WO2020059095A1 - Motor driving device and refrigeration cycle device - Google Patents

Motor driving device and refrigeration cycle device Download PDF

Info

Publication number
WO2020059095A1
WO2020059095A1 PCT/JP2018/034902 JP2018034902W WO2020059095A1 WO 2020059095 A1 WO2020059095 A1 WO 2020059095A1 JP 2018034902 W JP2018034902 W JP 2018034902W WO 2020059095 A1 WO2020059095 A1 WO 2020059095A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
motor
duty
mode
open winding
Prior art date
Application number
PCT/JP2018/034902
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 野木
嘉隆 内山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2018/034902 priority Critical patent/WO2020059095A1/en
Priority to JP2020547557A priority patent/JP6980930B2/en
Publication of WO2020059095A1 publication Critical patent/WO2020059095A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor driving device and a refrigeration cycle device for driving a so-called open winding motor, which is a permanent magnet synchronous motor having a plurality of phase windings that are not connected to each other.
  • a permanent magnet synchronous motor having a plurality of phase windings is used as a motor for driving a compressor mounted on a refrigeration cycle device such as an air conditioner or a heat source device.
  • a permanent magnet synchronous motor an open winding motor (Open-Windings @ Motor) having a configuration in which a plurality of phase windings are not connected to each other is known.
  • a motor drive device that drives this open-winding motor (abbreviated as a motor) includes a first inverter that controls energization of one end of each phase winding of the motor, and energization of the other end of each phase winding of the motor.
  • a second inverter to be controlled and a switch connected between the other ends of the respective phase windings are provided. By closing the switches, each phase winding is star-connected and only the first inverter is independently switched.
  • the open winding mode in which the first inverter and the second inverter are switched in cooperation with each other by setting the respective phase windings to a disconnected state (open state) by opening the switch, is selectively set. .
  • the star connection mode In the open winding mode, a high-level voltage approximately twice as high as that in the star connection mode can be applied to each phase winding.
  • the star connection mode is set, and the ON / OFF duty of the independent switching of the first inverter is controlled so that the motor speed becomes the target speed.
  • the open winding mode In a high speed operation region where the motor speed is equal to or higher than a threshold, the open winding mode is set, and the on / off duty of the cooperative switching of the first inverter and the second inverter is controlled so that the motor speed becomes the target speed.
  • the switching point to the star connection mode had to be set when the on / off duty of the open winding mode was 50% or less.
  • the switching point from the open winding mode to the star connection mode be the highest efficiency depending on the motor specifications, the specifications of the equipment (refrigeration cycle device) and the operating conditions. Accordingly, it is desired that the open winding mode can be smoothly switched to the star connection mode even when the on / off duty exceeds 50%.
  • An object of an embodiment of the present invention is to provide a motor drive device and a refrigeration cycle device that can reliably switch from the open winding mode to the star connection mode even when the on / off duty of the open winding mode is high. It is to provide.
  • the motor drive of claim 1 is a motor drive for a motor having a plurality of phase windings disconnected from each other; including a plurality of switching elements, one end of each phase winding of the motor by the switching elements.
  • a first inverter for controlling energization of the motor a second inverter including a plurality of switching elements, and controlling the energization of the other end of each phase winding of the motor by the switching elements;
  • a switch connected between the ends; a star connection mode in which each phase winding is star-connected by closing the switch and the first inverter is switched; and the switch is opened by opening the switch.
  • a motor controller having an open winding mode for switching the first inverter and the second inverter with each phase winding being in a non-connected state.
  • the motor controller When switching from the open winding mode to the star connection mode, the motor controller sets an on / off duty of switching in the open winding mode before switching or a voltage utilization rate corresponding to the on / off duty to a set value. Is exceeded, the on / off duty or the voltage utilization rate is reduced to the set value or less, and after this reduction, the switching from the open winding mode to the star connection mode is executed.
  • FIG. 2 is a block diagram showing a configuration of the first and second embodiments.
  • FIG. 3 is a block diagram illustrating a configuration of an inverter control unit in FIG. 2.
  • FIG. 6 is a diagram illustrating mode selection conditions according to the first and second embodiments.
  • 5 is a flowchart illustrating control of the motor controller according to the first embodiment.
  • 9 is a flowchart illustrating control of the motor controller according to the second embodiment.
  • FIG. 1 shows a configuration of a refrigeration cycle device for an air conditioner according to the first embodiment.
  • An outdoor heat exchanger 3 is connected to a discharge port of a compressor 1 having an open-winding motor 1M as a driving motor via a four-way valve 2 by piping.
  • One end of the indoor heat exchanger 5 is connected to the other end via an electric expansion valve 4 which is a pressure reducer.
  • the other end of the indoor heat exchanger 5 is connected to the suction port of the compressor 1 via the four-way valve 2 by piping.
  • An outdoor fan 6 is arranged near the outdoor heat exchanger 3, and an indoor fan 7 is arranged near the indoor heat exchanger 5.
  • the open winding motor 1M is hereinafter abbreviated as the motor 1M.
  • the gas refrigerant discharged from the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2 as shown by a solid line arrow in FIG.
  • the gas refrigerant flowing to the outdoor heat exchanger 3 emits heat to the outside air and condenses.
  • the liquid refrigerant flowing out of the outdoor heat exchanger (condenser) 3 flows to the indoor heat exchanger 5 while being decompressed by the electric expansion valve 4.
  • the liquid refrigerant that has flowed into the indoor heat exchanger 5 evaporates by removing heat from the indoor air.
  • the gas refrigerant flowing out of the indoor heat exchanger (evaporator) 5 is drawn into the compressor 1 through the four-way valve 2.
  • the flow path of the four-way valve 2 is switched by the controller 10 so that the gas refrigerant discharged from the compressor 1 is subjected to the indoor heat exchange through the four-way valve 2 as shown by a dashed arrow in FIG.
  • Flow into vessel 5 The gas refrigerant flowing into the indoor heat exchanger 5 emits heat to the indoor air and condenses.
  • the liquid refrigerant flowing out of the indoor heat exchanger (condenser) 5 is decompressed by the electric expansion valve 4 and flows to the outdoor heat exchanger 3.
  • the liquid refrigerant that has flowed into the outdoor heat exchanger 3 evaporates by removing heat from the outside air.
  • the gas refrigerant flowing out of the outdoor heat exchanger (evaporator) 3 is drawn into the compressor 1 through the four-way valve 2.
  • the controller 10 controls the four-way valve 2, the electric expansion valve 4, the outdoor fan 6, and the indoor fan 7, and controls the driving of the motor 1M via the motor driving device 11 of the present embodiment.
  • the motor drive device 11 includes a drive circuit 12 and a motor controller 13 shown in FIG.
  • the motor 1M is a permanent magnet synchronous motor having a plurality of, for example, three phase windings Lu, Lv, Lw that are not connected to each other.
  • the phase windings Lu, Lv, and Lw of the motor 1M are configured by winding a small-diameter copper wire at a high density so that the efficiency is improved in a low speed operation range (also referred to as a low / medium speed operation range).
  • the motor controller 13 sets a star connection mode in which the phase windings Lu, Lv, and Lw are star-connected in the low-speed operation range and only the inverter 30 is switched alone in a low-speed operation range, as described later.
  • an open winding mode in which the phase windings Lu, Lv, and Lw are disconnected (open state) to switch the inverters 30 and 40 in cooperation with each other is set.
  • this setting it is possible to obtain a wide speed variable width from the low-speed operation range to the high-speed operation range while enabling high-efficiency operation in the low-speed operation range.
  • a full-wave rectifier circuit 22 of a diode bridge is connected to a three-phase AC power supply 20 via a noise filter 21, and a capacitor 24 is connected to an output terminal of the full-wave rectifier circuit 22 via a reactor 23.
  • the full-wave rectifier circuit 22, the reactor 23, and the capacitor 24 constitute a DC power supply 25 that outputs a DC voltage Vdc.
  • An inverter (referred to also as a first inverter or a master inverter) for controlling energization of one end of the phase windings Lu, Lv, Lw between the DC power supply 25 and one end of the phase windings Lu, Lv, Lw of the motor 1M. 30 are connected.
  • An inverter (also referred to as a second inverter or a slave inverter) for controlling energization of the other ends of the phase windings Lu, Lv, Lw between the DC power supply 25 and the other ends of the phase windings Lu, Lv, Lw of the motor 1M. ) 40 is connected.
  • a common power supply system in which the inverters 30 and 40 are connected to a common DC power supply 25 is employed. Not limited to the common power supply system, a power supply insulation system in which the inverters 30 and 40 are connected to different DC power supplies may be employed.
  • Inverter 30 is a U-phase series circuit in which switching elements such as IGBTs 31 and 32 are connected in series, and an interconnection point of the IGBTs 31 and 32 is connected to one end of phase winding Lu of open winding motor 1M, and IGBTs 33 and 34 are connected in series.
  • the IGBTs 33 and 34 are connected in series to a V-phase series circuit in which one end of the phase winding Lv of the open winding motor 1M is connected to IGBTs 35 and 36, and the IGBTs 35 and 36 are connected in an open winding.
  • It includes a W-phase series circuit connected to one end of the phase winding Lw of the motor 1M, converts the DC voltage Vdc of the DC power supply 25 into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 31 to 36, and converts the three-phase AC voltage.
  • Regeneration diodes (also referred to as free wheel diodes) 31a to 36a are connected in anti-parallel to the IGBTs 31 to 36, respectively.
  • the inverter 40 connects the IGBTs 41 and 42 in series, and connects the IGBTs 43 and 44 in series with the U-phase series circuit in which the interconnection point of the IGBTs 41 and 42 is connected to the other end of the phase winding Lu of the open winding motor 1M.
  • the DC voltage Vdc of the DC power supply 25 is converted into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 41 to 46, and the three-phase AC voltage is To the other ends of the phase windings Lu, Lv, Lw.
  • Regeneration diodes (also referred to as free wheel diodes) 41a to 46a are connected in anti-parallel to the IGBTs 41 to 46.
  • the inverter 30 houses a main circuit formed by connecting three sets of series circuits of two switching elements in parallel and peripheral circuits such as a drive circuit for driving the six switching elements of the main circuit in a single package. This is a so-called IPM (Intelligent Power Module).
  • IPM Intelligent Power Module
  • the inverter 40 is also an IPM having the same configuration.
  • the energization and de-energization of the relays 51 and 52 are controlled by the motor controller 13 in synchronization with each other.
  • the motor controller 13 controls the drive circuit 12 in response to a command from the controller 10, and includes a main control unit 60, a voltage detection unit 61, an inverter control unit 62, a relay drive unit 63, a relay 51, 52 and the like.
  • Voltage detector 61 detects output voltage Vdc of DC power supply 25.
  • Relay drive section 63 energizes or deactivates relays 51 and 52 in response to a command from main control section 60.
  • Inverter control unit 62 estimates the speed (rotation speed) ⁇ est of motor 1M based on the detection results of current sensors 53, 53v, 53w, and converts inverters 30, 40 according to the difference between the estimated speed ⁇ est and target speed ⁇ ref. , A current detection unit 71, a speed estimation calculation unit 72, an integration unit 73, a subtraction unit 74, a speed control unit 75, an Id control unit 76, and a subtraction, as shown in FIG. Units 77 and 78, current control units 81 and 82, and a PWM signal generation unit 83.
  • the current detection unit 71 captures currents (motor currents) flowing through the phase windings Lu, Lv, Lw of the motor 1M from the outputs of the current sensors 53, 53v, 53w, and a field component (d-axis component) Id of the captured current. And a torque component (q-axis component) Iq.
  • the field component Id of the current is called a field component current Id
  • the torque component Iq of the current is called a torque component current Iq.
  • the field component current Id is a current converted to a field axis (d-axis) coordinate on the rotor axis, and is also referred to as a d-axis current or a reactive current.
  • the torque component current Iq is a current converted to a torque axis (q axis) coordinate on the rotor shaft, and is also referred to as a q-axis current or an effective current.
  • the data of the field component current Id and the torque component current Iq are sent to the integrator 73, the subtractor 74, and the main controller 60.
  • the speed estimation calculation unit 72 estimates the speed (rotor rotation speed) ⁇ est of the motor 1M by calculation based on the field component current Id and the torque component current Iq.
  • the data of the estimated speed ⁇ est is sent to the integrator 73 and the main controller 60.
  • the integrating unit 73 detects the rotor position ⁇ est of the motor 1M by integrating the estimated speed ⁇ est.
  • the data of the rotor position ⁇ est is sent to the current detection unit 71, the PWM signal generation unit 83, and the main control unit 60.
  • the subtraction unit 74 obtains the deviation ⁇ err between the target speed ⁇ ref and the estimated speed ⁇ est by subtracting the estimated speed ⁇ est from the target speed ⁇ ref set by the main control unit 60.
  • the data of the deviation ⁇ err is sent to the speed control unit 75.
  • the speed control unit 75 calculates a target value Iqref of the torque component current Iq by performing a proportional / integral control (PI control) on the deviation ⁇ err.
  • the data of the target value Iqref is sent to the Id control unit 76.
  • the Id control unit 76 calculates a target value Idref of the field component current Id from the target value Iqref.
  • the data of the target value Idref is sent to the subtraction unit 77.
  • the subtracting unit 77 calculates a deviation ⁇ Id between the target value Idref and the field component current Id.
  • the subtraction unit 78 obtains a deviation ⁇ Iq between the target value Iqref and the torque component current Iq.
  • the data of the deviations ⁇ Id and ⁇ Iq are sent to the current controllers 81 and 82, respectively.
  • the ⁇ ⁇ current control unit 81 calculates a field component (d-axis component) Vd of the drive voltage to be supplied to the motor 1M by performing a proportional / integral control (PI control) calculation of the deviation ⁇ Id.
  • the field component voltage Vd is a voltage converted into a field axis (d-axis) coordinate on the rotor axis, and is also called a d-axis voltage or an invalid voltage.
  • the current control unit 82 calculates a torque component (q-axis component) Vq of the drive voltage to be supplied to the motor 1M by performing a proportional / integral control (PI control) operation on the deviation ⁇ Iq.
  • the torque component voltage Vq is a voltage converted into a torque axis (q axis) coordinate on the rotor shaft, and is also referred to as a q axis voltage or an effective voltage.
  • the data of the field component voltage Vd and the torque component voltage Vq are sent to the PWM signal generator 83 and the main controller 60.
  • the PWM signal generation unit 83 converts the PWM signal (pulse width modulation signal) P1 for independently switching the inverter 30 into the field component voltage Vd and the torque component voltage. It is generated based on Vq, rotor position ⁇ est, and the like.
  • the PWM signal generation unit 83 outputs the PWM signal P2 for switching the inverters 30 and 40 in cooperation with each other to the field component voltage Vd and the torque component voltage. It is generated based on Vq, rotor position ⁇ est, and the like.
  • the switching elements of the inverters 30 and 40 are turned on and off according to the generated PWM signals P1 and P2. Data of the on / off duties Du1 and Du2 of these PWM signals P1 and P2 are sent to the main control unit 60.
  • the main control unit 60 is constituted by a microcomputer and its peripheral circuits. It controls switching of the switches 30 and 40, and includes a first control unit 60a, a second control unit 60b, and a third control unit 60c.
  • the first control unit 60a sets the target speed ⁇ ref of the motor 1M according to the air-conditioning load notified from the controller 10, and instructs the set target speed ⁇ ref to the inverter control unit 62. In addition, the first control unit 60a determines that when the on / off duties Du1 and Du2 of the PWM signals P1 and P2 generated by the inverter control unit 62 reach the control upper limit and the motor speed cannot be increased, In order to further increase the motor speed, the controller 62 instructs the inverter control unit 62 to perform field weakening control in which a negative field component current “ ⁇ Id” is applied to the phase windings Lu, Lv, Lw.
  • the second control unit 60b connects the phase windings Lu, Lv, and Lw in a star-shape by closing the relay contacts 51a and 52a, and switches only the inverter 30 alone.
  • the second control unit 60b controls the relay contacts 51a and 52a.
  • the open winding mode in which the phase windings Lu, Lv and Lw are disconnected (open state) by opening and the inverters 30 and 40 are switched in cooperation with each other is stored in the estimated speed ⁇ est of the inverter control unit 62 and the internal memory. 4 by referring to the mode selection condition of FIG.
  • the mode selection condition specifies a highly efficient star connection mode when the estimated speed ⁇ est is in a low speed operation range less than the threshold ⁇ est2 when the estimated speed ⁇ est changes in the rising direction, and the estimated speed ⁇ est is equal to or larger than the threshold ⁇ est2. If it is in the high speed operation range, specify the open winding mode. When the estimated speed ⁇ est changes in the descending direction when the estimated speed ⁇ est is in the high speed operation range exceeding the threshold ⁇ est1 ( ⁇ est2), the mode selection condition specifies the open winding mode, and the estimated speed ⁇ est If the vehicle is in the low-speed operation range below ⁇ est1, specify the star connection mode.
  • the third control unit 60c sets the on / off duty Du2 or the on / off duty Du2 of the switching of the open winding mode before the switching.
  • a set value for example, 50%
  • the switching from the open winding mode to the star connection mode by the second control unit 60b is immediately permitted (executed).
  • the third control unit 60c switches ON / OFF duty Du2 of the switching of the open winding mode before switching or ON / OFF duty thereof.
  • the target speed ⁇ ref is decreased to lower the on / off duty Du2 or the voltage utilization factor X to the set value or less. Then, the switching from the open winding mode to the star connection mode by the second control unit 60b is permitted (executed). Further, the third controller 60c cancels the decrease in the target speed ⁇ ref after the switching from the open winding mode to the star connection mode by the second controller 60b is completed.
  • the third control unit 60c recognizes one rotation of the motor 1M based on the rotor position ⁇ est detected by the inverter control unit 62, and among the on / off duty Du2 and the voltage utilization rate X during the one rotation.
  • the maximum on / off duty Du2 or the maximum voltage utilization rate X is used to determine whether or not the value is equal to or less than the set value.
  • the voltage utilization rate X is supplied as data from the inverter control unit 62 by the ratio of the voltage output from the inverters 30 and 40 to the maximum rated output voltage of the inverters 30 and 40 in accordance with the on / off duty Du2. Equation (1) below using the field component voltage Vd and the torque component voltage Vq.
  • FIG. 6 shows a part of the current path formed in the star connection mode.
  • the upstream IGBT 31 in the inverter 30 is turned on, and the downstream IGBTs 34 and 36 repeat the on and off of the on / off duty Du1 while synchronizing with each other.
  • a current flows from the positive terminal of the DC power supply 25 to the phase winding Lu through the IGBT 31, and the current passing through the phase winding Lu passes through the relay contacts 51a and 52a to form a phase winding.
  • the current flows through the lines Lv and Lw, and the current passing through the phase windings Lv and Lw flows through the IGBTs 34 and 36 to the negative terminal of the DC power supply 25.
  • the IGBT 33 on the upstream side in the inverter 30 is turned on, and the IGBTs 32 and 36 on the downstream side repeat the on / off of the on / off duty Du1 while synchronizing with each other.
  • a current flows from the positive terminal of the DC power supply 25 to the phase winding Lv through the IGBT 33, and a current passing through the phase winding Lv flows to the phase windings Lu and Lw through the relay contacts 51a and 52a.
  • the current passing through the phase windings Lu and Lw flows through the IGBTs 32 and 36 to the negative terminal of the DC power supply 25.
  • the IGBT 35 on the upstream side in the inverter 30 is turned on, and the IGBTs 32 and 34 on the downstream side repeat the on / off of the on / off duty Du1 while synchronizing with each other.
  • a current flows from the positive terminal of the DC power supply 25 to the phase winding Lw through the IGBT 35, and a current passing through the phase winding Lw flows to the phase windings Lu and Lv through the relay contacts 51a and 52a.
  • the current passing through these phase windings Lu and Lv flows through the IGBTs 32 and 34 to the negative terminal of the DC power supply 25.
  • the inverter 40 is kept in a stopped state, that is, a state in which the switching operation is not performed.
  • the motor controller 13 determines whether the estimated speed ⁇ est has increased to the threshold ⁇ est2 (S4). While the estimated speed ⁇ est is lower than the threshold ⁇ est2 (NO in S4, NO in S5), if there is no operation stop command from the controller 10 (NO in S12), the motor controller 13 returns to S3, and the estimated speed ⁇ est is reduced.
  • the on / off duty Du1 of the switching of the inverter 30 is controlled so as to reach the target speed ⁇ ref (S3).
  • the motor controller 13 shifts to S3 and turns on and off duty of the switching of the inverters 30 and 40 so that the estimated speed ⁇ est becomes the target speed ⁇ ref. Du2 is controlled (S3).
  • the IGBTs 32 and 36 on the downstream side of the inverter 30 repeat the on / off of the on / off duty Du2 while synchronizing with each other.
  • the upstream IGBT 35 of the inverter 30 is turned on, the downstream IGBT 46 of the inverter 40 repeats the on / off of the on / off duty Du2, and the upstream IGBTs 41 and 43 of the inverter 40 are both turned on.
  • the IGBTs 32 and 34 on the downstream side of the inverter 30 repeat the on / off of the on / off duty Du2 while synchronizing with each other.
  • a current flows from the positive terminal of the DC power supply 25 to the phase winding Lw through the IGBT 35, the current passing through the phase winding Lw flows to the negative terminal of the DC power supply 25 through the IGBT 46, and the DC power supply A current flows from the positive terminal of the DC power supply 25 to the phase windings Lu and Lv through the IGBTs 41 and 43, and a current passing through the phase windings Lu and Lv flows to the negative terminal of the DC power supply 25 through the IGBTs 32 and 34.
  • the rotor of the motor 1M rotates by sequentially switching these three patterns of current paths.
  • the on / off duty Du2 in the open winding mode is 50% or less, for example, 40%, the same level voltage as in the open winding mode is applied to the phase windings Lu, Lv, Lw in the switched star connection mode.
  • it is necessary to set an on / off duty Du1 of 80% ( 40% ⁇ 2) in the star connection mode after switching.
  • the on / off duty Du1 of 80% can be set in the star connection mode.
  • the motor controller 13 connects the phase windings Lu, Lv, Lw by star connection by closing the relay contacts 51a, 52a. Then, the star connection mode in which the inverter 30 is independently switched is immediately set (S9). After the switching from the open winding mode to the star connection mode is completed, the motor controller 13 checks whether or not there is a process of lowering the target speed ⁇ ref in S8 described later (S10). At this time, since there is no process of lowering the target speed ⁇ ref (NO in S10), the motor controller 13 confirms the operation stop command from the controller 10 without executing the next release process of S11 (S12).
  • the motor controller 13 proceeds to S3 and controls the on / off duty Du1 of the switching of the inverter 30 so that the estimated speed ⁇ est becomes the target speed ⁇ ref (S3).
  • the on / off duty Du2 of the open winding mode is more than 50%, for example, 55%
  • the same level voltage as in the open winding mode in the star connection mode after switching is applied to the phase windings Lu, Lv,.
  • it is necessary to set an on / off duty Du1 of 110% ( 55% ⁇ 2) in the star connection mode after switching.
  • the on / off duty Du1 exceeding 100% cannot be set.
  • the motor controller 13 reduces the target speed ⁇ ref by a predetermined value (S8). Due to the decrease in the target speed ⁇ ref, the on / off duty Du2 in the open winding mode changes in a decreasing direction. Subsequently, the motor controller 13 returns to S7 and monitors whether the on / off duty Du2 has become 50% or less (S7).
  • the motor controller 13 further reduces the target speed ⁇ ref by a predetermined value (S8). . Then, the motor controller 13 returns to S7, and monitors again whether the on / off duty Du2 is 50% or less (S7). The motor controller 13 repeats the processing of S7 and S8 until the on / off duty Du2 decreases to 50% or less. Note that the decrease in the target speed ⁇ ref in S8 is a temporary measure, and the original target speed ⁇ ref is based on a command from the outside and exists as it is.
  • the on / off duty Du2 of the open winding mode is reduced to 50% or less, for example, 48%, the same level voltage as in the open winding mode is applied to the phase windings Lu, Lv, Lw in the switched star connection mode.
  • It is necessary to set an on / off duty Du1 of 96% ( 48% ⁇ 2) in the star connection mode after switching.
  • the 96% on / off duty Du1 can be set in the star connection mode.
  • the motor controller 13 closes the relay contacts 51a and 52a to 96%.
  • the inverter 30 is independently switched with the on / off duty Du1 of the power supply to set the star connection mode (S9).
  • the motor controller 13 checks whether there is a process of decreasing the target speed ⁇ ref in S8 (S10). At this point, since there is a process of decreasing the target speed ⁇ ref (YES in S10), the motor controller 13 cancels the decrease in the target speed ⁇ ref (S11). As a result, the target speed ⁇ ref returns to the original target speed ⁇ ref based on an external command. After this release, the motor controller 13 confirms the operation stop command from the controller 10 (S12).
  • the motor controller 13 proceeds to S3, and changes the on / off duty Du1 of the switching of the inverter 30 so that the estimated speed ⁇ est becomes the original target speed ⁇ ref. Control (S3), if the target speed ⁇ ref has been reduced before, the speed is increased to return to the original speed.
  • the motor controller 13 stops the switching of the inverter 30 (S13).
  • the on / off duty Du2 (or voltage utilization factor X) of the open winding mode exceeds the set value, the on / off duty Du2 (or voltage utilization factor X) is reduced to a set value or less, and after this decrease, switching from the open winding mode to the star connection mode is performed.
  • the on / off duty Du2 or voltage utilization factor X
  • the motor controller 13 switches both of the inverters 30 and 40 so as to cooperate and synchronize. Control.
  • the switching between the open winding mode and the star connection mode is completed without stopping the motor 1M.
  • the motor controller 13 when switching between the open winding mode and the star connection mode, the motor controller 13 appropriately controls the switching of the inverters 30 and 40 so that no current flows through the relay contacts 51a and 52a, and switches the relay contacts 51a and 52a. Open and close. Since the relay contacts 51a and 52a open and close in a state where no current flows through the relay contacts 51a and 52a, it is possible to prevent the occurrence of sparks and the like at the relay contacts 51a and 52a, and to prevent a failure such as welding of the relay contacts 51a and 52a. Can be avoided.
  • a decrease in the on / off duty Du2 leads to a decrease in the motor speed, but a decrease in the on / off duty Du2 (or the voltage utilization rate X) is a small amount until it falls below the set value. Moreover, since the decrease in the on / off duty Du2 (or the voltage utilization factor X) is temporary at the time of mode switching, the decrease in the motor speed can be almost neglected both in terms of magnitude and time.
  • the second embodiment is different from the first embodiment in control and operation when switching from the open winding mode to the star connection mode. Others are the same as the first embodiment.
  • the third control unit 60c of the main control unit 60 controls the on / off duty Du2 (or the voltage) of the switching in the open winding mode before the switching.
  • the utilization rate X is equal to or less than the set value (for example, 50%)
  • the switching from the open winding mode to the star connection mode by the second control unit 60b is immediately permitted (executed).
  • the third control unit 60c causes the on / off duty Du2 of the switching in the open winding mode before the switching to exceed the set value.
  • the on / off duty Du2 is reduced to the set value or less by executing the field weakening control in which a negative field component current is applied to the respective phase windings, and thereafter, the open winding by the second control unit 60b is performed.
  • the switch from the line mode to the star connection mode is permitted (executed).
  • the third controller 60c cancels the decrease in the target speed ⁇ ref after the switching from the open winding mode to the star connection mode by the second controller 60b is completed.
  • the field-weakening control further increases the rotation speed when the motor rotates at a high speed and the on / off duty is 100%, and the induced voltage of the winding increases and the rotation speed cannot be further increased.
  • the control is used to reduce the on / off duty Du2 while keeping the rotation speed of the motor constant.
  • the motor controller 13 executes the processes of S8 ', S10', and S11 'in place of the processes of S8, S10, and S11 in the flowchart of FIG.
  • the motor controller 13 determines that the on / off duty Du2 of the open winding mode exceeds the set value of 50% in a situation where switching from the open winding mode to the star connection mode is required (S7). NO), field weakening control of injecting a negative field component current "- ⁇ Id" of a predetermined magnitude into the phase windings Lu, Lv, Lw is performed (S8 '). Due to this field weakening control, the on / off duty Du2 of the open winding mode is reduced.
  • the motor controller 13 After the injection of the negative field component current “ ⁇ Id”, the motor controller 13 returns to S7 and monitors again whether or not the on / off duty Du2 has reached 50% or less (S7).
  • the motor controller 13 further reduces the predetermined magnitude of negative current. Is further injected into the phase windings Lu, Lv, Lw (S8 '). As a result, the negative field component current becomes twice “ ⁇ 2 ⁇ ⁇ Id”.
  • the motor controller 13 returns to S7, and monitors again whether the on / off duty Du2 is 50% or less (S7). Until the on / off duty Du2 decreases to 50% or less, the processes of S7 and S8 'are repeated, and the negative field component current is increased.
  • the motor controller 13 closes the relay contacts 51a and 52a and sets the star connection mode in place of the open winding mode up to that time. (S9). Then, the motor controller 13 checks whether or not there is the field weakening control in S8 '(S10'). At this point, since the field weakening control is in operation (YES in S10 '), the motor controller 13 thereafter shifts to the field weakening control in the star connection mode, and the field weakening amount (negative field component current " ⁇ Id ′′) (S11 ′), thereby appropriately controlling the speed of the motor 1M. Thereafter, the motor controller 13 confirms the operation stop command from the controller 10 (S12).
  • the on / off duty Du2 (or the voltage utilization factor X) of the open winding mode exceeds the set value, the negative field is set.
  • the on / off duty Du2 (or the voltage utilization factor X) is reduced by executing the field weakening control injecting the component current “ ⁇ Id”, and after the on / off duty Du2 has dropped to 50% or less, the star is switched from the open winding mode. Since the switching to the connection mode is executed, it is possible to reliably shift from the open winding mode to the star connection mode without changing (decreasing) the motor speed as in the first embodiment. As a result, the stability of the refrigeration cycle increases.
  • the mode selection condition switching from the open winding mode to the star connection mode is performed according to the estimated speed ⁇ est, but the mode is switched from the open winding mode to the star connection mode according to the target speed ⁇ ref.
  • Switching to the connection mode may be performed.
  • the threshold value at which the switching from the open winding mode to the star connection mode may be variably set according to the state of the refrigeration cycle and the motor current value.
  • switching from the open winding mode to the star connection mode may be performed based on data other than the motor speed, such as the estimated speed ⁇ est and the target speed ⁇ ref.
  • the on / off duty Du2 (or the voltage utilization rate X) is reduced by the operation of decreasing the target speed ⁇ ref.
  • the on / off duty of the PWM signal P2 generated by the inverter control unit 62 is reduced.
  • Du2 (or voltage utilization factor X) may be configured to directly decrease the operation.
  • the switches are the relay contacts 51a and 52a.
  • a semiconductor switch can be used as the switches.
  • the open winding motor used as the motor for driving the compressor has been described as an example.
  • the present invention can be similarly applied to an open winding motor used for other purposes.
  • Inverter 30 and Inverter 40 may be configured using three single-phase inverter devices.
  • the decrease of the on / off duty Du2 (or the voltage utilization rate X) at the time of switching from the open winding mode to the star connection mode can be reduced simultaneously with decreasing the rotation speed of the motor 1M as in the first embodiment. It may be executed by adding the field weakening control in the second embodiment.

