WO2018117337A1 - 태양전지용 냉각장치 - Google Patents

태양전지용 냉각장치 Download PDF

Info

Publication number
WO2018117337A1
WO2018117337A1 PCT/KR2017/003430 KR2017003430W WO2018117337A1 WO 2018117337 A1 WO2018117337 A1 WO 2018117337A1 KR 2017003430 W KR2017003430 W KR 2017003430W WO 2018117337 A1 WO2018117337 A1 WO 2018117337A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
heat dissipation
cell module
heat
air
Prior art date
Application number
PCT/KR2017/003430
Other languages
English (en)
French (fr)
Inventor
이재혁
Original Assignee
이재혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이재혁 filed Critical 이재혁
Publication of WO2018117337A1 publication Critical patent/WO2018117337A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a solar cell cooling device, and more particularly, to a solar cell cooling device arranged in the solar cell module to allow the cooling of the solar cell module by the air convection circulation.
  • Photovoltaic power generation using a plurality of solar cell modules is widely used as renewable energy, but has a disadvantage in that power generation efficiency is lowered due to an increase in temperature when receiving sunlight. With respect to this temperature rise, it is generally reported that whenever the temperature rises by 10 ° C, the power generation efficiency of the thin film solar cell decreases by 2% and that of the crystalline solar cell decreases by 5%. In addition, the temperature of the rear side of the solar cell module has a greater effect on the power generation efficiency.
  • a method of efficiently cooling a solar cell module by arranging a plurality of heat dissipation fins on a rear surface of the solar cell module to increase a heat exchange area and a contact area with a cooling water is disclosed (for example, Patent Publication No. 10-2011). -0001457 (published Jan. 6, 2011) “solar cell heat dissipation cooling apparatus” and Published Patent Publication No. 10-2009-0080322 (published July 24, 2009) "solar cell heat dissipation cooling sheet”].
  • the present invention has been made in view of the related art, and has an object to provide a cooling device for a solar cell having a simple structure using an air convection circulation while reducing driving costs and improving cooling efficiency.
  • Solar cell cooling device for achieving the above object is attached to one side of the solar cell module as a solar cell cooling device for cooling by emitting heat of the solar cell module to the outside, the solar cell
  • the heat dissipation substrate is attached to one surface of the module, and each having a predetermined length and a predetermined length extending in the longitudinal direction and a plurality of heat dissipation fins arranged on the heat dissipation substrate to be spaced apart from each other of the solar cell module
  • the cover may include a cover that integrally surrounds the heat dissipation member to form a plurality of funnels each having a hollow extending along the heat dissipation member.
  • the plurality of funnels may have inlet and exhaust ports and openings at both ends. And an air passage formed as an inner space between the exhaust ports, and the space of the air passages may be configured to narrow gradually from the intake port toward the exhaust port, and external air introduced into the intake port is discharged from each of the plurality of heat radiating fins.
  • the solar cell module receives and transfers heat and is discharged from the exhaust port as the flow rate is gradually accelerated while passing through the air passage.
  • the predetermined height of the plurality of heat dissipation fins may be gradually lowered toward the exhaust port from the inlet port.
  • the separation distance between the plurality of heat dissipation fins may be gradually smaller toward the exhaust port from the intake port.
  • the heat dissipation substrate may be integrated with the cover.
  • the solar cell cooling apparatus is a solar cell cooling apparatus attached to one surface of the solar cell module for cooling by emitting heat of the solar cell module to the outside, one surface of the solar cell module And a plurality of heat dissipation fins arranged on the heat dissipation substrate so as to have a heat dissipation substrate attached to the heat dissipation substrate, and having a predetermined height and a predetermined length extending in a longitudinal direction, and arranged to be spaced apart from each other.
  • the cover may include a cover that integrally surrounds the heat dissipation member to form a plurality of funnels each having a hollow extending along the heat dissipation member.
  • the plurality of funnels may have inlet and exhaust ports and openings at both ends. And an air passage formed as an inner space between the exhaust ports, and the space of the air passages may be configured to be gradually narrowed toward the exhaust port from the intake port, and disposed to be adjacent to the intake port to blow external air into the intake port.
  • a blower means further comprising a power source of the blower means, the blower means being disposed adjacent to the inlet port to draw external air into the inlet port; It may further include a power source of the blowing means, the outside air is forced into the intake vent when the blower is in operation, the natural air intake into the intake vent when the blower is inactive, the outside air introduced into the intake vent
  • the solar cell module receives and transfers heat from the solar cell module discharged from each of the plurality of heat sink fins and is discharged to the outside from the exhaust port as the flow rate is gradually accelerated while passing through the air passage.
  • the power source is one surface is attached to the solar cell module is applied the first temperature of the solar cell module and the other side is connected to the underground, fluid or external cooling means of the underground, fluid or external cooling means
  • the second temperature may be applied to generate a thermoelectric element generated by a difference between the first temperature and the second temperature.
  • the predetermined height of the plurality of heat dissipation fins may be gradually lowered toward the exhaust port from the inlet port.
  • the separation distance between the plurality of heat dissipation fins may be gradually smaller toward the exhaust port from the intake port.
  • the solar cell cooling device is attached to one surface of the solar cell module is a solar cell cooling device for cooling by releasing the heat of the solar cell module to the outside, one of the solar cell module A heat dissipation substrate attached to the surface, and a plurality of heat dissipation fins arranged on the heat dissipation substrate so as to have a shape having a predetermined height and a predetermined length extending in a longitudinal direction, and spaced apart from each other.
  • a heat radiating member for emitting An air inlet and an exhaust port disposed in contact with an upper portion of each of the plurality of heat dissipation fins and extending at both ends thereof, and an air passage formed into an inner space between the intake and exhaust ports, wherein the intake port has a larger cross-sectional area than the exhaust port;
  • the cross-sectional area of the furnace may include a convection guide tube made of a sloped funnel configured to gradually decrease from the inlet port toward the exhaust port, and external air introduced into the inlet port of the convection guide tube may be formed from each of the plurality of heat dissipation fins.
  • the solar cell module receives and transfers heat and is discharged from the exhaust port as the flow rate is gradually accelerated while passing through the air passage.
  • the solar cell cooling device may further include: a blowing means arranged to be adjacent to the intake port to draw external air into the intake port, and a power source of the blower means; Forced intake into the intake vents and natural intake into the intake vents when the blower is inactive.
  • the power source is one surface is attached to the solar cell module is applied the first temperature of the solar cell module and the other side is connected to the underground, fluid or external cooling means of the underground, fluid or external cooling means
  • the second temperature may be applied to generate a thermoelectric element generated by a difference between the first temperature and the second temperature.
  • the present invention is a novel structure for cooling the solar cell module using the convection circulation of the atmosphere by attaching to the back of the panel of the solar cell module, the natural air circulation mode by non-powered driving and forced air circulation mode by power driving One or more of them can be selectively driven, thereby reducing driving costs and improving cooling efficiency while having a simple structure.
