WO2018120326A1 - 一种侧入式背光模板的led入光方法 - Google Patents

一种侧入式背光模板的led入光方法 Download PDF

Info

Publication number
WO2018120326A1
WO2018120326A1 PCT/CN2017/071285 CN2017071285W WO2018120326A1 WO 2018120326 A1 WO2018120326 A1 WO 2018120326A1 CN 2017071285 W CN2017071285 W CN 2017071285W WO 2018120326 A1 WO2018120326 A1 WO 2018120326A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
lens
guiding structure
light guiding
Prior art date
Application number
PCT/CN2017/071285
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/329,378 priority Critical patent/US20180341051A1/en
Publication of WO2018120326A1 publication Critical patent/WO2018120326A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide

Definitions

  • the invention belongs to the field of liquid crystal display technology, and in particular relates to a LED light-in method of a side-entry backlight template.
  • Liquid crystal display has many advantages such as thin body, low power consumption, low radiation, etc., and has been widely used.
  • Most of the liquid crystal display devices on the market are backlight-type liquid crystal display devices, which include a liquid crystal panel and a backlight module.
  • a liquid crystal display panel comprises a color filter (CF) substrate, a thin film transistor (TFT) array substrate, a liquid crystal (LC) sandwiched between the color filter substrate and the thin film transistor array substrate, and a sealant frame. (Sealant) composition.
  • the working principle of the liquid crystal panel is to place liquid crystal molecules in two parallel glass substrates, and control the liquid crystal molecules to change direction by energizing or not the glass substrate, and refract the light of the backlight module to produce a picture. Since the liquid crystal panel itself does not emit light, the light source provided by the backlight module is required to display the image normally. Therefore, the backlight module is one of the key components of the liquid crystal display device.
  • the backlight module is divided into a side-in type backlight module and a direct-type backlight module according to different incident positions of the light source.
  • a light source such as a CCFL (Cold Cathode Fluorescent Lamp) or an LED (Light Emitting Diode) is disposed behind the liquid crystal panel, and a surface light source is directly formed and supplied to the liquid crystal panel.
  • the side-lit backlight module has a backlight LED strip disposed on the edge of the back panel behind the liquid crystal panel, and the light emitted by the LED strip is incident on the light guide plate (LGP, Light Guide Plate) side.
  • LGP Light Guide Plate
  • Ultra-thin displays have become a hot spot in the market today. How to make displays such as mobile phones and TVs thinner is one of the core tasks of engineers.
  • the size of the LED is limited by the efficiency requirement, and the smaller the size, the less likely the energy consumption brightness can be met.
  • the thickness of the glass substrate continues to decrease, for example, the thickness is 0.4 mm, or when a flexible organic material substrate (thickness between 10 and 200 ⁇ m) is used as the light guiding structure, or a thinner separate glass light guide plate is used as a guide In the light structure, it is necessary to consider the case where the size of the LED used may exceed the thickness of the light guiding structure, as shown in FIG.
  • the LED size is larger than the cross-sectional size of the light guide plate or other light guiding structure, the light emitted by the LED cannot all enter the light guiding structure, and the light loss is serious.
  • the technical problem to be solved by the present invention is to provide an LED light-in method for a side-lit backlight template according to the deficiencies of the prior art, which can completely emit light from the LED even if the size of the LED is larger than the thickness of the light guiding structure. It is injected into the light guiding structure to meet the requirements for thinning of the light guiding structure, and also ensures the utilization of light.
  • the present invention provides a LED light-in method of a side-lit backlight template, which is provided with a lens or a lens group between the LED and the light guiding structure to gather the light emitted by the LED and then enter the light guiding structure.
