WO2018119848A1 - 一种pcr荧光检测仪 - Google Patents

一种pcr荧光检测仪 Download PDF

Info

Publication number
WO2018119848A1
WO2018119848A1 PCT/CN2016/112961 CN2016112961W WO2018119848A1 WO 2018119848 A1 WO2018119848 A1 WO 2018119848A1 CN 2016112961 W CN2016112961 W CN 2016112961W WO 2018119848 A1 WO2018119848 A1 WO 2018119848A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
housing
pcr
optical path
hole
Prior art date
Application number
PCT/CN2016/112961
Other languages
English (en)
French (fr)
Inventor
戴立忠
章洪建
邓中平
唐景年
杨勇
Original Assignee
湖南圣湘生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南圣湘生物科技有限公司 filed Critical 湖南圣湘生物科技有限公司
Priority to PCT/CN2016/112961 priority Critical patent/WO2018119848A1/zh
Publication of WO2018119848A1 publication Critical patent/WO2018119848A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements

Definitions

  • the present application relates to the field of detection devices, and in particular to a PCR fluorescence detector.
  • PCR Polymerase Chain Reaction
  • DNA deoxyribonucleic acid
  • PCR technology amplifies DNA by performing a high-temperature melting reaction at a temperature of about 95 ° C in a mixed system of a suitable buffer solution and a heat-resistant DNA polymerase, that is, a hydrogen bond between DNA duplexes.
  • Fragmentation forming two complementary single-stranded DNA; single-stranded DNA undergoes an annealing (refolding) reaction under the directional and specific oligonucleotide chain as a primer-mediated, ie, the temperature of the single-stranded DNA is rapidly reduced to the primer Within the range of design temperature values (typically about 50-65 ° C), single-stranded DNA and primers follow the principle of base-pair pairing; rapidly raise the temperature to around 72 ° C, and the single-stranded DNA is extended after binding to the primer.
  • design temperature values typically about 50-65 ° C
  • the DNA polymerase starts to bind to the deoxynucleotide triphosphate from the 3' end of the primer, and sequentially extends according to the corresponding base on the template in a complementary pairing principle to form a new DNA fragment complementary to the template.
  • the number of initial DNA molecules is doubled, which is a cycle; the doubling DNA molecule then becomes the template for the next cycle, and after 30-40 cycles, the number of DNA molecules will be amplified to The initial value is nearly 10 9 times.
  • the existing PCR detector can simultaneously amplify the PCR reaction solution in a plurality of PCR reaction tubes.
  • a PCR reaction tube containing the PCR reaction solution is placed in the sample well, and a tungsten halogen lamp is used as an illumination source.
  • the light emitted by the tungsten halogen lamp is irradiated to each PCR reaction tube through the five-color light source filter, and the fluorescent molecules in each PCR reaction liquid are excited by the tungsten halogen lamp to generate fluorescence, and the fluorescence passes through the five-color fluorescent filter.
  • the CCD (Charge-coupled Device) camera is reached, and the fluorescence signal is converted into an electrical signal by the CCD camera to determine the total amount of products after PCR amplification of the DNA. Since the distance from each PCR reaction tube to the tungsten halogen lamp is different, the closer to the PCR reaction tube at the center of the tungsten halogen lamp, the more easily the fluorescent molecules inside are excited, and the stronger the fluorescence, away from the center of the tungsten halogen lamp. In the PCR reaction tube, the fluorescence of the fluorescent molecules inside is weaker, and thus there is a difference in fluorescence detection after the same PCR amplification of DNA.
  • the present application provides a PCR fluorescence detector to solve the problem of long detection time of the existing PCR detector.
  • the present application provides a PCR fluorescence detector, the detector comprising a circuit device and an optical path device disposed on an upper surface of the circuit device;
  • the inside of the optical path device has a hollow inner cavity, and the top of the optical path device has a first through hole communicating with the hollow inner cavity;
  • the top of the optical path device is provided with a 60 ° C heating plate, and the center of the 60 ° C heating plate is provided with a second through hole;
  • the hollow inner cavity is provided with a 95 ° C heating plate, and the center of the 95 ° C heating plate is provided with a third through hole;
  • the centers of the first through hole, the second through hole, and the third through hole are on the same straight line.
  • the circuit device in conjunction with the first aspect, in a first possible implementation manner of the first aspect, includes a detection circuit board, a light emitter, and a light receiver, wherein the light emitter and the light receiver are disposed in the detecting On the circuit board, a line between the light emitter and the center of the detection circuit board is perpendicular to a line between the light receiver and the center of the detection circuit board.
  • the detecting circuit board is provided with four sets of the light emitter and the light receiver, four groups of the light emitters and the light
  • the receiver is circularly distributed on the detection circuit board; each of the two sets of the light emitters is adjacent to each other and disposed opposite to the remaining two sets of the light emitters.
  • the light emitter is a light emitting diode
  • the light receiver is a photodiode
  • the optical path device includes a first housing and a second housing that are both hollow, wherein
  • the first housing includes a first upper housing parallel to the detection circuit board and perpendicular to the detection a first lower casing of the circuit board, the first upper casing and the first lower casing being connected by a tilted first mirror;
  • the second housing includes a second upper housing parallel to the detection circuit board and a second lower housing perpendicular to the detection circuit board, the second upper housing and the second lower housing Connected by a tilted second mirror;
  • the first upper casing and the second upper casing are perpendicular to each other, and ends of the first upper casing and the second upper casing are not connected.
  • the first lower casing is internally provided with a first filter and a first lens, and the first lens is located at the first filter and Between the light emitters;
  • a second filter and a second lens are disposed inside the second lower case, and the second lens is located between the second filter and the light receiver.
  • the optical path device includes four sets of the first housing and the second housing, four sets of the first housing, and the The second housing is evenly distributed circumferentially around the first through hole.
  • the 60 ° C heating plate includes a first lower plate, a first resistor, and a first upper plate disposed in order from bottom to top; the 95 ° C The heating plate includes a second lower plate, a second resistor, and a second upper plate that are sequentially disposed from bottom to top.
  • the detector further includes a light path device base, and an internal structure of the light path device base conforms to an external structure of the light path device.
  • the detector further includes a heat dissipation plate and a heat dissipation fan, the heat dissipation plate is disposed at a top of the 60 ° C heating plate, and the cooling fan is disposed On the outer surface of the base of the optical path device, and the heat dissipation fan is located on the same horizontal surface as the 95 ° C heating plate.
  • the PCR reaction tube is placed in the first through hole, the second through hole and the third through hole, and the bottom end of the PCR reaction tube is located at the third through hole, and the PCR reaction tube
