WO2018116914A1 - Negative photosensitive resin composition - Google Patents

Negative photosensitive resin composition Download PDF

Info

Publication number
WO2018116914A1
WO2018116914A1 PCT/JP2017/044590 JP2017044590W WO2018116914A1 WO 2018116914 A1 WO2018116914 A1 WO 2018116914A1 JP 2017044590 W JP2017044590 W JP 2017044590W WO 2018116914 A1 WO2018116914 A1 WO 2018116914A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
photosensitive resin
ink repellent
group
Prior art date
Application number
PCT/JP2017/044590
Other languages
French (fr)
Japanese (ja)
Inventor
娜 ▲張▼
川島 正行
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020197017335A priority Critical patent/KR102611589B1/en
Priority to JP2018557698A priority patent/JP7010240B2/en
Priority to CN201780079323.6A priority patent/CN110088681B/en
Publication of WO2018116914A1 publication Critical patent/WO2018116914A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a negative photosensitive resin composition.
  • an organic layer such as a light emitting layer is used as a dot by an inkjet (IJ) method.
  • IJ inkjet
  • a pattern printing method may be used. In such a method, a partition is provided along the outline of the dot to be formed, and an ink containing the material of the organic layer is injected into a partition (hereinafter also referred to as “opening”) surrounded by the partition. This is dried and / or heated to form dots having a desired pattern.
  • the upper surface of the partition wall needs to have ink repellency in order to prevent ink mixing between adjacent dots and to uniformly apply ink in dot formation.
  • the dot forming opening surrounded by the partition including the partition side surface needs to have ink affinity. Therefore, in order to obtain a partition wall having ink repellency on the upper surface, a dot-type photolithography method having coating film formation, exposure, and development steps using a negative photosensitive resin composition containing an ink repellant is used. A method of forming a partition corresponding to a pattern is known.
  • a residue of the composition hereinafter, also referred to as “development residue”
  • the opening is formed by the IJ method.
  • wetting and spreading of the ink supplied to the ink is not sufficient.
  • a method of reducing the development residue in the opening there is a method of adjusting the negative photosensitive resin composition to a composition that can be easily removed by the developer.
  • the ink repellency on the upper surface of the partition wall is sufficiently maintained. There was a problem that it was not.
  • the photosensitive composition for partition walls is described.
  • Patent Document 1 there is a description that developability can be improved by introducing a carboxylic acid into a component other than the alkali-soluble binder, for example, the component (A) or the component (D). It is shown.
  • the carboxylic acid when the carboxylic acid is introduced into the component (A), the developability and the ink repellency are compatible, but the liquid repellent (the component (D)) into which the carboxylic acid is introduced is used.
  • sufficient ink repellency is not obtained even though the developability is good.
  • the ink repellency on the upper surface of the partition wall and the ink wettability on the opening portion can be compatible by the composition.
  • the ink repellency and the opening on the upper surface of the partition wall enough to cope with a higher-precision optical element.
  • the ink wettability of the part has not been achieved.
  • Patent Document 2 discloses a technique for improving solubility in a developer by introducing an acidic group into an ink repellent agent suitable for a method of removing development residues by UV / O 3 irradiation. Is described. However, when the ink repellent agent according to Patent Document 2 is used for the negative photosensitive resin composition, it is difficult to say that ink repellent property and development adhesion are sufficient as in the case of Patent Document 1.
  • the present invention has been made from the above viewpoint, and the obtained partition wall has high development adhesiveness and good ink repellency on the upper surface, and the development residue is sufficiently small in the opening for forming dots. It aims at providing a type photosensitive resin composition.
  • the present invention has the following configuration.
  • Alkali-soluble resin (A) having a photocurable functional group A
  • Crosslinking agent (B) containing a polyfunctional low molecular weight compound (B1) having an acidic group and two or more photocurable functional groups in one molecule A negative photosensitive resin composition comprising an ink repellent agent (C) having an acidic group and a fluorine atom and an acid value of 10 to 100 mgKOH / g, a photopolymerization initiator (D), and a solvent (E).
  • C ink repellent agent
  • D photopolymerization initiator
  • E a solvent
  • the crosslinking agent (B) further includes a crosslinking agent (B2) having two or more photocurable functional groups in one molecule and having no acidic group.
  • the polyfunctional low molecular weight compound (B1) is contained at a ratio of 10 to 90 parts by mass with respect to 100 parts by mass in total of the polyfunctional low molecular weight compound (B1) and the crosslinking agent (B2).
  • the negative photosensitive resin composition as described.
  • a negative photosensitive resin composition in which the obtained partition wall has high development adhesiveness and good ink repellency on the upper surface, and development residue is sufficiently small in the opening for forming dots. it can.
  • (Meth) acryloyl group is a general term for “methacryloyl group” and “acryloyl group”.
  • (Meth) acryloyloxy group, (meth) acrylic acid, and (meth) acrylate also conform to this.
  • the group represented by the formula (x) may be simply referred to as a group (x).
  • the compound represented by the formula (y) may be simply referred to as the compound (y).
  • the expressions (x) and (y) indicate arbitrary expressions.
  • a resin mainly composed of a certain component or “a resin mainly composed of a certain component” means that the proportion of the component occupies 50% by mass or more based on the total amount of the resin.
  • the “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
  • total solid content of the photosensitive resin composition refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
  • a film made of a cured product of a composition containing resin as a main component is referred to as a “resin cured film”.
  • a film coated with the photosensitive resin composition is referred to as a “coating film”, and a film obtained by drying the film is referred to as a “dry film”.
  • a film obtained by curing the “dry film” is a “resin cured film”. Further, the “resin cured film” may be simply referred to as “cured film”.
  • the resin cured film may be in the form of a partition formed in a shape that partitions a predetermined region into a plurality of sections. For example, the following “ink” is injected into the partitions partitioned by the partition walls, that is, the openings surrounded by the partition walls to form “dots”.
  • “Ink” is a general term for liquids having optical and / or electrical functions after drying, curing, and the like.
  • dots as various constituent elements may be pattern-printed by an ink jet (IJ) method using the ink for forming the dots.
  • IJ ink jet
  • “Ink” includes ink used in such applications.
  • “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency.
  • the ink repellency can be evaluated by, for example, a contact angle when ink is dropped.
  • “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency.
  • the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
  • the “dot” indicates a minimum area where light modulation is possible in the optical element.
  • Perfect (%) represents mass% unless otherwise specified. Embodiments of the present invention will be described below.
  • the negative photosensitive resin composition of the present invention is an alkali-soluble resin (A) having a photocurable functional group (A), a polyfunctional low molecular weight compound having an acidic group and two or more photocurable functional groups in one molecule ( B1) containing a crosslinking agent (B), an acid repellent agent (C) having an acid group and a fluorine atom and an acid value of 10 to 100 mgKOH / g, a photopolymerization initiator (D), and a solvent (E) To do.
  • A alkali-soluble resin
  • A a photocurable functional group
  • B1 a polyfunctional low molecular weight compound having an acidic group and two or more photocurable functional groups in one molecule
  • B1 containing a crosslinking agent (B)
  • an acid repellent agent (C) having an acid group and a fluorine atom and an acid value of 10 to 100 mgKOH / g
  • D photopolymerization initiator
  • E solvent
  • the negative photosensitive resin composition of the present invention contains a polyfunctional low molecular weight compound (B1) having an acidic group as a crosslinking agent (B), and a combination of the ink repellent agent (C) having the predetermined acid value.
  • B1 polyfunctional low molecular weight compound
  • C ink repellent agent
  • the negative photosensitive resin composition of the present invention contains a crosslinking agent (B2) having no acidic group and other optional components, if necessary, in addition to the above essential components.
  • B2 crosslinking agent having no acidic group
  • other optional components if necessary, in addition to the above essential components.
  • the alkali-soluble resin (A) is an alkali-soluble resin having a photocurable functional group.
  • alkali-soluble resin (A) the photosensitive resin which has an acidic group and an ethylenic double bond in 1 molecule is preferable. Since the alkali-soluble resin (A) has an ethylenic double bond in the molecule, the exposed portion of the negative photosensitive resin composition is polymerized by radicals generated from the photopolymerization initiator (D), and is also crosslinked. It crosslinks with the agent (B) and cures to form a cured film.
  • the exposed portion sufficiently cured in this way is not easily removed with an alkaline developer (hereinafter also simply referred to as “developer”). Moreover, the non-exposure of the negative photosensitive resin composition which is not hardened because the polyfunctional low molecular weight compound (B1) contained in the alkali-soluble resin (A) and the crosslinking agent (B) has an acidic group in the molecule.
  • the portion can be selectively removed with a developer. As a result, the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
  • the acidic group examples include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
  • an ethylenic double bond is preferable.
  • the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more.
  • some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
  • alkali-soluble resin (A) having an ethylenic double bond examples include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an acidic group in the epoxy resin. And a resin (A-2) having an ethylenic double bond introduced therein. These may be used alone or in combination of two or more. As such an alkali-soluble resin (A), those described in WO 2014/084279 can be used.
  • alkali-soluble resin (A) peeling of the cured film at the time of development is suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good.
  • the resin (A-2) it is preferable to use the resin (A-2).
  • the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
  • Examples of the resin (A-1) include those obtained by reacting 2-acryloyloxytyl isocyanate with a copolymer of acrylic acid, 2-hydroxymethacrylate and other monomers.
  • examples thereof include urethane resins such as polyurethane compounds.
  • a compound having a double bond and a hydroxyl group obtained by reacting a bifunctional epoxy resin and acrylic acid, a diol compound having a carboxyl group such as dimethylolpropionic acid, and a diisocyanate compound such as trimethylhexamethylene diisocyanate, an optional component And a resin obtained by reacting a polybasic acid anhydride such as glycidyl methacrylate or phthalic anhydride.
  • bifunctional epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenol methane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton. And epoxy resin having fluorenyl substitution and bisphenol A type epoxy resin.
  • urethane-based resin is preferable because flexibility can be imparted, alkali resistance is good, and dispersion stability in the developer is also good.
  • Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton.
  • An epoxy resin having an acidic group and an ethylenic double bond are preferably introduced into the epoxy resin having fluorenyl-substituted bisphenol A type epoxy resin and the epoxy resin described in JP-A-2006-84985.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxy resin having biphenyl skeleton, fluorenyl substituted bisphenol A type epoxy resin, and epoxy resin described in JP-A-2006-84985, respectively, have an acidic group and an ethylenic double bond.
  • a resin into which is introduced is more preferable.
  • bisphenol A type epoxy resins bisphenol F type epoxy resins, epoxy resins having a biphenyl skeleton, and fluorenyl-substituted bisphenol A type epoxy resins are particularly preferable.
  • these resins are used, the interaction with the photopolymerization initiator (D) is improved, and the adhesion with the substrate is improved.
  • the number of ethylenic double bonds in one molecule of the alkali-soluble resin (A) is preferably 3 or more on average, and particularly preferably 6 or more on average.
  • the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
  • the mass average molecular weight (Mw) of the alkali-soluble resin (A) is preferably 1.0 ⁇ 10 3 to 20 ⁇ 10 3 , particularly preferably 2 ⁇ 10 3 to 15 ⁇ 10 3 .
  • the number average molecular weight (Mn) is preferably 500 to 13 ⁇ 10 3 , and particularly preferably 1.0 ⁇ 10 3 to 10 ⁇ 10 3 .
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are those measured by a gel permeation chromatography method using polystyrene as a standard substance unless otherwise specified.
  • the acid value of the alkali-soluble resin (A) is preferably 10 to 300 mgKOH / g, particularly preferably 10 to 150 mgKOH / g.
  • the acid value of the alkali-soluble resin (A) is within the above range, the developability of the negative photosensitive composition is improved.
  • the alkali-soluble resin (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
  • the content of the alkali-soluble resin (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
  • the crosslinking agent (B) contains a polyfunctional low molecular weight compound (B1) having an acidic group and two or more photocurable functional groups in one molecule, preferably two or more in one molecule. It contains a crosslinking agent (B2) having a photocurable functional group and no acidic group (hereinafter also referred to as “non-acidic crosslinking agent (B2)”). Since the crosslinking agent (B) has two or more photocurable functional groups in one molecule, it reacts with the photocurable functional group of the alkali-soluble resin (A) by the action of the photopolymerization initiator (D). .
  • the negative photosensitive resin composition of the present invention containing these becomes a cured film sufficiently cured by crosslinking with the crosslinking agent (B) when the alkali-soluble resin (A) is polymerized by exposure.
  • the polyfunctional low molecular weight compound (B1) is a monomer having an acidic group and two or more photocurable functional groups in one molecule.
  • the “low molecular weight compound” in the present invention means a concept opposite to a so-called high molecular substance (resin).
  • “low molecular weight compound” is used in a concept including “monomer”, “dimer”, “trimer”, and “oligomer”.
  • the “low molecular weight compound” means a compound having a mass average molecular weight (Mw) of less than 1000.
  • the mass average molecular weight (Mw) of the polyfunctional low molecular weight compound (B1) is preferably 300 or more and less than 1000, and more preferably 500 or more and less than 800.
  • the number average molecular weight (Mn) is preferably 300 or more and less than 1000, and particularly preferably 500 or more and less than 800.
  • the photocurable functional group possessed by the polyfunctional low molecular weight compound (B1) is preferably the same type of photocurable functional group as that possessed by the alkali-soluble resin (A). A double bond is preferred.
  • the number of photocurable functional groups in one molecule in the polyfunctional low molecular weight compound (B1) may be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more. As the number of photocurable functional groups increases, the curability of the coating film surface is improved, and the stability of ink repellency is improved on the upper surface of the obtained partition wall.
  • Examples of the acidic group possessed by the polyfunctional low molecular weight compound (B1) include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more. Also good.
  • the number of acidic groups in one molecule of the polyfunctional low molecular weight compound (B1) may be 1 or more, preferably 1 or 2, and more preferably 1.
  • Examples of the polyfunctional low molecular weight compound (B1) include an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, an ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid, a polyisocyanate compound and (meth) acryloyl containing Examples thereof include compounds in which an acidic group is introduced so that two or more unsaturated bonds (ethylenic double bonds) remain in an ethylenic compound having a urethane skeleton obtained by reacting with a hydroxy compound.
  • the polyfunctional low molecular weight compound (B1) is an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an aromatic carboxylic acid anhydride or non-aromatic carboxylic acid is added to an unreacted hydroxy group of the aliphatic polyhydroxy compound.
  • a polyfunctional low molecular weight compound having an acid group reacted with an acid anhydride is preferable, and a polyfunctional low molecular weight compound having an acid group reacted with a non-aromatic carboxylic acid anhydride is more preferable.
  • an aliphatic polyhydroxy compound in an ester of an aliphatic polyhydroxy compound into which an acidic group is introduced and an unsaturated carboxylic acid a compound having three or more hydroxy groups, for example, trimethylolpropane, trimethylolethane, pentaerythritol, Examples thereof include dipentaerythritol, tripentaerythritol, tetrapentaerythritol and the like.
  • the unsaturated carboxylic acid include (meth) acrylic acid, itaconic acid, ilotonic acid, maleic acid and the like.
  • the aliphatic polyhydroxy compound is preferably pentaerythritol and / or dipentaerythritol, particularly preferably dipentaerythritol.
  • unsaturated carboxylic acid (meth) acrylic acid is preferable and acrylic acid is more preferable.
  • aromatic carboxylic acid anhydride used for introducing an acidic group into the ester include phthalic anhydride, and specific examples of the non-aromatic carboxylic acid anhydride include tetrahydrophthalic anhydride, alkylation Examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, and maleic anhydride. Among these, succinic anhydride is preferable.
  • polyfunctional low molecular weight compound (B1) as a compound obtained by reacting an aromatic carboxylic acid anhydride with an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, for example, three hydroxy groups of pentaerythritol are acryloyloxy.
  • 2,2,2-triacryloyloxymethylethylphthalic acid having a structure in which the remaining one hydroxy group is ester-bonded to phthalic acid is exemplified.
  • a compound having a dipentaerythritol skeleton is preferable.
  • a compound having a dipentaerythritol skeleton for example, five hydroxy groups of dipentaerythritol are substituted with (meth) acryloyloxy groups, and the remaining one hydroxy group is ester-bonded with, for example, succinic acid to form an acidic group.
  • a compound in which is introduced is preferred.
  • the acid value of the polyfunctional low molecular weight compound (B1) is preferably 10 to 100 mgKOH / g, more preferably 20 to 95 mgKOH / g.
  • the acid value of the polyfunctional low molecular weight compound (B1) is not less than the above lower limit value, it is possible to obtain better solubility in a developing solution in the negative photosensitive composition, and it is not more than the above upper limit value. Manufacturing and handling properties become good, sufficient polymerizability can be secured, and curability such as surface smoothness of the resulting coating film becomes good.
  • the polyfunctional low molecular weight compound (B1) may be used alone or in combination of two or more.
  • a polyfunctional low molecular weight compound (B1) as a 2 or more types of mixture, it is preferable that the acid value of a mixture exists in the said range.
  • Non-acidic crosslinking agent (B2) In addition to the polyfunctional low molecular weight compound (B1), the crosslinking agent (B) has two or more photocurable functional groups in one molecule and does not have an acidic group, that is, a non-acidic crosslinking. An agent (B2) may be contained.
  • the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinker (B2) it becomes easy to adjust the acid value and the number of photocurable functional groups of the entire crosslinker (B), and negative photosensitive at the time of exposure.
  • the effect of improving the curability of the photosensitive resin composition and the effect of improving the solubility of the negative photosensitive resin composition in the developer can be easily balanced.
  • the photocurable functional group that the non-acidic crosslinking agent (B2) has two or more in one molecule the same type of photocurable functional group as that of the alkali-soluble resin (A) is preferable, Specifically, an ethylenic double bond is preferable.
  • the number of photocurable functional groups in one molecule in the non-acidic crosslinking agent (B2) may be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more. As the number of photocurable functional groups increases, the curability of the coating film surface is improved, and the stability of ink repellency is improved on the upper surface of the obtained partition wall.
  • the molecular weight of a non-acidic crosslinking agent (B2) can be made the same including a polyfunctional low molecular weight compound (B1) and a preferable aspect.
  • non-acidic crosslinking agent (B2) examples include compounds having no acidic group in the polyfunctional low molecular weight compound (B1), and an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable.
  • non-acidic crosslinking agent (B2) diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol heptaacrylate, tetrapentaerythritol octaacrylate, tetrapenta Erythritol nonaacrylate, tetrapentaerythritol decaacrylate, ethoxyl
  • the non-acidic crosslinking agent (B2) may be used alone or in combination of two or more.
  • the content of the crosslinking agent (B) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass.
  • the acid value of a crosslinking agent (B) is the same range as the acid value of the said polyfunctional low molecular weight compound (B1), when a crosslinking agent (B) is comprised only with a polyfunctional low molecular weight compound (B1). is there.
  • the acid value of the crosslinking agent (B) is preferably 10 to 80 mgKOH / g, and preferably 15 to 70 mgKOH / g when the crosslinking agent (B) contains both the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinking agent (B2). g is more preferable.
  • the content ratio of the polyfunctional low molecular weight compound (B1) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, and more preferably 7 to 60% by mass. When the content ratio of the polyfunctional low molecular weight compound (B1) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good.
  • the content ratio of the non-acidic crosslinking agent (B2) in the total solid content in the composition is 0.1. To 50% by mass is preferable, and 1.0 to 40% by mass is more preferable.
  • the ratio of the polyfunctional low molecular weight compound (B1) to the total 100 parts by mass of the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinking agent (B2) is preferably 10 to 90 parts by mass, and 15 to 70 parts by mass. Part is more preferred.
  • crosslinking agent (B) what is marketed as a mixture of a polyfunctional low molecular weight compound (B1) and a non-acidic crosslinking agent (B2), for example, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and dipenta A succinic acid ester mixture of erythritol pentaacrylate may be used.
  • such a mixture may be used in combination with a simple substance of the polyfunctional low molecular weight compound (B1) and / or a simple substance of the non-acidic crosslinking agent (B2).
  • the ink repellent agent (C) has an acidic group and a fluorine atom, and has an acid value of 10 to 100 mgKOH / g. By having a fluorine atom, the ink repellent agent (C) has a property of transferring to the upper surface in the process of forming a cured film using the negative photosensitive resin composition containing the same (upper surface transfer property) and ink repellency.
  • the ink repellent agent (C) has a property of transferring to the upper surface in the process of forming a cured film using the negative photosensitive resin composition containing the same (upper surface transfer property) and ink repellency.
  • the upper layer portion including the upper surface of the obtained cured film becomes a layer in which the ink repellent agent (C) is present densely (hereinafter also referred to as “ink repellent layer”). Ink repellency is imparted to the upper surface of the cured film.
  • the ink repellent agent (C) has an acidic group and has an acid value of not less than the above lower limit, so that the negative photosensitive resin composition contains an alkali-soluble resin (A), a crosslinking agent (B), etc. Like the component, it has good solubility in the developer. Thereby, the negative photosensitive resin composition in the non-exposed part can be easily removed with a developer, and the developability is good.
  • the acid value of the ink repellent agent (C) is not more than the above upper limit, the ink repellent layer formed on the upper layer portion of the cured film is sufficiently in close contact with the resin layer of the lower layer portion and is hardly affected by the developer. Without being received, it can remain after development and exhibit high ink repellency.
  • the acid value of the ink repellent agent (C) is preferably 20 to 100 mgKOH / g, more preferably 25 to 80 mgKOH / g, and further preferably 30 to 60 mgKOH / g.
  • the content of fluorine atoms in the ink repellent agent (C) is preferably from 5 to 55% by mass, more preferably from 10 to 55% by mass, and further from 12 to 40% by mass from the viewpoints of upper surface migration and ink repellency. It is preferably 14 to 30% by mass. If the fluorine atom content of the ink repellent agent (C) is at least the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film, and if it is less than the upper limit, the negative photosensitive resin composition Compatibility with other components in the inside is improved.
  • the ink repellent agent (C) is preferably a compound having a photocurable functional group, particularly an ethylenic double bond. Since the ink repellent agent (C) has an ethylenic double bond, radicals act on the ethylenic double bond of the ink repellent agent (C) transferred to the upper surface, and the ink repellent agent (C) or ink repellent Crosslinking by (co) polymerization with the agent (C) and other components having an ethylenic double bond contained in the negative photosensitive resin composition becomes possible.
  • the fixability in the upper layer portion of the cured film of the ink repellent agent (C), that is, the ink repellent layer can be improved.
  • the ink repellent agent (C) can be sufficiently fixed to the ink repellent layer even when the exposure amount during exposure is low.
  • the case where the ink repellent agent (C) has an ethylenic double bond is as described above.
  • the photocurable component mainly composed of the alkali-soluble resin (A) present around the ink repellent agent (C) is sufficiently cured.
  • the ink repellent agent (C) can be sufficiently fixed.
  • Examples of the ink repellent agent (C) include an ink repellent agent (C1) made of a compound having a main chain of a hydrocarbon chain, a side chain having an acidic group, and a side chain containing a fluorine atom.
  • an ink repellent agent (C2) composed of a partially hydrolyzed condensate of a hydrolyzable silane compound containing a hydrolyzable silane compound having an acidic group and a hydrolyzable silane compound having a fluorine atom is used. It may be used.
  • the ink repellent agent (C1) and the ink repellent agent (C2) are used alone or in combination.
  • the ink repellent agent (C1) from the viewpoint of developing higher ink repellency.
  • an ink repellent agent (C2) it is preferable to use an ink repellent agent (C2).
  • the ink repellent agent (C1) is a compound having a main chain of a hydrocarbon chain, a side chain having an acidic group, and a side chain containing a fluorine atom.
  • the mass average molecular weight (Mw) of the ink repellent agent (C1) is preferably 1.0 ⁇ 10 4 to 15 ⁇ 10 4, more preferably 1.2 ⁇ 10 4 to 13 ⁇ 10 4 , and 1.4 ⁇ 10 4. ⁇ 12 ⁇ 10 4 is particularly preferred.
  • the mass average molecular weight (Mw) is at least the lower limit value, the ink repellent agent (C1) tends to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition.
  • the opening residue is less than the upper limit, which is preferable.
