beams sent by the transmitting device before receiving the data sent by the transmitting device. Measurement, the beam with good signal quality is selected from multiple beams for receiving, and the process of measuring multiple beams sent by the transmitting device separately requires more measurement time, resulting in more complexity and delay of data reception. high.
  • the embodiment of the present invention provides a method for solving the problem that the receiving end device separately measures the multiple beams sent by the sending end device, which requires a large amount of measurement time, resulting in a technical problem of high data receiving complexity and high delay.
  • Beam selection method, device and system The technical solution is as follows:
  • a beam selection method comprising:
  • the receiving end device receives at least one set of beam correspondence information sent by the sending end device, where each group of the beam corresponding information includes a correspondence between a first beam and at least one second beam;
  • the receiving end device sends, according to the at least one set of beam correspondence information, from the sending end device
  • the received beam is selected among the individual beams.
  • the correspondence between the first beam and the at least one second beam includes:
  • the reference signal comprises:
  • DMRS De Modulation Reference Signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal used for a downlink physical channel of the corresponding beam transmission, and/or a beam reference signal of a corresponding beam, and/or a channel state information reference signal of the corresponding beam (Channel State Information-Reference Signal, CSI-RS).
  • CSI-RS Channel State Information-Reference Signal
  • the correspondence between the first beam and the at least one second beam further includes:
  • the receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information, including:
  • the first beam corresponding to the second beam is selected as a beam for receiving the second physical channel according to the at least one group of beam correspondence information.
  • the receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information, including:
  • the receiving end device When the receiving end device receives the signaling or data transmitted in the second physical channel by using the first beam, the signal quality of the at least one second beam corresponding to the first beam is measured according to the at least one group of beam correspondence information;
  • the receiving end device selects a second beam with the best signal quality among the at least one second beam corresponding to the first beam as a beam for receiving the first physical channel.
  • the first physical channel is a downlink data channel, and the second physical channel is a downlink control channel; or the first physical channel is an uplink data channel, and the second physical channel is Uplink control channel.
  • the receiving end device receives at least one set of beam correspondence information sent by the sending end device, where the receiving end device receives the sending, by the sending end device, by using dedicated signaling or broadcast signaling. At least one set of beam correspondence information is described.
  • the receiving end device is a terminal, and the sending end device is an access network device; or the receiving end device is an access network device, and the sending end device is a terminal.
  • a beam selection method comprising:
  • the transmitting device generates at least one set of beam correspondence information, where each group of the beam correspondence information includes a correspondence between a first beam and at least one second beam;
  • the transmitting end device sends the at least one set of beam information to the receiving end device, so that the receiving end device selects the received beam from each of the beams sent by the sending end device according to the at least one set of beam correspondence information. .
  • the correspondence between the first beam and the at least one second beam includes:
  • the reference signal comprises:
  • DMRS demodulation reference signal
  • SRS channel sounding reference signal
  • the correspondence between the first beam and the at least one second beam further includes:
  • the first physical channel is a downlink data channel, and the second physical channel is a downlink control channel; or the first physical channel is an uplink data channel, and the second physical channel is Uplink control channel.
  • the sending end device sends the at least one set of beam information to the receiving end device, including:
  • the transmitting end device sends the at least one set of beam correspondence information to the receiving end device by using dedicated signaling or broadcast signaling.
  • the receiving end device is a terminal, and the sending end device is an access network device; or the receiving end device is an access network device, and the sending end device is a terminal.
  • a beam selection method comprising:
  • the receiving end device receives at least one set of beam correspondence information sent by the sending end device, where each group of the beam corresponding information includes a correspondence between a beam where the first signal is located and a beam where the second signal is located;
  • the receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information.
  • the beam where the first signal is located is the same beam as the beam where the second signal is located.
  • the receiving end device receives at least one set of beam correspondence information sent by the sending end device, including:
  • the receiving end device receives the at least one set of beam correspondence information that is sent by the sending end device by using dedicated signaling.
  • the first signal is a reference signal block SS block; and the second signal includes at least one of a paging signal, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the correspondence includes:
  • Correspondence when the second signal includes a demodulation reference signal DMRS, Correspondence includes:
  • the receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information, including:
  • the receiving end device queries, according to the at least one set of beam correspondence information, a second signal corresponding to the first signal in the beam with the best signal quality in each beam;
  • the receiving end device selects a beam with the best signal quality as a beam for receiving a second signal corresponding to the first signal in the beam with the best signal quality.
  • a beam selection method comprising:
  • the transmitting device generates at least one set of beam correspondence information, where each group of the beam corresponds to a correspondence between a beam where the first signal is located and a beam where the second signal is located;
  • the transmitting end device sends the at least one set of beam correspondence information to the receiving end device, so that the receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one set of beam correspondence information. .
  • the beam where the first signal is located is the same beam as the beam where the second signal is located.
  • the sending end device sends the at least one set of beam correspondence information to the receiving end device, including:
  • the transmitting end device sends, to the receiving end device, dedicated signaling including the at least one set of beam correspondence information.
  • the first signal is a reference signal block SS block; and the second signal includes at least one of a paging signal, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the correspondence includes:
  • the correspondence includes:
  • a beam selecting apparatus comprising at least one unit, wherein the at least one unit is used to implement any one of the above first aspect or the first aspect.
  • the beam selection method provided by the implementation.
  • a beam selecting apparatus comprising at least one unit, wherein the at least one unit is configured to implement any one of the second aspect or the second aspect described above.
  • the beam selection method provided by the implementation.
  • a beam selecting apparatus comprising at least one unit, wherein the at least one unit is configured to implement any one of the third aspect or the third aspect described above.
  • the beam selection method provided by the implementation.
  • a beam selecting apparatus comprising at least one unit, wherein the at least one unit is configured to implement any one of the fourth aspect or the fourth aspect described above.
  • the beam selection method provided by the implementation.
  • a receiving end device comprising a processor, a memory, a transmitter and a receiver; the processor for storing one or more instructions, The instructions are indicated as being executed by the processor, the processor being configured to implement the beam selection method provided by the optional implementation of any of the first aspect or the first aspect, or the processor is configured to implement the foregoing The beam selection method provided by any one of the optional implementations of the third aspect or the third aspect; the receiver is configured to implement reception of beam correspondence information.
  • a sender device comprising a processor, a memory, a transmitter, and a receiver; the processor is configured to store one or more instructions, The instructions are indicated as being executed by the processor, the processor being configured to implement the beam selection method provided by any of the alternative implementations of the second aspect or the second aspect, or the processor is configured to implement the foregoing The beam selection method provided by any one of the optional implementations of the fourth aspect or the fourth aspect; the transmitter is configured to implement transmission of beam correspondence information.
  • a computer readable medium storing one or more instructions for implementing the first aspect or the first aspect described above a beam correspondence information method provided by any of the alternative implementations; or The instruction is used to implement the beam selection method provided by the optional implementation of any of the foregoing second aspect or the second aspect; or the instruction is used to implement any one of the foregoing third aspect or the third aspect The beam selection method provided by the implementation manner; or the instruction is used to implement the beam selection method provided by any one of the foregoing fourth aspect or the fourth aspect.
  • a beam selection system which may include a receiving end device and a transmitting end device.
  • the device at the receiving end may be the device that includes the beam selecting device provided in the foregoing fifth aspect
  • the device in the transmitting device may be the device that includes the beam selecting device provided in the foregoing sixth aspect; or the receiving device may be
  • the transmitting device may be a device including the beam selecting device provided in the above eighth aspect.
  • a beam selection system which may include the receiving end device provided in the above tenth aspect and the transmitting end device provided in the eleventh aspect.
  • the sending end device sends the corresponding relationship between the first beam and the second beam to the receiving end device, and the receiving end device can receive the data sent by the sending end device according to the first beam and the second beam.
  • the selected beam is quickly selected from each beam sent by the transmitting device, which reduces the step or the number of times the signal quality of the beam is measured during data receiving, thereby reducing the time taken for beam measurement and accelerating the receiving device.
  • the process of beam measurement and selection simplifies the complexity of data reception and reduces the delay of data reception.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a beam provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a beam provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for a beam selection method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for a beam selection method according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for a beam selection method according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for a beam selection method according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for a beam selection method according to an embodiment of the present invention.
  • FIG. 13 is a block diagram showing the structure of a beam selecting apparatus according to another embodiment of the present invention.
  • FIG. 14 is a block diagram showing the structure of a beam selecting apparatus according to another embodiment of the present invention.
  • FIG. 15 is a structural block diagram of a receiving end device according to another embodiment of the present invention.
  • FIG. 16 is a structural block diagram of a transmitting device according to another embodiment of the present invention.
  • a “module” as referred to herein generally refers to a program or instruction stored in a memory that is capable of performing certain functions;
  • "unit” as referred to herein generally refers to a functional structure that is logically divided, the "unit” It can be implemented by pure hardware or a combination of hardware and software.
  • Multiple as referred to herein means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present invention.
  • the mobile communication system can be a 5G system, also known as an NR system.
  • the mobile communication system includes an access network device 120 and a terminal 140.
  • Access network device 120 can be a base station.
  • the base station may be a base station (gNB) employing a centralized distributed architecture in a 5G system.
  • the access network device 120 adopts a centralized distributed architecture, it generally includes a central unit (CU) and at least two distributed units (DUs).
  • the centralized data unit is provided with a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control (RLC) layer, and a media access control (Media).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Media media access control
  • the protocol stack of the access control (MAC) layer; the physical (Physical, PHY) layer protocol stack is disposed in the distribution unit, and the specific implementation manner of the access network device 120 is not limited in the embodiment of the present invention.
  • the access network device 120 and the terminal 140 establish a wireless connection through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air (NR); or the wireless air interface may also be based on 5G. Wireless air interface for the next generation of mobile communication network technology standards.
  • 5G fifth generation mobile communication network technology
  • NR new air
  • Wireless air interface for the next generation of mobile communication network technology standards.
  • Terminal 140 may be a device that provides voice and/or data connectivity to a user.
  • the terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Subscriber Unit Subscriber Station, Mobile Station, Mobile, Remote Station, Access Point, Remote Terminal , Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • multiple access network devices 120 and/or multiple terminals 140 may be included, and one access network device 120 and one terminal 140 are shown in FIG.
  • this embodiment does not limit this.
  • a transmitting device can transmit data to a receiving device in a specific direction through a beam.
  • the transmitting end device may be the access network device 120 in the mobile communication system shown in FIG. 1
  • the receiving end device may be the terminal 140.
  • the beam sent by the sending end device to the receiving end device may be referred to as a downlink beam.
  • the transmitting device may be the terminal 140 in the mobile communication system shown in FIG. 1 above, and the receiving device may be the access network device 120.
  • the beam sent by the transmitting device to the receiving device may be called For the uplink beam.
  • the width of different beams transmitted by the transmitting device can be different.
  • the beam sent by the sending end device may be divided into two types: a first beam and a second beam.
  • one first beam covers at least one second beam.
  • the first beam covers at least one second beam, that is, the first beam spatially covers at least one second beam, or the coverage of the at least one second beam is in the first beam.
  • the first beam may be referred to as a wide beam.
  • the second beam may be referred to as a narrow beam, or the first beam may be referred to as a large beam, and the second beam may be referred to as a small beam.
  • the specific naming of the first beam and the second beam is not limited in the embodiment of the present invention. .
  • the second beam can be used to transmit a data channel, so that the number of beams used for transmitting the data channel is larger, the space division multiplexing can be better realized, and the system capacity can be improved; and the first beam can be used to transmit a common channel or control. Channel to increase the coverage of the common channel or control channel.
  • the embodiment of the present invention does not limit the physical channel transmitted by different types of beams.
  • the first beam may also be used to transmit a data channel
  • the second beam may also be used to transmit a common channel or a control channel.
  • the foregoing first beam may also not correspond to a specific physical channel.
  • FIG. 2 shows a schematic diagram of a beam provided by an embodiment of the present invention.
  • the transmitting device sends six beams, which are beam 1 to beam 6, respectively, beam 1 to beam 4 are second beams, that is, narrow beams; and beam 5 and beam 6 are first beams, that is, wide beams. Also, beam 5 covers beam 1 and beam 2, and beam 6 covers beam 3 and beam 4.
  • the transmitting device can send data of the data channel through the beam 1 to the beam 4, and send the data of the control channel through the beam 5 and the beam 6.
  • the schematic diagram shown in FIG. 2 is an example in which the transmitting device sends six beams and one first beam covers two second beams.
  • the number of beams sent by the transmitting device is not limited to 6, and the number of second beams covered by one first beam is not limited to two, that is, the number of beams transmitted by the transmitting device may be more or less, and the number of second beams covered by one first beam may also be More or less.
  • FIG. 3 is a schematic diagram of a beam according to an embodiment of the present invention.
  • the transmitting device sends 12 beams, which are beam 1 to beam 12, and beam 1 to beam 9. It is a second beam, that is, a narrow beam; the beam 10 to the beam 12 are a first beam, that is, a wide beam.
  • beam 10 covers beam 1 to beam 3
  • beam 11 covers beam 4 to beam 6
  • beam 12 covers beam 7 to beam 9.
  • FIG. 4 shows a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • This embodiment is exemplified by applying the beam selection method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 401 The transmitting device generates at least one set of beam correspondence information, where each group of beam correspondence information includes a correspondence between a first beam and at least one second beam.
  • the first beam and the second beam may be beams sent by the transmitting device, and the first beam covers the corresponding at least one second beam.
  • the sending end device when generating the beam correspondence information, the sending end device generates beam correspondence information according to the coverage relationship between the first beam and the second beam that is sent by the sending end device, that is, generates the first beam and at least one second of the first beam coverage. Correspondence between beams.
  • beam 5 covers beam 1 and beam 2
  • beam 6 covers beam 3 and beam 4
  • the transmitting device can generate a correspondence between beam 5 and beam 1 and beam 2.
  • a set of beam correspondence information is generated, and the correspondence between the beam 6 and the beam 3 and the beam 4 is generated as another set of beam correspondence information.
  • beam 10 covers beam 1 to beam 3
  • beam 11 covers beam 4 to beam 6
  • beam 12 covers beam 7 to beam 9
  • the transmitting device can beam 10 and beam
  • the correspondence between the 1 and the beam 3 is generated as a set of beam correspondence information
  • the correspondence between the beam 11 and the beam 4 to the beam 6 is generated as another set of beam correspondence information
  • the beam 12 and the beam 7 to the beam 9 are The correspondence between the two is generated as another set of beam correspondence information.
  • the correspondence between the first beam and the at least one second beam in the set of beam correspondence information may be a dominant correspondence or an implicit correspondence.
  • the explicit correspondence may be a correspondence between the first beam and the wave ID of the at least one second beam.
  • the implicit correspondence relationship is a correspondence between a physical resource corresponding to the first beam and a physical resource corresponding to each of the at least one second beam.
  • the physical resource may be at least one of a time domain resource, a frequency domain resource, and a code domain resource.
  • the implicit correspondence relationship is a correspondence between a reference signal corresponding to the first beam and a reference signal corresponding to each of the at least one second beam.
  • the implicit correspondence relationship is a correspondence between a physical resource corresponding to the first beam and a reference signal corresponding to each of the at least one second beam.
  • the implicit correspondence relationship is a correspondence between a reference signal corresponding to the first beam and a physical resource corresponding to each of the at least one second beam.
  • the correspondence between the first beam and the at least one second beam in the set of beam correspondence information may also include the explicit correspondence and the implicit correspondence.
  • indications are made in both explicit and implicit correspondences.
  • the correspondence between the first beam and the at least one second beam further includes at least one A first physical channel corresponding to the second beam, and a second physical channel corresponding to the first beam.
  • the correspondence between the first beam and the at least one second beam includes: an identifier of the first physical channel corresponding to the at least one second beam, and an identifier of the second physical channel corresponding to the first beam.
  • the corresponding relationship between the first beam and the at least one second beam includes: a channel type of the first physical channel corresponding to the at least one second beam, and a channel type of the second physical channel corresponding to the first beam.
  • the second beam is used to transmit a data channel
  • the first beam is used to transmit a control channel.
