WO2018117084A1 - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
WO2018117084A1
WO2018117084A1 PCT/JP2017/045478 JP2017045478W WO2018117084A1 WO 2018117084 A1 WO2018117084 A1 WO 2018117084A1 JP 2017045478 W JP2017045478 W JP 2017045478W WO 2018117084 A1 WO2018117084 A1 WO 2018117084A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
power
output
voltage source
battery
Prior art date
Application number
PCT/JP2017/045478
Other languages
French (fr)
Japanese (ja)
Inventor
芳光 高橋
満孝 伊藤
浩史 清水
遠藤 剛
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018117084A1 publication Critical patent/WO2018117084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to a power conversion device.
  • an inverter drive system that converts electric power of a motor by two inverters is known.
  • the phase of the fundamental wave component of the pulse width modulation signal (hereinafter referred to as “PWM”) of the first inverter system and the second inverter system at a high voltage is 180 [°.
  • PWM pulse width modulation signal
  • the two power supplies are electrically connected in series, and the motor is driven by the sum of the two power supply voltages.
  • Patent Document 1 at the time of a low voltage, either one of the upper arm or the lower arm of the first inverter system or the second inverter system is simultaneously turned on for three phases, and the other is PWM driven.
  • An object of the present disclosure is to provide a power conversion device that can use a voltage source with high efficiency.
  • the power conversion device converts power of a rotating electrical machine having a winding, and includes a first inverter, a second inverter, and a control unit.
  • the first inverter has a first switching element and is connected to one end of the winding and the first voltage source.
  • the second inverter has a second switching element and is connected to the other end of the winding and the second voltage source.
  • the control unit controls the on / off operation of the first switching element and the second switching element.
  • one of the first inverter and the second inverter is a fixed output inverter, and a voltage source connected to the fixed output inverter is a fixed output voltage source.
  • the other of the first inverter and the second inverter is a variable output inverter, and the voltage source connected to the variable output inverter is a variable output voltage source.
  • the control unit controls the fixed output inverter so that the output from the fixed output voltage source becomes a constant output value.
  • the control unit supplies power to the rotating electrical machine from the fixed output voltage source and the variable output voltage source when the required power of the rotating electrical machine is greater than the constant output value.
  • the variable output inverter is controlled such that surplus power output from the source is supplied to the variable output voltage source.
  • FIG. 1 is a schematic configuration diagram showing the configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating the relationship between MG power and battery power according to the first embodiment.
  • FIG. 3 is an explanatory diagram for explaining the operation when the MG power is larger than the constant output value in the first embodiment.
  • FIG. 4A is an explanatory diagram illustrating an operation when the MG power is equal to or less than a constant output value and the first battery voltage is higher than the second battery voltage in the first embodiment.
  • FIG. 1 is a schematic configuration diagram showing the configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is an explanatory diagram illustrating the relationship between MG power and battery power according to the first embodiment.
  • FIG. 3 is an explanatory diagram for explaining the operation when the MG power is larger than the constant output value in the first embodiment.
  • FIG. 4A is an explanatory diagram illustrating an operation when the MG power is equal to or less than a constant output value and the first battery voltage
  • FIG. 4B is an explanatory diagram illustrating an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is higher than the second battery voltage in the first embodiment.
  • FIG. 5A is an explanatory diagram for explaining the operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment.
  • FIG. 5B is an explanatory diagram for explaining an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment.
  • FIG. 5C is an explanatory diagram illustrating an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment.
  • FIG. 6 is a time chart for explaining power transfer according to the first embodiment.
  • FIG. 7 is a flowchart illustrating the drive control process according to the first embodiment.
  • FIG. 8 is an explanatory diagram illustrating the relationship between MG power and battery power according to the second embodiment.
  • FIG. 9 is a schematic configuration diagram illustrating a configuration of the power conversion device according to the third embodiment.
  • the rotating electrical machine drive system 1 includes a motor generator 10 as a rotating electrical machine and a power conversion device 15.
  • Motor generator 10 is mounted on a vehicle (not shown).
  • the vehicle is an electric vehicle such as an electric vehicle or a hybrid vehicle, for example, and the motor generator 10 is a so-called “main motor” that generates torque for driving drive wheels (not shown).
  • the motor generator 10 has a function as an electric motor for driving the drive wheels, and a function as a generator that generates electric power by being driven by kinetic energy transmitted from an engine or drive wheels (not shown).
  • the motor generator 10 is a three-phase AC rotating machine, and includes a U-phase coil 11, a V-phase coil 12, and a W-phase coil 13.
  • the U-phase coil 11, the V-phase coil 12 and the W-phase coil 13 correspond to “windings”.
  • the motor generator is appropriately “MG”, and the U-phase coil 11, the V-phase coil 12 and the W-phase coil 13 are “coils”. 11-13 ".
  • the current flowing through the U-phase coil 11 is defined as a U-phase current Iu
  • the current flowing through the V-phase coil 12 is defined as a V-phase current Iv
  • the current flowing through the W-phase coil 13 is defined as a W-phase current Iw.
  • phase currents Iu, Iv, and Iw are appropriately referred to as phase currents Iu, Iv, and Iw.
  • the current flowing from the first inverter 20 side to the second inverter 30 side is positive, and the current flowing from the second inverter 30 side to the first inverter 20 side is negative.
  • the power conversion device 15 converts the power of the motor generator 10 and includes a first inverter 20, a second inverter 30, a control unit 65, and the like.
  • the first inverter 20 is a three-phase inverter that switches energization of the coils 11 to 13 and includes switching elements 21 to 26.
  • the second inverter 30 includes switching elements 31 to 36 for switching energization of the coils 11 to 13.
  • the switching element 21 includes an element unit 211 and a free wheeling diode 221.
  • the other switching elements 22 to 26 and 31 to 36 have element units 212 to 216, 311 to 316, and free-wheeling diodes 222 to 226 and 321 to 326, respectively.
  • the element units 211 to 216 and 311 to 316 are IGBTs (insulated gate bipolar transistors), and the on / off operation is controlled by the control unit 65.
  • the element portions 211 to 216 and 311 to 316 are allowed to be energized from the high potential side to the low potential side when turned on, and are de-energized when turned off.
  • the element portions 211 to 216 and 311 to 316 are not limited to IGBTs but may be MOSFETs or the like.
  • the free-wheeling diodes 221 to 226 and 321 to 326 are connected in parallel with the element portions 211 to 216 and 311 to 316, respectively, and allow energization from the low potential side to the high potential side.
  • the free-wheeling diodes 221 to 226 and 321 to 326 may be built in, such as a parasitic diode of a MOSFET, or may be externally attached.
  • switching elements 21 to 23 are connected to the high potential side, and switching elements 24 to 26 are connected to the low potential side.
  • the first high potential side wiring 27 connecting the high potential side of the switching elements 21 to 23 is connected to the positive electrode of the first battery 41, and the first low potential side wiring connecting the low potential side of the switching elements 24 to 26 is connected. 28 is connected to the negative electrode of the first battery 41.
  • One end 111 of the U-phase coil 11 is connected to the connection point of the U-phase switching elements 21, 24, and one end 121 of the V-phase coil 12 is connected to the connection point of the V-phase switching elements 22, 25, One end 131 of the W-phase coil 13 is connected to a connection point between the switching elements 23 and 26. That is, the first inverter 20 is connected between the coils 11, 12, 13 and the first battery 41.
  • the switching elements 31 to 33 are connected to the high potential side, and the switching elements 34 to 36 are connected to the low potential side. Further, the second high potential side wiring 37 that connects the high potential side of the switching elements 31 to 33 is connected to the positive electrode of the second battery 42, and the second low potential side wiring that connects the low potential side of the switching elements 34 to 36. 38 is connected to the negative electrode of the second battery 42.
  • the other end 112 of the U-phase coil 11 is connected to the connection point of the U-phase switching elements 31 and 34, and the other end 122 of the V-phase coil 12 is connected to the connection point of the V-phase switching elements 32 and 35.
  • the other end 132 of the W-phase coil 13 is connected to a connection point between the W-phase switching elements 33 and 36. That is, the second inverter 30 is connected between the coils 11, 12, 13 and the second battery 42.
  • the first inverter 20 and the second inverter 30 are connected to both sides of the coils 11 to 13.
  • the switching elements 21 to 23 and 31 to 33 connected to the high potential side are referred to as “upper arm elements”
  • the switching elements 24 to 26 and 34 to 36 connected to the low potential side are referred to as “lower arm elements”.
  • the first battery 41 as the first voltage source is connected to the first inverter 20 and provided so as to be able to exchange electric power with the motor generator 10 via the first inverter 20.
  • the second battery 42 as the second voltage source is connected to the second inverter 30 and is provided so as to be able to exchange power with the motor generator 10 via the second inverter 30.
  • the first battery 41 and the second battery 42 are chargeable / dischargeable DC power sources such as lithium ion batteries.
  • the voltage of the first battery 41 is referred to as a first battery voltage Vb1
  • the voltage of the second battery 42 is referred to as a second battery voltage Vb2.
  • the capacity of the first battery 41 is a so-called “high capacity type” that is relatively larger than the capacity of the second battery 42, and the second battery 42 has a so-called “high capacity”. "Output type”.
  • the first capacitor 43 is connected to the first high potential side wiring 27 and the first low potential side wiring 28.
  • the first capacitor 43 is a smoothing capacitor that smoothes the current from the first battery 41 to the first inverter 20 side or the current from the first inverter 20 to the first battery 41 side.
  • the second capacitor 44 is connected to the second high potential side wiring 37 and the second low potential side wiring 38.
  • the second capacitor 44 is a smoothing capacitor that smoothes the current from the second battery 42 to the second inverter 30 or the current from the second inverter 30 to the second battery 42.
  • the control signal generation unit 60 includes a first driver circuit 61, a second driver circuit 62, and a control unit 65.
  • the control unit 65 is mainly composed of a microcomputer and performs various arithmetic processes. Each processing in the control unit 65 may be software processing by executing a program stored in advance by the CPU, or may be hardware processing by a dedicated electronic circuit.
  • the control unit 65 controls the first inverter 20 and the second inverter 30. Specifically, based on command values relating to driving of the motor generator 10 such as the torque command value trq * and the current command values Iu * , Iv * , Iw * , the element units 211 to 26 of the switching elements 21 to 26, 31 to 36.
  • a control signal for controlling the on / off operation of 216, 311 to 316 is generated and output to the driver circuits 61, 62.
  • appropriately controlling the on / off operation of the element portions 211 to 216 and 311 to 316 of the switching elements 21 to 26 and 31 to 36 is simply referred to as controlling the on / off operations of the switching elements 21 to 26 and 31 to 36.
  • the on / off operation of the switching elements 21 to 26 is controlled based on, for example, the first fundamental wave F1 and the carrier wave. Further, the on / off operation of the switching elements 31 to 36 is controlled based on, for example, the second fundamental wave F1 and the carrier wave.
  • Control according to the fundamental waves F1 and F2 is, for example, sinusoidal PWM control in which the amplitudes of the fundamental waves F1 and F2 are equal to or smaller than the amplitude of the carrier wave, that is, the modulation factor is 1 or less.
  • overmodulation PWM control may be used in which the amplitudes of the fundamental waves F1 and F2 are larger than the amplitude of the carrier wave, that is, the modulation rate is larger than 1.
  • the rectangular wave control may be a rectangular wave control in which the amplitude is infinite and each element is switched on and off every half cycle of the fundamental waves F1 and F2.
  • the rectangular wave control can be regarded as 180 ° energization control in which each element is turned on and off every 180 ° of electrical angle.
  • the energization phase in the rectangular wave control may be other than 180 °, for example, 120 ° energization.
  • the amplitudes of the fundamental waves F1 and F2 may be the same or different.
  • the first driver circuit 61 generates and outputs a gate signal for controlling the on / off operation of the element units 211 to 216 in response to a control signal from the control unit 65.
  • the second driver circuit 62 generates and outputs a gate signal for controlling the on / off operation of the element units 311 to 316 in accordance with a control signal from the control unit 65.
  • the element units 211 to 216 and 311 to 316 are turned on / off according to the control signal, whereby the DC power of the batteries 41 and 42 is converted into AC power and supplied to the motor generator 10. Thereby, driving of motor generator 10 is controlled by control unit 65 via first inverter 20 and second inverter 30.
  • FIG. 2 is a diagram for explaining the relationship between MG power and battery power, where the horizontal axis represents MG power Pmg and the vertical axis represents battery power Pb1 and Pb2.
  • the MG power Pmg is power required to output a desired torque and rotation speed, and corresponds to “required power”.
  • motor generator 10 is in a power running state when MG power Pmg is positive, and is in a regenerative state when negative.
  • the first battery 41 is in a discharged state when the first battery power Pb1 is positive, and is in a charged state when negative.
  • the second battery 42 is in a discharged state when the second battery power Pb2 is positive, and is in a charged state when negative.
  • the MG power Pmg is indicated by a solid line
  • the first battery power Pb1 is indicated by a one-dot chain line
  • the second battery power Pb2 is indicated by a two-dot chain line.
  • the control of the inverters 20 and 30 may be interchanged so that the first inverter 20 may be a variable output inverter and the second inverter 30 may be a fixed output inverter.
  • the fixed output inverter and the variable output inverter may be appropriately switched according to the SOC (State Of Charge) of the batteries 41 and 42. The same applies to the second embodiment.
  • the inverters 20 and 30 are controlled so that the motor generator 10 outputs the desired MG power Pmg.
  • the first battery power Pb1 is set larger than the constant output value Pfix.
  • the first battery power Pb1 cannot be increased above the constant output value Pfix, such as when the first inverter 20 is controlled in a rectangular wave in the power fixed region Rfix, a region where the MG power Pmg is greater than the fixed upper limit value Pmg_h. There is no need.
  • the first battery power Pb1 and the second battery power Pb2 are described as matching, but may be different.
  • the first battery power Pb1 and the second battery power Pb2 coincide with each other at the fixed upper limit value Pmg_h, but the first battery power Pb1 and the second battery power Pb2 are different from each other.
  • the fixed upper limit Pmg_h may be set so that
  • the modulation factor of the first fundamental wave F1 is constant.
  • the constant output value Pfix is appropriately set to a value that allows the first battery 41 to output power with high efficiency.
  • the constant output value Pfix is a value that is not affected by fluctuations in the MG power Pmg.
  • the first inverter 20 is controlled based on the first fundamental wave F1 having a modulation rate corresponding to the constant output value Pfix. For example, if the first inverter 20 is rectangular wave controlled, the switching loss of the first switching elements 21 to 26 can be reduced.
  • the second inverter 20 is controlled based on the MG power Pmg and the constant output value Pfix.
  • a region where the MG power Pmg is larger than the constant output value Pfix is a double-sided discharge region Rd, and a region where the MG power Pmg is smaller than the constant output value Pfix is a one-side charging region Rc.
  • the control unit 65 sets the phase of the second fundamental wave F2 to be opposite to that of the first fundamental wave F1.
  • the first fundamental wave F1 and the second fundamental wave F2 are out of phase with each other by approximately 180 [°].
  • the phase difference between the fundamental waves F1 and F2 is set to 180 [°], but a deviation that allows the application of a voltage corresponding to the sum of the first battery voltage Vb1 and the second battery voltage Vb2 is allowed.
  • control unit 65 sets the modulation factor of second fundamental wave F2 according to the difference between MG power Pmg and constant output value Pfix. Specifically, the modulation rate of the second fundamental wave F2 is increased as the MG power Pmg increases.
  • a voltage corresponding to the sum of the voltage Vb1 and the second battery voltage Vb2 (ie, Vb1 + Vb2) can be applied to the motor generator 10.
  • Vb1 + Vb2 a voltage corresponding to the sum of the voltage Vb1 and the second battery voltage Vb2
  • Vb1 + Vb2 Vb1 + Vb2
  • FIG. 3 when the switching elements 21, 25, 26, 32, 33, and 34 are turned on, current flows as indicated by an arrow Y 1, and the motor generator 10 includes the first battery 41 and the second battery. It is driven using 42 electric power.
  • elements that are on are indicated by solid lines, and elements that are off are indicated by broken lines.
  • the control unit 65 sets the second battery power Pb2 to 0. That is, the input / output of the second battery 42 is set to zero.
  • the second inverter 30 is turned on by turning on one of all the phases of the upper arm elements 31 to 33 of the second inverter 30 or all the phases of the lower arm elements 34 to 36 and turning off the other. It becomes a sex point.
