WO2018120177A1 - 一种信号处理方法、装置和系统 - Google Patents

一种信号处理方法、装置和系统 Download PDF

Info

Publication number
WO2018120177A1
WO2018120177A1 PCT/CN2016/113856 CN2016113856W WO2018120177A1 WO 2018120177 A1 WO2018120177 A1 WO 2018120177A1 CN 2016113856 W CN2016113856 W CN 2016113856W WO 2018120177 A1 WO2018120177 A1 WO 2018120177A1
Authority
WO
WIPO (PCT)
Prior art keywords
side device
teq
user side
processing
message
Prior art date
Application number
PCT/CN2016/113856
Other languages
English (en)
French (fr)
Inventor
李莹
王祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/113856 priority Critical patent/WO2018120177A1/zh
Publication of WO2018120177A1 publication Critical patent/WO2018120177A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating

Definitions

  • the present invention relates to the field of data communications, and in particular to a signal processing method, apparatus and system.
  • DSL Digital Subscriber Line
  • UDP Unshielded Twist Pair
  • DSL Access Multiplexer DSL Access Multiplexer
  • CO central office
  • CPE Customer Premises Equipment
  • the location where the DSLAM is located is called the central office (CO) or the network side; the location where the CPE is located is called the CPE side or the user side; if viewed from the perspective of the network side device, the network side device may be called
  • the local device is correspondingly referred to as a peer device, and vice versa.
  • FEXT Far-end Crosstalk
  • Vectored technology can be used to eliminate FEXT on multiple DSL lines, so that it can be online. A higher signal transmission rate is obtained on the road; a line group in which Vectored technology is used to eliminate FEXT is called a Vectored line group, and the Vectored line group may include all or part of lines connected to the DSLAM.
  • ISI symbolic interference
  • TEQ time domain equalization
  • CP cyclic prefix
  • Embodiments of the present invention provide a signal processing method, apparatus, and system to avoid the problem that signals on other lines are generated due to improper processing of a line in a crosstalk scenario.
  • an embodiment of the present invention provides a signal processing method, which is applied to a Vectored DSL system, where the vectored DSL system includes a network side device and is connected to a user side device through a twisted pair.
  • the method includes:
  • the network side device sends a TEQ message to the user side device, where the TEQ message carries the parameter information required by the user side device to perform TEQ processing on the received symbol; the TEQ message is sent by using the twisted pair The user side device;
  • the network side device parses the received feedback message; if the parsed feedback message indicates that the user side device has performed TEQ processing on the received symbol, the twisted pair is not added to the Vectored line group. If the parsed feedback message indicates that the user side device does not perform TEQ processing on the received symbol, the twisted pair is added to the Vectored line group.
  • the network side device sends the TEQ message to the user side device in an initialization phase.
  • the TEQ message is an O-P-TEQ message defined in the ITU-T G.993.5 standard.
  • the feedback message is ITU-T G.993.5 An R-TA-UPDATE message defined in the standard; a specific value in a field in the feedback message indicating whether TEQ processing has been performed on the received symbol.
  • an embodiment of the present invention provides a signal processing method, which is applied to a Vectored DSL system, where the method includes:
  • the user side device receives the TEQ message from the network side, where the TEQ message carries the parameter information required by the user side device to perform TEQ processing on the received symbol; wherein the user side device and the network side device pass Connected by a twisted pair, and the TEQ message is received through the twisted pair;
  • the determining whether to perform TEQ processing according to the length information of the twisted pair includes: if the length of the twisted pair is greater than or equal to a preset threshold, The user side device performs TEQ processing on the received symbols. Otherwise, the user side device does not perform TEQ processing on the received symbols.
  • the feedback message is an R-TA-UPDATE message defined in the ITU-T G.993.5 standard; A specific value in a field in the feedback message indicates whether the received symbol has been TEQ processed.
  • an embodiment of the present invention provides a network side device, including a control module, a signal processing module, and a transceiver, where
  • the transceiver is configured to send a TEQ message to the user side device, where the TEQ message carries parameter information required by the user side device to perform TEQ processing on the received symbol;
  • the network side device and the user side device are connected by a twisted pair, and the TEQ message is sent to the user side device through the twisted pair line;
  • the signal processing module is configured to parse the feedback message received by the transceiver;
  • the control module does not add the twisted pair to the Vectored line group, if the parsed feedback message is an indication The user side device does not perform TEQ processing on the received symbol, and the control module adds the twisted pair to the Vectored line group.
  • the feedback message is an R-TA-UPDATE message defined in an ITU-T G.993.5 standard; a specific value in a field in the feedback message is used to indicate Whether the received symbol has been TEQ processed.
  • the embodiment of the present invention provides a twisted pair network system, including the network side device and the at least one user side device, where the network device and the at least one user side device pass the twisted pair. Connected.
  • the network side device After the network side device receives the feedback message indicating that the user side device performs TEQ processing on the received symbol, the network side does not connect the network.