  • the liquid surface of the medium PCR reaction solution is located at the first through hole to realize heating of the bottom end of the PCR reaction tube by the heating plate at 95 ° C, and heating the liquid surface of the PCR reaction solution in the PCR reaction tube by heating plate at 60 ° C to further cause PCR Reaction tube
  • a temperature difference is generated between the upper and lower ends. Due to the existence of the temperature difference, the PCR reaction liquid in the PCR reaction tube flows from the high temperature region at the bottom to the low temperature region at the top, thereby forming convection.
  • the DNA can be continuously amplified in the PCR fluorescence detector without the need to continuously heat up and cool down in the PCR detector to achieve the temperature required for different stages of DNA amplification. Therefore, the PCR fluorescence detector provided by the invention can save the amplification time and thereby shorten the detection time of the PCR detector.
  • FIG. 1 is a schematic diagram of a dispensing structure of a PCR fluorescence detector provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an assembly of a PCR fluorescence detector provided by an embodiment of the present application
  • FIG. 3 is a position distribution diagram of a PCR reaction tube provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural view of a 60 ° C heating plate according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a 95 ° C heating plate according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of four sets of optical path channels provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram showing the packaging structure of the PCR fluorescence detector provided by the embodiment of the present invention
  • FIG. 2 shows the assembly of the PCR fluorescence detector provided by the embodiment of the present invention.
  • the PCR fluorescence detector provided by the embodiment of the invention comprises a circuit device 1 and an optical path device 2, wherein the optical path device 2 is disposed on the upper surface of the circuit device 1, wherein the circuit device 1 is configured to emit the light detected by the PCR fluorescence and receive the fluorescence, and then analyze The total amount of product after PCR amplification of the DNA; the optical path device 2 is used to provide a path of light and fluorescence, that is, to provide an optical path.
  • the circuit device 1 includes a detecting circuit board 9, a light emitter 10, and a light receiver 11, the detecting circuit board 9 being a substrate, and the light emitter 10 and the light receiver 11 are both disposed on the upper surface of the detecting circuit board 9.
  • the light emitter 10 is for emitting light irradiated onto the PCR reaction tube 33, and the fluorescent substance in the PCR reaction tube 33 is excited by the light to generate fluorescence, and the generated fluorescence is received by the light receiver 11, and the light receiver 11 receives the light. Fluorescence is converted into an electrical signal, which in turn analyzes the total amount of product after DNA amplification.
  • the line between the light emitter 10 and the center of the detecting circuit board 9 is perpendicular to the line between the light receiver 11 and the center of the detecting circuit board 9 so that the light emitted from the light emitter 10 excites the fluorescence generated by the fluorescent molecules. It can be received by the optical receiver 11 and there is no difference in the strength of the fluorescent signal.
  • the optical path device 2 includes a first housing 12 and a second housing 13, and both the first housing 12 and the second housing 13 are hollow to facilitate internal lens placement.
  • the first housing 12 includes a first upper housing 14 that is parallel to the detection circuit board 9 and a first lower housing 15 that is perpendicular to the detection circuit board 9, the first upper housing 14 and the first lower housing 15 Connected by the first mirror 16;
  • the second housing 13 includes a second upper housing 17 parallel to the detection circuit board 9 and a second lower housing 18 perpendicular to the detection circuit board 9, the second upper housing 17 and The second lower casing 18 is connected by a second mirror 19 .
  • the first mirror 16 and the second mirror 19 are capable of reflecting the light emitted from the light emitter 10 onto the PCR reaction tube 33, so that the fluorescent molecules in the PCR reaction tube 33 receive the same excitation light as the intensity of the light to generate fluorescence intensity.
  • the same fluorescence avoids affecting PCR detection due to differences in fluorescence intensity.
  • the first housing 12 and the second housing 13 are also perpendicular to each other, that is, the first upper housing 14 and the second upper housing 17 are perpendicular to each other.
  • a complete emitting light path and a receiving light path are formed.
  • Light path device 2 The top portion has a first through hole 4, and thus, the ends of the first upper case 14 and the second upper case 17 are perpendicular to each other and are not connected.
  • first filter 20 and the first lens 21 are disposed inside the first lower casing 15, and the first lens 21 is located between the first filter 20 and the light emitter 10.
  • the second filter 22 and the second lens 23 are disposed inside the second lower casing 18, and the second lens 23 is located between the second filter 22 and the light receiver 11.
  • the first filter 20 and the second filter 22 are respectively used to filter out the illumination emitted by the light emitter 10 and the fluorescent molecules, thereby obtaining the desired illumination color such as red light, green light or yellow light.
  • the first lens 21 is used to condense the light emitted by the light emitter 10 and then illuminate the first mirror 16 to facilitate the generation of strong illumination.
  • the second lens 23 is used to condense the light beam dispersed by the second mirror 19 into a strong light, thereby facilitating the light receiver 11 to convert the fluorescent signal into an electrical signal.
  • the inside of the optical path device 2 has a hollow inner cavity 3 for placing a 95 ° C heating plate 7 so that the 95 ° C heating plate 7 is opposite to the PCR reaction tube 33.
  • the bottom was heated, and the PCR reaction solution at the bottom of the PCR reaction tube 33 had a temperature of 95 °C.
  • the top of the optical path device 2 is provided with a 60 ° C heating plate 5 to heat the 60 ° C heating plate 5 to the nozzle of the PCR reaction tube 33, and the PCR reaction tube 33 has a temperature of 60 ° C at the liquid level of the PCR reaction liquid.
  • the top of the optical path device 2 has a first through hole 4 communicating with the hollow inner cavity 3, and a center of the heating plate 5 is provided with a second through hole 6 at the center of the 60 ° C. Similarly, a third pass is provided at the center of the 95 ° C heating plate 7. Hole 8.
  • the first through hole 4, the second through hole 6 and the third through hole 8 are both used to place the PCR reaction tube 33, and the 95 ° C heating plate 7 is located at the bottom of the PCR reaction tube 33, and the 60 ° C heating plate 5 is located in the PCR reaction tube 33.
  • the centers of the first through hole 4, the second through hole 6, and the third through hole 8 are on the same straight line.
  • the PCR reaction solution Since the temperature at the nozzle of the PCR reaction tube 33 is 60 ° C and the temperature at the bottom is 95 ° C, the PCR reaction solution exhibits a temperature gradient in the gravity direction in the closed PCR reaction tube 33. Due to the presence of the temperature gradient, the density of the upper and lower PCR reaction solutions is different, which in turn forms a density gradient. The density gradient can generate buoyancy against gravity, lumen wall and internal friction, and then the high temperature PCR reaction solution at the bottom of the PCR reaction tube 33 flows to the top low temperature PCR reaction solution, and the high temperature PCR reaction of the top low temperature PCR reaction solution to the bottom The liquid flows to form a cycle.