  • the lens comprises a concave mirror and a convex mirror.
  • the lens is a glass lens and/or a plastic lens.
  • one lens is disposed between the light guiding structure and the plurality of LEDs, or one lens or lens group is disposed between the light guiding structure and each of the plurality of LEDs.
  • a lens or a lens group that is disposed between the light guiding structure and each of the plurality of LEDs is entirely prepared on the organic film to form an integrated structure, and then mechanically fixed to the LED and Between the light guiding structures.
  • the lens is prepared on one or both sides of an organic membrane.
  • the organic film is a plastic film; the organic film is one or more layers.
  • a lens positioned between the LED and the light guiding structure is attached to the light incident side of the light guiding structure or the light emitting surface of the LED.
  • the fit is a glue fit.
  • the invention integrates the light emitted by the LED by providing a lens or a lens group between the LED and the light guiding structure. Then enter the light guiding structure, so that when the thickness of the LED is larger than the light guiding structure, the light emitted by the LED can be gathered and completely injected into the light guiding structure, thereby satisfying the requirement of thinning the light guiding structure and ensuring light. Utilization rate.
  • the complexity of the lens system is reduced by forming a discrete lens or lens assembly into an integrated structure, or by attaching a lens to the light incident side of the light directing structure or the light exiting surface of the LED.
  • Figure 1-3 is a cross-sectional view of three existing ultra-thin side-entry LCD backlight modules.
  • FIG. 1 is a cross-sectional view of a first ultra-thin side-entry LCD backlight module.
  • FIG. 2 is a cross-sectional view of a second ultra-thin side-entry LCD backlight module.
  • FIG 3 is a cross-sectional view of a third ultra-thin side-entry LCD backlight module.
  • FIG. 4 is a schematic diagram of the light emitted by the LED not fully entering the light guiding structure when the thickness of the LED is greater than the light guiding structure.
  • FIG. 5 is a schematic view showing a single lens disposed between the LED and the light guiding structure.
  • FIG. 6 is a schematic view showing a lens group disposed between an LED and a light guiding structure.
  • FIG. 7 is a schematic structural view of a lens disposed between a light guiding structure and each of a plurality of LEDs.
  • FIG. 8 is a schematic structural view showing a lens disposed between a light guiding structure and a plurality of LEDs.
  • FIG. 9 is a schematic view showing an integrated structure in which a lens is disposed between an LED and a light guiding structure.
  • FIG. 10 is a schematic view showing an integrated structure in which a lens is prepared on both sides between the LED and the light guiding structure.
  • FIG. 11 is a schematic view showing a lens disposed between an LED and a light guiding structure attached to a light emitting surface of the LED.
  • FIG. 12 is a schematic view showing a plurality of lenses positioned between the LED and the light guiding structure on the light incident side of the light guiding structure.
  • Figure 13 is a schematic illustration of a single lens positioned between the LED and the light directing structure attached to the light incident side of the light directing structure.
  • Figure 14 is a side view of Figure 13.
  • the wide use of ultra-thin displays makes the thickness of the light guiding structure continue to decrease.
  • the size of the light guiding structure is smaller than the size of the LED, the light emitted by the LED cannot all enter the light guiding structure, and the light loss is serious.
  • the spherical mirror can change the propagation path of the light, gather the light, and install the lens or the lens group between the LED and the light guide plate to gather the light emitted by the LED and then enter the light guiding structure, which can meet the requirements for thinning of the light guiding structure. At the same time effectively reduce light loss.