Abstract

If, at the time of a switchover from open winding mode to star connection mode, the on/off duty (or voltage utilization rate) of the switching of the pre-switchover open winding mode exceeds a set value, a motor controller lowers the on/off duty (or voltage utilization rate) to or below the set value, and after the lowering, executes a switchover from the open winding mode to the star connection mode.

Description

モータ駆動装置及び冷凍サイクル装置Motor drive device and refrigeration cycle device
 本発明は、互いに非接続状態の複数の相巻線を有する永久磁石同期モータいわゆるオープン巻線モータを駆動するモータ駆動装置及び冷凍サイクル装置に関する。 The present invention relates to a motor driving device and a refrigeration cycle device for driving a so-called open winding motor, which is a permanent magnet synchronous motor having a plurality of phase windings that are not connected to each other.
 空気調和機や熱源機などの冷凍サイクル装置に搭載される圧縮機の駆動用モータとして、複数の相巻線を有する永久磁石同期モータが使用される。また、永久磁石同期モータの一例として、複数の相巻線を互いに非接続状態とした構成のオープン巻線モータ(Open-Windings Motor)が知られている。 永久 A permanent magnet synchronous motor having a plurality of phase windings is used as a motor for driving a compressor mounted on a refrigeration cycle device such as an air conditioner or a heat source device. As an example of a permanent magnet synchronous motor, an open winding motor (Open-Windings @ Motor) having a configuration in which a plurality of phase windings are not connected to each other is known.
 このオープン巻線モータ(モータと略称する)を駆動するモータ駆動装置は、モータの各相巻線の一端への通電を制御する第1インバータ、モータの各相巻線の他端への通電を制御する第2インバータ、各相巻線の他端の相互間に接続される開閉器を備え、この開閉器の閉成により各相巻線を星形結線して第1インバータのみを単独でスイッチングする星形結線モード、および開閉器の開放により各相巻線を非接続状態(オープン状態)として第1インバータおよび第2インバータを互いに協調してスイッチングするオープン巻線モードを、選択的に設定する。 A motor drive device that drives this open-winding motor (abbreviated as a motor) includes a first inverter that controls energization of one end of each phase winding of the motor, and energization of the other end of each phase winding of the motor. A second inverter to be controlled and a switch connected between the other ends of the respective phase windings are provided. By closing the switches, each phase winding is star-connected and only the first inverter is independently switched. The open winding mode in which the first inverter and the second inverter are switched in cooperation with each other by setting the respective phase windings to a disconnected state (open state) by opening the switch, is selectively set. .
 オープン巻線モードでは、星形結線モード時の約2倍の高レベルの電圧を各相巻線に印加することができることから、モータの速度が閾値以下の低速度運転域(低・中速度運転域ともいう)では星形結線モードを設定し、モータの速度が目標速度となるよう、第1インバータの単独のスイッチングのオン,オフデューティを制御する。モータの速度が閾値以上の高速度運転域ではオープン巻線モードを設定し、モータの速度が目標速度となるよう、第1インバータおよび第2インバータの協調のスイッチングのオン,オフデューティを制御する。このように切換えることで、高回転での運転が可能となり、幅広い運転速度範囲で高効率を得ることができる。 In the open winding mode, a high-level voltage approximately twice as high as that in the star connection mode can be applied to each phase winding. In this case, the star connection mode is set, and the ON / OFF duty of the independent switching of the first inverter is controlled so that the motor speed becomes the target speed. In a high speed operation region where the motor speed is equal to or higher than a threshold, the open winding mode is set, and the on / off duty of the cooperative switching of the first inverter and the second inverter is controlled so that the motor speed becomes the target speed. By switching in this manner, operation at a high rotation speed becomes possible, and high efficiency can be obtained in a wide operation speed range.
 モータ駆動装置は、モータを停止させることなく、運転を継続しつつ星形結線モードからオープン巻線モードへ切換える場合、切換え後のオープン巻線モードにおいて星形結線モード時の1/2のオン,オフデューティを設定する。逆に、オープン巻線モードから星形結線モードへ切換える場合は、切換え後の星形結線モードにおいてオープン巻線モード時の2倍のオン,オフデューティを設定する。 When switching from the star connection mode to the open winding mode without stopping the motor and continuing operation without stopping the motor, when the open winding mode after the switching is turned on, the ON / OFF of the 1/2 of the star connection mode is performed. Set the off duty. Conversely, when switching from the open winding mode to the star connection mode, in the switched star connection mode, on / off duty twice as high as in the open winding mode is set.
特許第4906836号Patent No. 4990636
 オープン巻線モードから星形結線モードへの切換えに際し、切換え前のオープン巻線モードのオン,オフデューティが50%を超えている場合、切換え後の星形結線モードにおいて100%を超えるオン,オフデューティの設定が必要となる。100%を超えるオン,オフデューティの設定は不可能であり、星形結線モードに移行することができない。 When switching from open winding mode to star connection mode, if the on / off duty of open winding mode before switching exceeds 50%, on / off exceeding 100% in star connection mode after switching It is necessary to set the duty. It is impossible to set the on / off duty exceeding 100%, and it is not possible to shift to the star connection mode.
 このため、オープン巻線モードのオン,オフデューティが50%以下の状態となるところに、星形結線モードへの切換え点を設定せざるを得なかった。 For this reason, the switching point to the star connection mode had to be set when the on / off duty of the open winding mode was 50% or less.
 しかしながら、オープン巻線モードから星形結線モードへの切換え点は、モータ仕様や機器(冷凍サイクル装置)の仕様及び運転状況に応じて、最も高効率になるところにすることが好ましい。したがって、オープン巻線モードのオン,オフデューティが50%を超えている状況からも円滑に星形結線モードに切り替えできることが望まれる。 However, it is preferable that the switching point from the open winding mode to the star connection mode be the highest efficiency depending on the motor specifications, the specifications of the equipment (refrigeration cycle device) and the operating conditions. Accordingly, it is desired that the open winding mode can be smoothly switched to the star connection mode even when the on / off duty exceeds 50%.
 本発明の実施形態の目的は、オープン巻線モードのオン,オフデューティが高い状態であっても、オープン巻線モードから星形結線モードへ確実に移行することができるモータ駆動装置及び冷凍サイクル装置を提供することである。 An object of an embodiment of the present invention is to provide a motor drive device and a refrigeration cycle device that can reliably switch from the open winding mode to the star connection mode even when the on / off duty of the open winding mode is high. It is to provide.
 請求項1のモータ駆動装置は、互いに非接続状態の複数の相巻線を有するモータのモータ駆動装置であって;複数のスイッチング素子を含み、これらスイッチング素子により前記モータの各相巻線の一端への通電を制御する第1インバータと;複数のスイッチング素子を含み、これらスイッチング素子により前記モータの各相巻線の他端への通電を制御する第2インバータと;前記各相巻線の他端の相互間に接続された開閉器と;前記開閉器の閉成により前記各相巻線を星形結線して前記第1インバータをスイッチングする星形結線モード、および前記開閉器の開放により前記各相巻線を非接続状態として前記第1インバータおよび前記第2インバータをスイッチングするオープン巻線モードを有するモータコントローラと;を備える。このモータコントローラは、前記オープン巻線モードから前記星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティまたはそのオン,オフデューティに対応する電圧利用率が設定値を超えている場合、そのオン,オフデューティまたは電圧利用率を前記設定値以下に低下させし、この低下後、前記オープン巻線モードから前記星形結線モードへの切換えを実行する。 The motor drive of claim 1 is a motor drive for a motor having a plurality of phase windings disconnected from each other; including a plurality of switching elements, one end of each phase winding of the motor by the switching elements. A first inverter for controlling energization of the motor; a second inverter including a plurality of switching elements, and controlling the energization of the other end of each phase winding of the motor by the switching elements; A switch connected between the ends; a star connection mode in which each phase winding is star-connected by closing the switch and the first inverter is switched; and the switch is opened by opening the switch. A motor controller having an open winding mode for switching the first inverter and the second inverter with each phase winding being in a non-connected state. When switching from the open winding mode to the star connection mode, the motor controller sets an on / off duty of switching in the open winding mode before switching or a voltage utilization rate corresponding to the on / off duty to a set value. Is exceeded, the on / off duty or the voltage utilization rate is reduced to the set value or less, and after this reduction, the switching from the open winding mode to the star connection mode is executed.
第1および第2実施形態に係る冷凍サイクル装置の構成を示す図。The figure which shows the structure of the refrigeration cycle apparatus which concerns on 1st and 2nd embodiment. 第1および第2実施形態の構成を示すブロック図。FIG. 2 is a block diagram showing a configuration of the first and second embodiments. 図2におけるインバータ制御部の構成を示すブロック図。FIG. 3 is a block diagram illustrating a configuration of an inverter control unit in FIG. 2. 第1および第2実施形態のモード選択条件を示す図。FIG. 6 is a diagram illustrating mode selection conditions according to the first and second embodiments. 第1実施形態のモータコントローラの制御を示すフローチャート。5 is a flowchart illustrating control of the motor controller according to the first embodiment. 第1および第2実施形態の星形結線モード時の電流経路の一部を示す図。The figure which shows a part of electric current path at the time of the star connection mode of 1st and 2nd embodiment. 第2実施形態のモータコントローラの制御を示すフローチャート。9 is a flowchart illustrating control of the motor controller according to the second embodiment.
 [1]第1実施形態について説明する。第1実施形態に係る空気調和機用の冷凍サイクル装置の構成を図1に示す。 [1] The first embodiment will be described. FIG. 1 shows a configuration of a refrigeration cycle device for an air conditioner according to the first embodiment.
 オープン巻線モータ(Open-Windings Motor)1Mを駆動用モータとして有する圧縮機1の吐出口に、四方弁2を介して室外熱交換器3の一端が配管接続され、その室外熱交換器3の他端に減圧器である電動膨張弁4を介して室内熱交換器5の一端が配管接続されている。そして、室内熱交換器5の他端が上記四方弁2を介して圧縮機1の吸込口に配管接続されている。室外熱交換器3の近傍に室外ファン6が配置され、室内熱交換器5の近傍に室内ファン7が配置されている。オープン巻線モータ1Mのことを、以下、モータ1Mと略称する。 One end of an outdoor heat exchanger 3 is connected to a discharge port of a compressor 1 having an open-winding motor 1M as a driving motor via a four-way valve 2 by piping. One end of the indoor heat exchanger 5 is connected to the other end via an electric expansion valve 4 which is a pressure reducer. The other end of the indoor heat exchanger 5 is connected to the suction port of the compressor 1 via the four-way valve 2 by piping. An outdoor fan 6 is arranged near the outdoor heat exchanger 3, and an indoor fan 7 is arranged near the indoor heat exchanger 5. The open winding motor 1M is hereinafter abbreviated as the motor 1M.
 冷房運転時は、図1中に実線矢印で示すように、圧縮機1から吐出されるガス冷媒が四方弁2を介して室外熱交換器3に流れる。室外熱交換器3に流れたガス冷媒は、外気に熱を放出して凝縮する。この室外熱交換器(凝縮器)3から流出する液冷媒は、電動膨張弁4で減圧された状態で室内熱交換器5に流れる。室内熱交換器5に流れた液冷媒は、室内空気から熱を奪って蒸発する。この室内熱交換器(蒸発器)5から流出するガス冷媒は、四方弁2を通って圧縮機1に吸い込まれる。暖房運転時は、コントローラ10によって四方弁2の流路が切換えられることにより、図1中に破線矢印で示すように、圧縮機1から吐出されるガス冷媒が四方弁2を介して室内熱交換器5に流れる。室内熱交換器5に流れたガス冷媒は、室内空気に熱を放出して凝縮する。この室内熱交換器(凝縮器)5から流出する液冷媒は、電動膨張弁4で減圧されて室外熱交換器3に流れる。室外熱交換器3に流れた液冷媒は、外気から熱を奪って蒸発する。この室外熱交換器(蒸発器)3から流出するガス冷媒は、四方弁2を通って圧縮機1に吸い込まれる。 時 During the cooling operation, the gas refrigerant discharged from the compressor 1 flows to the outdoor heat exchanger 3 via the four-way valve 2 as shown by a solid line arrow in FIG. The gas refrigerant flowing to the outdoor heat exchanger 3 emits heat to the outside air and condenses. The liquid refrigerant flowing out of the outdoor heat exchanger (condenser) 3 flows to the indoor heat exchanger 5 while being decompressed by the electric expansion valve 4. The liquid refrigerant that has flowed into the indoor heat exchanger 5 evaporates by removing heat from the indoor air. The gas refrigerant flowing out of the indoor heat exchanger (evaporator) 5 is drawn into the compressor 1 through the four-way valve 2. During the heating operation, the flow path of the four-way valve 2 is switched by the controller 10 so that the gas refrigerant discharged from the compressor 1 is subjected to the indoor heat exchange through the four-way valve 2 as shown by a dashed arrow in FIG. Flow into vessel 5 The gas refrigerant flowing into the indoor heat exchanger 5 emits heat to the indoor air and condenses. The liquid refrigerant flowing out of the indoor heat exchanger (condenser) 5 is decompressed by the electric expansion valve 4 and flows to the outdoor heat exchanger 3. The liquid refrigerant that has flowed into the outdoor heat exchanger 3 evaporates by removing heat from the outside air. The gas refrigerant flowing out of the outdoor heat exchanger (evaporator) 3 is drawn into the compressor 1 through the four-way valve 2.
 コントローラ10は、四方弁2、電動膨張弁4、室外ファン6、および室内ファン7を制御するとともに、本実施形態のモータ駆動装置11を介してモータ1Mの駆動を制御する。モータ駆動装置11は、図2に示す駆動回路12およびモータコントローラ13を含む。 The controller 10 controls the four-way valve 2, the electric expansion valve 4, the outdoor fan 6, and the indoor fan 7, and controls the driving of the motor 1M via the motor driving device 11 of the present embodiment. The motor drive device 11 includes a drive circuit 12 and a motor controller 13 shown in FIG.
 モータ1Mは、互いに非接続状態の複数たとえば3つの相巻線Lu,Lv,Lwを有する永久磁石同期モータである。モータ1Mの相巻線Lu,Lv,Lwは、低速度運転域(低・中速度運転域ともいう)で効率が向上するよう、細径の銅線を高い密度で巻回して構成される。ただし、細径の相巻線Lu,Lv,Lwを用いると、モータ1Mの速度の上昇に伴って相巻線Lu,Lv,Lwに誘起する電圧が早期に上昇し、その誘起電圧とインバータから相巻線Lu,Lv,Lwに供給される電圧との差が早い段階で小さくなり、それ以上はモータ1Mの速度を上昇させることができなくなる。そこで、モータコントローラ13は、後述するように、低速度運転域では相巻線Lu,Lv,Lwを星形結線してインバータ30のみを単独でスイッチングする星形結線モードを設定し、高速度運転域では相巻線Lu,Lv,Lwを非接続状態(オープン状態)としてインバータ30,40を互いに協調してスイッチングするオープン巻線モードを設定する。この設定により、低速度運転域で高効率の運転を可能としながら、低速度運転域から高速度運転域まで幅広い速度可変幅を得ることができる。 The motor 1M is a permanent magnet synchronous motor having a plurality of, for example, three phase windings Lu, Lv, Lw that are not connected to each other. The phase windings Lu, Lv, and Lw of the motor 1M are configured by winding a small-diameter copper wire at a high density so that the efficiency is improved in a low speed operation range (also referred to as a low / medium speed operation range). However, when the small-diameter phase windings Lu, Lv, and Lw are used, the voltage induced in the phase windings Lu, Lv, and Lw increases as the speed of the motor 1M increases, and the induced voltage and the inverter The difference between the voltage supplied to the phase windings Lu, Lv, and Lw decreases at an early stage, and the speed of the motor 1M cannot be increased any more. Therefore, the motor controller 13 sets a star connection mode in which the phase windings Lu, Lv, and Lw are star-connected in the low-speed operation range and only the inverter 30 is switched alone in a low-speed operation range, as described later. In the region, an open winding mode in which the phase windings Lu, Lv, and Lw are disconnected (open state) to switch the inverters 30 and 40 in cooperation with each other is set. With this setting, it is possible to obtain a wide speed variable width from the low-speed operation range to the high-speed operation range while enabling high-efficiency operation in the low-speed operation range.
