WO2018120196A1 - 一种移相器、移相阵列及通信设备 - Google Patents
一种移相器、移相阵列及通信设备 Download PDFInfo
- Publication number
- WO2018120196A1 WO2018120196A1 PCT/CN2016/113897 CN2016113897W WO2018120196A1 WO 2018120196 A1 WO2018120196 A1 WO 2018120196A1 CN 2016113897 W CN2016113897 W CN 2016113897W WO 2018120196 A1 WO2018120196 A1 WO 2018120196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase shifter
- printed circuit
- circuit board
- slit
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/18—Phase-shifters
Definitions
- the present application relates to the field of communications technologies, and in particular, to a phase shifter, a phase shifting array, and a communication device.
- the phased array system has two implementations: a passive phased array system and an active phased array system.
- the active phased array system utilizes a Small Power Phase Shifter (SPPS) and a Small Power Power Amplifier (SPA) to reduce the insertion loss of the Power Amplifier (PA). Power utilization.
- the passive phased array system utilizes a high-efficiency high-power amplifier (High Power Power Amplifier, HPA for short) to realize a 1-channel power amplifier to drive multiple antennas, and then combines digital pre-distortion (DPD) digital processing in the base station.
- DPD digital pre-distortion
- phase shifter after HPA The most critical module of the microwave passive phased array system is the phase shifter after HPA, which requires low insertion loss, high linearity and sufficient bit number and switching speed to meet the beamforming and fast beam scanning access requirements of communication equipment.
- high-power modules such as antennas and filters for high-performance microwave systems generally use metal waveguide structures, and phase shifters are also required to be easily assembled with metal waveguide structures.
- a phase shifter in the prior art realizes phase shifting by a PIN (Positive-Intrinsic Negative) diode switching signal transmission path in a substrate integrated waveguide.
- This phase shifting technology is small in size and facilitates large-scale integration with planar circuits.
- the substrate integrated waveguide structure is inconvenient to be assembled with other waveguide structure circuits; at the same time, the phase shifter has a large insertion loss, and the insertion loss of the 4-bit phase shift precision is generally more than 3 dB.
- the present application provides a phase shifter, a phase shifting array, and a communication device for improving the integration effect of the phase shifter and reducing the loss of the phase shifter.
- the application provides a phase shifter comprising a metal cavity waveguide and a printed circuit board;
- a first gap is disposed on one surface of the metal cavity waveguide
- the printed circuit board is disposed on a side of the metal cavity waveguide having a first gap and is electrically connected to the metal cavity wave, and the printed circuit board is provided with a conductive connection with the metal cavity wave and used A control unit for controlling the opening and closing of the first gap.
- the phase shifter insertion loss can be reduced, and the waveguide system can be better integrated; the existing process is difficult to directly mount the electronic components of the control unit to the side of the metal cavity waveguide.
- a printed circuit board is disposed on the top wall of the metal cavity waveguide, and the control unit is disposed on the printed circuit board, which facilitates the setting of the electronic components of the control unit and improves the integration of the entire device. effect.
- the printed circuit board is provided with a second slot corresponding to the first slot, and a vertical projection of the second slot at the first slot setting surface is located in the first slot
- the sidewall of the second slot is electrically connected to the sidewall of the corresponding first slot
- the control unit includes a microstrip line spanning the second slot, one end of the microstrip line is electrically connected to one side wall of the second slot, and the other end crosses the second slot and passes through the ⁇ /4 transmission line Connected to a control element, the control element is coupled to an equivalent decoupling capacitor, and the equivalent decoupling capacitor is coupled to a low frequency bias line, wherein the ⁇ is the wavelength of the phase shifter propagation signal.
- the printed circuit board is covered on the side of the metal cavity waveguide, and the slit etched on the printed circuit board coincides with the gap on the metal cavity waveguide.
- the control element is attached to the printed circuit board, and the control element on the printed circuit board controls the opening and closing of the gap on the printed circuit board, and simultaneously opens and closes the gap on the metal cavity waveguide. The production of phase shifters.
- the printed circuit board includes a substrate, a first metal layer, and a second metal layer; the first metal layer is disposed on a side of the substrate facing the metal cavity waveguide, and The first gap setting surface is electrically connected to the metal cavity waveguide; the second metal layer is disposed on a side of the substrate facing away from the metal cavity waveguide, and the first metal layer and the second metal layer are electrically connected.
- one end of the microstrip line is electrically connected to one side wall of the second slot, and the microstrip line is electrically connected to a second metal layer on a side of the second slot.
- the phase shifter includes at least two of the first slits.
- the at least two first slits are arranged along a length direction of the metal cavity waveguide.
- one of the first slots corresponds to at least two control units.
- the at least two control units are arranged side by side along the length direction of the first slot.
- the printed circuit board is provided with a via hole, and the first metal layer and the second metal layer pass through the Electrical connection within the via.
- the electrical connection between the first metal layer and the second metal layer is facilitated by the via connection.
- at least two via holes may be disposed on the printed circuit board, the at least two via holes are disposed around the second slit, and the first metal layer and the second metal layer pass through The metal in the at least two via holes is electrically connected, and a plurality of via holes are provided to ensure that the potentials of the corresponding positions of the first metal layer and the second metal layer are the same.
- the microstrip line, the ⁇ /4 transmission line, the control element, and the equivalent decoupling capacitor are all disposed on a side of the printed circuit board that faces away from the metal cavity waveguide. That is, the control unit is disposed on the side of the printed circuit board facing away from the metal cavity waveguide, which facilitates the setting of the control unit.
- the second metal layer is provided with a third slot communicating with the second slot, and the ⁇ /4 transmission line, the control component and the equivalent in the control unit connected to the second slot A decoupling capacitor is disposed within the third slot. It ensures that the control unit can effectively control the opening of the gap.
- control element is a PIN diode.
- the first slot and the second slot corresponding to the first slot overlap.
- the equivalent decoupling capacitor is a planar DC decoupling capacitor.
- phase shifter can also include a shield cover that covers the printed circuit board.
- adding a plurality of control units to one slot of the phase shifter or cascading one or more phase shifting units may obtain a phase shifting unit corresponding to one control bit in the corresponding phase shifter, It is a 1-phase phase unit.
- a phase shifter with a larger phase shift amount and a plurality of control bit controls can be obtained.
- the present application also provides a phase shifting array comprising at least two phase shifters of any of the above described in a side-by-side arrangement.
- the phase shifter insertion loss can be reduced, and the waveguide system can be better integrated; the existing process is difficult to directly mount the electronic components of the control unit to the metal cavity waveguide sidewall.