  • FIG. 1 is a perspective view showing the configuration of a solar cell cooling apparatus of the present invention showing that the cover is covered on a heat sink provided with a plurality of heat dissipation fins in the solar cell cooling apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing that the solar cell cooling device of Figure 1 is attached to the rear of the solar cell module.
  • FIG 3 is a side view showing that the solar cell cooling device of Figure 1 is attached to the rear of the solar cell module.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 3.
  • FIG. 5 is a side view showing that the solar cell module with the solar cell cooling device of Figure 1 is installed on the support.
  • Figure 6 is a side view showing a cooling device for a solar cell according to a second embodiment of the present invention.
  • FIG. 7 is a partially enlarged cross-sectional view of FIG. 6.
  • FIG. 8 is a perspective view showing one heat dissipation fin configuration in the solar cell cooling apparatus according to the third embodiment of the present invention.
  • FIG. 9 is a perspective view showing that the solar cell cooling apparatus according to the third embodiment of the present invention is attached to the rear of the solar cell module.
  • FIG. 10 is a side view showing that the solar cell cooling apparatus according to the third embodiment of the present invention is attached to the rear of the solar cell module.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. 10.
  • FIG. 12 is a side view showing that a solar cell module with a cooling device for solar cells according to a third embodiment of the present invention is installed on a support.
  • the present invention vertically arranges a plurality of heat dissipation fins parallel to the rear of the solar cell module in a vertical direction and has a wide bottom portion and a narrow upper portion, and covers the upper and lower portions of the heat dissipation fins so that the upper and lower portions of the heat dissipation fins are parallel.
  • the top is formed with a number of narrow beveled funnels.
  • a plurality of heat dissipation fins are arranged in parallel to the rear of the solar cell module in a vertical direction, and the lower part is wide and the upper part is narrow and parallel to the end of each of the heat dissipation fins.
  • This formed convection induction pipe is constructed.
  • a cooling device for a convective circulation solar cell which allows efficient cooling of the solar cell module while convective circulation of the cooled air around the convection through the inclined funnel of the convection induction pipe.
  • Figures 1 to 5 show a cooling device according to a first embodiment of the present invention
  • Figure 1 is a perspective view showing the configuration of the cooling device of the present invention showing that the cover is covered on a heat sink provided with a plurality of heat radiation fins
  • 2 is a perspective view showing that the cooling apparatus of the present invention is attached to the rear of the solar cell module.
  • the solar cell cooling apparatus includes a heat dissipation substrate 14 attached to a rear panel 12 of a solar cell module 10 that is generally plate-shaped, and the heat dissipation substrate 14. It includes a plurality of heat radiation fins 16 arranged over the upper surface of the.
  • This heat dissipation substrate 14 and heat dissipation fins 16 may generally be of any known thermally conductive material, including aluminum.
  • the heat dissipation substrate 14 is closely attached to the panel 12 by a thermally conductive adhesive material, and the thermally conductive adhesive material is one of epoxy, acrylic resin, glass, polyvinyl chloride, polyethylene, polystyrene, polycarbonate, and silicon.
  • the present invention is not limited thereto, and all known thermally conductive adhesive materials generally used may be used.
  • the plurality of heat dissipation fins 16 have a vertical shape with respect to the solar cell module 10 and a length extending in the longitudinal direction, respectively.
  • the plurality of heat dissipation fins 16 are arranged at a predetermined distance from each other, in particular, the plurality of heat dissipation fins 16 from the position where the air enters from the position into which the air escapes from the arrangement of the heat dissipation fins 16.
  • the height of is designed to be gradually lowered.
  • a cover 20 having a side portion 18 is covered on an upper portion of the arrangement of the plurality of heat dissipation fins 16, and the side portion 18 of the cover 20 is bonded, welded, or screwed to the heat dissipation substrate 14.
  • the arrangement structure is fixed by being fixed by the fixture.
  • the cover 20 may also be generally comprised of all known thermally conductive materials, including aluminum.
  • the plate-shaped heat dissipation substrate 14 and the cover 20 are partitioned by a plurality of heat dissipation fins 16, the upper and lower portions of which are opened, and the height of the heat dissipation fins 16 from the inlet port 22 to the exhaust port 24.
  • a plurality of inclined funnels 26 are formed so as to be gradually lowered, and thus the air passages become narrower.
  • Such a solar cell module 10 is installed on a suitable support 28 to produce solar power (best shown in Figure 5).
  • FIG. 3 is a side view illustrating the solar cell cooling apparatus of the present invention attached to the rear surface of the solar cell module
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. Is a side view showing that the solar cell module with a cooling device for solar cells of the present invention is installed on a support.
  • a plurality of heat dissipation fins 16 are arranged therein, and the height of each of the heat dissipation fins 16 is inlet 22. It is designed to gradually decrease from the exhaust port 24 to the exhaust port 24, and eventually narrow the air passage. As a result, the flow rate of the air intaken and exhausted in the air passage of the funnel 26 is greatly increased. That is, the heat generated from the solar cell module 10 is transmitted to the plurality of heat dissipation fins 16, and the heat is dissipated, so that the air sucked into the wide intake port 22 is gradually narrowed by the so-called chimney effect of the inclined funnel 26.
  • the flow velocity of the air is accelerated through the air passage and exhausted through the narrow exhaust port 24, thereby accelerating the natural convection circulation and the solar cell module 10 is effectively cooled. Therefore, according to this embodiment, since the flow rate of the intake and exhaust air is accelerated, cooling can be achieved by natural convection circulation without a separate power source.
  • the present invention in addition to forming the height of the heat radiation fins 16 from the inlet 22 to the exhaust port 24 as described above, instead of Alternatively, the air passage may be formed to be narrower by arranging the separation distance between the heat dissipation fins 16 from the intake port 22 toward the exhaust port 24. That is, in the latter case, the width of the inlet port 22 is formed to be relatively wider than the width of the exhaust port 24, and each of the heat dissipation fins 16 has a narrower separation distance from each other toward the exhaust port 24 from the inlet port 22. Lose.
  • the heat dissipation substrate 14 may be integral with or separate from the cover 20 as a part forming the bottom surface of the cover 20 as part of the cover 20.
  • cover 20 is shown in a rectangular cross-sectional shape for convenience in FIGS. 1 and 2, the present invention is not limited thereto, and the cover 20 is an inner space between the heat dissipation substrate 14 and the plurality of heat dissipation fins 16 and the cover 20. Any shape that can form the funnel 26 can be applied to the cover 20.
  • the above structure of the present invention is a structure capable of natural convection circulation itself has a good cooling efficiency, but as another embodiment of the present invention further by adding a separate blowing means to add a forced circulation of the atmosphere cooling efficiency Can be further increased.
  • FIGS. 6 and 7 illustrate a cooling apparatus in which a natural convection circulation and a forced circulation are combined according to the second embodiment of the present invention.
  • FIG. 6 is a structural diagram of the cooling apparatus, and FIG. Partial enlarged cross section.
