WO2018117322A1 - Switched-capacitor integrator using single gain buffer - Google Patents

Switched-capacitor integrator using single gain buffer Download PDF

Info

Publication number
WO2018117322A1
WO2018117322A1 PCT/KR2017/000128 KR2017000128W WO2018117322A1 WO 2018117322 A1 WO2018117322 A1 WO 2018117322A1 KR 2017000128 W KR2017000128 W KR 2017000128W WO 2018117322 A1 WO2018117322 A1 WO 2018117322A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
positive
negative
gain buffer
single gain
Prior art date
Application number
PCT/KR2017/000128
Other languages
French (fr)
Korean (ko)
Inventor
안길초
곽용식
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2018117322A1 publication Critical patent/WO2018117322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals
    • G06G7/184Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements

Definitions

  • the present invention relates to an integrator using a single gain buffer, and more particularly to a single gain buffer based switched-capacitor integrator capable of low power and small area implementation at high speeds.
  • Integrator circuits are critical blocks used in the implementation of application circuits such as analog computers, analog-to-digital converters, and wave shaping. It can be divided into integrator and discrete-time integrator.
  • the DT integrator uses a switched-capacitor circuit technique to obtain relatively accurate coefficients of the transfer function, making it easy to design, especially in delta-sigma analog-to-digital converters, which have less impact on clock jitter than CT integrators. Has the advantage of receiving.
  • the application of the DT integrator is much limited in applications requiring a wide bandwidth such as a mobile communication system.
  • the DT integrator's operating clock rate must be several hundred MHz or more.
  • the bandwidth design requirements of the amplifier are required. Due to this very wide power consumption, there is a problem that the area occupied by the circuit increases.
  • the problem to be solved by the present invention is to provide a technical means that can obtain a wider bandwidth than the switched-capacitor integrator consisting of a conventional closed loop.
  • the integrator is implemented using a relatively simple source-follower as a single gain buffer to realize small area and low power in the DT integrator of high-speed operation.
  • the integrator's structure is implemented in an open-loop using a single gain buffer, eliminating the overhead incurred by feedback in the traditional closed-loop integrator, compared to the integrator of the conventional capacitor-feedback structure. Implement faster high speed operation.
  • the existing capacitor Faster high-speed operation is possible compared to the integrator with feedback structure.
  • the total area of the DT integrator can be reduced, and power consumption is reduced. It can also be reduced.
  • 1 is a detailed circuit diagram and timing diagram of an integrator using a single gain buffer according to an embodiment of the present invention.
  • FIGS. 2A through 2C are detailed circuit diagrams and timing diagrams of respective phases of an integrator according to an embodiment of the present invention.
  • FIG 3 illustrates a single gain buffer of a source-follower structure in one embodiment of the invention.
  • FIG. 4 is a diagram illustrating a unit-gain feedback differential amplifier.
  • An integrator using a single gain buffer includes a first positive integrating capacitor and a first negative integrating capacitor which add each input signal having a different polarity to a value stored in a previous phase, and the first positive integrating unit.
  • a signal received from the second positive integrating capacitor and the second negative integrating capacitor and the first positive integrating capacitor and the first negative integrating capacitor respectively accumulating and storing signal values added by the capacitor and the first negative integrating capacitor, respectively;
  • a positive single gain buffer and a negative single gain buffer to pass to the two positive integral capacitors and the second negative integral capacitors.
  • the application of the conventional DT integrator has been much limited in applications requiring a wide signal bandwidth of several tens of MHz or more, such as communication systems.
  • the bandwidth design requirements of the integrator internal amplifier are greatly increased, which increases the power consumed and occupied by the integrator circuit.
  • embodiments of the present invention propose a technical means that can operate at a faster clock speed than an integrator composed of a conventional closed loop by implementing the structure of the integrator in an open-loop using a single gain buffer. do.
  • embodiments of the present invention propose a technical means to reduce the area and power consumption of the integrator by implementing the integrator using a simpler source-follower circuit as a single gain buffer instead of a complex amplifier. .
  • 1 is a detailed circuit diagram and timing diagram of an integrator using a single gain buffer according to an embodiment of the present invention.
  • the positive differential switched-capacitor includes a first positive integrating capacitor C 1P and a second positive integrating capacitor C 2P and a plurality of switches.
  • the plurality of switches serve to switch between alternating an execution of adding the positive input signal and an execution of storing the added input signal values according to a phase change.
  • the second positive integrating capacitor C 2P accumulates and stores the input signal values added by the first positive integrating capacitor C 1P .
  • the positive single gain buffer BF P serves to transfer the input signal values added by the first positive integration capacitor C 1P to the second positive integration capacitor C 2P .
  • the negative differential switched-capacitor comprises a first negative integrating capacitor C 1N and a second negative integrating capacitor C 2N and a plurality of switches.
  • the plurality of switches serve to switch between performing the addition of the negative input signal and the execution of storing the added input signal values in accordance with the phase change.
  • the second negative integrating capacitor C 2N accumulates and stores the input signal values added by the first negative integrating capacitor C 1N . Similar to the positive single gain buffer BF P , the negative single gain buffer BF N serves to deliver the input signal values added by the first negative integration capacitor C 1N to the second negative integration capacitor C 2N .
  • FIGS. 2A through 2C are detailed circuit diagrams and timing diagrams of respective phases of an integrator according to an embodiment of the present invention.
  • the first positive integration capacitor C 1P , the first negative integration capacitor C 1N , the second positive integration capacitor C 2P and the second negative integration capacitor C 2N have the same size of the capacitor.
  • Equation 1 the charges Q 1P (n) and Q 1N (n) stored in the first positive integration capacitor and the first negative integration capacitor during phase ⁇ 1A are calculated by Equation 1.
  • the plurality of switches are configured from the positive signal input node to the first positive integrating capacitor C 1P. And connect an input node of the positive single gain buffer BF P , and connect an input node of the negative signal input node to the first negative integration capacitor C 1N and the negative single gain buffer BF N.
  • the input signals V INP (n + 1/2) and V INN (n + 1/2) during the phase ⁇ 2A are defined by the first positive integrating capacitor C 1P and the first negative integrating capacitor C 1N. Each is connected to and added to the value previously stored when the phase ⁇ 1A .
  • the added value is stored in the second positive integral capacitor C 2P and the second negative integral capacitor C 2N through the positive single gain buffer BF P and the negative single gain buffer BF N , and the charge stored in each capacitor is represented by Equation 2 below. Is calculated.
  • a plurality of switches inside the positive switched-capacitor block is connected from the positive signal input node to the first positive integrating capacitor C 1P. And connects the input node of the positive unity gain buffer BF P and connecting the positive unity gain buffer BF P output node to the second negative integral capacitor C 2N.
  • the plurality of switches inside the negative switched-capacitor block include the negative signal input node to the first negative integrating capacitor C 1N. And connects the negative unity gain buffer BF N of input nodes, connected to the output node of the negative unity gain buffer BF N to the second positive integral capacitor C 2P.
  • a plurality of switches inside the positive switched-capacitor block allow the input node of the positive positive input capacitor C 2P and the positive single gain buffer BF P to be connected from the positive signal input node.
  • a plurality of switches inside the negative switched-capacitor block allow the input node of the second negative integrating capacitor C 2N and the negative single gain buffer BF N to be connected from the negative signal input node.
  • Equation 4 the total transfer function of the integrator is calculated by Equation 4.
  • two differential switch-capacitor networks each add a signal and alternately store and receive the added value through a single gain buffer.
  • the open-loop integrator structure using a single gain buffer eliminates the overhead caused by feedback, resulting in wider bandwidth than conventional capacitor-feedback integrators, thereby reducing power consumption. It has the advantage of being reduced.
  • a single gain buffer according to an embodiment of the present invention is a PMOS device for bias current. It can be composed of M BS and PMOS source-follower device M SF .
  • the PMOS source-follower device M SF can be implemented by connecting the body and source nodes to minimize nonlinearity and gain error due to the body-effect.
  • FIG. 4 is a circuit diagram of a unit-gain feedback differential amplifier according to an embodiment of the present invention. As shown in FIG. 4, a single gain buffer according to an embodiment of the present invention may be implemented using single-gain negative feedback to the differential amplifier A. FIG. 4
  • the bandwidth design requirements of the amplifier are very wide to satisfy the operation speed, thereby increasing power consumption.
  • the area occupied by the circuit is increased, and there is a tendency that the marketability and businessability are inferior, whereas the circuit proposed by the embodiments of the present invention implements an integrator structure in an open loop using a single gain buffer. Eliminating the overhead caused by feedback in traditional closed loop integrators allows for faster, faster operation compared to traditional capacitor-feedback integrators, improving productivity.
  • the total area of the DT integrator can be reduced and power consumption can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)