  • the above cycle is continuously performed, and the PCR reaction solution is also subjected to high temperature and low temperature, so that the DNA in the PCR reaction solution can be amplified at a specific temperature without frequently changing the heating temperature. Amplification at a specific temperature is achieved, which speeds up the PCR reaction and shortens the PCR detection time.
  • FIG. 4 and FIG. 5 respectively show the structural diagrams of the 60 ° C heating plate 5 and the 95 ° C heating plate 7.
  • the 60 ° C heating plate 5 includes a first lower plate 24, a first resistor 25 and a first upper plate 26 which are disposed in this order from bottom to top, wherein the first lower plate 24 and the first upper plate 26 are fixed plates for fixing The first resistor 25.
  • the first resistor 25 is disposed between the first lower plate 24 and the first upper plate 26 in a burying manner to function as a heating.
  • the first resistor 25 is uniformly disposed around the second through hole 6, and the PCR reaction liquid in the PCR reaction tube 33 is heated by the second through hole 6.
  • the number of the first resistors 25 can be specifically set according to the magnitude of the resistor.
  • the 95 ° C heating plate 7 includes a second lower plate 27, a second electric resistance 28 and a second upper plate 29 which are disposed in this order from bottom to top, wherein the second lower plate 27 and the second upper plate 29 are fixed plates for fixing Second resistor 28.
  • the second resistor 28 is disposed between the second lower plate 27 and the second upper plate 29 in a burying manner to function as a heating.
  • the second resistor 28 is uniformly disposed around the third through hole 8, and the PCR reaction liquid in the PCR reaction tube 33 is heated by the third through hole 8.
  • the number of the second resistors 28 can be specifically set according to the magnitude of the resistor.
  • the PCR fluorescence detector provided by the embodiment of the invention further includes an optical path device base 30.
  • the optical path device base 30 is disposed on the outer surface of the optical path device 2, thereby functioning to protect the optical path device 2.
  • the internal structure of the optical path device base 30 coincides with the external structure of the optical path device 2.
  • the top of the optical path device 2 is provided with a 60 ° C heating plate 5, the first mirror 16 and the second mirror 19 are closer to the 60 ° C heating plate 5; and the interior of the optical path device 2 is provided with a 95 ° C heating plate 7, first The filter 20, the first lens 21, the second filter 22, and the second lens 23 are all closer to the heating plate 7 of 95 ° C, so after a long time of use, the first mirror 16, the second mirror 19, and the first The lens such as the filter 20 is easily deformed under the action of high temperature, and the deformed lens seriously affects the PCR fluorescence detection.
  • the PCR fluorescence detector provided by the embodiment of the present invention further includes a heat dissipation plate 31 and a heat dissipation fan 32.
  • the heat radiating plate 31 is disposed at the top of the 60 ° C heating plate 5 to take away heat in the vicinity of the first mirror 16 and the second mirror 19 while taking away part of the heat generated by the 95 ° C heating plate 7.
  • the heat dissipating fan 32 is disposed on the outer surface of the optical path device base 30, and the heat dissipating fan 32 is located on the same horizontal surface as the 95° C heating plate 7 to take away the heat generated by the heating plate 7 at 95° C., thereby preventing the lens of the first mirror 16 and the like from occurring. Deformation.
  • the detection process of the PCR fluorescence detector is: placing the PCR reaction tube 33 containing the mixed PCR reaction solution in the first through hole 4, the second through hole 6 and the third through hole 8, Kai The 60 ° C heating plate 5 and the 95 ° C heating plate 7 are heated to form a fluid convection, and the DNA is continuously expanded.
  • the light emitter 10 emits a light beam on the first lens 21, and the first lens 21 condenses the light beam and passes through the first filter 20 to obtain a desired illumination color.
  • the light beam for determining the illumination color is irradiated on the first mirror 16, and the first mirror 16 divides the beam into a plurality of beams of the same intensity and intensity, and the plurality of beams are reflected by the 90° and then irradiated onto the PCR reaction tube 33.
  • the fluorescent molecules in the PCR reaction tube 33 receive the same excitation light as the light intensity, thereby generating fluorescence having the same fluorescence intensity. Fluorescence emitted from different directions of the PCR reaction tube 33 is irradiated onto the second mirror 19, and the second mirror 19 reflects the fluorescence at 90° and then illuminates the second filter 22 to filter out the beams of the remaining light colors.
  • the light beam filtered by the second filter 22 is irradiated onto the second lens 23, and the second lens 23 is condensed and received by the light receiver 11, thereby converting the fluorescent signal into an electrical signal to complete PCR fluorescence detection.
  • the fluorescent molecules can receive the excitation light with the same intensity of light, thereby generating fluorescence with the same fluorescence intensity, and avoiding the PCR detection due to the difference in fluorescence intensity.
  • the optical path device 2 comprises four sets of first housing 12 and second housing 13, four sets of light emitters 10 and light receivers 11 and four sets of first housings 12 and second housings 13 forming four sets of optical path channels
  • 1 to 4 are light emitters 10, and 1-1 to 4-4 are light receivers 11.
  • the four sets of light emitters 10 and the light receivers 11 are circularly distributed on the detecting circuit board 9, and each two sets of light emitters 10 are disposed adjacent to each other and disposed opposite to the remaining two sets of light emitters 10, as in FIG. 1 and 2 are adjacent to each other, and 3 and 4 are adjacent to each other, but 1, 2 and 3, 4 are oppositely arranged. Since the line between the light emitter 10 and the center of the detecting circuit board 9 is perpendicular to the line between the light receiver 11 and the center of the detecting circuit board 9, each set of the light receivers 11 is adjacently disposed, and the remaining two The group of optical receivers 11 are oppositely arranged, as shown in 1-1 and 2-2 of FIG.
  • the light emitter 10 and the light receiver 11 are not limited to four groups, and the first housing 12 and the second housing 13 are not limited to four groups, and other group number settings are also within the scope of the present application.
  • the PCR fluorescence detector In the process of amplifying and detecting DNA by the PCR fluorescence detector provided by the embodiment of the present invention, four different DNA molecules are placed in the PCR reaction tube 33, and different fluorescent molecules are labeled for four different DNA molecules; four groups of optical paths are respectively arranged.
  • the channel can provide different optical paths and beams for exciting fluorescent molecules, and the PCR fluorescence detector provided by the embodiments of the present invention can simultaneously detect four different DNA molecules.
  • the opening and closing time is such that there is a time difference between the opening and closing times of the adjacent two groups of the light emitters 10 and the light receivers 11, thereby facilitating the receiving of corresponding fluorescence by the different light receivers 11 and avoiding detection errors of the PCR fluorescence detector.
  • the light emitter 10 is preferably a light emitting diode
  • the light receiver 11 is preferably a photodiode