  • the CPE phase and the twisted pair of the network side device are added to the Vectored line group. This will control the twisted pair and will not participate in the FEXT cancellation process. Regardless of the error of the signal on the twisted pair, it will not affect the signals on other twisted pairs in the Vectored line group, which can reduce the bit error rate on the line as a whole and increase the speed on the line.
  • FIG. 1 is a schematic diagram of a network of multiple DSL accesses
  • FIG. 2 is a schematic diagram of symbol interference between adjacent symbols according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a signal processing method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a network side device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network side processing apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user side processing apparatus according to an embodiment of the present invention.
  • the signal diffusion energy of the first symbol will only leak within the CP length, and Since the CP carries the useless information for the whole system, the receiving end can completely ignore the symbol interference in the CP after receiving the signal, and only the symbols after the CP can be normally parsed, thereby eliminating the influence of symbol interference. It can be seen that the foregoing method for eliminating the influence of symbol interference must ensure that the CP length is greater than or equal to the impulse response length of the channel, and the time domain equalization processing limits the channel impulse response length to the CP length.
  • time domain equalization processing is required after a series of linear and nonlinear transformations of the time domain symbols, and the time domain equalization processing is not performed after the FEXT cancellation processing.
  • the time domain equalization processing object actually includes the data signal transmitted from the transmitting end (ie, the network side) and the crosstalk signal generated during the transmission process, but the crosstalk signal is unknown and uncontrollable, and the TEQ coefficient calculated according to the formula Inaccurate, TEQ processing by inaccurate TEQ coefficients does not guarantee that the appropriate CP length is set such that the channel impulse response length is greater than or equal to the channel impulse response length.
  • the length of the CP is too large, the transmission efficiency is lowered, so the CP length cannot be set too large. There are many methods for calculating the CP length, which will not be described in detail here.
  • the present application proposes the following embodiments for controlling the time domain equalization processing and the FEXT cancellation processing flow to avoid errors in signals on other lines caused by improper processing of one line in a strong crosstalk scenario.
  • the present invention provides a signal processing method for use in a Vectored DSL system;
  • the Vectored DSL system includes a network side device and at least one user side device, and the network side device and the at least one user side device pass a twisted pair Connected. Since the roles of each CPE in the network are similar, this embodiment describes one of the network side device and one of the at least one CPE as an example.
  • the method is as shown in FIG. 3, and includes:
  • Step 301 The network side device sends a TEQ message to the user side device, where the TEQ message carries parameter information required by the user side device to perform TEQ processing on the received symbol; wherein the network side device and the user The side devices are connected by a twisted pair, and the TEQ message is sent to the user side device through the twisted pair.
  • the TEQ message may be an O-P-TEQ message defined in the G.993.5 standard established by the ITU Telecommunication Standardization Sector (ITU-T); the carried information includes parameters characterizing the cyclic symbol;
  • ITU-T ITU Telecommunication Standardization Sector
  • the network side device sends the TEQ message to the user side device in an initialization phase.
  • Step 303 after receiving the TEQ message, the user side device according to the twisted pair
  • the length information determines whether to perform TEQ processing, and sends a feedback message to the network side device; the feedback message indicates whether the user side device has performed TEQ processing on the received symbol.
  • Determining whether to perform TEQ processing according to the length information of the twisted pair includes: if the twisted pair length is greater than or equal to a preset threshold, the user side device performs TEQ processing on the received symbol, otherwise The user side device does not perform TEQ processing on the received symbols.
  • the performing the TEQ process is a parameter that needs to be carried by using the TEQ message sent by the network side.
  • the twisted pair length information is obtained during the Discovery phase.
  • the preset threshold may be a physical length of the line, such as any value within 800m-2000m, such as 1000m, 1200m, 1500m or data in the vicinity thereof; or may be a converted electrical length, such as 20-100db Any value within; or other parameter that can characterize the length of the line.
  • a physical length of the line such as any value within 800m-2000m, such as 1000m, 1200m, 1500m or data in the vicinity thereof; or may be a converted electrical length, such as 20-100db Any value within; or other parameter that can characterize the length of the line.
  • the length information is not limited to the physical length of the line, the electrical length, or the maximum number of carriers that can be carried.
  • the feedback message may be an R-TA-UPDATE message defined in the ITU-T G.993.5 standard, by which a specific value in a field in the message indicates whether TEQ processing has been performed on the received symbol. More specifically, the content format of the R-TA-UPDATE message is as shown in Table 1 below, wherein the OP-MEDLEY message and the RP-MEDLEY message in the table are between the network side and the user side after the R-TA-UPDATE message.
  • the interactive message is defined in the ITU-T G.993.5 standard.
  • Step 305 after the network side device receives the feedback message, if it is determined that the feedback message indicates that the user side device has performed TEQ processing on the received symbol, the twisted pair is not added to the Vectored In the line group, otherwise, the twisted pair is added to the Vectored line group.