  • the acidic group in the side chain having an acidic group examples include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
  • the portion other than the acidic group in the side chain having an acidic group is not particularly limited.
  • the side chain containing a fluorine atom in the ink repellent agent (C1) includes a side chain composed of a fluoroalkyl group which may contain an etheric oxygen atom and / or a fluoroalkyl group which may contain an etheric oxygen atom. Side chains having are preferred.
  • the fluoroalkyl group may be linear or branched.
  • Specific examples of the fluoroalkyl group not containing an etheric oxygen atom include the following structures. -CF 3 , -CF 2 CF 3 , -CF 2 CHF 2 ,-(CF 2 ) 2 CF 3 ,-(CF 2 ) 3 CF 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2 ) 11 CF 3 ,-(CF 2 ) 15 CF 3 .
  • fluoroalkyl group containing an etheric oxygen atom examples include the following structures. -CF (CF 3 ) O (CF 2 ) 5 CF 3 , -CF 2 O (CF 2 CF 2 O) r1 CF 3, —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r 2 C 6 F 13 , And —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r3 C 3 F 7 .
  • r1 is an integer of 1 to 8
  • r2 is an integer of 1 to 4
  • r3 is an integer of 1 to 5.
  • the hydrocarbon chain constituting the main chain of the ink repellent (C1) specifically, the main chain obtained by polymerization of a monomer having an ethylenic double bond, -Ph-CH 2 - (where " Ph ”represents a benzene skeleton.) And a novolak-type main chain composed of repeating units.
  • the ink repellent agent (C1) can further contain one or more side chains selected from the group consisting of a side chain having an ethylenic double bond and a side chain having an oxyalkylene group.
  • One side chain may contain an ethylenic double bond and an oxyalkylene group.
  • the side chain containing the acidic group may contain an ethylenic double bond and / or an oxyalkylene group.
  • the ink repellent agent (C1) can contain side chains such as a dimethyl silicone chain, an alkyl group, a glycidyl group, an isobornyl group, an isocyanate group, and a trialkoxysilyl group.
  • the main chain of the ink repellent (C1) is -Ph-CH 2 - if the main chain of the novolak type comprising repeating units of, usually, a benzene skeleton (Ph) constituting the main chain, a side chain having a fluorine atom
  • a polymer in which a side chain having an acidic group is bonded and a side chain having an ethylenic double bond and an oxyalkylene side chain are optionally bonded is used as the ink repellent agent (C1).
  • Each side chain may be bonded to the same benzene skeleton (Ph) or may be bonded to a different benzene skeleton (Ph).
  • the number of side chains bonded to one benzene skeleton (Ph) is preferably one.
  • the acid value in the ink repellent agent (C1) can be easily adjusted by adjusting the ratio of the side chain having an acidic group introduced into the main chain of the hydrocarbon chain of the ink repellent agent (C1).
  • the fluorine atom content in the ink repellent agent (C1) can be easily adjusted by adjusting the proportion of side chains having fluorine atoms introduced into the main chain of the hydrocarbon chain of the ink repellent agent (C1). It can be done.
  • the ink repellent agent (C2) is a partially hydrolyzed condensate of a hydrolyzable silane compound mixture (hereinafter also referred to as “mixture (M)”).
  • the mixture (M) is a hydrolyzable silane compound having a fluoroalkylene group and / or a fluoroalkyl group and a group in which a hydrolyzable group is bonded to a silicon atom (hereinafter referred to as “hydrolyzable silane compound (s1)”). And a hydrolyzable silane compound having a group having an acidic group and a group having a hydrolyzable group bonded to a silicon atom and not containing a fluorine atom (hereinafter referred to as “hydrolyzable silane compound (s2)”). Is also included as an essential component, and optionally includes a hydrolyzable silane compound other than the hydrolyzable silane compound (s1) and the hydrolyzable silane compound (s2).
  • the hydrolyzable silane compound optionally contained in the mixture (M) is a hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom (hereinafter also referred to as “hydrolyzable silane compound (s3)”). .) Is preferred.
  • hydrolyzable silane compound (s1) include the following compounds. F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2) 3 OCF ( CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3, F (CF 2) 2 O ( CF 2) 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3.
  • F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 and F (CF 2 ) 3 OCF (CF 3 ) CF 2 O (CF 2 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 are Particularly preferred.
  • the content of the hydrolyzable silane compound (s1) in the mixture (M) is preferably such that the fluorine atom content in the partially hydrolyzed condensate obtained from the mixture is 5 to 55% by mass. More preferably, it is 10 to 55% by mass, still more preferably 12 to 40% by mass, and particularly preferably 15 to 30% by mass.
  • the content ratio of the hydrolyzable silane compound (s1) is not less than the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film. Compatibility with the decomposable silane compound is improved.
  • the acidic group of the hydrolyzable silane compound (s2) is preferably a carboxy group, a phenolic hydroxyl group or a sulfo group.
  • Specific examples of the hydrolyzable silane compound (s2) include the following compounds.
  • R 22 represents the formula: —R 25 —COOH or —COO—R 25 OOC—R 25 —COOH (where R 25 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, a single bond or a phenylene group. It is a group represented by.
  • R 22 is —COO—R 25 OOC—R 25 —COOH, the solubility of the developer of the ink repellent agent (C2) is further improved, the residue of the opening is reduced, and the wettability of the ink by the IJ method is further increased. Good and preferable.
  • R 21 is -COOR 24 (.
  • R 24 is showing a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms), a group represented by, -COO- (C 2 H 4 O ) i - (C 3 H 6 O) j- (C 4 H 8 O) k -R 28 (where R 28 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent).
  • I represents an integer of 0 to 100
  • j represents an integer of 0 to 100
  • k represents an integer of 0 to 100
  • i + j + k is 2 to 100.
  • the order is arbitrary.
  • Q 2 is a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • X 2 is a hydrolyzable group, and three X 2 may be different from each other or the same.
  • X 2 is preferably a methoxy group or an ethoxy group.
  • m is an integer of 0 or more, and n is an integer of 1 or more.
  • X 2 is the same as in formula (c-2a).
  • X 2 is the same as in formula (c-2a).
  • the content ratio of the hydrolyzable silane compound (s2) in the mixture (M) is such that the acid value in the partially hydrolyzed condensate obtained from the mixture is 10 to 100 mgKOH / g.
  • the acid value of the partially hydrolyzed condensate is preferably 20 to 100 mgKOH / g, more preferably 25 to 80 mgKOH / g, and further preferably 30 to 60 mgKOH / g.
  • the obtained negative photosensitive resin composition has good solubility in a developer. Thereby, the negative photosensitive resin composition in the non-exposed part can be easily removed with a developer, and the developability is good.
  • the acid value of the ink repellent agent (C) is not more than the above upper limit, the ink repellent layer formed on the upper layer portion of the cured film is sufficiently in close contact with the resin layer of the lower layer portion and is hardly affected by the developer. Without being received, it can remain after development and exhibit high ink repellency.
  • hydrolyzable silane compound (s3) include the following compounds. Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , A partial hydrolysis condensate of Si (OCH 3 ) 4 , Partially hydrolyzed condensate of Si (OC 2 H 5 ) 4 .
  • the content of the hydrolyzable silane compound (s3) in the mixture (M) is preferably 0.01 to 5 mol, particularly preferably 0.05 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). .
  • the content ratio is not less than the lower limit of the above range, the film forming property of the ink repellent agent (C2) is good, and when it is not more than the upper limit value, the ink repellent property of the ink repellent agent (C2) is good.
  • the mixture (M) can further optionally contain one or more hydrolyzable silane compounds other than the hydrolyzable silane compounds (s1) to (s3).
  • hydrolyzable silane compound that the mixture (M) preferably contains include the following hydrolyzable silane compound (s4), hydrolyzable silane compound (s5), and hydrolyzable silane compound (s6).
  • a hydrolyzable silane compound (s4) is particularly preferable.
  • Hydrolyzable silane compound (s4) a hydrolyzable silane compound having a group having an ethylenic double bond and a group in which a hydrolyzable group is bonded to a silicon atom, and does not contain a fluorine atom.
  • Hydrolyzable silane compound (s5) a hydrolyzable silane compound having a mercapto group or sulfide group and a hydrolyzable silyl group and containing no fluorine atom.
  • Hydrolyzable silane compound (s6) a hydrolyzable silane compound having only a hydrocarbon group and a hydrolyzable group as a group bonded to a silicon atom.
  • the content of the hydrolyzable silane compound (s4) in the mixture (M) is preferably 0.1 to 5 mol, particularly 0.5 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable.
  • the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good.
  • the amount is not more than the upper limit, the ink repellency of the ink repellent agent (C2) is good.
  • hydrolyzable silane compound (s5) include HS— (CH 2 ) 3 —Si (OCH 3 ) 3 , HS— (CH 2 ) 3 —Si (CH 3 ) (OCH 3 ) 2 , [( 1,2,3,4-tetrathiabutane-1,4-diyl) bis (trimethylene)] bis (triethoxysilane).
  • the content of the hydrolyzable silane compound (s5) in the mixture (M) is preferably 0 to 2.0 mol, particularly 0 to 1.5 mol, per 1 mol of the hydrolyzable silane compound (s1). preferable.
  • the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good.
  • the amount is not more than the upper limit, the ink repellency of the ink repellent agent (C2) is good.
  • hydrolyzable silane compound (s6) include the following compounds.
  • Ph represents a phenyl group.
  • the content of the hydrolyzable silane compound (s6) in the mixture (M) is preferably 0 to 1.0 mol, particularly 0 to 0.08 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable. Storage stability is favorable in a content rate being more than the lower limit of the said range. When it is at most the upper limit value, the ink applicability of the dot portion is good.
  • hydrolyzable silane compounds include an epoxy group and a hydrolyzable silyl group, a hydrolyzable silane compound (s7) containing no fluorine atom, an oxyalkylene group and a hydrolyzable silyl group, Hydrolyzable silane compound not containing fluorine atom (s8), having sulfide and hydrolyzable silyl group, hydrolyzable silane compound not containing fluorine atom (s9), having ureido group and hydrolyzable silyl group And hydrolyzable silane compound (s10) having no fluorine atom, hydrolyzable silane compound (s11) having an amino group and a hydrolyzable silyl group and not containing a fluorine atom.
  • hydrolyzable silane compound (s7) examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycol.
  • Sidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane are used as the hydrolyzable silane compound (s8), for example, CH 3 O (C 2 H 4 O) k Si (OCH 3 ) 3 (poly Oxyethylene group-containing trimethoxysilane (here, k is, for example, about 10), hydrolyzable silane compound (s9), for example, bis (triethoxysilylpropyl) tetrasulfide, hydrolyzable silane compound ( s10), for example, 3-ureidopropyltriethoxysilane, water As a solution silane compound (s11), for example, N- phenyl-3-aminopropyltrimethoxysilane.
  • silane compound (s11) for example, N- phenyl-3-aminopropyltrimethoxysilane.
  • the ink repellent agent (C2) contains the hydrolyzable silane compound (s8)
  • the dispersion stability and storage stability of the ink repellent agent (C2) are improved, which is preferable.
  • the ink repellent agent (C2) contains a hydrolyzable silane compound (s9)
  • the ink repellency is easily exhibited even at a low exposure amount, which is preferable.
  • the hydrolyzable silane compound (s1) is n1
  • the hydrolyzable silane compound (s2) is n2
  • the hydrolyzable silane compound (s3) is n3, and the hydrolyzable silane compound (s4).
  • ) Is n4, the hydrolyzable silane compound (s5) is n5, and the hydrolyzable silane compound (s6) is n6, and a partial hydrolysis condensate of the mixture (M) is included.
  • n1 to n6 represent the mole fraction of each structural unit relative to the total molar amount of the structural units.
  • n1> 0, n2> 0, n3 ⁇ 0, n4 ⁇ 0, n5 ⁇ 0, n6 ⁇ 0, n1 + n2 + n3 + n4 + n5 + n6 1.
  • n1: n2: n3 corresponds to the preparation composition of the hydrolyzable silane compounds (s1), (s2), (s3), (s4), (s5), and (s6) in the mixture (M).
  • the molar ratio of each component is designed from the balance of the effect of each component.
  • n1 is preferably 0.02 to 0.4 in such an amount that the fluorine atom content in the ink repellent agent (C2) falls within the above-mentioned preferable range.
  • n2 is preferably 0.003 to 0.03 in such an amount that the acid value in the ink repellent agent (C2) falls within the above range.
  • n3 is preferably 0 to 0.98, particularly preferably 0.05 to 0.6.
  • n4 is preferably 0 to 0.4, particularly preferably 0 to 0.27.
  • n5 is preferably 0 to 0.1, particularly preferably 0 to 0.07.
  • n6 is preferably 0 to 0.2, particularly preferably 0 to 0.15
  • the mass average molecular weight (Mw) of the ink repellent agent (C2) is preferably 500 or more, preferably less than 1 ⁇ 10 6 , and particularly preferably 5 ⁇ 10 3 or less.
  • Mw mass average molecular weight
  • the mass average molecular weight (Mw) is not less than the lower limit, the ink repellent agent (C2) is likely to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition.
  • the mass average molecular weight (Mw) of the ink repellent agent (C2) can be adjusted by manufacturing conditions.
  • the ink repellent agent (C2) can be produced by subjecting the above-mentioned mixture (M) to hydrolysis and condensation reaction by a known method. This reaction is catalyzed by alkali catalysts such as sodium hydroxide and tetramethylammonium hydroxide (TMAH), inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or organic acids such as acetic acid, oxalic acid and maleic acid. Can be used as Moreover, a well-known solvent can be used for the said reaction.
  • the ink repellent agent (C2) obtained by the above reaction may be blended in a negative photosensitive resin composition in the form of a solution together with a solvent.
  • the content ratio of the ink repellent agent (C) in the total solid content in the negative photosensitive resin composition is a content ratio at which the surface satisfies the above characteristics in the partition obtained using the same.
  • the content ratio depends on the type of the ink repellent agent (C) to be used, but specifically, 0.01 to 10% by mass is preferable, and 0.1 to 2% by mass is more preferable.
  • the content ratio is at least the lower limit of the above range, the upper surface of the cured film formed from the negative photosensitive resin composition has excellent ink repellency. Adhesiveness of a cured film and a base material becomes it favorable that it is below the upper limit of the said range.
  • the photopolymerization initiator (D) in the present invention is not particularly limited as long as it is a compound having a function as a photopolymerization initiator, and a compound that generates a radical by light is preferable.
  • Examples of the photopolymerization initiator (D) include ⁇ -diketones such as methylphenylglyoxylate and 9,10-phenanthrenequinone; acyloins such as benzoin; benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and the like.
  • thioxanthones such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone; benzophenone, 4,4'-bis (dimethylamino) Benzophenones such as benzophenone and 4,4′-bis (diethylamino) benzophenone; acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophene Non, 2,2′-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- Acetophenones such as dimethyla
  • Acylphosphine oxides such as oxides; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime), ethanone 1- [9-ethyl-6- (2-methylbenzoyl)- Oxime esters such as 9H-carbazol-3-yl] -1- (O-acetyloxime), aliphatics such as triethanolamine, methyldiethanolamine, triisopropanolamine, n-butylamine, N-methyldiethanolamine, diethylaminoethyl methacrylate Examples include amines.
  • benzophenones, aminobenzoic acids and aliphatic amines are preferably used together with other radical initiators because they may exhibit a sensitizing effect.
  • photopolymerization initiator (D) examples include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpho Linophenyl) -butan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime), ethanone 1- [9-ethyl-6- (2-methyl) Benzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) or 2,4-diethylthioxanthone is preferred. Furthermore, combinations of these with benzophenones, for example, 4,4'-bis (diethylamino) benzophenone are particularly preferred.
  • a photoinitiator (D) may be used individually by 1 type, or may use 2 or more types together.
  • the content of the photopolymerization initiator (D) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
  • solvent (E) When the negative photosensitive resin composition of the present invention contains the solvent (E), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed.
  • a known solvent is used as the solvent (E).
  • a solvent (E) may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the solvent (E) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, solvent naphtha, and water. Among these, at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable.
  • diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethylpropionamide, and 3-n-butoxy-N, N-dimethylpropionamide have a boiling point of 150 ° C. This is preferable because uneven coating and the like tend to be suppressed.
  • a solvent (E) contains water
  • content of water is 10 mass% or less of the whole solvent (E).
  • the water content is more preferably 1 to 10% by mass.
  • the content ratio of the solvent (E) in the negative photosensitive resin composition is preferably 10 to 99% by mass, more preferably 20 to 95% by mass, and particularly preferably 50 to 90% by mass with respect to the total amount of the composition.
  • the total amount of the alkali-soluble resin (A) and the crosslinking agent (B) is 100% by mass, preferably 0.1 to 3000% by mass, and more preferably 0.5 to 2000% by mass.
  • the thiol compound (G) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more mercapto groups in one molecule. If the negative photosensitive resin composition of this invention contains a thiol compound (G), the radical of a thiol compound (G) will produce
  • This ene-thiol reaction is different from the usual radical polymerization of ethylenic double bonds, and is not subject to reaction inhibition by oxygen, so it has high chain mobility and also undergoes crosslinking at the same time as polymerization.
  • the shrinkage rate is low, and there is an advantage that a uniform network can be easily obtained.
  • the negative photosensitive resin composition of the present invention contains a thiol compound (G), it can be sufficiently cured even at a low exposure amount as described above, and includes a partition upper surface that is particularly susceptible to reaction inhibition by oxygen. Since the photocuring is sufficiently performed also in the upper layer portion, it is possible to impart good ink repellency to the upper surface of the partition wall.
  • G thiol compound
  • the mercapto group in the thiol compound (G) is preferably contained 2 to 10 in one molecule, more preferably 2 to 8 and even more preferably 2 to 5. From the viewpoint of storage stability of the negative photosensitive resin composition, 3 is particularly preferable.
  • the molecular weight of the thiol compound (G) is not particularly limited.
  • the mercapto group equivalent represented by [molecular weight / number of mercapto groups] is preferably 40 to 1,000, more preferably 40 to 500, and more preferably 40 to 250, from the viewpoint of curability at low exposure. Is particularly preferred.
  • thiol compound (G) examples include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol.
  • the content ratio is a mercapto group with respect to 1 mol of the ethylenic double bond of the total solid content in the negative photosensitive resin composition. Is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and particularly preferably 0.001 to 0.5 mol. Further, the amount is preferably 0.1 to 1200% by mass, more preferably 0.2 to 1000% by mass with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the thiol compound (G) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good even at a low exposure amount.
  • the negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
  • Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule.
  • a phosphoric acid compound having a bond is preferable.
  • a compound having a (meth) acryloyl group which is an ethylenically unsaturated double bond or a vinyl phosphate compound is preferred.
  • Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
  • phosphoric acid compound (H) phenylphosphonic acid and the like can be used in addition to the phosphoric acid compound having an ethylenically unsaturated double bond in the molecule.
  • the negative photosensitive resin composition of the present invention may contain, as the phosphoric acid compound (H), one kind of compound classified as such, or may contain two or more kinds.
  • the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable. Further, 0.01 to 200% by mass is preferable and 0.1 to 100% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A).
  • the content ratio of the phosphoric acid compound (H) is in the above range, the adhesion between the obtained cured film and the substrate is good.
  • the negative photosensitive resin composition in the present invention may further include a polymerization inhibitor, a thermal crosslinking agent, a polymer dispersant, a dispersion aid, a silane coupling agent, fine particles, a curing accelerator, a thickener, if necessary.
  • You may contain 1 or more types of other additives chosen from the group which consists of a plasticizer, an antifoamer, a leveling agent, and a repellency inhibitor.
  • the negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components.
  • the negative photosensitive resin composition of the present invention is particularly effective when used for forming a cured film or a partition used for an optical element, for example, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell.
  • the upper surface is a partition wall having good ink repellency and good development adhesion to the substrate, and a development residue is formed in the opening partitioned by the partition wall. A sufficiently small number of partition walls can be manufactured.
  • the partition according to the present invention is a partition made of a cured film of the above-described negative photosensitive resin composition of the present invention formed so as to partition the substrate surface into a plurality of sections for forming dots.
  • the partition wall is, for example, applied to the surface of a substrate such as a substrate, the negative photosensitive resin composition of the present invention, dried as necessary to remove the solvent, etc. It is obtained by developing after masking, exposing. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition.
  • the partition wall of the embodiment according to the present invention is a partition wall having good ink repellency on the upper surface and good development adhesion to the substrate, and a development residue is present in the opening partitioned by the partition wall.
  • an optical element particularly an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell manufactured by the IJ method
  • ink can be uniformly applied to the opening to form dots with high accuracy. A remarkable effect is exhibited.
  • FIGS. 1A to 1D an example of a method for manufacturing a partition according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1D, but the method for manufacturing a partition is not limited to the following.
  • the following manufacturing methods are demonstrated as a negative photosensitive resin composition containing a solvent (E).
  • a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21.
  • the ink repellent agent (C) is totally dissolved and uniformly dispersed in the coating film 21.
  • the ink repellent agent (C) is schematically shown, and does not actually exist in such a particle shape.
  • the coating film 21 is dried to form a dry film 22.
  • the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying.
  • the heating temperature is preferably 50 to 120 ° C. in the case of heat drying.
  • the ink repellent agent (C) moves to the upper layer of the dry film. Even when the negative photosensitive resin composition does not contain the solvent (E), the upper surface transition of the ink repellent agent (C) is similarly achieved in the coating film.
  • the dry film 22 is exposed to light through a photomask 30 having a masking portion 31 having a shape corresponding to the opening surrounded by the partition walls.
  • the film after the dry film 22 is exposed is referred to as an exposure film 23.
  • the exposed portion 23 ⁇ / b> A is photocured, and the non-exposed portion 23 ⁇ / b> B is in the same state as the dry film 22.
  • excimer laser such as visible light; ultraviolet light; far ultraviolet light; KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, Kr 2 excimer laser light, KrAr excimer laser light, and Ar 2 excimer laser light.
  • Examples include light; X-ray; electron beam.
  • the light to be irradiated is preferably light having a wavelength of 100 to 600 nm, more preferably light having a wavelength of 300 to 500 nm, particularly preferably light containing i-line (365 nm), h-line (405 nm) or g-line (436 nm). Moreover, you may cut light below 330 nm as needed.
  • the exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
  • Exposure amount In any of the above exposure method, for example, preferably 5 ⁇ 1,000mJ / cm 2, more preferably 5 ⁇ 500mJ / cm 2, more preferably 5 ⁇ 300mJ / cm 2, 5 ⁇ 200mJ / cm 2 is particularly preferable, and 5 to 50 mJ / cm 2 is most preferable.
  • the exposure amount is appropriately optimized depending on the wavelength of light to be irradiated, the composition of the negative photosensitive resin composition, the thickness of the coating film, and the like.
  • the exposure time per unit area is not particularly limited, and is designed from the exposure power of the exposure apparatus to be used and the required exposure amount. In the case of scan exposure, the exposure time is determined from the light scanning speed.
  • the exposure time per unit area is usually about 1 to 60 seconds.
  • FIG. 1D shows a state after the non-exposed portion 23B is removed by development.
  • the negative photosensitive resin composition all of the alkali-soluble resin (A), the cross-linking agent (B), and the ink repellent agent (C) have an acidic group. Dissolution and removal with a liquid are easily performed, and the composition hardly remains in the opening 5.
  • the partition 4 which is a cured product of the negative photosensitive resin composition is excellent in development adhesion, it is sufficiently adhered to the substrate 1 even after development.
  • the uppermost layer including the upper surface is the ink repellent layer 4A.
  • the ink repellent agent (C) does not have a side chain having an ethylenic double bond
  • the ink repellent agent (C) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer.
  • the alkali-soluble resin (A) present around the ink repellent agent (C), the thiol compound (G) optionally contained, and other photocuring components are strongly photocured to cause the ink repellent agent. (C) is fixed to the ink repellent layer.
  • the ink repellent agent (C) When the ink repellent agent (C) has a side chain having an ethylenic double bond, the ink repellent agent (C) is mutually and / or alkali-soluble resin (A), and further optionally contains a thiol compound (G) or It is photocured together with other photocuring components to form an ink repellent layer 4A in which the ink repellent agent (C) is firmly bonded.