Abstract

一种PCR荧光检测仪,在该检测仪中,将PCR反应管(33)放置于第一通孔(4)、第二通孔(6)和第三通孔(8)内,使PCR反应管(33)底端位于第三通孔(8)处,PCR反应管(33)中PCR反应液的液面位于第一通孔(4)处,实现95℃加热板(7)对PCR反应管(33)底端加热,60℃加热板(5)对PCR反应管(33)中PCR反应液液面处加热,进而PCR反应管(33)的上下端产生温差。温差使得PCR反应管(33)中的PCR反应液由底部高温区域流向顶部低温区域,形成对流。由于温差以及对流,DNA能够在PCR荧光检测仪中不断扩增,不需要为达到DNA扩增不同阶段所需的温度而不断升温、降温,因此PCR荧光检测仪能够节省扩增时间,进而缩短PCR检测仪的检测时间。

Description

一种PCR荧光检测仪 技术领域
本申请涉及检测装置领域,尤其涉及一种PCR荧光检测仪。
背景技术
PCR(Polymerase Chain Reaction,聚合酶链式反应)技术是一种在生物体外放大扩增特定DNA(deoxyribonucleic acid,脱氧核糖核酸)序列的分子生物学技术。PCR技术具有特异性强、灵敏度高、纯度要求低以及简便、快速的特点,因而被广泛应用于分子生物学检测及分析。
一般的,PCR技术扩增DNA的过程为:在合适的缓冲溶液及耐热DNA聚合酶的混合体系中,DNA在大约95℃的温度下发生高温解链反应,即DNA双链间的氢键断裂,形成2条互补的单链DNA;单链DNA在具有方向性和特异性的寡核苷酸链作为引物介导下发生退火(复性)反应,即将单链DNA的温度迅速降至引物的设计温度值(一般大约为50-65℃)的范围内,单链DNA与引物遵循碱基互补配对原则结合;迅速将温度再升高到72℃左右,单链DNA与引物结合后发生延伸反应,DNA聚合酶自引物3’端开始结合脱氧核苷三磷酸,根据模板上的相应碱基,以互补配对原则顺次延伸,从而形成一条新的与模板互补的DNA片段。经过PCR技术扩增后,初始DNA分子数量增加一倍,是为一个循环;倍增后的DNA分子继而成为下一个循环的模板,如此下去,经过30-40个循环之后,DNA分子数目将放大至初始值的近109倍。
目前,现有的PCR检测仪能够同时对多个PCR反应管中的PCR反应液扩增。在PCR检测仪扩增DNA时,样品孔内放置已盛装PCR反应液的PCR反应管,卤钨灯作为照射光源。卤钨灯发出的灯光通过五色光源滤光片后照射到每个PCR反应管上,每个PCR反应液中的荧光分子受到卤钨灯灯光的激发会产生荧光,荧光通过五色荧光滤光片后到达CCD(Charge-coupled Device,电荷耦合元件)相机,由CCD相机将荧光信号转换为电信号,进而判断PCR扩增DNA后的产物总量。由于每个PCR反应管到卤钨灯的距离不同,越靠近卤钨灯中心的PCR反应管,其内部的荧光分子就越容易受到激发,荧光就越强,而远离卤钨灯中心 的PCR反应管,其内部的荧光分子的荧光就越弱,因而同一次PCR扩增DNA后的荧光检测存在差异。另外,在PCR检测仪扩增DNA过程中,需要不断迅速升温、降温,而升温、降温的时间较长,这大大延长一个扩增循环的时间,进而降低扩增效率。
发明内容
本申请提供了一种PCR荧光检测仪,以解决现有PCR检测仪检测时间较长的问题。
第一方面,本申请提供了一种PCR荧光检测仪,所述检测仪包括电路装置以及设置在所述电路装置上表面上的光路装置;
所述光路装置的内部具有中空内腔,所述光路装置的顶部具有与所述中空内腔相连通的第一通孔;
所述光路装置的顶部设置有60℃加热板,所述60℃加热板的中心设置有第二通孔;
所述中空内腔中设置有95℃加热板,所述95℃加热板的中心设置有第三通孔;
所述第一通孔、所述第二通孔和所述第三通孔的中心在同一直线上。
结合第一方面,在第一方面第一种可能的实现方式中,所述电路装置包括检测电路板、光发射器和光接收器,所述光发射器与所述光接收器设置在所述检测电路板上,且所述光发射器与所述检测电路板中心之间的连线垂直于所述光接收器与所述检测电路板中心之间的连线。
结合第一方面,在第一方面第二种可能的实现方式中,所述检测电路板上设置四组所述光发射器和所述光接收器,四组所述光发射器和所述光接收器在所述检测电路板上呈圆形分布;每两组所述光发射器相邻接,且与其余两组所述光发射器相对设置。
结合第一方面,在第一方面第三种可能的实现方式中,所述光发射器为发光二极管,所述光接收器为光电二极管。
结合第一方面,在第一方面第四种可能的实现方式中,所述光路装置包括均中空的第一壳体和第二壳体,其中,
所述第一壳体包括平行于所述检测电路板的第一上壳体和垂直于所述检测 电路板的第一下壳体,所述第一上壳体和所述第一下壳体通过倾斜的第一反光镜相连接;
所述第二壳体包括平行于所述检测电路板的第二上壳体和垂直于所述检测电路板的第二下壳体,所述第二上壳体和所述第二下壳体通过倾斜的第二反光镜相连接;
所述第一上壳体和所述第二上壳体相互垂直,且所述第一上壳体和所述第二上壳体的端部不相连。
结合第一方面,在第一方面第五种可能的实现方式中,所述第一下壳体的内部设置第一滤镜和第一透镜,所述第一透镜位于所述第一滤镜和所述光发射器之间;
所述第二下壳体的内部设置第二滤镜和第二透镜,所述第二透镜位于所述第二滤镜和所述光接收器之间。
结合第一方面,在第一方面第六种可能的实现方式中,所述光路装置包括四组所述第一壳体和所述第二壳体,四组所述第一壳体和所述第二壳体围绕所述第一通孔周向均匀分布。
结合第一方面,在第一方面第七种可能的实现方式中,所述60℃加热板包括由下而上依次设置的第一下板、第一电阻和第一上板;所述95℃加热板包括由下而上依次设置的第二下板、第二电阻和第二上板。