  • the transmitting device is an access network device
  • the receiving device is When the terminal is the terminal, the first physical channel is a downlink data channel, and the second physical channel is a downlink control channel; correspondingly, when the first beam and the second beam are uplink beams, for example, the transmitting device is a terminal, and the receiving device is When accessing the network device, the first physical channel is an uplink data channel, and the second physical channel is an uplink control channel, and the transmitting device indicates, by the beam corresponding information, the physical channel corresponding to the first beam and the physical body corresponding to the second beam to the receiving end device. channel.
  • the reference signals used in the implicit correspondence include: DMRSs used by the corresponding uplink physical channels of the beam transmission, and/or corresponding The SRS used by the uplink physical channel of the beam transmission.
  • the reference signal used in the implicit correspondence includes: a DMRS used by a downlink physical channel of the corresponding beam transmission, and/or a corresponding beam Beam specific RS, and/or CSI-RS of the corresponding beam.
  • the reference signals used in the implicit correspondence are not limited to the above four types of DMRS, SRS, beam specific RS, and CSI-RS.
  • the transmitting device may also select other references according to actual usage scenarios.
  • the signal indicates a correspondence between the first beam and the second beam.
  • these reference signals can also be replaced by other reference signals having the same or similar pilot functions but different names.
  • Step 402 The sending end device sends at least one set of beam information to the receiving end device.
  • the sending end device sends the at least one set of beam correspondence information by using dedicated signaling or broadcast signaling.
  • the sending end device may send the at least one set of beam corresponding information through dedicated signaling or broadcast signaling; when the sending end device is a terminal, the sending end device may The at least one set of beam correspondence information is transmitted by dedicated signaling.
  • the foregoing dedicated signaling may be signaling such as Radio Resource Control (RRC) signaling
  • RRC Radio Resource Control
  • broadcast signaling may be signaling such as system information broadcasting.
  • Step 403 The receiving end device receives at least one set of beam information sent by the sending end device.
  • the receiving end device receives the at least one set of beam correspondence information that is sent by the sending end device by using dedicated signaling or broadcast signaling.
  • the sending end device is an access network device
  • the receiving end device may receive the at least one set of beam correspondence information through dedicated signaling or broadcast signaling; when the transmitting end device is a terminal, the receiving end device may pass dedicated signaling. Receiving the at least one set of beam correspondence information.
  • Step 404 The receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information.
  • receiving a certain beam may refer to receiving data or signaling in a physical channel transmitted through the beam.
  • receiving a certain channel in the following may refer to receiving data or a letter in the channel. make.
  • the scenario in which the receiving device selects the received beam from each of the beams sent by the transmitting device according to the at least one group of the beam corresponding information may include but not limited to the following three types:
  • the first beam corresponding to the second beam may be selected as a beam for receiving the second physical channel according to the at least one group of beam correspondence information.
  • the first beam is used for transmitting the control channel
  • the second beam is used for transmitting the data channel.
  • the receiving device is receiving the data channel through a second beam, if the receiving device needs to receive the control channel, The received beam corresponding information quickly selects the first beam corresponding to the second beam, and does not need to separately measure each first beam sent by the transmitting device, thereby reducing the signal quality of the beam during data receiving. A step of.
  • the signal quality of the at least one second beam corresponding to the first beam is measured according to the at least one group of beam correspondence information, and the first beam corresponds to at least one In the second beam, the second beam with the best signal quality is selected as the beam for receiving the first physical channel.
  • the first beam is used to transmit the control channel
  • the second beam is used to transmit the data channel.
  • the receiving device may receive according to the receiving. And determining, by the beam corresponding information, a part of the second beam corresponding to the first beam, and selecting a second beam with the best signal quality from the determined partial second beam to perform a data signal
  • the receiving of the channel does not need to separately measure all the second beams sent by the transmitting device, thereby reducing the number of times the signal quality of the beam is measured during data receiving.
  • the receiving end device measures signal quality of the first beam of each of the at least two sets of beam correspondence information, and then measures the first of each of the at least two sets of beam correspondence information.
  • the signal quality of the at least one second beam corresponding to the first beam with the best signal quality, and the second beam selection with the best signal quality among the at least one second beam corresponding to the first beam with the best signal quality For the received beam.
  • the receiving end device when the sending end device sends multiple second beams in the direction in which the receiving end device is located, the receiving end device does not need to perform signal quality measurement on each of the plurality of second beams.
  • the first beam covering the plurality of second beams is first measured to find a first beam with the best signal quality, and at least one second beam covered by the first beam with the best signal quality can be It is considered to be the second set of second beams with the best signal quality.
  • the receiving end device measures the second set of second beams with the best signal quality and selects the second beam with the best signal quality.
  • the measurement of the signal quality by a second beam can reduce the number of times the signal quality of the beam is measured during data reception.
  • the transmitting device sends the correspondence between the first beam and the second beam to the receiving device, and the receiving device receives the data sent by the transmitting device.
  • the received beam can be quickly selected from each beam sent by the sending device according to the correspondence between the first beam and the second beam, thereby reducing the step of measuring the signal quality of the beam during data receiving or The number of times, thereby reducing the time taken for beam measurement, accelerating the beam measurement and selection process of the receiving device, simplifying the complexity of data reception, and reducing the delay of data reception.
  • steps performed by the receiving end device in the foregoing embodiment shown in FIG. 4 may be separately implemented as a beam selecting method on the receiving end device side, and the steps performed by the transmitting end device in the foregoing embodiments may be separately implemented as sending. Beam selection method on the end device side.
  • FIG. 5 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • the beam selection method is applied to the mobile communication system shown in FIG. 1.
  • the transmitting device is an access network device
  • the receiving device is a terminal
  • the access network device sends a downlink data channel through the second beam.
  • the first beam transmits a downlink control channel for illustration.
  • the method includes:
  • Step 501 The access network device generates at least one group of beam correspondence information, where each group of beam correspondence information includes a correspondence between a first beam and at least one second beam.
  • the correspondence between the first beam and the at least one second beam further includes at least one downlink data channel corresponding to the second beam, and the downlink control channel corresponding to the first beam.
  • the corresponding relationship between the first beam and the at least one second beam may also include an identifier or a channel type of the uplink physical channel corresponding to the at least one second beam, and an identifier of the uplink physical channel corresponding to the first beam or Channel type.
  • Step 502 The access network device sends at least one set of beam information to the terminal.
  • the access network device sends the at least one set of beam correspondence information by using dedicated signaling or broadcast signaling.
  • Step 503 The terminal receives at least one group of beam information sent by the access network device.
  • the terminal receives the at least one set of beam correspondence information through dedicated signaling or broadcast signaling.
  • Step 504 When the terminal receives the downlink data channel by using the second beam, the first beam corresponding to the second beam is selected as a beam for receiving the downlink control channel.
  • the beam transmitted by the access network device is as shown in FIG. 2, and the access network device transmits the downlink data channel through the second beam (beam 1 to beam 4) and passes the first beam (beam 5 and beam 6).
  • the downlink control channel is transmitted.
  • the terminal is receiving the downlink data channel through the beam 1, at this time, if the terminal needs to receive the downlink control channel, it is not required to separately measure the beam 5 and the beam 6, and directly according to the received beam correspondence information, A first beam corresponding to beam 1 is selected, beam 5, and a downlink control channel is received through beam 5.
  • the access network device transmits the downlink data channel through the second beam, transmits the downlink control channel through the first beam, and notifies the terminal of the first beam and the second transmitted by the terminal.
  • the terminal can directly pass the corresponding relationship between the first beam and the second beam.
  • the first beam corresponding to the second beam receives the downlink control channel, and does not need to measure each first beam sent by the access network device, thereby reducing the step of measuring the signal quality of the beam during the process of receiving the downlink control channel.
  • the terminal may also select a second beam for receiving the downlink data channel by using a correspondence between the first beam and the second beam sent by the access network device.
  • the above step 504 can be alternatively implemented as step 504a and step 504b, as shown in FIG. 6:
  • Step 504a When receiving the downlink control channel by using the first beam, the terminal measures the signal quality of the at least one second beam corresponding to the first beam according to the at least one group of beam correspondence information.
  • the beam transmitted by the access network device is as shown in FIG. 2, and the access network device transmits the downlink data channel through the second beam (beam 1 to beam 4) and passes the first beam (beam 5 and beam 6).
  • the downlink control channel is transmitted.
  • the second beam corresponding to the beam 5 is selected according to the received beam correspondence information. 1 and beam 2) measure the signal quality without measuring beam 3 and beam 4 separately.
  • Step 504b The terminal selects, as the beam for receiving the downlink data channel, the second beam with the best signal quality among the at least one second beam corresponding to the first beam.
  • the terminal selects to receive the downlink data channel through the beam with the best signal quality in beam 1 and beam 2.
  • the access network device transmits the downlink data channel through the second beam, transmits the downlink control channel through the first beam, and notifies the terminal of the first beam and the second transmitted by the terminal.
  • the correspondence between the first beam and the second beam may be only The second beam corresponding to the first beam performs measurement, and does not need to separately measure all the second beams sent by the access network device, thereby reducing the number of times the signal quality of the beam is measured during receiving the data in the downlink data channel.
  • FIG. 7 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • the beam selection method is applied to the mobile communication system shown in FIG. 1 , where the sending end device is an access network device, and the receiving end device is a terminal.
  • the method includes:
  • Step 701 The access network device generates at least two sets of beam correspondence information, where each group of beam correspondence information includes a correspondence between a first beam and at least one second beam.
  • the first beam may not correspond to a specific downlink physical channel.
  • different downlink physical channels can be transmitted through the first beam or the second beam.
  • the first beam and the second beam may also be used to transmit different downlink physical channels, respectively.
  • Step 702 The access network device sends the generated at least two sets of beam information to the terminal.
  • the access network device sends the at least one set of beam correspondence information by using dedicated signaling or broadcast signaling.
  • Step 703 The terminal receives at least two sets of beam information sent by the sending end device.
  • the terminal receives the at least one set of beam correspondence information through dedicated signaling or broadcast signaling.
  • Step 704 The terminal measures signal quality of the first beam of each of the at least two sets of beam correspondence information.
  • the beam sent by the access network device is as shown in FIG. 3, and the access network device sends the 9 second beams of the beam 1 to the beam 9.
  • the terminal needs to receive the signaling sent by the access network device through the second beam. Or data, the second beam with the best signal quality needs to be selected from beam 1 to beam 9.
  • the terminal may first measure the three first beams corresponding to the nine second beams when selecting the received second beam by using the solution shown in the embodiment of the present invention.
  • the signal quality is measured for the signal quality of beam 10, beam 11 and beam 12 in FIG.
  • Step 705 The terminal measures signal quality of at least one second beam corresponding to the first beam with the best signal quality in the first beam of each of the two sets of beam correspondence information.
  • the terminal After measuring the signal quality of the beam 10, the beam 11 and the beam 12 in FIG. 3, the terminal determines the first beam in which the signal quality is the best, for example, assuming that the first beam having the best signal quality is the beam 11, Further, the terminal performs signal quality measurement on the beam 11 corresponding to the three second beams (ie, beam 4 to beam 6).
  • Step 706 The terminal selects, in the at least one second beam corresponding to the first beam with the best signal quality, the second beam with the best signal quality as the received beam.
  • the terminal may select, in the at least one second beam corresponding to the first beam with the best signal quality, the second beam with the best signal quality as a beam for receiving data or signaling sent by the access network device.
  • the terminal can select the most signal quality in the receive beam 4 to beam 6. A good beam, and receives data or signaling sent by the access network device through the selected beam.
  • the terminal may measure the beam according to the reference signals of the beam 10, the beam 11 and the beam 12. 10.
  • the signal quality of the beam 11 and the beam 12 after determining the best signal quality of the beam 11 in the three, querying the correspondence between the reference signal of the beam 11 and the reference signal of the beam 4 to the beam 6, And according to the reference signals of the beam 4 to the beam 6, the signal quality of the beam 4 to the beam 6 is measured, and the second beam with the best signal quality is selected therefrom.
  • the terminal selects a second beam from the nine second beams shown in FIG. 3, only the first three beams need to be measured first, and then the signal quality is the best.
  • the three second beams corresponding to the first beam are measured, and the received second beam is determined by six measurements before and after, and that the nine second beams are not separately measured.
  • the access network device notifies the terminal of the correspondence between the first beam and the second beam that are sent by the terminal, and the second beam that the terminal sends from the access network device.
  • selecting a second beam for receiving only the first beam sent by the access network device needs to be measured, and then the second beam corresponding to the first beam with the best signal quality is measured, thereby determining The received second beam does not need to separately measure all the second beams sent by the access network device, thereby reducing the number of times the signal quality of the beam is measured during the process of receiving data or signaling through the second beam.
  • the scheme shown in FIG. 5 to FIG. 7 is described by taking the sending device as the access network device and the receiving device as the terminal.
  • the beam selection method provided by the present invention is also applicable to the case where the access network device selects a beam transmitted by the terminal.
  • FIG. 8 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • the beam selection method is applied to the mobile communication system shown in FIG. 1.
  • the transmitting device is a terminal
  • the receiving device is an access network device
  • the terminal sends an uplink data channel through the second beam to pass the first beam.
  • the uplink control channel is sent for illustration.
  • the method includes:
  • Step 801 The terminal generates at least one group of beam correspondence information, where each group of beam correspondence information includes a correspondence between a first beam and at least one second beam.
  • the correspondence between the first beam and the at least one second beam further includes an uplink data channel corresponding to the at least one second beam, and the uplink control channel corresponding to the first beam.
  • the corresponding relationship between the first beam and the at least one second beam may also include an identifier or a channel type of the uplink physical channel corresponding to the at least one second beam, and an identifier of the uplink physical channel corresponding to the first beam or Channel type.
  • Step 802 The terminal sends at least one set of beam information to the access network device.
  • the terminal sends the at least one set of beam correspondence information by using dedicated signaling, such as RRC signaling.
  • dedicated signaling such as RRC signaling.
  • Step 803 The access network device receives at least one set of beam information sent by the terminal.
  • the access network device receives the at least one set of beam correspondence information sent by the terminal by using dedicated signaling.
  • Step 804 When the access network device receives the uplink data channel by using the second beam, the first beam corresponding to the second beam is selected as a beam for receiving the uplink control channel.
  • the beam transmitted by the terminal is as shown in FIG. 2, and the terminal transmits the uplink data channel through the second beam (beam 1 to beam 4), and transmits the uplink control channel through the first beam (beam 5 and beam 6).
  • the access network device is receiving the uplink data channel through the beam 1 (ie, the first second beam)
  • the beam 5 and the beam 6 need not be separately measured.
  • the first beam (beam 5) corresponding to the beam 1 is quickly selected according to the received beam correspondence information, and the uplink control channel is received through the beam 5.
  • the terminal transmits the uplink data channel through the second beam, transmits the uplink control channel through the first beam, and notifies the access network device of the first beam and the second transmitted by the access network device.
  • the access network device receives the uplink data channel through the second beam receiving terminal, if it needs to receive the uplink control channel, it can directly pass the correspondence between the first beam and the second beam.
  • the first beam corresponding to the second beam receives the uplink control channel, and does not need to measure each first beam sent by the terminal, thereby reducing the step of measuring the signal quality of the beam in the process of receiving data in the uplink control channel.
  • the terminal may also select a second beam for receiving the downlink data channel by using a correspondence between the first beam and the second beam sent by the access network device.
  • Step 804 can alternatively be implemented as step 804a and step 804b, as shown in FIG.
  • Step 804a When receiving the uplink control channel by using the first beam, the access network device measures the signal quality of the at least one second beam corresponding to the first beam according to the at least one group of beam correspondence information.
  • the beam transmitted by the terminal is as shown in FIG. 2, and the terminal transmits the uplink data channel through the second beam (beam 1 to beam 4), and transmits the uplink control channel through the first beam (beam 5 and beam 6).
  • the access network device is receiving the uplink control channel through the beam 5
  • the second beam corresponding to the beam 5 (beam 1 and beam) may be selected according to the received beam correspondence information. 2) Measurement of signal quality is performed, and it is not necessary to separately measure beam 3 and beam 4.
  • Step 804b The access network device selects, in the at least one second beam corresponding to the first beam, the second beam with the best signal quality as a beam for receiving the uplink data channel.
  • the uplink data channel is selected to receive the beam with the best signal quality in beam 1 and beam 2.
  • the terminal transmits the downlink data channel through the second beam, transmits the downlink control channel through the first beam, and notifies the access network device of the first beam and the second transmitted by the access network device.