  • the ink repellent layer 4A has an ink-repellent layer on the lower side of the ink-repellent layer 4A, in which mainly the alkali-soluble resin (A) and the thiol compound (G) optionally contained, and other photocurable components are photocured.
  • a layer 4B containing almost no agent (C) is formed.
  • the ink repellent layer formed on the uppermost layer of the partition wall is easily removed during development.
  • the ink repellent agent (C) whose acid value is regulated within a predetermined range, it is easy to dissolve and remove with an alkaline developer in the non-exposed area at the time of development.
  • the ink repellent layer 4 ⁇ / b> A formed in the upper layer can remain without being substantially affected by the alkaline developer. Further, since the ink repellent agent (C) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, it hardly migrates to the opening during development.
  • the partition 4 may be further heated after development.
  • the heating temperature is preferably 130 to 250 ° C.
  • the partition 4 is hardened by heating. Further, the ink repellent agent (C) is more firmly fixed in the ink repellent layer 4A.
  • the cured resin film and the partition wall 4 according to the present invention thus obtained have good ink repellency on the upper surface even when the exposure is performed at a low exposure amount.
  • the ink repellent (C) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently secured.
  • the substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
  • the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the distance between adjacent partition walls (pattern width) is preferably 300 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the height of the partition wall is preferably 0.05 to 50 ⁇ m, particularly preferably 0.2 to 10 ⁇ m.
  • the partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity.
  • the high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin.
  • A-2 a resin in which an acidic group and an ethylenic double bond are introduced into an epoxy resin
  • the partition according to the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method.
  • pattern printing is performed by the IJ method
  • the partition wall according to the present invention is formed so that its opening coincides with a desired ink injection region, the partition top surface has good ink repellency. Ink can be prevented from being injected into an undesired opening, that is, an ink injection region beyond the partition.
  • the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
  • the partition wall according to the present invention is an optical element having a partition located between a plurality of adjacent dots on the surface of a substrate on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film. It is useful as a partition for solar cells.
  • an organic EL element As an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell as an optical element according to the present invention, an organic EL having a plurality of dots and a partition wall according to the present invention located between adjacent dots on the substrate surface It is an element, a quantum dot display, a TFT array, or a thin film solar cell.
  • the dots are preferably formed by the IJ method.
  • the organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode, and the partition wall according to the present invention is a partition use separating an organic light emitting layer, a partition use separating an organic TFT layer, and a coating type oxide semiconductor. It can be used for separating partition applications.
  • the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer.
  • the organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
  • an organic EL element for example, an organic EL element, an example in which dots are formed in the opening by the IJ method using the partition obtained above will be described below.
  • the formation method of the dot in optical elements, such as an organic EL element concerning this invention, is not limited to the following.
  • FIG. 2A and 2B schematically show a method of manufacturing an organic EL element using the partition walls 4 formed on the substrate 1 shown in FIG. 1D.
  • the partition 4 on the substrate 1 is formed such that the opening 5 matches the dot pattern of the organic EL element to be manufactured.
  • ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5.
  • known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
  • An optical element (an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell) according to an embodiment of the present invention uses a partition wall according to the present invention, so that ink is formed in an opening partitioned by the partition wall in the manufacturing process.
  • an optical element an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell having dots formed with high accuracy.
  • an organic EL element can be manufactured as follows, for example, it is not limited to this.
  • a light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a light-transmitting substrate such as glass by a sputtering method or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice pattern in plan view along the outline of each dot by a photolithography method including coating, exposure and development.
  • the materials for the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dot formation openings by the IJ method.
  • Laminate The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
  • a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
  • quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
  • a light-transmitting electrode such as ITO is formed on a light-transmitting substrate such as glass by a sputtering method or the like.
  • the translucent electrode is patterned as necessary.
  • partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • the materials for the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are applied and dried in the dot formation openings by the IJ method. Laminate sequentially. The kind and number of organic layers formed in the opening for forming dots are appropriately designed.
  • a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
  • optical element of the embodiment according to the present invention can be applied to a blue light conversion type quantum dot display manufactured as follows, for example.
  • a negative photosensitive resin composition of the present invention is used for a translucent substrate such as glass, and partition walls are formed in a lattice shape in plan view along the outline of each dot.
  • a nanoparticle solution that converts blue light to green light, a nanoparticle solution that converts blue light to red light, and a blue color ink if necessary are dried in the dot formation opening by the IJ method.
  • a liquid crystal display having excellent color reproducibility can be obtained by using a light source that emits blue light as a backlight and using the module as a color filter alternative.
  • the TFT array can be manufactured, for example, as follows, but is not limited thereto.
  • a gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate such as glass by a sputtering method or the like. This gate electrode is patterned as necessary.
  • a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like.
  • a source electrode and a drain electrode may be formed over the gate insulating film.
  • the source electrode and the drain electrode can be produced by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering.
  • a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist.
  • a resist is applied in advance, exposed and developed to leave the resist in a portion where it is not desired to form an electrode, and after forming the metal thin film, the photoresist is applied together with the metal thin film. There is also a technique to remove.
  • the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper.
  • partition walls are formed in a lattice pattern in plan view along the outline of each dot by photolithography including coating, exposure and development.
  • a semiconductor solution is applied in the dot forming opening by the IJ method, and the solution is dried to form a semiconductor layer.
  • an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used.
  • the source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer.
  • a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
  • Examples 1 to 9 are examples, and examples 10 to 16 are comparative examples.
  • PGMEA is an abbreviation for propylene glycol monomethyl ether acetate.
  • A-1 A resin solution obtained by reacting a cresol novolac type epoxy resin with acrylic acid and then with 1,2,3,6-tetrahydrophthalic anhydride to purify a resin into which an acryloyl group and a carboxy group have been introduced with hexane ( Solid content 70% by mass, acid value 60 mgKOH / g, mass average molecular weight 9.2 ⁇ 10 3 ).
  • A-2 RE-310S (manufactured by Nippon Kayaku Co., Ltd., bifunctional bisphenol-A type epoxy resin, epoxy equivalent: 184.0 g / equivalent) described in Example 1 (paragraph 0045) in JP-A-2003-268067 A polyurethane compound solution obtained by reacting with acrylic acid, then with dimethylolpropionic acid and trimethylhexamethylene diisocyanate, and finally with glycidyl methacrylate (solid content 65 mass%, acid value 79.32 mg KOH / g).
  • (Polyfunctional low molecular weight compound (B1)) B1-1 2,2,2-triacryloyloxymethylethylphthalic acid (acid value 87 mg KOH / g, molecular weight 446).
  • B1-2 Succinic acid ester of dipentaerythritol pentaacrylate (acid value 92 mg KOH / g, molecular weight 612).
  • 2-HEMA 2-hydroxyethyl methacrylate
  • V-65 (2,2′-azobis (2,4-dimethylvaleronitrile)
  • n-DM n-dodecyl mercaptan
  • BEI 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
  • DBTDL Dibutyltin dilaurate TBQ: t-butyl-p-benzoquinone
  • MEK 2-butanone
  • D-1 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
  • D-2 4,4′-bis (diethylamino) benzophenone.
  • ink repellent agents (C1-1), ink repellent agents (C2-1) to (C2-3) and ink repellent agents (Cf-1) to (Cf-3) for comparative examples used in Examples are as follows. Synthesized as follows.
  • ink repellent agent (C1-1) ink repellent agent (C1-1) concentration: 10 mass%, hereinafter also referred to as “ink repellent agent (C1-1) solution”.
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • C fluorine atom content
  • C C.
  • the content was 2.69 (mmol / g) and the acid value was 32.8 (mgKOH / g).
  • the acid value was 1.73 (mmol / g) and the acid value was 31.6 (mgKOH / g).
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • C fluorine atom content
  • C C.
  • the content was 1.05 (mmol / g) and the acid value was 50.3 (mgKOH / g).
  • Mn number average molecular weight
  • Mw mass average molecular weight
  • C fluorine atom content
  • C C.
  • the content was 1.76 (mmol / g) and the acid value was 227.1 (mgKOH / g).
  • Example 1 Production of negative photosensitive resin composition and production of cured film (partition)] (Manufacture of negative photosensitive resin composition) 0.25 g of the (C1-1) solution obtained in Synthesis Example 1 above, 16.07 g of A-1 (solid content is 11.25 g, the rest is EDGAC as a solvent), 6.25 g of B1-1, B2 -1 g of 5.00 g, D-1.50 g, D-2 0.75 g, E-1 70.18 g were placed in a 200 cm 3 stirring vessel and stirred for 5 hours to give negative photosensitivity. A resin composition was produced.
  • Table 1 shows the solid content concentration (% by mass) of the negative photosensitive resin composition, the composition (% by mass) of the solid content in the negative photosensitive resin composition, the composition of the solvent (% by mass), and the multifunctional low
  • the ratio (mass%) of the polyfunctional low molecular weight compound (B1) with respect to the sum total of a molecular weight compound (B1) and a non-acidic crosslinking agent (B2) is shown.
  • the negative photosensitive resin composition was applied to the cleaned ITO substrate surface using a spinner and then dried on a hot plate at 100 ° C. for 2 minutes to form a dry film having a thickness of 2.4 ⁇ m.
  • the exposure power (exposure output) in terms of 365 nm is 25 mW / through 18, 20, 30, 40, 50 ⁇ m ⁇ 1000 ⁇ m (a pattern having a spacing of 50 ⁇ m is repeated in a range of 20 mm ⁇ 20 mm).
  • the entire surface was irradiated with UV light from an ultra-high 4 pressure mercury lamp of cm 2 . During the exposure, light of 330 nm or less was cut.
  • the distance between the dry film and the photomask was 50 ⁇ m.
  • the exposure conditions were an exposure time of 6 seconds and an exposure amount of 150 mJ / cm 2 .
  • the ITO substrate after the exposure treatment was developed by immersing it in a 0.4 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the unexposed portion was washed away with water and dried.
  • an ITO substrate with a cured film (partition wall) 1 having a pattern corresponding to the opening pattern of the photomask was obtained by heating on a hot plate at 230 ° C. for 60 minutes.
  • a dry film of the negative photosensitive resin composition is formed on the surface of the ITO substrate in the same manner as described above, and a photomask (the size of the light shielding part: 100 ⁇ m ⁇ 200 ⁇ m and the width of the opening (exposed part): 20 ⁇ m.
  • the dried film is exposed under the same exposure conditions as above using an exposure pattern of 20 m ⁇ 20 mm, and the exposure amount is 150 mJ / cm 2. Development was performed under the same conditions, and heating was performed on a hot plate at 230 ° C. for 60 minutes to obtain an ITO substrate with a cured film 2 in a pattern in which a dot portion (100 ⁇ m ⁇ 200 ⁇ m) was surrounded by a partition having a line width of 20 ⁇ m.
  • Example 2 A negative photosensitive resin composition, a cured resin film, and a partition wall were produced in the same manner as in Example 1 except that the negative photosensitive resin composition was changed to the composition shown in Table 1 or Table 2.
  • Spreads uniformly within the dot, and the material reaches the partition wall.
  • X Not spread within the dot.
  • Photomask having an opening pattern of the cured resin film 1 (opening portions (exposure portions) are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20 , 30, 40, 50 ⁇ m ⁇ 1000 ⁇ m), the partition walls obtained with an exposure amount of 150 mJ / cm 2 were observed with a microscope, and judged according to the following criteria:
  • A line with a mask width of less than 10 ⁇ m remains.
  • A line of 10 ⁇ m or more and less than 20 ⁇ m remains.
  • X A line of 20 ⁇ m or more and 50 ⁇ m or less remains.
  • XX No line pattern.
  • the liquid repellent at the upper part of the partition wall was selected by selecting the crosslinking agent (B) and the ink repellent agent (C).
  • the coating property is good, the IJ coating property in the dots surrounded by the partition walls is good, and a high-definition partition pattern can be formed.
  • the negative photosensitive resin composition of the present invention can be suitably used as a composition for forming barrier ribs when performing pattern printing by the IJ method in organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells. it can.
  • the barrier ribs according to the present invention include barrier ribs (banks) for pattern printing of organic layers such as light emitting layers by the IJ method in organic EL elements, or quantum dot layers and hole transport layers in quantum dot displays by the IJ method. Can be used as partition walls (banks) for pattern printing.
  • the partition according to the present invention can also be used as a partition for pattern printing of a conductor pattern or a semiconductor pattern by the IJ method in a TFT array.
  • the partition according to the present invention can be used as a partition for pattern printing of an organic semiconductor layer, a gate electrode, a source electrode, a drain electrode, a gate wiring, a source wiring, and the like forming a channel layer of a TFT by an IJ method.

Abstract

Provided is a negative photosensitive resin composition which enables the achievement of a partition wall that has high development adhesion, while having good ink repellency in the upper surface, and which is sufficiently reduced in development residues in openings for dot formation. A negative photosensitive resin composition which contains (A) an alkali-soluble resin having a photocurable functional group, (B) a crosslinking agent containing (B1) a polyfunctional low-molecular-weight compound that has an acidic group and two or more photocurable functional groups in each molecule, (C) an ink repellent agent that has an acidic group and a fluorine atom, while having an acid value of 10-100 mgKOH/g, (D) a photopolymerization initiator, and (E) a solvent.

Description

ネガ型感光性樹脂組成物Negative photosensitive resin composition
 本発明は、ネガ型感光性樹脂組成物に関する。 The present invention relates to a negative photosensitive resin composition.
 有機EL(Electro-Luminescence)素子、量子ドットディスプレイ、TFT(Thin Film Transistor)アレイ、薄膜太陽電池等の光学素子の製造においては、発光層等の有機層をドットとして、インクジェット(IJ)法にてパターン印刷する方法を用いることがある。かかる方法においては、形成しようとするドットの輪郭に沿って隔壁を設け、該隔壁で囲まれた区画(以下、「開口部」ともいう。)内に、有機層の材料を含むインクを注入し、これを乾燥および/または加熱等することにより所望のパターンのドットを形成する。 In the production of optical elements such as organic EL (Electro-Luminescence) elements, quantum dot displays, TFT (Thin Film Transistor) arrays, thin film solar cells, etc., an organic layer such as a light emitting layer is used as a dot by an inkjet (IJ) method. A pattern printing method may be used. In such a method, a partition is provided along the outline of the dot to be formed, and an ink containing the material of the organic layer is injected into a partition (hereinafter also referred to as “opening”) surrounded by the partition. This is dried and / or heated to form dots having a desired pattern.
 インクジェット(IJ)法にてパターン印刷をする際には、隣接するドット間におけるインクの混合防止とドット形成におけるインクの均一塗布のため、隔壁上面は撥インク性を有する必要がある。その一方で、隔壁側面を含む隔壁で囲まれたドット形成用の開口部は親インク性を有する必要がある。そこで、上面に撥インク性を有する隔壁を得るために、撥インク剤を含ませたネガ型感光性樹脂組成物を用いて塗膜形成、露光、現像の各工程を有するフォトリソグラフィ法によりドットのパターンに対応する隔壁を形成する方法が知られている。 When pattern printing is performed by the inkjet (IJ) method, the upper surface of the partition wall needs to have ink repellency in order to prevent ink mixing between adjacent dots and to uniformly apply ink in dot formation. On the other hand, the dot forming opening surrounded by the partition including the partition side surface needs to have ink affinity. Therefore, in order to obtain a partition wall having ink repellency on the upper surface, a dot-type photolithography method having coating film formation, exposure, and development steps using a negative photosensitive resin composition containing an ink repellant is used. A method of forming a partition corresponding to a pattern is known.
 このようなネガ型感光性樹脂組成物を用いた隔壁形成において、現像後、開口部に該組成物の残渣(以下、「現像残渣」ともいう。)が存在すると、その後、IJ法によって開口部に供給されるインクの濡れ広がりが充分でない場合がある。また、開口部における現像残渣を減少させる方法として、ネガ型感光性樹脂組成物を現像液に除去され易い組成に調整する方法があるが、該方法では、隔壁上面の撥インク性を充分に保てないという問題があった。 In the partition formation using such a negative photosensitive resin composition, after development, if a residue of the composition (hereinafter, also referred to as “development residue”) is present in the opening, then the opening is formed by the IJ method. In some cases, wetting and spreading of the ink supplied to the ink is not sufficient. Further, as a method of reducing the development residue in the opening, there is a method of adjusting the negative photosensitive resin composition to a composition that can be easily removed by the developer. However, in this method, the ink repellency on the upper surface of the partition wall is sufficiently maintained. There was a problem that it was not.
 例えば、特許文献1においては、(A)成分;エチレン性不飽和化合物、(B)成分;光重合開始剤、(C)成分;側鎖にエチレン性不飽和基を有するアルカリ可溶性バインダー、および(D)成分;側鎖にエチレン性不飽和基を有するフッ素系化合物からなる撥液剤、(E)成分;フッ素系界面活性剤および/またはシリコーン系界面活性剤を含有するアクティブ駆動型有機電界発光素子の隔壁用感光性組成物が記載されている。 For example, in Patent Document 1, component (A); ethylenically unsaturated compound, component (B); photopolymerization initiator, component (C); an alkali-soluble binder having an ethylenically unsaturated group in the side chain, and ( D) component; a liquid repellent comprising a fluorine-based compound having an ethylenically unsaturated group in the side chain; (E) component; an active drive organic electroluminescence device containing a fluorine-based surfactant and / or a silicone-based surfactant The photosensitive composition for partition walls is described.
 特許文献1には、アルカリ可溶性バインダー以外の成分、例えば、(A)成分や(D)成分にカルボン酸を導入することで、現像性が改善できる旨の記載があり、実施例にその例が示されている。実施例によれば、(A)成分にカルボン酸を導入した場合には、現像性と撥インク性は両立しているが、カルボン酸を導入した撥液剤((D)成分)を用いた場合には、現像性は良好であっても充分な撥インク性が得られていない。 In Patent Document 1, there is a description that developability can be improved by introducing a carboxylic acid into a component other than the alkali-soluble binder, for example, the component (A) or the component (D). It is shown. According to the examples, when the carboxylic acid is introduced into the component (A), the developability and the ink repellency are compatible, but the liquid repellent (the component (D)) into which the carboxylic acid is introduced is used. However, sufficient ink repellency is not obtained even though the developability is good.
 このように、特許文献1では組成により隔壁上面の撥インク性と開口部のインク濡れ性を両立できるとしているが、より高精度の光学素子に充分対応できるまでの隔壁上面の撥インク性と開口部のインク濡れ性は達成できていない。 As described above, in Patent Document 1, the ink repellency on the upper surface of the partition wall and the ink wettability on the opening portion can be compatible by the composition. However, the ink repellency and the opening on the upper surface of the partition wall enough to cope with a higher-precision optical element. The ink wettability of the part has not been achieved.
 また、特許文献2には、現像残渣をUV/O照射により除去する方法に好適な撥インク剤において、該撥インク剤に酸性基を導入することで現像液への溶解性を改善する技術が記載されている。しかしながら、特許文献2による撥インク剤をネガ型感光性樹脂組成物に用いた場合、特許文献1の場合と同様に撥インク性および現像密着性において充分とは言い難かった。 Patent Document 2 discloses a technique for improving solubility in a developer by introducing an acidic group into an ink repellent agent suitable for a method of removing development residues by UV / O 3 irradiation. Is described. However, when the ink repellent agent according to Patent Document 2 is used for the negative photosensitive resin composition, it is difficult to say that ink repellent property and development adhesion are sufficient as in the case of Patent Document 1.
特開2011-165396号公報JP 2011-165396 A 国際公開第2014/046210号International Publication No. 2014/046212
 本発明は、上記観点からなされたものであって、得られる隔壁の現像密着性が高くかつ上面が良好な撥インク性を有するとともに、ドット形成用の開口部において現像残渣が充分に少ない、ネガ型感光性樹脂組成物の提供を目的とする。 The present invention has been made from the above viewpoint, and the obtained partition wall has high development adhesiveness and good ink repellency on the upper surface, and the development residue is sufficiently small in the opening for forming dots. It aims at providing a type photosensitive resin composition.
 本発明は、以下の構成を有する。
[1] 光硬化性官能基を有するアルカリ可溶性樹脂(A)、1分子中に酸性基と2個以上の光硬化性官能基を有する多官能低分子量化合物(B1)を含む架橋剤(B)、酸性基とフッ素原子を有し酸価が10~100mgKOH/gである撥インク剤(C)、光重合開始剤(D)、および溶媒(E)を含むネガ型感光性樹脂組成物。
[2] 前記多官能低分子量化合物(B1)は、光硬化性官能基を4個以上有する[1]に記載のネガ型感光性樹脂組成物。
[3] 前記多官能低分子量化合物(B1)は、ジペンタエリスリトール骨格を有する[1]または[2]に記載のネガ型感光性樹脂組成物。
[4] 前記撥インク剤(C)中のフッ素原子の含有率は、5~55質量%である[1]~[3]のいずれかに記載のネガ型感光性樹脂組成物。
[5] 前記撥インク剤(C)は、光硬化性官能基を含む[1]~[4]のいずれかに記載のネガ型感光性樹脂組成物。
[6] 前記架橋剤(B)は、さらに1分子中に2個以上の光硬化性官能基を有し、酸性基を有しない架橋剤(B2)を含む、[1]~[5]のいずれかに記載のネガ型感光性樹脂組成物。
[7] 前記多官能低分子量化合物(B1)と前記架橋剤(B2)の合計100質量部に対して前記多官能低分子量化合物(B1)を10~90質量部の割合で含有する[6]記載のネガ型感光性樹脂組成物。
The present invention has the following configuration.
[1] Alkali-soluble resin (A) having a photocurable functional group (A) Crosslinking agent (B) containing a polyfunctional low molecular weight compound (B1) having an acidic group and two or more photocurable functional groups in one molecule A negative photosensitive resin composition comprising an ink repellent agent (C) having an acidic group and a fluorine atom and an acid value of 10 to 100 mgKOH / g, a photopolymerization initiator (D), and a solvent (E).
[2] The negative photosensitive resin composition according to [1], wherein the polyfunctional low molecular weight compound (B1) has four or more photocurable functional groups.
[3] The negative photosensitive resin composition according to [1] or [2], wherein the polyfunctional low molecular weight compound (B1) has a dipentaerythritol skeleton.
[4] The negative photosensitive resin composition according to any one of [1] to [3], wherein the fluorine atom content in the ink repellent agent (C) is from 5 to 55% by mass.
[5] The negative photosensitive resin composition according to any one of [1] to [4], wherein the ink repellent agent (C) contains a photocurable functional group.
[6] The crosslinking agent (B) further includes a crosslinking agent (B2) having two or more photocurable functional groups in one molecule and having no acidic group. The negative photosensitive resin composition in any one.
[7] The polyfunctional low molecular weight compound (B1) is contained at a ratio of 10 to 90 parts by mass with respect to 100 parts by mass in total of the polyfunctional low molecular weight compound (B1) and the crosslinking agent (B2). The negative photosensitive resin composition as described.
 本発明によれば、得られる隔壁の現像密着性が高くかつ上面が良好な撥インク性を有するとともに、ドット形成用の開口部において現像残渣が充分に少ない、ネガ型感光性樹脂組成物が提供できる。 According to the present invention, there is provided a negative photosensitive resin composition in which the obtained partition wall has high development adhesiveness and good ink repellency on the upper surface, and development residue is sufficiently small in the opening for forming dots. it can.
本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の隔壁の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the partition of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention. 本発明の実施形態の光学素子の製造方法を模式的に示す工程図である。It is process drawing which shows typically the manufacturing method of the optical element of embodiment of this invention.
 本明細書において、次の用語は、それぞれ、下記の意味で使用される。
 「(メタ)アクリロイル基」は、「メタクリロイル基」と「アクリロイル基」の総称である。(メタ)アクリロイルオキシ基、(メタ)アクリル酸、および(メタ)アクリレート、もこれに準じる。
In the present specification, the following terms are respectively used with the following meanings.
“(Meth) acryloyl group” is a general term for “methacryloyl group” and “acryloyl group”. (Meth) acryloyloxy group, (meth) acrylic acid, and (meth) acrylate also conform to this.
 式(x)で表される基を、単に基(x)と記載することがある。
 式(y)で表される化合物を、単に化合物(y)と記載することがある。
 ここで、式(x)、式(y)は、任意の式を示している。
The group represented by the formula (x) may be simply referred to as a group (x).