Abstract

The present invention relates to an integrator using a single gain buffer and including: a positive differential switched-capacitor which adds a positive input signal to a value stored in a previous phase, and cumulates and stores the added values; a negative differential switched-capacitor which adds a negative input signal to a value stored in a previous phase, and cumulates and stores the added values; a positive single gain buffer which delivers, to an integration capacitor, a value obtained by adding positive input signals; and a negative single gain buffer which delivers, to the integration capacitor, a value obtained by adding negative input signals.

Description

단일 이득 버퍼를 이용한 스위치드-캐패시터 적분기Switched-Capacitor Integrator with Single Gain Buffer
본 발명은 단일 이득 버퍼를 이용한 적분기에 관한 것으로, 특히 빠른 속도에서도 저전력 및 소면적 구현이 가능한 단일 이득 버퍼 기반 스위치드-캐패시터 적분기에 관한 것이다.The present invention relates to an integrator using a single gain buffer, and more particularly to a single gain buffer based switched-capacitor integrator capable of low power and small area implementation at high speeds.
적분기 회로는 아날로그 컴퓨터 (Analog Computer), 아날로그 디지털 변환기(Analog-to-Digital Converter) 및 파형 정형 (Wave Shaping) 등과 같은 응용 회로 구현에 사용되는 중요 블록으로 구현 방법에 따라 크게 CT(Continuos-Time) 적분기와 DT(Discrete-Time) 적분기로 나눌 수 있다.Integrator circuits are critical blocks used in the implementation of application circuits such as analog computers, analog-to-digital converters, and wave shaping. It can be divided into integrator and discrete-time integrator.
DT 적분기는 스위치드-캐패시터 회로 기법을 사용하기 때문에 상대적으로 정확한 전달함수의 계수를 얻을 수 있어 설계가 용이하고, 특히 델타-시그마 아날로그 디지털 변환기에서는 CT 적분기에 비해 클록 지터(clock jitter)에 영향을 덜 받는 장점을 갖는다. The DT integrator uses a switched-capacitor circuit technique to obtain relatively accurate coefficients of the transfer function, making it easy to design, especially in delta-sigma analog-to-digital converters, which have less impact on clock jitter than CT integrators. Has the advantage of receiving.
하지만, 이동통신 시스템과 같이 넓은 대역폭을 필요로 하는 응용분야에서는 DT 적분기의 활용도가 많이 제한된다. 사용되는 응용 시스템에 따라 DT 적분기의 동작 클록 속도가 수백 MHz 이상이 되어야 하는데, 기존의 폐쇄루프(closed-loop) 구조 기반 DT 스위치드-캐패시터 적분기로 이 동작속도를 만족시키기 위해서는 증폭기의 대역폭 설계 요구 조건이 매우 넓어짐으로 인해 소비전력이 늘어나고, 회로가 차지하는 면적이 늘어나는 문제가 있다.However, the application of the DT integrator is much limited in applications requiring a wide bandwidth such as a mobile communication system. Depending on the application system used, the DT integrator's operating clock rate must be several hundred MHz or more. To meet this operating rate with a DT switched-capacitor integrator based on a traditional closed-loop architecture, the bandwidth design requirements of the amplifier are required. Due to this very wide power consumption, there is a problem that the area occupied by the circuit increases.
본 발명이 해결하고자 하는 과제는 기존 폐쇄루프로 구성된 스위치드-캐패시터 적분기에 비해 더 넓은 대역폭을 얻을 수 있는 기술적 수단을 제공하는데 있다.The problem to be solved by the present invention is to provide a technical means that can obtain a wider bandwidth than the switched-capacitor integrator consisting of a conventional closed loop.
기존의 복잡한 구조를 갖는 증폭기 대신 상대적으로 간단한 구조의 소스-팔로워를 단일 이득 버퍼로 이용하여 적분기를 구현함으로써, 고속 동작의 DT 적분기 구현 시 소면적 및 소전력을 구현한다.Instead of the conventional complex amplifier, the integrator is implemented using a relatively simple source-follower as a single gain buffer to realize small area and low power in the DT integrator of high-speed operation.
또한, 단일 이득 버퍼를 이용하여 적분기의 구조를 개방 루프(open-loop)로 구현함으로써, 기존의 폐쇄 루프 적분기에서 피드백으로 인해 발생하는 오버헤드를 제거함으로써, 기존의 커패시터-피드백 구조의 적분기에 비해 더 빠른 고속 동작을 구현한다.In addition, the integrator's structure is implemented in an open-loop using a single gain buffer, eliminating the overhead incurred by feedback in the traditional closed-loop integrator, compared to the integrator of the conventional capacitor-feedback structure. Implement faster high speed operation.
본 발명의 일실시 예에 따르면, 단일 이득 버퍼를 이용하여 적분기의 구조를 개방 루프(open-loop)로 구현함으로써, 기존의 폐쇄 루프 적분기에서 피드백으로 인해 발생하는 오버헤드를 제거하였기 때문에 기존의 커패시터-피드백 구조의 적분기에 비해 더 빠른 고속 동작이 가능하다. According to an embodiment of the present invention, by implementing the structure of the integrator in an open-loop using a single gain buffer, because the overhead caused by feedback in the existing closed loop integrator is eliminated, the existing capacitor Faster high-speed operation is possible compared to the integrator with feedback structure.