  • the present invention has been made based on the above method.
  • 5-13 are schematic views showing the structure of a lens or a lens group mounted between an LED and a light guiding structure in some embodiments of the LED light-in method of the side-lit backlight module of the present invention.
  • Figure 5 is a single lens between the LED and the light guiding structure, the light emitted by the LED is gathered and then enters the light guiding structure; in the single lens, by adjusting the focal length of the single lens and the single lens and the light guiding structure / LED light The distance of the face to adjust the light pattern of the incident light guiding structure;
  • the lens is a spherical mirror, including a concave mirror and a convex mirror;
  • the lens is a glass lens and/or a plastic lens; preferably the lens is a plastic lens.
  • a lens group (two or more lenses arranged longitudinally between the LED and the light guiding structure) may be disposed between the LED and the light guiding structure to perform light emitted by the LED
  • the light guiding structure is entered, as shown in FIG. 6; in the lens group structure, the focal length and positional relationship between different lenses can be adjusted, so that the emitted light can be better injected into the light guiding structure;
  • the lens in the lens group is a spherical mirror, including a concave mirror and a convex mirror;
  • the lens in the lens group is a glass lens and/or a plastic lens; preferably the lens is a plastic lens.
  • an elongated large lens is disposed between the light guiding structure and the plurality of LEDs, as shown in FIG. 8; or between the light guiding structure and each of the plurality of LEDs A lens, as shown in FIG. 7; or a lens group is disposed between the light guiding structure and each of the plurality of LEDs, and the light emitted by the LED is gathered and then enters the light guiding structure.
  • a single lens or a lens group respectively disposed between the light guiding structure and each of the plurality of LEDs is formed on the organic film to form an integrated structure, and is mechanically fixed between the LED and the light guiding structure, and the LED is Emitted light After the gathering, the light guiding structure is entered;
  • the mechanical means can be screw fixing, card slot fixing and tape fixing.
  • the lens can be prepared on one side of the organic film, as shown in FIG. 9; and can be prepared on both sides of the organic film as shown in FIG. 10;
  • the organic film is a plastic film; the organic film is one or more layers.
  • the lens between the LED and the light guiding structure is attached to the light emitting surface of the LED, and the light emitted by the LED is gathered and then enters the light guiding structure, as shown in FIG. 11; the bonding is adhesive bonding.
  • a plurality of lenses located between the LED and the light guiding structure are attached to the light incident side of the light guiding structure, and the light emitted by the LED is gathered and then enters the light guiding structure, as shown in FIG. 12; the bonding is sticky Adhesive bonding.
  • a single elongated large lens located between the LED and the light guiding structure is attached to the light incident side of the light guiding structure, and the light emitted by the LED is gathered and then enters the light guiding structure, as shown in FIG. 13; Side view of the structure; the fit is a glue fit.
  • the present invention provides a lens or a lens group between the LED and the light guiding structure to gather the light emitted by the LED and then enter the light guiding structure, so that when the thickness of the LED is larger than the light guiding structure, The light emitted by the LED is collected and completely injected into the light guiding structure to meet the requirements of thinning the light guiding structure, and the utilization of light can be ensured.
  • the complexity of the lens system is reduced by forming a discrete lens or lens assembly into an integrated structure, or by attaching a lens to the light incident side of the light directing structure or the light exiting surface of the LED.