The compound represented by the formula (y) may be simply referred to as the compound (y).
Here, the expressions (x) and (y) indicate arbitrary expressions.
 「ある成分を主として構成される樹脂」または「ある成分を主体とする樹脂」とは、該成分の割合が樹脂全量に対して50質量%以上を占めることをいう。 “A resin mainly composed of a certain component” or “a resin mainly composed of a certain component” means that the proportion of the component occupies 50% by mass or more based on the total amount of the resin.
 「側鎖」とは、炭素原子からなる繰り返し単位が主鎖を構成する重合体において、主鎖を構成する炭素原子に結合する、水素原子またはハロゲン原子以外の基である。 The “side chain” is a group other than a hydrogen atom or a halogen atom bonded to a carbon atom constituting the main chain in a polymer in which a repeating unit composed of carbon atoms constitutes the main chain.
 「感光性樹脂組成物の全固形分」とは、感光性樹脂組成物が含有する成分のうち後述する硬化膜を形成する成分を指し、感光性樹脂組成物を140℃で24時間加熱して溶媒を除去した残存物から求める。なお、全固形分量は仕込み量からも計算できる。 The “total solid content of the photosensitive resin composition” refers to a component that forms a cured film described later among the components contained in the photosensitive resin composition, and the photosensitive resin composition is heated at 140 ° C. for 24 hours. Obtained from the residue from which the solvent has been removed. The total solid content can also be calculated from the charged amount.
 樹脂を主成分とする組成物の硬化物からなる膜を「樹脂硬化膜」という。
 感光性樹脂組成物を塗布した膜を「塗膜」、それを乾燥させた膜を「乾燥膜」という。該「乾燥膜」を硬化させて得られる膜は「樹脂硬化膜」である。また、「樹脂硬化膜」を単に「硬化膜」ということもある。
A film made of a cured product of a composition containing resin as a main component is referred to as a “resin cured film”.
A film coated with the photosensitive resin composition is referred to as a “coating film”, and a film obtained by drying the film is referred to as a “dry film”. A film obtained by curing the “dry film” is a “resin cured film”. Further, the “resin cured film” may be simply referred to as “cured film”.
 樹脂硬化膜は、所定の領域を複数の区画に仕切る形に形成された隔壁の形態であってもよい。隔壁で仕切られた区画、すなわち隔壁で囲まれた開口部に、例えば、以下の「インク」が注入され、「ドット」が形成される。 The resin cured film may be in the form of a partition formed in a shape that partitions a predetermined region into a plurality of sections. For example, the following “ink” is injected into the partitions partitioned by the partition walls, that is, the openings surrounded by the partition walls to form “dots”.
 「インク」とは、乾燥、硬化等した後に、光学的および/または電気的な機能を有する液体を総称する用語である。有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池においては、各種構成要素としてのドットを、該ドット形成用のインクを用いてインクジェット(IJ)法によりパターン印刷することがある。「インク」には、かかる用途に用いられるインクが含まれる。 “Ink” is a general term for liquids having optical and / or electrical functions after drying, curing, and the like. In an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell, dots as various constituent elements may be pattern-printed by an ink jet (IJ) method using the ink for forming the dots. “Ink” includes ink used in such applications.
 「撥インク性」とは、上記インクをはじく性質であり、撥水性と撥油性の両方を有する。撥インク性は、例えば、インクを滴下したときの接触角により評価できる。「親インク性」は撥インク性と相反する性質であり、撥インク性と同様にインクを滴下したときの接触角により評価できる。または、インクを滴下したときのインクの濡れ広がりの程度(インクの濡れ広がり性)を所定の基準で評価することにより親インク性が評価できる。 “Ink repellency” is a property of repelling the above ink and has both water repellency and oil repellency. The ink repellency can be evaluated by, for example, a contact angle when ink is dropped. “Ink affinity” is a property opposite to ink repellency, and can be evaluated by the contact angle when ink is dropped as in the case of ink repellency. Alternatively, the ink affinity can be evaluated by evaluating the degree of ink wetting and spreading (ink wetting and spreading property) when ink is dropped on a predetermined standard.
 「ドット」とは、光学素子における光変調可能な最小領域を示す。有機EL素子、量子ドットディスプレイ、TFTアレイおよび薄膜太陽電池においては、白黒表示の場合に1ドット=1画素であり、カラー表示の場合に例えば3ドット(R(赤)、G(緑)、B(青)等)=1画素である。
 「パーセント(%)」は、特に説明のない場合、質量%を表す。
 以下、本発明の実施の形態を説明する。
The “dot” indicates a minimum area where light modulation is possible in the optical element. In an organic EL element, a quantum dot display, a TFT array, and a thin film solar cell, 1 dot = 1 pixel in the case of black and white display, for example, 3 dots (R (red), G (green), B in the case of color display. (Blue) etc. = 1 pixel.
“Percent (%)” represents mass% unless otherwise specified.
Embodiments of the present invention will be described below.
[ネガ型感光性樹脂組成物]
 本発明のネガ型感光性樹脂組成物は、光硬化性官能基を有するアルカリ可溶性樹脂(A)、1分子中に酸性基と2個以上の光硬化性官能基を有する多官能低分子量化合物(B1)を含む架橋剤(B)、酸性基とフッ素原子を有し酸価が10~100mgKOH/gである撥インク剤(C)、光重合開始剤(D)、および溶媒(E)を含有する。
[Negative photosensitive resin composition]
The negative photosensitive resin composition of the present invention is an alkali-soluble resin (A) having a photocurable functional group (A), a polyfunctional low molecular weight compound having an acidic group and two or more photocurable functional groups in one molecule ( B1) containing a crosslinking agent (B), an acid repellent agent (C) having an acid group and a fluorine atom and an acid value of 10 to 100 mgKOH / g, a photopolymerization initiator (D), and a solvent (E) To do.
 本発明のネガ型感光性樹脂組成物は、架橋剤(B)として酸性基を有する多官能低分子量化合物(B1)を含有し、上記所定の酸価を有する撥インク剤(C)を組み合せて用いることで、現像密着性が高くかつ上面は良好な撥インク性を有するとともに、開口部において現像残渣が充分に少ない隔壁が形成可能である。このような隔壁を、光学素子、例えば、有機EL素子用、量子ドットディスプレイ用、TFTアレイ用または薄膜太陽電池に使用すれば、IJ法等によるインク塗布性が良好であることで精度よくドットが形成でき、高感度な光学素子が製造可能である。 The negative photosensitive resin composition of the present invention contains a polyfunctional low molecular weight compound (B1) having an acidic group as a crosslinking agent (B), and a combination of the ink repellent agent (C) having the predetermined acid value. By using it, it is possible to form a partition wall having high development adhesion and having a good ink repellency on the upper surface and sufficiently small development residue in the opening. If such a partition wall is used for an optical element, for example, an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell, the dot can be accurately formed due to good ink applicability by the IJ method or the like. A highly sensitive optical element that can be formed can be manufactured.
 本発明のネガ型感光性樹脂組成物は、上記必須成分に加えて、必要に応じて、酸性基を有しない架橋剤(B2)、その他の任意成分を含有する。以下、各成分について説明する。 The negative photosensitive resin composition of the present invention contains a crosslinking agent (B2) having no acidic group and other optional components, if necessary, in addition to the above essential components. Hereinafter, each component will be described.
(アルカリ可溶性樹脂(A))
 アルカリ可溶性樹脂(A)は光硬化性官能基を有するアルカリ可溶性樹脂である。アルカリ可溶性樹脂(A)としては、1分子中に酸性基とエチレン性二重結合とを有する感光性樹脂が好ましい。アルカリ可溶性樹脂(A)が分子中にエチレン性二重結合を有することで、ネガ型感光性樹脂組成物の露光部は、光重合開始剤(D)から発生したラジカルにより重合し、併せて架橋剤(B)により架橋して、硬化し硬化膜を形成する。
(Alkali-soluble resin (A))
The alkali-soluble resin (A) is an alkali-soluble resin having a photocurable functional group. As alkali-soluble resin (A), the photosensitive resin which has an acidic group and an ethylenic double bond in 1 molecule is preferable. Since the alkali-soluble resin (A) has an ethylenic double bond in the molecule, the exposed portion of the negative photosensitive resin composition is polymerized by radicals generated from the photopolymerization initiator (D), and is also crosslinked. It crosslinks with the agent (B) and cures to form a cured film.
 このようにして充分に硬化した露光部はアルカリ現像液(以下、単に「現像液」ともいう)にて容易に除去されない。また、アルカリ可溶性樹脂(A)および架橋剤(B)が含有する多官能低分子量化合物(B1)が分子中に酸性基を有することで、硬化していないネガ型感光性樹脂組成物の非露光部を、現像液にて選択的に除去できる。その結果、硬化膜を、所定の領域を複数の区画に仕切る形の隔壁の形態とすることができる。 The exposed portion sufficiently cured in this way is not easily removed with an alkaline developer (hereinafter also simply referred to as “developer”). Moreover, the non-exposure of the negative photosensitive resin composition which is not hardened because the polyfunctional low molecular weight compound (B1) contained in the alkali-soluble resin (A) and the crosslinking agent (B) has an acidic group in the molecule. The portion can be selectively removed with a developer. As a result, the cured film can be in the form of a partition that partitions a predetermined region into a plurality of sections.
 酸性基としては、カルボキシ基、フェノール性水酸基、スルホ基およびリン酸基等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。 Examples of the acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more.
 光硬化性官能基としてはエチレン性二重結合が好ましい。エチレン性二重結合としては、(メタ)アクリロイル基、アリル基、ビニル基、ビニルオキシ基およびビニルオキシアルキル基等の付加重合性を有する二重結合が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。なお、エチレン性二重結合が有する水素原子の一部または全てが、メチル基等のアルキル基で置換されていてもよい。 As the photocurable functional group, an ethylenic double bond is preferable. Examples of the ethylenic double bond include double bonds having an addition polymerization property such as a (meth) acryloyl group, an allyl group, a vinyl group, a vinyloxy group, and a vinyloxyalkyl group. These may be used alone or in combination of two or more. In addition, some or all of the hydrogen atoms possessed by the ethylenic double bond may be substituted with an alkyl group such as a methyl group.
 エチレン性二重結合を有するアルカリ可溶性樹脂(A)としては、酸性基を有する側鎖とエチレン性二重結合を有する側鎖と、を有する樹脂(A-1)、およびエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)等が挙げられる。これらは1種を単独で用いても2種以上を併用してもよい。このようなアルカリ可溶性樹脂(A)としては、WO2014/084279号明細書に記載されているものが使用できる。 Examples of the alkali-soluble resin (A) having an ethylenic double bond include a resin (A-1) having a side chain having an acidic group and a side chain having an ethylenic double bond, and an acidic group in the epoxy resin. And a resin (A-2) having an ethylenic double bond introduced therein. These may be used alone or in combination of two or more. As such an alkali-soluble resin (A), those described in WO 2014/084279 can be used.
 アルカリ可溶性樹脂(A)としては、現像時の硬化膜の剥離が抑制されて、高解像度のドットのパターンを得ることができる点、ドットが直線状である場合のパターンの直線性が良好である点、平滑な硬化膜表面が得られやすい点で、樹脂(A-2)を用いることが好ましい。なお、パターンの直線性が良好であるとは、得られる隔壁の縁に欠け等がなく直線的であることをいう。 As alkali-soluble resin (A), peeling of the cured film at the time of development is suppressed, and a high-resolution dot pattern can be obtained, and the linearity of the pattern when the dots are linear is good. In view of the fact that a smooth cured film surface is easily obtained, it is preferable to use the resin (A-2). In addition, that the linearity of a pattern is favorable means that the edge of the partition obtained does not have a chip etc. and is linear.
 樹脂(A-1)としては、アクリル酸、2-ヒドロキシメタクリレートおよびその他のモノマーの共重合体に2-アクリロイルオキシチルイソシアネートなどを反応させたものが挙げられる。 Examples of the resin (A-1) include those obtained by reacting 2-acryloyloxytyl isocyanate with a copolymer of acrylic acid, 2-hydroxymethacrylate and other monomers.
 また、特開2001-33960の(A)成分である不飽和基含有ウレタン樹脂、特開2003-268067の(E)成分であるポリウレタン化合物、特開2010-280812の(A)成分である反応性ポリウレタン化合物などのウレタン系樹脂が挙げられる。 Further, the unsaturated group-containing urethane resin as component (A) in JP-A-2001-33960, the polyurethane compound as component (E) in JP-A-2003-268067, and the reactivity as component (A) in JP-A-2010-280812. Examples thereof include urethane resins such as polyurethane compounds.
 具体的には、2官能のエポキシ樹脂とアクリル酸を反応させた2重結合および水酸基を有する化合物、ジメチロールプロピオン酸などのカルボキシル基を有するジオール化合物およびトリメチルヘキサメチレンジイソシアネートなどのジイソシアネート化合物、任意成分としてグリシジルメタクリレートや無水フタル酸などの多塩基酸無水物などを反応させた樹脂が挙げられる。 Specifically, a compound having a double bond and a hydroxyl group obtained by reacting a bifunctional epoxy resin and acrylic acid, a diol compound having a carboxyl group such as dimethylolpropionic acid, and a diisocyanate compound such as trimethylhexamethylene diisocyanate, an optional component And a resin obtained by reacting a polybasic acid anhydride such as glycidyl methacrylate or phthalic anhydride.
 前記2官能のエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂が挙げられる。 Examples of the bifunctional epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenol methane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton. And epoxy resin having fluorenyl substitution and bisphenol A type epoxy resin.
 特に、ウレタン系樹脂を使用した場合、柔軟性を付与することができ、またアルカリ耐性も良好となり、現像液への分散安定性も良好になり好ましい。 In particular, the use of a urethane-based resin is preferable because flexibility can be imparted, alkali resistance is good, and dispersion stability in the developer is also good.
 樹脂(A-2)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、特開2006-84985明細書に記載のエポキシ樹脂にそれぞれ酸性基とエチレン性二重結合とを導入した樹脂が好ましい。 Examples of the resin (A-2) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenolmethane type epoxy resin, epoxy resin having naphthalene skeleton, and biphenyl skeleton. An epoxy resin having an acidic group and an ethylenic double bond are preferably introduced into the epoxy resin having fluorenyl-substituted bisphenol A type epoxy resin and the epoxy resin described in JP-A-2006-84985.
 ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、特開2006-84985明細書に記載のエポキシ樹脂にそれぞれ酸性基とエチレン性二重結合とを導入した樹脂がより好ましい。 Bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxy resin having biphenyl skeleton, fluorenyl substituted bisphenol A type epoxy resin, and epoxy resin described in JP-A-2006-84985, respectively, have an acidic group and an ethylenic double bond. A resin into which is introduced is more preferable.
 中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フルオレニル置換ビスフェノールA型エポキシ樹脂、が特に好ましい。これらの樹脂であると、光重合開始剤(D)との相互作用が向上し、基材との密着力が向上する。 Of these, bisphenol A type epoxy resins, bisphenol F type epoxy resins, epoxy resins having a biphenyl skeleton, and fluorenyl-substituted bisphenol A type epoxy resins are particularly preferable. When these resins are used, the interaction with the photopolymerization initiator (D) is improved, and the adhesion with the substrate is improved.
 アルカリ可溶性樹脂(A)が、1分子中に有するエチレン性二重結合の数は、平均3個以上が好ましく、平均6個以上が特に好ましい。エチレン性二重結合の数が上記範囲の下限値以上であると、露光部分と未露光部分とのアルカリ溶解度に差がつきやすく、より少ない露光量での微細なパターン形成が可能となる。 The number of ethylenic double bonds in one molecule of the alkali-soluble resin (A) is preferably 3 or more on average, and particularly preferably 6 or more on average. When the number of ethylenic double bonds is at least the lower limit of the above range, the alkali solubility between the exposed and unexposed portions is likely to be different, and a fine pattern can be formed with a smaller exposure amount.
 アルカリ可溶性樹脂(A)の質量平均分子量(Mw)は、1.0×10~20×10が好ましく、2×10~15×10が特に好ましい。また、数平均分子量(Mn)は、500~13×10が好ましく、1.0×10~10×10が特に好ましい。質量平均分子量(Mw)および数平均分子量(Mn)が上記範囲の下限値以上であると、露光時の硬化が充分であり、上記範囲の上限値以下であると、現像性が良好である。 The mass average molecular weight (Mw) of the alkali-soluble resin (A) is preferably 1.0 × 10 3 to 20 × 10 3 , particularly preferably 2 × 10 3 to 15 × 10 3 . The number average molecular weight (Mn) is preferably 500 to 13 × 10 3 , and particularly preferably 1.0 × 10 3 to 10 × 10 3 . When the mass average molecular weight (Mw) and the number average molecular weight (Mn) are not less than the lower limit of the above range, curing at the time of exposure is sufficient, and when it is not more than the upper limit of the above range, the developability is good.
 なお、本明細書において、数平均分子量(Mn)および質量平均分子量(Mw)は、特に断りのない限り、ゲルパーミエーションクロマトグラフィ法により、ポリスチレンを標準物質として、測定されたものをいう。 In the present specification, the number average molecular weight (Mn) and the mass average molecular weight (Mw) are those measured by a gel permeation chromatography method using polystyrene as a standard substance unless otherwise specified.
 アルカリ可溶性樹脂(A)の酸価は、10~300mgKOH/gが好ましく、10~150mgKOH/gが特に好ましい。アルカリ可溶性樹脂(A)の酸価が上記範囲であると、ネガ型用感光性組成物の現像性が良好になる。 The acid value of the alkali-soluble resin (A) is preferably 10 to 300 mgKOH / g, particularly preferably 10 to 150 mgKOH / g. When the acid value of the alkali-soluble resin (A) is within the above range, the developability of the negative photosensitive composition is improved.
 ネガ型感光性樹脂組成物が含有するアルカリ可溶性樹脂(A)は、1種を単独で用いても2種以上を併用してもよい。 The alkali-soluble resin (A) contained in the negative photosensitive resin composition may be used alone or in combination of two or more.
 ネガ型感光性樹脂組成物における全固形分中のアルカリ可溶性樹脂(A)の含有割合は、5~80質量%が好ましく、10~60質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 The content of the alkali-soluble resin (A) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
(架橋剤(B))
 架橋剤(B)は、1分子中に酸性基と2個以上の光硬化性官能基を有する多官能低分子量化合物(B1)を含有し、好ましくは、さらに、1分子中に2個以上の光硬化性官能基を有し、酸性基を有しない架橋剤(B2)(以下、「非酸性架橋剤(B2)」ともいう。)を含有する。架橋剤(B)は1分子中に2個以上の光硬化性官能基を有することで、光重合開始剤(D)の作用により、アルカリ可溶性樹脂(A)の光硬化性官能基と反応する。これらを含有する本発明のネガ型感光性樹脂組成物は、露光によりアルカリ可溶性樹脂(A)が重合する際に架橋剤(B)による架橋が行われることで充分に硬化した硬化膜となる。
(Crosslinking agent (B))
The crosslinking agent (B) contains a polyfunctional low molecular weight compound (B1) having an acidic group and two or more photocurable functional groups in one molecule, preferably two or more in one molecule. It contains a crosslinking agent (B2) having a photocurable functional group and no acidic group (hereinafter also referred to as “non-acidic crosslinking agent (B2)”). Since the crosslinking agent (B) has two or more photocurable functional groups in one molecule, it reacts with the photocurable functional group of the alkali-soluble resin (A) by the action of the photopolymerization initiator (D). . The negative photosensitive resin composition of the present invention containing these becomes a cured film sufficiently cured by crosslinking with the crosslinking agent (B) when the alkali-soluble resin (A) is polymerized by exposure.
<多官能低分子量化合物(B1)>
 多官能低分子量化合物(B1)は1分子中に酸性基と2個以上の光硬化性官能基を有する単量体である。なお、本発明における「低分子量化合物」とは、いわゆる高分子物質(樹脂)に相対する概念を意味する。本明細書において、「低分子量化合物」は、「単量体」、「二量体」、「三量体」、および「オリゴマー」を包含する概念で用いる。また、本明細書において、「低分子量化合物」とは、質量平均分子量(Mw)が1000未満の化合物をいう。
<Polyfunctional low molecular weight compound (B1)>
The polyfunctional low molecular weight compound (B1) is a monomer having an acidic group and two or more photocurable functional groups in one molecule. The “low molecular weight compound” in the present invention means a concept opposite to a so-called high molecular substance (resin). In the present specification, “low molecular weight compound” is used in a concept including “monomer”, “dimer”, “trimer”, and “oligomer”. In the present specification, the “low molecular weight compound” means a compound having a mass average molecular weight (Mw) of less than 1000.
 多官能低分子量化合物(B1)の質量平均分子量(Mw)は、300以上1000未満が好ましく、500以上800未満がより好ましい。また、数平均分子量(Mn)は、300以上1000未満が好ましく、500以上800未満が特に好ましい。質量平均分子量(Mw)および数平均分子量(Mn)が上記範囲であると、アルカリ溶解性、現像性が良好である。 The mass average molecular weight (Mw) of the polyfunctional low molecular weight compound (B1) is preferably 300 or more and less than 1000, and more preferably 500 or more and less than 800. The number average molecular weight (Mn) is preferably 300 or more and less than 1000, and particularly preferably 500 or more and less than 800. When the mass average molecular weight (Mw) and the number average molecular weight (Mn) are in the above ranges, alkali solubility and developability are good.
 多官能低分子量化合物(B1)が有する光硬化性官能基は、アルカリ可溶性樹脂(A)が有する光硬化性官能基と同じ種類の光硬化性官能基が好ましく、具体的には、エチレン性二重結合が好ましい。多官能低分子量化合物(B1)における1分子中の光硬化性官能基の数は、2個以上であればよく、3個以上が好ましく、4個以上がより好ましく、5個以上が特に好ましい。光硬化性官能基の数が多いほど、塗膜表面の硬化性が向上し、得られる隔壁上面において撥インク性の安定性が良好となる。 The photocurable functional group possessed by the polyfunctional low molecular weight compound (B1) is preferably the same type of photocurable functional group as that possessed by the alkali-soluble resin (A). A double bond is preferred. The number of photocurable functional groups in one molecule in the polyfunctional low molecular weight compound (B1) may be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more. As the number of photocurable functional groups increases, the curability of the coating film surface is improved, and the stability of ink repellency is improved on the upper surface of the obtained partition wall.
 多官能低分子量化合物(B1)が有する酸性基としては、カルボキシ基、フェノール性水酸基、スルホ基およびリン酸基等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。多官能低分子量化合物(B1)1分子中の酸性基の数は、1個以上であればよく、1~2個が好ましく、1個がより好ましい。 Examples of the acidic group possessed by the polyfunctional low molecular weight compound (B1) include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more. Also good. The number of acidic groups in one molecule of the polyfunctional low molecular weight compound (B1) may be 1 or more, preferably 1 or 2, and more preferably 1.
 多官能低分子量化合物(B1)としては、例えば、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル、ポリイソシアネート化合物と(メタ)アクリロイル含有ヒドロキシ化合物とを反応させたウレタン骨格を有するエチレン性化合物等に、不飽和結合(エチレン性二重結合)を2個以上残すようにして、酸性基を導入した化合物等が挙げられる。 Examples of the polyfunctional low molecular weight compound (B1) include an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, an ester of an aromatic polyhydroxy compound and an unsaturated carboxylic acid, a polyisocyanate compound and (meth) acryloyl containing Examples thereof include compounds in which an acidic group is introduced so that two or more unsaturated bonds (ethylenic double bonds) remain in an ethylenic compound having a urethane skeleton obtained by reacting with a hydroxy compound.
 多官能低分子量化合物(B1)としては、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルであり、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に芳香族カルボン酸無水物または非芳香族カルボン酸無水物を反応させて酸性基を持たせた多官能低分子量化合物が好ましく、非芳香族カルボン酸無水物を反応させて酸性基を持たせた多官能低分子量化合物がより好ましい。 The polyfunctional low molecular weight compound (B1) is an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an aromatic carboxylic acid anhydride or non-aromatic carboxylic acid is added to an unreacted hydroxy group of the aliphatic polyhydroxy compound. A polyfunctional low molecular weight compound having an acid group reacted with an acid anhydride is preferable, and a polyfunctional low molecular weight compound having an acid group reacted with a non-aromatic carboxylic acid anhydride is more preferable.