  • the correspondence between the first beam and the second beam may be only The second beam corresponding to the first beam performs measurement, and does not need to separately measure all the second beams sent by the terminal, thereby reducing the number of times the signal quality of the beam is measured during the process of receiving the uplink data channel.
  • FIG. 10 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • the beam selection method is applied to the mobile communication system shown in FIG. 1, where the sending end device is a terminal, and the receiving end device is an access network device.
  • the method includes:
  • Step 1001 The terminal generates at least two sets of beam correspondence information, where each group of beam correspondence information includes a correspondence between a first beam and at least one second beam.
  • the first beam may not correspond to a specific uplink physical channel.
  • different uplink physical channels can be transmitted through the first beam or the second beam.
  • the first beam and the second beam may also be used to transmit different uplink physical channels, respectively.
  • Step 1002 The terminal sends at least two sets of beam information to the access network device.
  • the terminal sends the at least one set of beam correspondence information by using dedicated signaling.
  • Step 1003 The access network device receives at least two sets of beam information sent by the terminal.
  • the access network device receives the at least one set of beam correspondence information through dedicated signaling.
  • Step 1004 The access network device measures signal quality of the first beam of each of the at least two sets of beam correspondence information.
  • the beam transmitted by the terminal is as shown in FIG. 3, and the terminal transmits the 9 second beams of the beam 1 to the beam 9.
  • the access network device needs to receive the signaling or data sent by the terminal through the second beam, it needs to A second beam having the best signal quality is selected from beam 1 to beam 9.
  • the access network device may first measure the signal quality of the three first beams corresponding to the nine second beams, that is, the beam 10 in FIG. The signal quality of beam 11, beam 12 and beam 12 is measured.
  • Step 1005 The access network device measures signal quality of at least one second beam corresponding to the first beam with the best signal quality in the first beam of each of the two sets of beam correspondence information.
  • the access network device After the access network device measures the signal quality of the beam 10, the beam 11 and the beam 12 in FIG. 3, the first beam in which the signal quality is the best is determined. For example, if the determined first beam is the beam 11, the further The access network device performs signal quality measurement on the three second beams corresponding to the beam 11 (ie, beam 4 to beam 6).
  • Step 1006 The access network device selects, as the received beam, the second beam with the best signal quality among the at least one second beam corresponding to the first beam with the best signal quality.
  • the access network device may select, in the at least one second beam corresponding to the first beam with the best signal quality, the second beam with the best signal quality as a beam for receiving data or signaling sent by the terminal.
  • the access network device measures the signal quality of the beam 4 to the beam 6 in FIG. 3, the beam with the best signal quality in the beam 4 to the beam 6 is selected as the beam for receiving data or signaling.
  • the access network device selects a second beam from the nine second beams shown in FIG. 3, only the first three beams need to be measured first, and then the signal quality is performed.
  • the best two first beams corresponding to the first beam are measured, and the received second beam can be determined by 6 measurements before and after, and the nine second beams need not be separately measured.
  • the terminal notifies the access network device of the correspondence between the first beam and the second beam that are sent by the access network device, and the second beam that is sent by the access network device from the terminal.
  • selecting a second beam for receiving only the first beam sent by the terminal is measured first, and then the second beam corresponding to the first beam with the best signal quality is measured, thereby determining the received
  • the second beam does not need to separately measure all the second beams sent by the terminal, thereby reducing the number of times the signal quality of the beam is measured during the process of receiving data or signaling through the second beam.
  • the steps performed by the access network device may be separately implemented as a beam selection method on the access network device side, and each of the foregoing FIG. 5 to FIG.
  • the steps performed by the terminal in the embodiment may be separately implemented as a beam selection method on the terminal side.
  • FIG. 11 illustrates a method flow of a beam selection method according to an embodiment of the present invention.
  • This embodiment is exemplified by applying the beam selection method to the mobile communication system shown in FIG. 1.
  • the method includes:
  • Step 1101 The source device generates at least one group of beam correspondence information, where each group of beam correspondence information includes a correspondence between a beam where the first signal is located and a beam where the second signal is located.
  • the beam where the first signal is located is the same beam as the beam where the second signal is located.
  • the transmitting end device when the transmitting end device performs multi-beam transmission by using the beamforming technology, different signals belonging to the same type may be transmitted on different beams, and multiple signals of different types may be transmitted on the same beam.
  • the transmitting end device may generate a set of beam correspondence information according to the first signal and the second signal on each beam sent by the transmitting end device.
  • beam 1 to beam 4 respectively transmit a first signal and a second signal
  • the first signal transmitted in beam 1 is signal 11 and the second signal transmitted in beam 1 is 21
  • the first signal transmitted in beam 2 is signal 12, and the second signal transmitted in beam 2 is 22, the first signal transmitted in beam 3 is signal 13, and the second signal transmitted in beam 3 is 23, beam 4
  • the first signal transmitted in is signal 14 and the second signal transmitted in beam 4 is 24.
  • the corresponding information of the beam corresponding to the beam 1 includes the correspondence between the beam where the signal 11 is located and the beam where the signal 21 is located.
  • the corresponding group of beam corresponding information of the beam 2 includes the beam and the signal 22 where the signal 12 is located.
  • the correspondence between the beams, the corresponding information of the beam corresponding to the beam 3 includes the correspondence between the beam where the signal 13 is located and the beam where the signal 23 is located, and the corresponding information of the beam corresponding to the beam 4 includes the beam and the signal of the signal 14 The correspondence between the beams in which 24 is located.
  • the relationship between the beam where the first signal is located and the beam where the second signal is located may directly be the correspondence between the signal content of the first signal and the signal content of the second signal, or may be the identifier of the first signal and Corresponding relationship between the identifiers of the second signals, or may be the correspondence between the signal content of the first signal and the identifier of the second signal, or may be the identifier of the first signal and the signal of the second signal Correspondence between content and so on.
  • Step 1102 The sending end device sends at least one set of beam correspondence information to the receiving end device.
  • the transmitting end device may send the beam corresponding information by using a Quasi Co-Located (QCL) parameter, that is, the sending end device sends a quasi-same address parameter indicating the at least one group of beam corresponding information to the receiving end device.
  • QCL Quasi Co-Located
  • the transmitting end device may also send the beam corresponding information through dedicated signaling, that is, the sending end device sends the dedicated signaling including the at least one set of beam corresponding information to the receiving end device, For example, Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • Step 1103 The receiving end device receives the at least one set of beam correspondence information.
  • the transmitting end device can send the beam corresponding information through the quasi-co-location parameter
  • the receiving end device receives the quasi-co-location parameter sent by the sending end device, and obtains at least one set of beam correspondence information indicated by the quasi-same address parameter.
  • the receiving end device receives at least one set of beam correspondence information that is sent by the sending end device by using dedicated signaling.
  • Step 1104 The receiving end device selects a received beam from each of the beams sent by the sending end device according to the at least one group of beam correspondence information.
  • the receiving device can obtain the signal quality of each beam obtained by measuring the first signal in each beam; the receiving device queries each beam according to at least one group of beam correspondence information. a second signal corresponding to the first signal in the beam with the best signal quality; the receiving device selects the beam with the best signal quality as the first signal corresponding to the first signal in the beam with the best signal quality The beam of the two signals.
  • the receiving end device may measure the first signal in each beam sent by the sending end device to obtain the respective signal quality of each beam, so as to subsequently receive the second signal according to the receiving.
  • the beam corresponding information is directly queried to determine which signal the second signal carried in the beam with the strongest signal is, so that the determined second signal is directly received through the beam with the strongest signal, and the beam is not required to be used for the second signal. scanning.
  • the receiving device after receiving the second signal, the receiving device does not need to measure the second signal, and directly according to the beam corresponding information.
  • the beam for receiving can be selected, thereby reducing the steps or times of measuring various signals in the beam, thereby reducing the time taken for beam measurement, accelerating the process of beam measurement and selection of the receiving device, and simplifying system complexity. , reduce the delay of data reception.
  • steps performed by the receiving end device in the foregoing embodiment shown in FIG. 11 may be separately implemented as a beam selecting method on the receiving end device side, and the steps performed by the transmitting end device in the foregoing embodiments may be separately implemented as sending. Beam selection method on the end device side.
  • the 5G system can cover the entire cell through different beams, that is, each beam covers a comparison. A small range, through the sweeping of time to achieve the effect of multiple beams covering the entire cell.
  • Different sync blocks (SS blocks) are transmitted on different beams, and the terminal can distinguish different beams by different SS blocks.
  • the terminal starts beam sweeping during the process of searching for the cell, and measures different SS blocks to obtain the best downlink beam (ie, the beam with the best signal quality).
  • the terminal When the terminal is in the idle mode, it also needs to select the beam with the best signal quality when listening to the paging channel/signal.
  • the terminal When the terminal enters the connected state, the terminal may be doing mobility management. It is also necessary to measure CSI-RS. Different CSI-RS configurations correspond to different beams; similarly, at other times, the terminal may also need to measure the beam corresponding to the downlink DMRS. Since the SS has already measured the SS block when doing the cell selection, the system can indicate the correspondence between the SS block and the beams of other signals/channels by the scheme shown in FIG. 4 above, and subsequently select the beam pair other signals/ When the channel is measured, the beam selection process can be greatly simplified.
  • FIG. 12 is a flowchart of a method of a beam selection method according to an embodiment of the present invention.
  • the beam selection method is applied to the mobile communication system shown in FIG. 1 , where the sending end device is an access network device, and the receiving end device is a terminal.
  • the method includes:
  • Step 1201 The access network device generates at least one group of beam correspondence information, where each group of beam correspondence information includes a correspondence between a beam where the SS block (first signal) is located and a beam where the second signal is located.
  • the beam where the first signal is located is the same beam as the beam where the second signal is located.
  • the first signal is a reference signal block SS block; the second signal includes at least one of a paging signal, a channel state information reference signal CSI-RS, and a demodulation reference signal DMRS.
  • the foregoing correspondence may include: a correspondence between the SS block and the paging channel/signal.
  • the foregoing relationship may include: a correspondence between the SS block and the CSI-RS resource; and/or a correspondence between the SS block and the CSI-RS port .
  • the foregoing correspondence includes: a correspondence between the SS block and the DMRS port or the port set.
  • Step 1202 The access network device sends at least one set of beam correspondence information to the terminal.
  • the access network device may send a system information block (SIB) to the terminal in a broadcast manner, and the QCL parameter carried in the SIB indicates the at least one group of beam correspondence information.
  • SIB system information block
  • the access network device may also send the at least one set of beam correspondence information to the terminal by using dedicated signaling, such as RRC signaling.
  • dedicated signaling such as RRC signaling.
  • Step 1203 The terminal receives the at least one set of beam correspondence information.
  • the middle and high end receiving access network device broadcasts the QCL parameter in the SIB, and acquires at least one group of beam correspondence information indicated by the QCL parameter.
  • the terminal receives at least one group of beam correspondence information that the access network device sends through the RRC signaling.
  • Step 1204 The terminal selects a received beam from each of the beams sent by the access network device according to the at least one group of beam correspondence information.
  • the terminal may obtain the signal quality of each beam obtained by measuring the SSblock in each beam in advance, and query the beam with the best signal quality in each beam according to at least one group of beam correspondence information.
  • the second signal corresponding to the SS block, and the beam with the best signal quality is selected as the beam for the second signal corresponding to the SS block in the beam with the best signal quality.
  • the terminal receives the beam correspondence information generated and transmitted by the access network device, such as the QCL parameter, and accelerates the beam selection process by using the correspondence between the SS bock and other signals/channels.
  • the access network device broadcasts two SS blocks in a 20 ms period, and the access network device also uses two beams to broadcast paging messages.
  • the access network device indicates the correspondence between the two SS blocks and the two beams of the broadcast paging message through the SIB.
  • the QCL parameters indicating SS block1 and paging message1 indicate that SS block1 and paging message1 are on the same beam.
  • the QCL parameters indicating SS block 2 and paging message 2 indicate that SS block 2 and paging message 2 are sent on another beam.
  • the terminal performs the cell search and finds that the signal quality in the beam direction corresponding to the SS block1 is the strongest, the terminal can directly listen to the paging message1 in the beam direction corresponding to the SS block1 according to the signal correspondence relationship. It is not necessary to perform beam scanning on paging message 1 and paging message 2, and then decide to listen to paging message 1 or paging message 2 according to the result of beam scanning, thereby speeding up the process of selecting a beam by the terminal.
  • the receiving end device may measure the first signal in each beam sent by the sending end device to obtain the signal quality of each beam, so as to receive the second signal subsequently.
  • the direct query determines the strongest signal. Which signal is carried in the second signal in the beam, so that the determined second signal is directly received through the beam with the strongest signal, and the second signal is not required to be scanned, thereby reducing the measurement of various signals in the beam.
  • the steps or times reduce the time taken for beam measurement, accelerate the beam measurement and selection process of the receiving device, simplify system complexity, and reduce the delay of data reception.
  • FIG. 13 is a schematic structural diagram of a beam selection apparatus according to an embodiment of the present invention.
  • the beam selection device can be implemented as all or part of the receiving device by software, hardware, and a combination of both.
  • the beam selection device includes: a receiving unit 1301 and a processing unit 1302;
  • the receiving unit 1301 is configured to perform the foregoing step 403, step 503, step 703, step 803, step 1003, step 1103 or step 1203;
  • the processing unit 1302 is configured to perform the foregoing step 404, or to perform step 504, or to perform step 504a and step 504b, or to perform step 704 to step 706, or to perform step 804, or For performing steps 804a and 804b, or for performing steps 1004 to 1006, or for performing step 1104, or for performing step 1204.
  • FIG. 14 is a schematic structural diagram of a beam selection apparatus according to an embodiment of the present invention.
  • the beam selecting means can be implemented as all or part of the transmitting device by software, hardware, and a combination of both.
  • the beam selecting device includes: a processing unit 1401 and a transmitting unit 1402;
  • the processing unit 1401 is configured to perform the foregoing step 401, step 501, step 701, step 801, step 1001, step 1101, or step 1201;
  • the sending unit 1402 is configured to perform the foregoing step 402, step 502, step 702, step 802 or step 1002, step 1102 or step 1202.
  • FIG. 15 is a schematic structural diagram of a receiving end device according to an exemplary embodiment of the present invention.
  • the receiving end device includes: a processor 21 , a receiver 22 , a transmitter 23 , a memory 24 , and a bus 25 .
  • the processor 21 includes one or more processing cores, and the processor 21 executes various functional applications and information processing by running software programs and modules.
  • the receiver 22 and the transmitter 23 can be implemented as a communication component, which can be a piece
  • the communication chip may include a receiving module, a transmitting module, a modem module, and the like for modulating and/or demodulating the information, and receiving or transmitting the information through the wireless signal.
  • the memory 24 is connected to the processor 21 via a bus 25.
  • Memory 24 can be used to store software programs as well as modules.
  • the memory 24 can store at least one of the application modules 26 described by the functions.
  • the application module 26 can include a receiving module 261 and a selection module 262.
  • the processor 21 is configured to execute the receiving module 261 to implement the functions related to the receiving step in the foregoing various method embodiments; the processor 21 is configured to execute the selecting module 262 to implement the functions related to the beam selecting step in the foregoing various method embodiments.
  • memory 24 can be implemented by any type of volatile or non-volatile memory device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable In addition to Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • FIG. 16 is a schematic structural diagram of a transmitting end device according to an exemplary embodiment of the present invention.
  • the transmitting end device includes: a processor 31 , a receiver 32 , a transmitter 33 , a memory 34 , and a bus 35 .
  • the processor 31 includes one or more processing cores, and the processor 31 executes various functional applications and information processing by running software programs and modules.
  • the receiver 32 and the transmitter 33 can be implemented as a communication component, and the communication component can be a communication chip, and the communication chip can include a receiving module, a transmitting module, a modem module, etc., for modulating and demodulating information, and The information is received or transmitted via a wireless signal.
  • the memory 34 is connected to the processor 31 via a bus 35.
  • Memory 34 can be used to store software programs as well as modules.
  • the memory 34 can store the application module 36 as described by at least one function.
  • the application module 36 can include a generation module 361 and a transmission module 362.
  • the processor 21 is configured to execute the generating module 361 to implement the functions of the steps of generating beam correspondence information in the foregoing various method embodiments; the processor 21 is configured to execute the sending module 362 to implement the functions related to the sending step in the foregoing method embodiments;
  • memory 34 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory. (EEPROM), erasable programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory magnetic memory
  • flash memory magnetic or optical disk.
  • the embodiment of the invention further provides a beam selection system, which can include a receiving end device and a transmitting end device.
  • the receiving device may include the beam selecting device provided in FIG. 13 above, and the transmitting device may be the beam selecting device provided in FIG. 14 described above.
  • the receiving end device may be the receiving end device provided in FIG. 15 above
  • the transmitting end device may be the transmitting end device provided in FIG. 16 above.
  • the functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明实施例提供了一种波束选择方法、装置及系统,涉及通信领域,所述方法包括:接收端设备接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系,根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,即接收端设备可以可以根据发送端设备发送的第一波束与第二波束之间的对应关系,从发送端设备发送的各个波束中快速选择接收的波束,减少了数据接收过程中对波束的信号质量进行测量的步骤或次数,从而减少波束测量所耗费的时间,加速接收端设备的波束测量和选择的过程,简化数据接收的复杂度,降低数据接收的时延。