- the printed circuit board is used to cover the top wall of the metal cavity waveguide, and the control unit is disposed on the printed circuit board, thereby improving the integration effect of the entire device.
- the printed circuit boards of the plurality of phase shifters are in a unitary structure.
- the present application also provides a communication device comprising a high power amplifier, a power distribution network coupled to the high power amplifier, and at least one phase shifter of any of the above described in connection with the power distribution network .
- the phase shifter is directly connected to the antenna through the waveguide interface.
- phase shifters are at least two
- the at least two phase shifters are arranged side by side, and the printed circuit boards of the at least two phase shifters are in a unitary structure. Convenient for the control unit settings.
- FIG. 1 is a perspective view of a phase shifter according to an embodiment of the present application.
- FIG. 2 is a cross-sectional view of a phase shifting unit according to an embodiment of the present application along a longitudinal direction of a first slit;
- FIG. 3 is a cross-sectional view of a phase shifting unit according to an embodiment of the present application, along a length direction parallel to a first slit;
- FIG. 4 is a top plan view of a printed circuit board according to an embodiment of the present application.
- FIG. 5 is an equivalent schematic diagram of a control unit according to an embodiment of the present application.
- FIG. 6 is a structural diagram of a control unit according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of a phase shifting array according to an embodiment of the present application.
- FIG. 8 is a structural block diagram of a communication device according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of an insertion loss simulation effect of a phase shifter according to an embodiment of the present application.
- FIG. 10 is a simulation effect diagram of a return loss of a phase shifter according to an embodiment of the present application.
- FIG. 11 is a schematic diagram of a phase shift amount simulation effect of a phase shifter according to an embodiment of the present application.
- Fig. 13 is a simulation effect diagram of the phase shifter insertion loss in the case of a control circuit of different series impedance when the control element controls the slit through the ⁇ /4 transmission line.
- FIG. 1 is a schematic structural diagram of a phase shifter provided by this embodiment.
- phase shifter including at least one phase shifting unit, each phase shifting unit including a metal cavity waveguide 10 and a printed circuit substrate 20, wherein one surface of the metal cavity waveguide 10 A first slit 11 is disposed thereon; the printed circuit board 20 is disposed on a side of the metal cavity waveguide 10 having the first slit 11 and is electrically connected to the metal cavity waveguide 10, and the printed circuit board 20 is provided with a metal cavity waveguide 10 is electrically connected and used to control the control unit 21 of the first slit 11 to be turned on and off.
- the embodiment provides that the phase shifter includes a plurality of phase shifting units.
- the plurality of phase shifting units are arranged in a single row; wherein the metal of each phase shifting unit
- the cavity waveguide 10 is a rectangular metal cavity waveguide 10, and both ends of the metal cavity waveguide 10 are open, that is, the metal cavity waveguide 10 has a top wall 12, a bottom wall and two opposite side walls. a hollow portion of the tubular structure, wherein the top wall 12 is provided with a first slit 11, the first slit 11 is provided
- the orientation is as shown in FIG.
- the first slit 11 is a rectangular slit, and the length of the first slit 11 is larger than the width dimension thereof.
- the longitudinal direction thereof is perpendicular to the side of the metal cavity waveguide 10. Wall setting.
- the phase shifter uses a plurality of phase shifting units, the metal cavity waveguides 10 of the plurality of phase shifting units are integrated, that is, fabricated by using one metal cavity, or can be understood as being on a metal cavity waveguide 10.
- At least two first slits 11 are opened, and at the time of adopting the above arrangement, at least two first slits 11 are arranged along the length direction of the metal cavity waveguide 10, wherein the length direction of the metal cavity waveguide 10 is a metal cavity waveguide
- the length direction of the tubular structure surrounded by the top wall 12, the bottom wall and the two side walls of 10.
- the phase shifter of the present application uses a metal waveguide, which can be directly interconnected with the waveguide system.
- the loss of the metal waveguide is mainly the ohmic loss of the metal surface, which is much smaller than that of the common dielectric material, so the insertion loss of the phase shifter can be significantly reduced.
- the phase shifter insertion loss simulation results show that the insertion loss of 360° phase shift is within 1.5 dB at 29.5 GHz.
- Figure 10 and Figure 11 show the simulated phase shifter port return loss and phase shifting curves.
- the printed circuit board 20 of the phase shifting unit is specifically disposed as shown in FIG. 2 and FIG. 3 , wherein FIG. 2 is the phase shifting unit of the embodiment of the present application along the length direction of the vertical first slot 11 FIG. 3 is a cross-sectional view of the phase shifting unit in a longitudinal direction parallel to the first slit 11 according to an embodiment of the present application; the printed circuit board 20 is located outside the metal cavity waveguide 10 and is fixed on the top wall of the metal cavity waveguide 10 12, that is, the printed circuit board 20 is disposed on the mounting surface of the first slit 11 on the metal cavity waveguide 10.
- the printed circuit board 20 and the metal cavity waveguide may be fixed by sintering. That is, the control unit 21 is disposed on the side of the printed circuit board 20 facing away from the metal cavity waveguide 10 and is used to control the opening of the first slit 11.
- FIG. 4 is a top view of a printed circuit board 20 according to an embodiment of the present application.
- FIG. 4 is a schematic diagram showing a printed circuit board of a plurality of phase shifting units in a phase shifter.
- the printed circuit board 20 is provided with a second slit 22 corresponding to the first slit 11, and the second slit 33 is The vertical projection of the first slit 11 is located in the first slit 11, and the sidewall of the second slit 22 is electrically connected to the sidewall of the corresponding first slit 11; optionally, as shown in FIG. 2 and FIG.
- the circuit board 20 includes a substrate 23, a first metal layer 25 and a second metal layer 26, and the first metal layer 25 is disposed on The substrate 23 faces one side of the metal cavity waveguide 10 and is electrically connected to the arrangement surface of the first slit 11 on the metal cavity waveguide 10, and the second metal layer 26 is disposed on the side of the substrate 23 facing away from the metal cavity waveguide 10, the first metal The layer 25 and the second metal layer 24 are electrically connected, and the second slit 22 penetrates through the first metal layer 25 and the second metal layer 24; optionally, metal is laid on both sides of the substrate 23 of the printed circuit board 20, and is laid. After the metal is opened, the second slit 22 is opened.
- the substrate 23 may or may not penetrate the substrate 23, and may be corresponding to the substrate 23 during the penetration.
- the hollowing out forms a physically penetrating slit, and the substrate 23 is not hollowed out when it is not penetrated, but the first metal layer 23 and the second metal layer 24 still have corresponding openings to ensure electrical characteristics.