 酸性基を導入する脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルにおける脂肪族ポリヒドロキシ化合物としては、3個以上のヒドロキシ基を有する化合物、例えば、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、テトラペンタエリスリトール等が挙げられる。不飽和カルボン酸としては、(メタ)アクリル酸、イタコン酸、イロトン酸、マレイン酸等が挙げられる。 As an aliphatic polyhydroxy compound in an ester of an aliphatic polyhydroxy compound into which an acidic group is introduced and an unsaturated carboxylic acid, a compound having three or more hydroxy groups, for example, trimethylolpropane, trimethylolethane, pentaerythritol, Examples thereof include dipentaerythritol, tripentaerythritol, tetrapentaerythritol and the like. Examples of the unsaturated carboxylic acid include (meth) acrylic acid, itaconic acid, ilotonic acid, maleic acid and the like.
 脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルにおいて、脂肪族ポリヒドロキシ化合物はペンタエリスリトールおよび/またはジペンタエリスリトールが好ましく、ジペンタエリスリトールが特に好ましい。不飽和カルボン酸としては、(メタ)アクリル酸が好ましく、アクリル酸がより好ましい。 In the ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, the aliphatic polyhydroxy compound is preferably pentaerythritol and / or dipentaerythritol, particularly preferably dipentaerythritol. As unsaturated carboxylic acid, (meth) acrylic acid is preferable and acrylic acid is more preferable.
 上記エステルに酸性基を導入するために用いる、芳香族カルボン酸無水物の具体例としては、無水フタル酸等が、非芳香族カルボン酸無水物の具体例としては、無水テトラヒドロフタル酸、アルキル化無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、アルキル化無水ヘキサヒドロフタル酸、無水コハク酸、無水マレイン酸が挙げられ、これらの中でも無水コハク酸が好ましい。 Specific examples of the aromatic carboxylic acid anhydride used for introducing an acidic group into the ester include phthalic anhydride, and specific examples of the non-aromatic carboxylic acid anhydride include tetrahydrophthalic anhydride, alkylation Examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, alkylated hexahydrophthalic anhydride, succinic anhydride, and maleic anhydride. Among these, succinic anhydride is preferable.
 多官能低分子量化合物(B1)において、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルに芳香族カルボン酸無水物を反応させた化合物としては、例えば、ペンタエリスリトールの3つのヒドロキシ基がアクリロイルオキシ基に置換され、残りの1つのヒドロキシ基が例えばフタル酸とエステル結合した構造の2,2,2-トリアクリロイルオキシメチルエチルフタル酸等が挙げられる。 In the polyfunctional low molecular weight compound (B1), as a compound obtained by reacting an aromatic carboxylic acid anhydride with an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, for example, three hydroxy groups of pentaerythritol are acryloyloxy. For example, 2,2,2-triacryloyloxymethylethylphthalic acid having a structure in which the remaining one hydroxy group is ester-bonded to phthalic acid is exemplified.
 多官能低分子量化合物(B1)としては、ジペンタエリスリトール骨格を有する化合物が好ましい。ジペンタエリスリトール骨格を有する化合物としては、例えば、ジペンタエリスリトールの5つのヒドロキシ基が(メタ)アクリロイルオキシ基に置換され、残りの1つのヒドロキシ基が例えばコハク酸とエステル結合することで、酸性基が導入された化合物が好ましい。 As the polyfunctional low molecular weight compound (B1), a compound having a dipentaerythritol skeleton is preferable. As a compound having a dipentaerythritol skeleton, for example, five hydroxy groups of dipentaerythritol are substituted with (meth) acryloyloxy groups, and the remaining one hydroxy group is ester-bonded with, for example, succinic acid to form an acidic group. A compound in which is introduced is preferred.
 多官能低分子量化合物(B1)の酸価は、10~100mgKOH/gが好ましく、20~95mgKOH/gがより好ましい。多官能低分子量化合物(B1)の酸価が上記下限値以上であると、ネガ型用感光性組成物においてより良好な現像液への溶解性を得ることができ、上記上限値以下であると、製造や取扱い性が良好となり、充分な重合性を確保でき、得られる塗膜の表面平滑性等の硬化性も良好になる。 The acid value of the polyfunctional low molecular weight compound (B1) is preferably 10 to 100 mgKOH / g, more preferably 20 to 95 mgKOH / g. When the acid value of the polyfunctional low molecular weight compound (B1) is not less than the above lower limit value, it is possible to obtain better solubility in a developing solution in the negative photosensitive composition, and it is not more than the above upper limit value. Manufacturing and handling properties become good, sufficient polymerizability can be secured, and curability such as surface smoothness of the resulting coating film becomes good.
 ネガ型感光性樹脂組成物において、多官能低分子量化合物(B1)は、1種を単独で用いても2種以上を併用してもよい。なお、多官能低分子量化合物(B1)を、2種以上の混合物として用いる場合、混合物の酸価が上記範囲内にあることが好ましい。 In the negative photosensitive resin composition, the polyfunctional low molecular weight compound (B1) may be used alone or in combination of two or more. In addition, when using a polyfunctional low molecular weight compound (B1) as a 2 or more types of mixture, it is preferable that the acid value of a mixture exists in the said range.
<非酸性架橋剤(B2)>
 架橋剤(B)は多官能低分子量化合物(B1)に加えて、1分子中に2個以上の光硬化性官能基を有し、酸性基を有しない架橋剤(B2)、すなわち非酸性架橋剤(B2)を含有してもよい。多官能低分子量化合物(B1)と非酸性架橋剤(B2)を組み合わせて用いることで、架橋剤(B)全体の酸価、光硬化性官能基数を調整しやすくなり、露光時におけるネガ型感光性樹脂組成物の硬化性を向上させる作用と、現像液へのネガ型感光性樹脂組成物の溶解性を向上させる作用とのバランスが取りやすい。
<Non-acidic crosslinking agent (B2)>
In addition to the polyfunctional low molecular weight compound (B1), the crosslinking agent (B) has two or more photocurable functional groups in one molecule and does not have an acidic group, that is, a non-acidic crosslinking. An agent (B2) may be contained. By using a combination of the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinker (B2), it becomes easy to adjust the acid value and the number of photocurable functional groups of the entire crosslinker (B), and negative photosensitive at the time of exposure. The effect of improving the curability of the photosensitive resin composition and the effect of improving the solubility of the negative photosensitive resin composition in the developer can be easily balanced.
 非酸性架橋剤(B2)が、1分子中に2個以上有する光硬化性官能基としては、アルカリ可溶性樹脂(A)が有する光硬化性官能基と同じ種類の光硬化性官能基が好ましく、具体的には、エチレン性二重結合が好ましい。非酸性架橋剤(B2)における1分子中の光硬化性官能基の数は、2個以上であればよく、3個以上が好ましく、4個以上がより好ましく、5個以上が特に好ましい。光硬化性官能基の数が多いほど、塗膜表面の硬化性が向上し、得られる隔壁上面において撥インク性の安定性が良好となる。なお、非酸性架橋剤(B2)の分子量は、多官能低分子量化合物(B1)と好ましい態様を含めて同様にできる。 As the photocurable functional group that the non-acidic crosslinking agent (B2) has two or more in one molecule, the same type of photocurable functional group as that of the alkali-soluble resin (A) is preferable, Specifically, an ethylenic double bond is preferable. The number of photocurable functional groups in one molecule in the non-acidic crosslinking agent (B2) may be 2 or more, preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more. As the number of photocurable functional groups increases, the curability of the coating film surface is improved, and the stability of ink repellency is improved on the upper surface of the obtained partition wall. In addition, the molecular weight of a non-acidic crosslinking agent (B2) can be made the same including a polyfunctional low molecular weight compound (B1) and a preferable aspect.
 非酸性架橋剤(B2)は、具体的には、多官能低分子量化合物(B1)において、酸性基を有しない化合物が挙げられ、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましい。 Specific examples of the non-acidic crosslinking agent (B2) include compounds having no acidic group in the polyfunctional low molecular weight compound (B1), and an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid is preferable.
 非酸性架橋剤(B2)として、より具体的には、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールヘプタアクリレート、テトラペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、トリス-(2-アクリロイルオキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールペンタアクリレートにHDI(ヘキサメチレンジイソシアネート)が結合したウレタン骨格を持つモノマー(10官能)およびウレタンアクリレート等が挙げられる。 More specifically, as non-acidic crosslinking agent (B2), diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane Tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol heptaacrylate, tetrapentaerythritol octaacrylate, tetrapenta Erythritol nonaacrylate, tetrapentaerythritol decaacrylate, ethoxylated iso HDI (hexamethylene diisocyanate) binds to tri (meth) acrylate of anuric acid, tris- (2-acryloyloxyethyl) isocyanurate, ε-caprolactone modified tris- (2-acryloyloxyethyl) isocyanurate, dipentaerythritol pentaacrylate And monomers having a urethane skeleton (10 functional) and urethane acrylate.
 ネガ型感光性樹脂組成物において、非酸性架橋剤(B2)は、1種を単独で用いても2種以上を併用してもよい。 In the negative photosensitive resin composition, the non-acidic crosslinking agent (B2) may be used alone or in combination of two or more.
 ネガ型感光性樹脂組成物における全固形分中の架橋剤(B)の含有割合は、5~80質量%が好ましく、10~60質量%が特に好ましい。また、架橋剤(B)の酸価は、架橋剤(B)が多官能低分子量化合物(B1)のみで構成される場合、上記多官能低分子量化合物(B1)の酸価と同様の範囲である。架橋剤(B)の酸価は、架橋剤(B)が多官能低分子量化合物(B1)と非酸性架橋剤(B2)の両方を含む場合、10~80mgKOH/gが好ましく、15~70mgKOH/gがより好ましい。 The content of the crosslinking agent (B) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, particularly preferably 10 to 60% by mass. Moreover, the acid value of a crosslinking agent (B) is the same range as the acid value of the said polyfunctional low molecular weight compound (B1), when a crosslinking agent (B) is comprised only with a polyfunctional low molecular weight compound (B1). is there. The acid value of the crosslinking agent (B) is preferably 10 to 80 mgKOH / g, and preferably 15 to 70 mgKOH / g when the crosslinking agent (B) contains both the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinking agent (B2). g is more preferable.
 ネガ型感光性樹脂組成物における全固形分中の多官能低分子量化合物(B1)の含有割合は、5~80質量%が好ましく、7~60質量%がより好ましい。多官能低分子量化合物(B1)の含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 The content ratio of the polyfunctional low molecular weight compound (B1) in the total solid content in the negative photosensitive resin composition is preferably 5 to 80% by mass, and more preferably 7 to 60% by mass. When the content ratio of the polyfunctional low molecular weight compound (B1) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good.
 ネガ型感光性樹脂組成物が架橋剤(B)として非酸性架橋剤(B2)を含有する場合、該組成物における全固形分中の非酸性架橋剤(B2)の含有割合は、0.1~50質量%が好ましく、1.0~40質量%がより好ましい。 When the negative photosensitive resin composition contains the non-acidic crosslinking agent (B2) as the crosslinking agent (B), the content ratio of the non-acidic crosslinking agent (B2) in the total solid content in the composition is 0.1. To 50% by mass is preferable, and 1.0 to 40% by mass is more preferable.
 また、その場合、多官能低分子量化合物(B1)と非酸性架橋剤(B2)の合計100質量部に対する多官能低分子量化合物(B1)の割合は10~90質量部が好ましく、15~70質量部がより好ましい。多官能低分子量化合物(B1)と非酸性架橋剤(B2)を上記割合とすることで、架橋剤(B)全体の酸価、光硬化性官能基数を調整しやすくなり、ネガ型感光性樹脂組成物の光硬化性と現像性のバランスが取りやすい。 In this case, the ratio of the polyfunctional low molecular weight compound (B1) to the total 100 parts by mass of the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinking agent (B2) is preferably 10 to 90 parts by mass, and 15 to 70 parts by mass. Part is more preferred. By adjusting the polyfunctional low molecular weight compound (B1) and the non-acidic crosslinking agent (B2) to the above ratio, the acid value and the number of photocurable functional groups of the entire crosslinking agent (B) can be easily adjusted, and the negative photosensitive resin. It is easy to balance the photocurability and developability of the composition.
 なお、架橋剤(B)として、多官能低分子量化合物(B1)と非酸性架橋剤(B2)の混合物として市販されているもの、例えば、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートおよびジペンタエリスリトールペンタアクリレートのコハク酸エステル混合物等を用いてもよい。 In addition, as a crosslinking agent (B), what is marketed as a mixture of a polyfunctional low molecular weight compound (B1) and a non-acidic crosslinking agent (B2), for example, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, and dipenta A succinic acid ester mixture of erythritol pentaacrylate may be used.
 さらに、必要に応じて、このような混合物と、多官能低分子量化合物(B1)の単体および/または非酸性架橋剤(B2)の単体を組み合わせて用いてもよい。 Furthermore, if necessary, such a mixture may be used in combination with a simple substance of the polyfunctional low molecular weight compound (B1) and / or a simple substance of the non-acidic crosslinking agent (B2).
(撥インク剤(C))
 撥インク剤(C)は、酸性基とフッ素原子を有し、酸価が10~100mgKOH/gである。フッ素原子を有することで、撥インク剤(C)は、これを含有するネガ型感光性樹脂組成物を用いて硬化膜を形成する過程で上面に移行する性質(上面移行性)および撥インク性を有する。撥インク剤(C)を用いることで、得られる硬化膜の上面を含む上層部は、撥インク剤(C)が密に存在する層(以下、「撥インク層」ということもある。)となり、硬化膜上面に撥インク性が付与される。
(Ink repellent (C))
The ink repellent agent (C) has an acidic group and a fluorine atom, and has an acid value of 10 to 100 mgKOH / g. By having a fluorine atom, the ink repellent agent (C) has a property of transferring to the upper surface in the process of forming a cured film using the negative photosensitive resin composition containing the same (upper surface transfer property) and ink repellency. Have By using the ink repellent agent (C), the upper layer portion including the upper surface of the obtained cured film becomes a layer in which the ink repellent agent (C) is present densely (hereinafter also referred to as “ink repellent layer”). Ink repellency is imparted to the upper surface of the cured film.
 撥インク剤(C)は酸性基を有し、酸価が上記下限値以上であることで、ネガ型感光性樹脂組成物が含有するアルカリ可溶性樹脂(A)、架橋剤(B)等の他の成分と同様に現像液に対して良好な溶解性を有する。これにより、非露光部のネガ型感光性樹脂組成物は現像液による除去が容易となり、現像性が良好である。一方、撥インク剤(C)の酸価が上記上限値以下であることで、硬化膜の上層部に形成された撥インク層は下層部の樹脂層と充分に密着し現像液による影響を殆ど受けずに、現像後も残存し高い撥インク性を発現することが可能である。 The ink repellent agent (C) has an acidic group and has an acid value of not less than the above lower limit, so that the negative photosensitive resin composition contains an alkali-soluble resin (A), a crosslinking agent (B), etc. Like the component, it has good solubility in the developer. Thereby, the negative photosensitive resin composition in the non-exposed part can be easily removed with a developer, and the developability is good. On the other hand, when the acid value of the ink repellent agent (C) is not more than the above upper limit, the ink repellent layer formed on the upper layer portion of the cured film is sufficiently in close contact with the resin layer of the lower layer portion and is hardly affected by the developer. Without being received, it can remain after development and exhibit high ink repellency.
 撥インク剤(C)の酸価は、20~100mgKOH/gが好ましく、25~80mgKOH/gがより好ましく、30~60mgKOH/gがさらに好ましい。 The acid value of the ink repellent agent (C) is preferably 20 to 100 mgKOH / g, more preferably 25 to 80 mgKOH / g, and further preferably 30 to 60 mgKOH / g.
 撥インク剤(C)中のフッ素原子の含有率は、上面移行性と撥インク性の観点から、5~55質量%が好ましく、10~55質量%がより好ましく、12~40質量%がさらに好ましく、14~30質量%が特に好ましい。撥インク剤(C)のフッ素原子の含有率が上記範囲の下限値以上であると、硬化膜上面に良好な撥インク性を付与でき、上限値以下であると、ネガ型感光性樹脂組成物中の他の成分との相溶性が良好になる。 The content of fluorine atoms in the ink repellent agent (C) is preferably from 5 to 55% by mass, more preferably from 10 to 55% by mass, and further from 12 to 40% by mass from the viewpoints of upper surface migration and ink repellency. It is preferably 14 to 30% by mass. If the fluorine atom content of the ink repellent agent (C) is at least the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film, and if it is less than the upper limit, the negative photosensitive resin composition Compatibility with other components in the inside is improved.
 また、撥インク剤(C)は、光硬化性官能基、特には、エチレン性二重結合を有する化合物が好ましい。撥インク剤(C)がエチレン性二重結合を有することで、上面に移行した撥インク剤(C)のエチレン性二重結合にラジカルが作用して、撥インク剤(C)同士または撥インク剤(C)とネガ型感光性樹脂組成物が含有するエチレン性二重結合を有する他成分と(共)重合による架橋が可能となる。 Further, the ink repellent agent (C) is preferably a compound having a photocurable functional group, particularly an ethylenic double bond. Since the ink repellent agent (C) has an ethylenic double bond, radicals act on the ethylenic double bond of the ink repellent agent (C) transferred to the upper surface, and the ink repellent agent (C) or ink repellent Crosslinking by (co) polymerization with the agent (C) and other components having an ethylenic double bond contained in the negative photosensitive resin composition becomes possible.
 これにより、ネガ型感光性樹脂組成物を硬化してなる硬化膜の製造において、撥インク剤(C)の硬化膜の上層部、すなわち撥インク層における定着性を向上できる。本発明のネガ型感光性樹脂組成物においては、露光の際の露光量が低い場合であっても撥インク剤(C)を撥インク層に充分に定着させることができる。撥インク剤(C)がエチレン性二重結合を有する場合は上記のとおりである。撥インク剤(C)がエチレン性二重結合を有しない場合には、撥インク剤(C)の周辺に存在するアルカリ可溶性樹脂(A)を主体とする光硬化成分の硬化が充分に行われることで、撥インク剤(C)を充分に定着させることができる。 Thereby, in the production of a cured film obtained by curing the negative photosensitive resin composition, the fixability in the upper layer portion of the cured film of the ink repellent agent (C), that is, the ink repellent layer can be improved. In the negative photosensitive resin composition of the present invention, the ink repellent agent (C) can be sufficiently fixed to the ink repellent layer even when the exposure amount during exposure is low. The case where the ink repellent agent (C) has an ethylenic double bond is as described above. When the ink repellent agent (C) does not have an ethylenic double bond, the photocurable component mainly composed of the alkali-soluble resin (A) present around the ink repellent agent (C) is sufficiently cured. Thus, the ink repellent agent (C) can be sufficiently fixed.
 撥インク剤(C)としては、例えば、主鎖が炭化水素鎖であり、酸性基を有する側鎖、および、フッ素原子を含む側鎖を有する化合物からなる撥インク剤(C1)が挙げられる。撥インク剤(C)としては、酸性基を有する加水分解性シラン化合物およびフッ素原子を有する加水分解性シラン化合物を含む加水分解性シラン化合物の部分加水分解縮合物からなる撥インク剤(C2)を用いてもよい。 Examples of the ink repellent agent (C) include an ink repellent agent (C1) made of a compound having a main chain of a hydrocarbon chain, a side chain having an acidic group, and a side chain containing a fluorine atom. As the ink repellent agent (C), an ink repellent agent (C2) composed of a partially hydrolyzed condensate of a hydrolyzable silane compound containing a hydrolyzable silane compound having an acidic group and a hydrolyzable silane compound having a fluorine atom is used. It may be used.
 撥インク剤(C1)および撥インク剤(C2)は、単独で、または組み合わせて用いられる。本発明のネガ型感光性樹脂組成物においては、より高い撥インク性を発現させる点で、特に撥インク剤(C1)を用いることが好ましい。また、耐紫外線/オゾン性が求められる場合には、撥インク剤(C2)を用いることが好ましい。 The ink repellent agent (C1) and the ink repellent agent (C2) are used alone or in combination. In the negative photosensitive resin composition of the present invention, it is particularly preferable to use the ink repellent agent (C1) from the viewpoint of developing higher ink repellency. In addition, when UV resistance / ozone resistance is required, it is preferable to use an ink repellent agent (C2).
<撥インク剤(C1)>
 撥インク剤(C1)は、主鎖が炭化水素鎖であり、酸性基を有する側鎖、および、フッ素原子を含む側鎖を有する化合物である。撥インク剤(C1)の質量平均分子量(Mw)は、1.0×10~15×10が好ましく、1.2×10~13×10がより好ましく、1.4×10~12×10が特に好ましい。質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(C1)が上面移行しやすい。上限値以下であると開口部残渣が少なくなり好ましい。
<Ink repellent agent (C1)>
The ink repellent agent (C1) is a compound having a main chain of a hydrocarbon chain, a side chain having an acidic group, and a side chain containing a fluorine atom. The mass average molecular weight (Mw) of the ink repellent agent (C1) is preferably 1.0 × 10 4 to 15 × 10 4, more preferably 1.2 × 10 4 to 13 × 10 4 , and 1.4 × 10 4. ˜12 × 10 4 is particularly preferred. When the mass average molecular weight (Mw) is at least the lower limit value, the ink repellent agent (C1) tends to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition. The opening residue is less than the upper limit, which is preferable.
 酸性基を有する側鎖における酸性基としては、カルボキシ基、フェノール性水酸基、スルホ基およびリン酸基等が挙げられ、これらは1種を単独で用いても2種以上を併用してもよい。撥インク剤(C1)において、酸性基を有する側鎖における酸性基以外の部分は特に限定されない。 Examples of the acidic group in the side chain having an acidic group include a carboxy group, a phenolic hydroxyl group, a sulfo group, and a phosphoric acid group. These may be used alone or in combination of two or more. In the ink repellent agent (C1), the portion other than the acidic group in the side chain having an acidic group is not particularly limited.
 撥インク剤(C1)が有するフッ素原子を含む側鎖としては、エーテル性酸素原子を含んでいてもよいフルオロアルキル基からなる側鎖および/またはエーテル性酸素原子を含んでいてもよいフルオロアルキル基を有する側鎖が好ましい。 The side chain containing a fluorine atom in the ink repellent agent (C1) includes a side chain composed of a fluoroalkyl group which may contain an etheric oxygen atom and / or a fluoroalkyl group which may contain an etheric oxygen atom. Side chains having are preferred.
 フルオロアルキル基は直鎖状でもよく、分岐状でもよい。
 エーテル性酸素原子を含まないフルオロアルキル基の具体例としては、以下の構造が挙げられる。
-CF、-CFCF、-CFCHF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CFCF、-(CF11CF、-(CF15CF
The fluoroalkyl group may be linear or branched.
Specific examples of the fluoroalkyl group not containing an etheric oxygen atom include the following structures.
-CF 3 , -CF 2 CF 3 , -CF 2 CHF 2 ,-(CF 2 ) 2 CF 3 ,-(CF 2 ) 3 CF 3 ,-(CF 2 ) 4 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 6 CF 3 ,-(CF 2 ) 7 CF 3 ,-(CF 2 ) 8 CF 3 ,-(CF 2 ) 9 CF 3 ,-(CF 2 ) 11 CF 3 ,-(CF 2 ) 15 CF 3 .
 エーテル性酸素原子を含むフルオロアルキル基の具体例としては、以下の構造が挙げられる。
-CF(CF)O(CFCF
-CFO(CFCFO)r1CF
-CF(CF)O(CFCF(CF)O)r213
および-CF(CF)O(CFCF(CF)O)r3
 上記式中、r1は1~8の整数、r2は1~4の整数、r3は1~5の整数である。
Specific examples of the fluoroalkyl group containing an etheric oxygen atom include the following structures.
-CF (CF 3 ) O (CF 2 ) 5 CF 3 ,
-CF 2 O (CF 2 CF 2 O) r1 CF 3,
—CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r 2 C 6 F 13 ,
And —CF (CF 3 ) O (CF 2 CF (CF 3 ) O) r3 C 3 F 7 .