Description

波束选择方法、装置及系统
本申请要求于2016年12月30日提交中国国家知识产权局、国际申请号为PCT/CN2016/113685、发明名称为“波束选择方法、装置及系统”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,特别涉及一种波束选择方法、装置及系统。
背景技术
第五代移动通信技术(the 5th generation mobile communication,5G)系统又称为新空口(new radio,NR)系统,波束成形是5G系统引入的关键技术之一。
波束成形是指通过为对多个发射天线赋予特定的权重,使得多天线发射的信号相互叠加,形成特定的空间指向性。在5G系统中,发送端设备可以通过不同的波束,同时向多个接收端设备发送波束信号,从而实现对相同的时频资源在不同空间中的重复使用(即空分复用),极大的提高了系统容量。
相应的,在5G系统中,一个接收端设备可能同时检测到发送端设备发送的多个波束,接收端设备在接收发送端设备发送的数据之前,需要对发送端设备发送的多个波束分别进行测量,从多个波束选择出信号质量好的波束进行接收,而对发送端设备发送的多个波束分别进行测量的过程需要耗费较多的测量时间,导致数据接收的复杂度和时延都较高。
发明内容
为了解决接收端设备对发送端设备发送的多个波束分别进行测量的过程需要耗费较多的测量时间,导致数据接收的复杂度和时延较高的技术问题,本发明实施例提供了一种波束选择方法、装置及系统。所述技术方案如下:
根据本发明实施例的第一方面,提供了一种波束选择方法,所述方法包括:
接收端设备接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送 的各个波束中选择接收的波束。
在可选的实施例中,所述第一波束与所述至少一个第二波束之间的对应关系包括:
所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;和/或,所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;和/或,所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
在可选的实施例中,所述参考信号包括:
对应的波束传输的上行物理信道所使用的解调参考信号(De Modulation Reference Signal,DMRS),和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号(Sounding Reference Signal,SRS);
或者,
对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号(beam specific RS),和/或,对应的波束的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)。
在可选的实施例中,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
在可选的实施例中,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
所述接收端设备通过第二波束接收第一物理信道时,根据所述至少一组波束对应信息,将所述第二波束对应的第一波束选择为用于接收第二物理信道的波束。
在可选的实施例中,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
所述接收端设备通过第一波束接收第二物理信道中传输的信令或数据时,根据所述至少一组波束对应信息,测量所述第一波束对应的至少一个第二波束的信号质量;
所述接收端设备将所述第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收第一物理信道的波束。
在可选的实施例中,所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;或者,所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
在可选的实施例中,所述接收端设备接收发送端设备发送的至少一组波束对应信息,包括:所述接收端设备接收所述发送端设备通过专用信令或广播信令发送的所述至少一组波束对应信息。
在可选的实施例中,所述接收端设备是终端,所述发送端设备是接入网设备;或者,所述接收端设备是接入网设备,所述发送端设备是终端。
根据本发明实施例的第二方面,提供了一种波束选择方法,所述方法包括:
发送端设备生成至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
所述发送端设备向接收端设备发送所述至少一组波束信息,以使得所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
在可选的实施例中,所述第一波束与所述至少一个第二波束之间的对应关系包括:
所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;和/或,所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;和/或,所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
在可选的实施例中,所述参考信号包括:
对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
或者,
对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
在可选的实施例中,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
在可选的实施例中,所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;或者,所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
在可选的实施例中,所述发送端设备向接收端设备发送所述至少一组波束信息,包括:
所述发送端设备通过专用信令或广播信令向所述接收端设备发送所述至少一组波束对应信息。
在可选的实施例中,所述接收端设备是终端,所述发送端设备是接入网设备;或者,所述接收端设备是接入网设备,所述发送端设备是终端。
根据本发明实施例的第三方面,提供了一种波束选择方法,所述方法包括:
接收端设备接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息包含第一信号所在波束与第二信号所在波束之间的对应关系;
所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
在可选的实施例中,所述第一信号所在波束与第二信号所在波束是同一波束。
在可选的实施例中,所述接收端设备接收发送端设备发送的至少一组波束对应信息,包括:
所述接收端设备接收所述发送端设备发送的准同址参数,获取所述准同址参数所指示的所述至少一组波束对应信息;
或者,
所述接收端设备接收所述发送端设备通过专用信令发送的所述至少一组波束对应信息。
在可选的实施例中,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
在可选的实施例中,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
SS block与CSI-RS资源之间的对应关系;
和/或,SS block与CSI-RS端口之间的对应关系。
在可选的实施例中,当所述第二信号包括解调参考信号DMRS时,所述 对应关系包括:
SS block与DMRS端口或端口集合之间的对应关系。
在可选的实施例中,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
所述接收端设备获取通过对所述各个波束中的第一信号进行测量获得的,所述各个波束各自的信号质量;
所述接收端设备根据所述至少一组波束对应信息,查询所述各个波束中信号质量最好的波束中的第一信号所对应的第二信号;
所述接收端设备将所述信号质量最好的波束,选择为用于接收所述信号质量最好的波束中的第一信号所对应的第二信号的波束。
根据本发明实施例的第四方面,提供了一种波束选择方法,所述方法包括:
发送端设备生成至少一组波束对应信息,每组所述波束对应信息第一信号所在波束与第二信号所在波束之间的对应关系;
所述发送端设备向接收端设备发送所述至少一组波束对应信息,以便所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
在可选的实施例中,所述第一信号所在波束与第二信号所在波束是同一波束。
在可选的实施例中,所述发送端设备向接收端设备发送所述至少一组波束对应信息,包括:
所述发送端设备向所述接收端设备发送指示所述至少一组波束对应信息的准同址参数;
或者,
所述发送端设备向所述接收端设备发送包含所述至少一组波束对应信息的专用信令。
在可选的实施例中,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
在可选的实施例中,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
SS block与CSI-RS资源之间的对应关系;
和/或,SS block与CSI-RS端口之间的对应关系。
在可选的实施例中,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
SS block与DMRS端口或端口集合之间的对应关系。
根据本发明实施例的第五方面,提供了一种波束选择装置,所述波束选择装置包括至少一个单元,该至少一个单元用于实现上述第一方面或第一方面中任意一种可选的实现方式所提供的波束选择方法。
根据本发明实施例的第六方面,提供了一种波束选择装置,所述波束选择装置包括至少一个单元,该至少一个单元用于实现上述第二方面或第二方面中任意一种可选的实现方式所提供的波束选择方法。
根据本发明实施例的第七方面,提供了一种波束选择装置,所述波束选择装置包括至少一个单元,该至少一个单元用于实现上述第三方面或第三方面中任意一种可选的实现方式所提供的波束选择方法。
根据本发明实施例的第八方面,提供了一种波束选择装置,所述波束选择装置包括至少一个单元,该至少一个单元用于实现上述第四方面或第四方面中任意一种可选的实现方式所提供的波束选择方法。
根据本发明实施例的第九方面,提供了一种接收端设备,所述接收端设备包括处理器、存储器、发射器和接收器;所述处理器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于实现上述第一方面或第一方面中任意一种可选的实现方式所提供的波束选择方法,或者,所述处理器用于实现上述第三方面或第三方面中任意一种可选的实现方式所提供的波束选择方法;所述接收器用于实现波束对应信息的接收。
根据本发明实施例的第十方面,提供了一种发送端设备,所述发送端设备包括处理器、存储器、发射器和接收器;所述处理器用于存储一个或一个以上的指令,所述指令被指示为由所述处理器执行,所述处理器用于实现上述第二方面或第二方面中任意一种可选的实现方式所提供的波束选择方法,或者,所述处理器用于实现上述第四方面或第四方面中任意一种可选的实现方式所提供的波束选择方法;所述发射器用于实现波束对应信息的发送。
根据本发明实施例的第十一方面,提供了一种计算机可读介质,所述计算机可读介质存储有一个或一个以上的指令,所述指令用于实现上述第一方面或第一方面中任意一种可选的实现方式所提供的波束对应信息方法;或者,所述 指令用于实现上述第二方面或第二方面中任意一种可选的实现方式所提供的波束选择方法;或者,所述指令用于实现上述第三方面或第三方面中任意一种可选的实现方式所提供的波束选择方法;或者,所述指令用于实现上述第四方面或第四方面中任意一种可选的实现方式所提供的波束选择方法。
根据本发明实施例的第十二方面,提供了一种波束选择系统,该波束选择系统可以包括接收端设备和发送端设备。其中,该接收端设备可以是包含上述第五方面所提供的波束选择装置的设备,发送端设备可以是包含上述第六方面所提供的波束选择装置的设备;或者,所述接收端设备可以是包含上述第七方面所提供的波束选择装置的设备,发送端设备可以是包含上述第八方面所提供的波束选择装置的设备。
根据本发明实施例的第十三方面,提供了一种波束选择系统,该波束选择系统可以包括上述第十方面所提供的接收端设备和上述第十一方面所提供的发送端设备。
本发明实施例提供的技术方案的有益效果是:
发送端设备将第一波束与第二波束之间的对应关系发送给接收端设备,接收端设备在接收发送端设备发送的数据的过程中,可以根据该第一波束与第二波束之间的对应关系,从发送端设备发送的各个波束中快速选择接收的波束,减少了数据接收过程中对波束的信号质量进行测量的步骤或次数,从而减少波束测量所耗费的时间,加速接收端设备的波束测量和选择的过程,简化数据接收的复杂度,降低数据接收的时延。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的移动通信系统的结构示意图;
图2是本发明一个实施例提供的波束的示意图;
图3是本发明一个实施例提供的波束的示意图;
图4是本发明一个实施例提供的波束选择方法的方法流程图;
图5是本发明一个实施例提供的波束选择方法的方法流程图;
图6是本发明一个实施例提供的波束选择方法的方法流程图;
图7是本发明一个实施例提供的波束选择方法的方法流程图;
图8是本发明一个实施例提供的波束选择方法的方法流程图;
图9是本发明一个实施例提供的波束选择方法的方法流程图;
图10是本发明一个实施例提供的波束选择方法的方法流程图;
图11是本发明一个实施例提供的波束选择方法的方法流程图;
图12是本发明一个实施例提供的波束选择方法的方法流程图;
图13是本发明另一个实施例提供的波束选择装置的结构方框图;
图14是本发明另一个实施例提供的波束选择装置的结构方框图;
图15是本发明另一个实施例提供的接收端设备的结构方框图;
图16是本发明另一个实施例提供的发送端设备的结构方框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
在本文提及的“模块”通常是指存储在存储器中的能够实现某些功能的程序或指令;在本文中提及的“单元”通常是指按照逻辑划分的功能性结构,该“单元”可以由纯硬件实现,或者,软硬件的结合实现。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
请参考图1,其示出了本发明一个实施例提供的移动通信系统的结构示意图。该移动通信系统可以是5G系统,又称NR系统。该移动通信系统包括:接入网设备120和终端140。
接入网设备120可以是基站。例如,基站可以是5G系统中采用集中分布式架构的基站(gNB)。当接入网设备120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media  Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本发明实施例对接入网设备120的具体实现方式不加以限定。
接入网设备120和终端140通过无线空口建立无线连接。可选地,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口(New Radio,NR);或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
终端140可以是指向用户提供语音和/或数据连通性的设备。终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端140可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment)。
需要说明的是,在图1所示的移动通信系统中,可以包括多个接入网设备120和/或多个终端140,图1中以示出一个接入网设备120和一个终端140来举例说明,但本实施例对此不作限定。
在5G系统中,发送端设备可以通过波束向特定方向上的接收端设备发送数据。其中,发送端设备可以是上述图1所示的移动通信系统中的接入网设备120,接收端设备可以是终端140,此时,发送端设备向接收端设备发送的波束可以称为下行波束;或者,发送端设备也可以是上述图1所示的移动通信系统中的终端140,而接收端设备可以是接入网设备120,此时,发送端设备向接收端设备发送的波束可以称为上行波束。
发送端设备发送的不同波束的宽度可以不同。比如,在本发明实施例中,发送端设备发送的波束可以分为第一波束和第二波束两种。可选地,一个第一波束覆盖至少一个第二波束。
在本发明所示的方案中,第一波束覆盖至少一个第二波束,指的是第一波束在空间上覆盖至少一个第二波束,或者说,至少一个第二波束的覆盖范围处于第一波束的覆盖范围内。其中,在某些场景下,第一波束可以被称为宽波束, 第二波束可以被称为窄波束,或者,第一波束可以被称为大波束,第二波束可以被称为小波束,本发明实施例对于第一波束和第二波束的具体命名不做限定。
其中,不同类型的波束可以传输不同的物理信道。比如,第二波束可以用于传输数据信道,这样用于传输数据信道的波束数量更多,可以更好的实现空分复用,提高系统容量;而第一波束可以用于传输公共信道或控制信道,以增加公共信道或控制信道的覆盖性。当然,本发明实施例并不限定不同类型波束所传输的物理信道,比如,在实际应用中,第一波束也可以用于传输数据信道,第二波束也可以用于传输公共信道或控制信道。在另一种可能的实现方式中,上述第一波束也可以不对应特定的物理信道。
具体的,请参考图2,其示出了本发明实施例提供的波束的示意图。如图2所示,发送端设备发送6个波束,分别为波束1至波束6,波束1至波束4为第二波束,即窄波束;波束5和波束6为第一波束,即宽波束。并且,波束5覆盖波束1和波束2,波束6覆盖波束3和波束4。其中,发送端设备可以通过波束1至波束4发送数据信道的数据,并通过波束5和波束6发送控制信道的数据。
其中,图2所示的示意图是以发送端设备发送6个波束,且一个第一波束覆盖两个第二波束为例进行说明,在实际应用中,发送设备发送的波束的数量并不限定为6个,且一个第一波束覆盖的第二波束的数量也不限于2个,即发送设备发送的波束的数量可以更多或更少,而一个第一波束覆盖的第二波束的数量也可以更多或更少。比如,请参考图3,其示出了本发明实施例提供的一种波束的示意图,如图3所示,发送端设备发送12个波束,分别为波束1至波束12,波束1至波束9为第二波束,即窄波束;波束10至波束12为第一波束,即宽波束。并且,波束10覆盖波束1至波束3,波束11覆盖波束4至波束6,波束12覆盖波束7至波束9。