 [駆動回路12の説明]
 3相交流電源20にノイズフィルタ21を介してダイオードブリッジの全波整流回路22が接続され、その全波整流回路22の出力端にリアクタ23を介してコンデンサ24が接続されている。この全波整流回路22、リアクタ23、コンデンサ24により、直流電圧Vdcを出力する直流電源25が構成される。
[Description of drive circuit 12]
A full-wave rectifier circuit 22 of a diode bridge is connected to a three-phase AC power supply 20 via a noise filter 21, and a capacitor 24 is connected to an output terminal of the full-wave rectifier circuit 22 via a reactor 23. The full-wave rectifier circuit 22, the reactor 23, and the capacitor 24 constitute a DC power supply 25 that outputs a DC voltage Vdc.
 この直流電源25とモータ1Mの相巻線Lu,Lv,Lwの一端との間に、相巻線Lu,Lv,Lwの一端への通電を制御するインバータ(第1インバータやマスタインバータともいう)30が接続されている。直流電源25とモータ1Mの相巻線Lu,Lv,Lwの他端との間に、相巻線Lu,Lv,Lwの他端への通電を制御するインバータ(第2インバータやスレーブインバータともいう)40が接続されている。インバータ30,40が共通の直流電源25に接続される電源共通方式を採用している。電源共通方式に限らず、インバータ30,40を別々の直流電源に接続する電源絶縁方式を採用してもよい。 An inverter (referred to also as a first inverter or a master inverter) for controlling energization of one end of the phase windings Lu, Lv, Lw between the DC power supply 25 and one end of the phase windings Lu, Lv, Lw of the motor 1M. 30 are connected. An inverter (also referred to as a second inverter or a slave inverter) for controlling energization of the other ends of the phase windings Lu, Lv, Lw between the DC power supply 25 and the other ends of the phase windings Lu, Lv, Lw of the motor 1M. ) 40 is connected. A common power supply system in which the inverters 30 and 40 are connected to a common DC power supply 25 is employed. Not limited to the common power supply system, a power supply insulation system in which the inverters 30 and 40 are connected to different DC power supplies may be employed.
 インバータ30は、スイッチング素子たとえばIGBT31,32を直列接続しそのIGBT31,32の相互接続点がオープン巻線モータ1Mの相巻線Luの一端に接続されるU相直列回路、IGBT33,34を直列接続しそのIGBT33,34の相互接続点がオープン巻線モータ1Mの相巻線Lvの一端に接続されるV相直列回路、IGBT35,36を直列接続しそのIGBT35,36の相互接続点がオープン巻線モータ1Mの相巻線Lwの一端に接続されるW相直列回路を含み、直流電源25の直流電圧VdcをIGBT31~36のスイッチングにより所定周波数の3相交流電圧に変換し、その3相交流電圧をオープン巻線モータ1Mの相巻線Lu,Lv,Lwのそれぞれ一端へ供給する。IGBT31~36には、回生用ダイオード(フリー・ホイール・ダイオードともいう)31a~36aが逆並列接続されている。 Inverter 30 is a U-phase series circuit in which switching elements such as IGBTs 31 and 32 are connected in series, and an interconnection point of the IGBTs 31 and 32 is connected to one end of phase winding Lu of open winding motor 1M, and IGBTs 33 and 34 are connected in series. The IGBTs 33 and 34 are connected in series to a V-phase series circuit in which one end of the phase winding Lv of the open winding motor 1M is connected to IGBTs 35 and 36, and the IGBTs 35 and 36 are connected in an open winding. It includes a W-phase series circuit connected to one end of the phase winding Lw of the motor 1M, converts the DC voltage Vdc of the DC power supply 25 into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 31 to 36, and converts the three-phase AC voltage. Is supplied to one end of each of the phase windings Lu, Lv, Lw of the open winding motor 1M. Regeneration diodes (also referred to as free wheel diodes) 31a to 36a are connected in anti-parallel to the IGBTs 31 to 36, respectively.
 インバータ40は、IGBT41,42を直列接続しそのIGBT41,42の相互接続点がオープン巻線モータ1Mの相巻線Luの他端に接続されるU相直列回路、IGBT43,44を直列接続しそのIGBT43,44の相互接続点がモータ1Mの相巻線Lvの他端に接続されるV相直列回路、IGBT45,46を直列接続しそのIGBT45,46の相互接続点がオープン巻線モータ1Mの相巻線Lwの他端に接続されるW相直列回路を含み、直流電源25の直流電圧VdcをIGBT41~46のスイッチングにより所定周波数の3相交流電圧に変換し、その3相交流電圧をモータ1Mの相巻線Lu,Lv,Lwのそれぞれ他端へ供給する。IGBT41~46には、回生用ダイオード(フリー・ホイール・ダイオードともいう)41a~46aが逆並列接続されている。 The inverter 40 connects the IGBTs 41 and 42 in series, and connects the IGBTs 43 and 44 in series with the U-phase series circuit in which the interconnection point of the IGBTs 41 and 42 is connected to the other end of the phase winding Lu of the open winding motor 1M. A V-phase series circuit in which the interconnection points of the IGBTs 43 and 44 are connected to the other end of the phase winding Lv of the motor 1M, IGBTs 45 and 46 are connected in series, and the interconnection point of the IGBTs 45 and 46 is the phase of the open winding motor 1M. Including a W-phase series circuit connected to the other end of the winding Lw, the DC voltage Vdc of the DC power supply 25 is converted into a three-phase AC voltage of a predetermined frequency by switching of the IGBTs 41 to 46, and the three-phase AC voltage is To the other ends of the phase windings Lu, Lv, Lw. Regeneration diodes (also referred to as free wheel diodes) 41a to 46a are connected in anti-parallel to the IGBTs 41 to 46.
 インバータ30は、2つのスイッチング素子の直列回路を3組並列に接続してなる主回路と、この主回路の6つのスイッチング素子を駆動する駆動回路などの周辺回路とを、単一のパッケージに収納したモジュールいわゆるIPM(Intelligent Power Module)である。インバータ40も、同じ構成のIPMである。 The inverter 30 houses a main circuit formed by connecting three sets of series circuits of two switching elements in parallel and peripheral circuits such as a drive circuit for driving the six switching elements of the main circuit in a single package. This is a so-called IPM (Intelligent Power Module). The inverter 40 is also an IPM having the same configuration.
 モータ1Mの相巻線Luの他端と相巻線Lvの他端との相互間に、開閉器たとえばリレー51の常開形接点(リレー接点という)51aが接続されている。モータ1Mの相巻線Lvの他端と相巻線Lwの他端との相互間に、開閉器たとえばリレー52の常開形接点(リレー接点という)52aが接続されている。リレー51,52は、モータコントローラ13により、互いに同期した状態で付勢と消勢が制御される。リレー接点51a,52aが閉成すると、相巻線Lu,Lv,Lwの他端が相互接続されて相巻線Lu,Lv,Lwが星形結線状態となる。相巻線Lu,Lv,Lwの他端の相互接続点が星形結線の中性点となる。リレー接点51a,52aが開放すると、相巻線Lu,Lv,Lwが非接続状態(オープン状態)となって相巻線Lu,Lv,Lwが電気的に分離する。 A normally open contact (referred to as a relay contact) 51a of a switch, for example, a relay 51, is connected between the other end of the phase winding Lu of the motor 1M and the other end of the phase winding Lv. Between the other end of the phase winding Lv of the motor 1M and the other end of the phase winding Lw, a normally open contact (referred to as a relay contact) 52a of a switch, for example, a relay 52 is connected. The energization and de-energization of the relays 51 and 52 are controlled by the motor controller 13 in synchronization with each other. When the relay contacts 51a, 52a are closed, the other ends of the phase windings Lu, Lv, Lw are interconnected, and the phase windings Lu, Lv, Lw are in a star connection state. The interconnection point at the other end of the phase windings Lu, Lv, Lw is the neutral point of the star connection. When the relay contacts 51a, 52a are opened, the phase windings Lu, Lv, Lw are disconnected (open state), and the phase windings Lu, Lv, Lw are electrically separated.
 インバータ30とモータ1Mとの間の各通電ラインに電流センサ53,53v,53wが配置され、これら電流センサ53,53v,53wの検知信号がモータコントローラ13に送られる。モータコントローラ13は、コントローラ10からの指令に応じて駆動回路12を制御するもので、制御の中枢となる主制御部60、電圧検出部61、インバータ制御部62、リレー駆動部63、リレー51,52などを含む。電圧検出部61は、直流電源25の出力電圧Vdcを検出する。リレー駆動部63は、主制御部60からの指令に応じてリレー51,52を付勢または消勢する。 (4) Current sensors 53, 53v, and 53w are arranged on each energizing line between the inverter 30 and the motor 1M, and detection signals from the current sensors 53, 53v, and 53w are sent to the motor controller 13. The motor controller 13 controls the drive circuit 12 in response to a command from the controller 10, and includes a main control unit 60, a voltage detection unit 61, an inverter control unit 62, a relay drive unit 63, a relay 51, 52 and the like. Voltage detector 61 detects output voltage Vdc of DC power supply 25. Relay drive section 63 energizes or deactivates relays 51 and 52 in response to a command from main control section 60.
 インバータ制御部62は、電流センサ53,53v,53wの検知結果に基づいてモータ1Mの速度(回転数)ωestを推定し、その推定速度ωestと目標速度ωrefとの差に応じてインバータ30,40のスイッチングを制御するセンサレス・ベクトル制御を行うもので、図3に示すように電流検出部71、速度推定演算部72、積分部73、減算部74、速度制御部75、Id制御部76、減算部77,78、電流制御部81,82、PWM信号生成部83を含む。 Inverter control unit 62 estimates the speed (rotation speed) ωest of motor 1M based on the detection results of current sensors 53, 53v, 53w, and converts inverters 30, 40 according to the difference between the estimated speed ωest and target speed ωref. , A current detection unit 71, a speed estimation calculation unit 72, an integration unit 73, a subtraction unit 74, a speed control unit 75, an Id control unit 76, and a subtraction, as shown in FIG. Units 77 and 78, current control units 81 and 82, and a PWM signal generation unit 83.
 電流検出部71は、モータ1Mの相巻線Lu,Lv,Lwに流れる電流(モータ電流)を電流センサ53,53v,53wの出力から捕らえ、捕らえた電流の界磁成分(d軸成分)Idおよびトルク成分(q軸成分)Iqを検出する。電流の界磁成分Idを界磁成分電流Idといい、電流のトルク成分Iqをトルク成分電流Iqという。界磁成分電流Idは、ロータ軸上の界磁軸(d軸)座標に換算された電流のことで、d軸電流や無効電流とも称される。トルク成分電流Iqは、ロータ軸上のトルク軸(q軸)座標に換算された電流のことで、q軸電流や有効電流とも称される。これら界磁成分電流Idおよびトルク成分電流Iqのデータが積分部73、減算部74、主制御部60に送られる。 The current detection unit 71 captures currents (motor currents) flowing through the phase windings Lu, Lv, Lw of the motor 1M from the outputs of the current sensors 53, 53v, 53w, and a field component (d-axis component) Id of the captured current. And a torque component (q-axis component) Iq. The field component Id of the current is called a field component current Id, and the torque component Iq of the current is called a torque component current Iq. The field component current Id is a current converted to a field axis (d-axis) coordinate on the rotor axis, and is also referred to as a d-axis current or a reactive current. The torque component current Iq is a current converted to a torque axis (q axis) coordinate on the rotor shaft, and is also referred to as a q-axis current or an effective current. The data of the field component current Id and the torque component current Iq are sent to the integrator 73, the subtractor 74, and the main controller 60.
 速度推定演算部72は、界磁成分電流Idおよびトルク成分電流Iqに基づく演算により、モータ1Mの速度(ロータの回転速度)ωestを推定する。この推定速度ωestのデータが積分部73および主制御部60に送られる。積分部73は、推定速度ωestを積分することにより、モータ1Mのロータ位置θestを検出する。このロータ位置θestのデータが電流検出部71、PWM信号生成部83、および主制御部60に送られる。減算部74は、主制御部60で設定される目標速度ωrefから推定速度ωestを減算することにより、目標速度ωrefと推定速度ωestとの偏差ωerrを得る。この偏差ωerrのデータが速度制御部75に送られる。 The speed estimation calculation unit 72 estimates the speed (rotor rotation speed) ωest of the motor 1M by calculation based on the field component current Id and the torque component current Iq. The data of the estimated speed ωest is sent to the integrator 73 and the main controller 60. The integrating unit 73 detects the rotor position θest of the motor 1M by integrating the estimated speed ωest. The data of the rotor position θest is sent to the current detection unit 71, the PWM signal generation unit 83, and the main control unit 60. The subtraction unit 74 obtains the deviation ωerr between the target speed ωref and the estimated speed ωest by subtracting the estimated speed ωest from the target speed ωref set by the main control unit 60. The data of the deviation ωerr is sent to the speed control unit 75.
 速度制御部75は、偏差ωerrを比例・積分制御(PI制御)演算することにより、トルク成分電流Iqの目標値Iqrefを求める。この目標値IqrefのデータがId制御部76に送られる。Id制御部76は、目標値Iqrefから界磁成分電流Idの目標値Idrefを求める。この目標値Idrefのデータが減算部77に送られる。なお、Id制御部76は、負の界磁成分電流“-Id”を相巻線Lu,Lv,Lwに注入する弱め界磁制御の実行が主制御部60から指令された場合に、所定レベルの負の界磁成分電流“-Id”を上記求めた目標値Idrefに加える。減算部77は、目標値Idrefと界磁成分電流Idとの偏差ΔIdを求める。減算部78は、目標値Iqrefとトルク成分電流Iqとの偏差ΔIqを求める。これら偏差ΔId,ΔIqのデータが電流制御部81,82にそれぞれ送られる。 The speed control unit 75 calculates a target value Iqref of the torque component current Iq by performing a proportional / integral control (PI control) on the deviation ωerr. The data of the target value Iqref is sent to the Id control unit 76. The Id control unit 76 calculates a target value Idref of the field component current Id from the target value Iqref. The data of the target value Idref is sent to the subtraction unit 77. When the main control unit 60 instructs the main control unit 60 to execute the field weakening control for injecting the negative field component current “−Id” into the phase windings Lu, Lv, and Lw, the Id control unit 76 performs the control. Is added to the target value Idref obtained above. The subtracting unit 77 calculates a deviation ΔId between the target value Idref and the field component current Id. The subtraction unit 78 obtains a deviation ΔIq between the target value Iqref and the torque component current Iq. The data of the deviations ΔId and ΔIq are sent to the current controllers 81 and 82, respectively.