Abstract

一种侧入式背光模板的LED入光方法,其中,通过在LED(1)与导光结构(2)之间设置透镜(3)或透镜组(4),对LED(1)发射的光进行聚拢后再进入导光结构(2)。从而,当LED(1)的尺寸大于导光结构(2)的厚度时,也能将LED(1)发出的光线聚拢后完全射入导光结构(2)中,满足导光结构(2)薄型化要求的同时,还可确保光的利用率。

Description

一种侧入式背光模板的LED入光方法
本申请要求享有2016年12月27日提交的名称为“一种侧入式背光模板的LED入光方法”的中国专利申请CN201611224581.2的优先权,其全部内容通过引用并入本文中。
技术领域
本发明属于液晶显示技术领域,具体涉及一种侧入式背光模板的LED入光方法。
背景技术
液晶显示装置(LCD,Liquid Crystal Display)具有机身薄、省电、辐射低等众多优点,得到了广泛的应用。现有市场上的液晶显示装置大部分为背光形液晶显示装置,其包括液晶面板及背光模组(backlight module)。通常液晶显示面板由彩膜(ColorFilter,CF)基板、薄膜晶体管(Thin Film Transistor,TFT)阵列基板、夹于彩膜基板与薄膜晶体管阵列基板之间的液晶(Liquid Crystal,LC)及密封胶框(Sealant)组成。
液晶面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,通过玻璃基板通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。由于液晶面板本身不发光,需要借由背光模组提供的光源来正常显示影像,因此,背光模组为液晶显示装置的关键组件之一。
背光模组依照光源入射位置的不同分成侧入式背光模组与直下式背光模组两种。直下式背光模组是将发光光源例如CCFL(Cold Cathode Fluorescent Lamp,阴极荧光灯管)或LED(Light Emitting Diode,发光二极管)设置在液晶面板后方,直接形成面光源提供给液晶面板。而侧入式背光模组是将背光源LED灯条(Light bar)设于液晶面板侧后方的背板边缘,LED灯条发出的光线从导光板(LGP,Light Guide Plate)一侧的入光面进入导光板,经反射和扩散后从导光板出光面射出,再经由光学膜片组以形成面光源提供给液晶面板。由于,侧入式背光模组的LED灯条设置于导光板的侧部而使得背光模组的厚度较薄,因此广泛地应用在液晶显示装置中,如图1-3所示(三种超薄侧入式LCD背光模组的剖面图)。
超薄显示器在今天已经成为市场的热点,如何使显示器例如手机,电视的厚度更薄,是工程师的核心工作之一。但LED的尺寸由于受到效率要求的限定,其尺寸越小,可能越不能达到能耗亮度的要求。当玻璃衬底的厚度继续下降,例如厚度为0.4mm,或者改用柔性有机材料衬底(厚度在10-200μm之间)作为导光结构时,或者采用更薄的单独的玻璃导光板作为导光结构时,都需要考虑所使用LED的尺寸可能会超过导光结构厚度时的情况,如图4所示。当LED尺寸大于导光板或其他导光结构的横截面尺寸时,LED发出的光线不能全部进入导光结构内,光损失较为严重。
为了减小光损失,LED发出的光线进入导光结构的方式,成为一个亟待解决的问题。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供一种侧入式背光模板的LED入光方法,采用该方法即使LED的尺寸较导光结构厚度大,也能将LED发出的光线完全射入导光结构中,满足导光结构薄型化要求的同时,还能确保光的利用率。
为此,本发明提供了一种侧入式背光模板的LED入光方法,其通过在LED与导光结构之间设置透镜或透镜组,对LED发射的光进行聚拢后再进入导光结构。
在本发明的一些实施例中,所述的透镜包括凹面镜和凸面镜。
在本发明的另一些实施例中,所述的透镜为玻璃透镜和/或塑料透镜。
本发明中,当LED为多个时,在导光结构与多个LED之间设置一个透镜,或在导光结构与多个LED中的每个LED之间各设置一个透镜或透镜组。
在本发明的一些实施例中,将导光结构与多个LED中的每个LED之间各自设置的透镜或透镜组全部制备在有机膜片上形成集成结构,然后通过机械方式固定于LED与导光结构之间。
在本发明的一些实施例中,所述的透镜制备在有机膜片的一面或两面。
在本发明的另一些实施例中,所述的有机膜片为塑料膜片;所述的有机膜片为一层或多层。
根据本发明,将位于LED与导光结构之间的透镜贴合在导光结构的入光侧或LED的出光面。
在本发明的一些实施例中,所述的贴合为粘胶贴合。
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
本发明通过在LED与导光结构之间设置透镜或透镜组,对LED发射的光进行聚拢后 再进入导光结构,使得当LED的厚度较导光结构大时,也能将LED发出的光线聚拢后完全射入导光结构中,满足导光结构薄型化要求的同时,还可确保光的利用率。另外,通过将分立的透镜或透镜组制成集成结构,或者将透镜贴合在导光结构的入光侧或LED的出光面,降低了透镜系统的复杂性。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1-3为现有的三种超薄侧入式LCD背光模组的剖面图。