结合第一方面,在第一方面第八种可能的实现方式中,检测仪还包括光路装置底座,所述光路装置底座的内部结构与所述光路装置的外部结构相吻合。
结合第一方面,在第一方面第九种可能的实现方式中,所述检测仪还包括散热板和散热风扇,所述散热板设置在所述60℃加热板的顶部,所述散热风扇设置在所述光路装置底座的外表面,且所述散热风扇与所述95℃加热板位于同一水平面上。
本申请的实施例提供的技术方案可以包括以下有益效果:
本发明提供的PCR荧光检测仪中,将PCR反应管放置于第一通孔、第二通孔和第三通孔内,并使PCR反应管的底端位于第三通孔处,PCR反应管中PCR反应液的液面位于第一通孔处,以实现95℃加热板对PCR反应管的底端加热,60℃加热板对PCR反应管中PCR反应液的液面处加热,进而使得PCR反应管的 上下端产生温差。由于温差的存在使得PCR反应管中的PCR反应液由底部的高温区域流向顶部的低温区域,进而形成对流。由于PCR反应管中存在温差以及PCR反应液的对流,因而DNA能够在PCR荧光检测仪中不断扩增,不需要为达到DNA扩增不同阶段所需的温度而在PCR检测仪中不断升温、降温,因此,本发明提供的PCR荧光检测仪能够节省扩增时间,进而缩短PCR检测仪的检测时间。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的PCR荧光检测仪的分装结构示意图;
图2为本申请实施例提供的PCR荧光检测仪的组装结构示意图;
图3为本申请实施例提供的PCR反应管的位置分布图;
图4为本申请实施例提供的60℃加热板的结构示意图;
图5为本申请实施例提供的95℃加热板的结构示意图;
图6为本申请实施例提供的四组光路通道示意图;
符号表示:
1-电路装置,2-光路装置,3-中空内腔,4-第一通孔,5-60℃加热板,6-第二通孔,7-95℃加热板,8-第三通孔,9-检测电路板,10-光发射器,11-光接收器,12-第一壳体,13-第二壳体,14-第一上壳体,15-第一下壳体,16-第一反光镜,17-第二上壳体,18-第二下壳体,19-第二反光镜,20-第一滤镜,21-第一透镜,22-第二滤镜,23-第二透镜,24-第一下板,25-第一电阻,26-第一上板,27-第二下板,28-第二电阻,29-第二上板,30-光路装置底座,31-散热板,32-散热风扇,33-PCR反应管。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以 下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
请参考附图1和附图2,附图1示出了本发明实施例提供的PCR荧光检测仪的分装结构示意图,附图2示出了本发明实施例提供的PCR荧光检测仪的组装结构示意图。
本发明实施例提供的PCR荧光检测仪包括电路装置1和光路装置2,光路装置2设置在电路装置1上表面上,其中,电路装置1用于发出PCR荧光检测的光线及接收荧光,进而分析PCR扩增DNA后的产物总量;光路装置2用于提供光线及荧光的行走路线,即提供光路。
具体地,电路装置1包括检测电路板9、光发射器10和光接收器11,检测电路板9为基板,光发射器10和光接收器11均设置在检测电路板9的上表面上。光发射器10用于发出照射到PCR反应管33上的光线,PCR反应管33内的荧光物质受到光线的激发后产生荧光,产生的荧光由光接收器11接收,光接收器11将接收的荧光转化为电信号,进而分析出DNA扩增后的产物总量。
进一步,光发射器10和检测电路板9中心之间的连线垂直于光接收器11和检测电路板9中心之间的连线,以使光发射器10发出的光线激发荧光分子产生的荧光能够被光接收器11接收,且不存在荧光信号强弱的差异。
在本发明实施例中,光路装置2包括第一壳体12和第二壳体13,第一壳体12和第二壳体13均是中空的,以便于内部设置镜片。具体地,第一壳体12包括平行于检测电路板9的第一上壳体14以及垂直于检测电路板9的第一下壳体15,第一上壳体14和第一下壳体15通过第一反光镜16相连接;第二壳体13包括平行于检测电路板9的第二上壳体17以及垂直于检测电路板9的第二下壳体18,第二上壳体17和第二下壳体18通过第二反光镜19相连接。第一反光镜16和第二反光镜19能够将光发射器10发出的光线反射到PCR反应管33上,进而使得PCR反应管33内的荧光分子接收光照强弱相同的激发光,产生荧光强度相同的荧光,避免因荧光强弱不同而影响PCR检测。
根据光发射器10和光接收器11在检测电路板9上位置的设置,第一壳体12和第二壳体13也相互垂直,即第一上壳体14和第二上壳体17相互垂直,以配合光发射器10和检测电路板9形成完整的发出光路和接收光路。由于光路装置2 的顶部具有第一通孔4,因而,第一上壳体14和第二上壳体17的端部相互垂直,且不相连。
进一步,第一下壳体15的内部设置第一滤镜20和第一透镜21,且第一透镜21位于第一滤镜20和光发射器10之间。第二下壳体18的内部设置第二滤镜22和第二透镜23,且第二透镜23位于第二滤镜22和光接收器11之间。第一滤镜20和第二滤镜22分别用于滤除光发射器10和荧光分子所发出的光照,进而得到使用所需要的光照颜色,如红光、绿光或黄光等。第一透镜21用于将光发射器10发出的光照凝聚后照射到第一反光镜16上,便于产生较强的光照。第二透镜23用于将通过第二反光镜19分散的光束凝聚为一束较强的光照,进而便于光接收器11将荧光信号转换为电信号。
在本发明实施例提供的PCR荧光检测仪中,光路装置2的内部具有中空内腔3,中空内腔3用于放置95℃加热板7,以使95℃加热板7对PCR反应管33的底部加热,PCR反应管33中底部的PCR反应液具有95℃的温度。光路装置2的顶部设置有60℃加热板5,以使60℃加热板5对PCR反应管33的管口处加热,PCR反应管33中PCR反应液液面处具有60℃的温度。