  • FIG. 4A shows an example in which the second inverter 30 is neutralized by turning off the upper arm elements 31 to 33 and turning on the lower arm elements 34 to 36 and switching the first inverter 20 to the neutral point. If the elements 21, 25, and 26 are on, a current flows as indicated by an arrow Y2. By making the second inverter 30 neutral, the power input / output of the second battery 42 becomes zero.
  • the case where the MG power Pmg is equal to the constant output value Pfix is included in the one-side charging region Rc, and the modulation factor of the second fundamental wave F2 is regarded as 0.
  • the modulation factor of the second fundamental wave F2 may be regarded as zero.
  • the control unit 65 charges the second battery 42 with surplus power.
  • the second inverter 30 is controlled.
  • the control unit 65 changes the phase of the second fundamental wave F2 to the first The phase is the same as that of the fundamental wave F1. In other words, the phase difference between the first fundamental wave F1 and the second fundamental wave F2 is substantially 0 [°].
  • a voltage corresponding to the difference between the first battery voltage Vb1 and the second battery voltage Vb2 (ie, Vb1 ⁇ Vb2) is supplied to the motor generator 10. Can be applied.
  • the phase difference between the fundamental waves F1 and F2 is set to 0 [°], but a deviation that allows application of a voltage corresponding to the difference between the first battery voltage Vb1 and the second battery voltage Vb2 is allowed.
  • the control unit 65 sets the modulation factor of the second fundamental wave F2 according to the MG power Pmg. Specifically, the modulation factor of the second fundamental wave F2 is increased as the difference between the constant output value Pfix and the MG power Pmg increases.
  • the modulation factor of the second fundamental wave F2 is increased as the difference between the constant output value Pfix and the MG power Pmg increases.
  • the ratio between the state where the second inverter 30 shown in FIG. 4A is neutralized and the state where the second battery 42 shown in FIG. 4B is charged is controlled. It can also be understood as being.
  • the amount of power transfer that is the amount of power transferred from the first battery 41 to the second battery 42 is controlled according to the MG power Pmg.
  • the control unit 65 reduces the power of the first battery 41 by the chopper operation. Move to second battery 42. In the chopper operation, a non-charging period in which the power of the first battery 41 is not moved to the second battery 42 and a charging period in which the power of the first battery 41 is moved to the second battery 42 are periodically switched.
  • the ratio between the non-charging period and the charging period is set according to the voltage difference between the first battery voltage Vb1 and the second battery voltage Vb2 and the difference between the constant output value Pfix and the MG power Pmg.
  • the second inverter 30 is controlled to be in the neutral point state shown in FIG. 5A.
  • 5A is the same as FIG. 4A, in which one of the upper arm elements 31 to 33 or the lower arm elements 34 to 36 of the second inverter 30 is turned on for all phases and the other is turned off for all phases.
  • the second inverter 30 is controlled to be in the all-off state shown in FIG. 5B or the in-phase switch state shown in FIG. 5C.
  • the switching elements 31 to 36 of the second inverter 30 are all turned off.
  • the arm that is fully turned on may be switched between the neutral point state before the all-off state and the subsequent neutral point state.
  • the entire off period can be regarded as a dead time accompanying switching of the arm to be turned on.
  • inverters 20 and 30 are controlled using in-phase fundamental waves F1 and F2. If the amplitudes of the fundamental waves F1 and F2 are equal, the switching state of each phase is the same in the first inverter 20 and the second inverter 30. 5C, in the first inverter 20 and the second inverter 30, the U-phase upper arm elements 21, 31 are turned on, and the V-phase and W-phase lower arm elements 25, 26, 35, 36 are turned on. Show.
  • the coils 11 to 13 function as inductors in the boost converter, and energy is stored in the coils 11 to 13 by neutralizing the second inverter 30 during the non-charging period.
  • the charging period is switched, the energy stored in the coils 11 to 13 is released, and the second battery 42 is charged. Thereby, the power of the first battery 41 moves to the second battery 42.
  • the energization path is switched by turning off the switching element in which current flows from the high potential side to the low potential side via the element portion.
  • the power of one battery 41 can be transferred to the second battery 42.
  • the U-phase current Iu is positive
  • the V-phase current Iv and the W-phase current Iw are negative
  • the U-phase lower arm element 34 When the U-phase lower arm element 34 is turned off from this state, the U-phase current Iu is energized through the free-wheeling diode 321 and flows into the positive electrode of the second battery 42 as shown in FIGS. 5B and 5C. Thereby, the 2nd battery 42 is charged. Similarly, when the second inverter 30 is neutralized by turning on the upper arm elements 31 to 33, when the switching element of the phase in which the current flows through the element portion is turned off, The second battery 42 is charged by switching the energization path at.
  • the charging period is set to the in-phase switching state and the on / off state of the one-phase or two-phase switching elements is switched, the number of elements for switching the switching state is smaller than when all the switching elements 31 to 36 are turned off. Switching loss can be reduced. Further, when the charging period is set to the all-off state and all the switching elements 31 to 36 are turned off, the control is easy.
  • Zero-phase current which is the current that flows through the coils 11 to 13 during the charging period in chopper operation, does not affect the torque.
  • the phase currents Iu, Iv, and Iw have waveforms in which the zero-phase current is offset.
  • the electric power according to the offset current moves from the first battery 41 to the second battery 42.
  • the amount of power transferred from the first battery 41 to the second battery 42 can be adjusted by the ratio between the non-charging period and the charging period.
  • step S101 the control unit 65 determines whether or not the MG power Pmg is 0 or more. When it is determined that the MG power Pmg is 0 or more (S101: YES), the process proceeds to S103. When it is determined that the MG power PMG is less than 0 (S101: NO), the process proceeds to S102.
  • the control unit 65 turns off all the switching elements 21 to 26 and stops the first inverter 20. Further, the control unit 65 regeneratively drives the second inverter 30 according to the MG power Pmg, and charges the second battery 42. Note that the first battery 41 may be charged instead of the second battery 42 or the batteries 41 and 42 may be charged according to the SOC of the batteries 41 and 42.
  • control unit 65 determines whether the MG power Pmg is equal to or less than the fixed upper limit value Pmg_h. When it is determined that the MG power Pmg is equal to or less than the fixed upper limit value Pmg_h (S103: YES), the process proceeds to S105. When it is determined that the MG power Pmg is larger than the fixed upper limit value Pmg_h (S103: NO), the process proceeds to S104. In S104, control unit 65 controls inverters 20 and 30 according to MG power Pmg. If there is no higher output area than the fixed power area Rfix, the processes of S103 and S104 can be omitted.
  • the output value Pfix is set, and the process proceeds to S106.
  • the constant output value Pfix may be a predetermined value, or may be variable according to at least one of the SOC of the batteries 41 and 42, the environmental condition, and the operation history information.
  • the environmental conditions include at least one of temperature, humidity, and atmospheric pressure, which is an external environment of the vehicle on which the rotating electrical machine drive system 1 is mounted. Moreover, you may make it transfer to S104 according to environmental conditions etc., when not performing constant output control from a fixed output inverter at the time of low temperature.
  • the control unit 65 determines whether or not the MG power Pmg is larger than the constant output value Pfix. When it is determined that the MG power Pmg is equal to or less than the constant output value Pfix (S106: NO), the process proceeds to S108. When it is determined that the MG power Pmg is larger than the constant output value Pfix (S106: YES), the process proceeds to S107.
  • the control unit 65 controls the first inverter 20 based on the first fundamental wave F1 having a constant modulation rate so that the output of the first battery 41 becomes the constant output value Pfix. Further, the control unit 65 controls the second inverter 30 based on the second fundamental wave F2 having the opposite phase to the first fundamental wave F1 so that the difference between the MG power Pmg and the constant output value Pfix is output ( (See FIG. 3).
  • the modulation factor of the second fundamental wave F2 is set so as to become smaller as the MG power Pmg is closer to the constant output value Pfix. That is, the modulation factors of the fundamental waves F1 and F2 are larger as the difference between the MG power Pmg and the constant output value Pfix is smaller. The same applies when the fundamental waves F1 and F2 have the same phase in S109.
  • the control unit 65 determines whether or not the first battery voltage Vb1 is greater than the second battery voltage Vb2. To do. When it is determined that the first battery voltage Vb1 is equal to or lower than the second battery voltage Vb2 (S108: NO), the process proceeds to S110. When it is determined that the first battery voltage Vb1 is greater than the second battery voltage Vb2 (S108: YES), the process proceeds to S109.
  • control unit 65 controls the first inverter 20 at a constant modulation rate so that the output of the first battery 41 becomes the constant output value Pfix. Further, the control unit 65 is based on the second fundamental wave F2 having the same phase as the first fundamental wave F1 so that the surplus power obtained by removing the MG power Pmg from the constant output value Pfix is charged in the second battery 42. The second inverter 30 is controlled (see FIG. 4).
  • the control unit 65 causes the output of the first battery 41 to become the constant output value Pfix.
  • the first inverter 20 is controlled at a constant modulation rate. Further, the control unit 65 performs the second chopper operation so as to switch between the non-charging period and the charging period in order to charge the second battery 42 with the surplus power obtained by subtracting the MG power Pmg from the constant output value Pfix.
  • the inverter 30 is controlled (see FIG. 5).
  • the output of the first battery 41 provided on the first inverter 20 side that is a fixed output inverter when the MG power is within a predetermined range. Is constant.
  • the second inverter 30 that is a variable output inverter is controlled based on the required power of the motor generator 10 and the output from the first inverter 20 side.
  • the power conversion device 15 of the present embodiment converts the power of the motor generator 10 having the coils 11 to 13, and includes the first inverter 20, the second inverter 30, and the control unit 65. And comprising.
  • the first inverter 20 includes first switching elements 21 to 26 and is connected to one ends 111, 121, 131 of the coils 11, 12, 13 and the first battery 41.
  • the second inverter 30 has second switching elements 31 to 36 and is connected to the other ends 112, 122, 132 of the coils 11, 12, 13 and the second battery 42.
  • the controller 65 controls the on / off operation of the first switching elements 21 to 26 and the second switching elements 31 to 36.
  • first inverter 20 and the second inverter 30 are fixed output inverter, and a voltage source connected to the fixed output inverter is a fixed output voltage source.
  • the other of the first inverter 20 and the second inverter 30 is a variable output inverter, and the voltage source connected to the variable output inverter is a variable output voltage source.
  • the first inverter 20 will be described as a fixed output inverter, the first battery 41 as a fixed output voltage source, the second inverter 30 as a variable output inverter, and the second battery 42 as a variable output voltage source.
  • the control unit 65 controls the first inverter 20 so that the output from the first battery 41 becomes the constant output value Pfix.
  • the control unit 65 supplies power to the motor generator 10 from the first battery 41 and the second battery 42, and the MG power Pmg is constant output.
  • the second inverter 30 is controlled such that the surplus power output from the first battery 41 is supplied to the second battery 42.
  • the fixed output voltage source since the output from the fixed output voltage source is constant, the fixed output voltage source can be used with high efficiency. If the fixed output inverter is the first inverter 20, the output of the first battery 41 is constant, so that the battery duty cycle is reduced and the life of the first battery 41 can be extended. The same applies to the case where the fixed output inverter is the second inverter 30.
  • the control unit 65 causes the second switching elements 31 to 36 to be based on the modulation wave having the opposite phase to the modulation wave used for controlling the first switching elements 21 to 26. Control.
  • the first battery 41 and the second battery 42 can be regarded as being connected in series, and in addition to the constant output value Pfix from the fixed output inverter side, the shortage can be output from the variable output inverter side. The desired power can be obtained.
  • the switching elements 21 to 26 and 31 to 36 are element units 211 to 216, 311 to 316, respectively, which can switch between allowing and blocking energization from the high potential side to the low potential side, and the high potential from the low potential side. Diodes 221 to 226 and 321 to 326 that allow energization to the side are included.
  • the control unit 65 causes the first switching elements 21 to 26 and the second switching elements 31 to 36 to have the same phase. Control based on the modulated wave. Thereby, the surplus of the output from the first inverter 20 with respect to the MG power Pmg can be appropriately moved to the second battery 42.
  • the control unit 65 includes a non-charging period in which power transfer to the second battery 42 is not performed, The charging period during which power is transferred to the battery 42 is periodically switched. During the non-charging period, one of the upper arm elements 31 to 33 connected to the high potential side in the second inverter 30 or the lower arm elements 34 to 36 connected to the low potential side is turned on for all phases, and the other is The neutral point state is set to phase-off.
  • the chopper operation in which the coils 11 to 13 are regarded as inductors can be performed.
  • the surplus of the output from the 1st battery 41 with respect to MG electric power Pmg can be moved to the 2nd battery 42 appropriately. . Therefore, the surplus power can be appropriately moved to the second battery 42 regardless of the battery voltages Vb1 and Vb2.
  • the modulation factor of the second fundamental wave F2 which is a modulation wave used for control of the second inverter 30 that is a variable output inverter, increases as the difference between the MG power Pmg and the constant output value Pfix increases. Thereby, desired MG power Pmg and power transfer can be realized.
  • the constant output value Pfix is variable in accordance with at least one of the SOC of the batteries 41 and 42, environmental conditions, and driving history information of a vehicle using the motor generator 10 as a main motor. Thereby, the constant output value Pfix can be set appropriately.
  • FIG. 8 A second embodiment is shown in FIG. As shown in FIG. 8, in this embodiment, the constant output value from the 1st battery 41 is made into two steps. Specifically, when motor generator 10 is in a power running state and MG power Pgm is in first power fixed region Rfix1, control unit 65 causes output from first battery 41 to become first constant output value Pfix1. Then, the first inverter 20 is controlled. Further, when the MG power Pmg is in the second power fixed region Rfix2, the control unit 65 controls the first inverter 20 so that the output from the first battery 41 becomes the second constant output value Pfix2. Control unit 65 controls second inverter 30 based on MG power Pmg and constant output values Pfix1 and Pfix2. Details of the control are the same as in the first embodiment.
  • the constant output values Pfix1, Pfix2, etc. can be set as appropriate.
  • the output from the first battery 41 is fixed at two constant output values, but may be three or more stages. Even if comprised in this way, there exists an effect similar to the said embodiment.
  • region Rc can be made small by switching the output from a fixed output inverter in steps.
  • FIG. 9 A third embodiment will be described with reference to FIG.
  • an engine 80 is connected to the first inverter 20 of the present embodiment via a third inverter 90 and a generator 85.
  • the engine 80 is controlled by an engine control unit (not shown).
  • the generator 85 has coils 86 to 88.
  • the third inverter 90 is a three-phase inverter having switching elements 91-96. As the engine 80, the generator 85, and the third inverter 90, known ones may be used.
  • an engine 80 is connected instead of the first battery 41 of the above embodiment.
  • the first inverter 20 is a fixed output inverter, and the output from the first inverter 20 side is made constant by driving the engine 80 constant in the high efficiency region.
  • the second inverter 30 is a variable output inverter, and the output from the second inverter 30 side is variable, thereby realizing a desired MG power Pmg.
  • the engine 80 and the generator 85 are the first voltage source.
  • the first inverter 20 is a fixed output inverter
  • the second inverter 30 is a variable output inverter. Since the inverter on the engine 80 side is a fixed output inverter, the engine 80 can be driven in a constant high efficiency region, so that the overall efficiency can be increased.
  • the lithium ion battery etc. were illustrated as a voltage source.
  • the voltage source may be a lead storage battery other than a lithium ion battery, a fuel cell, or an electric double layer capacitor.
  • the first battery is a high capacity type and the second battery is a high output type.
  • what kind of thing may be used as a 1st battery and a 2nd battery, for example, it is good also as an equivalent.
  • the rotating electrical machine is a motor generator.
  • the rotating electrical machine may be an electric motor that does not have a function of a generator, or may be a generator that does not have a function of an electric motor.
  • the rotating electrical machine of the above embodiment has three phases. In other embodiments, the rotating electrical machine may have four or more phases.
  • the rotating electrical machine is a main motor of an electric vehicle.
  • the rotating electrical machine is not limited to the main motor, but may be a so-called ISG (Integrated Starter Generator) having both a starter function and an alternator function, or an auxiliary motor.
  • ISG Integrated Starter Generator