  • the cooling device according to the second embodiment of the present invention shares the structure of the cooling device shown in FIGS. 1 to 5, but the blower 30 is located near the intake port 22 of the funnel 26. ) Is further arranged to force the atmosphere into the inlet port 22 by the power of the blower 30.
  • the cooling device of the present embodiment is accelerated due to the air passage structure that narrows toward the exhaust port 26 after the atmosphere is forced into the intake port 22, the exhaust velocity is accelerated and exhausted from the exhaust port 26 to double the cooling efficiency. Can be.
  • the cooling device further includes a thermoelectric element 32 disposed on the rear of the rear panel 12 of the solar cell module 10, whereby the power source of the blower 30 is the thermoelectric element 32
  • the solar cell module 10 is supplied with electric power generated from heat generated. Therefore, according to the present embodiment, it is not necessary to have an external power source separately to drive the blower 30.
  • the thermoelectric element 32 may be any known thermoelectric element that generally uses the Seebeck effect, which is generated by the difference between the two external temperatures applied thereto.
  • one surface 32a of the thermoelectric element 32 is provided on the rear panel 12 of the solar cell module 10 that generates heat.
  • the other side 32b is attached to the lead portion 38 in which the ground connection portion 34 is embedded in the ground 36 and extended.
  • the lead portion 38 and the ground connection portion 34 may be made of a known thermally conductive material, and the attachment may be made through, for example, a thermally conductive adhesive material.
  • the thermoelectric element 32 is thermoelectrically generated due to a temperature difference between one surface 32a in contact with the heat generating unit and the other surface 32b in contact with the ground 36. ).
  • FIG. 7 shows a structure in which the other surface 32b of the thermoelectric element 32 receives the temperature of the ground 36 through the ground connection portion 34 embedded in the ground 36, but the present invention is limited thereto.
  • the ground connection portion 34 of the lead portion 38 is configured to float in a fluid containing water or cooling water other than the ground 36, or a relatively low external temperature in contact with other known cooling means. It may be applied to the other surface 32b of the thermoelectric element 32.
  • thermoelectric element 32 may be selectively attached to a portion having a high heat generation temperature on the rear panel 12 of the solar cell module 10, and as another example, the thermoelectric element 32 may extend to cover the full width or less than the full width of the panel 12 of the solar cell module 10 to have a structure having a width equal to or less than the full width of the panel 12, and a lead portion attached thereto. (38) may also have a corresponding size.
  • the present embodiment may further include a voltage adjusting circuit (not shown) to supply electric power matched to the rating of the blower 30, and may be electrically connected to the blower 30.
  • a voltage adjusting circuit (not shown) to supply electric power matched to the rating of the blower 30, and may be electrically connected to the blower 30.
  • thermoelectric element 32 is capable of generating power from the solar heat incident on the solar cell module 10 and accumulated at a predetermined level or more, driving the blower 30 to cool the atmosphere. (26) It can be forced in and can be cooled regardless of the weather. Naturally, when the thermoelectric element 32 is unable to generate power to supply electric power to the blower 30, external air is naturally supplied to the intake port 22 according to the first embodiment illustrated in FIGS. 1 to 5. By entering, it performs cooling function.
  • 8 to 12 show a solar cell cooling apparatus according to a third embodiment of the present invention.
  • 8 exemplarily shows only one heat dissipation fin 116 in the cooling apparatus according to the third embodiment of the present invention.
  • a plurality of heat dissipation fins 116 are arranged on the heat dissipation substrate 114, and the heat dissipation substrate 114 is attached to the rear panel 112 of the solar cell module 110.
  • the heat dissipation fin 116 is in the form of a plate, and when viewed from the disposed position, the width becomes narrower toward the bottom and wider toward the top.
  • a convection guide tube 140 in which an inclined funnel 126 is formed along its entire length is installed at the end of the heat dissipation fin 116.
  • This convection guide tube 140 is in the form of a rectangular cross section that is wider toward the bottom and narrower toward the top when viewed from the disposed position, and thus the inclined funnel 126 formed therein has a wide intake port at the bottom thereof.
  • 122 and an upper, relatively narrow exhaust port 124 are formed. That is, the inclined funnel 126 which induces convection of air to substantially cool the heat dissipation fin 116 is formed by the convection induction tube 140 directly installed on the heat dissipation fin 116.
  • each convective conduit 140 disposed on each of the heat dissipation fins 116 is gradually smaller in cross-section size from the lower inlet 122 to the upper exhaust port 124. Eventually, since the air passage becomes narrower, the air passing through the funnel 26 increases the flow velocity toward the exhaust port 124.
  • heat generated from the solar cell module 110 is radiated through the plurality of heat dissipation fins 116, and the heat dissipated is carried by the air sucked into the wide inlet 122 by the chimney effect of the inclined funnel 126.
  • the exhaust gas is exhausted through the narrow exhaust port 124, thereby accelerating the natural convection circulation and effectively cooling the solar cell module 110. Therefore, since the flow rate of the intake and exhaust air in the inclined funnel 126 is accelerated, cooling can be achieved by natural convection circulation without a separate power source.
  • each of the heat dissipation fins 116 on which the convection guide body 140 having the inclined funnel 126 is formed is coupled to the heat dissipation substrate 114.
  • the heat dissipation substrate 114 is coupled to the rear panel 112 of the solar cell module 110, the solar cell module 110 may be installed on a suitable support 128 for photovoltaic power generation.
  • the cross-sectional shape of the funnel 126 is shown as a square cross-sectional shape for convenience in FIGS. 8 and 9, the present invention is not limited thereto, and all the cross-sectional shapes that can be formed in a plurality of arrays while allowing convection circulation described above (for example, a honeycomb of hexagonal cross section) may be applied to the funnel 126.
  • the present invention is a novel structure that cools the solar cell module using the convection circulation of the atmosphere by attaching to the rear of the panel of the solar cell module, the natural air circulation mode by the non-powered driving and forced air by the power drive Since one or more of the circulation modes can be selectively driven, the driving cost is reduced and the cooling efficiency is improved while having a simple structure.
  • the second embodiment of the present invention shown in Figures 6 and 7 in the present specification is a blower 30 disposed near the inlet port 22 of the funnel 26 as a power source generated from the thermoelectric element 32.
  • a conventional power source for example, an external power source or a battery. It will also be included in the scope of the present invention.
  • a power source and a blower (such as a thermoelectric element 32) in the same manner as the second embodiment of the present invention shown in FIGS. 30) may be additionally arranged to selectively drive one or more of the natural air circulation mode by no-power drive and the forced air circulation mode by power drive.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지모듈에 배치하여 공기의 대류순환에 의한 태양전지모듈의 냉각이 이루어질 수 있도록 한 태양전지용 냉각장치에 관한 것으로 무동력 구동에 의한 자연적인 공기순환 모드와 동력 구동에 의한 강제적 공기순환 모드 중의 하나 이상을 선택적으로 구동할 수 있는 간단한 구조를 가지면서도 구동비용이 절감되고 냉각효율이 개선된 여러 실시형태들을 개시한다. 일 실시형태에 의한 태양전지용 냉각장치는 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀과, 상기 방열기판 및 상기 복수의 방열핀 각각과 함께 내부에 각각 길이 연장된 중공으로 되는 복수의 펀넬을 형성하도록 상기 복수의 방열핀 전체를 일체로 에워싼 커버를 포함하고, 상기 복수의 펀넬은 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖고 외부의 공기가 상기 흡기구로 인입하여 상기 공기통로를 지나 상기 배기구로 배출되며, 상기 공기통로의 공간은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 좁아지도록 구성되고 상기 흡기구로 인입한 상기 외부의 공기는 상기 공기통로를 지나면서 유속이 가속된다.