光路装置2的顶部具有与中空内腔3相连通的第一通孔4,60℃加热板5的中心设置有第二通孔6,同样的,95℃加热板7的中心设置有第三通孔8。第一通孔4、第二通孔6以及第三通孔8均用于放置PCR反应管33,且95℃加热板7位于PCR反应管33的底部,60℃加热板5位于PCR反应管33的管口位置,具体请参考附图3。为便于PCR反应管33的放置,第一通孔4、第二通孔6以及第三通孔8的中心在同一直线上。
由于PCR反应管33管口处的温度为60℃,底部的温度为95℃,因而PCR反应液在密闭的PCR反应管33中在重力方向上呈现温度梯度。由于温度梯度的存在使得上下两层PCR反应液的密度不同,继而形成密度梯度。密度梯度能够产生对抗重力、内腔壁及内摩擦力的浮力,进而使得PCR反应管33底部的高温PCR反应液向顶部的低温PCR反应液流动,顶部的低温PCR反应液向底部的高温PCR反应液流动,形成一个循环。由于底部95℃加热板7的加热,使得上述循环不断进行,PCR反应液也不断经历高温、低温,从而使PCR反应液中的DNA完成特定温度下的扩增,而不需要频繁改变加热温度以达到特定温度下的扩增,这能够加快PCR反应速度,缩短PCR检测时间。
请参考附图4和附图5,附图4和附图5分别示出了60℃加热板5和95℃加热板7的结构示意图。
60℃加热板5包括由下而上依次设置的第一下板24、第一电阻25和第一上板26,其中,第一下板24和第一上板26为固定板,用于固定第一电阻25。第一电阻25采用埋阻方式设置在第一下板24和第一上板26之间,从而起到加热的作用。第一电阻25围绕第二通孔6均匀设置,进而通过第二通孔6加热PCR反应管33中的PCR反应液。第一电阻25的数量可以根据电阻的大小具体设置。
95℃加热板7包括由下而上依次设置的第二下板27、第二电阻28和第二上板29,其中,第二下板27和第二上板29为固定板,用于固定第二电阻28。第二电阻28采用埋阻方式设置在第二下板27和第二上板29之间,从而起到加热的作用。第二电阻28围绕第三通孔8均匀设置,进而通过第三通孔8加热PCR反应管33中的PCR反应液。同样的,第二电阻28的数量可以根据电阻的大小具体设置。
本发明实施例提供的PCR荧光检测仪还包括光路装置底座30,光路装置底座30设置在光路装置2的外表面,进而起到保护光路装置2的作用。为便于光路装置底座30能够较好地保护光路装置2,光路装置底座30的内部结构与光路装置2的外部结构相吻合。
由于光路装置2的顶部设置有60℃加热板5,第一反光镜16和第二反光镜19距离60℃加热板5较近;且光路装置2的内部设置有95℃加热板7,第一滤镜20、第一透镜21、第二滤镜22以及第二透镜23均距离95℃加热板7较近,因而经过长时间使用后,第一反光镜16、第二反光镜19以及第一滤镜20等镜片在高温的作用下容易发生变形,而变形后的镜片严重影响PCR荧光检测。为防止第一反光镜16、第二反光镜19以及第一滤镜20等镜片发生变形,本发明实施例提供的PCR荧光检测仪还包括散热板31和散热风扇32。散热板31设置在60℃加热板5的顶部,以带走第一反光镜16和第二反光镜19附近的热量,同时带走95℃加热板7产生的部分热量。散热风扇32设置在光路装置底座30的外表面,且散热风扇32与95℃加热板7位于同一水平面上,以带走95℃加热板7产生的热量,进而避免第一反光镜16等镜片发生变形。
本发明实施例提供的PCR荧光检测仪的检测过程为:将盛装有混合好的PCR反应液的PCR反应管33放置于第一通孔4、第二通孔6以及第三通孔8内,启 动60℃加热板5和95℃加热板7加热,以形成流体对流,DNA不断扩增。同时,在DNA不断扩增的过程中,光发射器10发出光束照射在第一透镜21上,第一透镜21凝聚光束后穿过第一滤镜20,以得到所需要的光照颜色。确定光照颜色的光束照射在第一反光镜16上,第一反光镜16将光束均匀地分为光照强弱相同的多束光线,多束光线经90°反射后照射在PCR反应管33上,PCR反应管33内的荧光分子接收光照强弱相同的激发光,进而产生荧光强度相同的荧光。PCR反应管33不同方位发出的荧光照射在第二反光镜19上,第二反光镜19将荧光90°反射后照射在第二滤镜22上,以滤除其余光色的光束。经第二滤镜22滤光的光束照射在第二透镜23上,第二透镜23聚光后由光接收器11接收,进而将荧光信号转换为电信号,完成PCR荧光检测。
在上述检测过程中,荧光分子能够接收光照强弱相同的激发光,进而产生荧光强度相同的荧光,避免因荧光强弱不同而影响PCR检测。
在本发明实施例提供的PCR荧光检测仪中,检测电路板9上设置四组光发射器10和光接收器11,以形成四组光发出、接收组合。相应的,光路装置2包括四组第一壳体12和第二壳体13,四组光发射器10和光接收器11和四组第一壳体12和第二壳体13形成四组光路通道,具体请参考附图6,其中,1至4为光发射器10,1-1至4-4为光接收器11。
四组光发射器10和光接收器11在检测电路板9上呈圆形分布,每两组光发射器10相邻设置,且与其余两组光发射器10相对设置,如附图6中的1与2相邻设置,3与4相邻设置,但1、2与3、4相对设置。由于光发射器10和检测电路板9中心之间的连线垂直于光接收器11和检测电路板9中心之间的连线,因而每两组光接收器11相邻设置,且与其余两组光接收器11相对设置,如附图6中的1-1与2-2相邻设置,3-3与4-4相邻设置,但1-1、2-2与3-3、4-4相对设置。当然,光发射器10和光接收器11并不局限于四组,第一壳体12和第二壳体13也不局限于四组,其它组数的设置也在本申请保护的范围内。