请参考图4,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中来举例说明。该方法包括:
步骤401,发送端设备生成至少一组波束对应信息,每组波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系。
其中,第一波束和第二波束可以是发送端设备发送的波束,并且,第一波束覆盖对应的至少一个第二波束。
可选的,发送端设备在生成波束对应信息时,根据自身发送的第一波束与第二波束之间的覆盖关系生成波束对应信息,即生成第一波束以及第一波束覆盖的至少一个第二波束之间的对应关系。
比如,以图2为例,在图2中,波束5覆盖波束1和波束2,波束6覆盖波束3和波束4,发送端设备可以将波束5与波束1和波束2之间的对应关系生成为一组波束对应信息,并将波束6与波束3和波束4之间对应关系生成为另一组波束对应信息。
或者,以图3为例,在图3中,波束10覆盖波束1至波束3,波束11覆盖波束4至波束6,波束12覆盖波束7至波束9,则发送端设备可以将波束10与波束1至波束3之间的对应关系生成为一组波束对应信息,将波束11与波束4至波束6之间对应关系生成为另一组波束对应信息,并将波束12与波束7至波束9之间的对应关系生成为另一组波束对应信息。
在本发明实施例中,一组波束对应信息中的第一波束与至少一个第二波束之间的对应关系可以是显性的对应关系,也可以是隐性的对应关系。
其中,显性的对应关系可以是第一波束与至少一个第二波束的波数ID(beam ID)之间的对应关系。
或者,上述隐性的对应关系是第一波束对应的物理资源与至少一个第二波束各自对应的物理资源之间的对应关系。其中,上述物理资源可以是时域资源、频域资源以及码域资源中的至少一种。
和/或,上述隐性的对应关系是第一波束对应的参考信号与至少一个第二波束各自对应的参考信号之间的对应关系。
和/或,上述隐性的对应关系是第一波束对应的物理资源与至少一个第二波束各自对应的参考信号之间的对应关系。
和/或,上述隐性的对应关系是第一波束对应的参考信号与至少一个第二波束各自对应的物理资源之间的对应关系。
当然,在实际应用中,一组波束对应信息中的第一波束与至少一个第二波束之间的对应关系也可以同时包含上述显性的对应关系和隐性的对应关系。换句话说,对于一组对应关系,同时以显性对应关系和隐性对应关系两种形式进行指示。
可选的,在本发明实施例中,当第一波束和第二波束分别用于传输不同的物理信道时,上述第一波束与至少一个第二波束之间的对应关系中还包含至少一个第二波束对应的第一物理信道,以及,第一波束对应的第二物理信道。
具体的,上述第一波束与至少一个第二波束之间的对应关系中包含:至少一个第二波束对应的第一物理信道的标识,以及,第一波束对应的第二物理信道的标识。
或者,上述第一波束与至少一个第二波束之间的对应关系中包含:至少一个第二波束对应的第一物理信道的信道类型,以及,第一波束对应的第二物理信道的信道类型。
比如,以第二波束用于传输数据信道,第一波束用于传输控制信道为例,当上述第一波束和第二波束为下行波束,比如,发送端设备是接入网设备,接收端设备是终端时,第一物理信道是下行数据信道,第二物理信道是下行控制信道;相应的,当上述第一波束和第二波束为上行波束,比如,发送端设备是终端,接收端设备是接入网设备时,第一物理信道是上行数据信道,第二物理信道是上行控制信道,发送端设备通过波束对应信息向接收端设备指示第一波束对应的物理信道以及第二波束对应的物理信道。
可选的,当上述第一波束和第二波束为上行波束时,在上述隐性对应关系中使用的参考信号包括:对应的波束传输的上行物理信道所使用的DMRS,和/或,对应的波束传输的上行物理信道所使用的SRS。
或者,当上述第一波束和第二波束为下行波束时,在上述隐性对应关系中使用的参考信号包括:对应的波束传输的下行物理信道所使用的DMRS,和/或,对应的波束的beam specific RS,和/或,对应的波束的CSI-RS。
在实际应用中,在隐性对应关系中所使用的参考信号并不限定于上述DMRS、SRS、beam specific RS以及CSI-RS这四种,发送端设备也可以按照实际的使用场景选择其它的参考信号来指示第一波束和第二波束之间的对应关系。同时,这些参考信号也可以采用具有相同或相似的导频功能,但名称不同的其它参考信号代替。
步骤402,发送端设备向接收端设备发送至少一组波束信息。
可选的,发送端设备通过专用信令或广播信令发送该至少一组波束对应信息。比如,当发送端设备是接入网设备时,发送端设备可以通过专用信令或广播信令发送该至少一组波束对应信息;当发送端设备是终端时,发送端设备可 以通过专用信令发送该至少一组波束对应信息。
其中,上述专用信令可以是无线资源控制(Radio Resource Control,RRC)信令等信令,上述广播信令可以是系统信息广播等信令。
步骤403,接收端设备接收发送端设备发送的至少一组波束信息。
相应的,接收端设备接收发送端设备通过专用信令或广播信令发送的该至少一组波束对应信息。比如,当发送端设备是接入网设备时,接收端设备可以通过专用信令或广播信令接收该至少一组波束对应信息;当发送端设备是终端时,接收端设备可以通过专用信令接收该至少一组波束对应信息。
步骤404,接收端设备根据至少一组波束对应信息,从发送端设备发送的各个波束中选择接收的波束。
在本发明实施例中,接收某个波束可以是指接收通过该波束传输的物理信道中的数据或信令,相应的,下文涉及的接收某个信道可以是指接收该信道中的数据或信令。
在本发明实施例中,接收端设备根据至少一组波束对应信息,从发送端设备发送的各个波束中选择接收的波束的场景,可以包括但不限于以下三种:
第一,接收端设备通过第二波束接收第一物理信道时,可以根据至少一组波束对应信息,将该第二波束对应的第一波束选择为用于接收第二物理信道的波束。
比如,以第一波束用于传输控制信道,第二波束用于传输数据信道为例,当接收端设备正在通过一个第二波束接收数据信道时,若接收端设备需要接收控制信道,则可以根据接收到的波束对应信息快速选择与该第二波束相对应的第一波束,不需要对发送端设备发送的各个第一波束分别进行测量,从而减少了数据接收过程中对波束的信号质量进行测量的步骤。
第二,接收端设备通过第一波束接收第二物理信道时,根据至少一组波束对应信息,测量该第一波束对应的至少一个第二波束的信号质量,并将第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收第一物理信道的波束。
比如,以第一波束用于传输控制信道,第二波束用于传输数据信道为例,当接收端设备正在通过第一波束接收控制信道时,若接收端设备需要接收数据信道,则可以根据接收到的波束对应信息,确定与第一波束相对应的部分第二波束,并从确定的部分第二波束中选择出信号质量最好的第二波束进行数据信 道的接收,不需要对发送端设备发送的所有第二波束分别进行测量,从而减少了数据接收过程中对波束的信号质量进行测量的次数。
第三,当至少一组波束对应信息为至少两组波束对应信息时,接收端设备测量至少两组波束对应信息各自的第一波束的信号质量,继而测量至少两组波束对应信息各自的第一波束中,信号质量最好的第一波束对应的至少一个第二波束的信号质量,并将信号质量最好的第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为接收的波束。
通过上述方法,当发送端设备向接收端设备所在的方向上发送多个第二波束时,接收端设备不需要对该多个第二波束中的每一个第二波束进行信号质量的测量,只需要先对覆盖该多个第二波束的第一波束进行测量,找出其中信号质量最好的第一波束,而该信号质量最好的第一波束所覆盖的至少一个第二波束即可以被认为是信号质量最好的一组第二波束,接收端设备再对该信号质量最好的一组第二波束进行测量并选择出信号质量最好的第二波束,本方案相比于对每一个第二波束分别进行信号质量的测量来说,能够减少数据接收过程中对波束的信号质量进行测量的次数。
综上所述,本发明实施例所示的波束选择方法,发送端设备将第一波束与第二波束之间的对应关系发送给接收端设备,接收端设备在接收发送端设备发送的数据的过程中,可以根据该第一波束与第二波束之间的对应关系,从发送端设备发送的各个波束中快速选择接收的波束,减少了数据接收过程中对波束的信号质量进行测量的步骤或次数,从而减少波束测量所耗费的时间,加速接收端设备的波束测量和选择的过程,简化数据接收的复杂度,降低数据接收的时延。
需要说明的是,上述图4所示实施例中由接收端设备执行的步骤可以单独实现成为接收端设备侧的波束选择方法,上述各个实施例中由发送端设备执行的步骤可以单独实现成为发送端设备侧的波束选择方法。
请参考图5,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中,发送端设备为接入网设备,接收端设备为终端,且接入网设备通过第二波束发送下行数据信道,通过第一波束发送下行控制信道来举例说明。该方法包括:
步骤501,接入网设备生成至少一组波束对应信息,每组波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系。
可选的,在本发明实施例中,上述第一波束与至少一个第二波束之间的对应关系中还包含至少一个第二波束对应的下行数据信道,以及,第一波束对应的下行控制信道。
或者,上述第一波束与至少一个第二波束之间的对应关系中也可以包含至少一个第二波束对应的上行物理信道的标识或信道类型,以及,第一波束对应的上行物理信道的标识或信道类型。
步骤502,接入网设备向终端发送至少一组波束信息。
可选的,接入网设备通过专用信令或广播信令发送该至少一组波束对应信息。
步骤503,终端接收接入网设备发送的至少一组波束信息。
相应的,终端通过专用信令或广播信令接收该至少一组波束对应信息。
步骤504,终端通过第二波束接收下行数据信道时,将第二波束对应的第一波束选择为用于接收下行控制信道的波束。
比如,以接入网设备发送的波束如图2所示为例,接入网设备通过第二波束(波束1至波束4)传输下行数据信道,并通过第一波束(波束5和波束6)传输下行控制信道,当终端正在通过波束1接收下行数据信道时,此时,若终端需要接收下行控制信道,不需要对波束5和波束6分别进行测量,直接根据接收到的波束对应信息,快速选择与波束1相对应的第一波束,即波束5,并通过波束5接收下行控制信道。
综上所述,本发明实施例提供的波束选择方法,接入网设备通过第二波束传输下行数据信道,通过第一波束传输下行控制信道,并向终端通知其发送的第一波束与第二波束之间的对应关系,终端在通过第二波束接收接入网设备传输的下行数据信道时,若需要接收下行控制信道,则可以根据第一波束与第二波束之间的对应关系,直接通过该第二波束对应的第一波束接收下行控制信道,不需要对接入网设备发送的各个第一波束进行测量,从而减少了接收下行控制信道过程中,对波束的信号质量进行测量的步骤。
在基于图5的可选实施例中,终端也可以通过接入网设备发送的第一波束与第二波束之间的对应关系,选择用于接收下行数据信道的第二波束,此时, 上述步骤504可以替换实现为步骤504a和步骤504b,如图6所示:
步骤504a,终端通过第一波束接收下行控制信道时,根据至少一组波束对应信息,测量该第一波束对应的至少一个第二波束的信号质量。
比如,以接入网设备发送的波束如图2所示为例,接入网设备通过第二波束(波束1至波束4)传输下行数据信道,并通过第一波束(波束5和波束6)传输下行控制信道,当终端正在通过波束5接收下行控制信道时,此时,若终端需要接收下行数据信道,则根据接收到的波束对应信息,选择对与波束5相对应的第二波束(波束1和波束2)进行信号质量的测量,不需要对波束3和波束4分别进行测量。
步骤504b,终端将第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收下行数据信道的波束。
比如,终端对波束1和波束2分别进行信号质量的测量后,选择通过波束1和波束2中信号质量最好的波束接收下行数据信道。
综上所述,本发明实施例提供的波束选择方法,接入网设备通过第二波束传输下行数据信道,通过第一波束传输下行控制信道,并向终端通知其发送的第一波束与第二波束之间的对应关系,终端在通过第一波束接收接入网设备传输的下行控制信道时,若需要接收下行数据信道,则可以根据第一波束与第二波束之间的对应关系,仅对第一波束对应的第二波束进行测量,不需要对接入网设备发送的所有第二波束分别进行测量,从而减少了接收下行数据信道中的数据过程中,对波束的信号质量进行测量的次数。
请参考图7,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中,发送端设备为接入网设备,接收端设备为终端来举例说明。该方法包括:
步骤701,接入网设备生成至少两组波束对应信息,每组波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系。
在本发明实施例中,第一波束可以不对应特定的下行物理信道。比如,不同的下行物理信道都可以通过第一波束或者第二波束进行传输。
或者,与图5或图6所示的实施例类似的,在本发明实施例中,第一波束和第二波束也可以分别用于传输不同的下行物理信道。
步骤702,接入网设备向终端发送生成的至少两组波束信息。
可选的,接入网设备通过专用信令或广播信令发送该至少一组波束对应信息。
步骤703,终端接收发送端设备发送的至少两组波束信息。
相应的,终端通过专用信令或广播信令接收该至少一组波束对应信息。
步骤704,终端测量至少两组波束对应信息各自的第一波束的信号质量。
比如,以接入网设备发送的波束如图3所示为例,接入网设备发送波束1至波束9这9个第二波束,终端需要通过第二波束接收接入网设备发送的信令或数据时,需要从波束1至波束9中选择出信号质量最好的第二波束。通过本发明实施例所示的方案,终端接收到接入网设备发送的波束对应信息后,在选择接收的第二波束时,可以先测量与9个第二波束相对应的3个第一波束的信号质量,即对图3中的波束10、波束11和波束12的信号质量进行测量。
步骤705,终端测量至少两组波束对应信息各自的第一波束中,信号质量最好的第一波束对应的至少一个第二波束的信号质量。
终端对图3中的波束10、波束11和波束12的信号质量进行测量后,确定其中信号质量最好的第一波束,比如,假设确定出的信号质量最好的第一波束为波束11,则进一步的,终端对波束11对应3个第二波束(即波束4至波束6)进行信号质量的测量。
步骤706,终端将信号质量最好的第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为接收的波束。
具体的,终端可以将上述信号质量最好的第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用来接收接入网设备发送的数据或信令的波束。
比如,终端对与信号质量最好的第一波束相对应的第二波束(即图3中的波束4至波束6)的信号质量进行测量后,可以选择接收波束4至波束6中信号质量最好的波束,并通过选择出的波束接收接入网设备发送的数据或信令。
具体例如,以波束对应信息中包含第一波束的参考信号与对应的各个第二波束的参考信号之间的对应关系为例,终端可以根据波束10、波束11和波束12的参考信号,测量波束10、波束11和波束12的信号质量,在确定出这三者中的波束11的信号质量最好之后,查询获得波束11的参考信号与波束4至波束6的参考信号之间的对应关系,并根据波束4至波束6的参考信号,测量波束4至波束6的信号质量,从中选择出信号质量最好的第二波束。
在本发明实施例的上述过程中,终端从图3所示的9个第二波束中选择出一个第二波束时,只需要先对3个第一波束进行测量,再对信号质量最好的第一波束对应的3个第二波束进行测量,前后经过6次测量即可以确定出接收的第二波束,不需要对9个第二波束分别进行一次测量。
综上所述,本发明实施例提供的波束选择方法,接入网设备向终端通知其发送的第一波束与第二波束之间的对应关系,终端从接入网设备发送的各个第二波束中选择一个第二波束进行接收时,只需要先对接入网设备发送的各个第一波束进行测量,再对其中信号质量最好的第一波束所对应的第二波束进行测量,即可以确定出接收的第二波束,不需要对接入网设备发送的所有第二波束分别进行测量,从而减少了通过第二波束接收数据或信令的过程中,对波束的信号质量进行测量的次数。
上述图5至图7所示的方案均以发送端设备为接入网设备,接收端设备为终端为例进行说明。本发明提供的波束选择方法,同样适用于接入网设备对终端发送的波束进行选择的情形。
请参考图8,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中,发送端设备为终端,接收端设备为接入网设备,且终端通过第二波束发送上行数据信道,通过第一波束发送上行控制信道来举例说明。该方法包括:
步骤801,终端生成至少一组波束对应信息,每组波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系。
可选的,在本发明实施例中,上述第一波束与至少一个第二波束之间的对应关系中还包含至少一个第二波束对应的上行数据信道,以及,第一波束对应的上行控制信道。
或者,上述第一波束与至少一个第二波束之间的对应关系中也可以包含至少一个第二波束对应的上行物理信道的标识或信道类型,以及,第一波束对应的上行物理信道的标识或信道类型。
步骤802,终端向接入网设备发送至少一组波束信息。
可选的,终端通过专用信令,比如RRC信令,发送该至少一组波束对应信息。
步骤803,接入网设备接收终端发送的至少一组波束信息。
相应的,接入网设备通过专用信令接收终端发送的该至少一组波束对应信息。
步骤804,接入网设备通过第二波束接收上行数据信道时,将第二波束对应的第一波束选择为用于接收上行控制信道的波束。
比如,以终端发送的波束如图2所示为例,终端通过第二波束(波束1至波束4)传输上行数据信道,并通过第一波束(波束5和波束6)传输上行控制信道,当接入网设备正在通过波束1(即上述第一第二波束)接收上行数据信道时,此时,若接入网设备需要接收上行控制信道,则不需要对波束5和波束6分别进行测量,直接根据接收到的波束对应信息,快速选择与波束1相对应的第一波束(波束5),并通过波束5接收上行控制信道。
综上所述,本发明实施例提供的波束选择方法,终端通过第二波束传输上行数据信道,通过第一波束传输上行控制信道,并向接入网设备通知其发送的第一波束与第二波束之间的对应关系,接入网设备在通过第二波束接收终端传输的上行数据信道时,若需要接收上行控制信道,则可以根据第一波束与第二波束之间的对应关系,直接通过第二波束对应的第一波束接收上行控制信道,不需要对终端发送的各个第一波束进行测量,从而减少了接收上行控制信道中的数据过程中,对波束的信号质量进行测量的步骤。