 電流制御部81は、偏差ΔIdを比例・積分制御(PI制御)演算することにより、モータ1Mに供給するべき駆動電圧の界磁成分(d軸成分)Vdを求める。この界磁成分電圧Vdは、ロータ軸上の界磁軸(d軸)座標に換算された電圧のことで、d軸電圧や無効電圧とも称される。電流制御部82は、偏差ΔIqを比例・積分制御(PI制御)演算することにより、モータ1Mに供給するべき駆動電圧のトルク成分(q軸成分)Vqを求める。このトルク成分電圧Vqは、ロータ軸上のトルク軸(q軸)座標に換算された電圧のことで、q軸電圧や有効電圧とも称される。これら界磁成分電圧Vdおよびトルク成分電圧VqのデータがPWM信号生成部83および主制御部60に送られる。 The 制 御 current control unit 81 calculates a field component (d-axis component) Vd of the drive voltage to be supplied to the motor 1M by performing a proportional / integral control (PI control) calculation of the deviation ΔId. The field component voltage Vd is a voltage converted into a field axis (d-axis) coordinate on the rotor axis, and is also called a d-axis voltage or an invalid voltage. The current control unit 82 calculates a torque component (q-axis component) Vq of the drive voltage to be supplied to the motor 1M by performing a proportional / integral control (PI control) operation on the deviation ΔIq. The torque component voltage Vq is a voltage converted into a torque axis (q axis) coordinate on the rotor shaft, and is also referred to as a q axis voltage or an effective voltage. The data of the field component voltage Vd and the torque component voltage Vq are sent to the PWM signal generator 83 and the main controller 60.
 PWM信号生成部83は、主制御部60が星形結線モードを設定した場合、インバータ30を単独でスイッチングするためのPWM信号(パルス幅変調信号)P1を、界磁成分電圧Vd、トルク成分電圧Vq、ロータ位置θestなどに基づき生成する。また、PWM信号生成部83は、主制御部60がオープン巻線モードを設定した場合、インバータ30,40を互いに協調してスイッチングするためのPWM信号P2を、界磁成分電圧Vd、トルク成分電圧Vq、ロータ位置θestなどに基づき生成する。生成されるPWM信号P1,P2に応じてインバータ30,40の各スイッチング素子がオン,オフ動作する。これらPWM信号P1,P2のオン,オフデューティDu1,Du2のデータが主制御部60に送られる。 When the main control unit 60 sets the star connection mode, the PWM signal generation unit 83 converts the PWM signal (pulse width modulation signal) P1 for independently switching the inverter 30 into the field component voltage Vd and the torque component voltage. It is generated based on Vq, rotor position θest, and the like. When the main control unit 60 sets the open winding mode, the PWM signal generation unit 83 outputs the PWM signal P2 for switching the inverters 30 and 40 in cooperation with each other to the field component voltage Vd and the torque component voltage. It is generated based on Vq, rotor position θest, and the like. The switching elements of the inverters 30 and 40 are turned on and off according to the generated PWM signals P1 and P2. Data of the on / off duties Du1 and Du2 of these PWM signals P1 and P2 are sent to the main control unit 60.
 主制御部60は、マイクロコンピュータおよびその周辺回路により構成され、コントローラ10からの指令、電圧検出部61の検出結果、インバータ制御部62の制御内容などに応じてリレー接点51a,52aの開閉およびインバータ30,40のスイッチングを制御するもので、第1制御部60a、第2制御部60b、第3制御部60cを含む。 The main control unit 60 is constituted by a microcomputer and its peripheral circuits. It controls switching of the switches 30 and 40, and includes a first control unit 60a, a second control unit 60b, and a third control unit 60c.
 第1制御部60aは、コントローラ10から通知される空調負荷に応じてモータ1Mの目標速度ωrefを設定し、設定した目標速度ωrefをインバータ制御部62に指令する。また、第1制御部60aは、インバータ制御部62で生成されるPWM信号P1,P2のオン,オフデューティDu1,Du2が制御上の上限値に達してモータ速度の上昇ができなくなった場合に、モータ速度のそれ以上の上昇を可能とするため、負の界磁成分電流“-Id”を相巻線Lu,Lv,Lwに加える弱め界磁制御をインバータ制御部62に指令する。 The first control unit 60a sets the target speed ωref of the motor 1M according to the air-conditioning load notified from the controller 10, and instructs the set target speed ωref to the inverter control unit 62. In addition, the first control unit 60a determines that when the on / off duties Du1 and Du2 of the PWM signals P1 and P2 generated by the inverter control unit 62 reach the control upper limit and the motor speed cannot be increased, In order to further increase the motor speed, the controller 62 instructs the inverter control unit 62 to perform field weakening control in which a negative field component current “−Id” is applied to the phase windings Lu, Lv, Lw.
 第2制御部60bは、リレー接点51a,52aの閉成により相巻線Lu,Lv,Lwを星形結線してインバータ30のみを単独でスイッチングする星形結線モード、およびリレー接点51a,52aの開放により相巻線Lu,Lv,Lwを非接続状態(オープン状態)としてインバータ30,40を互いに協調してスイッチングするオープン巻線モードを、インバータ制御部62の推定速度ωestおよび内部メモリに記憶している図4のモード選択条件の参照により選択的に設定する。 The second control unit 60b connects the phase windings Lu, Lv, and Lw in a star-shape by closing the relay contacts 51a and 52a, and switches only the inverter 30 alone. The second control unit 60b controls the relay contacts 51a and 52a. The open winding mode in which the phase windings Lu, Lv and Lw are disconnected (open state) by opening and the inverters 30 and 40 are switched in cooperation with each other is stored in the estimated speed ωest of the inverter control unit 62 and the internal memory. 4 by referring to the mode selection condition of FIG.
 モード選択条件は、推定速度ωestの上昇方向の変化に際し、推定速度ωestが閾値ωest2未満の低速度運転域に存する場合は効率の高い星形結線モードを指定し、推定速度ωestが閾値ωest2以上の高速度運転域に存する場合はオープン巻線モードを指定する。また、モード選択条件は、推定速度ωestの下降方向の変化に際し、推定速度ωestが閾値ωest1(<ωest2)超の高速度運転域に存する場合はオープン巻線モードを指定し、推定速度ωestが閾値ωest1以下の低速度運転域に存する場合は星形結線モードを指定する。 The mode selection condition specifies a highly efficient star connection mode when the estimated speed ωest is in a low speed operation range less than the threshold ωest2 when the estimated speed ωest changes in the rising direction, and the estimated speed ωest is equal to or larger than the threshold ωest2. If it is in the high speed operation range, specify the open winding mode. When the estimated speed ωest changes in the descending direction when the estimated speed ωest is in the high speed operation range exceeding the threshold ωest1 (<ωest2), the mode selection condition specifies the open winding mode, and the estimated speed ωest If the vehicle is in the low-speed operation range below ωest1, specify the star connection mode.
 第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティDu2またはそのオン,オフデューティDu2に対応する電圧利用率Xが設定値(例えば50%)以下の場合、第2制御部60bによるオープン巻線モードから前記星形結線モードへの切換えを直ちに許容(実行)する。また、第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティDu2またはそのオン,オフデューティDu2に対応する電圧利用率Xが上記設定値を超えている場合、上記目標速度ωrefを低下させることでそのオン,オフデューティDu2または電圧利用率Xを上記設定値以下に低下させ、この低下後、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えを許容(実行)する。さらに、第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えが完了した後、上記目標速度ωrefの低下を解除する。 When switching from the open winding mode to the star connection mode by the second control unit 60b, the third control unit 60c sets the on / off duty Du2 or the on / off duty Du2 of the switching of the open winding mode before the switching. When the corresponding voltage utilization factor X is equal to or less than a set value (for example, 50%), the switching from the open winding mode to the star connection mode by the second control unit 60b is immediately permitted (executed). Further, when the second control unit 60b switches from the open winding mode to the star connection mode by the second control unit 60b, the third control unit 60c switches ON / OFF duty Du2 of the switching of the open winding mode before switching or ON / OFF duty thereof. When the voltage utilization factor X corresponding to Du2 exceeds the set value, the target speed ωref is decreased to lower the on / off duty Du2 or the voltage utilization factor X to the set value or less. Then, the switching from the open winding mode to the star connection mode by the second control unit 60b is permitted (executed). Further, the third controller 60c cancels the decrease in the target speed ωref after the switching from the open winding mode to the star connection mode by the second controller 60b is completed.
 なお、第3制御部60cは、インバータ制御部62で検出されるロータ位置θestに基づいてモータ1Mの1回転を認識し、その1回転中のオン,オフデューティDu2および電圧利用率Xのうち、最大のオン,オフデューティDu2または最大の電圧利用率Xを上記設定値以下であるか否かの判定に用いる。 Note that the third control unit 60c recognizes one rotation of the motor 1M based on the rotor position θest detected by the inverter control unit 62, and among the on / off duty Du2 and the voltage utilization rate X during the one rotation. The maximum on / off duty Du2 or the maximum voltage utilization rate X is used to determine whether or not the value is equal to or less than the set value.
 電圧利用率Xは、オン,オフデューティDu2に応じてインバータ30,40から出力される電圧が同インバータ30,40の定格上の最大出力電圧に占める割合ことで、インバータ制御部62からデータとして供給される界磁成分電圧Vdおよびトルク成分電圧Vqを用いる下式(1)の演算により求めることができる。
Figure JPOXMLDOC01-appb-M000001
The voltage utilization rate X is supplied as data from the inverter control unit 62 by the ratio of the voltage output from the inverters 30 and 40 to the maximum rated output voltage of the inverters 30 and 40 in accordance with the on / off duty Du2. Equation (1) below using the field component voltage Vd and the torque component voltage Vq.
Figure JPOXMLDOC01-appb-M000001
 つぎに、モータコントローラ13が実行する制御を図5のフローチャートを参照しながら説明する。フローチャート中のステップS1,S2…については、単にS1,S2…と略称する。 Next, the control executed by the motor controller 13 will be described with reference to the flowchart of FIG. Steps S1, S2,... In the flowchart are simply referred to as S1, S2,.
 [星形結線モード]
 コントローラ10から運転開始指令を受けた場合(S1のYES)、モータコントローラ13は、リレー接点51a,52aを閉成して相巻線Lu,Lv,Lwを星形結線しかつインバータ30を単独でスイッチングする星形結線モードを設定する(S2)。
[Star connection mode]
When an operation start command is received from the controller 10 (YES in S1), the motor controller 13 closes the relay contacts 51a and 52a, connects the phase windings Lu, Lv and Lw in a star shape, and connects the inverter 30 alone. A star connection mode for switching is set (S2).
 この星形結線モード時に形成される電流経路の一部を図6に示す。まず、インバータ30における上流側のIGBT31がオンし、下流側のIGBT34,36が互いに同期しながら上記オン,オフデューティDu1のオン,オフを繰返す。これにより、破線矢印で示すように、直流電源25の正側端子からIGBT31を通って相巻線Luに電流が流れ、その相巻線Luを経た電流がリレー接点51a,52aを通って相巻線Lv,Lwに流れ、これら相巻線Lv,Lwを経た電流がIGBT34,36を通って直流電源25の負側端子に流れる。次に、インバータ30における上流側のIGBT33がオンし、下流側のIGBT32,36が互いに同期しながら上記オン,オフデューティDu1のオン,オフを繰返す。これにより、直流電源25の正側端子からIGBT33を通って相巻線Lvに電流が流れ、その相巻線Lvを経た電流がリレー接点51a,52aを通って相巻線Lu,Lwに流れ、これら相巻線Lu,Lwを経た電流がIGBT32,36を通って直流電源25の負側端子に流れる。次に、インバータ30における上流側のIGBT35がオンし、下流側のIGBT32,34が互いに同期しながら上記オン,オフデューティDu1のオン,オフを繰返す。これにより,直流電源25の正側端子からIGBT35を通って相巻線Lwに電流が流れ、その相巻線Lwを経た電流がリレー接点51a,52aを通って相巻線Lu,Lvに流れ、これら相巻線Lu,Lvを経た電流がIGBT32,34を通って直流電源25の負側端子に流れる。これら3つのパターンの電流経路が順に切換わることにより、モータ1Mのロータが回転する。なお、この場合、インバータ40は停止状態、すなわち、スイッチング動作していない状態、に保持される。この星形結線モードによるモータ1Mの起動時、モータコントローラ13は、推定速度ωestが閾値ωest2まで上昇したか否かを判定する(S4)。推定速度ωestが閾値ωest2よりも低い間(S4のNO,S5のNO)、モータコントローラ13は、コントローラ10からの運転停止指令がなければ(S12のNO)、上記S3に戻り、推定速度ωestが目標速度ωrefとなるようインバータ30のスイッチングのオン,オフデューティDu1を制御する(S3)。 FIG. 6 shows a part of the current path formed in the star connection mode. First, the upstream IGBT 31 in the inverter 30 is turned on, and the downstream IGBTs 34 and 36 repeat the on and off of the on / off duty Du1 while synchronizing with each other. As a result, as indicated by the dashed arrow, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lu through the IGBT 31, and the current passing through the phase winding Lu passes through the relay contacts 51a and 52a to form a phase winding. The current flows through the lines Lv and Lw, and the current passing through the phase windings Lv and Lw flows through the IGBTs 34 and 36 to the negative terminal of the DC power supply 25. Next, the IGBT 33 on the upstream side in the inverter 30 is turned on, and the IGBTs 32 and 36 on the downstream side repeat the on / off of the on / off duty Du1 while synchronizing with each other. As a result, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lv through the IGBT 33, and a current passing through the phase winding Lv flows to the phase windings Lu and Lw through the relay contacts 51a and 52a. The current passing through the phase windings Lu and Lw flows through the IGBTs 32 and 36 to the negative terminal of the DC power supply 25. Next, the IGBT 35 on the upstream side in the inverter 30 is turned on, and the IGBTs 32 and 34 on the downstream side repeat the on / off of the on / off duty Du1 while synchronizing with each other. As a result, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lw through the IGBT 35, and a current passing through the phase winding Lw flows to the phase windings Lu and Lv through the relay contacts 51a and 52a. The current passing through these phase windings Lu and Lv flows through the IGBTs 32 and 34 to the negative terminal of the DC power supply 25. By sequentially switching the current paths of these three patterns, the rotor of the motor 1M rotates. In this case, the inverter 40 is kept in a stopped state, that is, a state in which the switching operation is not performed. When the motor 1M is started in the star connection mode, the motor controller 13 determines whether the estimated speed ωest has increased to the threshold ωest2 (S4). While the estimated speed ωest is lower than the threshold ωest2 (NO in S4, NO in S5), if there is no operation stop command from the controller 10 (NO in S12), the motor controller 13 returns to S3, and the estimated speed ωest is reduced. The on / off duty Du1 of the switching of the inverter 30 is controlled so as to reach the target speed ωref (S3).
 [星形結線モードからオープン巻線モードへの切換え]
 星形結線モードにおいて、目標速度ωrefが上昇し、それに伴って推定速度ωestが上昇して閾値ωest2に達した場合(高回転数領域;S4のYES)、つまり星形結線モードからオープン巻線モードへの切換えが必要な状態に至ると、モータコントローラ13は、リレー接点51a,52aの開放により相巻線相巻線Lu,Lv,Lwの他端を非接続(開放:オープン)状態としてインバータ30,40を互いに協調してスイッチングするオープン巻線モードを設定する(S6)。そして、モータコントローラ13は、コントローラ10からの運転停止指令がなければ(S12のNO)、上記S3に移行し、推定速度ωestが目標速度ωrefとなるようインバータ30,40のスイッチングのオン,オフデューティDu2を制御する(S3)。
[Switching from star connection mode to open winding mode]
In the star connection mode, when the target speed ωref increases and the estimated speed ωest increases to reach the threshold ωest2 (high rotation speed region; YES in S4), that is, from the star connection mode to the open winding mode When switching to the required state is performed, the motor controller 13 sets the other ends of the phase windings Lu, Lv, Lw to the non-connected (open: open) state by opening the relay contacts 51a, 52a. , 40 are set in an open winding mode for switching in cooperation with each other (S6). If there is no operation stop command from the controller 10 (NO in S12), the motor controller 13 shifts to S3 and turns on and off duty of the switching of the inverters 30 and 40 so that the estimated speed ωest becomes the target speed ωref. Du2 is controlled (S3).