  • the Vectored line group includes at least one twisted pair, and the line in the Vectored line group is a line to be subjected to FEXT cancellation processing. If a twisted pair is not added to the Vectored line group, it is not in the joint line group where the twisted pair is subjected to FEXT processing, and naturally it does not participate in the FEXT processing.
  • the network side device is connected to the CPE through a twisted pair cable, and is also connected to the other CPEs through the twisted pair.
  • the network side device receives the user side device indicating the user.
  • the network side does not add the twisted pair connecting the CPE phase and the network side device to the Vectored line group, so that the strip can be controlled.
  • the twisted pair does not participate in the FEXT cancellation process. Even if the signal on the twisted pair has a large error, it will not affect the signals on other twisted pairs in the Vectored line group, which can reduce the bit error rate on the line as a whole and increase the speed on the line.
  • adding all the lines to the Vectored line group to participate in the FEXT cancellation scheme can significantly reduce the bit error rate on all lines and improve the line stability.
  • a network side device in a DSL system such as a DSLAM device, has a structure as shown in FIG. 40, and includes a control module 401, a signal processing module 402, and a transceiver 403, wherein the transceiver 403 in the network side device passes The twisted pair 4001 is connected to the user side device.
  • the control module 401 is configured to manage and control other processing modules in the device. Further, the control module 401 includes a vectored control entity (VCE) for connecting to a terminal supporting the vector mode.
  • VCE vectored control entity
  • Line control such as FEXT cancellation
  • the signal processing module 402 is configured to perform various conversion and processing on the signal, including various modulation, demodulation, and conversion processes on the physical layer, layer two, or layer three;
  • the transceiver 403 is configured to receive and send signals through a twisted pair
  • the network side device further includes a support module, such as a clock module 404, a power interface 405, and a power conversion module 406.
  • the clock module 404 is configured to provide a working clock for each module in the device to ensure synchronization of each module.
  • the power interface 405 is configured to access an input power source, and the power conversion module 406 is configured to convert the input power into an operating power of the device.
  • the embodiment of the present invention further provides a network side device 40, which also includes a control module 401, a signal processing module 402, and a transceiver 403.
  • the transceiver 403 is configured to send a TEQ message to the user side device, where the TEQ message carries parameter information required by the user side device to perform TEQ processing on the received symbol; wherein the network side device and the The user equipment is connected by a twisted pair, and the TEQ message is sent to the user equipment through the twisted pair;
  • the transceiver 403 receives a feedback message from the user side device, where the feedback message indicates whether the user side device has performed TEQ processing on the received symbol;
  • the signal processing module 402 is configured to parse the feedback message received by the transceiver 403;
  • the control module 401 is configured to control whether the twisted pair is added to the Vectored line group. Specifically, if the parsed feedback message indicates that the user side device has performed TEQ processing on the received symbol, The control module 401 does not add the twisted pair to the Vectored line group. If the parsed feedback message indicates that the user side device does not perform TEQ processing on the received symbol, the control module 401 sets the pair. The strands are added to the Vectored line group.
  • the network side device 40 may be a DSLAM device or other network device integrated with a DSL network side processing function.
  • modules in the network side device are consistent with the operations described in the foregoing method embodiments, and may be referred to each other, and details are not described herein again.
  • the network side processing device 50 includes a receiver 51, a processor 52, and a transmitter 53.
  • the transmitter 53 is configured to send a TEQ message to the user side device, where the TEQ message carries parameter information required by the user side device to perform TEQ processing on the received symbol; wherein the network side device and the device The user side device is connected by a twisted pair, and the TEQ message is sent to the user side device through the twisted pair;
  • the receiver 51 is configured to receive a feedback message from the user side device, where the feedback message indicates whether the user side device has performed TEQ processing on the received symbol;
  • the processor 52 is configured to parse the feedback message received by the transceiver 403. If the parsed feedback message indicates that the user side device has performed TEQ processing on the received symbol, the twisted pair is The line is not added to the Vectored line group. If the parsed feedback message indicates that the user side device does not perform TEQ processing on the received symbol, the twisted pair is added to the Vectored line group.
  • the network side processing device 50 may be a DSLAM device, or may be a set of processing units that are integrated into one or more hardware and software integrated in the DSLAM device.
  • the actions performed by the modules in the network side device in this embodiment are consistent with the actions described in the foregoing method embodiments, and may be referred to each other.
  • the user-side processing device 60 includes a receiver 61, a processor 62, and a transmitter 63.
  • the receiver 61 is configured to receive a TEQ message from a network side, where the TEQ message carries parameter information required when the user side processing apparatus performs TEQ processing on the received symbol; wherein the user side processing apparatus 60 and The network side device is connected through a twisted pair, and the TEQ message is Received over the twisted pair;
  • the processor 62 determines whether to perform TEQ processing according to the length information of the twisted pair;
  • the transmitter 63 sends a feedback message to the network side device; the feedback message indicates whether the user side processing device 60 has performed TEQ processing on the received symbol.
  • Determining whether to perform TEQ processing according to the length information of the twisted pair includes: if the twisted pair length is greater than or equal to a preset threshold, the processor 62 performs TEQ processing on the received symbol, otherwise The processor 62 does not perform TEQ processing on the received symbols.