아울러, 본 발명의 일실시 예에 따르면, 복잡한 구조의 증폭기 대신 상대적으로 더 간단한 구조의 소스-팔로워 회로를 단일 이득 버퍼로 이용하여 적분기를 구현함으로써, DT 적분기의 전체 면적을 줄일 수 있고, 소모 전력 또한 줄일 수 있다.In addition, according to an embodiment of the present invention, by implementing an integrator using a source-follower circuit having a relatively simple structure as a single gain buffer instead of a complex amplifier, the total area of the DT integrator can be reduced, and power consumption is reduced. It can also be reduced.
도 1은 본 발명의 일실시예에 따른 단일 이득 버퍼를 이용한 적분기를 구성하는 상세 회로도 및 타이밍 다이어그램을 도시한다.1 is a detailed circuit diagram and timing diagram of an integrator using a single gain buffer according to an embodiment of the present invention.
도 2a 내지 도 2c는 본 발명의 일실시 예에 따른 적분기의 각 위상에 따른 상세 회로도 및 타이밍 다이어그램을 도시한다. 2A through 2C are detailed circuit diagrams and timing diagrams of respective phases of an integrator according to an embodiment of the present invention.
도 3은 본 발명의 일실시예로 소스-팔로워 구조의 단일 이득 버퍼를 도시하는 도면이다.3 illustrates a single gain buffer of a source-follower structure in one embodiment of the invention.
도 4는 단일-이득 피드백 (unit-gain feedback) 차동증폭기를 도시하는 도면이다.4 is a diagram illustrating a unit-gain feedback differential amplifier.
본 발명의 일실시 예에 따른 단일 이득 버퍼를 이용한 적분기는, 극성이 다른 각 입력신호를 이전 위상에서 저장되어 있던 값에 더하는 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터와, 상기 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터 각각에 의해 더해진 신호값들을 각각 누적하여 저장하는 제2 포지티브 적분 캐피시터 및 제2 네거티브 적분 캐패시터 및 상기 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터로부터 전달받은 신호를 상기 제2 포지티브 적분 캐패시터 및 제2 네거티브 적분 캐패시터로 전달하는 포지티브 단일 이득 버퍼 및 네거티브 단일 이득 버퍼를 포함한다. An integrator using a single gain buffer according to an embodiment of the present invention includes a first positive integrating capacitor and a first negative integrating capacitor which add each input signal having a different polarity to a value stored in a previous phase, and the first positive integrating unit. A signal received from the second positive integrating capacitor and the second negative integrating capacitor and the first positive integrating capacitor and the first negative integrating capacitor respectively accumulating and storing signal values added by the capacitor and the first negative integrating capacitor, respectively; And a positive single gain buffer and a negative single gain buffer to pass to the two positive integral capacitors and the second negative integral capacitors.
본 발명의 실시 예들을 설명하기에 앞서, 고속으로 동작하는 DT 적분기 구현 시 기존의 폐쇄루프 구조 스위치드-캐패시터 적분기 회로에서 발생하는 문제점들을 검토한 후, 이들 문제점을 해결하기 위해 본 발명의 실시 예들이 채택하고 있는 기술적 수단을 개괄적으로 소개하도록 한다.Before describing the embodiments of the present invention, the problems of the existing closed loop structure switched-capacitor integrator in the implementation of the DT integrator operating at high speed are examined, and then the embodiments of the present invention are solved to solve these problems. An overview of the technical measures adopted.
통신 시스템과 같이 수십 MHz 이상의 넓은 신호 대역폭을 필요로 하는 응용분야에서 종래의 DT 적분기 활용도가 많이 제한되어 왔다. 기존 폐쇄루프의 DT 적분기 구조로 이 동작 속도를 만족시키기 위해서는 적분기 내부 증폭기의 대역폭 설계 요구조건이 크게 증가함으로 인해 적분기 회로가 소비하는 전력과 차지하는 면적이 늘어나기 때문이다.The application of the conventional DT integrator has been much limited in applications requiring a wide signal bandwidth of several tens of MHz or more, such as communication systems. In order to meet this operating speed with the existing closed-loop DT integrator structure, the bandwidth design requirements of the integrator internal amplifier are greatly increased, which increases the power consumed and occupied by the integrator circuit.
따라서 본 발명의 실시 예들은 단일 이득 버퍼를 이용하여 적분기의 구조를 개방 루프(open-loop)로 구현함으로써, 기존의 폐쇄 루프로 구성된 적분기에 비해 더 빠른 클록 속도로 동작할 수 있는 기술적 수단을 제안한다.Accordingly, embodiments of the present invention propose a technical means that can operate at a faster clock speed than an integrator composed of a conventional closed loop by implementing the structure of the integrator in an open-loop using a single gain buffer. do.