Description

태양전지용 냉각장치
본 발명은 태양전지용 냉각장치에 관한 것으로, 특히 태양전지모듈에 배치하여 공기의 대류순환에 의한 태양전지모듈의 냉각이 이루어질 수 있도록 한 태양전지용 냉각장치에 관한 것이다.
복수의 태양전지모듈을 이용하는 태양광 발전은 신 재생에너지로 널리 보급되고 있으나 태양광의 수광시 온도가 상승하여 발전효율이 저하되는 단점을 갖는다. 이러한 온도상승에 관하여, 일반적으로 온도가 10℃ 상승할 때마다 박막형 태양전지의 경우 2%의 발전효율이 떨어지고 결정질 태양전지의 경우 5%의 발전효율이 저하된다고 보고된다. 또한, 태양전지 모듈의 전면보다 후면의 온도가 발전효율에 미치는 영향이 더 크다.
위와 같은 발전효율의 저하를 방지하기 위해 제시된 방안으로서, 태양전지모듈의 전면에 스프레이식 살수장치를 설치하거나 태양전지모듈의 후면에 히트 파이프를 부착하여 냉각수를 순환시키는 방식이 개시되어있다[예컨대, 특허 제10-1037301호(2011. 5. 26 공고) "태양전지 모듈 냉각장치" 및 공개특허공보 제10-2009-0125478호(2009.12. 7 공개) "태양전지판용 냉각장치"].
다른 방안으로서는, 태양전지모듈의 후면에 복수의 방열핀을 배치하여 열교환면적을 넓히고 냉각수와의 접촉면적을 넓혀 태양전지모듈을 효율적으로 냉각시키는 방식이 개시되어있다[예컨대, 공개특허공보 제10-2011-0001457호(2011. 1. 6 공개) "태양전지 방열 냉각 장치" 및 공개특허공보 제10-2009-0080322호(2009. 7. 24 공개) "태양전지 방열 냉각시트"].
그러나, 이들 종래기술은 태양전지모듈의 후면에 복수의 방열핀을 배치하여 냉각수의 접촉면적을 넓히고자 한 것에 지나지 않으며, 이들 장치의 경우 냉각수의 강제공급을 위한 수단을 별도로 필요로 하여 구동 비용이 크게 증가하고 전체 장치의 부피가 증가하므로 유리하지 않다.
본 발명은 종래의 이와 같은 점을 감안하여 창안한 것으로, 대기의 대류순환을 이용하여 간단한 구조를 가지면서도 구동비용이 절감되고 냉각효율이 개선된 태양전지용 냉각장치를 제공하는데 그 목적이 있다.
위와 같은 과제를 달성하기 위한 본 발명의 일 측면에 의한 태양전지용 냉각장치는 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치로서, 상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀을 포함하여 상기 태양전지모듈의 열을 방출하는 방열부재와; 상기 방열부재와 함께 내부에 각각 길이 연장된 중공으로 되는 복수의 펀넬을 형성하도록 상기 방열부재를 일체로 에워싼 커버를 포함할 수 있고, 상기 복수의 펀넬은 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖고 상기 공기통로의 공간은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 좁아지도록 구성될 수 있으며, 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출된다.
또한, 상기 복수의 방열핀의 상기 소정의 높이는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 낮아질 수 있다.
또한, 상기 복수의 방열핀 간의 이격 거리는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아질 수 있다.
또한, 상기 방열기판은 상기 커버와 일체를 이룰 수 있다.
또한, 본 발명의 다른 일 측면에 의한 태양전지용 냉각장치는 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치로서, 상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀을 포함하여 상기 태양전지모듈의 열을 방출하는 방열부재와; 상기 방열부재와 함께 내부에 각각 길이 연장된 중공으로 되는 복수의 펀넬을 형성하도록 상기 방열부재를 일체로 에워싼 커버를 포함할 수 있고, 상기 복수의 펀넬은 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖고 상기 공기통로의 공간은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 좁아지도록 구성될 수 있으며, 상기 흡기구에 인접하도록 배치되어 상기 흡기구에 외부의 공기를 인입시키는 송풍수단과; 상기 송풍수단의 전력원을 더 포함할 수 있고, 상기 흡기구에 인접하도록 배치되어 상기 흡기구에 외부의 공기를 인입시키는 송풍수단과; 상기 송풍수단의 전력원을 더 포함할 수 있고, 외부의 공기는 상기 송풍수단의 가동시 상기 흡기구 내로 강제 흡기되고 상기 송풍수단의 비가동시 상기 흡기구 내로 자연 흡기되며, 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출된다.
또한, 위 전력원은 일면은 상기 태양전지모듈에 부착되어 상기 태양전지모듈의 제1온도가 인가되고 다른 일면은 지중, 유체 또는 외부의 냉각수단에 연결되어 상기 지중, 유체 또는 외부의 냉각수단의 제2온도가 인가되며 상기 제1온도 및 제2온도 간의 차이에 의해 발전하는 열전소자로 될 수 있다.
또한, 상기 복수의 방열핀의 상기 소정의 높이는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 낮아질 수 있다.
또한, 상기 복수의 방열핀 간의 이격 거리는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아질 수 있다.
또한, 본 발명의 또 다른 일 측면에 의한 태양전지용 냉각장치는 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치로서, 상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀을 포함하고, 상기 태양전지모듈의 열을 방출하는 방열부재와; 상기 복수의 방열핀 각각의 상부에 접촉하도록 배치되고, 길이 연장되어 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖되, 상기 흡기구는 상기 배기구보다 단면적이 더 크고 상기 공기통로의 단면적은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아지도록 구성된 경사형 펀넬로 이루어진 대류유도관체를 포함할 수 있고, 상기 대류유도관체의 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출될 수 있다.
또한, 상기 태양전지용 냉각장치는 상기 흡기구에 인접하도록 배치되어 상기 흡기구에 외부의 공기를 인입시키는 송풍수단과, 상기 송풍수단의 전력원을 더 포함하고, 외부의 공기는 상기 송풍수단의 가동시 상기 흡기구 내로 강제 흡기되고 상기 송풍수단의 비가동시 상기 흡기구 내로 자연 흡기될 수 있다.
또한, 상기 전력원은 일면은 상기 태양전지모듈에 부착되어 상기 태양전지모듈의 제1온도가 인가되고 다른 일면은 지중, 유체 또는 외부의 냉각수단에 연결되어 상기 지중, 유체 또는 외부의 냉각수단의 제2온도가 인가되며 상기 제1온도 및 제2온도 간의 차이에 의해 발전하는 열전소자로 될 수 있다.
본 발명은 태양전지모듈의 패널의 후면에 부착하여 대기의 대류순환을 이용하여 상기 태양전지모듈을 냉각하는 신규한 구조로서, 무동력 구동에 의한 자연적인 공기순환 모드와 동력 구동에 의한 강제적 공기순환 모드 중의 하나 이상을 선택적으로 구동할 수 있어 간단한 구조를 가지면서도 구동비용이 절감되고 냉각효율이 개선된다.
도 1은 본 발명의 제1 구현예에 따른 태양전지용 냉각장치에 있어서 복수의 방열핀이 구비된 방열판 상에 커버가 씌워진 것을 보인 본 발명 태양전지용 냉각장치의 구성을 보인 사시도이다.