  • the receiver 61 is configured to acquire the twisted pair length information from a network side in a line discovery phase.
  • the feedback message may be an R-TA-UPDATE message defined in the ITU-T G.993.5 standard, by which a specific value in a field in the message indicates whether TEQ processing has been performed on the received symbol.
  • the user-side processing device may be a CPE device, or may be a set of processing units that are combined with one or more hardware and software integrated in the CPE.
  • the actions performed by the modules in the network side device in this embodiment are consistent with the actions described in the foregoing method embodiments, and may be referred to each other.
  • the embodiment of the present invention further provides a twisted pair network system, which is configured as shown in FIG. 1 , and includes a network side device and at least one user side device, where the network device and the at least one user side device are connected by a twisted pair.
  • the network side device is the network side processing device corresponding to FIG. 3 or FIG. 4
  • the user side device is the user side processing device corresponding to FIG. 5 .
  • the processor may be a central processing unit (CPU), or may be other general-purpose processors, a digital signal processor (DSP), and an application specific integrated circuit (Application). Specific Integrated Circuit (ASIC), etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the network processing described in detail above may be implemented on a general purpose component such as a computer or network component having sufficient processing power, memory resources, and network throughput capabilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明实施例提供了一种信号处理方法,运用于Vectored DSL系统中;所述方法包括:网络侧设备发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;所述网络侧设备接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;所述网络侧设备解析接收到的反馈报文;如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,将所述双绞线不加入到Vectored线路组中,否则,将所述双绞线加入到Vectored线路组中;本发明实施例还提供一种网络侧设备;利用本发明的实施例,能避免串扰场景下一条线路的不恰当处理引起其他线路上信号产生误差的问题。

Description

一种信号处理方法、装置和系统 技术领域
本发明涉及数据通讯领域,具体地说,涉及一种信号处理方法、装置和系统。
背景技术
数字用户线路(Digital Subscriber Line,DSL)是一种在电话双绞线上,例如无屏蔽双绞线(Unshielded Twist Pair,UTP),传输的高速数据传输技术。DSL系统中具有多路DSL线路,目前通常由DSL接入复用器(Digital Subscriber Line Access Multiplexer,DSLAM)为多个用户驻地设备(Customer Premises Equipment,CPE)提供多路DSL接入。一般地,DSLAM所在的位置称为局端(central office,CO)或者网络侧;CPE所在的位置称为CPE侧或者用户侧;如果从网络侧设备的角度看,所述网络侧设备可以称为本端设备,所述用户侧设备对应地称为对端设备,反之亦然。
由于电磁感应原理,在接入DSLAM的多条线路上的多路信号之间会相互产生串扰(Crosstalk)。如图1所示。双绞线在高频的远端串扰(Far-end Crosstalk,FEXT)很强,为了消除串扰引起的噪声,例如可以采用矢量化(Vectored)技术来消除多条DSL线路上的FEXT,从而可以在线路上获得更高的信号传输速率;其中采用Vectored技术来消除FEXT的线路组称为Vectored线路组,所述Vectored线路组可以包含接入到DSLAM的全部或者部分线路。
除了在线路之间产生的串扰外,一条线路上传输的相邻符号之间也存在符号干扰(ISI),这种符号干扰主要是时域符号在接收到后会进行一系列线性和非线性变换,信号能量发生扩散导致的。传统方法是通过对信号进行时域均衡(TEQ)处理来将信道上的脉冲响应长度限定在每个符号的循环前缀 (cyclic prefix,CP)之内来消除符号干扰的影响。由于传统上采用的时域均衡处理和FEXT抵消处理是独立的,都没有考虑两者之间的相互影响,在不需要进行FEXT抵消处理的低频DSL系统中,时域均衡处理能比较理想地消除符号间干扰,但由于Vectored DSL系统中的线路上的信号需要进行FEXT抵消处理,如果简单地在CPE侧先后进行时域均衡处理和FEXT抵消处理时,在某些场景下都不能达到各自消除干扰和串扰的目的,反而会导致线路上信号误码较多,信号传输速率下降。