Abstract

The electric power conversion device (15) is provided with a first inverter (20), a second inverter (30), and a control part (65). One of the first inverter (20) and the second inverter (20) is a fixed output inverter, a power supply to be connected to the fixed output inverter is a fixed output power supply, the other of the first inverter (20) and the second inverter (30) is a variable output inverter, and a power supply to be connected to the variable output inverter is a variable output power supply. The control part (65) controls the fixed output inverter such that the output from the fixed output power supply has a fixed output value, and controls the variable output inverter such that electric power is supplied from the fixed output power supply and the variable output power supply to a rotary electric machine (10) when electric power required by the rotary electric machine (10) is higher than the fixed output value, or surplus electric power output from the fixed output power supply is supplied to the variable output power supply when the required electric power is higher than or equal to the fixed output value

Description

電力変換装置Power converter 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月21日に出願された特許出願番号2016-247628号に基づくものであり、ここにその記載内容を援用する。 This application is based on patent application No. 2016-247628 filed on Dec. 21, 2016, the description of which is incorporated herein by reference.
 本開示は、電力変換装置に関する。 The present disclosure relates to a power conversion device.
 従来、2つのインバータによりモータの電力を変換するインバータ駆動システムが知られている。例えば特許文献1では、高電圧時において、第1のインバータシステムと第2のインバータシステムのパルス幅変調信号(以下、パルス幅変調を「PWM」という。)の基本波成分の位相を180[°]ずらすことで2つの電源が電気的に直列接続され、2つの電源電圧の和によりモータを駆動する。また、特許文献1では、低電圧時において、第1のインバータシステムまたは第2のインバータシステムの一方の上アームまたは下アームのいずれかを3相同時オンし、他方をPWM駆動している。 Conventionally, an inverter drive system that converts electric power of a motor by two inverters is known. For example, in Patent Document 1, the phase of the fundamental wave component of the pulse width modulation signal (hereinafter referred to as “PWM”) of the first inverter system and the second inverter system at a high voltage is 180 [°. By shifting, the two power supplies are electrically connected in series, and the motor is driven by the sum of the two power supply voltages. Further, in Patent Document 1, at the time of a low voltage, either one of the upper arm or the lower arm of the first inverter system or the second inverter system is simultaneously turned on for three phases, and the other is PWM driven.
特開2006-238686号公報JP 2006-238686 A
 しかしながら特許文献1では、モータ出力の変動に伴う電源の劣化については、なんら考慮されていない。本開示の目的は、電圧源を高効率に利用可能である電力変換装置を提供することにある。 However, in Patent Document 1, no consideration is given to the deterioration of the power source accompanying the fluctuation of the motor output. An object of the present disclosure is to provide a power conversion device that can use a voltage source with high efficiency.
 本開示の電力変換装置は、巻線を有する回転電機の電力を変換するのもであって、第1インバータと、第2インバータと、制御部と、を備える。第1インバータは、第1スイッチング素子を有し、巻線の一端および第1電圧源に接続される。第2インバータは、第2スイッチング素子を有し、巻線の他端および第2電圧源に接続される。制御部は、第1スイッチング素子および第2スイッチング素子のオンオフ作動を制御する。 The power conversion device according to the present disclosure converts power of a rotating electrical machine having a winding, and includes a first inverter, a second inverter, and a control unit. The first inverter has a first switching element and is connected to one end of the winding and the first voltage source. The second inverter has a second switching element and is connected to the other end of the winding and the second voltage source. The control unit controls the on / off operation of the first switching element and the second switching element.
 ここで、第1インバータまたは第2インバータの一方を固定出力インバータ、当該固定出力インバータに接続される電圧源を固定出力電圧源とする。また、第1インバータまたは第2インバータの他方を可変出力インバータとし、当該可変出力インバータに接続される電圧源を可変出力電圧源とする。 Here, one of the first inverter and the second inverter is a fixed output inverter, and a voltage source connected to the fixed output inverter is a fixed output voltage source. The other of the first inverter and the second inverter is a variable output inverter, and the voltage source connected to the variable output inverter is a variable output voltage source.
 制御部は、固定出力電圧源からの出力が定出力値となるように、固定出力インバータを制御する。また、制御部は、回転電機の要求電力が定出力値より大きい場合、固定出力電圧源および可変出力電圧源から回転電機に電力が供給され、要求電力が定出力値以下の場合、固定出力電圧源から出力される余剰分の電力が可変出力電圧源に供給されるように可変出力インバータを制御する。これにより、固定出力インバータ側の電圧源からの出力を一定にでき、当該電圧源を高効率に利用可能である。例えば、固定出力インバータ側の電圧源がバッテリであれば、当該バッテリの負荷サイクルが低減され、長寿命化が可能である。 The control unit controls the fixed output inverter so that the output from the fixed output voltage source becomes a constant output value. In addition, the control unit supplies power to the rotating electrical machine from the fixed output voltage source and the variable output voltage source when the required power of the rotating electrical machine is greater than the constant output value. The variable output inverter is controlled such that surplus power output from the source is supplied to the variable output voltage source. Thereby, the output from the voltage source on the fixed output inverter side can be made constant, and the voltage source can be used with high efficiency. For example, if the voltage source on the fixed output inverter side is a battery, the duty cycle of the battery can be reduced and the life can be extended.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態による電力変換装置の構成を示す概略構成図であり、 図2は、第1実施形態によるMG電力とバッテリ電力との関係を説明する説明図であり、 図3は、第1実施形態において、MG電力が定出力値よりも大きい場合の動作を説明する説明図であり、 図4Aは、第1実施形態において、MG電力が定出力値以下であって、第1バッテリ電圧が第2バッテリ電圧より高い場合の動作を説明する説明図であり、 図4Bは、第1実施形態において、MG電力が定出力値以下であって、第1バッテリ電圧が第2バッテリ電圧より高い場合の動作を説明する説明図であり、 図5Aは、第1実施形態において、MG電力が定出力値以下であって、第1バッテリ電圧が第2バッテリ電圧以下の場合の動作を説明する説明図であり、 図5Bは、第1実施形態において、MG電力が定出力値以下であって、第1バッテリ電圧が第2バッテリ電圧以下の場合の動作を説明する説明図であり、 図5Cは、第1実施形態において、MG電力が定出力値以下であって、第1バッテリ電圧が第2バッテリ電圧以下の場合の動作を説明する説明図であり、 図6は、第1実施形態による電力移動を説明するタイムチャートであり、 図7は、第1実施形態による駆動制御処理を説明するフローチャートであり、 図8は、第2実施形態によるMG電力とバッテリ電力との関係を説明する説明図であり、 図9は、第3実施形態による電力変換装置の構成を示す概略構成図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a schematic configuration diagram showing the configuration of the power conversion device according to the first embodiment. FIG. 2 is an explanatory diagram illustrating the relationship between MG power and battery power according to the first embodiment. FIG. 3 is an explanatory diagram for explaining the operation when the MG power is larger than the constant output value in the first embodiment. FIG. 4A is an explanatory diagram illustrating an operation when the MG power is equal to or less than a constant output value and the first battery voltage is higher than the second battery voltage in the first embodiment. FIG. 4B is an explanatory diagram illustrating an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is higher than the second battery voltage in the first embodiment. FIG. 5A is an explanatory diagram for explaining the operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment. FIG. 5B is an explanatory diagram for explaining an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment. FIG. 5C is an explanatory diagram illustrating an operation when the MG power is equal to or lower than a constant output value and the first battery voltage is equal to or lower than the second battery voltage in the first embodiment. FIG. 6 is a time chart for explaining power transfer according to the first embodiment. FIG. 7 is a flowchart illustrating the drive control process according to the first embodiment. FIG. 8 is an explanatory diagram illustrating the relationship between MG power and battery power according to the second embodiment. FIG. 9 is a schematic configuration diagram illustrating a configuration of the power conversion device according to the third embodiment.
 以下、本開示による電力変化装置を図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
   (第1実施形態)
 第1実施形態を図1~図7に示す。図1に示すように、回転電機駆動システム1は、回転電機としてのモータジェネレータ10、および、電力変換装置15を備える。モータジェネレータ10は、図示しない車両に搭載される。車両は、例えば電気自動車やハイブリッド車両等の電動自動車であって、モータジェネレータ10は、図示しない駆動輪を駆動するためのトルクを発生する、所謂「主機モータ」である。モータジェネレータ10は、駆動輪を駆動するための電動機としての機能、および、図示しないエンジンや駆動輪から伝わる運動エネルギによって駆動されて発電する発電機としての機能を有する。
Hereinafter, a power change device according to the present disclosure will be described with reference to the drawings. Hereinafter, in a plurality of embodiments, the same numerals are given to the substantially same composition, and explanation is omitted.
(First embodiment)
A first embodiment is shown in FIGS. As shown in FIG. 1, the rotating electrical machine drive system 1 includes a motor generator 10 as a rotating electrical machine and a power conversion device 15. Motor generator 10 is mounted on a vehicle (not shown). The vehicle is an electric vehicle such as an electric vehicle or a hybrid vehicle, for example, and the motor generator 10 is a so-called “main motor” that generates torque for driving drive wheels (not shown). The motor generator 10 has a function as an electric motor for driving the drive wheels, and a function as a generator that generates electric power by being driven by kinetic energy transmitted from an engine or drive wheels (not shown).
 モータジェネレータ10は、3相交流の回転機であって、U相コイル11、V相コイル12、および、W相コイル13を有する。U相コイル11、V相コイル12およびW相コイル13が「巻線」に対応し、以下適宜、モータジェネレータを「MG」、U相コイル11、V相コイル12およびW相コイル13を「コイル11~13」という。本実施形態では、U相コイル11に流れる電流をU相電流Iu、V相コイル12に流れる電流をV相電流Iv、W相コイル13に流れる電流をW相電流Iwとする。また、U相電流Iu、V相電流Iv、および、W相電流Iwを、適宜、相電流Iu、Iv、Iwという。本実施形態では、第1インバータ20側から第2インバータ30側へ流れる電流を正、第2インバータ30側から第1インバータ20側へ流れる電流を負とする。 The motor generator 10 is a three-phase AC rotating machine, and includes a U-phase coil 11, a V-phase coil 12, and a W-phase coil 13. The U-phase coil 11, the V-phase coil 12 and the W-phase coil 13 correspond to “windings”. Hereinafter, the motor generator is appropriately “MG”, and the U-phase coil 11, the V-phase coil 12 and the W-phase coil 13 are “coils”. 11-13 ". In the present embodiment, the current flowing through the U-phase coil 11 is defined as a U-phase current Iu, the current flowing through the V-phase coil 12 is defined as a V-phase current Iv, and the current flowing through the W-phase coil 13 is defined as a W-phase current Iw. Further, the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw are appropriately referred to as phase currents Iu, Iv, and Iw. In the present embodiment, the current flowing from the first inverter 20 side to the second inverter 30 side is positive, and the current flowing from the second inverter 30 side to the first inverter 20 side is negative.
 電力変換装置15は、モータジェネレータ10の電力を変換するものであって、第1インバータ20、第2インバータ30、および、制御部65等を備える。第1インバータ20は、コイル11~13の通電を切り替える3相インバータであり、スイッチング素子21~26を有する。第2インバータ30は、コイル11~13の通電を切り替えるスイッチング素子31~36を有する。スイッチング素子21は、素子部211および還流ダイオード221を有する。他のスイッチング素子22~26、31~36も同様、それぞれ、素子部212~216、311~316、および、還流ダイオード222~226、321~326を有する。 The power conversion device 15 converts the power of the motor generator 10 and includes a first inverter 20, a second inverter 30, a control unit 65, and the like. The first inverter 20 is a three-phase inverter that switches energization of the coils 11 to 13 and includes switching elements 21 to 26. The second inverter 30 includes switching elements 31 to 36 for switching energization of the coils 11 to 13. The switching element 21 includes an element unit 211 and a free wheeling diode 221. Similarly, the other switching elements 22 to 26 and 31 to 36 have element units 212 to 216, 311 to 316, and free-wheeling diodes 222 to 226 and 321 to 326, respectively.
 素子部211~216、311~316は、IGBT(絶縁ゲートバイポーラトランジスタ)であって、制御部65によってオンオフ作動が制御される。素子部211~216、311~316は、オンされたときに高電位側から低電位側への通電が許容され、オフされたときに通電が遮断される。素子部211~216、311~316は、IGBTに限らず、MOSFET等であってもよい。 The element units 211 to 216 and 311 to 316 are IGBTs (insulated gate bipolar transistors), and the on / off operation is controlled by the control unit 65. The element portions 211 to 216 and 311 to 316 are allowed to be energized from the high potential side to the low potential side when turned on, and are de-energized when turned off. The element portions 211 to 216 and 311 to 316 are not limited to IGBTs but may be MOSFETs or the like.
 還流ダイオード221~226、321~326は、素子部211~216、311~316のそれぞれと並列に接続され、低電位側から高電位側への通電を許容する。例えば、還流ダイオード221~226、321~326は、例えば、MOSFETの寄生ダイオード等のように、内蔵されていてもよいし、外付けされたものであってもよい。 The free-wheeling diodes 221 to 226 and 321 to 326 are connected in parallel with the element portions 211 to 216 and 311 to 316, respectively, and allow energization from the low potential side to the high potential side. For example, the free-wheeling diodes 221 to 226 and 321 to 326 may be built in, such as a parasitic diode of a MOSFET, or may be externally attached.
 第1インバータ20において、高電位側にスイッチング素子21~23が接続され、低電位側にスイッチング素子24~26が接続される。また、スイッチング素子21~23の高電位側を接続する第1高電位側配線27が第1バッテリ41の正極と接続され、スイッチング素子24~26の低電位側を接続する第1低電位側配線28が第1バッテリ41の負極と接続される。 In the first inverter 20, switching elements 21 to 23 are connected to the high potential side, and switching elements 24 to 26 are connected to the low potential side. The first high potential side wiring 27 connecting the high potential side of the switching elements 21 to 23 is connected to the positive electrode of the first battery 41, and the first low potential side wiring connecting the low potential side of the switching elements 24 to 26 is connected. 28 is connected to the negative electrode of the first battery 41.
 U相のスイッチング素子21、24の接続点にはU相コイル11の一端111が接続され、V相のスイッチング素子22、25の接続点にはV相コイル12の一端121が接続され、W相のスイッチング素子23、26の接続点にはW相コイル13の一端131が接続される。すなわち、第1インバータ20は、コイル11、12、13と第1バッテリ41との間に接続される。 One end 111 of the U-phase coil 11 is connected to the connection point of the U-phase switching elements 21, 24, and one end 121 of the V-phase coil 12 is connected to the connection point of the V- phase switching elements 22, 25, One end 131 of the W-phase coil 13 is connected to a connection point between the switching elements 23 and 26. That is, the first inverter 20 is connected between the coils 11, 12, 13 and the first battery 41.
 第2インバータ30において、高電位側にスイッチング素子31~33が接続され、低電位側にスイッチング素子34~36が接続される。また、スイッチング素子31~33の高電位側を接続する第2高電位側配線37が第2バッテリ42の正極と接続され、スイッチング素子34~36の低電位側を接続する第2低電位側配線38が第2バッテリ42の負極と接続される。 In the second inverter 30, the switching elements 31 to 33 are connected to the high potential side, and the switching elements 34 to 36 are connected to the low potential side. Further, the second high potential side wiring 37 that connects the high potential side of the switching elements 31 to 33 is connected to the positive electrode of the second battery 42, and the second low potential side wiring that connects the low potential side of the switching elements 34 to 36. 38 is connected to the negative electrode of the second battery 42.
 U相のスイッチング素子31、34の接続点にはU相コイル11の他端112が接続され、V相のスイッチング素子32、35の接続点にはV相コイル12の他端122が接続され、W相のスイッチング素子33、36の接続点にはW相コイル13の他端132が接続される。すなわち、第2インバータ30は、コイル11、12、13と第2バッテリ42との間に接続される。このように、本実施形態では、第1インバータ20および第2インバータ30がコイル11~13の両側に接続される。以下適宜、高電位側に接続されるスイッチング素子21~23、31~33を「上アーム素子」、低電位側に接続されるスイッチング素子24~26、34~36を「下アーム素子」という。 The other end 112 of the U-phase coil 11 is connected to the connection point of the U-phase switching elements 31 and 34, and the other end 122 of the V-phase coil 12 is connected to the connection point of the V- phase switching elements 32 and 35. The other end 132 of the W-phase coil 13 is connected to a connection point between the W- phase switching elements 33 and 36. That is, the second inverter 30 is connected between the coils 11, 12, 13 and the second battery 42. Thus, in the present embodiment, the first inverter 20 and the second inverter 30 are connected to both sides of the coils 11 to 13. Hereinafter, the switching elements 21 to 23 and 31 to 33 connected to the high potential side are referred to as “upper arm elements”, and the switching elements 24 to 26 and 34 to 36 connected to the low potential side are referred to as “lower arm elements”.
 第1電圧源としての第1バッテリ41は、第1インバータ20と接続され、第1インバータ20を経由してモータジェネレータ10と電力を授受可能に設けられる。第2電圧源としての第2バッテリ42は、第2インバータ30と接続され、第2インバータ30を経由してモータジェネレータ10と電力を授受可能に設けられる。 The first battery 41 as the first voltage source is connected to the first inverter 20 and provided so as to be able to exchange electric power with the motor generator 10 via the first inverter 20. The second battery 42 as the second voltage source is connected to the second inverter 30 and is provided so as to be able to exchange power with the motor generator 10 via the second inverter 30.