In the above formula, r1 is an integer of 1 to 8, r2 is an integer of 1 to 4, and r3 is an integer of 1 to 5.
 撥インク剤(C1)の主鎖を構成する炭化水素鎖として、具体的には、エチレン性二重結合を有する単量体の重合で得られる主鎖、-Ph-CH-(ただし、「Ph」はベンゼン骨格を示す。)の繰り返し単位からなるノボラック型の主鎖等が挙げられる。 The hydrocarbon chain constituting the main chain of the ink repellent (C1), specifically, the main chain obtained by polymerization of a monomer having an ethylenic double bond, -Ph-CH 2 - (where " Ph ”represents a benzene skeleton.) And a novolak-type main chain composed of repeating units.
 撥インク剤(C1)は、さらに、エチレン性二重結合を有する側鎖、およびオキシアルキレン基を有する側鎖からなる群から選ばれる1種以上の側鎖を含むことができる。1つの側鎖にエチレン性二重結合およびオキシアルキレン基が含まれていてもよい。また、上記酸性基を含む側鎖に、エチレン性二重結合および/またはオキシアルキレン基が含まれていてもよい。 The ink repellent agent (C1) can further contain one or more side chains selected from the group consisting of a side chain having an ethylenic double bond and a side chain having an oxyalkylene group. One side chain may contain an ethylenic double bond and an oxyalkylene group. Moreover, the side chain containing the acidic group may contain an ethylenic double bond and / or an oxyalkylene group.
 また、撥インク剤(C1)は、ジメチルシリコーン鎖、アルキル基、グリシジル基、イソボルニル基、イソシアネート基、トリアルコキシシリル基等の側鎖を含むことができる。 Further, the ink repellent agent (C1) can contain side chains such as a dimethyl silicone chain, an alkyl group, a glycidyl group, an isobornyl group, an isocyanate group, and a trialkoxysilyl group.
 撥インク剤(C1)の主鎖が-Ph-CH-の繰り返し単位からなるノボラック型の主鎖である場合、通常、主鎖を構成するベンゼン骨格(Ph)に、フッ素原子を有する側鎖と酸性基を有する側鎖が結合し、さらに任意にエチレン性二重結合を有する側鎖、オキシアルキレン側鎖が結合した重合体が撥インク剤(C1)として用いられる。各側鎖は同一のベンゼン骨格(Ph)に結合していてもよく、異なるベンゼン骨格(Ph)に結合していてもよい。一つのベンゼン骨格(Ph)に結合する側鎖の数は1個が好ましい。 The main chain of the ink repellent (C1) is -Ph-CH 2 - if the main chain of the novolak type comprising repeating units of, usually, a benzene skeleton (Ph) constituting the main chain, a side chain having a fluorine atom A polymer in which a side chain having an acidic group is bonded and a side chain having an ethylenic double bond and an oxyalkylene side chain are optionally bonded is used as the ink repellent agent (C1). Each side chain may be bonded to the same benzene skeleton (Ph) or may be bonded to a different benzene skeleton (Ph). The number of side chains bonded to one benzene skeleton (Ph) is preferably one.
 なお、撥インク剤(C1)における酸価の調整は、撥インク剤(C1)が有する炭化水素鎖の主鎖に導入する酸性基を有する側鎖の割合を調整することで容易に行える。同様に、撥インク剤(C1)におけるフッ素原子の含有率の調整は、撥インク剤(C1)が有する炭化水素鎖の主鎖に導入するフッ素原子を有する側鎖の割合を調整することで容易に行える。 The acid value in the ink repellent agent (C1) can be easily adjusted by adjusting the ratio of the side chain having an acidic group introduced into the main chain of the hydrocarbon chain of the ink repellent agent (C1). Similarly, the fluorine atom content in the ink repellent agent (C1) can be easily adjusted by adjusting the proportion of side chains having fluorine atoms introduced into the main chain of the hydrocarbon chain of the ink repellent agent (C1). It can be done.
<撥インク剤(C2)>
 撥インク剤(C2)は、加水分解性シラン化合物混合物(以下、「混合物(M)」ともいう。)の部分加水分解縮合物である。
<Ink repellent agent (C2)>
The ink repellent agent (C2) is a partially hydrolyzed condensate of a hydrolyzable silane compound mixture (hereinafter also referred to as “mixture (M)”).
 該混合物(M)は、フルオロアルキレン基および/またはフルオロアルキル基、および、ケイ素原子に加水分解性基が結合した基を有する加水分解性シラン化合物(以下、「加水分解性シラン化合物(s1)」ともいう。)および、酸性基を有する基とケイ素原子に加水分解性基が結合した基を有し、フッ素原子を含まない加水分解性シラン化合物(以下、「加水分解性シラン化合物(s2)」ともいう。)を必須成分として含み、任意に加水分解性シラン化合物(s1)および加水分解性シラン化合物(s2)以外の加水分解性シラン化合物を含む。 The mixture (M) is a hydrolyzable silane compound having a fluoroalkylene group and / or a fluoroalkyl group and a group in which a hydrolyzable group is bonded to a silicon atom (hereinafter referred to as “hydrolyzable silane compound (s1)”). And a hydrolyzable silane compound having a group having an acidic group and a group having a hydrolyzable group bonded to a silicon atom and not containing a fluorine atom (hereinafter referred to as “hydrolyzable silane compound (s2)”). Is also included as an essential component, and optionally includes a hydrolyzable silane compound other than the hydrolyzable silane compound (s1) and the hydrolyzable silane compound (s2).
 混合物(M)が任意に含有する加水分解性シラン化合物としては、ケイ素原子に4個の加水分解性基が結合した加水分解性シラン化合物(以下、「加水分解性シラン化合物(s3)」ともいう。)が好ましい。 The hydrolyzable silane compound optionally contained in the mixture (M) is a hydrolyzable silane compound in which four hydrolyzable groups are bonded to a silicon atom (hereinafter also referred to as “hydrolyzable silane compound (s3)”). .) Is preferred.
 加水分解性シラン化合物(s1)の具体例としては、以下の化合物が挙げられる。
F(CFCHCHSi(OCH
F(CFCHCHSi(OCH
F(CFCHCHCHSi(OCH
F(CFCHCHSi(OCH
F(CFOCF(CF)CFO(CFCHCHSi(OCH
F(CFO(CFO(CFCHCHSi(OCH
Specific examples of the hydrolyzable silane compound (s1) include the following compounds.
F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 8 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2) 3 OCF ( CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3,
F (CF 2) 2 O ( CF 2) 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3.
(CHO)SiCHCH(CFCHCHSi(OCH
(CHO)SiCHCH(CFCHCHSi(OCH
(CHO)SiCHCH(CFCHCHCHSi(OCH
(CHO)SiCHCH(CFOCF(CF)CFO(CFOCF(CF)CFO(CFCHCHSi(OCH
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2) 2 OCF 2 (CF 3) CFO (CF 2) 2 OCF (CF 3) CF 2 O (CF 2) 2 CH 2 CH 2 Si (OCH 3) 3 .
 なかでも、F(CFCHCHSi(OCHおよびF(CFOCF(CF)CFO(CFCHCHSi(OCHが特に好ましい。 Among them, F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 and F (CF 2 ) 3 OCF (CF 3 ) CF 2 O (CF 2 ) 2 CH 2 CH 2 Si (OCH 3 ) 3 are Particularly preferred.
 混合物(M)における加水分解性シラン化合物(s1)の含有割合は、該混合物から得られる部分加水分解縮合物におけるフッ素原子の含有率が5~55質量%となる割合であることが好ましい。より好ましくは10~55質量%、さらに好ましくは12~40質量%、特に好ましくは15~30質量%である。加水分解性シラン化合物(s1)の含有割合が上記範囲の下限値以上であると、硬化膜の上面に良好な撥インク性を付与でき、上限値以下であると、該混合物中の他の加水分解性シラン化合物との相溶性が良好になる。 The content of the hydrolyzable silane compound (s1) in the mixture (M) is preferably such that the fluorine atom content in the partially hydrolyzed condensate obtained from the mixture is 5 to 55% by mass. More preferably, it is 10 to 55% by mass, still more preferably 12 to 40% by mass, and particularly preferably 15 to 30% by mass. When the content ratio of the hydrolyzable silane compound (s1) is not less than the lower limit of the above range, good ink repellency can be imparted to the upper surface of the cured film. Compatibility with the decomposable silane compound is improved.
 加水分解性シラン化合物(s2)が有する酸性基は、カルボキシ基、フェノール性水酸基またはスルホ基が好ましい。加水分解性シラン化合物(s2)の具体例としては、以下の化合物が挙げられる。 The acidic group of the hydrolyzable silane compound (s2) is preferably a carboxy group, a phenolic hydroxyl group or a sulfo group. Specific examples of the hydrolyzable silane compound (s2) include the following compounds.
(1)下式(c-2a)で表される化合物、具体的には、下式(c-2a-1)、下式(c-2a-2)、下式(c-2a-3)、下式(c-2a-4)、下式(c-2a-5)、下式(c-2a-6)でそれぞれ表される化合物。 (1) A compound represented by the following formula (c-2a), specifically, the following formula (c-2a-1), the following formula (c-2a-2), the following formula (c-2a-3) A compound represented by the following formula (c-2a-4), the following formula (c-2a-5) and the following formula (c-2a-6).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R22は式:-R25-COOHまたは-COO-R25OOC-R25-COOH(ここで、R25は,炭素原子数1~10の2価の炭化水素基、単結合またはフェニレン基を示す。)で表される基である。R22が-COO-R25OOC-R25-COOHの場合、撥インク剤(C2)の現像液溶解性が更に向上し開口部残渣が減少し、IJ法でのインクの濡れ広がり性が更に良好になり好ましい。 R 22 represents the formula: —R 25 —COOH or —COO—R 25 OOC—R 25 —COOH (where R 25 represents a divalent hydrocarbon group having 1 to 10 carbon atoms, a single bond or a phenylene group. It is a group represented by. When R 22 is —COO—R 25 OOC—R 25 —COOH, the solubility of the developer of the ink repellent agent (C2) is further improved, the residue of the opening is reduced, and the wettability of the ink by the IJ method is further increased. Good and preferable.
 R21は、-COOR24(ここで、R24は、水素原子または炭素原子数1~6の炭化水素基を示す。)で表される基、-COO-(CO)-(CO)-(CO)-R28(ここで、R28は、水素原子、または、置換基を有してもよい炭素数1~10のアルキル基を、iは0~100、jは0~100、kは0~100の整数をそれぞれ表し、i+j+kは2~100である。複数種のオキシアルキレン基単位を有する場合、その順番は任意である。)、または水素原子が炭素原子数1~10の炭化水素基に置換されていてもよいフェニル基である。R21が-COO-(CO)-(CO)-(CO)-R28の場合、撥インク剤(C2)の分散安定性、貯蔵安定性が向上し、好ましい。 R 21 is -COOR 24 (. Wherein, R 24 is showing a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms), a group represented by, -COO- (C 2 H 4 O ) i - (C 3 H 6 O) j- (C 4 H 8 O) k -R 28 (where R 28 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent). , I represents an integer of 0 to 100, j represents an integer of 0 to 100, k represents an integer of 0 to 100, and i + j + k is 2 to 100. In the case of having a plurality of types of oxyalkylene groups, the order is arbitrary. ), Or a phenyl group in which a hydrogen atom may be substituted with a hydrocarbon group having 1 to 10 carbon atoms. When R 21 is —COO— (C 2 H 4 O) i — (C 3 H 6 O) j — (C 4 H 8 O) k —R 28 , the dispersion stability and storage of the ink repellent (C2) Stability is improved, which is preferable.
 Qは炭素原子数1~10の2価の炭化水素基である。
 Xは加水分解性基であり、3個のXは互いに異なっていても同一であってもよい。Xは、メトキシ基またはエトキシ基が好ましい。
 mは0以上の整数であり、nは1以上の整数である。
Q 2 is a divalent hydrocarbon group having 1 to 10 carbon atoms.
X 2 is a hydrolyzable group, and three X 2 may be different from each other or the same. X 2 is preferably a methoxy group or an ethoxy group.
m is an integer of 0 or more, and n is an integer of 1 or more.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 X、m、nおよびiは式(c-2a)と同様である。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
X 2 , m, n and i are the same as in formula (c-2a).
(2)環状のカルボン酸無水物と、アミノ基を有する加水分解性シラン化合物との反応物、具体的には、下式(c-2b-1)、下式(c-2b-2)でそれぞれ表される化合物。 (2) A reaction product of a cyclic carboxylic acid anhydride and a hydrolyzable silane compound having an amino group, specifically, the following formula (c-2b-1) and the following formula (c-2b-2): Each represented compound.
Figure JPOXMLDOC01-appb-C000004
 Xは式(c-2a)と同様である。
Figure JPOXMLDOC01-appb-C000004
X 2 is the same as in formula (c-2a).
(3)エチレン性二重結合と、水酸基またはカルボキシ基およびその誘導体を有する化合物と、ヒドロシラン類との反応物、具体的には、下式(c-2c-1)、下式(c-2c-2)でそれぞれ表される化合物。 (3) a reaction product of an ethylenic double bond, a compound having a hydroxyl group or a carboxy group and derivatives thereof, and hydrosilanes, specifically, the following formulas (c-2c-1) and (c-2c) -2) respectively.
Figure JPOXMLDOC01-appb-C000005
 Xは式(c-2a)と同様である。
Figure JPOXMLDOC01-appb-C000005
X 2 is the same as in formula (c-2a).
 混合物(M)における加水分解性シラン化合物(s2)の含有割合は、該混合物から得られる部分加水分解縮合物における酸価が10~100mgKOH/gとなる割合である。部分加水分解縮合物の酸価は、20~100mgKOH/gが好ましく、25~80mgKOH/gがより好ましく、30~60mgKOH/gがさらに好ましい。 The content ratio of the hydrolyzable silane compound (s2) in the mixture (M) is such that the acid value in the partially hydrolyzed condensate obtained from the mixture is 10 to 100 mgKOH / g. The acid value of the partially hydrolyzed condensate is preferably 20 to 100 mgKOH / g, more preferably 25 to 80 mgKOH / g, and further preferably 30 to 60 mgKOH / g.
 加水分解性シラン化合物(s2)の含有割合が上記範囲の下限値以上であると、得られるネガ型感光性樹脂組成物は現像液に対して良好な溶解性を有する。これにより、非露光部のネガ型感光性樹脂組成物は現像液による除去が容易となり、現像性が良好である。一方、撥インク剤(C)の酸価が上記上限値以下であることで、硬化膜の上層部に形成された撥インク層は下層部の樹脂層と充分に密着し現像液による影響を殆ど受けずに、現像後も残存し高い撥インク性を発現することが可能である。 When the content ratio of the hydrolyzable silane compound (s2) is not less than the lower limit of the above range, the obtained negative photosensitive resin composition has good solubility in a developer. Thereby, the negative photosensitive resin composition in the non-exposed part can be easily removed with a developer, and the developability is good. On the other hand, when the acid value of the ink repellent agent (C) is not more than the above upper limit, the ink repellent layer formed on the upper layer portion of the cured film is sufficiently in close contact with the resin layer of the lower layer portion and is hardly affected by the developer. Without being received, it can remain after development and exhibit high ink repellency.
 加水分解性シラン化合物(s3)の具体例としては、以下の化合物が挙げられる。
Si(OCH、Si(OC
Si(OCHの部分加水分解縮合物、
Si(OCの部分加水分解縮合物。
Specific examples of the hydrolyzable silane compound (s3) include the following compounds.
Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 ,
A partial hydrolysis condensate of Si (OCH 3 ) 4 ,
Partially hydrolyzed condensate of Si (OC 2 H 5 ) 4 .
 混合物(M)における加水分解性シラン化合物(s3)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して0.01~5モルが好ましく、0.05~4モルが特に好ましい。含有割合が上記範囲の下限値以上であると撥インク剤(C2)の造膜性が良好であり、上限値以下であると撥インク剤(C2)の撥インク性が良好である。 The content of the hydrolyzable silane compound (s3) in the mixture (M) is preferably 0.01 to 5 mol, particularly preferably 0.05 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). . When the content ratio is not less than the lower limit of the above range, the film forming property of the ink repellent agent (C2) is good, and when it is not more than the upper limit value, the ink repellent property of the ink repellent agent (C2) is good.
 混合物(M)は、さらに任意に、加水分解性シラン化合物(s1)~(s3)以外の加水分解性シラン化合物を1種または2種以上含むことができる。混合物(M)が好ましく含有する加水分解性シラン化合物として、以下の加水分解性シラン化合物(s4)、加水分解性シラン化合物(s5)、および加水分解性シラン化合物(s6)が挙げられる。混合物(M)が、さらに任意に含有する加水分解性シラン化合物としては、加水分解性シラン化合物(s4)が特に好ましい。 The mixture (M) can further optionally contain one or more hydrolyzable silane compounds other than the hydrolyzable silane compounds (s1) to (s3). Examples of the hydrolyzable silane compound that the mixture (M) preferably contains include the following hydrolyzable silane compound (s4), hydrolyzable silane compound (s5), and hydrolyzable silane compound (s6). As the hydrolyzable silane compound further optionally contained in the mixture (M), a hydrolyzable silane compound (s4) is particularly preferable.
 加水分解性シラン化合物(s4);エチレン性二重結合を有する基とケイ素原子に加水分解性基が結合した基とを有し、フッ素原子を含まない加水分解性シラン化合物。 Hydrolyzable silane compound (s4): a hydrolyzable silane compound having a group having an ethylenic double bond and a group in which a hydrolyzable group is bonded to a silicon atom, and does not contain a fluorine atom.
 加水分解性シラン化合物(s5);メルカプト基またはスルフィド基、加水分解性シリル基とを有し、フッ素原子を含まない加水分解性シラン化合物。
 加水分解性シラン化合物(s6);ケイ素原子に結合する基として炭化水素基と加水分解性基のみを有する加水分解性シラン化合物。
Hydrolyzable silane compound (s5); a hydrolyzable silane compound having a mercapto group or sulfide group and a hydrolyzable silyl group and containing no fluorine atom.
Hydrolyzable silane compound (s6); a hydrolyzable silane compound having only a hydrocarbon group and a hydrolyzable group as a group bonded to a silicon atom.
 加水分解性シラン化合物(s4)の具体例としては、以下の化合物が挙げられる。
CH=C(CH)COO(CHSi(OCH
CH=C(CH)COO(CHSi(OC
CH=CHCOO(CHSi(OCH
CH=CHCOO(CHSi(OC
[CH=C(CH)COO(CH]CHSi(OCH
[CH=C(CH)COO(CH]CHSi(OC
CH=CHSi(OCH
CH=CHCSi(OCH
Specific examples of the hydrolyzable silane compound (s4) include the following compounds.
CH 2 = C (CH 3) COO (CH 2) 3 Si (OCH 3) 3,
CH 2 = C (CH 3) COO (CH 2) 3 Si (OC 2 H 5) 3,
CH 2 = CHCOO (CH 2) 3 Si (OCH 3) 3,
CH 2 = CHCOO (CH 2) 3 Si (OC 2 H 5) 3,
[CH 2 = C (CH 3 ) COO (CH 2) 3] CH 3 Si (OCH 3) 2,
[CH 2 = C (CH 3 ) COO (CH 2) 3] CH 3 Si (OC 2 H 5) 2,
CH 2 = CHSi (OCH 3 ) 3 ,
CH 2 = CHC 6 H 4 Si (OCH 3) 3.
 混合物(M)における加水分解性シラン化合物(s4)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して、0.1~5モルが好ましく、0.5~4モルが特に好ましい。含有割合が上記範囲の下限値以上であると、撥インク剤(C2)の上面移行性が良好であり、また、上面移行後に上面を含む撥インク層において撥インク剤(C2)の定着性が良好であり、さらに、撥インク剤(C2)の貯蔵安定性が良好である。上限値以下であると撥インク剤(C2)の撥インク性が良好である。 The content of the hydrolyzable silane compound (s4) in the mixture (M) is preferably 0.1 to 5 mol, particularly 0.5 to 4 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable. When the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good. When the amount is not more than the upper limit, the ink repellency of the ink repellent agent (C2) is good.
 加水分解性シラン化合物(s5)の具体例としては、HS-(CH-Si(OCH、HS-(CH-Si(CH)(OCH、[(1,2,3,4-テトラチアブタン-1,4-ジイル)ビス(トリメチレン)]ビス(トリエトキシシラン)が挙げられる。 Specific examples of the hydrolyzable silane compound (s5) include HS— (CH 2 ) 3 —Si (OCH 3 ) 3 , HS— (CH 2 ) 3 —Si (CH 3 ) (OCH 3 ) 2 , [( 1,2,3,4-tetrathiabutane-1,4-diyl) bis (trimethylene)] bis (triethoxysilane).
 混合物(M)における加水分解性シラン化合物(s5)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して、0~2.0モルが好ましく、0~1.5モルが特に好ましい。含有割合が上記範囲の下限値以上であると、撥インク剤(C2)の上面移行性が良好であり、また、上面移行後に上面を含む撥インク層において撥インク剤(C2)の定着性が良好であり、さらに、撥インク剤(C2)の貯蔵安定性が良好である。上限値以下であると撥インク剤(C2)の撥インク性が良好である。 The content of the hydrolyzable silane compound (s5) in the mixture (M) is preferably 0 to 2.0 mol, particularly 0 to 1.5 mol, per 1 mol of the hydrolyzable silane compound (s1). preferable. When the content ratio is equal to or more than the lower limit of the above range, the top transferability of the ink repellent agent (C2) is good, and the fixability of the ink repellent agent (C2) in the ink repellent layer including the top surface after shifting to the top surface. Further, the storage stability of the ink repellent agent (C2) is good. When the amount is not more than the upper limit, the ink repellency of the ink repellent agent (C2) is good.
 加水分解性シラン化合物(s6)の具体例としては、以下の化合物が挙げられる。
(CH-Si-OCH、(CHCH-Si-OC、(CH-Si-OC、(CHCH-Si-OCH、(CH-Si-(OCH、(CH-Si-(OC、(CHCH-Si-(OC、(CHCH-Si-(OCH、Ph-Si(OC、Ph-Si(OCH、C1021-Si(OCH。なお、式中Phはフェニル基を示す。
Specific examples of the hydrolyzable silane compound (s6) include the following compounds.
(CH 3 ) 3 —Si—OCH 3 , (CH 3 CH 2 ) 3 —Si—OC 2 H 5 , (CH 3 ) 3 —Si—OC 2 H 5 , (CH 3 CH 2 ) 3 —Si—OCH 3 , (CH 3 ) 2 —Si— (OCH 3 ) 2 , (CH 3 ) 2 —Si— (OC 2 H 5 ) 2 , (CH 3 CH 2 ) 2 —Si— (OC 2 H 5 ) 2 , (CH 3 CH 2 ) 2 —Si— (OCH 3 ) 2 , Ph—Si (OC 2 H 5 ) 3 , Ph—Si (OCH 3 ) 3 , C 10 H 21 —Si (OCH 3 ) 3 . In the formula, Ph represents a phenyl group.
 混合物(M)における加水分解性シラン化合物(s6)の含有割合は、加水分解性シラン化合物(s1)の1モルに対して、0~1.0モルが好ましく、0~0.08モルが特に好ましい。含有割合が上記範囲の下限値以上であると、貯蔵安定性が良好である。上限値以下であると、ドット部のインク塗布性が良好である。 The content of the hydrolyzable silane compound (s6) in the mixture (M) is preferably 0 to 1.0 mol, particularly 0 to 0.08 mol, relative to 1 mol of the hydrolyzable silane compound (s1). preferable. Storage stability is favorable in a content rate being more than the lower limit of the said range. When it is at most the upper limit value, the ink applicability of the dot portion is good.
 その他の加水分解性シラン化合物としては、エポキシ基と加水分解性シリル基とを有し、フッ素原子を含有しない加水分解性シラン化合物(s7)、オキシアルキレン基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s8)、スルフィドと加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s9)、ウレイド基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s10)、アミノ基と加水分解性シリル基を有し、フッ素原子を含まない加水分解性シラン化合物(s11)等が挙げられる。 Other hydrolyzable silane compounds include an epoxy group and a hydrolyzable silyl group, a hydrolyzable silane compound (s7) containing no fluorine atom, an oxyalkylene group and a hydrolyzable silyl group, Hydrolyzable silane compound not containing fluorine atom (s8), having sulfide and hydrolyzable silyl group, hydrolyzable silane compound not containing fluorine atom (s9), having ureido group and hydrolyzable silyl group And hydrolyzable silane compound (s10) having no fluorine atom, hydrolyzable silane compound (s11) having an amino group and a hydrolyzable silyl group and not containing a fluorine atom.