在本发明实施例提供的PCR荧光检测仪扩增、检测DNA的过程中,PCR反应管33中放置四组不同的DNA分子,针对四组不同的DNA分子分别标记不同的荧光分子;四组光路通道能够分别提供不同的光路以及激发荧光分子荧光的光束,进而本发明实施例提供的PCR荧光检测仪能够同时检测四种不同的DNA分子。在检测四组不同的DNA分子时,控制四组光发射器10和光接收器11的开 启及关闭时间,使相邻两组光发射器10和光接收器11的开启及关闭时间之间存在时差,进而便于不同的光接收器11接收相应的荧光,避免PCR荧光检测仪出现检测误差。
在本发明提供的上述各实施例中,光发射器10优选为发光二极管,光接收器11优选为光电二极管。
本领域技术人员在考虑说明书及实践这里发明的公开后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本发明未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种PCR荧光检测仪,其特征在于,所述检测仪包括电路装置(1)以及设置在所述电路装置(1)上表面上的光路装置(2);
    所述光路装置(2)的内部具有中空内腔(3),所述光路装置(2)的顶部具有与所述中空内腔(3)相连通的第一通孔(4);
    所述光路装置(2)的顶部设置有60℃加热板(5),所述60℃加热板(5)的中心设置有第二通孔(6);
    所述中空内腔(3)中设置有95℃加热板(7),所述95℃加热板(7)的中心设置有第三通孔(8);
    所述第一通孔(4)、所述第二通孔(6)和所述第三通孔(8)的中心在同一直线上。
  2. 根据权利要求1所述的PCR荧光检测仪,其特征在于,所述电路装置(1)包括检测电路板(9)、光发射器(10)和光接收器(11),所述光发射器(10)与所述光接收器(11)设置在所述检测电路板(9)上,且所述光发射器(10)与所述检测电路板(9)中心之间的连线垂直于所述光接收器(11)与所述检测电路板(9)中心之间的连线。
  3. 根据权利要求2所述的PCR荧光检测仪,其特征在于,所述检测电路板(9)上设置四组所述光发射器(10)和所述光接收器(11),四组所述光发射器(10)和所述光接收器(11)在所述检测电路板(9)上呈圆形分布;每两组所述光发射器(10)相邻接,且与其余两组所述光发射器(10)相对设置。
  4. 根据权利要求2或3所述的PCR荧光检测仪,其特征在于,所述光发射器(10)为发光二极管,所述光接收器(11)为光电二极管。
  5. 根据权利要求2所述的PCR荧光检测仪,其特征在于,所述光路装置(2)包括均中空的第一壳体(12)和第二壳体(13),其中,
    所述第一壳体(12)包括平行于所述检测电路板(9)的第一上壳体(14)和垂直于所述检测电路板(9)的第一下壳体(15),所述第一上壳体(14) 和所述第一下壳体(15)通过倾斜的第一反光镜(16)相连接;
    所述第二壳体(13)包括平行于所述检测电路板(9)的第二上壳体(17)和垂直于所述检测电路板(9)的第二下壳体(18),所述第二上壳体(17)和所述第二下壳体(18)通过倾斜的第二反光镜(19)相连接;
    所述第一上壳体(14)和所述第二上壳体(17)相互垂直,且所述第一上壳体(14)和所述第二上壳体(17)的端部不相连。
  6. 根据权利要求5所述的PCR荧光检测仪,其特征在于,
    所述第一下壳体(15)的内部设置第一滤镜(20)和第一透镜(21),所述第一透镜(21)位于所述第一滤镜(20)和所述光发射器(10)之间;
    所述第二下壳体(18)的内部设置第二滤镜(22)和第二透镜(23),所述第二透镜(23)位于所述第二滤镜(22)和所述光接收器(11)之间。
  7. 根据权利要求6所述的PCR荧光检测仪,其特征在于,所述光路装置(2)包括四组所述第一壳体(12)和所述第二壳体(13),四组所述第一壳体(12)和所述第二壳体(13)围绕所述第一通孔(4)周向均匀分布。
  8. 根据权利要求1所述的PCR荧光检测仪,其特征在于,所述60℃加热板(5)包括由下而上依次设置的第一下板(24)、第一电阻(25)和第一上板(26);所述95℃加热板(7)包括由下而上依次设置的第二下板(27)、第二电阻(28)和第二上板(29)。
  9. 根据权利要求1-3、5-8中任一项所述的PCR荧光检测仪,其特征在于,检测仪还包括光路装置底座(30),所述光路装置底座(30)的内部结构与所述光路装置(2)的外部结构相吻合。
  10. 根据权利要求9所述的PCR荧光检测仪,其特征在于,所述检测仪还包括散热板(31)和散热风扇(32),所述散热板(31)设置在所述60℃加热板(5)的顶部,所述散热风扇(32)设置在所述光路装置底座(30)的外表面,且所述散热风扇(32)与所述95℃加热板(7)位于同一水平面上。
PCT/CN2016/112961 2016-12-29 2016-12-29 一种pcr荧光检测仪 WO2018119848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112961 WO2018119848A1 (zh) 2016-12-29 2016-12-29 一种pcr荧光检测仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112961 WO2018119848A1 (zh) 2016-12-29 2016-12-29 一种pcr荧光检测仪