 本実施形態では、第1バッテリ41および第2バッテリ42は、リチウムイオン電池等の充放電可能な直流電源である。以下、第1バッテリ41の電圧を第1バッテリ電圧Vb1、第2バッテリ42の電圧を第2バッテリ電圧Vb2とする。また、本実施形態では、第1バッテリ41の容量は、第2バッテリ42の容量と比較して相対的に大きい、所謂「高容量型」のものであり、第2バッテリ42は、所謂「高出力型」のものとする。 In the present embodiment, the first battery 41 and the second battery 42 are chargeable / dischargeable DC power sources such as lithium ion batteries. Hereinafter, the voltage of the first battery 41 is referred to as a first battery voltage Vb1, and the voltage of the second battery 42 is referred to as a second battery voltage Vb2. Further, in the present embodiment, the capacity of the first battery 41 is a so-called “high capacity type” that is relatively larger than the capacity of the second battery 42, and the second battery 42 has a so-called “high capacity”. "Output type".
 第1コンデンサ43は、第1高電位側配線27と第1低電位側配線28とに接続される。第1コンデンサ43は、第1バッテリ41から第1インバータ20側への電流、または、第1インバータ20から第1バッテリ41側への電流を平滑化する平滑コンデンサである。第2コンデンサ44は、第2高電位側配線37と第2低電位側配線38とに接続される。第2コンデンサ44は、第2バッテリ42から第2インバータ30側への電流、または、第2インバータ30側から第2バッテリ42側への電流を平滑化する平滑コンデンサである。 The first capacitor 43 is connected to the first high potential side wiring 27 and the first low potential side wiring 28. The first capacitor 43 is a smoothing capacitor that smoothes the current from the first battery 41 to the first inverter 20 side or the current from the first inverter 20 to the first battery 41 side. The second capacitor 44 is connected to the second high potential side wiring 37 and the second low potential side wiring 38. The second capacitor 44 is a smoothing capacitor that smoothes the current from the second battery 42 to the second inverter 30 or the current from the second inverter 30 to the second battery 42.
 制御信号生成部60は、第1ドライバ回路61、第2ドライバ回路62、および、制御部65を有する。制御部65は、マイコンを主体として構成され、各種演算処理を行う。制御部65における各処理は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。制御部65は、第1インバータ20および第2インバータ30を制御する。具体的には、トルク指令値trq*や電流指令値Iu*、Iv*、Iw*等のモータジェネレータ10の駆動に係る指令値に基づき、スイッチング素子21~26、31~36の素子部211~216、311~316のオンオフ作動を制御する制御信号を生成し、ドライバ回路61、62に出力する。以下適宜、スイッチング素子21~26、31~36の素子部211~216、311~316のオンオフ作動を制御することを、単にスイッチング素子21~26、31~36のオンオフ作動を制御する、という。 The control signal generation unit 60 includes a first driver circuit 61, a second driver circuit 62, and a control unit 65. The control unit 65 is mainly composed of a microcomputer and performs various arithmetic processes. Each processing in the control unit 65 may be software processing by executing a program stored in advance by the CPU, or may be hardware processing by a dedicated electronic circuit. The control unit 65 controls the first inverter 20 and the second inverter 30. Specifically, based on command values relating to driving of the motor generator 10 such as the torque command value trq * and the current command values Iu * , Iv * , Iw * , the element units 211 to 26 of the switching elements 21 to 26, 31 to 36. A control signal for controlling the on / off operation of 216, 311 to 316 is generated and output to the driver circuits 61, 62. Hereinafter, appropriately controlling the on / off operation of the element portions 211 to 216 and 311 to 316 of the switching elements 21 to 26 and 31 to 36 is simply referred to as controlling the on / off operations of the switching elements 21 to 26 and 31 to 36.
 スイッチング素子21~26は、例えば第1基本波F1とキャリア波とに基づいてオンオフ作動が制御される。また、スイッチング素子31~36は、例えば第2基本波F1とキャリア波とに基づいてオンオフ作動が制御される。基本波F1、F2に応じた制御は、例えば基本波F1、F2の振幅がキャリア波の振幅以下である、すなわち変調率が1以下である正弦波PWM制御である。または、基本波F1、F2の振幅がキャリア波の振幅より大きい、すなわち変調率が1より大きい過変調PWM制御であってもよい。さらにまた、振幅を無限大とみなし、基本波F1、F2の半周期ごとに各素子のオンオフが切り替えられる矩形波制御としてもよい。矩形波制御は、電気角の180°ごとに各素子のオンオフを切り替える180°通電制御と捉えることもできる。また、矩形波制御における通電位相は、例えば120°通電等、180°以外であってもよい。基本波F1、F2の振幅は、等しくてもよいし、異なっていてもよい。 The on / off operation of the switching elements 21 to 26 is controlled based on, for example, the first fundamental wave F1 and the carrier wave. Further, the on / off operation of the switching elements 31 to 36 is controlled based on, for example, the second fundamental wave F1 and the carrier wave. Control according to the fundamental waves F1 and F2 is, for example, sinusoidal PWM control in which the amplitudes of the fundamental waves F1 and F2 are equal to or smaller than the amplitude of the carrier wave, that is, the modulation factor is 1 or less. Alternatively, overmodulation PWM control may be used in which the amplitudes of the fundamental waves F1 and F2 are larger than the amplitude of the carrier wave, that is, the modulation rate is larger than 1. Furthermore, it may be a rectangular wave control in which the amplitude is infinite and each element is switched on and off every half cycle of the fundamental waves F1 and F2. The rectangular wave control can be regarded as 180 ° energization control in which each element is turned on and off every 180 ° of electrical angle. Further, the energization phase in the rectangular wave control may be other than 180 °, for example, 120 ° energization. The amplitudes of the fundamental waves F1 and F2 may be the same or different.
 第1ドライバ回路61は、制御部65からの制御信号に応じ、素子部211~216のオンオフ作動を制御するゲート信号を生成して出力する。第2ドライバ回路62は、制御部65からの制御信号に応じ、素子部311~316のオンオフ作動を制御するゲート信号を生成して出力する。素子部211~216、311~316が制御信号に応じてオンオフされることで、バッテリ41、42の直流電力が交流電力に変換され、モータジェネレータ10へ供給される。これにより、モータジェネレータ10の駆動は、第1インバータ20および第2インバータ30を介して、制御部65に制御される。 The first driver circuit 61 generates and outputs a gate signal for controlling the on / off operation of the element units 211 to 216 in response to a control signal from the control unit 65. The second driver circuit 62 generates and outputs a gate signal for controlling the on / off operation of the element units 311 to 316 in accordance with a control signal from the control unit 65. The element units 211 to 216 and 311 to 316 are turned on / off according to the control signal, whereby the DC power of the batteries 41 and 42 is converted into AC power and supplied to the motor generator 10. Thereby, driving of motor generator 10 is controlled by control unit 65 via first inverter 20 and second inverter 30.
 図2は、MG電力とバッテリ電力との関係を説明する図であって、横軸をMG電力Pmg、縦軸をバッテリ電力Pb1、Pb2とする。ここで、MG電力Pmgは、所望のトルクおよび回転数を出力するのに要する電力であって、「要求電力」に対応する。本実施形態では、モータジェネレータ10は、MG電力Pmgが正のとき力行状態、負のとき回生状態とする。第1バッテリ41は、第1バッテリ電力Pb1が正のとき放電状態、負のとき充電状態とする。第2バッテリ42は、第2バッテリ電力Pb2が正のとき放電状態、負のとき充電状態とする。 FIG. 2 is a diagram for explaining the relationship between MG power and battery power, where the horizontal axis represents MG power Pmg and the vertical axis represents battery power Pb1 and Pb2. Here, the MG power Pmg is power required to output a desired torque and rotation speed, and corresponds to “required power”. In the present embodiment, motor generator 10 is in a power running state when MG power Pmg is positive, and is in a regenerative state when negative. The first battery 41 is in a discharged state when the first battery power Pb1 is positive, and is in a charged state when negative. The second battery 42 is in a discharged state when the second battery power Pb2 is positive, and is in a charged state when negative.
 図2では、MG電力Pmgを実線、第1バッテリ電力Pb1を一点鎖線、第2バッテリ電力Pb2を二点鎖線で示す。また、値が同じである場合、説明のため、若干ずらして記載した。以下、第1インバータ20が「固定出力インバータ」、第2インバータ30が「可変出力インバータ」であって、第1バッテリ41が「固定出力電圧源」、第2バッテリ42が「可変出力電圧源」であるものとして説明するが、インバータ20、30の制御を入れ替え、第1インバータ20を可変出力インバータ、第2インバータ30を固定出力インバータとしてもよい。また、バッテリ41、42のSOC(State Of Charge)等に応じ、固定出力インバータと可変出力インバータを、適宜切り替えるようにしてもよい。第2実施形態についても同様である。 2, the MG power Pmg is indicated by a solid line, the first battery power Pb1 is indicated by a one-dot chain line, and the second battery power Pb2 is indicated by a two-dot chain line. Further, when the values are the same, the values are slightly shifted for explanation. Hereinafter, the first inverter 20 is a “fixed output inverter”, the second inverter 30 is a “variable output inverter”, the first battery 41 is a “fixed output voltage source”, and the second battery 42 is a “variable output voltage source”. However, the control of the inverters 20 and 30 may be interchanged so that the first inverter 20 may be a variable output inverter and the second inverter 30 may be a fixed output inverter. Further, the fixed output inverter and the variable output inverter may be appropriately switched according to the SOC (State Of Charge) of the batteries 41 and 42. The same applies to the second embodiment.
 図2に示すように、モータジェネレータ10が回生状態のとき、第1インバータ20のスイッチング素子21~26を全てオフにし、第1バッテリ電力Pb1を0とする。このとき、第1バッテリ41への電力の入出力は行われない。また、MG電力Pmgに応じて第2インバータ30を制御し、モータジェネレータ10の回生駆動により生じる電力により、第2バッテリ42を充電する。 As shown in FIG. 2, when the motor generator 10 is in the regenerative state, all the switching elements 21 to 26 of the first inverter 20 are turned off, and the first battery power Pb1 is set to zero. At this time, power input / output to / from the first battery 41 is not performed. Further, second inverter 30 is controlled in accordance with MG power Pmg, and second battery 42 is charged with power generated by regenerative driving of motor generator 10.
 MG電力Pmgが固定上限値Pmg_hより大きい場合、モータジェネレータ10から所望のMG電力Pmgが出力されるように、インバータ20、30を制御する。この場合、第1バッテリ電力Pb1を、定出力値Pfixより大きくする。なお、電力固定領域Rfixにて、第1インバータ20を矩形波制御している場合等、第1バッテリ電力Pb1を定出力値Pfixより高められない場合、MG電力Pmgが固定上限値Pmg_hより大きい領域がなくてもよい。 When the MG power Pmg is larger than the fixed upper limit value Pmg_h, the inverters 20 and 30 are controlled so that the motor generator 10 outputs the desired MG power Pmg. In this case, the first battery power Pb1 is set larger than the constant output value Pfix. When the first battery power Pb1 cannot be increased above the constant output value Pfix, such as when the first inverter 20 is controlled in a rectangular wave in the power fixed region Rfix, a region where the MG power Pmg is greater than the fixed upper limit value Pmg_h. There is no need.
 図2の例では、MG電力Pmgが固定上限値Pmg_hより高い場合、第1バッテリ電力Pb1と第2バッテリ電力Pb2とが一致するように記載しているが、異なっていてもよい。また、図2の例では、固定上限値Pmg_hにて、第1バッテリ電力Pb1と第2バッテリ電力Pb2とが一致しているが、第1バッテリ電力Pb1と第2バッテリ電力Pb2とが異なる値となるように、固定上限値Pmg_hを設定してもよい。 In the example of FIG. 2, when the MG power Pmg is higher than the fixed upper limit value Pmg_h, the first battery power Pb1 and the second battery power Pb2 are described as matching, but may be different. In the example of FIG. 2, the first battery power Pb1 and the second battery power Pb2 coincide with each other at the fixed upper limit value Pmg_h, but the first battery power Pb1 and the second battery power Pb2 are different from each other. The fixed upper limit Pmg_h may be set so that
 モータジェネレータ10が力行状態であって、MG電力Pmgが固定上限値Pmg_h以下である電力固定領域Rfixのとき、第1バッテリ41からの出力が定出力値Pfixで一定となるように、第1インバータ20を制御する。このとき、第1基本波F1の変調率は一定である。定出力値Pfixは、第1バッテリ41が高効率に電力を出力可能な値に適宜設定される。換言すると、定出力値Pfixは、MG電力Pmgの変動による影響を受けない値、ということである。第1インバータ20は、定出力値Pfixに応じた変調率の第1基本波F1に基づいて制御される。例えば、第1インバータ20を矩形波制御とすれば、第1スイッチング素子21~26のスイッチング損失を低減可能である。 When the motor generator 10 is in a power running state and the MG power Pmg is in the power fixed region Rfix where the fixed upper limit value Pmg_h is not more than the first inverter 41 so that the output from the first battery 41 becomes constant at the constant output value Pfix. 20 is controlled. At this time, the modulation factor of the first fundamental wave F1 is constant. The constant output value Pfix is appropriately set to a value that allows the first battery 41 to output power with high efficiency. In other words, the constant output value Pfix is a value that is not affected by fluctuations in the MG power Pmg. The first inverter 20 is controlled based on the first fundamental wave F1 having a modulation rate corresponding to the constant output value Pfix. For example, if the first inverter 20 is rectangular wave controlled, the switching loss of the first switching elements 21 to 26 can be reduced.
 MG電力Pmgが電力固定領域Rfixのとき、第2インバータ20は、MG電力Pmgおよび定出力値Pfixに基づいて制御される。電力固定領域Rfixにおいて、MG電力Pmgが定出力値Pfixより大きい領域を両側放電領域Rd、MG電力Pmgが定出力値Pfixより小さい領域を片側充電領域Rcとする。 When the MG power Pmg is in the power fixed region Rfix, the second inverter 20 is controlled based on the MG power Pmg and the constant output value Pfix. In the fixed power region Rfix, a region where the MG power Pmg is larger than the constant output value Pfix is a double-sided discharge region Rd, and a region where the MG power Pmg is smaller than the constant output value Pfix is a one-side charging region Rc.
 MG電力Pmgが両側放電領域Rdのとき、制御部65は、第2基本波F2の位相を、第1基本波F1と逆位相とする。換言すると、両側放電領域Rdの場合、第1基本波F1と第2基本波F2とは、位相が略180[°]ずれている、ということである。本実施形態では、基本波F1、F2の位相差を180[°]とするが、第1バッテリ電圧Vb1と第2バッテリ電圧Vb2との和に相当する電圧を印加可能な程度のずれは許容される。また、MG電力Pmgが両側放電領域Rdのとき、制御部65は、第2基本波F2の変調率を、MG電力Pmgと定出力値Pfixとの差に応じて設定する。具体的には、MG電力Pmgが大きくなるほど、第2基本波F2の変調率を大きくする。 When the MG power Pmg is the double-sided discharge region Rd, the control unit 65 sets the phase of the second fundamental wave F2 to be opposite to that of the first fundamental wave F1. In other words, in the case of the double-sided discharge region Rd, the first fundamental wave F1 and the second fundamental wave F2 are out of phase with each other by approximately 180 [°]. In this embodiment, the phase difference between the fundamental waves F1 and F2 is set to 180 [°], but a deviation that allows the application of a voltage corresponding to the sum of the first battery voltage Vb1 and the second battery voltage Vb2 is allowed. The When MG power Pmg is in both-side discharge region Rd, control unit 65 sets the modulation factor of second fundamental wave F2 according to the difference between MG power Pmg and constant output value Pfix. Specifically, the modulation rate of the second fundamental wave F2 is increased as the MG power Pmg increases.
 逆位相の基本波F1、F2を用いてインバータ20、30を制御することで、第1バッテリ41と第2バッテリ42とが電気的に直列接続されている状態とみなすことができ、第1バッテリ電圧Vb1と第2バッテリ電圧Vb2との和(すなわち、Vb1+Vb2)に応じた電圧をモータジェネレータ10に印加可能である。例えば、図3に示すように、スイッチング素子21、25、26、32、33、34がオンされているとき、矢印Y1のように電流が流れ、モータジェネレータ10は第1バッテリ41および第2バッテリ42の電力を用いて駆動される。なお、図3等において、オンである素子を実線、オフである素子を破線で示す。 By controlling the inverters 20 and 30 using the fundamental waves F1 and F2 having opposite phases, it can be considered that the first battery 41 and the second battery 42 are electrically connected in series. A voltage corresponding to the sum of the voltage Vb1 and the second battery voltage Vb2 (ie, Vb1 + Vb2) can be applied to the motor generator 10. For example, as shown in FIG. 3, when the switching elements 21, 25, 26, 32, 33, and 34 are turned on, current flows as indicated by an arrow Y 1, and the motor generator 10 includes the first battery 41 and the second battery. It is driven using 42 electric power. In FIG. 3 and the like, elements that are on are indicated by solid lines, and elements that are off are indicated by broken lines.
 MG電力Pmgが定出力値Pfixと等しい場合、制御部65は、第2バッテリ電力Pb2を0とする。すなわち、第2バッテリ42の入出力を0とする。具体的には、第2インバータ30の上アーム素子31~33の全相、または、下アーム素子34~36の全相の一方をオン、他方をオフにすることで、第2インバータ30を中性点化する。 When the MG power Pmg is equal to the constant output value Pfix, the control unit 65 sets the second battery power Pb2 to 0. That is, the input / output of the second battery 42 is set to zero. Specifically, the second inverter 30 is turned on by turning on one of all the phases of the upper arm elements 31 to 33 of the second inverter 30 or all the phases of the lower arm elements 34 to 36 and turning off the other. It becomes a sex point.
 図4Aは、上アーム素子31~33を全相オフ、下アーム素子34~36を全相オンすることで第2インバータ30を中性点化する場合の例であり、第1インバータ20のスイッチング素子21、25、26がオンであれば、矢印Y2のように電流が流れる。第2インバータ30を中性点化することで、第2バッテリ42の電力の入出力は0となる。本実施形態では、MG電力Pmgが定出力値Pfixと等しい場合を片側充電領域Rcに含み、第2基本波F2の変調率を0にしている、とみなす。なお、MG電力Pmgが定出力値Pfixと等しい場合を両側放電領域Rdに含み、第2基本波F2の変調率=0と捉えてもよい。 FIG. 4A shows an example in which the second inverter 30 is neutralized by turning off the upper arm elements 31 to 33 and turning on the lower arm elements 34 to 36 and switching the first inverter 20 to the neutral point. If the elements 21, 25, and 26 are on, a current flows as indicated by an arrow Y2. By making the second inverter 30 neutral, the power input / output of the second battery 42 becomes zero. In the present embodiment, the case where the MG power Pmg is equal to the constant output value Pfix is included in the one-side charging region Rc, and the modulation factor of the second fundamental wave F2 is regarded as 0. Note that a case where the MG power Pmg is equal to the constant output value Pfix is included in the both-side discharge region Rd, and the modulation factor of the second fundamental wave F2 may be regarded as zero.