发明内容
本发明实施例提供一种信号处理方法、装置和系统,以避免串扰场景下一条线路的不恰当处理引起其他线路上信号产生误差的问题。
第一方面,本发明实施例提供一种信号处理方法,运用于Vectored DSL系统中,所述Vectored DSL系统包括网络侧设备,并通过一条双绞线和用户侧设备相连,,所述方法包括:
网络侧设备发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
所述网络侧设备接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;和,
所述网络侧设备解析接收到的反馈报文;如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,将所述双绞线不加入到Vectored线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,将所述双绞线加入到Vectored线路组中。
在第一方面的第一种可能的实现方式中,所述网络侧设备是在初始化阶段发送所述TEQ消息给所述用户侧设备。
结合第一方面或第一方面的第一种可能实现的方式,在第二种可能实现 的方式中,所述TEQ消息是ITU-T G.993.5标准中定义的O-P-TEQ消息。
结合第一方面、第一方面的第一种可能实现的方式或第一方面的第二种可能实现的方式,在第三种可能实现的方式中,所述反馈消息是ITU-T G.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
第二方面,本发明实施例提供一种信号处理方法,运用于Vectored DSL系统中,所述方法包括:
用户侧设备接收来自网络侧的TEQ消息,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述用户侧设备和所述网络侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线接收到的;
所述用户侧设备根据所述双绞线的长度信息来决定是否执行TEQ处理,并发送反馈消息给所述网络侧设备;所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理。
在第二方面的第一种可能的实现方式中,所述根据所述双绞线的长度信息来决定是否执行TEQ处理包括:如果所述双绞线长度大于或等于预先设定的阈值,所述用户侧设备对接收到的符号执行TEQ处理,否则,所述用户侧设备不对接收到的符号执行TEQ处理。
结合第二方面或第二方面的第一种可能实现的方式,在第二种可能实现的方式中,所述反馈消息是ITU-T G.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
第三方面,本发明实施例提供一种网络侧设备,包含的控制模块、信号处理模块和收发器,其中
所述收发器用于发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网 络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
所述收发器接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;
所述信号处理模块用于解析所述收发器接收到的反馈报文;
如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,所述控制模块将所述双绞线不加入到Vectored线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,所述控制模块将所述双绞线加入到Vectored线路组中。
在第三方面的第一种可能的实现方式中,所述反馈消息是ITU-T G.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
第四方面,本发明实施例提供一种双绞线网络系统,包括上述实施例所述的网络侧设备和至少一个用户侧设备,所述网络设备和所述至少一个用户侧设备通过双绞线相连。
采用本实施例所述的方案,网络侧设备在收到用户侧设备的指示了所述用户侧设备会对接收到的符号执行TEQ处理的反馈消息后,所述网络侧就不将连接所述CPE相和所述网络侧设备的双绞线加入到Vectored线路组。这样就能控制该条双绞线就不参与FEXT抵消处理。不管该条双绞线上的信号有多大误差,也不会影响Vectored线路组中的其他双绞线上的信号,就能从整体上降低线路上的误码率,提高线路上的速率。
附图说明
图1为多路DSL接入的网络示意图;
图2为本发明实施例的相邻符号间的符号干扰示意图;
图3为本发明实施例的信号处理方法的流程示意图;
图4为本发明实施例的网络侧设备结构示意图;
图5为本发明实施例的网络侧处理装置结构示意图。
图6为本发明实施例的用户侧处理装置结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
首先对时域均衡处理进行说明。由于时域符号在到达CPE侧之后,要进行一系列线性和非线性变换,会导致信号的能量发生扩散,而这些扩散就会引起相邻符号间的符号干扰,如图2所示,符号1(Symbol 1)和符号2(Symbol 2)之间的重叠阴影部分就是由于能量扩散产生的符号干扰。为应对该问题,可以在每个符号之前加上循环前缀CP,当这个CP长度大于或等于信道的脉冲响应长度时,第一个符号的信号扩散能量将只会泄漏在CP长度之内,并且由于对于整个系统来说CP承载的是无用信息,接收端在接收到信号后完全可以不关心CP内的符号干扰,而只正常解析CP后的符号即可,从而消除了符号干扰的影响。可以看出前述消除了符号干扰影响的方法必须保证CP长度大于或等于信道的脉冲响应长度,而时域均衡处理就是把信道脉冲响应长度限定在CP长度之内。
理论上,在时域符号进行一系列线性和非线性变换后就需要进行时域均衡处理了,不会在FEXT抵消处理之后才进行时域均衡处理。那么时域均衡处理对象其实是包含有从发送端(即网络侧)发送的数据信号和传输过程中产生的串扰信号,但串扰信号是未知的并且是不可控的,按照公式计算出来的TEQ系数不准确,通过不准确的TEQ系数进行的TEQ处理,就不能保证设置出合适的CP长度使得信道脉冲响应长度限定大于或等于信道的脉冲响应长度。并且由于CP长度太大会降低传输效率,所以CP长度也不能设置的太大,具体的CP长度计算目前已有很多方法,这里不进行详细介绍。
但是,不管用什么计算方法都只是降低串扰信号带来的影响,但在某一条线路上的串扰信号特别大的时候(例如传输线路长度较大时),正对该线路上的信号计算出来的CP长度误差较大,可能就不能保证大于或等于信道的脉冲响应长度。如果CP长度小于信道的脉冲响应长度,在该线路上就不能消除符号干扰,而存在符号干扰的信号在进行FEXT抵消处理的时候也会带来很大误差。因为FEXT抵消是对所有目标线路进行联合处理,一条线路上的信号不准确,还会影响被联合处理的其他线路上的信号不准确。所以就存在一个问题,在Vectored DSL系统中,怎样对时域均衡处理和FEXT抵消处理进行控制才能尽量降低强串扰信号对处理结果的影响。