더불어, 본 발명의 실시 예들은 복잡한 구조의 증폭기 대신 상대적으로 더 간단한 구조의 소스-팔로워 회로를 단일 이득 버퍼로 이용하여 적분기를 구현함으로써, 적분기의 면적과 소모 전력을 줄일 수 있는 기술적 수단을 제안한다.In addition, embodiments of the present invention propose a technical means to reduce the area and power consumption of the integrator by implementing the integrator using a simpler source-follower circuit as a single gain buffer instead of a complex amplifier. .
이하에서는 도면을 참조하여 본 발명의 실시 예들을 구체적으로 설명하도록 한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in the following description and the accompanying drawings, detailed descriptions of well-known functions or configurations that may obscure the subject matter of the present invention will be omitted. In addition, it should be noted that like elements are denoted by the same reference numerals as much as possible throughout the drawings.
도 1은 본 발명의 일실시예에 따른 단일 이득 버퍼를 이용한 적분기를 구성하는 상세 회로도 및 타이밍 다이어그램을 도시한다. 1 is a detailed circuit diagram and timing diagram of an integrator using a single gain buffer according to an embodiment of the present invention.
도 1을 참조하면, 포지티브 차동 스위치드-캐패시터는 제1 포지티브 적분 캐패시터 C1P와 제2 포지티브 적분 캐패시터 C2P 및 복수의 스위치를 포함한다.Referring to FIG. 1, the positive differential switched-capacitor includes a first positive integrating capacitor C 1P and a second positive integrating capacitor C 2P and a plurality of switches.
상기 복수의 스위치는 위상변화에 따라 상기 포지티브 입력신호를 더하는 실행 및 상기 더해진 입력신호 값들을 저장하는 실행을 교번하도록 스위칭하는 역할을 한다. The plurality of switches serve to switch between alternating an execution of adding the positive input signal and an execution of storing the added input signal values according to a phase change.
위상Ø2A동안, 제2 포지티브 적분 캐패시터 C 2P는 제1 포지티브 적분 캐패시터 C1P에 의해 더해진 입력신호 값들을 누적하여 저장한다. 이때, 포지티브 단일 이득 버퍼 BFP는 제1 포지티브 적분 캐패시터 C1P에 의해 더해진 입력신호 값들을 제2 포지티브 적분 캐패시터 C2P로 전달하는 역할을 한다. During phase Ø 2A , the second positive integrating capacitor C 2P accumulates and stores the input signal values added by the first positive integrating capacitor C 1P . In this case, the positive single gain buffer BF P serves to transfer the input signal values added by the first positive integration capacitor C 1P to the second positive integration capacitor C 2P .
네거티브 차동 스위치드-캐패시터는 제1 네거티브 적분 캐패시터 C1N 와 제2 네거티브 적분 캐패시터 C2N 및 복수의 스위치를 포함하여 구성된다.The negative differential switched-capacitor comprises a first negative integrating capacitor C 1N and a second negative integrating capacitor C 2N and a plurality of switches.
상기 복수의 스위치는 위상변화에 따라 상기 네거티브 입력신호를 더하는 실행 및 상기 더해진 입력신호 값들을 저장하는 실행을 교번하도록 스위칭하는 역할을 한다. The plurality of switches serve to switch between performing the addition of the negative input signal and the execution of storing the added input signal values in accordance with the phase change.
위상 Ø2A 동안, 제2 네 거티브 적분 캐패시터 C2N는 제1 네거티브 적분 캐패시터 C1N에 의해 더해진 입력신호 값들을 누적하여 저장한다. 포지티브 단일 이득 버퍼 BFP와 마찬가지로, 네거티브 단일 이득 버퍼 BFN는 제1 네거티브 적분 캐패시터 C1N에 의해 더해진 입력신호 값들을 제2 네거티브 적분 캐패시터 C2N로 전달하는 역할을 한다. During phase Ø 2A , the second negative integrating capacitor C 2N accumulates and stores the input signal values added by the first negative integrating capacitor C 1N . Similar to the positive single gain buffer BF P , the negative single gain buffer BF N serves to deliver the input signal values added by the first negative integration capacitor C 1N to the second negative integration capacitor C 2N .
이하, 도 2a 내지 도 2c를 참조하여 본 발명의 일실시 예에 따른 단일 이득 버퍼를 이용한 적분기의 동작을 설명하기로 한다.Hereinafter, an operation of an integrator using a single gain buffer according to an embodiment of the present invention will be described with reference to FIGS. 2A to 2C.
도 2a 내지 도 2c는 본 발명의 일실시 예에 따른 적분기의 각 위상에 따른 상세 회로도 및 타이밍 다이어그램을 도시한다.2A through 2C are detailed circuit diagrams and timing diagrams of respective phases of an integrator according to an embodiment of the present invention.
먼저, 제1 포지티브 적분 캐패시터 C1P, 제1 네거티브 적분 캐패시터C1N, 제2 포지티브 적분 캐패시터 C2P 및 제2 네거티브 적분 캐패시터 C2N는 캐패시터의 크기가 동일하다고 가정한다.First, it is assumed that the first positive integration capacitor C 1P , the first negative integration capacitor C 1N , the second positive integration capacitor C 2P and the second negative integration capacitor C 2N have the same size of the capacitor.
도 2a를 참조하면, 위상 Ø1A 동안 상기 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터에 저장되어 있는 전하 Q1P(n)와 Q1N(n)는 수학식 1로 계산된다.Referring to FIG. 2A, the charges Q 1P (n) and Q 1N (n) stored in the first positive integration capacitor and the first negative integration capacitor during phase Ø 1A are calculated by Equation 1.