在基于图8的可选实施例中,终端也可以通过接入网设备发送的第一波束与第二波束之间的对应关系,选择用于接收下行数据信道的第二波束,此时,上述步骤804可以替换实现为步骤804a和步骤804b,如图9所示:
步骤804a,接入网设备通过第一波束接收上行控制信道时,根据至少一组波束对应信息,测量第一波束对应的至少一个第二波束的信号质量。
比如,以终端发送的波束如图2所示为例,终端通过第二波束(波束1至波束4)传输上行数据信道,并通过第一波束(波束5和波束6)传输上行控制信道,当接入网设备正在通过波束5接收上行控制信道时,此时,若需要接收上行数据信道,则可以根据接收到的波束对应信息,选择对与波束5相对应的第二波束(波束1和波束2)进行信号质量的测量,不需要对波束3和波束4分别进行测量。
步骤804b,接入网设备将第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收上行数据信道的波束。
比如,以图2所示为例,接入网设备对波束1和波束2分别进行信号质量的测量后,选择通过波束1和波束2中信号质量最好的波束接收上行数据信道。
综上所述,本发明实施例提供的波束选择方法,终端通过第二波束传输下行数据信道,通过第一波束传输下行控制信道,并向接入网设备通知其发送的第一波束与第二波束之间的对应关系,接入网设备在通过第一波束接收终端传输的上行控制信道时,若需要接收上行数据信道,则可以根据第一波束与第二波束之间的对应关系,仅对第一波束对应的第二波束进行测量,不需要对终端发送的所有第二波束分别进行测量,从而减少了接收上行数据信道的过程中,对波束的信号质量进行测量的次数。
请参考图10,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中,发送端设备为终端,接收端设备为接入网设备来举例说明。该方法包括:
步骤1001,终端生成至少两组波束对应信息,每组波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系。
在本发明实施例中,第一波束可以不对应特定的上行物理信道。比如,不同的上行物理信道都可以通过第一波束或者第二波束进行传输。
或者,与图8或图9所示的实施例类似的,在本发明实施例中,第一波束和第二波束也可以分别用于传输不同的上行物理信道。
步骤1002,终端向接入网设备发送至少两组波束信息。
可选的,终端通过专用信令发送该至少一组波束对应信息。
步骤1003,接入网设备接收终端发送的至少两组波束信息。
相应的,接入网设备通过专用信令接收该至少一组波束对应信息。
步骤1004,接入网设备测量至少两组波束对应信息各自的第一波束的信号质量。
比如,以终端发送的波束如图3所示为例,终端发送波束1至波束9这9个第二波束,接入网设备需要通过第二波束接收终端发送的信令或数据时,需要从波束1至波束9中选择出信号质量最好的第二波束。通过本发明实施例所示的方案,接入网设备在选择第二波束时,可以先测量与9个第二波束相对应的3个第一波束的信号质量,即对图3中的波束10、波束11和波束12的信号质量进行测量。
步骤1005,接入网设备测量至少两组波束对应信息各自的第一波束中,信号质量最好的第一波束对应的至少一个第二波束的信号质量。
接入网设备对图3中的波束10、波束11和波束12的信号质量进行测量后,确定其中信号质量最好的第一波束,比如,假设确定出的第一波束为波束11,则进一步的,接入网设备对波束11对应的3个第二波束(即波束4至波束6)进行信号质量的测量。
步骤1006,接入网设备将该信号质量最好的第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为接收的波束。
具体的,接入网设备可以将上述信号质量最好的第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用来接收终端发送的数据或信令的波束。
比如,接入网设备对图3中的波束4至波束6的信号质量进行测量后,选择波束4至波束6中信号质量最好的波束作为用于接收数据或信令的波束。
在本发明实施例的上述过程中,接入网设备从图3所示的9个第二波束中选择出一个第二波束时,只需要先对3个第一波束进行测量,再对信号质量最好的第一波束对应的3个第二波束进行测量,前后经过6次测量即可以确定出接收的第二波束,不需要对9个第二波束分别进行一次测量。
综上所述,本发明实施例提供的波束选择方法,终端向接入网设备通知其发送的第一波束与第二波束之间的对应关系,接入网设备从终端发送的各个第二波束中选择一个第二波束进行接收时,只需要先对终端发送的各个第一波束进行测量,再对其中信号质量最好的第一波束所对应的第二波束进行测量,即可以确定出接收的第二波束,不需要对终端发送的所有第二波束分别进行测量,从而减少了通过第二波束接收数据或信令的过程中,对波束的信号质量进行测量的次数。
需要说明的是,上述图5至图10所示的各个实施例中由接入网设备执行的步骤可以单独实现成为接入网设备侧的波束选择方法,上述图5至图10所示的各个实施例中由终端执行的步骤可以单独实现成为终端侧的波束选择方法。
请参考图11,其示出了本发明一个实施例提供的波束选择方法的方法流程 图。本实施例以该波束选择方法应用于图1所示的移动通信系统中来举例说明。该方法包括:
步骤1101,发送端设备生成至少一组波束对应信息,每组波束对应信息中包含第一信号所在波束与第二信号所在波束之间的对应关系。
可选的,第一信号所在波束与第二信号所在波束是同一波束。
在本发明实施例中,发送端设备通过波束成形技术进行多波束发送时,可以在不同的波束上发送属于同一类型的不同信号,并且,同一个波束上可以发送不同类型的多个信号。发送端设备可以根据其发送的各个波束上的第一信号和第二信号,生成一组波束对应信息。
比如,以图2为例,其中波束1至波束4各自发送第一信号和第二信号,其中,波束1中发送的第一信号为信号11,且波束1中发送的第二信号为21,波束2中发送的第一信号为信号12,且波束2中发送的第二信号为22,波束3中发送的第一信号为信号13,且波束3中发送的第二信号为23,波束4中发送的第一信号为信号14,且波束4中发送的第二信号为24。则上述波束1对应的一组波束对应信息中包含信号11所在波束和信号21所在波束之间的对应关系,相应的,波束2对应的一组波束对应信息中包含信号12所在波束和信号22所在波束之间的对应关系,波束3对应的一组波束对应信息中包含信号13所在波束和信号23所在波束之间的对应关系,波束4对应的一组波束对应信息中包含信号14所在波束和信号24所在波束之间的对应关系。
其中,上述第一信号所在波束和第二信号所在波束之间的关系,可以直接是第一信号的信号内容与第二信号的信号内容之间的对应关系,也可以是第一信号的标识与第二信号的标识之间的对应关系,或者,也可以是第一信号的信号内容与第二信号的标识之间的对应关系,或者,也可以是第一信号的标识与第二信号的信号内容之间的对应关系等等。
步骤1102,发送端设备向接收端设备发送至少一组波束对应信息。
在本发明实施例中,发送端设备可以通过准同址(Quasi Co-Located,QCL)参数发送波束对应信息,即发送端设备向接收端设备发送指示至少一组波束对应信息的准同址参数。
或者,
在本发明实施例中,发送端设备也可以通过专用信令发送波束对应信息,即发送端设备向接收端设备发送包含该至少一组波束对应信息的专用信令,比 如无线资源控制(Radio Resource Control,RRC)信令。
步骤1103,接收端设备接收该至少一组波束对应信息。
相应的,当发送端设备可以通过准同址参数发送波束对应信息时,接收端设备接收发送端设备发送的准同址参数,获取准同址参数所指示的至少一组波束对应信息。
或者,
当发送端设备通过专用信令发送波束对应信息时,接收端设备接收发送端设备通过专用信令发送的至少一组波束对应信息。
步骤1104,接收端设备根据至少一组波束对应信息,从发送端设备发送的各个波束中选择接收的波束。
具体的,在本发明实施例中,接收端设备可以获取通过对各个波束中的第一信号进行测量获得的,各个波束各自的信号质量;接收端设备根据至少一组波束对应信息,查询各个波束中信号质量最好的波束中的第一信号所对应的第二信号;接收端设备将信号质量最好的波束,选择为用于接收信号质量最好的波束中的第一信号所对应的第二信号的波束。
通过本发明实施例所示的方法,接收端设备可以对发送端设备发送的各个波束中的第一信号进行测量,以获得各个波束各自的信号质量,以便后续在接收第二信号时,根据接收到的波束对应信息,直接查询确定信号最强的波束中携带的第二信号是哪一个信号,从而直接通过该信号最强的波束接收确定的第二信号,不需要再针对第二信号进行波束扫描。
综上所述,本发明实施例所示的方法,接收端设备在对第一信号进行测量之后,后续需要接收第二信号时,不需要再对第二信号进行测量,直接根据波束对应信息即可以选择出用于接收的波束,从而减少对波束中各种信号分别进行测量的步骤或次数,从而减少波束测量所耗费的时间,加速接收端设备的波束测量和选择的过程,简化系统复杂度,降低数据接收的时延。
需要说明的是,上述图11所示实施例中由接收端设备执行的步骤可以单独实现成为接收端设备侧的波束选择方法,上述各个实施例中由发送端设备执行的步骤可以单独实现成为发送端设备侧的波束选择方法。
5G系统可以通过不同的beam来覆盖整个小区,即每个beam覆盖一个较 小的范围,通过时间上的扫描(sweeping)来实现多个beam覆盖整个小区的效果。不同beam上传输不同的同步信号块(SS block),终端可以通过不同的SS block来分辨出不同的beam。
终端在开机搜索小区的过程中就开始做波束扫描(beam sweeping),通过测量不同的SS block以获得最佳的下行beam(即信号质量最好的波束)。而终端在空闲态(idle mode)下,监听寻呼信道/信号(paging channel/signal)时也需要选择信号质量最好的波束;当终端进入连接态后,终端在做移动性管理时,可能还需要测量CSI-RS,不同的CSI-RS配置与不同的波束对应;类似的,在其它时刻,终端可能还需要测量下行DMRS对应的波束。由于终端在做小区选择时已经测量过SS block,因此,通过上述图4所示的方案,系统可以指示SS block与其它信号/信道的波束之间的对应关系,后续在选择波束对其它信号/信道进行测量时,能大大简化波束选择的过程。
请参考图12,其示出了本发明一个实施例提供的波束选择方法的方法流程图。本实施例以该波束选择方法应用于图1所示的移动通信系统中,发送端设备为接入网设备,接收端设备为终端来举例说明。该方法包括:
步骤1201,接入网设备生成至少一组波束对应信息,每组波束对应信息中包含SS block(第一信号)所在波束与第二信号所在波束之间的对应关系。
可选的,第一信号所在波束与第二信号所在波束是同一波束。
其中,该第一信号为参考信号块SS block;第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
在本发明实施例中,当第二信号包括寻呼信号时,上述对应关系可以包括:SS block与寻呼信道/信号之间的对应关系。
当第二信号包括信道状态信息参考信号CSI-RS时,上述对应关系可以包括:SS block与CSI-RS资源之间的对应关系;和/或,SS block与CSI-RS端口之间的对应关系。
当第二信号包括解调参考信号DMRS时,上述对应关系包括:SS block与DMRS端口或端口集合之间的对应关系。
步骤1202,接入网设备向终端发送至少一组波束对应信息。
在本发明实施例中,接入网设备可以通过广播方式向终端发送系统信息块(System Information Block,SIB),该SIB中携带的QCL参数指示上述至少一组波束对应信息。
或者,接入网设备也可以通过专用信令,比如RRC signaling,向终端发送上述至少一组波束对应信息。
步骤1203,终端接收该至少一组波束对应信息。
相应的,当接入网设备通过QCL参数发送波束对应信息时,中高端接收接入网设备通过广播发送的SIB中的QCL参数,并获取QCL参数所指示的至少一组波束对应信息。
或者,
当接入网设备通过RRC signaling发送波束对应信息时,终端接收接入网设备通过RRC signaling发送的至少一组波束对应信息。
步骤1204,终端根据至少一组波束对应信息,从接入网设备发送的各个波束中选择接收的波束。
在本发明实施例中,终端可以获取预先通过对各个波束中的SSblock进行测量获得的,各个波束各自的信号质量,根据至少一组波束对应信息,查询各个波束中信号质量最好的波束中的SS block所对应的第二信号,并将信号质量最好的波束,选择为用于接收信号质量最好的波束中的SS block所对应的第二信号的波束。
终端接收到接入网设备生成并发送的波束对应信息,比如QCL参数后,利用SS bock与其它信号/信道的对应关系加快波束选择的过程。具体比如,接入网设备在一个20ms周期内广播2个SS block,接入网设备也采用2个beam去广播寻呼(paging)消息。同时,接入网设备通过SIB指示这2个SS block和广播paging消息的两个beam之间的对应关系,比如,指示SS block1和paging message1的QCL参数表示SS block1和paging message1在同一个beam上发送,而指示SS block2和paging message2的QCL参数表示SS block2和paging message2在另一个beam上发送。终端在做小区搜索的时候发现SS block1对应的波束方向上的信号质量最强,则终端就可以依据上述信号对应关系,在SS block1对应的波束方向上直接监听paging message1。不需要对paging message1和paging message 2先做波束扫描,再根据波束扫描的结果决定监听paging message1或paging message2,从而加快终端选择波束的过程。
综上所述,本发明实施例所示的方法,接收端设备可以对发送端设备发送的各个波束中的第一信号进行测量,以获得各个波束各自的信号质量,以便后续在接收第二信号时,根据接收到的信号对应关系,直接查询确定信号最强的 波束中携带的第二信号是哪一个信号,从而直接通过该信号最强的波束接收确定的第二信号,不需要再针对第二信号进行波束扫描,从而减少对波束中各种信号分别进行测量的步骤或次数,从而减少波束测量所耗费的时间,加速接收端设备的波束测量和选择的过程,简化系统复杂度,降低数据接收的时延。
以下为本发明实施例的装置实施例,对于装置实施例中未详细阐述的部分,可以参考上述方法实施例中公开的技术细节。
请参考图13,其示出了本发明一个实施例提供的波束选择装置的结构示意图。该波束选择装置可以通过软件、硬件以及两者的组合实现成为接收端设备的全部或一部分。该波束选择装置包括:接收单元1301和处理单元1302;
接收单元1301用于执行上述步骤403、步骤503、步骤703、步骤803、步骤1003、步骤1103或者步骤1203;
处理单元1302用于执行上述步骤404,或者,用于执行步骤504,或者,用于执行步骤504a和步骤504b,或者,用于执行步骤704至步骤706,或者,用于执行步骤804,或者,用于执行步骤804a和804b,或者,用于执行步骤1004至步骤1006,或者,用于执行步骤1104,或者,用于执行步骤1204。
请参考图14,其示出了本发明一个实施例提供的波束选择装置的结构示意图。该波束选择装置可以通过软件、硬件以及两者的组合实现成为发送端设备的全部或一部分。该波束选择装置包括:处理单元1401和发送单元1402;
处理单元1401用于执行上述步骤401、步骤501、步骤701、步骤801、步骤1001、步骤1101或者步骤1201;
发送单元1402用于执行上述步骤402、步骤502、步骤702、步骤802或者步骤1002、步骤1102或者步骤1202。
请参考图15,其示出了本发明一个示例性实施例提供的接收端设备的结构示意图,该接收端设备包括:处理器21、接收器22、发射器23、存储器24和总线25。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器22和发射器23可以实现为一个通信组件,该通信组件可以是一块 通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制和/或解调,并通过无线信号接收或发送该信息。
存储器24通过总线25与处理器21相连。
存储器24可用于存储软件程序以及模块。
存储器24可存储至少一个功能所述的应用程序模块26。应用程序模块26可以包括:接收模块261和选择模块262。
处理器21用于执行接收模块261以实现上述各个方法实施例中有关接收步骤的功能;处理器21用于执行选择模块262以实现上述各个方法实施例中有关波束选择步骤的功能。
此外,存储器24可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
请参考图16,其示出了本发明一个示例性实施例提供的发送端设备的结构示意图,该发送端设备包括:处理器31、接收器32、发射器33、存储器34和总线35。
处理器31包括一个或者一个以上处理核心,处理器31通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器32和发射器33可以实现为一个通信组件,该通信组件可以是一块通信芯片,通信芯片中可以包括接收模块、发射模块和调制解调模块等,用于对信息进行调制解调,并通过无线信号接收或发送该信息。
存储器34通过总线35与处理器31相连。
存储器34可用于存储软件程序以及模块。
存储器34可存储至少一个功能所述的应用程序模块36。应用程序模块36可以包括:生成模块361和发送模块362。
处理器21用于执行生成模块361以实现上述各个方法实施例中有关生成波束对应信息的步骤的功能;处理器21用于执行发送模块362以实现上述各个方法实施例中有关发送步骤的功能;
此外,存储器34可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随时存取存储器(SRAM),电可擦除可编程只读存储器 (EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
本发明实施例还提供一种波束选择系统,该波束选择系统可以包含接收端设备和发送端设备。
其中,接收端设备可以包含上述图13所提供的波束选择装置,发送端设备可以是包含上述图14所提供的波束选择装置。
或者,接收端设备可以是上述图15所提供的接收端设备,发送端设备可以是上述图16所提供的发送端设备。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (91)