针对该问题,本申请提出了以下实施例,用于控制时域均衡处理和FEXT抵消处理流程,以避免强串扰场景下对一条线路的不恰当处理引起其他线路上的信号产生误差。
本发明提供一种信号处理方法,运用于Vectored DSL系统中;所述Vectored DSL系统包括网络侧设备和至少一个用户侧设备,并且所述网络侧设备和所述至少一个用户侧设备通过双绞线相连。由于每个CPE在网络中的角色都是相似的,本实施例以网络侧设备和所述至少一个CPE中的其中一个CPE作为例子进行描述。所述方法如图3所示,包括:
步骤301,网络侧设备发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的。
所述TEQ消息可以是国际电联电信标准化部(ITU-T)制定的G.993.5标准中定义的O-P-TEQ消息;携带的信息包括表征循环符号特征的参数;
所述网络侧设备是在初始化(Initialization)阶段发送所述TEQ消息给所述用户侧设备。
步骤303,所述用户侧设备在接收到所述TEQ消息后,根据所述双绞线 的长度信息来决定是否执行TEQ处理,并发送反馈消息给所述网络侧设备;所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理。
其中,根据所述双绞线的长度信息来决定是否执行TEQ处理包括:如果所述双绞线长度大于或等于预先设定的阈值,所述用户侧设备对接收到的符号执行TEQ处理,否则,所述用户侧设备不对接收到的符号执行TEQ处理。其中执行所述TEQ处理是需要使用网络侧发送过来的所述TEQ消息携带的参数。
其中所述双绞线长度信息在线路发现(Discovery)阶段就已获取。
所述预先设定的阈值可以是线路的物理长度,比如800m-2000m内的任意值,比如1000m、1200m、1500m或者其附近的数据都可以;也可以是转化后的电气长度,比如20-100db内的任意值;或者是其他能表征线路长度的参数。本领域技术人员应理解,实际的双绞线长度信息和阈值只要都选定对应的参数,只要这个参数能表征双绞线长度信息,通过简单的数学计算就能进行比较,所述双绞线长度信息不限定为线路的物理长度、电气长度(electrical length)或最高能承载子载波数。
所述反馈消息可以是ITU-T G.993.5标准中定义的R-TA-UPDATE消息,通过该消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。更具体的,所述R-TA-UPDATE消息内容格式如下表格1所示,其中表格中的O-P-MEDLEY消息和R-P-MEDLEY消息是在R-TA-UPDATE消息之后在网络侧和用户侧之间交互的消息,具体定义在ITU-T G.993.5标准中有描述。
表格1
Figure PCTCN2016113856-appb-000001
Figure PCTCN2016113856-appb-000002
步骤305,所述网络侧设备接收到所述反馈消息后,如果确定所述反馈消息指示了所述用户侧设备已对接收到的符号进行了TEQ处理,将所述双绞线不加入到Vectored线路组中,否则,将所述双绞线加入到所述Vectored线路组中。
所述Vectored线路组包含至少一条双绞线,所述Vectored线路组中的额线路是要进行FEXT抵消处理的线路。将一条双绞线不加入到Vectored线路组中就是不将该条双绞线进行FEXT处理的联合线路组中,自然就不参与FEXT处理。
所述网络侧设备除了通过一条双绞线和所述CPE相连外,还和其他CPE也通过双绞线相连,通过上述处理,所述网络侧设备在收到用户侧设备的指示了所述用户侧设备会对接收到的符号执行TEQ处理的反馈消息后,所述网络侧就不将连接所述CPE相和所述网络侧设备的双绞线加入到Vectored线路组,这样就能控制该条双绞线就不参与FEXT抵消处理。即使该条双绞线上的信号有较大误差也不会影响Vectored线路组中的其他双绞线上的信号,就能从整体上降低线路上的误码率,提高线路上的速率。相对于现有方案中的,将所有的线路都加入到Vectored线路组参与FEXT抵消的方案,能明显降低所有线路上的误码率,提高线路稳定性。
一般地,DSL系统中的网络侧设备,比如DSLAM设备,其结构如图40所示,包括控制模块401、信号处理模块402、收发器403,其中网络侧设备中的所述收发器403是通过双绞线4001和用户侧设备相连。
所述控制模块401,用于对设备内的其他处理模块进行管理和控制;进一步地,所述控制模块401包括矢量控制实体(vectored control entity,VCE),用于对支持vector模式的终端连接的线路进行控制,比如进行FEXT抵消等处理;
所述信号处理模块402,用于对信号进行各种转换和处理,包括物理层、层二或者层三上的各种调制、解调制和转化等处理;
所述收发器403,用于通过双绞线接收和发送信号;
所述网络侧设备还进一步包括支撑模块如时钟模块404、电源接口405和电源转换模块406;所述时钟模块404,用于为设备内各模块提供工作时钟,保证各模块处理同步;
所述电源接口405用于接入输入电源,所述电源转换模块406用于将输入电源转换成该设备的工作电源。
基于上述结构,本发明实施例还提供一种网络侧设备40,也包含的控制模块401、信号处理模块402、收发器403;其中
所述收发器403用于发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
所述收发器403接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;
所述信号处理模块402用于解析所述收发器403接收到的反馈报文;
所述控制模块401用于控制是否将所述双绞线加入到Vectored线路组中;具体为:如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,所述控制模块401将所述双绞线不加入到Vectored线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,所述控制模块401将所述双绞线加入到Vectored线路组中。
所述网络侧设备40可以是DSLAM设备,或者其他集成了DSL网络侧处理功能的网络设备。
其中,所述网络侧设备内各模块执行的动作和前述的方法实施例描述的动作一致,可以互相参照,这里不再赘述。
本发明实施例还提供另一种网络侧处理装置50,如图5所示,该网络侧处理装置50包括:接收器51、处理器52和发送器53。
所述发送器53,用于发送TEQ消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
所述接收器51,用于接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;
所处处理器52,用于解析所述收发器403接收到的反馈报文;如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,将所述双绞线不加入到Vectored线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,将所述双绞线加入到Vectored线路组中。