 このオープン巻線モード時の電流経路の一部を図2に破線で示している。まず、インバータ30における上流側のIGBT31がオンしてインバータ40における下流側のIGBT42が上記オン,オフデューティDu2のオン,オフを繰返すとともに、インバータ40における上流側のIGBT43,45が共にオンしてインバータ30における下流側のIGBT34,36が互いに同期しながら上記オン,オフデューティDu2のオン,オフを繰返す。これにより、破線矢印で示すように、直流電源25の正側端子からIGBT31を通って相巻線Luに電流が流れ、その相巻線Luを経た電流がIGBT42を通って直流電源25の負側端子に流れるとともに、直流電源25の正側端子からIGBT43,45を通って相巻線Lv,Lwに電流が流れ、その相巻線Lv,Lwを経た電流がIGBT34,36を通って直流電源25の負側端子に流れる。次に、インバータ30における上流側のIGBT33がオンしてインバータ40における下流側のIGBT44が上記オン,オフデューティDu2のオン,オフを繰返すとともに、インバータ40における上流側のIGBT41,45が共にオンしてインバータ30における下流側のIGBT32,36が互いに同期しながら上記オン,オフデューティDu2のオン,オフを繰返す。これにより、直流電源25の正側端子からIGBT33を通って相巻線Lvに電流が流れ、その相巻線Lvを経た電流がIGBT44を通って直流電源25の負側端子に流れるとともに、直流電源25の正側端子からIGBT41,45を通って相巻線Lu,Lwに電流が流れ、その相巻線Lu,Lwを経た電流がIGBT32,36を通って直流電源25の負側端子に流れる。次に、インバータ30における上流側のIGBT35がオンしてインバータ40における下流側のIGBT46が上記オン,オフデューティDu2のオン,オフを繰返すとともに、インバータ40における上流側のIGBT41,43が共にオンしてインバータ30における下流側のIGBT32,34が互いに同期しながら上記オン,オフデューティDu2のオン,オフを繰返す。これにより、直流電源25の正側端子からIGBT35を通って相巻線Lwに電流が流れ、その相巻線Lwを経た電流がIGBT46を通って直流電源25の負側端子に流れるとともに、直流電源25の正側端子からIGBT41,43を通って相巻線Lu,Lvに電流が流れ、その相巻線Lu,Lvを経た電流がIGBT32,34を通って直流電源25の負側端子に流れる。これら3パターンの電流経路が順に切換わることにより、モータ1Mのロータが回転する。 (2) A part of the current path in the open winding mode is shown by a broken line in FIG. First, the upstream IGBT 31 of the inverter 30 is turned on, the downstream IGBT 42 of the inverter 40 repeats the on / off of the on / off duty Du2, and the upstream IGBTs 43 and 45 of the inverter 40 are both turned on. The on / off duty Du2 is repeatedly turned on and off while the downstream IGBTs 34 and 36 in 30 are synchronized with each other. As a result, as indicated by a broken line arrow, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lu through the IGBT 31, and the current passing through the phase winding Lu passes through the IGBT 42 to the negative side of the DC power supply 25. The current flows from the positive terminal of the DC power supply 25 to the phase windings Lv and Lw through the IGBTs 43 and 45, and the current passing through the phase windings Lv and Lw passes through the IGBTs 34 and 36 and the DC power supply 25 Flows to the negative terminal of Next, the upstream IGBT 33 of the inverter 30 is turned on, the downstream IGBT 44 of the inverter 40 repeats the on / off of the on / off duty Du2, and the upstream IGBTs 41 and 45 of the inverter 40 are both turned on. The IGBTs 32 and 36 on the downstream side of the inverter 30 repeat the on / off of the on / off duty Du2 while synchronizing with each other. As a result, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lv through the IGBT 33, the current passing through the phase winding Lv flows to the negative terminal of the DC power supply 25 through the IGBT 44, and the DC power supply Current flows from the positive terminal of the DC power supply 25 to the phase windings Lu and Lw through the IGBTs 41 and 45, and the current passing through the phase windings Lu and Lw flows to the negative terminal of the DC power supply 25 through the IGBTs 32 and 36. Next, the upstream IGBT 35 of the inverter 30 is turned on, the downstream IGBT 46 of the inverter 40 repeats the on / off of the on / off duty Du2, and the upstream IGBTs 41 and 43 of the inverter 40 are both turned on. The IGBTs 32 and 34 on the downstream side of the inverter 30 repeat the on / off of the on / off duty Du2 while synchronizing with each other. As a result, a current flows from the positive terminal of the DC power supply 25 to the phase winding Lw through the IGBT 35, the current passing through the phase winding Lw flows to the negative terminal of the DC power supply 25 through the IGBT 46, and the DC power supply A current flows from the positive terminal of the DC power supply 25 to the phase windings Lu and Lv through the IGBTs 41 and 43, and a current passing through the phase windings Lu and Lv flows to the negative terminal of the DC power supply 25 through the IGBTs 32 and 34. The rotor of the motor 1M rotates by sequentially switching these three patterns of current paths.
 このオープン巻線モードの設定により、星形結線モード時のほぼ1.7倍の高レベルの電圧が相巻線Lu,Lv,Lwに加わり、モータ1Mが高速度回転させることが可能となる。 (4) By setting the open winding mode, a high-level voltage approximately 1.7 times that in the star connection mode is applied to the phase windings Lu, Lv, and Lw, and the motor 1M can rotate at high speed.
 コントローラ10から運転停止指令を受けた場合(S12のYES)、モータコントローラ13は、インバータ30,40のスイッチングを停止する(S13)。 When the operation stop command is received from the controller 10 (YES in S12), the motor controller 13 stops the switching of the inverters 30 and 40 (S13).
 [オープン巻線モードから星形結線モードへの切換え]
 オープン巻線モード中に、目標速度ωrefの低下に伴い推定速度ωestが下降して閾値ωest1に達した場合(低回転数領域;S4のNO,S5のYES)、つまりオープン巻線モードから星形結線モードへの切換えが必要な場合、モータコントローラ13は、オン,オフデューティDu2が設定値である50%以下であるか否かを監視する(S7)。
[Switching from open winding mode to star connection mode]
During the open winding mode, when the estimated speed ωest decreases with the decrease of the target speed ωref and reaches the threshold ωest1 (low rotation speed region; NO in S4, YES in S5), that is, from the open winding mode to the star shape When switching to the connection mode is necessary, the motor controller 13 monitors whether the on / off duty Du2 is equal to or less than the set value of 50% (S7).
 オープン巻線モードのオン,オフデューティDu2が50%以下の例えば40%である場合、切換え後の星形結線モードにおいてオープン巻線モード時と同レベルの電圧を相巻線Lu,Lv,Lwに印加するためには、切換え後の星形結線モードにおいて80%(=40%×2)のオン,オフデューティDu1を設定する必要がある。80%のオン,オフデューティDu1は、星形結線モードにおいて設定が可能である。 When the on / off duty Du2 in the open winding mode is 50% or less, for example, 40%, the same level voltage as in the open winding mode is applied to the phase windings Lu, Lv, Lw in the switched star connection mode. In order to apply the voltage, it is necessary to set an on / off duty Du1 of 80% (= 40% × 2) in the star connection mode after switching. The on / off duty Du1 of 80% can be set in the star connection mode.
 そこで、モータコントローラ13は、オープン巻線モードのオン,オフデューティDu2が50%以下の場合(S7のYES)、リレー接点51a,52aの閉成により相巻線Lu,Lv,Lwを星形結線してインバータ30を単独でスイッチングする星形結線モードを直ちに設定する(S9)。こうして、オープン巻線モードから星形結線モードへの切換えが完了した後、モータコントローラ13は、後述のS8による目標速度ωrefの低下処理があるかどうかを確認する(S10)。この時点では、目標速度ωrefの低下処理がないので(S10のNO)、モータコントローラ13は、次のS11の解除処理を実行することなく、コントローラ10からの運転停止指令を確認する(S12)。 Then, when the on / off duty Du2 in the open winding mode is 50% or less (YES in S7), the motor controller 13 connects the phase windings Lu, Lv, Lw by star connection by closing the relay contacts 51a, 52a. Then, the star connection mode in which the inverter 30 is independently switched is immediately set (S9). After the switching from the open winding mode to the star connection mode is completed, the motor controller 13 checks whether or not there is a process of lowering the target speed ωref in S8 described later (S10). At this time, since there is no process of lowering the target speed ωref (NO in S10), the motor controller 13 confirms the operation stop command from the controller 10 without executing the next release process of S11 (S12).
 運転停止指令がない場合(S12のNO)、モータコントローラ13は、上記S3に移行し、推定速度ωestが目標速度ωrefとなるようインバータ30のスイッチングのオン,オフデューティDu1を制御する(S3)。 If there is no operation stop command (NO in S12), the motor controller 13 proceeds to S3 and controls the on / off duty Du1 of the switching of the inverter 30 so that the estimated speed ωest becomes the target speed ωref (S3).
 一方、オープン巻線モードのオン,オフデューティDu2が50%を超える例えば55%である場合、切換え後の星形結線モードにおいてオープン巻線モード時と同レベルの電圧を相巻線Lu,Lv,Lwに印加するためには、切換え後の星形結線モードにおいて110%(=55%×2)のオン,オフデューティDu1を設定する必要がある。当然ながら、100%を超えるオン,オフデューティDu1は、設定できない。 On the other hand, when the on / off duty Du2 of the open winding mode is more than 50%, for example, 55%, the same level voltage as in the open winding mode in the star connection mode after switching is applied to the phase windings Lu, Lv,. In order to apply the voltage to Lw, it is necessary to set an on / off duty Du1 of 110% (= 55% × 2) in the star connection mode after switching. Of course, the on / off duty Du1 exceeding 100% cannot be set.
 そこで、モータコントローラ13は、オープン巻線モード時のオン,オフデューティDu2が上記55%の場合のように50%を超える場合(S7のNO)、目標速度ωrefを所定値だけ低下させる(S8)。この目標速度ωrefの低下により、オープン巻線モードのオン,オフデューティDu2が減少方向に変化する。続いて、モータコントローラ13は、上記S7に戻り、オン,オフデューティDu2が50%以下となったか否かを監視する(S7)。 Therefore, when the on / off duty Du2 in the open winding mode exceeds 50% as in the case of the above 55% (NO in S7), the motor controller 13 reduces the target speed ωref by a predetermined value (S8). . Due to the decrease in the target speed ωref, the on / off duty Du2 in the open winding mode changes in a decreasing direction. Subsequently, the motor controller 13 returns to S7 and monitors whether the on / off duty Du2 has become 50% or less (S7).
 目標速度ωrefを低下させたにもかかわらず、オン,オフデューティDu2がまだ50%を超えている場合(S7のNO)、モータコントローラ13は、目標速度ωrefをさらに所定値だけ低下させる(S8)。そして、モータコントローラ13は、上記S7に戻り、オン,オフデューティDu2が50%以下であるか否かを再び監視する(S7)。モータコントローラ13は、オン,オフデューティDu2が50%以下に低下するまで、上記S7,S8の処理を繰り返す。なお、上記S8による目標速度ωrefの低下は一時的な処置であり、本来の目標速度ωrefは、外部からの指令に基づくもので、そのまま存在している。 If the on / off duty Du2 still exceeds 50% despite the reduction of the target speed ωref (NO in S7), the motor controller 13 further reduces the target speed ωref by a predetermined value (S8). . Then, the motor controller 13 returns to S7, and monitors again whether the on / off duty Du2 is 50% or less (S7). The motor controller 13 repeats the processing of S7 and S8 until the on / off duty Du2 decreases to 50% or less. Note that the decrease in the target speed ωref in S8 is a temporary measure, and the original target speed ωref is based on a command from the outside and exists as it is.
 オープン巻線モードのオン,オフデューティDu2が50%以下の例えば48%まで低下した場合、切換え後の星形結線モードにおいてオープン巻線モード時と同レベルの電圧を相巻線Lu,Lv,Lwに印加するためには、切換え後の星形結線モードにおいて96%(=48%×2)のオン,オフデューティDu1を設定する必要がある。96%のオン,オフデューティDu1は、星形結線モードにおいて設定が可能である。 When the on / off duty Du2 of the open winding mode is reduced to 50% or less, for example, 48%, the same level voltage as in the open winding mode is applied to the phase windings Lu, Lv, Lw in the switched star connection mode. , It is necessary to set an on / off duty Du1 of 96% (= 48% × 2) in the star connection mode after switching. The 96% on / off duty Du1 can be set in the star connection mode.
 そこで、モータコントローラ13は、オープン巻線モード時のオン,オフデューティDu2が50%以下となる上記48%以下に低下した場合(S7のYES)、リレー接点51a,52aを閉成して96%のオン,オフデューティDu1でインバータ30を単独でスイッチングさせて星形結線モードを設定する(S9)。こうして、オープン巻線モードから星形結線モードへの切換えが完了した後、モータコントローラ13は、上記S8での目標速度ωrefの低下処理があるかどうかを確認する(S10)。この時点では、目標速度ωrefの低下処理があるので(S10のYES)、モータコントローラ13は、目標速度ωrefの低下を解除する(S11)。これにより、目標速度ωrefは外部からの指令に基づく本来の目標速度ωrefに復帰する。この解除後、モータコントローラ13は、コントローラ10からの運転停止指令を確認する(S12)。 Therefore, when the on / off duty Du2 in the open winding mode is reduced to 48% or less, which is 50% or less (YES in S7), the motor controller 13 closes the relay contacts 51a and 52a to 96%. The inverter 30 is independently switched with the on / off duty Du1 of the power supply to set the star connection mode (S9). After the switching from the open winding mode to the star connection mode is completed in this way, the motor controller 13 checks whether there is a process of decreasing the target speed ωref in S8 (S10). At this point, since there is a process of decreasing the target speed ωref (YES in S10), the motor controller 13 cancels the decrease in the target speed ωref (S11). As a result, the target speed ωref returns to the original target speed ωref based on an external command. After this release, the motor controller 13 confirms the operation stop command from the controller 10 (S12).
 コントローラ10からの運転停止指令がない場合(S12のNO)、モータコントローラ13は、上記S3に移行し、推定速度ωestが本来の目標速度ωrefとなるようインバータ30のスイッチングのオン,オフデューティDu1を制御し(S3)、目標速度ωrefの低下処理が以前なされていた場合には、元の速度に戻るよう増速される。コントローラ10からの運転停止指令を受けた場合(S12のYES)、モータコントローラ13は、インバータ30のスイッチングを停止する(S13)。 If there is no operation stop command from the controller 10 (NO in S12), the motor controller 13 proceeds to S3, and changes the on / off duty Du1 of the switching of the inverter 30 so that the estimated speed ωest becomes the original target speed ωref. Control (S3), if the target speed ωref has been reduced before, the speed is increased to return to the original speed. When receiving the operation stop command from the controller 10 (YES in S12), the motor controller 13 stops the switching of the inverter 30 (S13).
 以上のように、オープン巻線モードから星形結線モードへの切換えに際し、オープン巻線モードのオン,オフデューティDu2(または電圧利用率X)が設定値を超えていれば、そのオン,オフデューティDu2(または電圧利用率X)を設定値以下に低下させ、この低下後にオープン巻線モードから星形結線モードへの切換えを実行するので、オープン巻線モードのオン,オフデューティがどのような値であっても、オープン巻線モードから星形結線モードへ確実に移行することができる。 As described above, when switching from the open winding mode to the star connection mode, if the on / off duty Du2 (or voltage utilization factor X) of the open winding mode exceeds the set value, the on / off duty Du2 (or voltage utilization factor X) is reduced to a set value or less, and after this decrease, switching from the open winding mode to the star connection mode is performed. However, it is possible to reliably shift from the open winding mode to the star connection mode.
 なお、モータコントローラ13は、オープン巻線モードから星形結線モードへの切換えおよび星形結線モードからオープン巻線モードへの切換えに際し、インバータ30,40を協調して同期するように双方のスイッチングを制御する。これにより、モータ1Mを停止させることなくオープン巻線モードと星形結線モードの切換えが完了する。 When switching from the open winding mode to the star connection mode and when switching from the star connection mode to the open winding mode, the motor controller 13 switches both of the inverters 30 and 40 so as to cooperate and synchronize. Control. Thus, the switching between the open winding mode and the star connection mode is completed without stopping the motor 1M.