 図2に示すように、MG電力Pmgが片側充電領域Rcのとき、定出力値PfixがMG電力Pmgより大きいので、制御部65は、余剰分の電力が第2バッテリ42に充電されるように、第2インバータ30を制御する。MG電力Pmgが片側充電領域Rcであって、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2より大きい場合、すなわちVb1>Vb2の場合、制御部65は、第2基本波F2の位相を、第1基本波F1と同位相とする。換言すると、第1基本波F1と第2基本波F2との位相差は、略0[°]である。同位相の基本波F1、F2を用いてインバータ20、30を制御することで、第1バッテリ電圧Vb1と第2バッテリ電圧Vb2との差(すなわちVb1-Vb2)に応じた電圧をモータジェネレータ10に印加可能である。本実施形態では、基本波F1、F2の位相差を0[°]とするが、第1バッテリ電圧Vb1と第2バッテリ電圧Vb2との差に相当する電圧を印加可能な程度のずれは許容される。 As shown in FIG. 2, when the MG power Pmg is in the one-side charging region Rc, the constant output value Pfix is larger than the MG power Pmg, so that the control unit 65 charges the second battery 42 with surplus power. The second inverter 30 is controlled. When the MG power Pmg is the one-side charging region Rc and the first battery voltage Vb1 is greater than the second battery voltage Vb2, that is, when Vb1> Vb2, the control unit 65 changes the phase of the second fundamental wave F2 to the first The phase is the same as that of the fundamental wave F1. In other words, the phase difference between the first fundamental wave F1 and the second fundamental wave F2 is substantially 0 [°]. By controlling the inverters 20 and 30 using the fundamental waves F1 and F2 having the same phase, a voltage corresponding to the difference between the first battery voltage Vb1 and the second battery voltage Vb2 (ie, Vb1−Vb2) is supplied to the motor generator 10. Can be applied. In the present embodiment, the phase difference between the fundamental waves F1 and F2 is set to 0 [°], but a deviation that allows application of a voltage corresponding to the difference between the first battery voltage Vb1 and the second battery voltage Vb2 is allowed. The
 図4Bに示すように、例えばスイッチング素子21、25、26、31、35、36がオンされているとき、矢印Y3のように電流が流れ、モータジェネレータ10は第1バッテリ41の電力を用いて駆動される。また、余剰分の電力により、第2バッテリ42が充電される。 As shown in FIG. 4B, for example, when the switching elements 21, 25, 26, 31, 35, and 36 are turned on, current flows as indicated by an arrow Y 3, and the motor generator 10 uses the power of the first battery 41. Driven. Further, the second battery 42 is charged with surplus power.
 また、MG電力Pmgが片側充電領域Rcのとき、制御部65は、第2基本波F2の変調率を、MG電力Pmgに応じて設定する。具体的には、定出力値PfixとMG電力Pmgとの差が大きくなるほど、第2基本波F2の変調率を大きくする。第2基本波F2の変調率を変えることで、図4Aに示す第2インバータ30が中性点化される状態と、図4Bに示す第2バッテリ42が充電される状態との割合を制御している、と捉えることもできる。これにより、MG電力Pmgに応じ、第1バッテリ41から第2バッテリ42に移動される電力量である電力移動量が制御される。 Further, when the MG power Pmg is in the one-side charging region Rc, the control unit 65 sets the modulation factor of the second fundamental wave F2 according to the MG power Pmg. Specifically, the modulation factor of the second fundamental wave F2 is increased as the difference between the constant output value Pfix and the MG power Pmg increases. By changing the modulation factor of the second fundamental wave F2, the ratio between the state where the second inverter 30 shown in FIG. 4A is neutralized and the state where the second battery 42 shown in FIG. 4B is charged is controlled. It can also be understood as being. As a result, the amount of power transfer that is the amount of power transferred from the first battery 41 to the second battery 42 is controlled according to the MG power Pmg.
 MG電力Pmgが片側充電領域Rcであって、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2以下の場合、すなわちVb1≦Vb2の場合、制御部65は、チョッパ動作により、第1バッテリ41の電力を第2バッテリ42に移動させる。チョッパ動作では、第1バッテリ41の電力を第2バッテリ42に移動させない非充電期間と、第1バッテリ41の電力を第2バッテリ42に移動させる充電期間と、を周期的に切り替える。非充電期間と充電期間との割合は、第1バッテリ電圧Vb1と第2バッテリ電圧Vb2との電圧差、および、定出力値PfixとMG電力Pmgとの差に応じて設定される。 When the MG power Pmg is the one-side charging region Rc and the first battery voltage Vb1 is equal to or lower than the second battery voltage Vb2, that is, when Vb1 ≦ Vb2, the control unit 65 reduces the power of the first battery 41 by the chopper operation. Move to second battery 42. In the chopper operation, a non-charging period in which the power of the first battery 41 is not moved to the second battery 42 and a charging period in which the power of the first battery 41 is moved to the second battery 42 are periodically switched. The ratio between the non-charging period and the charging period is set according to the voltage difference between the first battery voltage Vb1 and the second battery voltage Vb2 and the difference between the constant output value Pfix and the MG power Pmg.
 非充電期間において、第2インバータ30は、図5Aに示す中性点状態となるように制御される。図5Aは、図4Aと同様であり、第2インバータ30の上アーム素子31~33、または、下アーム素子34~36の一方を全相オン、他方を全相オフとする。 During the non-charging period, the second inverter 30 is controlled to be in the neutral point state shown in FIG. 5A. 5A is the same as FIG. 4A, in which one of the upper arm elements 31 to 33 or the lower arm elements 34 to 36 of the second inverter 30 is turned on for all phases and the other is turned off for all phases.
 充電期間において、第2インバータ30は、図5Bに示す全オフ状態、または、図5Cに示す同相スイッチ状態となるように制御される。図5Bに示すように、全オフ状態では、第2インバータ30のスイッチング素子31~36を全オフにする。中性点状態と全オフ状態とを切り替えるとき、全オフ状態の前の中性点状態と、後の中性点状態とで、全オンされるアームを切り替えてもよい。この場合、全オフ期間は、オンされるアームの切り替えに伴うデッドタイムと捉えることができる。 During the charging period, the second inverter 30 is controlled to be in the all-off state shown in FIG. 5B or the in-phase switch state shown in FIG. 5C. As shown in FIG. 5B, in the fully off state, the switching elements 31 to 36 of the second inverter 30 are all turned off. When switching between the neutral point state and the all-off state, the arm that is fully turned on may be switched between the neutral point state before the all-off state and the subsequent neutral point state. In this case, the entire off period can be regarded as a dead time accompanying switching of the arm to be turned on.
 図5Cに示すように、同相スイッチング状態では、同位相の基本波F1、F2を用いてインバータ20、30を制御する。基本波F1、F2の振幅が等しければ、各相のスイッチング状態が第1インバータ20と第2インバータ30とで同様となる。図5Cでは、第1インバータ20および第2インバータ30において、U相の上アーム素子21、31がオンされ、V相およびW相の下アーム素子25、26、35、36がオンされる状態を示している。 As shown in FIG. 5C, in the in-phase switching state, inverters 20 and 30 are controlled using in-phase fundamental waves F1 and F2. If the amplitudes of the fundamental waves F1 and F2 are equal, the switching state of each phase is the same in the first inverter 20 and the second inverter 30. 5C, in the first inverter 20 and the second inverter 30, the U-phase upper arm elements 21, 31 are turned on, and the V-phase and W-phase lower arm elements 25, 26, 35, 36 are turned on. Show.
 チョッパ動作では、コイル11~13が昇圧コンバータにおけるインダクタとして機能し、非充電期間において、第2インバータ30を中性点化することで、コイル11~13にエネルギが蓄積される。充電期間に切り替わると、コイル11~13に蓄積されたエネルギが放出され、第2バッテリ42が充電される。これにより、第1バッテリ41の電力が第2バッテリ42に移動する。 In the chopper operation, the coils 11 to 13 function as inductors in the boost converter, and energy is stored in the coils 11 to 13 by neutralizing the second inverter 30 during the non-charging period. When the charging period is switched, the energy stored in the coils 11 to 13 is released, and the second battery 42 is charged. Thereby, the power of the first battery 41 moves to the second battery 42.
 詳細には、第2インバータ30が中性点化されているときに素子部を経由して高電位側から低電位側に電流が流れているスイッチング素子をオフすることで通電経路が切り替わり、第1バッテリ41の電力を第2バッテリ42に移動可能である。例えば、図5Aのように、下アーム素子34~36がオン、U相電流Iuが正、V相電流IvおよびW相電流Iwが負のとき、U相では素子部314、V相及びW相では還流ダイオード325、326に電流が流れる。この状態から、U相の下アーム素子34をオフにすると、図5Bおよび図5Cに示すように、U相電流Iuは、還流ダイオード321に通電され、第2バッテリ42の正極に流れ込む。これにより、第2バッテリ42が充電される。上アーム素子31~33をオンすることで第2インバータ30が中性点化されている場合についても同様、素子部を経由して電流が流れている相のスイッチング素子をオフにすると、当該相における通電経路が切り替わることで、第2バッテリ42が充電される。 Specifically, when the second inverter 30 is neutralized, the energization path is switched by turning off the switching element in which current flows from the high potential side to the low potential side via the element portion. The power of one battery 41 can be transferred to the second battery 42. For example, as shown in FIG. 5A, when the lower arm elements 34 to 36 are on, the U-phase current Iu is positive, the V-phase current Iv and the W-phase current Iw are negative, in the U-phase, the element unit 314, the V-phase and the W-phase Then, current flows through the freewheeling diodes 325 and 326. When the U-phase lower arm element 34 is turned off from this state, the U-phase current Iu is energized through the free-wheeling diode 321 and flows into the positive electrode of the second battery 42 as shown in FIGS. 5B and 5C. Thereby, the 2nd battery 42 is charged. Similarly, when the second inverter 30 is neutralized by turning on the upper arm elements 31 to 33, when the switching element of the phase in which the current flows through the element portion is turned off, The second battery 42 is charged by switching the energization path at.
 ここで、充電期間を同相スイッチング状態とし、1相または2相のスイッチング素子のオンオフを切り替える場合、スイッチング素子31~36を全てオフにする場合と比較し、スイッチング状態を切り替える素子数が少ないので、スイッチング損失を低減可能である。また、充電期間を全オフ状態とし、スイッチング素子31~36を全てオフする場合、制御が容易である。 Here, when the charging period is set to the in-phase switching state and the on / off state of the one-phase or two-phase switching elements is switched, the number of elements for switching the switching state is smaller than when all the switching elements 31 to 36 are turned off. Switching loss can be reduced. Further, when the charging period is set to the all-off state and all the switching elements 31 to 36 are turned off, the control is easy.
 チョッパ動作における充電期間にコイル11~13に流れる電流である零相電流は、トルクには影響しない。図6に示すように、相電流Iu、Iv、Iwは、零相電流分がオフセットされた波形となる。このオフセット分の電流に応じた電力が、第1バッテリ41から第2バッテリ42に移動する。第1バッテリ41から第2バッテリ42へ移動される電力量は、非充電期間と充電期間との割合により調整可能である。 零 Zero-phase current, which is the current that flows through the coils 11 to 13 during the charging period in chopper operation, does not affect the torque. As shown in FIG. 6, the phase currents Iu, Iv, and Iw have waveforms in which the zero-phase current is offset. The electric power according to the offset current moves from the first battery 41 to the second battery 42. The amount of power transferred from the first battery 41 to the second battery 42 can be adjusted by the ratio between the non-charging period and the charging period.
 本実施形態の駆動制御処理を図7のフローチャートに基づいて説明する。この処理は、イグニッションスイッチ等である始動スイッチがオンされているときに、制御部65にて所定の周期で実行される。以下、ステップS101の「ステップ」を省略し、単に記号「S」と記す。他のステップも同様である。最初のS101では、制御部65は、MG電力Pmgが0以上か否かを判断する。MG電力Pmgが0以上であると判断された場合(S101:YES)、S103へ移行する。MG電力PMGが0未満であると判断された場合(S101:NO)、S102へ移行する。 The drive control process of this embodiment will be described based on the flowchart of FIG. This process is executed by the control unit 65 at a predetermined cycle when a start switch such as an ignition switch is turned on. Hereinafter, “step” in step S101 is omitted, and is simply referred to as “S”. The other steps are the same. In first S101, the control unit 65 determines whether or not the MG power Pmg is 0 or more. When it is determined that the MG power Pmg is 0 or more (S101: YES), the process proceeds to S103. When it is determined that the MG power PMG is less than 0 (S101: NO), the process proceeds to S102.
 S102では、制御部65は、スイッチング素子21~26を全てオフにして第1インバータ20を停止する。また、制御部65は、MG電力Pmgに応じて第2インバータ30を回生駆動し、第2バッテリ42を充電する。なお、バッテリ41、42のSOCに応じ、第2バッテリ42に替えて第1バッテリ41を充電してもよいし、バッテリ41、42を充電してもよい。 In S102, the control unit 65 turns off all the switching elements 21 to 26 and stops the first inverter 20. Further, the control unit 65 regeneratively drives the second inverter 30 according to the MG power Pmg, and charges the second battery 42. Note that the first battery 41 may be charged instead of the second battery 42 or the batteries 41 and 42 may be charged according to the SOC of the batteries 41 and 42.
 MG電力Pmgが0以上であると判断された場合(S101:YES)に移行するS103では、制御部65は、MG電力Pmgが固定上限値Pmg_h以下か否かを判断する。MG電力Pmgが固定上限値Pmg_h以下であると判断された場合(S103:YES)、S105へ移行する。MG電力Pmgが固定上限値Pmg_hより大きいと判断された場合(S103:NO)、S104へ移行する。S104では、制御部65は、インバータ20、30を、MG電力Pmgに応じて制御する。なお、電力固定領域Rfixより高出力領域がなければ、S103およびS104の処理は省略可能である。 When it is determined that the MG power Pmg is equal to or greater than 0 (S101: YES), the control unit 65 determines whether the MG power Pmg is equal to or less than the fixed upper limit value Pmg_h. When it is determined that the MG power Pmg is equal to or less than the fixed upper limit value Pmg_h (S103: YES), the process proceeds to S105. When it is determined that the MG power Pmg is larger than the fixed upper limit value Pmg_h (S103: NO), the process proceeds to S104. In S104, control unit 65 controls inverters 20 and 30 according to MG power Pmg. If there is no higher output area than the fixed power area Rfix, the processes of S103 and S104 can be omitted.
 MG電力Pmgが0以上、固定上限値Pmg_h以下であると判断された場合(S101:YES、かつ、S103:YES)、すなわちMG電力Pmgが電力固定領域Rfixである場合に移行するS105では、定出力値Pfixを設定し、S106へ移行する。定出力値Pfixは、所定値としてもよいし、バッテリ41、42のSOC、環境条件、および、運転履歴情報の少なくとも1つに応じて可変としてもよい。環境条件には、回転電機駆動システム1が搭載される車両の外部環境である温度、湿度、および、気圧の少なくとも1つが含まれる。また、低温時等、固定出力インバータからの一定出力制御を行わない場合等、環境条件等に応じ、S104に移行するようにしてもよい。 When it is determined that the MG power Pmg is greater than or equal to 0 and less than or equal to the fixed upper limit value Pmg_h (S101: YES and S103: YES), that is, when the MG power Pmg is in the power fixed region Rfix, S105 The output value Pfix is set, and the process proceeds to S106. The constant output value Pfix may be a predetermined value, or may be variable according to at least one of the SOC of the batteries 41 and 42, the environmental condition, and the operation history information. The environmental conditions include at least one of temperature, humidity, and atmospheric pressure, which is an external environment of the vehicle on which the rotating electrical machine drive system 1 is mounted. Moreover, you may make it transfer to S104 according to environmental conditions etc., when not performing constant output control from a fixed output inverter at the time of low temperature.
 S106では、制御部65は、MG電力Pmgが定出力値Pfixより大きいか否かを判断する。MG電力Pmgが定出力値Pfix以下であると判断された場合(S106:NO)、S108へ移行する。MG電力Pmgが定出力値Pfixより大きいと判断された場合(S106:YES)、S107へ移行する。 In S106, the control unit 65 determines whether or not the MG power Pmg is larger than the constant output value Pfix. When it is determined that the MG power Pmg is equal to or less than the constant output value Pfix (S106: NO), the process proceeds to S108. When it is determined that the MG power Pmg is larger than the constant output value Pfix (S106: YES), the process proceeds to S107.
 S107では、制御部65は、第1バッテリ41の出力が定出力値Pfixとなるように、一定の変調率の第1基本波F1に基づき、第1インバータ20を制御する。また、制御部65は、MG電力Pmgと定出力値Pfixとの差分が出力されるように、第1基本波F1と逆位相の第2基本波F2に基づき、第2インバータ30を制御する(図3参照)。第2基本波F2の変調率は、MG電力Pmgが定出力値Pfixに近いほど小さい値となるように設定される。すなわち、基本波F1、F2の変調率は、MG電力Pmgと定出力値Pfixとの差が小さいほど、大きい。S109にて、基本波F1、F2を同位相とする場合も同様である。 In S107, the control unit 65 controls the first inverter 20 based on the first fundamental wave F1 having a constant modulation rate so that the output of the first battery 41 becomes the constant output value Pfix. Further, the control unit 65 controls the second inverter 30 based on the second fundamental wave F2 having the opposite phase to the first fundamental wave F1 so that the difference between the MG power Pmg and the constant output value Pfix is output ( (See FIG. 3). The modulation factor of the second fundamental wave F2 is set so as to become smaller as the MG power Pmg is closer to the constant output value Pfix. That is, the modulation factors of the fundamental waves F1 and F2 are larger as the difference between the MG power Pmg and the constant output value Pfix is smaller. The same applies when the fundamental waves F1 and F2 have the same phase in S109.
 MG電力Pmgが定出力値Pfix以下であると判断された場合(S106:NO)に移行するS108では、制御部65は、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2より大きいか否かを判断する。第1バッテリ電圧Vb1が第2バッテリ電圧Vb2以下であると判断された場合(S108:NO)、S110へ移行する。第1バッテリ電圧Vb1が第2バッテリ電圧Vb2より大きいと判断された場合(S108:YES)、S109へ移行する。 When it is determined that the MG power Pmg is equal to or less than the constant output value Pfix (S106: NO), the control unit 65 determines whether or not the first battery voltage Vb1 is greater than the second battery voltage Vb2. To do. When it is determined that the first battery voltage Vb1 is equal to or lower than the second battery voltage Vb2 (S108: NO), the process proceeds to S110. When it is determined that the first battery voltage Vb1 is greater than the second battery voltage Vb2 (S108: YES), the process proceeds to S109.
 S109では、制御部65は、第1バッテリ41の出力が定出力値Pfixとなるように、一定の変調率にて、第1インバータ20を制御する。また、制御部65は、定出力値PfixからMG電力Pmgを除いた余剰分の電力が第2バッテリ42に充電されるように、第1基本波F1と同位相の第2基本波F2に基づき、第2インバータ30を制御する(図4参照)。 In S109, the control unit 65 controls the first inverter 20 at a constant modulation rate so that the output of the first battery 41 becomes the constant output value Pfix. Further, the control unit 65 is based on the second fundamental wave F2 having the same phase as the first fundamental wave F1 so that the surplus power obtained by removing the MG power Pmg from the constant output value Pfix is charged in the second battery 42. The second inverter 30 is controlled (see FIG. 4).