其中,网络侧处理装置50可是就是DSLAM设备,也可以集成在DSLAM设备内部的一个或多个硬件和软件组合而成的处理单元集合。
同样地,该实施例中所述网络侧设备内各模块执行的动作和前述的方法实施例描述的动作一致,可以互相参照。
本发明实施例还提供另一种用户侧处理装置60,如图5所示,该用户侧处理装置60包括:接收器61、处理器62和发送器63。
所述接收器61,用于接收来自网络侧的TEQ消息,所述TEQ消息携带有所述用户侧处理装置对接收到的符号执行TEQ处理时所需要的参数信息;其中用户侧处理装置60和网络侧设备通过一条双绞线相连,所述TEQ消息是通 过所述双绞线接收到的;
所述处理器62,根据所述双绞线的长度信息来决定是否执行TEQ处理;
所述发送器63,并发送反馈消息给所述网络侧设备;所述反馈消息指示了所述用户侧处理装置60是否已对接收到的符号进行了TEQ处理。
其中,根据所述双绞线的长度信息来决定是否执行TEQ处理包括:如果所述双绞线长度大于或等于预先设定的阈值,所述处理器62对接收到的符号执行TEQ处理,否则,所述处理器62不对接收到的符号执行TEQ处理。
作为一个可选实施例,所述接收器61,用于在线路发现(Discovery)阶段从网络侧获取所述双绞线长度信息。
所述反馈消息可以是ITU-T G.993.5标准中定义的R-TA-UPDATE消息,通过该消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
需要说明的是,所述用户侧处理装置可以就是CPE设备,也可以是集成在CPE内部的一个或多个硬件和软件组合而成的处理单元集合。
同样地,该实施例中所述网络侧设备内各模块执行的动作和前述的方法实施例描述的动作一致,可以互相参照。
本发明实施例还提供一种双绞线网络系统,其结构如图1所示,包括网络侧设备和至少一个用户侧设备,所述网络设备和所述至少一个用户侧设备通过双绞线相连,其中所述网络侧设备就是图3或图4所对应的网络侧处理装置,所述用户侧设备就是所述图5所对应的用户侧处理装置。
在上述实施例中,应理解,该处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。具体为以上所述的网络处理过程可以在诸如具有足够的处理能力、存储器资源和网络吞吐量能力的计算机或网络部件的通用部件上实施。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种信号处理方法,运用于矢量化数字用户线(Vectored DSL)系统中,其特征在于,所述方法包括:
    网络侧设备发送时域均衡(TEQ)消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
    所述网络侧设备接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;和,
    所述网络侧设备解析接收到的反馈报文;如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,将所述双绞线不加入到Vectored线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,将所述双绞线加入到Vectored线路组中。
  2. 如权利要求1所述的方法,其特征在于,所述网络侧设备是在初始化阶段发送所述TEQ消息给所述用户侧设备。
  3. 如权利要求1或2所述的方法,其特征在于,所述TEQ消息是ITU-TG.993.5标准中定义的O-P-TEQ消息。
  4. 如权利要求1或2所述的方法,其特征在于,所述反馈消息是ITU-TG.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
  5. 一种信号处理方法,运用于矢量化数字用户线(Vectored DSL)系统中,其特征在于,所述方法包括:
    用户侧设备接收来自网络侧的时域均衡(TEQ)消息,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述用户侧设备和所述网络侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线接收到的;
    所述用户侧设备根据所述双绞线的长度信息来决定是否执行TEQ处理,并发送反馈消息给所述网络侧设备;所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述双绞线的长度信息来决定是否执行TEQ处理包括:如果所述双绞线长度大于或等于预先设定的阈值,所述用户侧设备对接收到的符号执行TEQ处理,否则,所述用户侧设备不对接收到的符号执行TEQ处理。
  7. 如权利要求5或6所述的方法,其特征在于,还包括,所述用户侧设备在线路发现阶段从网络侧获取所述双绞线长度信息。
  8. 如权利要求5或6所述的方法,其特征在于,所述反馈消息是ITU-TG.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
  9. 一种网络侧设备,其特征在于,包含的控制模块401、信号处理模块402和收发器403,其中
    所述收发器403用于发送时域均衡(TEQ)消息给用户侧设备,所述TEQ消息携带有所述用户侧设备对接收到的符号执行TEQ处理时所需要的参数信息;其中所述网络侧设备和所述用户侧设备通过一条双绞线相连,所述TEQ消息是通过所述双绞线发送给所述用户侧设备的;
    所述收发器403接收来自所述用户侧设备的反馈消息,所述反馈消息指示了所述用户侧设备是否已对接收到的符号进行了TEQ处理;
    所述信号处理模块402用于解析所述收发器403接收到的反馈报文;
    如果解析出来的反馈消息是指示所述用户侧设备已对接收到的符号进行了TEQ处理,所述控制模块401将所述双绞线不加入到矢量化(Vectored)线路组中,如果解析出来的反馈消息是指示所述用户侧设备没有对接收到的符号进行TEQ处理,所述控制模块401将所述双绞线加入到Vectored线路组中。
  10. 如权利要求9所述的网络侧设备,其特征在于,所述网络侧设备是在初始化阶段发送所述TEQ消息给所述用户侧设备。
  11. 如权利要求9或10所述的网络侧设备,其特征在于,所述反馈消息是ITU-T G.993.5标准中定义的R-TA-UPDATE消息;所述反馈消息中的一个字段中的具体值来指示是否已对接收到的符号进行了TEQ处理。
  12. 一种双绞线网络系统,其特征在于,包括如权利要求9至11任一所述网络侧设备和至少一个用户侧设备,所述网络设备和所述至少一个用户侧设备通过双绞线相连。