- the second slit 22 is disposed in parallel with the first slit 11 .
- the first slit 11 coincides with the corresponding second slit 22 .
- the first metal layer 25 and the second metal layer 24 are electrically connected to each other.
- the printed circuit board 20 is provided with at least one via hole 26, the first metal layer 25 and the second metal layer 24.
- the metal is electrically connected between the vias 26 by watering.
- the number of vias 26 may be one or two or more.
- the via hole 26 is disposed at a position for facilitating the conduction of the first metal layer 25 and the second metal layer 24.
- the plurality of via holes 26 surround the second The gap 22 is disposed, and the electrical connection between the first metal layer 25 and the second metal layer 24 is facilitated by the above manner.
- a plurality of via holes 26 are provided to ensure the potential of the corresponding positions of the first metal layer 25 and the second metal layer 24. the same.
- the first metal layer 25 is also electrically connected to the top wall 12.
- control unit 21 may be one or more, that is, each first slot 11 corresponds to one or more control units 21; as shown in FIG. 1, a first slot 11 corresponding to one control is shown in FIG.
- FIG. 4 is a schematic structural view of a plurality of control units 21 corresponding to a first slot 11 .
- the plurality of control units 21 are arranged side by side, and the plurality of control units 21 simultaneously control the on and off of the first slits 11.
- the first slits 11 are turned on, the current flows from the plurality of first across the first Conduction on the control unit 21 of the slot 11 improves the effect of current conduction when compared to the structure shown in FIG.
- each control unit 21 includes: a micro-span across the second slit 22 in the direction of current propagation.
- the line 211 one end of the microstrip line 211 is electrically connected to one side wall of the second slit 22, and the other end is connected to the control element 213 through the ⁇ /4 transmission line 212 across the second slit 22, and the control element 213 is connected with an equivalent.
- Decoupling capacitor 214 the equivalent decoupling capacitor 214 is connected with a low frequency bias line 215 to achieve high frequency signal grounding.
- the printed circuit board 20 covers the top wall 12 of the metal cavity waveguide 10, and the second slit 22 etched on the printed circuit board 20 coincides with the first slit 11 on the metal cavity waveguide 10, and the control element 213 is shown. Attached to the printed circuit board 20, the second slot 22 on the printed circuit board 20 is opened and closed by the feeder control control element 213 on the printed circuit board 20, and the first slot 11 on the metal cavity waveguide 10 is also realized. The opening and closing of the phase facilitates the production of the phase shifter.
- the low frequency bias line 215 is a high resistance line, and ⁇ is the wavelength of the phase shifter propagation signal.
- the microstrip line 211 in each control unit 21 is electrically connected to the second metal layer 24 located on both sides of the second slot 22.
- the control unit 21 is disposed on a side of the printed circuit board 20 facing away from the metal cavity waveguide 10, that is, the microstrip line 211, the ⁇ /4 transmission line 212, the control element 213, and the equivalent decoupling capacitor 214 are all disposed on the printed circuit.
- the side of the board 20 facing away from the metal cavity waveguide 10 is shown. That is, the control unit 21 is disposed on the side of the printed circuit board 20 facing away from the metal cavity waveguide 10, facilitating the setting of the control unit 21.
- the second metal layer 24 is provided with a third slot communicating with the second slot 22, and the ⁇ /4 transmission line 212, the control component 213 and the equivalent decoupling capacitor 214 in the control unit 21 connected to the second slot 22 are provided.
- All of the control elements 213 can be equivalent to a small series resistance Rs when short-circuited to the gap, and can be equivalent to a large resistance Rp when the gap is open.
- the ⁇ /4 transmission line 212 is added between the control element 213 and the slot. Therefore, the control element 213 does not need to be directly connected in the slot.
- FIG. 12 is a simulation effect diagram in which the control element 213 is directly connected in the gap
- FIG. 13 is a simulation effect diagram of the control element 213 controlling the gap through the ⁇ /4 transmission line 212.
- the embodiment of the present application controls the turn-off and opening of the slot by the ⁇ /4 transmission line 212, and the contribution to the overall insertion loss is small, and the phase shifter insertion loss control element 213 is reduced. Sensitivity of parasitic series resistance.
- the parasitic series resistance of the control element 213 is changed from 2.8 Ohm to 7 Ohm.
- the method phase shifter insertion loss used in this application is changed from 0.03dB to 0.046dB, which has little effect on the overall insertion loss.
- the insertion loss of the traditional method phase shifter is increased from 0.29dB to 0.43dB.
- the plurality of via holes 26 provided in this embodiment are disposed around the third slot, thereby ensuring the potential between the first metal layer 25 and the second metal layer 24. .
- FIG. 5 is an equivalent schematic diagram of a control unit according to an embodiment of the present application.
- FIG. 6 is a circuit diagram of a specific implementation. As shown in FIG. 6, point A is on the left side of the second slot 22, and is always in a short-circuit state to ground; point B is located on the right side of the second slot 22 (between points A and B is a microstrip line 211), and its state Controlled by control element 213; C, D are respectively connected to the two pins of control element 213. The point D is connected to the equivalent decoupling capacitor 214 and is always in an AC short circuit state.
- the equivalent length of the transmission line 212 between BC is ⁇ /4.
- the control element 213 When the control element 213 is turned off, the C point is in a high resistance state, and the point B is in a short circuit to ground. At this time, the two points A and B are short-circuited to the ground at the same time, the potential is the same, which is equivalent to AB short circuit, the gap is short-circuited, the surface current flows normally, and there is no phase shift; when the control element 213 is turned on, the C and D points are short-circuited.
- point B After the ⁇ /4 transmission line, point B is equivalent to an open circuit. At this time, the gap is in an open state.
- the control element 213 employs a PIN diode, and the equivalent decoupling capacitor 214 is a planar DC decoupling capacitor.
- the phase shifter further includes a shielding cover 30 on the printed circuit board 20.
- the phase shifter insertion loss can be reduced, and the waveguide system can be better integrated; in the above device, the printed circuit board 20 is disposed on the metal.
- the top wall of the cavity waveguide 10 and the control unit 21 are disposed on the printed circuit board 20, which facilitates the arrangement of the electronic components of the control unit 21, thereby improving the integration effect of the entire device.
- the present application further provides a phase shifting array, the phase shifting array comprising at least two Any of the above phase shifters arranged side by side.
- the phase shifter insertion loss can be reduced, and the waveguide system can be better integrated;
- the printed circuit board 20 is disposed on the metal.
- the top wall of the cavity waveguide 10 and the control unit 21 are disposed on the printed circuit board 20, which facilitates the arrangement of the electronic components of the control unit 21, improving the integration effect of the entire device.