Figure PCTKR2017000128-appb-M000001
Figure PCTKR2017000128-appb-M000001
이를 위해, 복수의 스위치는 포지티브 신호입력노드부터 제1 포지티브 적분 캐패시터 C1P 및 포지티브 단일 이득 버퍼 BFP의 입력노드를 연결하고, 네거티브 신호입력노드부터 제1 네거티브 적분 캐패시터 C1N 및 네거티브 단일 이득 버퍼BFN 의 입력노드를 연결되게 한다.To this end, the plurality of switches are configured from the positive signal input node to the first positive integrating capacitor C 1P. And connect an input node of the positive single gain buffer BF P , and connect an input node of the negative signal input node to the first negative integration capacitor C 1N and the negative single gain buffer BF N.
다음, 도 2b를 참조하면, 위상 Ø2A동안의 입력신호 VINP(n+1/2)와 VINN(n+1/2)은 제1 포지티브 적분 캐패시터 C1P 및 제1 네거티브 적분 캐패시터 C1N에 각각 연결되어 이전 상기 위상 Ø1A때 저장되어 있던 값에 더해진다. 이때, 상기 더해진 값은 포지티브 단일 이득 버퍼 BFP 및 네거티브 단일 이득 버퍼 BFN를 통해 제2 포지티브 적분 캐패시터 C2P 및 제2 네거티브 적분 캐패시터 C2N에 저장되고, 각 캐패시터에 저장되는 전하는 수학식 2로 계산된다.Next, referring to FIG. 2B, the input signals V INP (n + 1/2) and V INN (n + 1/2) during the phase Ø 2A are defined by the first positive integrating capacitor C 1P and the first negative integrating capacitor C 1N. Each is connected to and added to the value previously stored when the phase Ø 1A . In this case, the added value is stored in the second positive integral capacitor C 2P and the second negative integral capacitor C 2N through the positive single gain buffer BF P and the negative single gain buffer BF N , and the charge stored in each capacitor is represented by Equation 2 below. Is calculated.
Figure PCTKR2017000128-appb-M000002
Figure PCTKR2017000128-appb-M000002
이를 위해, 포지티브 스위치드-캐패시터 블록 내부에 있는 복수의 스위치는 포지티브 신호입력노드부터 제1 포지티브 적분 캐패시터 C1P 및 포지티브 단일 이득 버퍼 BFP의 입력노드를 연결하고, 포지티브 단일 이득 버퍼 BFP의 출력노드를 제2 네거티브 적분 캐패시터 C2N에 연결시킨다. 또한, 네거티브 스위치드-캐패시터 블록 내부에 있는 복수의 스위치는 네거티브 신호입력노드부터 제1 네거티브 적분 캐패시터 C1N 및 네거티브 단일 이득 버퍼 BFN의 입력노드를 연결하고, 네거티브 단일 이득 버퍼 BFN의 출력노드를 제2 포지티브 적분 캐패시터 C2P에 연결시킨다. To this end, a plurality of switches inside the positive switched-capacitor block is connected from the positive signal input node to the first positive integrating capacitor C 1P. And connects the input node of the positive unity gain buffer BF P and connecting the positive unity gain buffer BF P output node to the second negative integral capacitor C 2N. In addition, the plurality of switches inside the negative switched-capacitor block include the negative signal input node to the first negative integrating capacitor C 1N. And connects the negative unity gain buffer BF N of input nodes, connected to the output node of the negative unity gain buffer BF N to the second positive integral capacitor C 2P.
다음, 도 2c를 참조하면, 위상 Ø1B 동안의 적분기의 입력신호 VINP(n+1)와 VINN(n+1)은 제2 포지티브 적분 캐패시터 C2P 및 제2 네거티브 적분 캐패시터 C2N를 통해 전달된다. 이때, 제2 포지티브 적분 캐패시터 C2P 및 제2 네거티브 적분 캐패시터 C2N에 저장되는 전하량은 수학식 3으로 계산된다.Next, referring to FIG. 2C, input signals V INP (n + 1) and V INN (n + 1) of the integrator during phase Ø 1B are connected through a second positive integration capacitor C 2P and a second negative integration capacitor C 2N . Delivered. At this time, the amount of charge stored in the second positive integral capacitor C 2P and the second negative integral capacitor C 2N is calculated by Equation 3 below.
Figure PCTKR2017000128-appb-M000003
Figure PCTKR2017000128-appb-M000003
이를 위해, 포지티브 스위치드-캐패시터 블록 내부에 있는 복수의 스위치는 포지티브 신호입력노드로부터 제2 포지티브 적분 캐패시터 C2P 와 포지티브 단일 이득 버퍼 BFP 의 입력 노드를 연결되게 한다. 또한, 네거티브 스위치드-캐패시터 블록 내부에 있는 복수의 스위치는 네거티브 신호입력노드로부터 제2 네거티브 적분 캐패시터 C2N 와 네거티브 단일 이득 버퍼 BFN 의 입력 노드를 연결되게 한다.To this end, a plurality of switches inside the positive switched-capacitor block allow the input node of the positive positive input capacitor C 2P and the positive single gain buffer BF P to be connected from the positive signal input node. In addition, a plurality of switches inside the negative switched-capacitor block allow the input node of the second negative integrating capacitor C 2N and the negative single gain buffer BF N to be connected from the negative signal input node.
전하량 보존 법칙에 따라 적분기의 전체 전달함수는 수학식 4로 계산된다.According to the charge conservation law, the total transfer function of the integrator is calculated by Equation 4.
Figure PCTKR2017000128-appb-M000004
Figure PCTKR2017000128-appb-M000004