 また、モータコントローラ13は、オープン巻線モードと星形結線モードの切換えに際し、リレー接点51a,52aに電流が流れないようにインバータ30,40のスイッチングを適切に制御しながら、リレー接点51a,52aを開閉する。リレー接点51a,52aに電流が流れない状態でリレー接点51a,52aが開閉するので、リレー接点51a,52aにおける火花の発生等を防ぐことができ、ひいてはリレー接点51a,52aの溶着等の故障を回避できる。 Further, when switching between the open winding mode and the star connection mode, the motor controller 13 appropriately controls the switching of the inverters 30 and 40 so that no current flows through the relay contacts 51a and 52a, and switches the relay contacts 51a and 52a. Open and close. Since the relay contacts 51a and 52a open and close in a state where no current flows through the relay contacts 51a and 52a, it is possible to prevent the occurrence of sparks and the like at the relay contacts 51a and 52a, and to prevent a failure such as welding of the relay contacts 51a and 52a. Can be avoided.
 オン,オフデューティDu2(または電圧利用率X)の低下はモータ速度の減少につながるが、オン,オフデューティDu2(または電圧利用率X)の低下量は設定値以下に収めるまでの少量であり、しかもオン,オフデューティDu2(または電圧利用率X)の低下はモード切換時の一時的なものなので、モータ速度の減少は大きさ的にも時間的にもほぼ無視することができる。 A decrease in the on / off duty Du2 (or the voltage utilization rate X) leads to a decrease in the motor speed, but a decrease in the on / off duty Du2 (or the voltage utilization rate X) is a small amount until it falls below the set value. Moreover, since the decrease in the on / off duty Du2 (or the voltage utilization factor X) is temporary at the time of mode switching, the decrease in the motor speed can be almost neglected both in terms of magnitude and time.
 [2]第2実施形態について説明する。 [2] A second embodiment will be described.
 第2実施形態は、オープン巻線モードから星形結線モードへの切換えの際の制御・動作が第1実施形態と異なっている。その他は第1実施形態と同じである。 制 御 The second embodiment is different from the first embodiment in control and operation when switching from the open winding mode to the star connection mode. Others are the same as the first embodiment.
主制御部60の第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティDu2(または電圧利用率X)が設定値(例えば50%)以下の場合、第2制御部60bによるオープン巻線モードから前記星形結線モードへの切換えを直ちに許容(実行)する。また、第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティDu2が上記設定値を超えている場合、負の界磁成分電流を前記各相巻線に加える弱め界磁制御を実行することによりそのオン,オフデューティDu2を上記設定値以下に低下させ、その後、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えを許容(実行)する。さらに、第3制御部60cは、第2制御部60bによるオープン巻線モードから星形結線モードへの切換えが完了した後、上記目標速度ωrefの低下を解除する。 When switching from the open winding mode to the star connection mode by the second control unit 60b, the third control unit 60c of the main control unit 60 controls the on / off duty Du2 (or the voltage) of the switching in the open winding mode before the switching. When the utilization rate X) is equal to or less than the set value (for example, 50%), the switching from the open winding mode to the star connection mode by the second control unit 60b is immediately permitted (executed). Further, when switching from the open winding mode to the star connection mode by the second control unit 60b, the third control unit 60c causes the on / off duty Du2 of the switching in the open winding mode before the switching to exceed the set value. In this case, the on / off duty Du2 is reduced to the set value or less by executing the field weakening control in which a negative field component current is applied to the respective phase windings, and thereafter, the open winding by the second control unit 60b is performed. The switch from the line mode to the star connection mode is permitted (executed). Further, the third controller 60c cancels the decrease in the target speed ωref after the switching from the open winding mode to the star connection mode by the second controller 60b is completed.
 通常、弱め界磁制御は、モータが高速回転し、オン,オフデューティが100%の状態で、巻線の誘起電圧が上昇し、それ以上回転数が上げられなくなった場合に、さらに回転数を上昇させるために用いられる制御であるが、本実施形態においては、モータの回転数を一定に保ちながら、オン,オフデューティDu2を低下させるために用いている。 Normally, the field-weakening control further increases the rotation speed when the motor rotates at a high speed and the on / off duty is 100%, and the induced voltage of the winding increases and the rotation speed cannot be further increased. In the present embodiment, the control is used to reduce the on / off duty Du2 while keeping the rotation speed of the motor constant.
 モータコントローラ13は、図7のフローチャートに示すように、図5のフローチャートのS8,S10,S11の処理に代えてS8´,S10´,S11´の処理を実行する。 As shown in the flowchart of FIG. 7, the motor controller 13 executes the processes of S8 ', S10', and S11 'in place of the processes of S8, S10, and S11 in the flowchart of FIG.
 すなわち、モータコントローラ13は、オープン巻線モードから星形結線モードへの切換えが必要な状況において、オープン巻線モードのオン,オフデューティDu2が設定値である50%を超えている場合(S7のNO)、所定の大きさの負の界磁成分電流“-ΔId”を相巻線Lu,Lv,Lwに注入する弱め界磁制御を行う(S8´)。この弱め界磁制御によりオープン巻線モードのオン,オフデューティDu2が低下する。 That is, the motor controller 13 determines that the on / off duty Du2 of the open winding mode exceeds the set value of 50% in a situation where switching from the open winding mode to the star connection mode is required (S7). NO), field weakening control of injecting a negative field component current "-ΔId" of a predetermined magnitude into the phase windings Lu, Lv, Lw is performed (S8 '). Due to this field weakening control, the on / off duty Du2 of the open winding mode is reduced.
 この負の界磁成分電流“-ΔId”の注入の後、モータコントローラ13は、上記S7に戻り、オン,オフデューティDu2が50%以下に到達したか否かを再び監視する(S7)。 After the injection of the negative field component current “−ΔId”, the motor controller 13 returns to S7 and monitors again whether or not the on / off duty Du2 has reached 50% or less (S7).
 負の界磁成分電流“-ΔId”を注入したにもかかわらず、オン,オフデューティDu2が50%をまだ超えている場合(S7のNO)、モータコントローラ13は、さらに所定の大きさの負の界磁成分電流“-ΔId”を相巻線Lu,Lv,Lwにさらに注入する(S8´)。これにより負の界磁成分電流は、2倍の“-2・ΔId”となる。 If the on / off duty Du2 still exceeds 50% despite the injection of the negative field component current “−ΔId” (NO in S7), the motor controller 13 further reduces the predetermined magnitude of negative current. Is further injected into the phase windings Lu, Lv, Lw (S8 '). As a result, the negative field component current becomes twice “−2 · ΔId”.
この結果、同じ速度でモータ1Mを回転させている場合、オン,オフデューティDu2は、さらに低下する。そして、モータコントローラ13は、上記S7に戻り、オン,オフデューティDu2が50%以下であるか否かを再び監視する(S7)。オン,オフデューティDu2が50%以下に低下するまで、上記S7,S8´の処理が繰り返されて、負の界磁成分電流が増加される。 As a result, when the motor 1M is rotating at the same speed, the on / off duty Du2 further decreases. Then, the motor controller 13 returns to S7, and monitors again whether the on / off duty Du2 is 50% or less (S7). Until the on / off duty Du2 decreases to 50% or less, the processes of S7 and S8 'are repeated, and the negative field component current is increased.
 オン,オフデューティDu2が50%以下に低下した場合(S7のYES)、モータコントローラ13は、リレー接点51a,52aを閉成し、それまでのオープン巻線モードに換えて星形結線モードを設定する(S9)。そして、モータコントローラ13は、上記S8´の弱め界磁制御があるかどうかを確認する(S10´)。この時点では、弱め界磁制御が入っているので(S10´のYES)、モータコントローラ13は、以後、星形結線モードでの弱め界磁制御に移行してその弱め界磁量(負の界磁成分電流“-ΔId”)を調整し(S11´)、これによりモータ1Mの速度を適切に制御する。この後、モータコントローラ13は、コントローラ10からの運転停止指令を確認する(S12)。 When the on / off duty Du2 has decreased to 50% or less (YES in S7), the motor controller 13 closes the relay contacts 51a and 52a and sets the star connection mode in place of the open winding mode up to that time. (S9). Then, the motor controller 13 checks whether or not there is the field weakening control in S8 '(S10'). At this point, since the field weakening control is in operation (YES in S10 '), the motor controller 13 thereafter shifts to the field weakening control in the star connection mode, and the field weakening amount (negative field component current " −ΔId ″) (S11 ′), thereby appropriately controlling the speed of the motor 1M. Thereafter, the motor controller 13 confirms the operation stop command from the controller 10 (S12).
 以上のように、オープン巻線モードから星形結線モードへの切換えに際し、オープン巻線モードのオン,オフデューティDu2(または電圧利用率X)が設定値を超えていれば、その負の界磁成分電流“-Id”を注入する弱め界磁制御を実行することでオン,オフデューティDu2(または電圧利用率X)を低下させ、オン,オフデューティDu2が50%以下に低下後にオープン巻線モードから星形結線モードへの切換えを実行するので、第1実施形態のようにモータ速度を変更(低下)させることなく、オープン巻線モードから星形結線モードへ確実に移行することができる。この結果、冷凍サイクルの安定性が高まる。 As described above, when switching from the open winding mode to the star connection mode, if the on / off duty Du2 (or the voltage utilization factor X) of the open winding mode exceeds the set value, the negative field is set. The on / off duty Du2 (or the voltage utilization factor X) is reduced by executing the field weakening control injecting the component current “−Id”, and after the on / off duty Du2 has dropped to 50% or less, the star is switched from the open winding mode. Since the switching to the connection mode is executed, it is possible to reliably shift from the open winding mode to the star connection mode without changing (decreasing) the motor speed as in the first embodiment. As a result, the stability of the refrigeration cycle increases.
 他の構成および制御は第1実施形態と同じである。 Other configurations and controls are the same as those of the first embodiment.
 [変形例]
 上記各実施形態では、オン,オフデューティDu2(または最大の電圧利用率X)に対する設定値が50%である場合を例に説明したが、その設定値については50%以下の範囲で適宜に選定可能である。
[Modification]
In the above embodiments, the case where the set value for the on / off duty Du2 (or the maximum voltage utilization rate X) is 50% has been described as an example, but the set value is appropriately selected within a range of 50% or less. It is possible.
 また、上記各実施形態では、モード選択条件として、推定速度ωestに応じてオープン巻線モードから星形結線モードへの切換えを行うようにしたが、目標速度ωrefに応じてオープン巻線モードから星形結線モードへの切換えを行うようにしてもよい。このオープン巻線モードから星形結線モードへの切換え点となる閾値については、冷凍サイクルの状況やモータ電流値に応じて、可変設定してもよい。加えて、推定速度ωestや目標速度ωrefなどのモータ速度以外のデータを基準にしてオープン巻線モードから星形結線モードへの切換えを行うようにしてもよい。上記第1実施形態では、目標速度ωrefの低下操作によってオン,オフデューティDu2(または電圧利用率X)を低下させる構成としたが、インバータ制御部62で生成されるPWM信号P2のオン,オフデューティDu2(または電圧利用率X)を直接的に低下操作する構成としてもよい。 In each of the above embodiments, as the mode selection condition, switching from the open winding mode to the star connection mode is performed according to the estimated speed ωest, but the mode is switched from the open winding mode to the star connection mode according to the target speed ωref. Switching to the connection mode may be performed. The threshold value at which the switching from the open winding mode to the star connection mode may be variably set according to the state of the refrigeration cycle and the motor current value. In addition, switching from the open winding mode to the star connection mode may be performed based on data other than the motor speed, such as the estimated speed ωest and the target speed ωref. In the first embodiment, the on / off duty Du2 (or the voltage utilization rate X) is reduced by the operation of decreasing the target speed ωref. However, the on / off duty of the PWM signal P2 generated by the inverter control unit 62 is reduced. Du2 (or voltage utilization factor X) may be configured to directly decrease the operation.
 上記各実施形態では、開閉器がリレー接点51a,52aである場合を例に説明したが、半導体スイッチを開閉器として用いることもできる。 In the above embodiments, the case where the switches are the relay contacts 51a and 52a has been described as an example. However, a semiconductor switch can be used as the switches.
 上記各実施形態では、圧縮機の駆動用モータとして用いるオープン巻線モータを例に説明したが、他の用途に用いるオープン巻線モータについても同様に実施できる。 In the above embodiments, the open winding motor used as the motor for driving the compressor has been described as an example. However, the present invention can be similarly applied to an open winding motor used for other purposes.
 上記各実施形態では、6つのスイッチング素子からなる3相インバータ装置をインバータ30として用い、6つのスイッチング素子からなる3相インバータ装置をインバータ40として用いる場合を例に説明したが、4つのスイッチング素子からなる単相インバータ装置を3個用いてインバータ30とインバータ40を構成してもよい。 In each of the above embodiments, the case where the three-phase inverter device including six switching elements is used as the inverter 30 and the three-phase inverter device including six switching elements is used as the inverter 40 has been described as an example. Inverter 30 and Inverter 40 may be configured using three single-phase inverter devices.
 また、オープン巻線モードから星形結線モードへの切換えに際したオン,オフデューティDu2(または電圧利用率X)の低下を、第1実施形態のようにモータ1Mの回転数を低下させると同時に第2実施形態における弱め界磁制御を加えることで実行してもよい。 Further, the decrease of the on / off duty Du2 (or the voltage utilization rate X) at the time of switching from the open winding mode to the star connection mode can be reduced simultaneously with decreasing the rotation speed of the motor 1M as in the first embodiment. It may be executed by adding the field weakening control in the second embodiment.
 その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な各実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Otherwise, the above-described embodiments and modified examples have been presented as examples, and are not intended to limit the scope of the invention. Each of the new embodiments and modifications can be implemented in other various forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.
 1…圧縮機、1M…オープン巻線モータ、Lu,Lv,Lw…相巻線、2…四方弁、3…室外熱交換器、4…電動膨張弁、5…室内熱交換器、10…コントローラ、11…モータ駆動装置、12…駆動回路、13…モータコントローラ、20…3相交流電源、25…直流電源、30…インバータ(第1インバータ)、40…インバータ(第2インバータ)、51,52…リレー、51a,52a…リレー接点、60…主制御部、62…インバータ制御部、63…リレー駆動部 DESCRIPTION OF SYMBOLS 1 ... Compressor, 1M ... Open winding motor, Lu, Lv, Lw ... Phase winding, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Electric expansion valve, 5 ... Indoor heat exchanger, 10 ... Controller , 11: motor drive device, 12: drive circuit, 13: motor controller, 20: three-phase AC power supply, 25: DC power supply, 30: inverter (first inverter), 40: inverter (second inverter), 51, 52 ... Relay, 51a, 52a ... Relay contact, 60 ... Main control unit, 62 ... Inverter control unit, 63 ... Relay drive unit