- the printed circuit board 20 and the metal cavity waveguide 10 are used, it can be fixed by sintering.
- This structure makes it easy to implement an array of multiple phase shifters. That is, the plurality of metal cavity waveguides 10 are arranged side by side.
- the printed circuit board 20 of at least two phase shifters is a unitary structure, and the specific structure is as shown in FIG. 7.
- at least two The shield cover of the phase shifter also adopts an integrated structure.
- the embodiment of the present application further provides a communication device, including a high power amplifier 40, a power distribution network 50 connected to the high power amplifier 40, and at least one of the foregoing devices connected to the power distribution network 50.
- a communication device including a high power amplifier 40, a power distribution network 50 connected to the high power amplifier 40, and at least one of the foregoing devices connected to the power distribution network 50.
- the communication device provided in this embodiment may be a conventional passive phased array radar system or a next generation high frequency phased array communication device, or other communication device that needs to apply the phase shifter 60.
- a typical application scenario in the two systems is shown in Figure 8.
- Phase shifters 60 can each be applied to the two systems described above, with phase shifter 60 positioned between the high power amplifier 40 and the array of antennas 70 to effect phase adjustment of the output signal.
- at least two phase shifters 60 are employed, at least two phase shifters 60 can also be combined into a phase shifter array to increase the integration of the device.
- the phase shifter 60 can better integrate with the waveguide system by using the metal cavity waveguide 10 instead of the metal cavity waveguide instead of the substrate integrated waveguide to reduce the insertion loss of the phase shifter 60;
- the printed circuit board 20 is disposed on the top wall 12 of the metal cavity waveguide 10, and the control unit 21 is disposed on the printed circuit board 20, which facilitates the setting of the electronic device of the control unit 21, thereby improving the integration effect of the entire device. .
- phase shifters 60 are at least two, at least two phase shifters 60 are arranged side by side, and the printed circuit boards of the at least two phase shifters 60 are of a unitary structure. The setting of the control unit 21 is facilitated.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一种移相器、移相阵列及通信设备,该移相器包括包括金属空腔波导和印刷电路板;金属空腔波导的一个面上设置有第一缝隙;印刷电路板设置在金属空腔波导具有第一缝隙的一面上,并与金属空腔波导电连接,印刷电路板上设置有与金属空腔波导电连接并用于控制第一缝隙通断的控制单元。在上述实施例中,通过采用金属空腔波导代替金属空腔波导替代基片集成波导,降低移相器插损的同时,可以更好地与波导系统集成;现有工艺很难将控制单元的电子器件直接安装到金属空腔波导侧壁上,在上述器件中,采用印刷电路板设置在金属空腔波导的顶壁上,并将控制单元设置在印刷电路板上,方便了控制单元的电子器件的设置,提高了整个装置的集成效果。
Description
本申请涉及到通信技术领域,尤其涉及到一种移相器、移相阵列及通信设备。
相控阵系统有无源相控阵系统和有源相控阵系统两种实现方式。有源相控阵系统利用低功率移相器(Small Power Phase Shifter,简称SPPS)和低功率放大器(Small Power Power Amplifier,简称SPA)可降低功率放大器(Power Amplifier,简称PA)后插损,提高功率利用率。无源相控阵系统利用高效率高功率放大器(High Power Power Amplifier,简称HPA)实现1路功放驱动多路天线,再结合基站中的数字预失真(Digital Pre-Distortion,简称DPD)等数字处理技术,实现高效率高线性的阵列通信设备。
微波无源相控阵系统最关键的模块是HPA之后的移相器,要求低插损、高线性以及足够的比特数和切换速度以满足通信设备波束赋型和快速波束扫描接入要求。同时,高性能的微波系统的天线、滤波器等大功率模块一般都采用金属波导结构,还要求移相器能够方便地实现与金属波导结构组装。
现有技术中的一种移相器通过PIN(Positive-Intrinsic Negative)二极管切换信号在基片集成波导中的传输路径来实现移相。这种移相技术尺寸小,便于与平面电路实现大规模集成。但是上述结构中,采用基片集成波导结构,不方便与其它波导结构电路组装;同时,上述移相器插损较大,一般4比特移相精度的插损都在3dB以上。