 加水分解性シラン化合物(s7)として、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシランが、加水分解性シラン化合物(s8)として、例えば、CHO(CO)Si(OCH(ポリオキシエチレン基含有トリメトキシシラン)(ここで、kは例えば約10である。)、加水分解性シラン化合物(s9)として、例えば、ビス(トリエトキシシリルプロピル)テトラスルフィド、加水分解性シラン化合物(s10)として、例えば、3-ウレイドプロピルトリエトキシシラン、加水分解性シラン化合物(s11)として、例えば、N-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。 Examples of the hydrolyzable silane compound (s7) include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycol. Sidoxypropylmethyldimethoxysilane and 3-glycidoxypropylmethyldiethoxysilane are used as the hydrolyzable silane compound (s8), for example, CH 3 O (C 2 H 4 O) k Si (OCH 3 ) 3 (poly Oxyethylene group-containing trimethoxysilane (here, k is, for example, about 10), hydrolyzable silane compound (s9), for example, bis (triethoxysilylpropyl) tetrasulfide, hydrolyzable silane compound ( s10), for example, 3-ureidopropyltriethoxysilane, water As a solution silane compound (s11), for example, N- phenyl-3-aminopropyltrimethoxysilane.
 特に撥インク剤(C2)が加水分解性シラン化合物(s8)を含む場合、撥インク剤(C2)の分散安定性、貯蔵安定性が向上し、好ましい。特に撥インク剤(C2)が加水分解性シラン化合物(s9)を含む場合、低露光量でも撥インク性が発現しやすくなり好ましい。 Particularly, when the ink repellent agent (C2) contains the hydrolyzable silane compound (s8), the dispersion stability and storage stability of the ink repellent agent (C2) are improved, which is preferable. In particular, when the ink repellent agent (C2) contains a hydrolyzable silane compound (s9), the ink repellency is easily exhibited even at a low exposure amount, which is preferable.
 撥インク剤(C2)の一例として、加水分解性シラン化合物(s1)をn1、加水分解性シラン化合物(s2)をn2、加水分解性シラン化合物(s3)をn3、加水分解性シラン化合物(s4)をn4、加水分解性シラン化合物(s5)をn5、加水分解性シラン化合物(s6)をn6、それぞれ含む混合物(M)の部分加水分解縮合物が挙げられる。ここで、n1~n6は構成単位の合計モル量に対する各構成単位のモル分率を示す。n1>0、n2>0、n3≧0、n4≧0、n5≧0、n6≧0、n1+n2+n3+n4+n5+n6=1である。 As an example of the ink repellent agent (C2), the hydrolyzable silane compound (s1) is n1, the hydrolyzable silane compound (s2) is n2, the hydrolyzable silane compound (s3) is n3, and the hydrolyzable silane compound (s4). ) Is n4, the hydrolyzable silane compound (s5) is n5, and the hydrolyzable silane compound (s6) is n6, and a partial hydrolysis condensate of the mixture (M) is included. Here, n1 to n6 represent the mole fraction of each structural unit relative to the total molar amount of the structural units. n1> 0, n2> 0, n3 ≧ 0, n4 ≧ 0, n5 ≧ 0, n6 ≧ 0, n1 + n2 + n3 + n4 + n5 + n6 = 1.
 n1:n2:n3は混合物(M)における加水分解性シラン化合物(s1)、(s2)、(s3)、(s4)、(s5)、(s6)の仕込み組成と一致する。各成分のモル比は、各成分の効果のバランスから設計される。
 n1は、撥インク剤(C2)におけるフッ素原子の含有率が上記好ましい範囲となる量において、0.02~0.4が好ましい。
 n2は、撥インク剤(C2)における酸価が上記範囲となる量において、0.003~0.03が好ましい。
 n3は、0~0.98が好ましく、0.05~0.6が特に好ましい。
 n4は、0~0.4が好ましく、0~0.27が特に好ましい。
 n5は、0~0.1が好ましく、0~0.07が特に好ましい。
 n6は、0~0.2が好ましく、0~0.15が特に好ましい。
n1: n2: n3 corresponds to the preparation composition of the hydrolyzable silane compounds (s1), (s2), (s3), (s4), (s5), and (s6) in the mixture (M). The molar ratio of each component is designed from the balance of the effect of each component.
n1 is preferably 0.02 to 0.4 in such an amount that the fluorine atom content in the ink repellent agent (C2) falls within the above-mentioned preferable range.
n2 is preferably 0.003 to 0.03 in such an amount that the acid value in the ink repellent agent (C2) falls within the above range.
n3 is preferably 0 to 0.98, particularly preferably 0.05 to 0.6.
n4 is preferably 0 to 0.4, particularly preferably 0 to 0.27.
n5 is preferably 0 to 0.1, particularly preferably 0 to 0.07.
n6 is preferably 0 to 0.2, particularly preferably 0 to 0.15.
 撥インク剤(C2)の質量平均分子量(Mw)は、500以上が好ましく、1×10未満が好ましく、5×10以下が特に好ましい。質量平均分子量(Mw)が下限値以上であると、ネガ型感光性樹脂組成物を用いて硬化膜を形成する際に、撥インク剤(C2)が上面移行しやすい。上限値未満であると、開口部残渣が少なくなり好ましい。なお、撥インク剤(C2)の質量平均分子量(Mw)は、製造条件により調節できる。 The mass average molecular weight (Mw) of the ink repellent agent (C2) is preferably 500 or more, preferably less than 1 × 10 6 , and particularly preferably 5 × 10 3 or less. When the mass average molecular weight (Mw) is not less than the lower limit, the ink repellent agent (C2) is likely to shift to the upper surface when a cured film is formed using the negative photosensitive resin composition. When it is less than the upper limit, the opening residue is reduced, which is preferable. In addition, the mass average molecular weight (Mw) of the ink repellent agent (C2) can be adjusted by manufacturing conditions.
 撥インク剤(C2)は、上述した混合物(M)を、公知の方法により加水分解および縮合反応させることで製造できる。この反応には、水酸化ナトリウム、水酸化テトラメチルアンモニウム(TMAH)等のアルカリ触媒、塩酸、硫酸、硝酸およびリン酸等の無機酸、あるいは、酢酸、シュウ酸およびマレイン酸等の有機酸を触媒として用いることができる。また、上記反応には公知の溶媒を用いることができる。上記反応で得られる撥インク剤(C2)は、溶媒とともに溶液の性状でネガ型感光性樹脂組成物に配合してもよい。 The ink repellent agent (C2) can be produced by subjecting the above-mentioned mixture (M) to hydrolysis and condensation reaction by a known method. This reaction is catalyzed by alkali catalysts such as sodium hydroxide and tetramethylammonium hydroxide (TMAH), inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or organic acids such as acetic acid, oxalic acid and maleic acid. Can be used as Moreover, a well-known solvent can be used for the said reaction. The ink repellent agent (C2) obtained by the above reaction may be blended in a negative photosensitive resin composition in the form of a solution together with a solvent.
 ネガ型感光性樹脂組成物における全固形分中の撥インク剤(C)の含有割合は、これを用いて得られる隔壁において、表面が上記の特性を満足する含有割合とする。該含有割合は、用いる撥インク剤(C)の種類にもよるが、具体的には、0.01~10質量%が好ましく、0.1~2質量%がより好ましい。含有割合が上記範囲の下限値以上であると、ネガ型感光性樹脂組成物から形成される硬化膜の上面は優れた撥インク性を有する。上記範囲の上限値以下であると、硬化膜と基材との密着性が良好になる。 The content ratio of the ink repellent agent (C) in the total solid content in the negative photosensitive resin composition is a content ratio at which the surface satisfies the above characteristics in the partition obtained using the same. The content ratio depends on the type of the ink repellent agent (C) to be used, but specifically, 0.01 to 10% by mass is preferable, and 0.1 to 2% by mass is more preferable. When the content ratio is at least the lower limit of the above range, the upper surface of the cured film formed from the negative photosensitive resin composition has excellent ink repellency. Adhesiveness of a cured film and a base material becomes it favorable that it is below the upper limit of the said range.
(光重合開始剤(D))
 本発明における光重合開始剤(D)は、光重合開始剤としての機能を有する化合物であれば特に制限されず、光によりラジカルを発生する化合物が好ましい。
(Photopolymerization initiator (D))
The photopolymerization initiator (D) in the present invention is not particularly limited as long as it is a compound having a function as a photopolymerization initiator, and a compound that generates a radical by light is preferable.
 光重合開始剤(D)としては、メチルフェニルグリオキシレート、9,10-フェナンスレンキノン等のα-ジケトン類;ベンゾイン等のアシロイン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル類;チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン類;ベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン類;アセトフェノン、2-(4-トルエンスルホニルオキシ)-2-フェニルアセトフェノン、p-ジメチルアミノアセトフェノン、2,2'-ジメトキシ-2-フェニルアセトフェノン、p-メトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン類;アントラキノン、2-エチルアントラキノン、カンファーキノン、1,4-ナフトキノン等のキノン類;2-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル等のアミノ安息香酸類;フェナシルクロライド、トリハロメチルフェニルスルホン等のハロゲン化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキシド類;ジ-t-ブチルパーオキサイド等の過酸化物;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル類、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、n-ブチルアミン、N-メチルジエタノールアミン、ジエチルアミノエチルメタクリレート等の脂肪族アミン類等が挙げられる。 Examples of the photopolymerization initiator (D) include α-diketones such as methylphenylglyoxylate and 9,10-phenanthrenequinone; acyloins such as benzoin; benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and the like. Acyloin ethers; thioxanthones such as thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diethylthioxanthone; benzophenone, 4,4'-bis (dimethylamino) Benzophenones such as benzophenone and 4,4′-bis (diethylamino) benzophenone; acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophene Non, 2,2′-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2- Acetophenones such as dimethylamino-1- (4-morpholinophenyl) -butan-1-one; quinones such as anthraquinone, 2-ethylanthraquinone, camphorquinone, 1,4-naphthoquinone; ethyl 2-dimethylaminobenzoate Aminobenzoic acids such as 4-dimethylaminobenzoic acid (n-butoxy) ethyl; halogen compounds such as phenacyl chloride and trihalomethylphenylsulfone; bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, etc. Acylphosphine oxides; di-t-butyl Peroxides such as oxides; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime), ethanone 1- [9-ethyl-6- (2-methylbenzoyl)- Oxime esters such as 9H-carbazol-3-yl] -1- (O-acetyloxime), aliphatics such as triethanolamine, methyldiethanolamine, triisopropanolamine, n-butylamine, N-methyldiethanolamine, diethylaminoethyl methacrylate Examples include amines.
 光重合開始剤(D)のなかでも、ベンゾフェノン類、アミノ安息香酸類および脂肪族アミン類は、その他のラジカル開始剤と共に用いると、増感効果を発現することがあり好ましい。 Among the photopolymerization initiators (D), benzophenones, aminobenzoic acids and aliphatic amines are preferably used together with other radical initiators because they may exhibit a sensitizing effect.
 光重合開始剤(D)としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、または2,4-ジエチルチオキサントンが好ましい。さらに、これらとベンゾフェノン類、例えば、4,4’-ビス(ジエチルアミノ)ベンゾフェノンとの組み合わせが特に好ましい。光重合開始剤(D)は、1種を単独で用いても2種以上を併用してもよい。 Examples of the photopolymerization initiator (D) include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpho Linophenyl) -butan-1-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime), ethanone 1- [9-ethyl-6- (2-methyl) Benzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) or 2,4-diethylthioxanthone is preferred. Furthermore, combinations of these with benzophenones, for example, 4,4'-bis (diethylamino) benzophenone are particularly preferred. A photoinitiator (D) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物における全固形分中の光重合開始剤(D)の含有割合は、0.1~50質量%が好ましく、0.5~30質量%がより好ましく、1~15質量%が特に好ましい。含有割合が上記範囲であると、ネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 The content of the photopolymerization initiator (D) in the total solid content in the negative photosensitive resin composition is preferably 0.1 to 50% by mass, more preferably 0.5 to 30% by mass, and 1 to 15% by mass. % Is particularly preferred. When the content ratio is in the above range, the photo-curing property and developability of the negative photosensitive resin composition are good.
(溶媒(E))
 本発明のネガ型感光性樹脂組成物は、溶媒(E)を含有することで粘度が低減され、ネガ型感光性樹脂組成物の基材表面への塗布がしやすくなる。その結果、均一な膜厚のネガ型感光性樹脂組成物の塗膜が形成できる。溶媒(E)としては公知の溶媒が用いられる。溶媒(E)は、1種を単独で用いても2種以上を併用してもよい。
(Solvent (E))
When the negative photosensitive resin composition of the present invention contains the solvent (E), the viscosity is reduced, and the negative photosensitive resin composition can be easily applied to the substrate surface. As a result, a coating film of a negative photosensitive resin composition having a uniform film thickness can be formed. A known solvent is used as the solvent (E). A solvent (E) may be used individually by 1 type, or may use 2 or more types together.
 溶媒(E)としては、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、アルコール類、ソルベントナフサ類、および水等が挙げられる。なかでも、アルキレングリコールアルキルエーテル類、アルキレングリコールアルキルエーテルアセテート類、およびアルコール類からなる群から選ばれる少なくとも1種の溶媒が好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-n-ブトキシ-N,N-ジメチルプロピオンアミドおよび2-プロパノールからなる群から選ばれる少なくとも1種の溶媒がさらに好ましい。 Examples of the solvent (E) include alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, alcohols, solvent naphtha, and water. Among these, at least one solvent selected from the group consisting of alkylene glycol alkyl ethers, alkylene glycol alkyl ether acetates, and alcohols is preferable. Propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol At least one selected from the group consisting of monoethyl ether acetate, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethylpropionamide, 3-n-butoxy-N, N-dimethylpropionamide and 2-propanol More preferred are seed solvents.
 特にジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-n-ブトキシ-N,N-ジメチルプロピオンアミドは沸点が150℃以上であり、塗工ムラなどが抑えられる傾向があり好ましい。 In particular, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, N, N-dimethylisobutyramide, 3-methoxy-N, N-dimethylpropionamide, and 3-n-butoxy-N, N-dimethylpropionamide have a boiling point of 150 ° C. This is preferable because uneven coating and the like tend to be suppressed.
 なお、溶媒(E)が水を含む場合、水の含有量は溶媒(E)全体の10質量%以下であるのが好ましい。上記範囲であると、本発明のネガ型感光性樹脂組成物から得られる硬化膜から形成された隔壁からなるパターン基板のムラを低減できる。また、水の含有量は1~10質量%であるのがより好ましい。上記範囲であると組成物の分散安定性が良好である。 In addition, when a solvent (E) contains water, it is preferable that content of water is 10 mass% or less of the whole solvent (E). Within the above range, it is possible to reduce the unevenness of the pattern substrate comprising the partition formed from the cured film obtained from the negative photosensitive resin composition of the present invention. The water content is more preferably 1 to 10% by mass. Within the above range, the dispersion stability of the composition is good.
 ネガ型感光性樹脂組成物における溶媒(E)の含有割合は、組成物全量に対して10~99質量%が好ましく、20~95質量%がより好ましく、50~90質量%が特に好ましい。また、アルカリ可溶性樹脂(A)と架橋剤(B)の合計100質量%に対しては、0.1~3000質量%が好ましく、0.5~2000質量%がより好ましい。 The content ratio of the solvent (E) in the negative photosensitive resin composition is preferably 10 to 99% by mass, more preferably 20 to 95% by mass, and particularly preferably 50 to 90% by mass with respect to the total amount of the composition. The total amount of the alkali-soluble resin (A) and the crosslinking agent (B) is 100% by mass, preferably 0.1 to 3000% by mass, and more preferably 0.5 to 2000% by mass.
(その他の成分)
(チオール化合物(G))
 本発明のネガ型感光性樹脂組成物が任意に含有するチオール化合物(G)は、1分子中にメルカプト基を2個以上有する化合物である。本発明のネガ型感光性樹脂組成物がチオール化合物(G)を含有すれば、露光時に光重合開始剤(D)から生成したラジカルによりチオール化合物(G)のラジカルが生成してアルカリ可溶性樹脂(A)、架橋剤(B)やネガ型感光性樹脂組成物が含有するその他成分のエチレン性二重結合に作用する、いわゆるエン-チオール反応が生起する。このエン-チオール反応は、通常のエチレン性二重結合がラジカル重合するのと異なり、酸素による反応阻害を受けないため、高い連鎖移動性を有し、さらに重合と同時に架橋も行うため、硬化物となる際の収縮率も低く、均一なネットワークが得られやすい等の利点を有する。
(Other ingredients)
(Thiol compound (G))
The thiol compound (G) optionally contained in the negative photosensitive resin composition of the present invention is a compound having two or more mercapto groups in one molecule. If the negative photosensitive resin composition of this invention contains a thiol compound (G), the radical of a thiol compound (G) will produce | generate by the radical produced | generated from the photoinitiator (D) at the time of exposure, and alkali-soluble resin ( A), a so-called ene-thiol reaction that acts on the ethylenic double bond of the other component contained in the crosslinking agent (B) or the negative photosensitive resin composition occurs. This ene-thiol reaction is different from the usual radical polymerization of ethylenic double bonds, and is not subject to reaction inhibition by oxygen, so it has high chain mobility and also undergoes crosslinking at the same time as polymerization. The shrinkage rate is low, and there is an advantage that a uniform network can be easily obtained.
 本発明のネガ型感光性樹脂組成物が、チオール化合物(G)を含有する場合には、上述のようにして低露光量でも充分に硬化でき、特に酸素による反応阻害を受け易い隔壁上面を含む上層部においても光硬化が充分に行われることから隔壁上面に良好な撥インク性を付与することが可能となる。 When the negative photosensitive resin composition of the present invention contains a thiol compound (G), it can be sufficiently cured even at a low exposure amount as described above, and includes a partition upper surface that is particularly susceptible to reaction inhibition by oxygen. Since the photocuring is sufficiently performed also in the upper layer portion, it is possible to impart good ink repellency to the upper surface of the partition wall.
 チオール化合物(G)中のメルカプト基は、1分子中に2~10個含むことが好ましく、2~8個がより好ましく、2~5個がさらに好ましい。ネガ型感光性樹脂組成物の保存安定性の観点からは、3個が特に好ましい。 The mercapto group in the thiol compound (G) is preferably contained 2 to 10 in one molecule, more preferably 2 to 8 and even more preferably 2 to 5. From the viewpoint of storage stability of the negative photosensitive resin composition, 3 is particularly preferable.
 チオール化合物(G)の分子量は特に制限されない。チオール化合物(G)における、[分子量/メルカプト基数]で示されるメルカプト基当量は、低露光量での硬化性の観点から、40~1,000が好ましく、40~500がより好ましく、40~250が特に好ましい。 The molecular weight of the thiol compound (G) is not particularly limited. In the thiol compound (G), the mercapto group equivalent represented by [molecular weight / number of mercapto groups] is preferably 40 to 1,000, more preferably 40 to 500, and more preferably 40 to 250, from the viewpoint of curability at low exposure. Is particularly preferred.
 チオール化合物(G)としては、具体的には、トリス(2-メルカプトプロパノイルオキシエチル)イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールトリスチオグリコレート、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、ジペンタエリスリトールヘキサ(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサ(3-メルカプトブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリフェノールメタントリス(3-メルカプトプロピオネート)、トリフェノールメタントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)、2,4,6-トリメルカプト-S-トリアジン等が挙げられる。チオール化合物(G)は、1種を単独で用いても2種以上を併用してもよい。 Specific examples of the thiol compound (G) include tris (2-mercaptopropanoyloxyethyl) isocyanurate, pentaerythritol tetrakis (3-mercaptobutyrate), trimethylolpropane tristhioglycolate, pentaerythritol tristhioglycol. , Pentaerythritol tetrakisthioglycolate, dipentaerythritol hexathioglycolate, trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyl) Oxy) -ethyl] -isocyanurate, dipentaerythritol hexa (3-mercaptopropionate), trimethylolpropane tris (3-mercaptobuty ), Pentaerythritol tetrakis (3-mercaptobutyrate), dipentaerythritol hexa (3-mercaptobutyrate), trimethylolpropane tris (2-mercaptoisobutyrate), 1,3,5-tris (3- Mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, triphenolmethanetris (3-mercaptopropionate), triphenolmethanetris (3- Mercaptobutyrate), trimethylolethane tris (3-mercaptobutyrate), 2,4,6-trimercapto-S-triazine and the like. A thiol compound (G) may be used individually by 1 type, or may use 2 or more types together.
 ネガ型感光性樹脂組成物がチオール化合物(G)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分が有するエチレン性二重結合の1モルに対してメルカプト基が0.0001~1モルとなる量が好ましく、0.0005~0.5モルがより好ましく、0.001~0.5モルが特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、0.1~1200質量%が好ましく、0.2~1000質量%がより好ましい。かかるチオール化合物(G)の含有割合が上記範囲であると、低露光量においてもネガ型感光性樹脂組成物の光硬化性および現像性が良好である。 When the negative photosensitive resin composition contains the thiol compound (G), the content ratio is a mercapto group with respect to 1 mol of the ethylenic double bond of the total solid content in the negative photosensitive resin composition. Is preferably 0.0001 to 1 mol, more preferably 0.0005 to 0.5 mol, and particularly preferably 0.001 to 0.5 mol. Further, the amount is preferably 0.1 to 1200% by mass, more preferably 0.2 to 1000% by mass with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the thiol compound (G) is within the above range, the photo-curability and developability of the negative photosensitive resin composition are good even at a low exposure amount.
(リン酸化合物(H))
 本発明のネガ型感光性樹脂組成物は、得られる硬化膜における基材やITO等の透明電極材料等に対する密着性を向上させるために、任意にリン酸化合物(H)を含むことができる。
(Phosphate compound (H))
The negative photosensitive resin composition of the present invention can optionally contain a phosphoric acid compound (H) in order to improve the adhesion of the obtained cured film to a substrate, a transparent electrode material such as ITO, and the like.
 このようなリン酸化合物(H)としては、硬化膜の基材や透明電極材料等に対する密着性を向上できるものであれば特に限定されるものではないが、分子中にエチレン性不飽和二重結合を有するリン酸化合物であることが好ましい。 Such a phosphoric acid compound (H) is not particularly limited as long as it can improve the adhesion of a cured film to a substrate, a transparent electrode material, etc., but the ethylenically unsaturated double molecule in the molecule. A phosphoric acid compound having a bond is preferable.
 分子中にエチレン性不飽和二重結合を有するリン酸化合物としては、リン酸(メタ)アクリレート化合物、すなわち、分子内に少なくともリン酸由来のO=P構造と、(メタ)アクリル酸系化合物由来のエチレン性不飽和二重結合である(メタ)アクリロイル基とを有する化合物やリン酸ビニル化合物が好ましい。 As a phosphoric acid compound having an ethylenically unsaturated double bond in the molecule, a phosphoric acid (meth) acrylate compound, that is, an O = P structure derived from at least phosphoric acid in the molecule and a (meth) acrylic acid compound A compound having a (meth) acryloyl group which is an ethylenically unsaturated double bond or a vinyl phosphate compound is preferred.
 本発明に用いるリン酸(メタ)アクリレート化合物としては、モノ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-(メタ)アクリロイルオキシエチル)アシッドホスフェート、ジ(2-アクリロイルオキシエチル)アシッドホスフェート、トリス((メタ)アクリロイルオキシエチル)アシッドホスフェート、モノ(2-メタアクリロイルオキシエチル)カプロエートアシッドホスフェート等が挙げられる。 Examples of the phosphoric acid (meth) acrylate compound used in the present invention include mono (2- (meth) acryloyloxyethyl) acid phosphate, di (2- (meth) acryloyloxyethyl) acid phosphate, and di (2-acryloyloxyethyl). Examples include acid phosphate, tris ((meth) acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) caproate acid phosphate, and the like.