이때, 상기 전달함수를 z 도메인(z-domain)으로 변환하면, 수학식 5로 계산된다.In this case, when the transfer function is converted into a z domain (z-domain), it is calculated by Equation 5.
Figure PCTKR2017000128-appb-M000005
Figure PCTKR2017000128-appb-M000005
이와 같은 본 발명의 일실시예에 따른 단일 이득 버퍼를 이용한 적분기의 구조는 두 개의 차동 스위치-커패시터 네트워크가 각각 신호를 더하는 역할과, 그 더해진 값을 단일 이득 버퍼를 통해 전달받아 저장하는 역할을 번갈아가며 수행함으로써, 적분기의 전달함수를 얻을 수 있다.In this structure of the integrator using a single gain buffer according to an embodiment of the present invention, two differential switch-capacitor networks each add a signal and alternately store and receive the added value through a single gain buffer. By doing so, we can obtain the transfer function of the integrator.
단일 이득 버퍼를 이용한 개방루프 형태의 적분기 구조는 피드백으로 인해 발생하는 오버헤드(overhead)를 제거하였기 때문에, 종래의 커패시터-피드백 구조의 적분기에 비해 더 넓은 대역폭을 얻을 수 있으며, 이에 따라 전력 소모를 줄일 수 있는 장점을 갖는다. The open-loop integrator structure using a single gain buffer eliminates the overhead caused by feedback, resulting in wider bandwidth than conventional capacitor-feedback integrators, thereby reducing power consumption. It has the advantage of being reduced.
도 3은 본 발명의 일실시 예에 따른 소스-팔로워를 이용한 단일 이득 버퍼의 회로도를 도시한다. 도 3을 참조하면, 본 발명의 실시 예에 따른 단일 이득 버퍼는 바이어스 전류를 위한 PMOS 소자 MBS와 PMOS 소스-팔로워 소자 MSF로 구성될 수 있다. PMOS 소스-팔로워 소자 MSF 는 body-effect로 인한 비선형성과 gain error를 최소화하기 위해 body와 source 노드를 연결하여 구현할 수 있다.3 is a circuit diagram of a single gain buffer using a source-follower according to an embodiment of the present invention. Referring to FIG. 3, a single gain buffer according to an embodiment of the present invention is a PMOS device for bias current. It can be composed of M BS and PMOS source-follower device M SF . The PMOS source-follower device M SF can be implemented by connecting the body and source nodes to minimize nonlinearity and gain error due to the body-effect.
도 4는 본 발명의 일실시 예에 따른 단일-이득 피드백 (unit-gain feedback) 차동증폭기의 회로도를 도시한다. 도 4에 도시된 바와 같이 본 발명의 실시 예에 의한 단일 이득 버퍼는 차동 증폭기 A에 단일-이득 네거티브 피드백을 사용하여 구현할 수 있다.4 is a circuit diagram of a unit-gain feedback differential amplifier according to an embodiment of the present invention. As shown in FIG. 4, a single gain buffer according to an embodiment of the present invention may be implemented using single-gain negative feedback to the differential amplifier A. FIG.
이상에서 본 발명에 대하여 그 다양한 실시 예들을 중심으로 살펴보았다. 본 발명에 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니 라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있 으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described above with reference to various embodiments thereof. Those skilled in the art will understand that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.
기존 기술의 폐쇄루프 구조 기반 DT 스위치드-캐패시터 적분기를 이동통신 시스템과 같이 넓은 대역폭을 필요로 하는 응용분야에서 이용하기에는 동작속도를 만족시키기 위해서 증폭기의 대역폭 설계 요구 조건이 매우 넓어짐으로 인해 소비전력이 늘어나고, 회로가 차지하는 면적이 늘어나는 문제가 있는 바, 시장성과 사업성이 떨어지는 경향이 존재하는데 반해, 본 발명의 실시예들이 제안하고 있는 회로는 단일 이득 버퍼를 이용하여 적분기의 구조를 개방 루프로 구현함으로써, 기존의 폐쇄 루프 적분기에서 피드백으로 인해 발생하는 오버헤드를 제거하였기 때문에 기존의 커패시터-피드백 구조의 적분기에 비해 더 빠른 고속 동작이 가능하게 되어 제품성이 향상된다.In order to use the DT switched-capacitor integrator based on the closed loop structure of the existing technology in applications requiring a wide bandwidth such as a mobile communication system, the bandwidth design requirements of the amplifier are very wide to satisfy the operation speed, thereby increasing power consumption. In other words, the area occupied by the circuit is increased, and there is a tendency that the marketability and businessability are inferior, whereas the circuit proposed by the embodiments of the present invention implements an integrator structure in an open loop using a single gain buffer. Eliminating the overhead caused by feedback in traditional closed loop integrators allows for faster, faster operation compared to traditional capacitor-feedback integrators, improving productivity.
더불어, 기존의 복잡한 구조의 증폭기 대신 상대적으로 더 간단한 구조의 소스-팔로워 회로를 단일 이득 버퍼로 이용하여 적분기를 구현함으로써, DT 적분기의 전체 면적을 줄일 수 있고, 소모 전력을 줄일 수 있는 장점을 가진다.In addition, by implementing the integrator using a simpler source-follower circuit as a single gain buffer instead of the conventional complex amplifier, the total area of the DT integrator can be reduced and power consumption can be reduced. .