Claims (7)

  1.  互いに非接続状態の複数の相巻線を有するモータのモータ駆動装置であって、
     複数のスイッチング素子を含み、これらスイッチング素子により前記モータの各相巻線の一端への通電を制御する第1インバータと、
     複数のスイッチング素子を含み、これらスイッチング素子により前記モータの各相巻線の他端への通電を制御する第2インバータと、
     前記各相巻線の他端の相互間に接続された開閉器と、
     前記開閉器の閉成により前記各相巻線を星形結線して前記第1インバータをスイッチングする星形結線モード、および前記開閉器の開放により前記各相巻線を非接続状態として前記第1インバータおよび前記第2インバータをスイッチングするオープン巻線モードを有するモータコントローラと、
     を備え、
     前記モータコントローラは、
     前記オープン巻線モードから前記星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティまたはそのオン,オフデューティに対応する電圧利用率が設定値を超えている場合、そのオン,オフデューティまたは電圧利用率を前記設定値以下に低下させし、この低下後、前記オープン巻線モードから前記星形結線モードへの切換えを実行する
     ことを特徴とするモータ駆動装置。
    A motor drive device for a motor having a plurality of phase windings that are not connected to each other,
    A first inverter including a plurality of switching elements, and controlling the energization of one end of each phase winding of the motor by the switching elements;
    A second inverter including a plurality of switching elements, and controlling the energization of the other end of each phase winding of the motor by the switching elements;
    A switch connected between the other ends of the phase windings,
    The first connection is switched to the star connection mode by switching the first inverter by star-connecting the phase windings by closing the switch, and the first phase winding is disconnected by opening the switch. A motor controller having an open winding mode for switching an inverter and the second inverter;
    With
    The motor controller comprises:
    When switching from the open winding mode to the star connection mode, the ON / OFF duty of the switching of the open winding mode before switching or the voltage utilization rate corresponding to the ON / OFF duty exceeds a set value. A motor drive device that reduces the on / off duty or the voltage utilization rate to a value equal to or less than the set value, and after the decrease, switches from the open winding mode to the star connection mode.
  2.  前記モータコントローラは、
     前記オープン巻線モードから前記星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティまたはそのオン,オフデューティに対応する電圧利用率が前記設定値以下の場合、前記オープン巻線モードから前記星形結線モードへの切換えを直ちに実行する
     ことを特徴とする請求項1に記載のモータ駆動装置。
    The motor controller comprises:
    When switching from the open winding mode to the star connection mode, when the on / off duty of switching of the open winding mode before switching or the voltage utilization rate corresponding to the on / off duty is equal to or less than the set value, The motor drive device according to claim 1, wherein switching from the open winding mode to the star connection mode is performed immediately.
  3.  前記モータコントローラは、
     前記開閉器の閉成により前記各相巻線を星形結線して前記第1インバータをスイッチングしこのスイッチングのオン,オフデューティを前記モータの速度が目標速度となるよう制御する星形結線モード、および前記開閉器の開放により前記各相巻線を非接続状態として前記第1インバータおよび前記第2インバータをスイッチングしこのスイッチングのオン,オフデューティを前記モータの速度が前記目標速度となるように制御するオープン巻線モードを、選択的に設定する
     ことを特徴とする請求項1に記載のモータ駆動装置。
    The motor controller comprises:
    A star connection mode in which the phase windings are star-connected by closing the switch, the first inverter is switched, and the on / off duty of the switching is controlled so that the speed of the motor becomes a target speed; And opening the switch to disconnect the phase windings to switch the first inverter and the second inverter, and control the on / off duty of the switching so that the speed of the motor becomes the target speed. The motor driving device according to claim 1, wherein the open winding mode to be set is selectively set.
  4.  前記モータコントローラは、
     前記オープン巻線モードから前記星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティまたはそのオン,オフデューティに対応する電圧利用率が前記設定値を超えている場合、前記モータの速度を低下させることによりそのオン,オフデューティまたは電圧利用率を前記設定値以下に低下させ、その後、前記オープン巻線モードから前記星形結線モードへの切換えを実行する
     ことを特徴とする請求項1に記載のモータ駆動装置。
    The motor controller comprises:
    When switching from the open winding mode to the star connection mode, the ON / OFF duty of switching in the open winding mode before switching or the voltage utilization rate corresponding to the ON / OFF duty exceeds the set value. In this case, the on / off duty or the voltage utilization rate of the motor is reduced below the set value by reducing the speed of the motor, and thereafter, the switching from the open winding mode to the star connection mode is performed. The motor drive device according to claim 1, wherein
  5.  前記コントローラは、
     前記オープン巻線モードから前記星形結線モードへの切換えに際し、切換え前のオープン巻線モードのスイッチングのオン,オフデューティまたはそのオン,オフデューティに対応する電圧利用率が前記設定値を超えている場合、負の界磁成分電流を前記各相巻線に加える弱め界磁制御を実行することによりそのオン,オフデューティまたは電圧利用率を前記設定値以下に低下させ、その後、前記オープン巻線モードから前記星形結線モードへの切換えを実行する
     ことを特徴とする請求項1に記載のモータ駆動装置。
    The controller is
    When switching from the open winding mode to the star connection mode, the switching on / off duty of the open winding mode before switching or the voltage utilization rate corresponding to the on / off duty exceeds the set value. In the case, the on / off duty or the voltage utilization rate is reduced to the set value or less by executing the field weakening control in which a negative field component current is applied to each of the phase windings. The motor drive device according to claim 1, wherein switching to the star connection mode is performed.
  6.  前記コントローラは、
     前記モータの低速度運転域で前記星形結線モードを設定し、前記モータの高速度運転域で前記オープン巻線モードを設定する
     ことを特徴とする請求項1から請求項5のいずれか一項に記載のモータ駆動装置。
    The controller is
    The star winding mode is set in a low-speed operation range of the motor, and the open winding mode is set in a high-speed operation range of the motor. A motor drive device according to claim 1.
  7.  請求項1に記載のモータ駆動装置を備えた冷凍サイクル装置であって、
     前記オープン巻線モータを駆動用モータとして有し、冷媒を吸込んで圧縮し吐出する圧縮機と、
     前記圧縮機、四方弁、凝縮器、減圧器、蒸発器を配管接続し、前記圧縮機から吐出される前記冷媒を前記四方弁、前記凝縮器、前記減圧器、前記蒸発器に通して前記圧縮機の吸込み側に戻すヒートポンプ式冷凍サイクルと、
     を備えることを特徴とする冷凍サイクル装置。
    A refrigeration cycle device comprising the motor drive device according to claim 1,
    A compressor that has the open winding motor as a driving motor, and that sucks and compresses and discharges refrigerant.
    The compressor, a four-way valve, a condenser, a decompressor, and an evaporator are connected by piping, and the refrigerant discharged from the compressor is passed through the four-way valve, the condenser, the decompressor, and the evaporator to compress the refrigerant. A heat pump refrigeration cycle that returns to the suction side of the machine,
    A refrigeration cycle device comprising:
PCT/JP2018/034902 2018-09-20 2018-09-20 Motor driving device and refrigeration cycle device WO2020059095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/034902 WO2020059095A1 (en) 2018-09-20 2018-09-20 Motor driving device and refrigeration cycle device
JP2020547557A JP6980930B2 (en) 2018-09-20 2018-09-20 Motor drive device and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034902 WO2020059095A1 (en) 2018-09-20 2018-09-20 Motor driving device and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2020059095A1 true WO2020059095A1 (en) 2020-03-26