  1. 一种波束选择方法,其特征在于,所述方法包括:
    接收端设备接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  2. 根据权利要求1所述的方法,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  5. 根据权利要求4所述的方法,其特征在于,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
    所述接收端设备通过第二波束接收第一物理信道时,根据所述至少一组波束对应信息,将所述第二波束对应的第一波束选择为用于接收第二物理信道的波束。
  6. 根据权利要求4所述的方法,其特征在于,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
    所述接收端设备通过第一波束接收第二物理信道时,根据所述至少一组波束对应信息,测量所述第一波束对应的至少一个第二波束的信号质量;
    所述接收端设备将所述第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收第一物理信道的波束。
  7. 根据权利要求4至6任一所述的方法,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述接收端设备接收发送端设备发送的至少一组波束对应信息,包括:
    所述接收端设备接收所述发送端设备通过专用信令或广播信令发送的所述至少一组波束对应信息。
  9. 根据权利要求1至8任一所述的方法,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  10. 一种波束选择方法,其特征在于,所述方法包括:
    发送端设备生成至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    所述发送端设备向接收端设备发送所述至少一组波束信息,以使得所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  11. 根据权利要求10所述的方法,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
  12. 根据权利要求11所述的方法,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  15. 根据权利要求10至14任一所述的方法,其特征在于,所述发送端设备向接收端设备发送所述至少一组波束信息,包括:
    所述发送端设备通过专用信令或广播信令向所述接收端设备发送所述至少一组波束对应信息。
  16. 根据权利要求10至15任一所述的方法,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  17. 一种波束选择装置,其特征在于,所述装置包括:
    接收单元,用于接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    处理单元,用于根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  18. 根据权利要求17所述的装置,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
  19. 根据权利要求18所述的装置,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  21. 根据权利要求20所述的装置,其特征在于,
    所述处理单元,具体用于通过第二波束接收第一物理信道时,根据所述至少一组波束对应信息,将所述第二波束对应的第一波束选择为用于接收第二物理信道的波束。
  22. 根据权利要求20所述的装置,其特征在于,
    所述处理单元,具体用于通过第一波束接收第二物理信道时,根据所述至少一组波束对应信息,测量所述第一波束对应的至少一个第二波束的信号质量,将所述第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收第一物理信道的波束。
  23. 根据权利要求20至22任一所述的装置,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  24. 根据权利要求17至23任一所述的装置,其特征在于,
    所述接收单元,具体用于接收所述发送端设备通过专用信令或广播信令发送的所述至少一组波束对应信息。
  25. 根据权利要求17至24任一所述的装置,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  26. 一种波束选择装置,其特征在于,所述装置包括:
    处理单元,用于生成至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    发送单元,用于向接收端设备发送所述至少一组波束信息,以使得所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  27. 根据权利要求26所述的装置,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
  28. 根据权利要求27所述的装置,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对 应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  30. 根据权利要求29所述的装置,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  31. 根据权利要求26至30任一所述的装置,其特征在于,
    所述发送单元,具体用于通过专用信令或广播信令向所述接收端设备发送所述至少一组波束对应信息。
  32. 根据权利要求26至31任一所述的装置,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  33. 一种接收端设备,其特征在于,所述设备包括:接收器和处理器;
    所述接收器,用于接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    所述处理器,用于根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  34. 根据权利要求33所述的设备,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关 系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信号之间的对应关系。
  35. 根据权利要求34所述的设备,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  36. 根据权利要求34或35所述的设备,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  37. 根据权利要求36所述的设备,其特征在于,
    所述处理器,具体用于通过第二波束接收第一物理信道时,根据所述至少一组波束对应信息,将所述第二波束对应的第一波束选择为用于接收第二物理信道的波束。
  38. 根据权利要求36所述的设备,其特征在于,
    所述处理器,具体用于通过第一波束接收第二物理信道时,根据所述至少一组波束对应信息,测量所述第一波束对应的至少一个第二波束的信号质量,将所述第一波束对应的至少一个第二波束中,信号质量最好的第二波束选择为用于接收第一物理信道的波束。
  39. 根据权利要求36至38任一所述的设备,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  40. 根据权利要求33至39任一所述的设备,其特征在于,
    所述接收器,具体用于接收所述发送端设备通过专用信令或广播信令发送的所述至少一组波束对应信息。
  41. 根据权利要求33至40任一所述的设备,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  42. 一种波束选择设备,其特征在于,所述设备包括:处理器和发射器;
    所述处理器,用于生成至少一组波束对应信息,每组所述波束对应信息中包含一个第一波束与至少一个第二波束之间的对应关系;
    所述发射器,用于向接收端设备发送所述至少一组波束信息,以使得所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  43. 根据权利要求42所述的设备,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系包括:
    所述第一波束的波束ID与所述至少一个第二波束的波束ID之间的对应关系;
    和/或,
    所述第一波束对应的物理资源与所述至少一个第二波束各自对应的物理资源之间的对应关系;
    和/或,
    所述第一波束对应的参考信号与所述至少一个第二波束各自对应的参考信 号之间的对应关系。
  44. 根据权利要求43所述的设备,其特征在于,所述参考信号包括:
    对应的波束传输的上行物理信道所使用的解调参考信号DMRS,和/或,对应的波束传输的上行物理信道所使用的信道探测参考信号SRS;
    或者,
    对应的波束传输的下行物理信道所使用的解调参考信号DMRS,和/或,对应的波束的波束参考信号beam specific RS,和/或,对应的波束的信道状态信息参考信号CSI-RS。
  45. 根据权利要求43或44所述的设备,其特征在于,所述第一波束与所述至少一个第二波束之间的对应关系还包括:
    所述至少一个第二波束对应的第一物理信道,以及,所述第一波束对应的第二物理信道。
  46. 根据权利要求45所述的设备,其特征在于,
    所述第一物理信道为下行数据信道,所述第二物理信道为下行控制信道;
    或者,
    所述第一物理信道为上行数据信道,所述第二物理信道为上行控制信道。
  47. 根据权利要求42至46任一所述的设备,其特征在于,
    所述发射器,具体用于通过专用信令或广播信令向所述接收端设备发送所述至少一组波束对应信息。
  48. 根据权利要求42至47任一所述的设备,其特征在于,
    所述接收端设备是终端,所述发送端设备是接入网设备;
    或者,
    所述接收端设备是接入网设备,所述发送端设备是终端。
  49. 一种波束选择系统,其特征在于,所述系统包括:接收端设备和发送端设备;
    所述接收端设备包括如权利要求17至25任一所述的波束选择装置;
    所述发送端设备包括如权利要求26至32任一所述的波束选择装置。
  50. 一种波束选择系统,其特征在于,所述系统包括:接收端设备和发送端设备;
    所述接收端设备是如权利要求33至41任一所述的接收端设备;
    所述发送端设备是如权利要求42至48任一所述的发送端设备。
  51. 一种波束选择方法,其特征在于,所述方法包括:
    接收端设备接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息包含第一信号所在波束与第二信号所在波束之间的对应关系;
    所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  52. 根据权利要求51所述的方法,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  53. 根据权利要求51或52所述的方法,其特征在于,所述接收端设备接收发送端设备发送的至少一组波束对应信息,包括:
    所述接收端设备接收所述发送端设备发送的准同址参数,获取所述准同址参数所指示的所述至少一组波束对应信息;
    或者,
    所述接收端设备接收所述发送端设备通过专用信令发送的所述至少一组波束对应信息。
  54. 根据权利要求51至53任一所述的方法,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  55. 根据权利要求54所述的方法,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  56. 根据权利要求54所述的方法,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  57. 根据权利要求51至56任一所述的方法,其特征在于,所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束,包括:
    所述接收端设备获取通过对所述各个波束中的第一信号进行测量获得的,所述各个波束各自的信号质量;
    所述接收端设备根据所述至少一组波束对应信息,查询所述各个波束中信号质量最好的波束中的第一信号所对应的第二信号;
    所述接收端设备将所述信号质量最好的波束,选择为用于接收所述信号质量最好的波束中的第一信号所对应的第二信号的波束。
  58. 一种波束选择方法,其特征在于,所述方法包括:
    发送端设备生成至少一组波束对应信息,每组所述波束对应信息第一信号所在波束与第二信号所在波束之间的对应关系;
    所述发送端设备向接收端设备发送所述至少一组波束对应信息,以便所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  59. 根据权利要求58所述的方法,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  60. 根据权利要求58或59所述的方法,其特征在于,所述发送端设备向接收端设备发送所述至少一组波束对应信息,包括:
    所述发送端设备向所述接收端设备发送指示所述至少一组波束对应信息的准同址参数;
    或者,
    所述发送端设备向所述接收端设备发送包含所述至少一组波束对应信息的专用信令。
  61. 根据权利要求58至60任一所述的方法,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  62. 根据权利要求61所述的方法,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  63. 根据权利要求61所述的方法,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  64. 一种波束选择装置,其特征在于,所述装置包括:
    接收单元,用于接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息包含第一信号所在波束与第二信号所在波束之间的对应关系;
    处理单元,用于根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  65. 根据权利要求64所述的装置,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  66. 根据权利要求64或65所述的装置,其特征在于,所述接收单元,具体用于
    接收所述发送端设备发送的准同址参数,获取所述准同址参数所指示的所述至少一组波束对应信息;
    或者,
    接收所述发送端设备通过专用信令发送的所述至少一组波束对应信息。
  67. 根据权利要求64至66任一所述的装置,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  68. 根据权利要求67所述的装置,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  69. 根据权利要求67所述的装置,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  70. 根据权利要求64至69任一所述的装置,其特征在于,所述处理单元,具体用于
    获取通过对所述各个波束中的第一信号进行测量获得的,所述各个波束各自的信号质量;
    根据所述至少一组波束对应信息,查询所述各个波束中信号质量最好的波束中的第一信号所对应的第二信号;
    将所述信号质量最好的波束,选择为用于接收所述信号质量最好的波束中的第一信号所对应的第二信号的波束。
  71. 一种波束选择装置,其特征在于,所述装置包括:
    处理单元,用于生成至少一组波束对应信息,每组所述波束对应信息第一信号所在波束与第二信号所在波束之间的对应关系;
    发送单元,用于向接收端设备发送所述至少一组波束对应信息,以便所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  72. 根据权利要求71所述的装置,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  73. 根据权利要求71或72所述的装置,其特征在于,所述发送单元,具体用于
    向所述接收端设备发送指示所述至少一组波束对应信息的准同址参数;
    或者,
    向所述接收端设备发送包含所述至少一组波束对应信息的专用信令。
  74. 根据权利要求71至73任一所述的装置,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  75. 根据权利要求74所述的装置,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  76. 根据权利要求74所述的装置,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  77. 一种接收端设备,其特征在于,所述设备包括:接收器和处理器;
    所述接收器,用于接收发送端设备发送的至少一组波束对应信息,每组所述波束对应信息包含第一信号所在波束与第二信号所在波束之间的对应关系;
    所述处理器,用于根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  78. 根据权利要求77所述的设备,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  79. 根据权利要求77或78所述的设备,其特征在于,所述接收器,具体用于
    接收所述发送端设备发送的准同址参数,获取所述准同址参数所指示的所述至少一组波束对应信息;
    或者,
    接收所述发送端设备通过专用信令发送的所述至少一组波束对应信息。
  80. 根据权利要求77至79任一所述的设备,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  81. 根据权利要求80所述的设备,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  82. 根据权利要求80所述的设备,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  83. 根据权利要求77至82任一所述的设备,其特征在于,所述处理器,具体用于
    获取通过对所述各个波束中的第一信号进行测量获得的,所述各个波束各自的信号质量;
    根据所述至少一组波束对应信息,查询所述各个波束中信号质量最好的波束中的第一信号所对应的第二信号;
    将所述信号质量最好的波束,选择为用于接收所述信号质量最好的波束中的第一信号所对应的第二信号的波束。
  84. 一种发送端设备,其特征在于,所述设备包括:处理器和发射器;
    所述处理器,用于生成至少一组波束对应信息,每组所述波束对应信息第 一信号所在波束与第二信号所在波束之间的对应关系;
    所述发射器,用于向接收端设备发送所述至少一组波束对应信息,以便所述接收端设备根据所述至少一组波束对应信息,从所述发送端设备发送的各个波束中选择接收的波束。
  85. 根据权利要求84所述的设备,其特征在于,所述第一信号所在波束与第二信号所在波束是同一波束。
  86. 根据权利要求84或85所述的设备,其特征在于,所述发射器,具体用于
    向所述接收端设备发送指示所述至少一组波束对应信息的准同址参数;
    或者,
    向所述接收端设备发送包含所述至少一组波束对应信息的专用信令。
  87. 根据权利要求84至86任一所述的设备,其特征在于,所述第一信号为参考信号块SS block;所述第二信号包括寻呼信号、信道状态信息参考信号CSI-RS以及解调参考信号DMRS中的至少一种。
  88. 根据权利要求87所述的设备,其特征在于,当所述第二信号包括信道状态信息参考信号CSI-RS时,所述对应关系包括:
    SS block与CSI-RS资源之间的对应关系;
    和/或,SS block与CSI-RS端口之间的对应关系。
  89. 根据权利要求87所述的设备,其特征在于,当所述第二信号包括解调参考信号DMRS时,所述对应关系包括:
    SS block与DMRS端口或端口集合之间的对应关系。
  90. 一种波束选择系统,其特征在于,所述系统包括:接收端设备和发送端设备;
    所述接收端设备包括如权利要求64至70任一所述的波束选择装置;
    所述发送端设备包括如权利要求71至76任一所述的波束选择装置。
  91. 一种波束选择系统,其特征在于,所述系统包括:接收端设备和发送端设备;
    所述接收端设备是如权利要求77至83任一所述的接收端设备;
    所述发送端设备是如权利要求84至89任一所述的发送端设备。
PCT/CN2017/083096 2016-12-30 2017-05-04 波束选择方法、装置及系统 WO2018120566A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
ES17889008T ES2878195T3 (es) 2016-12-30 2017-05-04 Método, aparato y sistema de selección de haz de onda
CN201780081269.9A CN110121913B (zh) 2016-12-30 2017-05-04 波束选择方法、装置及系统
BR112019013665A BR112019013665A2 (pt) 2016-12-30 2017-05-04 método, aparelho e sistema de seleção de feixe.
DK17889008.3T DK3565132T3 (da) 2016-12-30 2017-05-04 Fremgangsmåde, apparat og system til valg af bølgestråle
CA3048932A CA3048932C (en) 2016-12-30 2017-05-04 Beam selection method, apparatus and system
SG11201906126QA SG11201906126QA (en) 2016-12-30 2017-05-04 Beam selection method, apparatus and system
EP21169575.4A EP3886330A3 (en) 2016-12-30 2017-05-04 Beam selection method, apparatus and system
EP17889008.3A EP3565132B1 (en) 2016-12-30 2017-05-04 Wave beam selection method, apparatus and system
MYPI2019003813A MY197588A (en) 2016-12-30 2017-05-04 Beam selection method, apparatus and system
RU2019123979A RU2736601C1 (ru) 2016-12-30 2017-05-04 Способ, устройство и система выбора луча
AU2017387238A AU2017387238B2 (en) 2016-12-30 2017-05-04 Wave beam selection method, apparatus and system
MX2019007896A MX2019007896A (es) 2016-12-30 2017-05-04 Metodo, aparato y sistema de seleccion de haz.
JP2019536028A JP7053628B2 (ja) 2016-12-30 2017-05-04 ビーム選択方法、装置およびシステム
KR1020197022502A KR102307317B1 (ko) 2016-12-30 2017-05-04 빔 선택 방법, 장치 및 시스템
TW106143686A TWI757390B (zh) 2016-12-30 2017-12-13 波束選擇方法、裝置及系統
US16/458,461 US10992365B2 (en) 2016-12-30 2019-07-01 Beam selection method, apparatus and system
PH12019501546A PH12019501546A1 (en) 2016-12-30 2019-07-01 Beam selection method, apparatus and system
ZA2019/05019A ZA201905019B (en) 2016-12-30 2019-07-30 Beam selection method, apparatus and system
US17/215,267 US11764852B2 (en) 2016-12-30 2021-03-29 Beam selection method, apparatus and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/113685 2016-12-30
PCT/CN2016/113685 WO2018120102A1 (zh) 2016-12-30 2016-12-30 波束选择方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/458,461 Continuation US10992365B2 (en) 2016-12-30 2019-07-01 Beam selection method, apparatus and system