发明内容
本申请提供了一种移相器、移相阵列及通信设备,用以提高移相器的集成效果,以及降低移相器的耗损。
本申请提供了一种移相器,该移相器包括金属空腔波导和印刷电路板;
所述金属空腔波导的一个面上设置有第一缝隙;
所述印刷电路板设置在所述金属空腔波导具有第一缝隙的一面上,并与所述金属空腔波导电连接,所述印刷电路板上设置有与所述金属空腔波导电连接并用于控制第一缝隙通断的控制单元。
通过采用金属空腔波导替代基片集成波导,降低移相器插损的同时,可以更好地与波导系统集成;现有工艺很难将控制单元的电子器件直接安装到金属空腔波导的侧壁上,在上述器件中,采用印刷电路板设置在金属空腔波导的顶壁上,并将控制单元设置在印刷电路板上,方便了控制单元的电子器件的设置,提高了整个装置的集成效果。
在一个可能的设计中,所述印刷电路板上设置有与所述第一缝隙对应的第二缝隙,且所述第二缝隙在所述第一缝隙设置面的垂直投影位于所述第一缝隙内,所述第二缝隙的侧壁与对应的第一缝隙的侧壁电连接;
所述控制单元包括横跨所述第二缝隙的微带线,所述微带线的一端与所述第二缝隙的一个侧壁电连接,另一端横跨第二缝隙后通过λ/4传输线与控制元件相连,所述控制元件连接有等效去耦电容,且所述等效去耦电容与低频偏置线连接,其中,所述λ为移相器传播信号的波长。在上述方案中采用印刷电路基板覆盖在金属空腔波导波导侧面,印刷电路板上蚀刻出的缝隙与金属空腔波导波导上的缝隙重合。控制元件表贴于印刷电路板上,通过印刷电路板上的馈线控制控制元件的开启和关断印刷电路板上的缝隙,也同时实现了对金属空腔波导上缝隙的开启和关断,方便了移相器的生产。
在一个可能的设计中,所述印刷电路板包括基板、第一金属层和第二金属层;所述第一金属层设置在所述基板朝向所述金属空腔波导的一面,并与所述金属空腔波导上第一缝隙设置面电连接;所述第二金属层设置在所述基板背离所述金属空腔波导的一面,所述第一金属层及所述第二金属层电连接。
在一个可能的设计中,所述微带线的一端与所述第二缝隙的一个侧壁电连接,包括所述微带线与位于所述第二缝隙一侧的第二金属层电连接。
在一个可能的设计中,所述移相器包括至少两个所述第一缝隙。可选的,所述至少两个第一缝隙,沿所述金属空腔波导的长度方向排列。
在一个可能的设计中,一个所述第一缝隙对应至少两个控制单元。可选的,所述至少两个控制单元沿第一缝隙的长度方向并排排列。通过采用多个控制单元控制第一缝隙的通断,改善了第一缝隙在导通时,降低了电流在横跨第一缝隙时的电阻。
在一个可能的设计中,在第一金属层与第二金属层具体连接时,所述印刷电路板上设置有过孔,所述第一金属层与所述第二金属层之间通过所述过孔内的金属电连接。通过过孔连接,方便了第一金属层与第二金属层的电连接。可选的,所述印刷电路板上可以设置至少两个过孔,所述至少两个过孔环绕所述第二缝隙设置,所述第一金属层与所述第二金属层之间通过所述至少两个过孔内的金属电连接,设置多个过孔,保证了第一金属层及第二金属层对应位置的电位相同。
在一个可能的设计中,所述微带线、λ/4传输线、控制元件及等效去耦电容均设置在所述印刷电路板上背离所述金属空腔波导的一侧。即控制单元设置在印刷电路板上背离金属空腔波导的一面,方便了控制单元的设置。
在一个可能的设计中,所述第二金属层上设置有与所述第二缝隙连通的第三缝隙,与所述第二缝隙连接的控制单元中的λ/4传输线、控制元件及等效去耦电容设置在所述第三缝隙内。保证了控制单元能有效地控制缝隙的开断。
在一个可能的设计中,所述控制元件为PIN二极管。
可选的,在一个具体的设计中,所述第一缝隙与该第一缝隙对应的第二缝隙重合。
可选的,在一个具体的设计中,等效去耦电容为平面直流去耦电容。
此外,该移相器还可以包括盖合在所述印刷电路板上的屏蔽盖。
可选的,将上述移相器中的一个缝隙上添加多个控制单元或将一个或多个移相单元级联可以得到对应移相器中的一个控制位所对应的移相单元,称
之为1位移相单元。将多个1位移相单元级联,即可得到更大移相量、多个控制位控制的移相器。
本申请还提供了一种移相阵列,该移相阵列包括至少两个并排排列的上述任一项所述的移相器。
通过采用金属空腔波导替代基片集成波导,降低移相器插损的同时,可以更好地与波导系统集成;现有工艺很难将控制单元的电子器件直接安装到金属空腔波导侧壁上,在上述器件中,采用印刷电路板覆盖在金属空腔波导的顶壁,并将控制单元设置在印刷电路板上,提高了整个装置的集成效果。
可选的,所述多个移相器的印刷电路板为一体结构。
本申请还提供了一种通信设备,该通信设备包括高功率放大器,与所述高功率放大器连接的功率分配网络,与所述功率分配网络连接的至少一个上述任一项所述的移相器。可选的,移相器通过波导接口直接与天线相连。
可选的,在移相器为至少两个时,所述至少两个移相器并排排列,且所述至少两个移相器的印刷电路板为一体结构。方便了控制单元的设置。
图1为本申请实施例提供的移相器的立体图;
图2为本申请实施例提供的移相单元沿垂直第一缝隙长度方向的剖视图;
图3为本申请实施例提供的移相单元沿平行于第一缝隙长度方向的剖视图;
图4为本申请实施例提供的印刷电路板的俯视图;
图5为本申请实施例提供的控制单元的等效原理图
图6为本申请实施例提供的控制单元的结构图;
图7为本申请实施例提供的移相阵列的示意图;
图8为本申请实施例提供的通信设备的结构框图;
图9为本申请实施例提供的移相器的插损仿真效果图;
图10为本申请实施例提供的移相器的回波损耗仿真效果图;
图11为本申请实施例提供的移相器的移相量仿真效果图;
图12为控制元件控制单元直接跨接在缝隙内时不同串联阻抗的控制电路情况下的移相器插损仿真效果图;
图13为控制元件通过λ/4传输线对缝隙进行控制时不同串联阻抗的控制电路情况下的移相器插损的仿真效果图。
附图标记:
10-金属空腔波导 11-第一缝隙 12-顶壁
20-印刷电路板 21-控制单元 211-微带线
212-λ/4传输线 213-控制元件 214-等效去耦电容
215-高阻直流偏置线 22-第二缝隙 23-基板
24-第二金属层 25-第一金属层 26-过孔
30-屏蔽盖 40-高功率放大器 50-功率分配网络
60-移相器 70-天线
下面将结合附图对本申请作进一步描述本申请。
如图1所示,图1示出了本实施例提供的移相器的结构示意图。
本申请实施例提供了一种移相器,该移相器包括至少一个移相单元,每个移相单元包括金属空腔波导10及印刷电路基板20,其中,金属空腔波导10的一个面上设置有第一缝隙11;印刷电路基板20设置在金属空腔波导10具有第一缝隙11的一面上,并与金属空腔波导10电连接,印刷电路板20上设置有与金属空腔波导10电连接并用于控制第一缝隙11通断的控制单元21。
具体的如图1所示,本实施例提供移相器包含多个移相单元,在图1所示的移相单元中,多个移相单元单排排列;其中每个移相单元的金属空腔波导10为矩形的金属空腔波导10,并且该金属空腔波导10的两端为开口设置,即金属空腔波导10为具有顶壁12、底壁以及两个相对设置的侧壁围成的管状结构的中空部分,其中,该顶壁12上设置了第一缝隙11,该第一缝隙11设
置方向如图1所示:第一缝隙11为矩形的缝隙,且第一缝隙11的长度尺寸大于其宽度尺寸,在第一缝隙11设置时,其长度方向垂直于金属空腔波导10的侧壁设置。并且在移相器采用多个移相单元时,多个移相单元的金属空腔波导10为一体结构,即采用一个金属腔体制作而成,或者可以理解成在一个金属空腔波导10上开设至少两个的第一缝隙11,且在采用上述设置时,至少两个第一缝隙11沿金属空腔波导10的长度方向排列,其中,金属空腔波导10的长度方向为金属空腔波导10的顶壁12、底壁及两个侧壁围成的管状结构的长度方向。在上述实施例中,本申请移相器采用金属波导,可以直接与波导系统实现互联。金属波导的损耗主要为金属表面的欧姆损耗,相对于常见的介质材料的损耗要小得多,因此可以显著降低移相器的插损。如图9所示为移相器插损仿真结果,在29.5GHz,实现360°移相的插损在1.5dB以内。图10和图11所示为仿真得到的移相器端口回波损耗和移相量曲线。