图1为第一种超薄侧入式LCD背光模组的剖面图。
图2为第二种超薄侧入式LCD背光模组的剖面图。
图3为第三种超薄侧入式LCD背光模组的剖面图。
图4为LED厚度大于导光结构时,LED发出的光无法完全进入导光结构的示意图。
图5为LED与导光结构之间设置有单透镜的示意图。
图6为LED与导光结构之间设置有透镜组的示意图。
图7为导光结构与多个LED中的每个LED之间各设置的一个透镜的结构示意图。
图8为导光结构与多个LED之间设置一个透镜的结构示意图。
图9为LED与导光结构之间设置一个一面制备有透镜的集成结构的示意图。
图10为LED与导光结构之间设置一个两面制备有透镜的集成结构的示意图。
图11为将位于LED与导光结构之间的透镜贴合在LED的出光面的示意图。
图12为将位于LED与导光结构之间的多个透镜贴合在导光结构的入光侧的示意图。
图13为位于LED与导光结构之间的单个透镜贴合在导光结构的入光侧的示意图。
图14为图13的侧视图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结 合,所形成的技术方案均在本发明的保护范围之内。
如前所述,超薄显示器的广泛使用,使得导光结构的厚度持续下降,当导光结构的尺寸小于LED的尺寸时,LED发出的光线不能全部进入导光结构内,光损失较为严重。球面镜能够改变光线的传播途径,对光线进行聚拢,在LED与导光板之间通过安装透镜或透镜组,对LED发出的光线进行聚拢后再进入导光结构,可以在满足导光结构薄型化要求的同时有效减少光损失。本发明正是基于上述方法作出的。
图5-13示出了本发明的一种侧入式背光模板的LED入光方法的一些实施方式中LED与导光结构之间安装透镜或透镜组的结构示意图。
图5为在LED与导光结构之间设置单透镜,对LED发射的光进行聚拢后再进入导光结构;在单透镜中,通过调节单透镜的焦距以及单透镜和导光结构/LED出光面的距离来调整入射导光结构的光型;
所述的透镜为球面镜,包括凹面镜和凸面镜;
所述的透镜为玻璃透镜和/或塑料透镜;优选所述的透镜为塑料透镜。
当LED与导光结构之间的距离较远,可以在LED与导光结构之间设置透镜组(在LED与导光结构之间纵向排列的两个以上的透镜),对LED发射的光进行聚拢后再进入导光结构,如图6所示;在透镜组结构中,可以调整不同透镜之间的焦距以及位置关系,使得出射的光可以更好地射入导光结构;
所述透镜组中的透镜为球面镜,包括凹面镜和凸面镜;
所述透镜组中的透镜为玻璃透镜和/或塑料透镜;优选所述的透镜为塑料透镜。
当LED为多个时,在导光结构与多个LED之间设置一个长条形的大透镜,如图8所示;或在导光结构与多个LED中的每个LED之间各设置一个透镜,如图7所示;或在导光结构与多个LED中的每个LED之间各设置一个透镜组,对LED发射的光进行聚拢后再进入导光结构。
将导光结构与多个LED中的每个LED之间各自设置的单透镜或透镜组全部制备在有机膜片上形成集成结构,并通过机械方式固定于LED与导光结构之间,对LED发射的光 进行聚拢后再进入导光结构;所述的机械方式可以为螺丝固定,卡槽固定以及胶带固定等。
所述透镜既能制备在有机膜片的一面,如图9所示;又能制备在有机膜片的两面如图10所示;
所述的有机膜片为塑料膜片;所述的有机膜片为一层或多层。
将位于LED与导光结构之间的透镜贴合在LED的出光面,对LED发射的光进行聚拢后再进入导光结构,如图11所示;所述的贴合为粘胶贴合。
将位于LED与导光结构之间的多个透镜贴合导光结构的入光侧,对LED发射的光进行聚拢后再进入导光结构,如图12所示;所述的贴合为粘胶贴合。
将位于LED与导光结构之间的单个长条形大透镜贴合导光结构的入光侧,对LED发射的光进行聚拢后再进入导光结构,如图13所示;图14为该结构方式的侧视图;所述的贴合为粘胶贴合。
综上所述,本发明通过在LED与导光结构之间设置透镜或透镜组,对LED发射的光进行聚拢后再进入导光结构,使得当LED的厚度较导光结构大时,也能将LED发出的光线聚拢后完全射入导光结构中,满足导光结构薄型化要求的同时,还可确保光的利用率。另外,通过将分立的透镜或透镜组制成集成结构,或者将透镜贴合在导光结构的入光侧或LED的出光面,降低了透镜系统的复杂性。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的保护范围,仍须以所附的权利要求书所界定的范围为准。
附图标记说明
101    玻璃基板
102    偏光片
103    彩膜基板
104    液晶层
105    阵列基板
106    LED光
201    反射片
202    折射率层
301    氧化铟锡彩膜基板
1      LED光源
2      导光结构
3      透镜
4      透镜组
5      集成结构