 第1バッテリ電圧Vb1が第2バッテリ電圧Vb2以下であると判断された場合(S108:NO)に移行するS110では、制御部65は、第1バッテリ41の出力が定出力値Pfixとなるように、一定の変調率にて、第1インバータ20を制御する。また、制御部65は、定出力値PfixからMG電力Pmgを差し引いた余剰分の電力を第2バッテリ42に充電すべく、非充電期間と充電期間とを切り替えるチョッパ動作となるように、第2インバータ30を制御する(図5参照)。 In S110, when the first battery voltage Vb1 is determined to be equal to or lower than the second battery voltage Vb2 (S108: NO), the control unit 65 causes the output of the first battery 41 to become the constant output value Pfix. The first inverter 20 is controlled at a constant modulation rate. Further, the control unit 65 performs the second chopper operation so as to switch between the non-charging period and the charging period in order to charge the second battery 42 with the surplus power obtained by subtracting the MG power Pmg from the constant output value Pfix. The inverter 30 is controlled (see FIG. 5).
 本実施形態では、モータジェネレータ10の両側にインバータ20、30が接続される構成において、MG電力が所定の範囲内において、固定出力インバータである第1インバータ20側に設けられる第1バッテリ41の出力を一定とする。また、可変出力インバータである第2インバータ30を、モータジェネレータ10の要求電力、および、第1インバータ20側からの出力に基づき、第2インバータ30を制御する。第1バッテリ41の出力を一定とすることで、電池の負荷サイクルが低減され、電池寿命を延ばすことができる。 In the present embodiment, in the configuration in which the inverters 20 and 30 are connected to both sides of the motor generator 10, the output of the first battery 41 provided on the first inverter 20 side that is a fixed output inverter when the MG power is within a predetermined range. Is constant. Further, the second inverter 30 that is a variable output inverter is controlled based on the required power of the motor generator 10 and the output from the first inverter 20 side. By making the output of the first battery 41 constant, the battery duty cycle can be reduced and the battery life can be extended.
 以上説明したように、本実施形態の電力変換装置15は、コイル11~13を有するモータジェネレータ10の電力を変換するものであって、第1インバータ20と、第2インバータ30と、制御部65と、を備える。第1インバータ20は、第1スイッチング素子21~26を有し、コイル11、12、13の一端111、121、131、および、第1バッテリ41に接続される。第2インバータ30は、第2スイッチング素子31~36を有し、コイル11、12、13の他端112、122、132、および、第2バッテリ42に接続される。制御部65は、第1スイッチング素子21~26および第2スイッチング素子31~36のオンオフ作動を制御する。 As described above, the power conversion device 15 of the present embodiment converts the power of the motor generator 10 having the coils 11 to 13, and includes the first inverter 20, the second inverter 30, and the control unit 65. And comprising. The first inverter 20 includes first switching elements 21 to 26 and is connected to one ends 111, 121, 131 of the coils 11, 12, 13 and the first battery 41. The second inverter 30 has second switching elements 31 to 36 and is connected to the other ends 112, 122, 132 of the coils 11, 12, 13 and the second battery 42. The controller 65 controls the on / off operation of the first switching elements 21 to 26 and the second switching elements 31 to 36.
 第1インバータ20または第2インバータ30の一方を固定出力インバータ、当該固定出力インバータに接続される電圧源を固定出力電圧源とする。また、第1インバータ20または第2インバータ30の他方を可変出力インバータ、当該可変出力インバータに接続される電圧源を可変出力電圧源とする。引き続き、第1インバータ20が固定出力インバータ、第1バッテリ41が固定出力電圧源、第2インバータ30が可変出力インバータ、第2バッテリ42が可変出力電圧源として説明する。 Suppose that one of the first inverter 20 and the second inverter 30 is a fixed output inverter, and a voltage source connected to the fixed output inverter is a fixed output voltage source. The other of the first inverter 20 and the second inverter 30 is a variable output inverter, and the voltage source connected to the variable output inverter is a variable output voltage source. Subsequently, the first inverter 20 will be described as a fixed output inverter, the first battery 41 as a fixed output voltage source, the second inverter 30 as a variable output inverter, and the second battery 42 as a variable output voltage source.
 制御部65は、第1バッテリ41からの出力が定出力値Pfixとなるように、第1インバータ20を制御する。制御部65は、モータジェネレータ10の要求電力であるMG電力Pmgが定出力値Pfixより大きい場合、第1バッテリ41および第2バッテリ42からモータジェネレータ10に電力が供給され、MG電力Pmgが定出力値Pfix以下の場合、第1バッテリ41から出力される余剰分の電力が第2バッテリ42に供給されるように、第2インバータ30を制御する。 The control unit 65 controls the first inverter 20 so that the output from the first battery 41 becomes the constant output value Pfix. When the MG power Pmg, which is the required power of the motor generator 10, is greater than the constant output value Pfix, the control unit 65 supplies power to the motor generator 10 from the first battery 41 and the second battery 42, and the MG power Pmg is constant output. When the value is less than or equal to the value Pfix, the second inverter 30 is controlled such that the surplus power output from the first battery 41 is supplied to the second battery 42.
 本実施形態では、固定出力電圧源からの出力が一定となるようにしているので、固定出力電圧源を高効率に利用可能である。固定出力インバータが第1インバータ20であれば、第1バッテリ41の出力が一定となるので、バッテリの負荷サイクルが低減され、第1バッテリ41を長寿命化することができる。固定出力インバータを第2インバータ30とする場合も同様である。 In this embodiment, since the output from the fixed output voltage source is constant, the fixed output voltage source can be used with high efficiency. If the fixed output inverter is the first inverter 20, the output of the first battery 41 is constant, so that the battery duty cycle is reduced and the life of the first battery 41 can be extended. The same applies to the case where the fixed output inverter is the second inverter 30.
 制御部65は、MG電力Pmgが定出力値Pfixより大きい場合、第2スイッチング素子31~36を、第1スイッチング素子21~26の制御に用いられる変調波とは逆位相の変調波に基づいて制御する。これにより、第1バッテリ41と第2バッテリ42とを直列に接続しているとみなせる状態となり、固定出力インバータ側からの定出力値Pfixに加え、不足分を可変出力インバータ側から出力させることができ、所望の電力を得ることができる。 When the MG power Pmg is larger than the constant output value Pfix, the control unit 65 causes the second switching elements 31 to 36 to be based on the modulation wave having the opposite phase to the modulation wave used for controlling the first switching elements 21 to 26. Control. As a result, the first battery 41 and the second battery 42 can be regarded as being connected in series, and in addition to the constant output value Pfix from the fixed output inverter side, the shortage can be output from the variable output inverter side. The desired power can be obtained.
 スイッチング素子21~26、31~36は、それぞれ、高電位側から低電位側への通電の許容および遮断を切り替え可能である素子部211~216、311~316、および、低電位側から高電位側への通電を許容するダイオード221~226、321~326を有する。制御部65は、MG電力Pmgが定出力値Pfixより小さく、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2より高い場合、第1スイッチング素子21~26および第2スイッチング素子31~36を同位相の変調波に基づいて制御する。これにより、MG電力Pmgに対する第1インバータ20からの出力の余剰分を、第2バッテリ42に適切に移動させることができる。 The switching elements 21 to 26 and 31 to 36 are element units 211 to 216, 311 to 316, respectively, which can switch between allowing and blocking energization from the high potential side to the low potential side, and the high potential from the low potential side. Diodes 221 to 226 and 321 to 326 that allow energization to the side are included. When the MG power Pmg is smaller than the constant output value Pfix and the first battery voltage Vb1 is higher than the second battery voltage Vb2, the control unit 65 causes the first switching elements 21 to 26 and the second switching elements 31 to 36 to have the same phase. Control based on the modulated wave. Thereby, the surplus of the output from the first inverter 20 with respect to the MG power Pmg can be appropriately moved to the second battery 42.
 制御部65は、MG電力Pmgが定出力値Pfixより小さく、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2以下の場合、第2バッテリ42への電力移動が行われない非充電期間と、第2バッテリ42への電力移動が行われる充電期間とを周期的に切り替える。非充電期間において、第2インバータ30にて高電位側に接続される上アーム素子31~33、または、低電位側に接続される下アーム素子34~36の一方を全相オン、他方を全相オフにする中性点状態とする。充電期間において、第2インバータ30の全てのスイッチング素子31~36をオフにする全オフ状態、または、第1インバータ20と第2インバータ30とを同位相の変調波に基づいて制御する同相スイッチング状態とする。 When the MG power Pmg is smaller than the constant output value Pfix and the first battery voltage Vb1 is equal to or lower than the second battery voltage Vb2, the control unit 65 includes a non-charging period in which power transfer to the second battery 42 is not performed, The charging period during which power is transferred to the battery 42 is periodically switched. During the non-charging period, one of the upper arm elements 31 to 33 connected to the high potential side in the second inverter 30 or the lower arm elements 34 to 36 connected to the low potential side is turned on for all phases, and the other is The neutral point state is set to phase-off. In the charging period, the all-off state in which all the switching elements 31 to 36 of the second inverter 30 are turned off, or the in-phase switching state in which the first inverter 20 and the second inverter 30 are controlled based on the in-phase modulation wave And
 第2インバータ30を中性点状態とする非充電期間と、全オフ状態または同相スイッチング状態とする充電期間とを切り替えることで、コイル11~13をインダクタとみなしたチョッパ動作とすることができる。これにより、第1バッテリ電圧Vb1が第2バッテリ電圧Vb2以下の場合であっても、MG電力Pmgに対する第1バッテリ41からの出力の余剰分を、第2バッテリ42に適切に移動させることができる。したがって、バッテリ電圧Vb1、Vb2によらず、余剰分の電力を、第2バッテリ42に適切に移動させることができる。 By switching between the non-charging period in which the second inverter 30 is in the neutral point state and the charging period in which the second inverter 30 is in the all-off state or in-phase switching state, the chopper operation in which the coils 11 to 13 are regarded as inductors can be performed. Thereby, even if the 1st battery voltage Vb1 is the 2nd battery voltage Vb2 or less, the surplus of the output from the 1st battery 41 with respect to MG electric power Pmg can be moved to the 2nd battery 42 appropriately. . Therefore, the surplus power can be appropriately moved to the second battery 42 regardless of the battery voltages Vb1 and Vb2.
 可変出力インバータである第2インバータ30の制御に用いられる変調波である第2基本波F2の変調率は、MG電力Pmgと定出力値Pfixとの差が大きいほど大きい。これにより、所望のMG電力Pmg、および、電力移動を実現することができる。 The modulation factor of the second fundamental wave F2, which is a modulation wave used for control of the second inverter 30 that is a variable output inverter, increases as the difference between the MG power Pmg and the constant output value Pfix increases. Thereby, desired MG power Pmg and power transfer can be realized.
 定出力値Pfixは、バッテリ41、42の少なくとも一方のSOC、環境条件、および、モータジェネレータ10を主機モータとして用いている車両の運転履歴情報の少なくとも1つに応じて可変である。これにより、定出力値Pfixを適切に設定することができる The constant output value Pfix is variable in accordance with at least one of the SOC of the batteries 41 and 42, environmental conditions, and driving history information of a vehicle using the motor generator 10 as a main motor. Thereby, the constant output value Pfix can be set appropriately.
   (第2実施形態)
 第2実施形態を図8に示す。図8に示すように、本実施形態では、第1バッテリ41からの定出力値を2段階としている。具体的には、モータジェネレータ10が力行状態であって、MG電力Pgmが第1電力固定領域Rfix1のとき、制御部65は、第1バッテリ41からの出力が第1定出力値Pfix1となるように、第1インバータ20を制御する。また、MG電力Pmgが第2電力固定領域Rfix2のとき、制御部65は、第1バッテリ41からの出力が第2定出力値Pfix2となるように、第1インバータ20を制御する。また、制御部65は、MG電力Pmgおよび定出力値Pfix1、Pfix2に基づき、第2インバータ30を制御する。制御の詳細は、第1実施形態と同様である。
(Second Embodiment)
A second embodiment is shown in FIG. As shown in FIG. 8, in this embodiment, the constant output value from the 1st battery 41 is made into two steps. Specifically, when motor generator 10 is in a power running state and MG power Pgm is in first power fixed region Rfix1, control unit 65 causes output from first battery 41 to become first constant output value Pfix1. Then, the first inverter 20 is controlled. Further, when the MG power Pmg is in the second power fixed region Rfix2, the control unit 65 controls the first inverter 20 so that the output from the first battery 41 becomes the second constant output value Pfix2. Control unit 65 controls second inverter 30 based on MG power Pmg and constant output values Pfix1 and Pfix2. Details of the control are the same as in the first embodiment.
 定出力値Pfix1、Pfix2等は、適宜設定可能である。本実施形態では、モータジェネレータ10が力行状態のとき、第1バッテリ41からの出力を2段階の定出力値にて固定しているが、3段階以上としてもよい。このように構成しても、上記実施形態と同様の効果を奏する。また、固定出力インバータからの出力を段階的に切り替えることで、片側充電領域Rcを小さくすることができる。 The constant output values Pfix1, Pfix2, etc. can be set as appropriate. In the present embodiment, when the motor generator 10 is in the power running state, the output from the first battery 41 is fixed at two constant output values, but may be three or more stages. Even if comprised in this way, there exists an effect similar to the said embodiment. Moreover, the one side charge area | region Rc can be made small by switching the output from a fixed output inverter in steps.
   (第3実施形態)
 第3実施形態を図9に基づいて説明する。図9に示すように、本実施形態の第1インバータ20には、第3インバータ90および発電機85を経由して、エンジン80が接続されている。エンジン80は、図示しないエンジン制御部により制御される。発電機85は、コイル86~88を有している。また、第3インバータ90は、スイッチング素子91~96を有する三相インバータである。エンジン80、発電機85および第3インバータ90には、公知のものを用いればよい。
(Third embodiment)
A third embodiment will be described with reference to FIG. As shown in FIG. 9, an engine 80 is connected to the first inverter 20 of the present embodiment via a third inverter 90 and a generator 85. The engine 80 is controlled by an engine control unit (not shown). The generator 85 has coils 86 to 88. The third inverter 90 is a three-phase inverter having switching elements 91-96. As the engine 80, the generator 85, and the third inverter 90, known ones may be used.
 本実施形態では、上記実施形態の第1バッテリ41に替えて、エンジン80が接続されている。この場合、第1インバータ20を固定出力インバータとし、エンジン80を高効率領域にて一定駆動することで、第1インバータ20側からの出力を一定にする。また、第2インバータ30を可変出力インバータとし、第2インバータ30側からの出力を可変とすることで、所望のMG電力Pmgを実現する。 In this embodiment, an engine 80 is connected instead of the first battery 41 of the above embodiment. In this case, the first inverter 20 is a fixed output inverter, and the output from the first inverter 20 side is made constant by driving the engine 80 constant in the high efficiency region. In addition, the second inverter 30 is a variable output inverter, and the output from the second inverter 30 side is variable, thereby realizing a desired MG power Pmg.
 本実施形態では、エンジン80および発電機85が第1電圧源である。この場合、第1インバータ20を固定出力インバータとし、第2インバータ30を可変出力インバータとする。エンジン80側のインバータを固定出力インバータとすることで、エンジン80を高効率領域にて一定駆動することができるので、全体としての効率を高めることができる。 In this embodiment, the engine 80 and the generator 85 are the first voltage source. In this case, the first inverter 20 is a fixed output inverter, and the second inverter 30 is a variable output inverter. Since the inverter on the engine 80 side is a fixed output inverter, the engine 80 can be driven in a constant high efficiency region, so that the overall efficiency can be increased.
   (他の実施形態)
 (1)電圧源
 上記実施形態では、電圧源として、リチウムイオン電池等を例示した。他の実施形態では、電圧源は、リチウムイオン電池以外の鉛蓄電池、燃料電池、または、電気二重層キャパシタ等であってもよい。第1実施形態では、第1バッテリを高容量型、第2バッテリを高出力型のものとした。他の実施形態では、第1バッテリおよび第2バッテリとして、どのようなものを用いてもよく、例えば同等のものとしてもよい。
(Other embodiments)
(1) Voltage source In the said embodiment, the lithium ion battery etc. were illustrated as a voltage source. In other embodiments, the voltage source may be a lead storage battery other than a lithium ion battery, a fuel cell, or an electric double layer capacitor. In the first embodiment, the first battery is a high capacity type and the second battery is a high output type. In other embodiment, what kind of thing may be used as a 1st battery and a 2nd battery, for example, it is good also as an equivalent.
 (2)回転電機
 上記実施形態では、回転電機はモータジェネレータである。他の実施形態では、回転電機は、発電機の機能を持たない電動機であってもよいし、電動機の機能を持たない発電機であってもよい。また、上記実施形態の回転電機は3相である。他の実施形態では、回転電機は、4相以上としてもよい。また、上記実施形態では、回転電機が電動車両の主機モータである。他の実施形態では、回転電機は、主機モータに限らず、例えばスタータ機能とオルタネータ機能とを併せ持つ、所謂ISG(Integrated Starter Generator)や、補機モータであってもよい。また、電力変換装置を車両以外の装置に適用してもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、開示の趣旨を逸脱しない範囲において種々の形態で実施可能である。
(2) Rotating electrical machine In the above embodiment, the rotating electrical machine is a motor generator. In another embodiment, the rotating electrical machine may be an electric motor that does not have a function of a generator, or may be a generator that does not have a function of an electric motor. Further, the rotating electrical machine of the above embodiment has three phases. In other embodiments, the rotating electrical machine may have four or more phases. In the above embodiment, the rotating electrical machine is a main motor of an electric vehicle. In another embodiment, the rotating electrical machine is not limited to the main motor, but may be a so-called ISG (Integrated Starter Generator) having both a starter function and an alternator function, or an auxiliary motor. Moreover, you may apply a power converter device to apparatuses other than a vehicle. As described above, the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the disclosure.
 本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 This disclosure has been described in accordance with the embodiment. However, the present disclosure is not limited to the embodiments and structures. The present disclosure also includes various modifications and modifications within the equivalent scope. Also, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (6)