可选的,该移相单元的印刷电路板20在具体设置时,如图2及图3所示,其中,图2为本申请实施例提供的移相单元沿垂直第一缝隙11长度方向的剖视图;图3为本申请实施例提供的移相单元沿平行于第一缝隙11长度方向的剖视图;该印刷电路板20位于金属空腔波导10外,并固定在金属空腔波导10的顶壁12上,即印刷电路板20设置在金属空腔波导10上第一缝隙11的设置面上,可选的,印刷电路板20与金属空腔波导之间可以通过烧结的方法固定。即控制单元21设置在印刷电路板20上背离金属空腔波导10的一面,并用于控制第一缝隙11的开断。
如图4所示,图4为本申请实施例提供的一种印刷电路板20的俯视图,该图4中示出了移相器中多个移相单元的印刷电路板为一体结构的示意图。在上述实施例中的一个具体的方案中,针对每个移相单元的印刷电路板20,该印刷电路基板20上设置有与第一缝隙11对应的第二缝隙22,且第二缝隙33在第一缝隙11设置面的垂直投影位于第一缝隙11内,第二缝隙22的侧壁与对应的第一缝隙11的侧壁电连接;可选的,如图2及图3所示,印刷电路板20包括基板23、第一金属层25及第二金属层26,第一金属层25设置在
基板23朝向金属空腔波导10的一面,并与金属空腔波导10上第一缝隙11的设置面电连接,第二金属层26设置在基板23背离金属空腔波导10的一面,第一金属层25及第二金属层24电连接,且第二缝隙22贯穿第一金属层25及第二金属层24;可选的,在印刷电路板20的基板23上双面铺设金属,并且在铺设金属后开设第二缝隙22,在开设时,第二缝隙22贯穿第一金属层25及第二金属层24,但对于基板23可以贯穿也可以不贯穿,在贯穿时,为在基板23可以对应挖空形成一个物理上贯通的缝隙,在不贯穿时为该基板23不挖空,但是,第一金属层23与第二金属层24还是有对应的开口,以保证电学特性。可选的,第二缝隙22与第一缝隙11平行设置,在一个具体的实施例中,第一缝隙11与对应的第二缝隙22重合。此外,在设置时,第一金属层25及第二金属层24之间导电连接,可选的,印刷电路板20上设置有至少一个过孔26,第一金属层25与第二金属层24之间通过浇灌在过孔26内的金属电连接。其中的过孔26个数可以为一个或两个及以上。在采用一个过孔26时,过孔26的设置位置设置在方便导通第一金属层25及第二金属层24的位置,在采用多个过孔26时,多个过孔26环绕第二缝隙22设置,采用上述方式方便了第一金属层25与第二金属层24的电连接,同时,设置多个过孔26,保证了第一金属层25及第二金属层24对应位置的电位相同。此外,由于第二金属层24与顶壁12固定连接,因此,第一金属层25与顶壁12也电连接。
可选的,控制单元21可以为一个或多个,即每个第一缝隙11对应一个或多个控制单元21;如图1所示,图1中示出了一个第一缝隙11对应一个控制单元21的结构示意图,如图4所示,图4示出了一个第一缝隙11对应多个控制单元21的结构示意图。在采用多个控制单元21时,多个控制单元21并排排列,且多个控制单元21同时控制第一缝隙11的通断,在第一缝隙11导通时,电流从多个横跨第一缝隙11的控制单元21上传导,相比图1所示的结构,改善了电流在传导时的效果。无论采用一个控制单元21还是多个控制单元21,每个控制单元21均包括:沿电流传播方向横跨第二缝隙22的微
带线211,微带线211的一端与第二缝隙22的一个侧壁电连接,另一端横跨第二缝隙22后通过λ/4传输线212与控制元件213相连,控制元件213连接有等效去耦电容214,等效去耦电容214连接有低频偏置线215,以实现高频信号接地。在上述方案中印刷电路基板20覆盖在金属空腔波导10的顶壁12,印刷电路板20上蚀刻出的第二缝隙22与金属空腔波导10上的第一缝隙11重合,控制元件213表贴于印刷电路板20上,通过印刷电路板20上的馈线控制控制元件213开启和关断印刷电路板20上的第二缝隙22,也同时实现了对金属空腔波导10上第一缝隙11的开启和关断,方便了移相器的生产。其中低频偏置线215为高阻线,λ为为移相器传播信号的波长。
可选的,每个控制单元21中的微带线211与位于第二缝隙22两侧的第二金属层24电连接。控制单元21在设置时,设置在印刷电路板20上背离金属空腔波导10的一面,即微带线211、λ/4传输线212、控制元件213及等效去耦电容214均设置在印刷电路板20上背离金属空腔波导10的一侧。即控制单元21设置在印刷电路板20上背离金属空腔波导10的一面,方便了控制单元21的设置。可选的,第二金属层24上设置有与第二缝隙22连通的第三缝隙,第二缝隙22连接的控制单元21中的λ/4传输线212、控制元件213及等效去耦电容214设置在第三缝隙内。保证了控制单元21能有有效的控制缝隙的开断。所有的控制元件213对缝隙短路时都可以等效为一个较小的串联电阻Rs,对缝隙开路时都可以等效为一个很大的电阻Rp。在上述实施例中,在控制元件213与缝隙之间加入λ/4传输线212,因此,控制元件213不需要直接跨接在缝隙中,缝隙短路时,高频信号不必流经串联电阻Rs,从而大大降低了插损对控制元件213串联电阻Rs的敏感性。具体的,如图12及图13所示,图12为控制元件213直接跨接在缝隙内的仿真效果图,图13为控制元件213通过λ/4传输线212对缝隙控制的仿真效果图。由图12及图13可以看出,本申请实施例通过λ/4传输线212对缝隙的关断和开启进行控制,对整体插损的贡献很小,降低了移相器插损对控制元件213寄生串联电阻的敏感度。如图12所示,控制元件213的寄生串联电阻由2.8Ohm变为7Ohm,
本申请采用的方法移相器插损由0.03dB变为0.046dB,对整体插损几乎没有影响。而传统方法移相器的插损则由0.29dB增加到了0.43dB。
此外,在采用上述第三缝隙容纳控制单元21时,本实施例提供的多个过孔26环绕上述第三缝隙设置,从而保证了第一金属层25与第二金属层24之间的电位一致。
为了方便理解控制单元21对缝隙的控制,下面结合图5和图6对其原理进行详细的描述。图5为本申请实施例控制单元等效原理图。图6为具体实现的电路结构图。如图6所示,A点处于第二缝隙22的左侧,始终处于对地短路状态;B点位于第二缝隙22的右侧(A、B点之间为微带线211),其状态受控制元件213控制;C、D分别与控制元件213的两个管脚相接。其中D点与等效去耦电容214相连,始终处于交流短路状态。BC之间的传输线212等效长度为λ/4,则控制元件213断开时,C点处于高阻状态,B点则处于对地短路状态。由于此时A、B两点同时对地短路,电位相同,相当于AB短路,缝隙被短路,表面电流正常流过,没有移相;当控制元件213导通时,C、D点短路相通,经过λ/4传输线后B点则相当于开路,此时缝隙处于断开状态,A、B之间存在很大的交流阻抗,表面电流必须沿缝隙侧边绕道流过,产生移相。一并参考图2,由于第一缝隙11与第二缝隙22一一对应,且在第二缝隙22设置时,该第二缝隙22侧边与第一缝隙11电连接,因此,当第二缝隙22开断时,该第二缝隙22对应的第一缝隙11的开断也被控制。可选的,该控制元件213采用PIN二极管,并且等效去耦电容214为平面直流去耦电容。
可选的,如图2所示,该移相器还包括盖合印刷电路板20上的屏蔽盖30。
在上述实施例中,通过采用金属空腔波导10代替基片集成波导,降低移相器插损的同时,可以更好地与波导系统集成;在上述器件中,采用印刷电路板20设置在金属空腔波导10的一个顶壁上,并将控制单元21设置在印刷电路板20上,方便了控制单元21的电子器件的设置,提高了整个装置的集成效果。
如图7所示,本申请还提供了一种移相阵列,该移相阵列包括至少两个
并排排列的上述任一项移相器。
在上述实施例中,通过采用金属空腔波导10代替金属空腔波导替代基片集成波导,降低移相器插损的同时,可以更好地与波导系统集成;采用印刷电路板20设置在金属空腔波导10的顶壁,并将控制单元21设置在印刷电路板20上,方便了控制单元21的电子器件的设置,提高了整个装置的集成效果。
在上述实施例中,由于采用印刷电路板20与金属空腔波导10之间可以通过烧结的方法固定。这种结构可以很容易实现多个移相器的组阵。即多个金属空腔波导10并排设置,可选的,至少两个移相器的印刷电路板20为一体结构,具体结构如图7所示,此外,在采用此种结构时,至少两个移相器的屏蔽盖也采用一体的结构。