도 2는 도 1의 태양전지용 냉각장치가 태양전지모듈의 후면에 부착된 것을 보인 사시도이다.
도 3은 도 1의 태양전지용 냉각장치가 태양전지모듈의 후면에 부착된 것을 보인 측면도이다.
도 4는 도 3의 IV-IV선 단면도이다.
도 5는 도 1의 태양전지용 냉각장치가 구비된 태양전지모듈이 지지대 상에 설치된 것을 보인 측면도이다.
도 6은 본 발명의 제2 구현예에 따른 태양전지용 냉각장치를 보인 측면도이다.
도 7은 도 6의 부분확대단면도이다.
도 8은 본 발명의 제3 구현예에 따른 태양전지용 냉각장치에 있어서 하나의 방열핀 구성을 보인 사시도이다.
도 9는 본 발명의 제3 구현예에 따른 태양전지용 냉각장치가 태양전지모듈의 후면에 부착되는 것을 보인 사시도이다.
도 10은 본 발명의 제3 구현예에 따른 태양전지용 냉각장치가 태양전지모듈의 후면에부착된 것을 보인 측면도이다.
도 11은 도 10의 XI-XI선 단면도이다.
도 12는 본 발명의 제3 구현예에 따른 태양전지용 냉각장치가 구비된 태양전지모듈이 지지대 상에 설치된 것을 보인 측면도이다.
본 발명은 일 관점에서 태양전지모듈의 후면에 상하방향으로 수직이고 하부는 넓고 상부는 좁은 다수의 방열핀을 평행하게 배치하고, 이들 방열핀 상에 상하부가 개방되게 커버를 씌워 각 방열핀 사이에 하부는 넓고 상부는 좁은 다수의 경사형 펀넬(funnel)이 형성된다. 이로써, 이들 경사형 펀넬을 통하여 주위의 냉각된 공기가 하부로부터 상부로 대류순환이 이루어지면서 태양전지모듈의 효율적인 냉각이 이루어질 수 있도록 한 대류순환식 태양전지용 냉각장치가 제공된다.
본 발명은 다른 일 관점에서 태양전지모듈의 후면에 상하방향으로 수직이고 하부는 넓고 상부는 좁은 다수의 방열핀을 평행하게 배치하고 이들 각각의 방열핀의 단부에 하부는 넓고 상부는 좁은 다수의 경사형 펀넬이 형성된 대류유도관체를 착설한다. 이러한 대류유도관체의 경사형 펀넬을 통하여 주위의 냉각된 공기가 하부로부터 상부로 대류순환이 이루어지면서 태양전지모듈의 효율적인 냉각이 이루어질 수 있도록 한 대류순환식 태양전지용 냉각장치가 제공된다.
이하, 본 발명의 여러 구현예들을 도면을 참조하며 상세히 설명한다.
먼저, 도 1 내지 도 5는 본 발명의 제1 구현예에 따른 냉각장치를 보인 것으로, 도 1은 복수의 방열핀이 구비된 방열판 상에 커버가 씌워지는 것을 보인 본 발명 냉각장치의 구성을 보인 사시도이고, 도 2는 본 발명의 냉각장치가 태양전지모듈의 후면에 부착되는 것을 보인 사시도이다.
도 1 및 도 2를 참조하면, 본 발명에 의한 태양전지용 냉각장치는 일반적으로 판상인 태양전지모듈(10)의 후면패널(12)에 부착된 방열기판(14)과, 이 방열기판(14)의 상면에 걸쳐 배열된 복수의 방열핀(16)을 포함한다. 이러한 방열기판(14)과 방열핀(16)은 일반적으로 알루미늄을 포함한 모든 공지된 열전도성 물질로 될 수 있다.
상기 방열기판(14)은 열전도성 접착물질로 패널(12)에 밀착되게 부착되며, 이러한 열전도성 접착물질로는 에폭시, 아크릴 수지, 유리, 폴리염화비닐, 폴리에틸렌, 폴리스티렌, 폴리카보네이트 및 실리콘 중의 하나 이상으로 될 수 있으나 본 발명은 이에 한정되지 아니하고 일반적으로 사용되는 모든 공지된 열전도성 접착물질이 사용될 수 있다.
상기 복수의 방열핀(16)은 각각 태양전지모듈(10)에 대해 상하 연직하고 길이방향으로 연장된 길이를 갖는 형상으로 된다. 또한, 상기 복수의 방열핀(16)은 서로 간에 소정의 이격 거리를 두어 배열되되, 특히 이들 방열핀(16)의 배열구조에 대기가 들어가는 위치로부터 대기가 빠져나가는 위치로 갈수록 상기 복수의 방열핀(16)의 높이는 점점 낮아지도록 설계된다. 상기 복수의 방열핀(16)의 배열구조의 상부에는 측면부(18)를 갖는 커버(20)가 씌워지고 상기 커버(20)의 측면부(18)가 상기 방열기판(14)에 접착, 용접 또는 스크류 등의 고정구에 의하여 고정됨으로써 상기 배열구조를 고정한다. 상기 커버(20) 역시 일반적으로 알루미늄을 포함한 모든 공지된 열전도성 물질로 구성될 수 있다.
이리함으로써, 판상의 방열기판(14)과 커버(20) 사이에는 복수의 방열핀(16)으로 구획되고 상 하부가 개방되며 상기 방열핀들(16)의 높이를 흡기구(22)로부터 배기구(24)로 갈수록 낮아지도록 형성하여 이로써 공기통로가 점점 좁아지는 구조로 되는 복수의 경사형 펀넬(26)이 형성된다. 그리고. 이와 같은 태양전지모듈(10)은 적당한 지지대(28)상에 설치되어 태양광 발전이 이루어진다(도 5에 가장 잘 도시됨).
이러한 본 발명의 구조를 설명하는 도면으로서, 도 3은 태양전지모듈의 후면에 본 발명의 태양전지용 냉각장치가 부착된 것을 보인 측면도이고, 도 4는 도 3의 IV-IV선 단면도이며, 도 5는 본 발명의 태양전지용 냉각장치가 구비된 태양전지모듈이 지지대 상에 설치된 것을 보인 측면도이다.
도 3 및 도 5를 참조하여 더 상세히 설명하면, 상기 복수의 경사형 펀넬(26)의 구조는 내부에 복수의 방열핀(16)이 배열되되 상기 방열핀들(16) 각각의 높이가 흡기구(22)로부터 배기구(24)로 갈수록 점차 낮아져 결국 공기통로가 갈수록 점차 좁아지도록 설계된다. 이로써, 상기 펀넬(26)의 공기통로에 흡기되어 배기되는 공기의 유속이 크게 증가하게 된다. 즉, 태양전지모듈(10)에서 발생한 열이 복수의 방열핀(16)에 전달되어 방열이 이루어지면서 경사형 펀넬(26)의 소위 굴뚝 효과에 의하여 넓은 흡기구(22)로 흡기되는 공기가 점점 좁아지는 공기통로를 통해 그의 유속이 가속되어 좁은 배기구(24)를 통해 배기되면서 가속화된 자연적 대류순환이 이루어지고 태양전지모듈(10)이 효과적으로 냉각된다. 따라서, 이러한 본 구현예에 의하면, 흡기 및 배기되는 공기의 유속이 가속되므로 별도의 동력원이 없이 자연적 대류순환에 의하여 냉각이 이루어질 수 있다.
또한, 위 도 3 및 도 5 구조의 변형 실시예로서, 본 발명은 위와 같이 상기 방열핀들(16)의 높이를 흡기구(22)로부터 배기구(24)로 갈수록 낮아지도록 형성하는 것 외에, 이 대신에 아니면 이에 부가하여 상기 방열핀들(16) 간의 이격거리를 흡기구(22)로부터 배기구(24)로 갈수록 좁아지게 배열함으로써 공기통로가 점점 좁아지도록 형성할 수도 있다. 즉, 후자의 경우, 흡기구(22)의 폭은 배기구(24)의 폭보다 상대적으로 넓게 형성되며 각 방열핀들(16)은 흡기구(22)에서 배기구(24)를 향해 갈수록 서로 간의 이격거리가 좁아진다.
또한, 상기 방열기판(14)은 상기 커버(20)의 일부로서 상기 커버(20)의 저면을 이루는 부분으로서 상기 커버(20)와 일체로 될 수 있거나 별개로 될 수 있다.
또한, 상기 커버(20)는 도 1 및 도 2에서는 편의상 사각 단면 형상으로 도시하였지만, 본 발명은 이에 한정되지 않고 방열기판(14)과 복수의 방열핀(16) 및 커버(20) 간에 내부공간으로서 펀넬(26)을 형성할 수 있는 모든 형상이 상기 커버(20)에 적용될 수 있다.
한편, 본 발명의 위와 같은 구조는 자연적 대류순환이 가능한 구조로서 그 자체가 양호한 냉각효율을 갖지만, 본 발명의 다른 일 구현예로서 나아가 별도의 송풍수단을 부가하여 대기의 강제 순환을 부가함으로써 냉각효율을 한층 더 증가시킬 수 있다.
즉, 도 6과 도 7은 본 발명의 제2 구현예에 의하여 자연적 대류순환과 강제순환이 결합된 방식의 냉각장치를 보인 것으로, 도 6은 상기 냉각장치의 구조도이고, 도 7은 도 6의 부분확대단면도이다.
도 6과 도 7을 참조하면, 본 발명의 제2 구현예에 따라 냉각장치는 도 1 내지 도 5에서 보인 냉각장치의 구조를 공유하되, 펀넬(26)의 흡기구(22) 부근에 송풍기(30)를 더 부가 배치함으로써 상기 송풍기(30)의 동력에 의해 대기를 흡기구(22)로 강제 인입시킨다. 이리하면, 본 구현예의 냉각장치는 대기가 흡기구(22)로 강제 흡기된 후 배기구(26)를 향해 갈수록 좁아지는 공기통로 구조로 인해 그 유속이 가속되어 배기구(26)에서 배기됨으로써 냉각효율이 배가될 수 있다.