Family

ID=69888613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034902 WO2020059095A1 (en) 2018-09-20 2018-09-20 Motor driving device and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6980930B2 (en)
WO (1) WO2020059095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355426A (en) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 Drive control circuit, drive method and device, compressor and air conditioning equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
JP2017175700A (en) * 2016-03-22 2017-09-28 株式会社Soken Power conversion device
US9906183B1 (en) * 2017-01-30 2018-02-27 Otis Elevator Company Parallel interleaved 2-level or 3-level regenerative drives
WO2018056045A1 (en) * 2016-09-26 2018-03-29 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2018117084A1 (en) * 2016-12-21 2018-06-28 株式会社デンソー Electric power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150641A1 (en) * 2016-03-04 2017-09-08 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
JP2017175700A (en) * 2016-03-22 2017-09-28 株式会社Soken Power conversion device
WO2018056045A1 (en) * 2016-09-26 2018-03-29 日本電産株式会社 Power conversion device, motor drive unit, and electric power steering device
WO2018117084A1 (en) * 2016-12-21 2018-06-28 株式会社デンソー Electric power conversion device
US9906183B1 (en) * 2017-01-30 2018-02-27 Otis Elevator Company Parallel interleaved 2-level or 3-level regenerative drives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355426A (en) * 2020-04-16 2020-06-30 邯郸美的制冷设备有限公司 Drive control circuit, drive method and device, compressor and air conditioning equipment

Also Published As

Publication number Publication date
JP6980930B2 (en) 2021-12-15
JPWO2020059095A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP2019176554A (en) Motor drive device
JP6701366B2 (en) Electric motor drive device, electric motor system and refrigeration cycle device
JP6241453B2 (en) Motor drive device
JP7123616B2 (en) motor drive
JP7105961B2 (en) Motor drive device and refrigeration cycle application equipment
CN110463015B (en) Synchronous motor drive device, blower, and air conditioner
JP7114705B2 (en) Motor drive device and refrigeration cycle application equipment
WO2020059095A1 (en) Motor driving device and refrigeration cycle device
WO2019186631A1 (en) Motor drive device and refrigeration cycle device
JP2018067981A (en) Motor controller and heat pump-type refrigeration cycle device
CN111727557B (en) Motor driving device and refrigeration loop application equipment
US11632068B2 (en) Motor driving device and air conditioner
US11329587B2 (en) Motor driving apparatus, refrigeration cycle system, air conditioner, water heater, and refrigerator
JP7242901B2 (en) Motor drive device and refrigeration cycle device
CN111919377B (en) Motor driving device and refrigeration cycle application equipment
US11012011B2 (en) Motor control device and air conditioner
JP2020191753A (en) Circuit substrate for motor drive device and motor drive device
JP7218131B2 (en) refrigeration cycle equipment
WO2022180746A1 (en) Electric motor drive device and refrigeration cycle application device
JP7305867B2 (en) Motor drive device and refrigeration cycle device
WO2022176078A1 (en) Electric motor drive device, refrigeration cycle device, air conditioner, water heater, and refrigerator
WO2021181640A1 (en) Refrigeration cycle device
JP2017070049A (en) Control method for brushless dc motor and inverter device
JP2008271688A (en) Motor drive unit and refrigerator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934218

Country of ref document: EP

Kind code of ref document: A1