Claims (8)

  1. 포지티브 입력신호를 이전 위상에서 저장되어 있던 값에 더하고, 상기 더한 값들을 누적하여 저장하는 포지티브 차동 스위치드-캐패시터; A positive differential switched-capacitor for adding a positive input signal to a value stored in a previous phase and accumulating and storing the added values;
    네거티브 입력신호를 이전 위상에서 저장되어 있던 값에 더하고, 상기 더 한 값들을 누적하여 저장하는 네거티브 차동 스위치드-캐패시터;A negative differential switched-capacitor for adding a negative input signal to a value stored in a previous phase and accumulating and storing the further values;
    상기 포지티브 입력신호들이 더해진 값 을 적분 캐패시터로 전달하는 포지티브 단일 이득 버퍼; 및A positive single gain buffer which transfers the added values of the positive input signals to an integral capacitor; And
    상기 네거티브 입력신호들이 더해진 값을 적분 캐패시터로 전달하는 네거티브 단일 이득 버퍼;를 포함하는, 단일 이득 버퍼를 이용한 적분기.And a negative single gain buffer configured to transfer a value obtained by adding the negative input signals to an integral capacitor.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 포지티브 차동 스위치드 커패시터는,The positive differential switched capacitor,
    상기 포지티브 입력신호를 이전 위상에서 저장되어 있던 값에 더하는 제1 포지티브 적분 캐패시터;A first positive integrating capacitor that adds the positive input signal to a value stored in a previous phase;
    상기 적분 캐패시터에 의해 더해진 신호값들을 단일 이득 버퍼로부터 전달받아 누적하여 저장하는 제2 포지티브 적분 캐피시터; 및A second positive integrating capacitor which accumulates and stores the signal values added by the integrating capacitor from a single gain buffer; And
    위상변화에 따라 상기 포지티브 입력신호를 더하는 실행 및 상기 더해진 입력신호 값들을 누적하여 저장하는 실행을 교번하도록 스위칭하는 복수의 스위치를 포함하여 구성되는, 단일 이득 버퍼를 이용한 적분기. And a plurality of switches for alternately switching the execution of adding the positive input signal and the execution of accumulating and storing the added input signal values in accordance with a phase change.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 네거티브 차동 스위치드 커패시 터는,The negative differential switched capacitor,
    상기 네거티브 입력신호를 이전 위상에서 저장되어 있던 값에 더하는 제1 네거티브 적분 캐패시터 ;A first negative integrating capacitor that adds the negative input signal to a value stored in a previous phase;
    상기 적분 캐패시터에 의해 더해진 신호값들을 상기 단일 이득 버퍼로부터 전달받아 누적하여 저장하는 제2 네거티브 적분 캐피시터; 및A second negative integrating capacitor configured to receive and store signal values added by the integrating capacitor from the single gain buffer; And
    위상변화에 따라 상기 네거티브 입력 신호를 더하는 실행 및 상기 더해진 입력신호 값들을 누적하여 저장하는 실행을 교번하도록 스위칭하는 복수의 스위치를 포함하여 구성되는, 단일 이득 버퍼를 이용한 적분기.And a plurality of switches for alternately switching between adding the negative input signal and changing the accumulatively storing the added input signal values according to a phase change.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제1 포지티브 적분 캐패시터, 제1 네거티브 적분 캐패시터, 제2 포지티브 적분 캐피시터 및 제2 네거티브 적분 캐패시터는 캐패시터의 크기가 동일한 경우, 위상 Ø1A동안, 상기 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터에 저장 되어 있는 전하 Q1P(n)와 Q1N(n)는 The first to the positive integral capacitor, a first negative integral capacitor, the second positive integrating capacitors and the second negative-integration capacitor is the case where the capacitors are the same, the phase Ø 1A while, the first positive integration capacitor and the first negative integral capacitor The stored charges Q 1P (n) and Q 1N (n)
    Figure PCTKR2017000128-appb-I000001
    로 계산되는, 단일 이득 버퍼를 이용한 적분기.
    Figure PCTKR2017000128-appb-I000001
    Integrator using a single gain buffer, calculated as.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    위상 Ø2A동안 의 적분기의 입력신호는 상기 제1 포지티브 적분 캐패시터 및 제1 네거티브 적분 캐패시터에 각각 연결되어 이전 상기 위상 Ø1A 때 저장되어 있던 값에 더해지고, 이렇게 더해진 값은 상기 포지티브 단일 이득 버퍼 및 네거티브 단일 이득 버퍼를 통해 상기 제2 포지티브 적분 캐패시터 및 제2 네거티브 적분 캐패시터에 저장되며, 이때 각 캐패시터에 저장되는 전하는 The input signal of the integrator during phase Ø 2A is coupled to the first positive integrating capacitor and the first negative integrating capacitor, respectively, and is added to the value previously stored in the phase Ø 1A , which is added to the positive single gain buffer and The negative single gain buffer is stored in the second positive integrating capacitor and the second negative integrating capacitor, wherein the charge stored in each capacitor is stored.
    Figure PCTKR2017000128-appb-I000002
    Figure PCTKR2017000128-appb-I000002
    로 계산되는, 단일 이득 버퍼를 이용한 적분기.Integrator using a single gain buffer, calculated as.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    위상 Ø1B 동안의 적분기의 입력신호는 상기 제2 포지티브 적분 캐패시터 및 제2 네거티브 적분 캐패시터를 통해 전달되고, 각 적분 캐패시터에 저장되는 전하량은
    Figure PCTKR2017000128-appb-I000003
    The input signal of the integrator during phase Ø 1B is transmitted through the second positive integrating capacitor and the second negative integrating capacitor, and the amount of charge stored in each integrating capacitor is
    Figure PCTKR2017000128-appb-I000003
    로 계산되는, 단일 이득 버퍼를 이용한 적분기.Integrator using a single gain buffer, calculated as.
  7. 제 6 항에 있어서,The method of claim 6,
    전하량 보존 법칙에 따라 상기 적분기의 출력은 According to the charge conservation law, the output of the integrator
    Figure PCTKR2017000128-appb-I000004
    Figure PCTKR2017000128-appb-I000004
    으로 계산되고, 상기 전달함수를 z 도메인(z-domain)으로 변환하면,If the transfer function is converted to a z domain (z-domain),
    Figure PCTKR2017000128-appb-I000005
    Figure PCTKR2017000128-appb-I000005
    로 계산되는, 단일 이득 버퍼를 이용한 적분기.Integrator using a single gain buffer, calculated as.
  8. 제 1항에 있어서,The method of claim 1,
    상기 포지 티브 단일 이득 버퍼 및 네거티브 단일 이득 버퍼는, The positive single gain buffer and negative single gain buffer,
    소스-팔로워 또는 단일-이득 피드백 차동증폭기로 구성되는, 단일 이득 버퍼를 이용한 적분기.Integrator with a single gain buffer, consisting of either source-follower or single-gain feedback differential amplifiers.
PCT/KR2017/000128 2016-12-22 2017-01-05 Switched-capacitor integrator using single gain buffer WO2018117322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0176971 2016-12-22
KR1020160176971A KR101956309B1 (en) 2016-12-22 2016-12-22 Switched-capacitor integrators using unity gain buffer