  1.  巻線(11、12、13)を有する回転電機(10)の電力を変換する電力変換装置であって、
     第1スイッチング素子(21~26)を有し、前記巻線の一端(111、121、131)および第1電圧源(41、80、85)に接続される第1インバータ(20)と、
     第2スイッチング素子(31~36)を有し、前記巻線の他端(112、122、132)および第2電圧源(42)に接続される第2インバータ(30)と、
     前記第1スイッチング素子および前記第2スイッチング素子のオンオフ作動を制御する制御部(65)と、
     を備え、
     前記第1インバータまたは前記第2インバータの一方を固定出力インバータ、当該固定出力インバータに接続される電圧源を固定出力電圧源とし、
     前記第1インバータまたは前記第2インバータの他方を可変出力インバータ、当該可変出力インバータに接続される電圧源を可変出力電圧源とし、
     前記制御部は、
     前記固定出力電圧源からの出力が定出力値となるように、前記固定出力インバータを制御し、
     前記回転電機の要求電力が前記定出力値より大きい場合、前記固定出力電圧源および前記可変出力電圧源から前記回転電機に電力が供給され、前記要求電力が前記定出力値以下の場合、前記固定出力電圧源から出力される余剰分の電力が前記可変出力電圧源に供給されるように前記可変出力インバータを制御する電力変換装置。
    A power conversion device for converting electric power of a rotating electrical machine (10) having windings (11, 12, 13),
    A first inverter (20) having a first switching element (21-26) and connected to one end (111, 121, 131) of the winding and a first voltage source (41, 80, 85);
    A second inverter (30) having a second switching element (31-36) and connected to the other end (112, 122, 132) of the winding and a second voltage source (42);
    A controller (65) for controlling on / off operation of the first switching element and the second switching element;
    With
    One of the first inverter and the second inverter is a fixed output inverter, a voltage source connected to the fixed output inverter is a fixed output voltage source,
    The other of the first inverter and the second inverter is a variable output inverter, and a voltage source connected to the variable output inverter is a variable output voltage source,
    The controller is
    Controlling the fixed output inverter so that the output from the fixed output voltage source becomes a constant output value;
    When the required power of the rotating electrical machine is larger than the constant output value, power is supplied to the rotating electrical machine from the fixed output voltage source and the variable output voltage source, and when the required power is less than the constant output value, the fixed power value is supplied. A power converter that controls the variable output inverter so that surplus power output from an output voltage source is supplied to the variable output voltage source.
  2.  前記制御部は、前記要求電力が前記定出力値より大きい場合、前記可変出力インバータのスイッチング素子を、前記固定出力インバータのスイッチング素子の制御に用いられる変調波とは逆位相の変調波に基づいて制御する請求項1に記載の電力変換装置。 When the required power is greater than the constant output value, the control unit causes the switching element of the variable output inverter to be based on a modulation wave having a phase opposite to that of the modulation wave used for controlling the switching element of the fixed output inverter. The power conversion device according to claim 1 to be controlled.
  3.  前記第1スイッチング素子および前記第2スイッチング素子は、それぞれ、高電位側から低電位側への通電の許容および遮断を切り替え可能である素子部(211~216、311~316)、および、低電位側から高電位側への通電を許容するダイオード(221~226、321~326)を有し、
     前記制御部は、
     前記要求電力が前記定出力値より小さく、前記固定出力電圧源の電圧が前記可変出力電圧源の電圧より高い場合、前記固定出力インバータおよび前記可変出力インバータのスイッチング素子を同位相の変調波に基づいて制御し、
     前記要求電力が前記定出力値より小さく、前記固定出力電圧源の電圧が前記可変出力電圧源の電圧以下の場合、前記可変出力電圧源への電力移動が行われない非充電期間と、前記可変出力電圧源への電力移動が行われる充電期間とが周期的に切り替え、
     前記非充電期間において、前記可変出力インバータにて高電位側に接続される上アーム素子または低電位側に接続される下アーム素子の一方を全相オン、他方を全相オフにする中性点状態とし、
     前記充電期間において、前記可変出力インバータの全てのスイッチング素子をオフにする全オフ状態、または、前記固定出力インバータと前記可変出力インバータとを同位相の変調波に基づいて制御する同相スイッチング状態とする請求項1または2に記載の電力変換装置。
    The first switching element and the second switching element each have an element portion (211 to 216, 311 to 316) capable of switching between allowing and blocking energization from a high potential side to a low potential side, and a low potential Having diodes (221 to 226, 321 to 326) that allow energization from the side to the high potential side,
    The controller is
    When the required power is smaller than the constant output value and the voltage of the fixed output voltage source is higher than the voltage of the variable output voltage source, the switching elements of the fixed output inverter and the variable output inverter are based on a modulated wave having the same phase. Control
    When the required power is smaller than the constant output value and the voltage of the fixed output voltage source is less than or equal to the voltage of the variable output voltage source, a non-charge period during which no power is transferred to the variable output voltage source, and the variable The charging period in which power is transferred to the output voltage source is periodically switched,
    During the non-charging period, the variable output inverter has a neutral point where one of the upper arm element connected to the high potential side or the lower arm element connected to the low potential side is turned on for all phases and the other is turned off for all phases. State and
    In the charging period, all the switching elements of the variable output inverter are all turned off, or the fixed output inverter and the variable output inverter are controlled based on the modulated wave having the same phase. The power converter according to claim 1 or 2.
  4.  前記可変出力インバータの制御に用いられる変調波の変調率は、前記要求電力と前記定出力値との差が大きいほど大きい請求項1~3のいずれか一項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3, wherein a modulation rate of a modulation wave used for controlling the variable output inverter increases as a difference between the required power and the constant output value increases.
  5.  前記定出力値は、前記第1電圧源および前記第2電圧源の少なくとも一方の充電状態、環境条件、ならびに、前記回転電機を主機モータとして用いている車両の運転履歴情報の少なくとも1つに応じて可変である請求項1~4のいずれか一項に記載の電力変換装置。 The constant output value corresponds to at least one of a charging state of at least one of the first voltage source and the second voltage source, environmental conditions, and driving history information of a vehicle using the rotating electrical machine as a main motor. The power converter according to any one of claims 1 to 4, wherein the power converter is variable.
  6.  前記第1電圧源がエンジン(80)および発電機(85)である場合、
     前記第1インバータを、前記固定出力インバータとし、
     前記第2インバータを、前記可変出力インバータとする請求項1~5のいずれか一項に記載の電力変換装置。
    When the first voltage source is an engine (80) and a generator (85),
    The first inverter is the fixed output inverter,
    The power conversion device according to any one of claims 1 to 5, wherein the second inverter is the variable output inverter.
PCT/JP2017/045478 2016-12-21 2017-12-19 Electric power conversion device WO2018117084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-247628 2016-12-21
JP2016247628A JP6636905B2 (en) 2016-12-21 2016-12-21 Power converter