그리고, 상기 냉각장치는 태양전지모듈(10)의 후면패널(12)의 후면에 배치된 열전소자(32)를 더 포함하며, 이로써 상기 송풍기(30)의 전력원은 이 열전소자(32)가 상기 태양전지모듈(10)로부터 발생하는 열로부터 발전하는 전력으로 공급된다. 따라서, 본 구현예에 의하면 상기 송풍기(30)를 구동하기 위해 별도로 외부의 전력원을 갖출 필요가 없다.
더 상세하게는, 상기 열전소자(32)는 일반적으로 이에 각각 인가되는 두 외부 온도 간의 차에 의해 발전하는 제베크(Seebeck) 효과를 이용하는 모든 공지된 열전소자로 될 수 있다. 특히 본 구현예에 있어서, 열전소자(32)에 인가되는 외부온도 간의 차를 크게 하기 위하여 상기 열전소자(32)의 일면(32a)은 발열하는 태양전지모듈(10)의 후면패널(12)에 부착되고 다른 일면(32b)은 지면연결부(34)가 지중(36)에 매입되어 연장된 리드부(38)에 부착된다. 이러한 리드부(38)와 지면연결부(34)는 공지의 열전도성 물질로 구성될 수 있고, 상기 부착은 일 예로서 열전도성 접착물질을 통하여 이루어질 수 있다. 이리하여, 상기 열전소자(32)는 발열부에 접촉하는 일면(32a)과 지중(36)에 접촉하는 다른 일면(32b) 간의 온도차이로 인하여 열전 발전하며, 이렇게 발전한 전력원으로 상기 송풍기(30)를 구동하게 된다.
여기서, 도 7은 상기 열전소자(32)의 다른 일면(32b)이 지중(36)에 매입된 지면연결부(34)를 통해 지중(36)의 온도를 인가받는 구조를 보이나, 본 발명은 이에 한정되지 아니하고 이외에도 상기 리드부(38)의 지면연결부(34)는 지중(36)이 아닌 물이나 냉각수를 포함한 유체 내에서 부유하도록 구성되거나 또는 다른 공지의 냉각수단에 접촉하여 상대적으로 저온의 외부 온도가 상기 열전소자(32)의 다른 일면(32b)에 인가되도록 할 수도 있다.
또한, 일 예로서 상기 열전소자(32)의 일면(32a)은 태양전지모듈(10)의 후면패널(12)에서 발열온도가 높은 부위에 선택적으로 부착될 수 있고, 다른 일 예로서 상기 열전소자(32)는 태양전지모듈(10)의 패널(12)의 전폭 또는 전폭 미만에 걸치도록 연장되어 상기 패널(12)의 전폭과 동일하거나 그 미만인 폭의 구조를 가질 수 있고, 이에 부착되는 리드부(38) 역시 이에 상응하는 크기를 가질 수 있다.
또한, 본 구현예는 상기 송풍기(30)의 정격에 맞추어진 전력을 공급하기 위하여 전압조정회로(도시하지 않았음)를 더 포함하고 이를 통하여 송풍기(30)에 전기적으로 연결될 수 있다.
이러한 본 구현예에 따르면, 대기가 흡기구(22)로 강제 흡기된 후 배기구(24)를 향해 갈수록 좁아지는 공기통로 구조로 인해 그 유속이 가속되면서 배기구(24)에서 배기됨으로써 냉각효율이 배가될 수 있다. 또한, 날씨에 따른 태양광의 충분한 정도에 상관없이 태양전지모듈(10)에 입사하여 임의 수준 이상 축적된 태양열로부터도 상기 열전소자(32)는 발전 가능하여 송풍기(30)를 구동하여 대기를 상기 펀넬(26) 내로 강제 인입시킬 수 있으므로 날씨에 관계 없이도 냉각 가능하다. 당연하지만, 상기 열전소자(32)가 발전이 불가능하여 전력을 상기 송풍기(30)에 공급하지 못할 경우에는 도 1~5에 도시한 제1 구현예에 따라 자연적으로 외부 공기가 흡기구(22)에 유입됨으로써 냉각기능을 수행한다.
도 8 내지 도 12는 본 발명의 제3 구현예에 따른 태양전지용 냉각장치를 보인 것이다. 도 8은 본 발명의 제3 구현예에 따른 냉각장치에서 단 하나의 방열핀(116)만을 예시적으로 보인다. 이러한 방열핀(116)은 도 9에서 보인 바와 같이 방열기판(114)에 다수가 배열되고 이 방열기판(114)은 태양전지모듈(110)의 후면패널(112)에 부착된다.
상기 방열핀(116)은 판상의 형태이고 배치된 위치에서 보았을 때 하부로 갈수록 폭이 좁아지고 상부로 갈수록 폭이 넓어지는 형태이다. 이러한 방열핀(116)의 단부에는 그 전체 길이를 따라서 경사형 펀넬(126)이 형성된 대류유도관체(140)가 착설된다. 이와 같은 대류유도관체(140)는 배치된 위치에서 보았을 때 하부로 갈수록 폭이 넓고 상부로 갈수록 폭이 좁아지는 사각 단면의 형태이고, 따라서 그 내부에 형성된 경사형 펀넬(126)은 하부의 넓은 흡기구(122)와 상부의 상대적으로 좁은 배기구(124)가 형성된다. 즉, 실질적으로 방열핀(116)의 냉각이 이루어질 수 있도록 공기의 대류를 유도하는 경사형 펀넬(126)은 직접 방열핀(116)에 착설되는 대류유도관체(140)에 의하여 형성된다.
본 구현예에서, 각 방열핀(116) 상에 배치된 각 대류유도관체(140)의 경사형 펀넬(126)은 하부의 흡기구(122)로부터 상부의 배기구(124)로 갈수록 단면크기가 점차 작아져 결국 공기통로가 갈수록 좁아지므로, 상기 펀넬(26)을 통과하는 공기는 배기구(124)를 향하여 유속이 크게 증가한다.
즉, 태양전지모듈(110)에서 발생한 열이 복수의 방열핀(116)을 통하여 방열되고, 이 방열된 열은 경사형 펀넬(126)의 굴뚝 효과에 의하여 넓은 흡기구(122)로 흡기되는 공기에 실려 점점 좁아지는 공기통로를 통해 유속이 가속되면서 좁은 배기구(124)를 통해 배기되므로, 가속화된 자연적 대류순환이 이루어지고 태양전지모듈(110)이 효과적으로 냉각된다. 따라서, 경사형 펀넬(126)에서 흡기 및 배기되는 공기의 유속이 가속되므로 별도의 동력원이 없이 자연적 대류순환에 의하여 냉각이 이루어질 수 있다.
또한, 전술한 앞서의 구현예들과 마찬가지로, 본 구현예 역시 경사형 펀넬(126)이 형성된 대류유도관체(140)가 상부에 배치된 각 방열핀(116)은 방열기판(114)에 결합되며, 이러한 방열기판(114)은 태양전지모듈(110)의 후면패널(112)에 결합되고, 이 태양전지모듈(110)은 태양광 발전을 위하여 적당한 지지대(128)상에 설치될 수 있다.
또한, 상기 펀넬(126)의 단면 형상은 도 8 및 도 9에서는 편의상 사각 단면 형상으로 도시하였으나, 본 발명은 이에 한정되지 않고 위에서 기술한 대류순환이 가능하면서 복수의 배열로 형성가능한 모든 단면 형상(예컨대, 육각 단면의 벌집형상)이 상기 펀넬(126)에 적용될 수 있다.
위와 같이 본 발명은 태양전지모듈의 패널의 후면에 부착하여 대기의 대류순환을 이용하여 상기 태양전지모듈을 냉각하는 신규한 구조로서, 무동력 구동에 의한 자연적인 공기순환 모드와 동력 구동에 의한 강제적 공기순환 모드 중의 하나 이상을 선택적으로 구동할 수 있으므로, 간단한 구조를 가지면서도 구동비용이 절감되고 냉각효율이 개선된다.
본 발명의 바람직한 구현예 및 실시예는 예시의 목적을 위해 개시된 것이며, 해당 분야에서 통상의 지식을 가진 자라면 누구나 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이고, 이러한 수정, 변경, 부가 등은 특허청구범위에 속하는 것으로 보아야 한다.
일 예로서, 본 명세서에서 도 6과 도 7에 도시한 본 발명의 제2 구현예는 열전소자(32)에서 발전한 전력원으로 펀넬(26)의 흡기구(22) 부근에 배치된 송풍기(30)를 구동하는 구조로 기재하지만, 이 외에도 상기 열전소자(32) 대신에 통상의 전력원(예컨대, 외부전원 또는 배터리)을 사용하여 상기 송풍기(30)를 구동할 수 있음은 통상의 기술자에게는 지극히 당연할 것이고 본 발명의 범위는 이 또한 포함한다.
다른 일 예로서, 도 12에 도시한 본 발명의 제3 구현예에 있어서 도 6과 도 7에 도시한 본 발명의 제2 구현예와 동일한 방식으로 열전소자(32) 등의 전력원과 송풍기(30)를 부가 배치하여 무동력 구동에 의한 자연적인 공기순환 모드와 동력 구동에 의한 강제적 공기순환 모드 중의 하나 이상을 선택적으로 구동할 수도 있다.