PCT/CN2016/113856 2016-12-30 2016-12-30 一种信号处理方法、装置和系统 WO2018120177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113856 WO2018120177A1 (zh) 2016-12-30 2016-12-30 一种信号处理方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113856 WO2018120177A1 (zh) 2016-12-30 2016-12-30 一种信号处理方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2018120177A1 true WO2018120177A1 (zh) 2018-07-05

Family

ID=62707674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113856 WO2018120177A1 (zh) 2016-12-30 2016-12-30 一种信号处理方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2018120177A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054538A2 (en) * 1999-05-19 2000-11-22 Motorola, Inc. Fast training of equalizers in discrete multi-tone (DMT) systems
US6628704B1 (en) * 2000-02-29 2003-09-30 Centillium Communications, Inc. Equalizer training for ADSL transceivers under TCM-ISDN crosstalk environment
CN101154964A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种通信系统信道串扰估计的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054538A2 (en) * 1999-05-19 2000-11-22 Motorola, Inc. Fast training of equalizers in discrete multi-tone (DMT) systems
US6628704B1 (en) * 2000-02-29 2003-09-30 Centillium Communications, Inc. Equalizer training for ADSL transceivers under TCM-ISDN crosstalk environment
CN101154964A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 一种通信系统信道串扰估计的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Self-FEXT Cancellation (Vectoring) for Use with VDSL2 Transceivers", TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, G.993.5, 31 January 2015 (2015-01-31), XP055509855 *
"Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2)", ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU, G.993.2, 31 January 2015 (2015-01-31), XP055361772 *

Similar Documents

Publication Publication Date Title
US10382093B2 (en) Performing upstream symbol alignment under FEXT
US11245436B2 (en) Training optimization of multiple lines in a vectored system using a prepared-to-join group
US20160105215A1 (en) Crosstalk Cancellation Over Multiple Mediums
US9485137B2 (en) Online reconfiguration transition synchronization
JP2000244371A (ja) Dmt通信システム及びその時間領域等化器のt係数を決定する方法
US10284256B2 (en) Nonlinear precoding bit loading method, transmit end, receive end, and system
US10432350B2 (en) Method for adjusting parameters of sending device and receiving device, and terminal device
US8111637B2 (en) Method, arrangement and device for precompensation of crosstalk in a DSL MIMO system
WO2018120177A1 (zh) 一种信号处理方法、装置和系统
WO2016078085A1 (zh) 一种信号传输方法、装置及系统
WO2018137193A1 (zh) 一种信号处理方法、装置和系统
US9525459B2 (en) Method, related device, and system for crosstalk cancellation processing on port line of access device
CN107925437B (zh) 用于数字用户线初始化的方法和装置
US11882082B2 (en) Method and apparatus for configuring operation mode of a remote transceiver unit
WO2018120062A1 (zh) 信号处理方法、网络侧设备及客户终端设备
US20050135568A1 (en) Efficient and reduced-complexity training algorithms
Lafata Investigation of phantom circuit benefits for next generation xDSL systems
de Medeiros Physical Layer Techniques for High Frequency Wireline Broadband Systems
CN102318207A (zh) 用于数据处理的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925464

Country of ref document: EP

Kind code of ref document: A1