Publications (1)

Publication Number Publication Date
WO2018119848A1 true WO2018119848A1 (zh) 2018-07-05

Family

ID=62710181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112961 WO2018119848A1 (zh) 2016-12-29 2016-12-29 一种pcr荧光检测仪

Country Status (1)

Country Link
WO (1) WO2018119848A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304051A (zh) * 2020-02-20 2020-06-19 珠海黑马生物科技有限公司 一种pcr仪及使用方法
CN113604328A (zh) * 2021-08-09 2021-11-05 圣湘生物科技股份有限公司 扩增检测装置及扩增检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100008476A (ko) * 2008-07-16 2010-01-26 연세대학교 산학협력단 실시간 모니터링이 가능한 pcr 장치 및 이를 이용한pcr 모니터링 방법
CN102465093A (zh) * 2010-11-12 2012-05-23 索尼公司 反应处理装置与反应处理方法
CN102586098A (zh) * 2012-02-29 2012-07-18 北京工业大学 一种面向空间的微体积单位的实时荧光pcr工作系统
CN103173434A (zh) * 2011-12-23 2013-06-26 厦门万泰沧海生物技术有限公司 一种在恒温热源下进行聚合酶链式反应的方法及装置
CN103421688A (zh) * 2012-05-25 2013-12-04 财团法人工业技术研究院 聚合酶连锁反应装置
CN105925476A (zh) * 2016-04-23 2016-09-07 北京化工大学 基于手机检测的便携式等温核酸分析装置
CN106635785A (zh) * 2016-12-29 2017-05-10 湖南圣湘生物科技有限公司 一种pcr荧光检测仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100008476A (ko) * 2008-07-16 2010-01-26 연세대학교 산학협력단 실시간 모니터링이 가능한 pcr 장치 및 이를 이용한pcr 모니터링 방법
CN102465093A (zh) * 2010-11-12 2012-05-23 索尼公司 反应处理装置与反应处理方法
CN103173434A (zh) * 2011-12-23 2013-06-26 厦门万泰沧海生物技术有限公司 一种在恒温热源下进行聚合酶链式反应的方法及装置
CN102586098A (zh) * 2012-02-29 2012-07-18 北京工业大学 一种面向空间的微体积单位的实时荧光pcr工作系统
CN103421688A (zh) * 2012-05-25 2013-12-04 财团法人工业技术研究院 聚合酶连锁反应装置
CN105925476A (zh) * 2016-04-23 2016-09-07 北京化工大学 基于手机检测的便携式等温核酸分析装置
CN106635785A (zh) * 2016-12-29 2017-05-10 湖南圣湘生物科技有限公司 一种pcr荧光检测仪

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111304051A (zh) * 2020-02-20 2020-06-19 珠海黑马生物科技有限公司 一种pcr仪及使用方法
CN111304051B (zh) * 2020-02-20 2023-08-11 珠海黑马生物科技有限公司 一种pcr仪及使用方法
CN113604328A (zh) * 2021-08-09 2021-11-05 圣湘生物科技股份有限公司 扩增检测装置及扩增检测方法
CN113604328B (zh) * 2021-08-09 2024-04-09 圣湘生物科技股份有限公司 扩增检测装置及扩增检测方法

Similar Documents

Publication Publication Date Title
JP7352525B2 (ja) 複数の蛍光源からの信号放出を検出するための装置
Sreejith et al. Digital polymerase chain reaction technology–recent advances and future perspectives
AU2016200907B2 (en) Three-stage thermal convection apparatus and uses thereof
KR101040489B1 (ko) 실시간 모니터링이 가능한 pcr 장치
US9897546B2 (en) Device for optically measuring fluorescence of nucleic acids in test samples and use of the device
CN106635785B (zh) 一种pcr荧光检测仪
KR101802460B1 (ko) 유전자 진단 장치
JP6442543B2 (ja) 熱対流型ポリメラーゼ連鎖反応の装置
US20140065702A1 (en) Polymerase chain reaction
US7670834B2 (en) Gas thermal cycler
CN102890073B (zh) 光学检测器
WO2018119848A1 (zh) 一种pcr荧光检测仪
JP2013033008A (ja) 光学分析装置及び光学分析方法
US8409532B2 (en) Apparatus for insulated isothermal polymerase chain reaction
US20220137392A1 (en) Light module
EP2728010B1 (en) Thermal convection polymerase chain reaction device
TWI693393B (zh) 多色螢光偵測裝置
CN214830257U (zh) 基因扩增设备
WO2021261322A1 (ja) 核酸測定装置及び核酸測定方法
JP6833846B2 (ja) 波長走査装置およびその使用方法
CN215218549U (zh) 荧光检测装置
KR20150007030A (ko) Pcr 장치
CN217733135U (zh) 一种快速实时荧光定量pcr仪
KR20230046616A (ko) Tir 렌즈를 포함하는 타깃 분석물 검출장치
CN220044003U (zh) 散热模组及检测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925181

Country of ref document: EP

Kind code of ref document: A1