Claims (11)

  1. 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치에 있어서,
    상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀을 포함하여 상기 태양전지모듈의 열을 방출하는 방열부재와;
    상기 방열부재와 함께 내부에 각각 길이 연장된 중공으로 되는 복수의 펀넬을 형성하도록 상기 방열부재를 일체로 에워싼 커버를 포함하고,
    상기 복수의 펀넬은 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖고 상기 공기통로의 공간은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 좁아지도록 구성되며, 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출되는 것을 특징으로 하는 태양전지용 냉각장치.
  2. 제1항에 있어서,
    상기 복수의 방열핀의 상기 소정의 높이는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 낮아지는 것을 특징으로 하는 태양전지용 냉각장치.
  3. 제1항에 있어서,
    상기 복수의 방열핀 간의 이격 거리는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아지는 것을 특징으로 하는 태양전지용 냉각장치.
  4. 제1항에 있어서,
    상기 방열기판은 상기 커버와 일체를 이루는 것을 특징으로 하는 태양전지용 냉각장치.
  5. 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치에 있어서,
    상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기 방열기판상에 배열된 복수의 방열핀을 포함하여 상기 태양전지모듈의 열을 방출하는 방열부재와;
    상기 방열부재와 함께 내부에 각각 길이 연장된 중공으로 되는 복수의 펀넬을 형성하도록 상기 방열부재를 일체로 에워싼 커버를 포함하고,
    상기 복수의 펀넬은 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖고 상기 공기통로의 공간은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 좁아지도록 구성되며,
    상기 흡기구에 인접하도록 배치되어 상기 흡기구에 외부의 공기를 인입시키는 송풍수단과;
    상기 송풍수단의 전력원을 더 포함하며,
    외부의 공기는 상기 송풍수단의 가동시 상기 흡기구 내로 강제 흡기되고 상기 송풍수단의 비가동시 상기 흡기구 내로 자연 흡기되며, 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출되는 것을 특징으로 하는 태양전지용 냉각장치.
  6. 제5항에 있어서,
    상기 전력원은 일면은 상기 태양전지모듈에 부착되어 상기 태양전지모듈의 제1온도가 인가되고 다른 일면은 지중, 유체 또는 외부의 냉각수단에 연결되어 상기 지중, 유체 또는 외부의 냉각수단의 제2온도가 인가되며 상기 제1온도 및 제2온도 간의 차이에 의해 발전하는 열전소자로 되는 것을 특징으로 하는 태양전지용 냉각장치.
  7. 제5항에 있어서,
    상기 복수의 방열핀의 상기 소정의 높이는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 낮아지는 것을 특징으로 하는 태양전지용 냉각장치.
  8. 제5항에 있어서,
    상기 복수의 방열핀 간의 이격 거리는 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아지는 것을 특징으로 하는 태양전지용 냉각장치.
  9. 태양전지모듈의 일 면에 부착되어 상기 태양전지모듈의 열을 외부로 방출하여 냉각하는 태양전지용 냉각장치에 있어서,
    상기 태양전지모듈의 일 면에 부착되는 방열기판과, 각각 소정의 높이와 길이방향으로 연장된 소정의 길이를 갖는 형상으로 되고 서로 간에 이격하도록 상기방열기판상에 배열된 복수의 방열핀을 포함하고, 상기 태양전지모듈의 열을 방출하는 방열부재와;
    상기 복수의 방열핀 각각의 상부에 접촉하도록 배치되고, 길이 연장되어 양단에 개방된 흡기구 및 배기구와 상기 흡기구 및 배기구 간의 내부공간으로 된 공기통로를 갖되, 상기 흡기구는 상기 배기구보다 단면적이 더 크고 상기 공기통로의 단면적은 상기 흡기구로부터 상기 배기구를 향하여 갈수록 점차 작아지도록 구성된 경사형 펀넬로 이루어진 복수의 대류유도관체를 포함하고,
    상기 복수의 대류유도관체의 상기 흡기구로 인입한 외부의 공기는 상기 복수의 방열핀 각각으로부터 방출되는 상기 태양전지모듈의 열을 전달받아 이송하고 상기 공기통로를 지나면서 유속이 점차 가속되면서 상기 배기구로부터 외부로 배출되는 것을 특징으로 하는 태양전지용 냉각장치.
  10. 제9항에 있어서,
    상기 흡기구에 인접하도록 배치되어 상기 흡기구에 외부의 공기를 인입시키는 송풍수단과;
    상기 송풍수단의 전력원을 더 포함하고,
    외부의 공기는 상기 송풍수단의 가동시 상기 흡기구 내로 강제 흡기되고 상기 송풍수단의 비가동시 상기 흡기구 내로 자연 흡기되는 것을 특징으로 하는 태양전지용 냉각장치.
  11. 제10항에 있어서,
    상기 전력원은 일면은 상기 태양전지모듈에 부착되어 상기 태양전지모듈의 제1온도가 인가되고 다른 일면은 지중, 유체 또는 외부의 냉각수단에 연결되어 상기 지중, 유체 또는 외부의 냉각수단의 제2온도가 인가되며 상기 제1온도 및 제2온도 간의 차이에 의해 발전하는 열전소자로 되는 것을 특징으로 하는 태양전지용 냉각장치.
PCT/KR2017/003430 2016-12-22 2017-03-29 태양전지용 냉각장치 WO2018117337A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160176638 2016-12-22
KR10-2016-0176638 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018117337A1 true WO2018117337A1 (ko) 2018-06-28