Claims (11)

  1. 一种侧入式背光模板的LED入光方法,其通过在LED与导光结构之间设置透镜或透镜组,对LED发射的光进行聚拢后再进入导光结构。
  2. 根据权利要求1所述的LED入光方法,其中,所述的透镜包括凹面镜和凸面镜。
  3. 根据权利要求1所述的LED入光方法,其中,所述的透镜为玻璃透镜和/或塑料透镜。
  4. 根据权利要求1所述的LED入光方法,其中,所述的透镜为塑料透镜。
  5. 根据权利要求1所述的LED入光方法,其中,当LED为多个时,在导光结构与多个LED之间设置一个透镜,或在导光结构与多个LED中的每个LED之间各设置一个透镜或透镜组。
  6. 根据权利要求4所述的LED入光方法,其中,将导光结构与多个LED中的每个LED之间各自设置的透镜或透镜组全部制备在有机膜片上形成集成结构,然后通过机械方式固定于LED与导光结构之间。
  7. 根据权利要求6所述的LED入光方法,其中,所述的透镜制备在有机膜片的一面或两面。
  8. 根据权利要求6所述的LED入光方法,其中,所述的有机膜片为塑料膜片。
  9. 根据权利要求6所述的LED入光方法,其中,所述的有机膜片为一层或多层。
  10. 根据权利要求1所述的LED入光方法,其中,将位于LED与导光结构之间的透镜贴合在导光结构的入光侧或LED的出光面。
  11. 根据权利要求10所述的LED入光方法,其中,所述的贴合为粘胶贴合。
PCT/CN2017/071285 2016-12-27 2017-01-16 一种侧入式背光模板的led入光方法 WO2018120326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/329,378 US20180341051A1 (en) 2016-12-27 2017-01-16 Led light-incident method of edge-lit backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611224581.2 2016-12-27
CN201611224581.2A CN106773300A (zh) 2016-12-27 2016-12-27 一种侧入式背光模板的led入光方法

Publications (1)

Publication Number Publication Date
WO2018120326A1 true WO2018120326A1 (zh) 2018-07-05

Family

ID=58927362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071285 WO2018120326A1 (zh) 2016-12-27 2017-01-16 一种侧入式背光模板的led入光方法

Country Status (3)