Publications (1)

Publication Number Publication Date
WO2018117084A1 true WO2018117084A1 (en) 2018-06-28

Family

ID=62626201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045478 WO2018117084A1 (en) 2016-12-21 2017-12-19 Electric power conversion device

Country Status (2)

Country Link
JP (1) JP6636905B2 (en)
WO (1) WO2018117084A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059095A1 (en) * 2018-09-20 2020-03-26 東芝キヤリア株式会社 Motor driving device and refrigeration cycle device
WO2020080024A1 (en) * 2018-10-16 2020-04-23 株式会社デンソー Power conversion device
GB2592242A (en) * 2020-02-21 2021-08-25 Dyson Technology Ltd A system
WO2021165655A1 (en) * 2020-02-21 2021-08-26 Dyson Technology Limited A system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436756B2 (en) 2021-04-22 2024-02-22 ナブテスコ株式会社 motor drive system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211891A (en) * 2005-01-26 2006-08-10 General Motors Corp <Gm> Method of controlling integrated power in double-ended inverter drive system for hybrid vehicle
JP2014171362A (en) * 2013-03-05 2014-09-18 Nippon Soken Inc Power conversion apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426426B2 (en) * 2014-10-10 2018-11-21 株式会社デンソー Motor drive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211891A (en) * 2005-01-26 2006-08-10 General Motors Corp <Gm> Method of controlling integrated power in double-ended inverter drive system for hybrid vehicle
JP2014171362A (en) * 2013-03-05 2014-09-18 Nippon Soken Inc Power conversion apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059095A1 (en) * 2018-09-20 2020-03-26 東芝キヤリア株式会社 Motor driving device and refrigeration cycle device
JPWO2020059095A1 (en) * 2018-09-20 2021-05-13 東芝キヤリア株式会社 Motor drive and refrigeration cycle equipment
WO2020080024A1 (en) * 2018-10-16 2020-04-23 株式会社デンソー Power conversion device
JP2020065352A (en) * 2018-10-16 2020-04-23 株式会社Soken Electric power conversion device
CN112930648A (en) * 2018-10-16 2021-06-08 株式会社电装 Power conversion device
US11489475B2 (en) 2018-10-16 2022-11-01 Denso Corporation Power conversion apparatus
JP7185480B2 (en) 2018-10-16 2022-12-07 株式会社Soken power converter
CN112930648B (en) * 2018-10-16 2024-03-19 株式会社电装 Power conversion device
GB2592242A (en) * 2020-02-21 2021-08-25 Dyson Technology Ltd A system
WO2021165655A1 (en) * 2020-02-21 2021-08-26 Dyson Technology Limited A system
GB2592242B (en) * 2020-02-21 2022-09-07 Dyson Technology Ltd A system

Also Published As

Publication number Publication date
JP6636905B2 (en) 2020-01-29
JP2018102070A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2018117084A1 (en) Electric power conversion device
JP6426426B2 (en) Motor drive
JP6174498B2 (en) Power converter
US9236736B2 (en) Power supply system and method for controlling the same
JP6773365B2 (en) Power converter
US7675192B2 (en) Active DC bus filter for fuel cell applications
JP6329052B2 (en) Drive device
WO2018105323A1 (en) Drive system
JP2011211889A (en) Battery charging circuit
WO2013008312A1 (en) Vehicle and method for controlling vehicle
US9093929B2 (en) Circuit arrangements and methods for operating an electrical machine
JP2016181948A (en) Power converter
WO2020068969A1 (en) System and method for a magnetically coupled inductor boost and multiphase buck converter with split duty cycle
JP2021048759A (en) Power supply device
JP2016181947A (en) Power converter
JP6669532B2 (en) Power converter
JP6423323B2 (en) Power converter
JP2015139340A (en) power converter
JP4626259B2 (en) Power converter control method
CN108482102B (en) Hybrid power driving system
US11038367B2 (en) Power supply apparatus for vehicle
JP6389103B2 (en) Power converter
JP4919229B2 (en) Inverter device
JP2014139038A (en) Vehicle
JP2012070473A (en) Electric vehicle and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882677

Country of ref document: EP

Kind code of ref document: A1