Family

ID=62626841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003430 WO2018117337A1 (ko) 2016-12-22 2017-03-29 태양전지용 냉각장치

Country Status (1)

Country Link
WO (1) WO2018117337A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108705839A (zh) * 2018-07-05 2018-10-26 北京汉能光伏投资有限公司 冷却装置和太阳能电池层压机
CN111969946A (zh) * 2019-12-12 2020-11-20 蔡禹泽 一种太阳能光伏接线盒
EP3890184A1 (en) 2020-04-03 2021-10-06 The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin A heat sink and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060124038A (ko) * 2005-05-30 2006-12-05 삼성에스디아이 주식회사 히트싱크 및 이를 구비한 디스플레이 패널
JP2007166721A (ja) * 2005-12-12 2007-06-28 Hikita Kogyo Kk 発電装置
KR20100007240A (ko) * 2008-07-11 2010-01-22 공주대학교 산학협력단 공기집열식 태양광발전장치
KR20130077305A (ko) * 2011-12-29 2013-07-09 주식회사 승원엔지니어링 태양광 모듈의 냉각장치
KR101651651B1 (ko) * 2015-06-22 2016-08-26 (주)일렉트코리아 태양전지 패널 냉각 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060124038A (ko) * 2005-05-30 2006-12-05 삼성에스디아이 주식회사 히트싱크 및 이를 구비한 디스플레이 패널
JP2007166721A (ja) * 2005-12-12 2007-06-28 Hikita Kogyo Kk 発電装置
KR20100007240A (ko) * 2008-07-11 2010-01-22 공주대학교 산학협력단 공기집열식 태양광발전장치
KR20130077305A (ko) * 2011-12-29 2013-07-09 주식회사 승원엔지니어링 태양광 모듈의 냉각장치
KR101651651B1 (ko) * 2015-06-22 2016-08-26 (주)일렉트코리아 태양전지 패널 냉각 시스템

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108705839A (zh) * 2018-07-05 2018-10-26 北京汉能光伏投资有限公司 冷却装置和太阳能电池层压机
CN108705839B (zh) * 2018-07-05 2023-12-12 东君新能源有限公司 冷却装置和太阳能电池层压机
CN111969946A (zh) * 2019-12-12 2020-11-20 蔡禹泽 一种太阳能光伏接线盒
CN111969946B (zh) * 2019-12-12 2021-11-12 杭州雅洲智能科技有限公司 一种太阳能光伏接线盒
EP3890184A1 (en) 2020-04-03 2021-10-06 The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin A heat sink and uses thereof
WO2021198521A1 (en) 2020-04-03 2021-10-07 The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin A heat exchanger and uses thereof

Similar Documents

Publication Publication Date Title
WO2012144777A2 (ko) 무동력 냉각형 태양전지판
ES2382007T3 (es) Inversor
WO2018117337A1 (ko) 태양전지용 냉각장치
WO2018018794A1 (zh) Led灯的散热系统
WO2017135541A1 (ko) 공기집열식 pvt 컬렉터
CN209358435U (zh) 一种紧凑型svg功率单元
CN204167420U (zh) 一种锂离子电池及锂离子电池包
CN107004919A (zh) 电池及具有该电池的无人飞行器
WO2011002213A2 (ko) 태양광 발전장치
JP2007166721A (ja) 発電装置
WO2014007411A1 (ko) 다수의 히트싱크가 구비된 엘이디 방열체
CN109004312A (zh) 电池热管理系统
WO2009151251A2 (ko) 태양전지모듈
KR20200065295A (ko) 배터리 모듈의 다중 적층 구조에 냉각 도구를 구비하는 배터리 팩
CN217825775U (zh) 充电设备
WO2021239043A1 (zh) 散热设备
WO2024019456A1 (ko) 조명등용 소켓
WO2013157807A1 (ko) 방열모듈, 이를 이용한 방열장치 및 방열장치의 제조방법
CN210349974U (zh) 一种新型电池模组散热装置
CN210689812U (zh) 一种单光子探测装置
WO2024010171A1 (ko) 복합발전을 이용한 조명장치
CN217064366U (zh) 一种风扇多风道结构
CN117154295A (zh) 电池模组
CN110518877A (zh) 太阳能热电联产装置
CN207231021U (zh) 一种用于抗光衰炉的水冷冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884028

Country of ref document: EP

Kind code of ref document: A1