Publications (1)

Publication Number Publication Date
WO2018120566A1 true WO2018120566A1 (zh) 2018-07-05

Family

ID=62707617

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/113685 WO2018120102A1 (zh) 2016-12-30 2016-12-30 波束选择方法、装置及系统
PCT/CN2017/083096 WO2018120566A1 (zh) 2016-12-30 2017-05-04 波束选择方法、装置及系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113685 WO2018120102A1 (zh) 2016-12-30 2016-12-30 波束选择方法、装置及系统

Country Status (20)

Country Link
US (2) US10992365B2 (zh)
EP (2) EP3565132B1 (zh)
JP (1) JP7053628B2 (zh)
KR (1) KR102307317B1 (zh)
CN (1) CN110121913B (zh)
AU (1) AU2017387238B2 (zh)
BR (1) BR112019013665A2 (zh)
CA (1) CA3048932C (zh)
CL (1) CL2019001813A1 (zh)
DK (1) DK3565132T3 (zh)
ES (1) ES2878195T3 (zh)
MX (1) MX2019007896A (zh)
MY (1) MY197588A (zh)
PH (1) PH12019501546A1 (zh)
PT (1) PT3565132T (zh)
RU (1) RU2736601C1 (zh)
SG (1) SG11201906126QA (zh)
TW (1) TWI757390B (zh)
WO (2) WO2018120102A1 (zh)
ZA (1) ZA201905019B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105827A1 (zh) * 2020-11-23 2022-05-27 维沃移动通信有限公司 一种波束的处理方法及装置、通信设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809393A (zh) * 2017-04-27 2018-11-13 电信科学技术研究院 一种波束控制方法和装置
CN111328048B (zh) * 2018-12-17 2021-09-14 华为技术有限公司 一种通信方法及装置
US10952236B2 (en) * 2019-05-10 2021-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Beam selection systems and methods
US11480669B2 (en) * 2020-05-18 2022-10-25 Nokia Technologies Oy Method for SRS for positioning resource overhead reduction in multi-RTT
WO2022140914A1 (zh) * 2020-12-28 2022-07-07 株式会社Ntt都科摩 波束选择方法以及网络元件
CN116074886A (zh) * 2021-11-04 2023-05-05 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8036669B2 (en) * 2006-04-20 2011-10-11 Qualcomm Incorporated Orthogonal resource reuse with SDMA beams
EP2572918B1 (en) * 2010-05-21 2015-09-09 Toyota Jidosha Kabushiki Kaisha Structure for introducing cooling air
EP2747304A4 (en) * 2011-08-15 2015-02-18 Ntt Docomo Inc WIRELESS BASE STATION, USER TERMINAL, WIRELESS COMMUNICATION SYSTEM, AND WIRELESS COMMUNICATION METHOD
JP6238304B2 (ja) * 2011-08-16 2017-11-29 サムスン エレクトロニクス カンパニー リミテッド ビームフォーミングベースの無線通信システムにおける多重アンテナ送信をサポートするための装置及び方法
KR101828836B1 (ko) * 2011-08-23 2018-02-13 삼성전자주식회사 빔 포밍 기반의 무선통신시스템에서 빔 스캐닝을 통한 스케줄링 장치 및 방법
US9094977B2 (en) * 2011-11-11 2015-07-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting mobility management in communication systems with large number of antennas
KR20140056561A (ko) * 2012-10-29 2014-05-12 한국전자통신연구원 다중 빔을 운영하는 이동통신시스템에서 기지국 및 단말의 동작 방법
KR102171128B1 (ko) * 2012-12-21 2020-10-28 삼성전자주식회사 무선 통신 시스템에서 빔포밍을 이용한 제어 채널의 송수신 방법 및 장치
CN111865374B (zh) * 2013-01-25 2023-09-29 交互数字专利控股公司 用于确定资源的方法和无线发射/接收单元
EP3020144B1 (en) * 2013-07-08 2021-07-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming
KR102299326B1 (ko) * 2013-09-27 2021-09-08 삼성전자주식회사 무선 통신 시스템에서 빔 정보 송수신 장치 및 방법
CN103716081B (zh) * 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
KR102078569B1 (ko) * 2013-12-27 2020-02-19 삼성전자 주식회사 무선 통신 시스템에서 빔 모드 운용을 위한 방법 장치
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
US9578644B2 (en) * 2014-09-26 2017-02-21 Mediatek Inc. Beam misalignment detection for wireless communication system with beamforming
KR20160075995A (ko) * 2014-12-19 2016-06-30 한국전자통신연구원 물리 채널 전송 방법 및 장치
EP3073693B1 (en) * 2015-03-24 2020-07-22 Panasonic Intellectual Property Corporation of America PDSCH precoding adaptation for LTE in unlicensed bands
EP3275092B1 (en) * 2015-03-27 2019-10-23 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission
CN106559122A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种采用波束赋形的数据通信方法和装置
KR20190017994A (ko) * 2016-06-15 2019-02-20 콘비다 와이어리스, 엘엘씨 새로운 라디오를 위한 업로드 제어 시그널링
US10512056B2 (en) * 2017-05-05 2019-12-17 Futurewei Technologies, Inc. System and method for network positioning of devices in a beamformed communications system
US11317372B2 (en) * 2017-08-07 2022-04-26 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method and apparatus, and computer-readable storage medium
US10903942B2 (en) * 2018-04-16 2021-01-26 Qualcomm Incorporated Synchronization signal block and downlink channel multiplexing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信系统中选择最佳波束的装置和方法
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
CN106160807A (zh) * 2015-04-09 2016-11-23 株式会社Ntt都科摩 波束选择方法、移动台和基站
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105827A1 (zh) * 2020-11-23 2022-05-27 维沃移动通信有限公司 一种波束的处理方法及装置、通信设备

Also Published As

Publication number Publication date
MX2019007896A (es) 2019-12-16
EP3565132A1 (en) 2019-11-06
TWI757390B (zh) 2022-03-11
US20190349062A1 (en) 2019-11-14
JP2020504520A (ja) 2020-02-06
CA3048932C (en) 2021-11-30
AU2017387238A1 (en) 2019-08-22
CL2019001813A1 (es) 2019-10-18
WO2018120102A1 (zh) 2018-07-05
TW201824779A (zh) 2018-07-01
ES2878195T3 (es) 2021-11-18
US20210226685A1 (en) 2021-07-22
JP7053628B2 (ja) 2022-04-12
AU2017387238B2 (en) 2022-03-10
BR112019013665A2 (pt) 2020-01-14
RU2736601C1 (ru) 2020-11-19
EP3886330A3 (en) 2022-01-05
PT3565132T (pt) 2021-07-05
PH12019501546A1 (en) 2020-03-16
DK3565132T3 (da) 2021-07-12
US10992365B2 (en) 2021-04-27
KR20190101438A (ko) 2019-08-30
CA3048932A1 (en) 2018-07-05
SG11201906126QA (en) 2019-08-27
KR102307317B1 (ko) 2021-10-01
CN110121913B (zh) 2023-04-18
ZA201905019B (en) 2020-12-23
EP3565132B1 (en) 2021-06-02
CN110121913A (zh) 2019-08-13
US11764852B2 (en) 2023-09-19
EP3886330A2 (en) 2021-09-29
MY197588A (en) 2023-06-26
EP3565132A4 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
US11444714B2 (en) Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
US11764852B2 (en) Beam selection method, apparatus and system
WO2018214940A1 (zh) 信道侦听方法、网络侧设备及终端
JP2020504520A5 (zh)
CN111512685A (zh) 信道状态信息测量方法、装置及计算机存储介质
CN113596782A (zh) 一种数据传输方法及通信装置
US11419114B2 (en) Information sending method and apparatus, terminal, access network device and system
CN111757545B (zh) 通信方法和通信装置
CN112714499A (zh) 通信方法及装置
WO2016176848A1 (zh) 信号传输方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3048932

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 267745

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2019536028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013665

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197022502

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017889008

Country of ref document: EP

Effective date: 20190730

ENP Entry into the national phase

Ref document number: 2017387238

Country of ref document: AU

Date of ref document: 20170504

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019013665

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190701