Country Link
US (1) US20180341051A1 (zh)
CN (1) CN106773300A (zh)
WO (1) WO2018120326A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210096219A (ko) * 2018-11-30 2021-08-04 코닝 인코포레이티드 광 가이드 플레이트를 포함하는 백라이트, 결과적인 디스플레이 장치, 및 이들의 제조 방법 및 사용 방법
CN113759597A (zh) * 2020-06-05 2021-12-07 京东方科技集团股份有限公司 一种透明显示装置、显示方法和制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204268230U (zh) * 2014-11-20 2015-04-15 东莞帝光电子科技实业有限公司 侧入式led背光源模组
CN204300782U (zh) * 2014-12-29 2015-04-29 深圳帝光电子有限公司 侧入式led背光源
CN205427225U (zh) * 2015-12-16 2016-08-03 广东星亚星半导体股份有限公司 一种低功耗的侧入式背光模组及其液晶显示屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060124405A (ko) * 2005-05-31 2006-12-05 삼성전자주식회사 백라이트 어셈블리 및 이를 포함하는 액정 표시 장치
JP2010224471A (ja) * 2009-03-25 2010-10-07 Tokyo Electron Ltd マイクロレンズアレイの製造方法およびマイクロレンズアレイ
CN102701142B (zh) * 2012-05-28 2015-04-22 中国科学院上海微系统与信息技术研究所 圆片集成微透镜光学系统制作方法及该器件结构
CN204268229U (zh) * 2014-11-20 2015-04-15 东莞帝光电子科技实业有限公司 单短边发光的背光源
CN104503138A (zh) * 2014-12-31 2015-04-08 东莞市亚星半导体有限公司 一种入光可调的液晶显示屏
CN104914614A (zh) * 2015-06-15 2015-09-16 京东方科技集团股份有限公司 一种背光模组、液晶面板以及显示装置
CN205691909U (zh) * 2016-06-06 2016-11-16 东莞市平洋电子有限公司 一种均光散热型背光模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204268230U (zh) * 2014-11-20 2015-04-15 东莞帝光电子科技实业有限公司 侧入式led背光源模组
CN204300782U (zh) * 2014-12-29 2015-04-29 深圳帝光电子有限公司 侧入式led背光源
CN205427225U (zh) * 2015-12-16 2016-08-03 广东星亚星半导体股份有限公司 一种低功耗的侧入式背光模组及其液晶显示屏

Also Published As

Publication number Publication date
US20180341051A1 (en) 2018-11-29
CN106773300A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
KR101807442B1 (ko) 백라이트 모듈 및 상기 백라이트 모듈을 이용한 액정 디스플레이 장치
US20210231859A1 (en) Light guide plate, optical module and all-trans display device
US20120134175A1 (en) Planar lighting device and display device having same
US20110164404A1 (en) Illumination device, surface light source device, and liquid crystal display apparatus
WO2014015541A1 (zh) 背光模组
US7859612B2 (en) Light concentrating sheet, backlight unit including the light concentrating sheet and liquid crystal display module including the backlight unit
WO2016149976A1 (zh) 光纤背光模组及液晶显示器
US20120092589A1 (en) Back light module and liquid crystal display device
WO2016183902A1 (zh) 背光模组及液晶显示装置
WO2014183324A1 (zh) 彩色滤光片结构及用该彩色滤光片结构的液晶显示面板
WO2016183901A1 (zh) 导光板及背光模组
WO2018120507A1 (zh) 液晶显示面板及其制造方法
WO2013149412A1 (zh) 窄边框背光模组
WO2019200818A1 (zh) 液晶显示装置
US9494722B2 (en) Backlight module
CN106054469B (zh) 超薄型液晶显示器
KR20150041324A (ko) 도광판 및 이를 구비한 백라이트 어셈블리
WO2018120326A1 (zh) 一种侧入式背光模板的led入光方法
KR101378344B1 (ko) 영상표시장치
WO2013120297A1 (zh) 背光模组
KR20150066846A (ko) 광학 부재 및 이를 포함하는 발광 장치
WO2018120508A1 (zh) 背光模块及显示设备
WO2015192398A1 (zh) 背光模组
US7768594B2 (en) Liquid crystal display device
CN106526969B (zh) 背光模块及其应用的显示设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15329378

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885895

Country of ref document: EP

Kind code of ref document: A1