Publications (1)

Publication Number Publication Date
WO2018117322A1 true WO2018117322A1 (en) 2018-06-28

Family

ID=62626670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000128 WO2018117322A1 (en) 2016-12-22 2017-01-05 Switched-capacitor integrator using single gain buffer

Country Status (2)

Country Link
KR (1) KR101956309B1 (en)
WO (1) WO2018117322A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186764A (en) * 1995-01-05 1996-07-16 Nec Corp Integral signal detection circuit and its driving method
US6404262B1 (en) * 1999-12-27 2002-06-11 Texas Instruments Incorporated Switched capacitor integrator using unity gain buffers
KR100814255B1 (en) * 2006-12-22 2008-03-17 매그나칩 반도체 유한회사 Digital-analog converter
KR20160028932A (en) * 2014-09-04 2016-03-14 삼성전자주식회사 Semiconductor device and semiconductor system
US20160284420A1 (en) * 2015-03-25 2016-09-29 Qualcomm Incorporated Sampling network and clocking scheme for a switched-capacitor integrator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680081B1 (en) * 2014-12-12 2016-11-29 서강대학교산학협력단 2nd-order noise-shaping Successive Approximation Register Analog to Digital Converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186764A (en) * 1995-01-05 1996-07-16 Nec Corp Integral signal detection circuit and its driving method
US6404262B1 (en) * 1999-12-27 2002-06-11 Texas Instruments Incorporated Switched capacitor integrator using unity gain buffers
KR100814255B1 (en) * 2006-12-22 2008-03-17 매그나칩 반도체 유한회사 Digital-analog converter
KR20160028932A (en) * 2014-09-04 2016-03-14 삼성전자주식회사 Semiconductor device and semiconductor system
US20160284420A1 (en) * 2015-03-25 2016-09-29 Qualcomm Incorporated Sampling network and clocking scheme for a switched-capacitor integrator

Also Published As

Publication number Publication date
KR101956309B1 (en) 2019-06-24
KR20180073290A (en) 2018-07-02

Similar Documents

Publication Publication Date Title
WO2011031003A2 (en) Switched capacitor circuit
US6437720B1 (en) Code independent charge transfer scheme for switched-capacitor digital-to-analog converter
US4835482A (en) Semiconductor integrated circuit forming a switched capacitor filter
CN100471068C (en) High precision analog to digital converter
EP0286138B1 (en) Oversampling a/d converter comprising an additional capacitor switched in synchronism with switching of an input capacitor
EP1589669A3 (en) Communications systems
DE69529155D1 (en) EXTENDABLE COMMUNICATION SYSTEM
CN111162787B (en) Successive approximation type analog-to-digital converter with passive noise shaping
CN105871376A (en) Voltage sampling and driver amplifier flicker noise cancellation in a switched capacitor analog-to-digital converter
KR20030084974A (en) Buffer network for correcting fluctuations in a parallel/serial interface
WO2016085544A1 (en) Configurable capacitor arrays and switched capacitor circuits
WO2013165082A1 (en) Amplifier and filter having cutoff frequency controlled according to digital code
WO2018117322A1 (en) Switched-capacitor integrator using single gain buffer
US3835259A (en) Time division conference hybrid circuit
WO2011139000A1 (en) Dynamic bias current-starved inverter and low-power delta-sigma modulator using the inverter
AU667602B2 (en) Multiplexing arrangement
WO2012177059A2 (en) Analog/digital modulation apparatus and method for controlling the same
JP3111722B2 (en) Linear converter
EP2232682B1 (en) Increasing charge capacity of charge transfer circuits without altering their charge transfer characteristics
CN101977056A (en) Charge transfer circuit suitable for common CMOS process and charge transfer control switch thereof
CN207410329U (en) Pipeline SAR-ADC device
WO2011096011A1 (en) Digital protection control system and digital protection control apparatus
US3745253A (en) Time division switching system
WO2022019434A1 (en) Successive approximation register analog-to-digital converter for wide sampling rate
WO2024001840A1 (en) Discrete time filter, receiver, transmitter and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883443

Country of ref document: EP

Kind code of ref document: A1