如图8所示,本申请实施例还提供了一种通信设备,该通信设备包括高功率放大器40,与高功率放大器40连接的功率分配网络50,与功率分配网络50连接的至少一个上述任一项的移相器60,与每个移相器60连接的天线70。
可选的,本实施例提供的通信设备可以是传统的无源相控阵雷达系统或下一代高频相控阵通信设备、或者其他需要应用移相器60的通信设备。两种系统中典型的应用场景如图8所示。移相器60均可以应用到上述两个系统中,移相器60位于高功率放大器40和天线70阵列之间,实现对输出信号的相位调整。在移相器60采用至少两个时,至少两个移相器60也可以组合成移相器阵列使用,以提高设备的集成度。在上述实施例中,该移相器60通过采用金属空腔波导10代替金属空腔波导替代基片集成波导,降低移相器60插损的同时,可以更好地与波导系统集成;上述器件中,采用印刷电路板20设置在金属空腔波导10的顶壁12,并将控制单元21设置在印刷电路板20上,方便了控制单元21的电子器件的设置,提高了整个装置的集成效果。
在移相器60为至少两个时,至少两个移相器60并排排列,且至少两个移相器60的印刷电路板为一体结构。方便了控制单元21的设置。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (16)
- 一种移相器,其特征在于,包括金属空腔波导和印刷电路板;所述金属空腔波导的一个面上设置有第一缝隙;所述印刷电路板设置在所述金属空腔波导具有第一缝隙的一面上,并与所述金属空腔波导电连接,所述印刷电路板上设置有与所述金属空腔波导电连接并用于控制第一缝隙通断的控制单元。
- 如权利要求1所述的移相器,其特征在于,所述印刷电路板上设置有与所述第一缝隙对应的第二缝隙,且所述第二缝隙在所述第一缝隙设置面的垂直投影位于所述第一缝隙内,所述第二缝隙的侧壁与对应的第一缝隙的侧壁电连接;所述控制单元包括横跨所述第二缝隙的微带线,所述微带线的一端与所述第二缝隙的一个侧壁电连接,另一端横跨第二缝隙后通过λ/4传输线连接有控制元件,所述控制元件连接有等效去耦电容,且所述等效去耦电容与低频偏置线连接,其中,所述λ为移相器传播信号的波长。
- 如权利要求2所述的移相器,其特征在于,所述印刷电路板包括基板、第一金属层和第二金属层;所述第一金属层设置在所述基板朝向所述金属空腔波导的一面,并与所述金属空腔波导上第一缝隙设置面电连接;所述第二金属层设置在所述基板背离所述金属空腔波导的一面,所述第一金属层及所述第二金属层电连接。
- 如权利要求1~3任一项所述的移相器,其特征在于,所述移相器包括至少两个所述第一缝隙。
- 如权利要求1~4任一项所述的移相器,其特征在于,一个所述第一缝隙对应至少两个控制单元。
- 如权利要求3所述的移相器,其特征在于,所述印刷电路板上设置有过孔,所述第一金属层与所述第二金属层之间通过所述过孔内的金属电连接。
- 如权利要求2~6任一项所述的移相器,其特征在于,所述微带线、λ /4传输线、控制元件及等效去耦电容均设置在所述印刷电路板上背离所述金属空腔波导的一侧。
- 如权利要求2~7任一项所述的移相器,其特征在于,所述第二金属层上设置有与所述第二缝隙连通的第三缝隙,与所述第二缝隙连接的控制单元的λ/4传输线、控制元件及等效去耦电容设置在所述第三缝隙内。
- 如权利要求2~8任一项所述的移相器,其特征在于,所述控制元件为PIN二极管。
- 如权利要求2~9任一项所述的移相器,其特征在于,所述第一缝隙与该第一缝隙对应的第二缝隙重合。
- 如权利要求2~10任一项所述的移相器,其特征在于,所述等效去耦电容为平面直流去耦电容。
- 如权利要求1~11任一项所述的移相器,其特征在于,还包括盖合在所述印刷电路板上的屏蔽盖。
- 一种移相阵列,其特征在于,包括至少两个并排排列的如权利要求1~12任一项所述的移相器。
- 如权利要求13所述的移相阵列,其特征在于,所述至少两个移相器的印刷电路板为一体结构。
- 一种通信设备,其特征在于,包括高功率放大器,与所述高功率放大器连接的功率分配网络,与所述功率分配网络连接的至少一个如权利要求1~12任一项所述的移相器,与所述移相器连接的天线。
- 如权利要求15所述的通信设备,其特征在于,在移相器为至少两个时,所述至少两个移相器并排排列,且所述至少两个移相器的印刷电路板为一体结构。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680086986.6A CN109314290B (zh) | 2016-12-30 | 2016-12-30 | 一种移相器、移相阵列及通信设备 |
PCT/CN2016/113897 WO2018120196A1 (zh) | 2016-12-30 | 2016-12-30 | 一种移相器、移相阵列及通信设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/113897 WO2018120196A1 (zh) | 2016-12-30 | 2016-12-30 | 一种移相器、移相阵列及通信设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018120196A1 true WO2018120196A1 (zh) | 2018-07-05 |
Family
ID=62706772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/113897 WO2018120196A1 (zh) | 2016-12-30 | 2016-12-30 | 一种移相器、移相阵列及通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109314290B (zh) |
WO (1) | WO2018120196A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201941A (zh) * | 2019-07-08 | 2021-01-08 | 深圳市大富科技股份有限公司 | 一种有源天线单元 |
US11404797B2 (en) * | 2020-01-02 | 2022-08-02 | International Business Machines Corporation | Time-based beam switching in phased arrays |
US11955720B2 (en) | 2019-12-20 | 2024-04-09 | Huawei Technologies Co., Ltd. | Beam adjustment assembly and antenna system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112635942B (zh) * | 2021-01-07 | 2022-03-04 | 中山大学 | 一种具备超大频率比的紧凑型双频带通滤波器 |
CN112635943B (zh) * | 2021-01-07 | 2021-10-26 | 中山大学 | 一种频率独立可重构的超大频率比双频带通滤波器 |
CN113193347B (zh) * | 2021-04-14 | 2022-05-03 | 电子科技大学 | 基于人工电磁结构和腔体奇模激励的双波束背腔式天线 |
CN114122650B (zh) * | 2021-11-22 | 2022-05-17 | 中国科学技术大学 | 一种波导电控二极管移相器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020033744A1 (en) * | 2000-04-20 | 2002-03-21 | Sengupta Louise C. | Waveguide-finline tunable phase shifter |
JP2004080345A (ja) * | 2002-08-16 | 2004-03-11 | Ntt Docomo Inc | アンテナ給電回路 |
US20120235872A1 (en) * | 2007-12-21 | 2012-09-20 | Raytheon Company | Transverse device phase shifter |
US8797126B2 (en) * | 2008-12-01 | 2014-08-05 | Telefonaktiebolaget L M Ericsson (Publ) | Tunable microwave arrangements |
-
2016
- 2016-12-30 WO PCT/CN2016/113897 patent/WO2018120196A1/zh active Application Filing
- 2016-12-30 CN CN201680086986.6A patent/CN109314290B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020033744A1 (en) * | 2000-04-20 | 2002-03-21 | Sengupta Louise C. | Waveguide-finline tunable phase shifter |
JP2004080345A (ja) * | 2002-08-16 | 2004-03-11 | Ntt Docomo Inc | アンテナ給電回路 |
US20120235872A1 (en) * | 2007-12-21 | 2012-09-20 | Raytheon Company | Transverse device phase shifter |
US8797126B2 (en) * | 2008-12-01 | 2014-08-05 | Telefonaktiebolaget L M Ericsson (Publ) | Tunable microwave arrangements |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201941A (zh) * | 2019-07-08 | 2021-01-08 | 深圳市大富科技股份有限公司 | 一种有源天线单元 |
US11955720B2 (en) | 2019-12-20 | 2024-04-09 | Huawei Technologies Co., Ltd. | Beam adjustment assembly and antenna system |
US11404797B2 (en) * | 2020-01-02 | 2022-08-02 | International Business Machines Corporation | Time-based beam switching in phased arrays |
Also Published As
Publication number | Publication date |
---|---|
CN109314290B (zh) | 2020-09-04 |
CN109314290A (zh) | 2019-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018120196A1 (zh) | 一种移相器、移相阵列及通信设备 | |
TWI710163B (zh) | 射頻連接設置 | |
US5023494A (en) | High isolation passive switch | |
DE602004001041T2 (de) | Aktive elektronisch gescannte antenne (aesa) mit niedrigem profil für ka-band-radarsysteme | |
US7030712B2 (en) | Radio frequency (RF) circuit board topology | |
US6509809B1 (en) | Method and apparatus for coupling strip transmission line to waveguide transmission line | |
EP2242103B1 (en) | Chip with field-effect transistors and contact bumps for flip-chip connection | |
Ahmadi et al. | Substrateless amplifier module realized by ridge gap waveguide technology for millimeter-wave applications | |
US7855623B2 (en) | Low loss RF transmission lines having a reference conductor with a recess portion opposite a signal conductor | |
KR20210134913A (ko) | 윌킨슨 분배기 | |
CN112865708A (zh) | 基于接地共面波导结构的射频宽带功率放大器及设计方法 | |
LU101371B1 (en) | Terahertz detector based on NxM DRA array and NxM NMOSFET array and antenna design method | |
Zheng et al. | Frequency-agile patch element using varactor loaded patterned ground plane | |
GB2503226A (en) | A Balun for dividing an input electrical signal wherein the width of at least one of the input line, slotline and output line varies over the length | |
Jiang et al. | A Ka-band power amplifier based on a low-profile slotted-waveguide power-combining/dividing circuit | |
EP2862228A1 (en) | Balun | |
CN215581068U (zh) | 基于接地共面波导结构的射频宽带功率放大器 | |
EP2140547A1 (en) | Rf re-entrant combiner | |
SE520792C2 (sv) | Fyrports hybridmikrostripkrets av Langetyp | |
CN107689471B (zh) | 一种毫米波鳍线开关馈电电路 | |
CN111092281A (zh) | 一种基于人工磁导体的四阶耦合谐振器滤波器 | |
US11233507B2 (en) | High frequency switch for high frequency signal transmitting/receiving devices | |
CN110061362B (zh) | 有源相控阵天线单元级内监测装置 | |
KR20080072048A (ko) | 직접적 도파관 접속수단을 구비하는 평면형 안테나 시스템 | |
US7230319B2 (en) | Electronic substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925262 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925262 Country of ref document: EP Kind code of ref document: A1 |