 また、リン酸化合物(H)としては、分子中にエチレン性不飽和二重結合を有するリン酸化合物以外にも、フェニルホスホン酸などが使用できる。 As the phosphoric acid compound (H), phenylphosphonic acid and the like can be used in addition to the phosphoric acid compound having an ethylenically unsaturated double bond in the molecule.
 本発明のネガ型感光性樹脂組成物は、リン酸化合物(H)として、これに分類される化合物の1種を単独で含有してもよいし、2種以上を含有してもよい。 The negative photosensitive resin composition of the present invention may contain, as the phosphoric acid compound (H), one kind of compound classified as such, or may contain two or more kinds.
 ネガ型感光性樹脂組成物がリン酸化合物(H)を含有する場合、その含有割合は、ネガ型感光性樹脂組成物中の全固形分に対して、0.01~10質量%が好ましく、0.1~5質量%が特に好ましい。また、アルカリ可溶性樹脂(A)の100質量%に対しては、0.01~200質量%が好ましく、0.1~100質量%がより好ましい。かかるリン酸化合物(H)の含有割合が上記範囲であると、得られる硬化膜と基材等との密着性が良好である。 When the negative photosensitive resin composition contains the phosphoric acid compound (H), the content is preferably 0.01 to 10% by mass with respect to the total solid content in the negative photosensitive resin composition, 0.1 to 5% by mass is particularly preferable. Further, 0.01 to 200% by mass is preferable and 0.1 to 100% by mass is more preferable with respect to 100% by mass of the alkali-soluble resin (A). When the content ratio of the phosphoric acid compound (H) is in the above range, the adhesion between the obtained cured film and the substrate is good.
 本発明におけるネガ型感光性樹脂組成物はさらに、必要に応じて、重合禁止剤、熱架橋剤、高分子分散剤、分散助剤、シランカップリング剤、微粒子、硬化促進剤、増粘剤、可塑剤、消泡剤、レベリング剤およびハジキ防止剤からなる群から選ばれる他の添加剤を1種以上含有してもよい。 The negative photosensitive resin composition in the present invention may further include a polymerization inhibitor, a thermal crosslinking agent, a polymer dispersant, a dispersion aid, a silane coupling agent, fine particles, a curing accelerator, a thickener, if necessary. You may contain 1 or more types of other additives chosen from the group which consists of a plasticizer, an antifoamer, a leveling agent, and a repellency inhibitor.
 本発明のネガ型感光性樹脂組成物は、上記各成分の所定量を混合して得られる。本発明のネガ型感光性樹脂組成物は、光学素子、例えば、有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いる硬化膜や隔壁の形成に用いることで特に効果が発揮できる。本発明のネガ型感光性樹脂組成物を用いれば、上面に良好な撥インク性を有するとともに基材に対する現像密着性が良好な隔壁であって、該隔壁で仕切られた開口部において現像残渣が充分に少ない隔壁の製造が可能である。 The negative photosensitive resin composition of the present invention can be obtained by mixing predetermined amounts of the above components. The negative photosensitive resin composition of the present invention is particularly effective when used for forming a cured film or a partition used for an optical element, for example, an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell. When the negative photosensitive resin composition of the present invention is used, the upper surface is a partition wall having good ink repellency and good development adhesion to the substrate, and a development residue is formed in the opening partitioned by the partition wall. A sufficiently small number of partition walls can be manufactured.
[隔壁]
 本発明に係る隔壁は、基板表面をドット形成用の複数の区画に仕切る形に形成された上記の本発明のネガ型感光性樹脂組成物の硬化膜からなる隔壁である。隔壁は、例えば、基板等の基材の表面に本発明のネガ型感光性樹脂組成物を塗布し、必要に応じて乾燥して溶媒等を除去した後、ドット形成用の区画となる部分にマスキングを施し、露光した後、現像することで得られる。現像によって、マスキングにより非露光の部分が除去されドット形成用の区画に対応する開口部が隔壁とともに形成される。
[Partition wall]
The partition according to the present invention is a partition made of a cured film of the above-described negative photosensitive resin composition of the present invention formed so as to partition the substrate surface into a plurality of sections for forming dots. The partition wall is, for example, applied to the surface of a substrate such as a substrate, the negative photosensitive resin composition of the present invention, dried as necessary to remove the solvent, etc. It is obtained by developing after masking, exposing. By development, an unexposed portion is removed by masking, and an opening corresponding to a dot forming section is formed together with a partition.
 本発明に係る実施形態の隔壁は、上記のとおり、上面に良好な撥インク性を有するとともに基材に対する現像密着性が良好な隔壁であって、該隔壁で仕切られた開口部において現像残渣が充分に少ない。これにより、光学素子、特には、IJ法により作製される有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池に用いられる場合に、開口部にインクが均一塗布され精度よくドットを形成できるという、顕著な効果が発揮される。 As described above, the partition wall of the embodiment according to the present invention is a partition wall having good ink repellency on the upper surface and good development adhesion to the substrate, and a development residue is present in the opening partitioned by the partition wall. There are few enough. As a result, when used in an optical element, particularly an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell manufactured by the IJ method, ink can be uniformly applied to the opening to form dots with high accuracy. A remarkable effect is exhibited.
 以下、本発明に係る実施形態の隔壁の製造方法の一例を、図1A~1Dを用いて説明するが、隔壁の製造方法は以下に限定されない。なお、以下の製造方法は、ネガ型感光性樹脂組成物が溶媒(E)を含有するものとして説明する。 Hereinafter, an example of a method for manufacturing a partition according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1D, but the method for manufacturing a partition is not limited to the following. In addition, the following manufacturing methods are demonstrated as a negative photosensitive resin composition containing a solvent (E).
 図1Aに示すように、基板1の一方の主面全体にネガ型感光性樹脂組成物を塗布して、塗膜21を形成する。このとき、塗膜21中には撥インク剤(C)が全体的に溶解し、均一に分散している。なお、図1A中、撥インク剤(C)は模式的に示してあり、実際にこのような粒子形状で存在しているわけではない。 As shown in FIG. 1A, a negative photosensitive resin composition is applied to one entire main surface of the substrate 1 to form a coating film 21. At this time, the ink repellent agent (C) is totally dissolved and uniformly dispersed in the coating film 21. In FIG. 1A, the ink repellent agent (C) is schematically shown, and does not actually exist in such a particle shape.
 次に、図1Bに示すように、塗膜21を乾燥させて、乾燥膜22とする。乾燥方法としては、加熱乾燥、減圧乾燥および減圧加熱乾燥等が挙げられる。溶媒(E)の種類にもよるが、加熱乾燥の場合、加熱温度は50~120℃が好ましい。 Next, as shown in FIG. 1B, the coating film 21 is dried to form a dry film 22. Examples of the drying method include heat drying, reduced pressure drying, and reduced pressure heat drying. Although depending on the type of the solvent (E), the heating temperature is preferably 50 to 120 ° C. in the case of heat drying.
 この乾燥過程において、撥インク剤(C)は乾燥膜の上層部に移行する。なお、ネガ型感光性樹脂組成物が、溶媒(E)を含有しない場合であっても、塗膜内で撥インク剤(C)の上面移行は同様に達成される。 In this drying process, the ink repellent agent (C) moves to the upper layer of the dry film. Even when the negative photosensitive resin composition does not contain the solvent (E), the upper surface transition of the ink repellent agent (C) is similarly achieved in the coating film.
 次に、図1Cに示すように、隔壁に囲まれる開口部に相当する形状のマスキング部31を有するフォトマスク30を介して、乾燥膜22に対して光を照射し露光する。乾燥膜22を露光した後の膜を露光膜23と称す。露光膜23において、露光部23Aは光硬化しており、非露光部23Bは乾燥膜22と同様の状態である。 Next, as shown in FIG. 1C, the dry film 22 is exposed to light through a photomask 30 having a masking portion 31 having a shape corresponding to the opening surrounded by the partition walls. The film after the dry film 22 is exposed is referred to as an exposure film 23. In the exposure film 23, the exposed portion 23 </ b> A is photocured, and the non-exposed portion 23 </ b> B is in the same state as the dry film 22.
 照射する光としては、可視光;紫外線;遠紫外線;KrFエキシマレーザ光、ArFエキシマレーザ光、Fエキシマレーザ光、Krエキシマレーザ光、KrArエキシマレーザ光およびArエキシマレーザ光等のエキシマレーザ光;X線;電子線等が挙げられる。 As the light to be irradiated, excimer laser such as visible light; ultraviolet light; far ultraviolet light; KrF excimer laser light, ArF excimer laser light, F 2 excimer laser light, Kr 2 excimer laser light, KrAr excimer laser light, and Ar 2 excimer laser light. Examples include light; X-ray; electron beam.
 照射する光としては、波長100~600nmの光が好ましく、300~500nmの光がより好ましく、i線(365nm)、h線(405nm)またはg線(436nm)を含む光が特に好ましい。また、必要に応じて330nm以下の光をカットしてもよい。 The light to be irradiated is preferably light having a wavelength of 100 to 600 nm, more preferably light having a wavelength of 300 to 500 nm, particularly preferably light containing i-line (365 nm), h-line (405 nm) or g-line (436 nm). Moreover, you may cut light below 330 nm as needed.
 露光方式としては、全面一括露光、スキャン露光等が挙げられる。同一箇所に対して複数回に分けて露光してもよい。この際、複数回の露光条件は同一でも同一でなくても構わない。 The exposure method includes full-surface batch exposure, scan exposure, and the like. You may expose in multiple times with respect to the same location. At this time, the multiple exposure conditions may or may not be the same.
 露光量は、上記いずれの露光方式においても、例えば、5~1,000mJ/cmが好ましく、5~500mJ/cmがより好ましく、5~300mJ/cmがさらに好ましく、5~200mJ/cmが特に好ましく、5~50mJ/cmが最も好ましい。なお、露光量は、照射する光の波長、ネガ型感光性樹脂組成物の組成および塗膜の厚さ等により、適宜好適化される。 Exposure amount, In any of the above exposure method, for example, preferably 5 ~ 1,000mJ / cm 2, more preferably 5 ~ 500mJ / cm 2, more preferably 5 ~ 300mJ / cm 2, 5 ~ 200mJ / cm 2 is particularly preferable, and 5 to 50 mJ / cm 2 is most preferable. The exposure amount is appropriately optimized depending on the wavelength of light to be irradiated, the composition of the negative photosensitive resin composition, the thickness of the coating film, and the like.
 単位面積当たりの露光時間は特に制限されず、用いる露光装置の露光パワーおよび必要な露光量等から設計される。なお、スキャン露光の場合、光の走査速度から露光時間が求められる。単位面積当たりの露光時間は通常1~60秒程度である。 The exposure time per unit area is not particularly limited, and is designed from the exposure power of the exposure apparatus to be used and the required exposure amount. In the case of scan exposure, the exposure time is determined from the light scanning speed. The exposure time per unit area is usually about 1 to 60 seconds.
 次に、図1Dに示すように、アルカリ現像液を用いた現像を行い、露光膜23の露光部23Aに対応する部位のみからなる隔壁4が形成される。隔壁4で囲まれた開口部5は、露光膜23において非露光部23Bが存在していた部位であり、現像により非露光部23Bが除去された後の状態を、図1Dは示している。ネガ型感光性樹脂組成物においては、アルカリ可溶性樹脂(A)、架橋剤(B)、撥インク剤(C)のいずれもが酸性基を有していることから、非露光部23Bにおけるアルカリ現像液による溶解、除去が容易に行われ、該組成物は開口部5にほとんど残存しない。一方、ネガ型感光性樹脂組成物の硬化物である隔壁4は現像密着性に優れることから現像後も基板1に充分に密着している。 Next, as shown in FIG. 1D, development using an alkali developer is performed to form the partition wall 4 composed only of a portion corresponding to the exposed portion 23A of the exposed film 23. The opening 5 surrounded by the partition wall 4 is a portion where the non-exposed portion 23B exists in the exposure film 23, and FIG. 1D shows a state after the non-exposed portion 23B is removed by development. In the negative photosensitive resin composition, all of the alkali-soluble resin (A), the cross-linking agent (B), and the ink repellent agent (C) have an acidic group. Dissolution and removal with a liquid are easily performed, and the composition hardly remains in the opening 5. On the other hand, since the partition 4 which is a cured product of the negative photosensitive resin composition is excellent in development adhesion, it is sufficiently adhered to the substrate 1 even after development.
 なお、図1Dに示す隔壁4において、その上面を含む最上層は撥インク層4Aである。撥インク剤(C)がエチレン性二重結合を有する側鎖を有しない場合、露光の際に、撥インク剤(C)はそのまま最上層に高濃度に存在して撥インク層となる。露光の際、撥インク剤(C)の周辺に存在するアルカリ可溶性樹脂(A)、さらに任意に含有するチオール化合物(G)やそれ以外の光硬化成分は、強固に光硬化して撥インク剤(C)は撥インク層に定着する。 In the partition 4 shown in FIG. 1D, the uppermost layer including the upper surface is the ink repellent layer 4A. When the ink repellent agent (C) does not have a side chain having an ethylenic double bond, the ink repellent agent (C) is present in a high concentration as it is in the uppermost layer and becomes an ink repellent layer. At the time of exposure, the alkali-soluble resin (A) present around the ink repellent agent (C), the thiol compound (G) optionally contained, and other photocuring components are strongly photocured to cause the ink repellent agent. (C) is fixed to the ink repellent layer.
 撥インク剤(C)がエチレン性二重結合を有する側鎖を有する場合、撥インク剤(C)は互いにおよび/または、アルカリ可溶性樹脂(A)、さらに任意に含有するチオール化合物(G)やその他の光硬化成分とともに光硬化して、撥インク剤(C)が強固に結合した撥インク層4Aを形成する。 When the ink repellent agent (C) has a side chain having an ethylenic double bond, the ink repellent agent (C) is mutually and / or alkali-soluble resin (A), and further optionally contains a thiol compound (G) or It is photocured together with other photocuring components to form an ink repellent layer 4A in which the ink repellent agent (C) is firmly bonded.
 上記のいずれの場合も、撥インク層4Aの下側には、主としてアルカリ可溶性樹脂(A)および任意に含有するチオール化合物(G)、さらにそれ以外の光硬化成分が光硬化して、撥インク剤(C)をほとんど含有しない層4Bが形成される。 In any of the above cases, the ink repellent layer 4A has an ink-repellent layer on the lower side of the ink-repellent layer 4A, in which mainly the alkali-soluble resin (A) and the thiol compound (G) optionally contained, and other photocurable components are photocured. A layer 4B containing almost no agent (C) is formed.
 従来、撥インク剤が酸性基を有する場合、隔壁の最上層に形成される撥インク層は現像時に除去されやすい点が問題であった。本発明においては、酸価が所定の範囲に規定された撥インク剤(C)を用いることで、現像時に非露光部においてはアルカリ現像液による溶解、除去が容易でありながら、隔壁4の最上層に形成された撥インク層4Aはアルカリ現像液による影響を殆ど受けずに残存することを可能とした。また、撥インク剤(C)は、撥インク層4Aおよびその下部層4Bを含む隔壁に充分に定着しているため、現像時に開口部にマイグレートすることがほとんどない。 Conventionally, when the ink repellent agent has an acid group, the ink repellent layer formed on the uppermost layer of the partition wall is easily removed during development. In the present invention, by using the ink repellent agent (C) whose acid value is regulated within a predetermined range, it is easy to dissolve and remove with an alkaline developer in the non-exposed area at the time of development. The ink repellent layer 4 </ b> A formed in the upper layer can remain without being substantially affected by the alkaline developer. Further, since the ink repellent agent (C) is sufficiently fixed to the partition including the ink repellent layer 4A and the lower layer 4B, it hardly migrates to the opening during development.
 現像後、隔壁4をさらに加熱してもよい。加熱温度は130~250℃が好ましい。加熱により隔壁4の硬化がより強固なものとなる。また、撥インク剤(C)は撥インク層4A内により強固に定着する。 The partition 4 may be further heated after development. The heating temperature is preferably 130 to 250 ° C. The partition 4 is hardened by heating. Further, the ink repellent agent (C) is more firmly fixed in the ink repellent layer 4A.
 このようにして得られる本発明に係る樹脂硬化膜および隔壁4は、露光が低露光量で行われる場合であっても、上面に良好な撥インク性を有する。また、隔壁4においては、現像後、開口部5に撥インク剤(C)が存在することがほとんどなく、開口部5におけるインクの均一な塗工性を充分に確保できる。 The cured resin film and the partition wall 4 according to the present invention thus obtained have good ink repellency on the upper surface even when the exposure is performed at a low exposure amount. In the partition 4, the ink repellent (C) hardly exists in the opening 5 after development, and the uniform coating property of the ink in the opening 5 can be sufficiently secured.
 なお、開口部5の親インク性をより確実に得ることを目的として、上記加熱後、開口部5に存在する可能性があるネガ型感光性樹脂組成物の現像残渣等を除去するために、隔壁4付きの基板1に対して紫外線/オゾン処理を施してもよい。 For the purpose of more reliably obtaining the ink affinity of the opening 5, in order to remove the development residue and the like of the negative photosensitive resin composition that may exist in the opening 5 after the heating, The substrate 1 with the partition walls 4 may be subjected to ultraviolet / ozone treatment.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、例えば、幅が100μm以下であることが好ましく、20μm以下であることが特に好ましい。また、隣接する隔壁間の距離(パターンの幅)は300μm以下であることが好ましく、100μm以下であることが特に好ましい。隔壁の高さは0.05~50μmであることが好ましく、0.2~10μmであることが特に好ましい。 For example, the width of the partition formed from the negative photosensitive resin composition of the present invention is preferably 100 μm or less, and particularly preferably 20 μm or less. The distance between adjacent partition walls (pattern width) is preferably 300 μm or less, and particularly preferably 100 μm or less. The height of the partition wall is preferably 0.05 to 50 μm, particularly preferably 0.2 to 10 μm.
 本発明のネガ型感光性樹脂組成物から形成される隔壁は、上記幅に形成された際の縁の部分に凹凸が少なく直線性に優れる。なお、隔壁における高い直線性の発現は、特に、アルカリ可溶性樹脂としてエポキシ樹脂に酸性基とエチレン性二重結合とが導入された樹脂(A-2)を用いた場合に顕著である。それにより、たとえ微細なパターンであっても精度の高いパターン形成が可能となる。このような精度の高いパターン形成が行えれば、特に、有機EL素子用の隔壁として有用である。 The partition formed from the negative photosensitive resin composition of the present invention has few irregularities in the edge portion when formed to the above width, and is excellent in linearity. The high linearity in the partition walls is particularly remarkable when a resin (A-2) in which an acidic group and an ethylenic double bond are introduced into an epoxy resin is used as the alkali-soluble resin. As a result, even a fine pattern can be formed with high accuracy. If such a highly accurate pattern can be formed, it is particularly useful as a partition for an organic EL element.
 本発明に係る隔壁は、IJ法にてパターン印刷を行う際に、その開口部をインク注入領域とする隔壁として使用できる。IJ法にてパターン印刷を行う際に、本発明に係る隔壁を、その開口部が所望のインク注入領域と一致するように形成して用いれば、隔壁上面が良好な撥インク性を有することから、隔壁を超えて所望しない開口部すなわちインク注入領域にインクが注入されることを抑制できる。また、隔壁で囲まれた開口部は、インクの濡れ広がり性が良好であるので、インクを所望の領域に白抜け等が発生することなく均一に印刷することが可能となる。 The partition according to the present invention can be used as a partition having the opening as an ink injection region when pattern printing is performed by the IJ method. When pattern printing is performed by the IJ method, if the partition wall according to the present invention is formed so that its opening coincides with a desired ink injection region, the partition top surface has good ink repellency. Ink can be prevented from being injected into an undesired opening, that is, an ink injection region beyond the partition. In addition, since the opening surrounded by the partition wall has good ink wetting and spreading properties, it is possible to print the ink uniformly without causing white spots or the like in a desired region.
 本発明に係る隔壁を用いれば、上記のとおりIJ法によるパターン印刷が精巧に行える。よって、本発明に係る隔壁は、ドットがIJ法で形成される基板表面に複数のドットと隣接するドット間に位置する隔壁を有する光学素子、特に有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池の隔壁として有用である。 If the partition wall according to the present invention is used, pattern printing by the IJ method can be performed precisely as described above. Therefore, the partition according to the present invention is an optical element having a partition located between a plurality of adjacent dots on the surface of a substrate on which dots are formed by the IJ method, particularly an organic EL element, a quantum dot display, a TFT array, or a thin film. It is useful as a partition for solar cells.
[光学素子]
 本発明に係る光学素子としての有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池としては、基板表面に複数のドットと隣接するドット間に位置する上記本発明に係る隔壁とを有する有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池である。本発明に係る光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)において、ドットはIJ法により形成されることが好ましい。
[Optical element]
As an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell as an optical element according to the present invention, an organic EL having a plurality of dots and a partition wall according to the present invention located between adjacent dots on the substrate surface It is an element, a quantum dot display, a TFT array, or a thin film solar cell. In the optical element (organic EL element, quantum dot display, TFT array, or thin film solar cell) according to the present invention, the dots are preferably formed by the IJ method.
 有機EL素子とは、有機薄膜の発光層を陽極と陰極で挟んだ構造であり、本発明に係る隔壁は有機発光層を隔てる隔壁用途、有機TFT層を隔てる隔壁用途、塗布型酸化物半導体を隔てる隔壁用途などに用いることができる。 The organic EL element has a structure in which a light emitting layer of an organic thin film is sandwiched between an anode and a cathode, and the partition wall according to the present invention is a partition use separating an organic light emitting layer, a partition use separating an organic TFT layer, and a coating type oxide semiconductor. It can be used for separating partition applications.
 また、有機TFTアレイ素子とは、複数のドットが平面視マトリクス状に配置され、各ドットに画素電極とこれを駆動するためのスイッチング素子としてTFTが設けられ、TFTのチャネル層を含む半導体層として有機半導体層が用いられる素子である。有機TFTアレイ素子は、例えば、有機EL素子あるいは液晶素子等に、TFTアレイ基板として備えられる。 In addition, the organic TFT array element is a semiconductor layer including a plurality of dots arranged in a matrix in plan view, each pixel having a pixel electrode and a TFT as a switching element for driving it, and including a TFT channel layer. An element in which an organic semiconductor layer is used. The organic TFT array element is provided as a TFT array substrate in, for example, an organic EL element or a liquid crystal element.
 本発明に係る実施形態の光学素子、例えば、有機EL素子について、上記で得られた隔壁を用いて、開口部にIJ法によりドットを形成する例を以下に説明する。なお、本発明に係る有機EL素子等の光学素子におけるドットの形成方法は以下に限定されない。 Referring to the optical element of the embodiment according to the present invention, for example, an organic EL element, an example in which dots are formed in the opening by the IJ method using the partition obtained above will be described below. In addition, the formation method of the dot in optical elements, such as an organic EL element concerning this invention, is not limited to the following.
 図2Aおよび図2Bは、上記図1Dに示す基板1上に形成された隔壁4を用いて有機EL素子を製造する方法を模式的に示すものである。ここで、基板1上の隔壁4は、開口部5が、製造しようとする有機EL素子のドットのパターンに一致するように形成されたものである。 2A and 2B schematically show a method of manufacturing an organic EL element using the partition walls 4 formed on the substrate 1 shown in FIG. 1D. Here, the partition 4 on the substrate 1 is formed such that the opening 5 matches the dot pattern of the organic EL element to be manufactured.
 図2Aに示すように、隔壁4に囲まれた開口部5に、インクジェットヘッド9からインク10を滴下して、開口部5に所定量のインク10を注入する。インクとしては、ドットの機能に合わせて、有機EL素子用として公知のインクが適宜選択して用いられる。 As shown in FIG. 2A, ink 10 is dropped from the inkjet head 9 into the opening 5 surrounded by the partition wall 4 and a predetermined amount of ink 10 is injected into the opening 5. As the ink, known inks for organic EL elements are appropriately selected and used in accordance with the function of dots.
 次いで、用いたインク10の種類により、例えば、溶媒の除去や硬化のために、乾燥および/または加熱等の処理を施して、図2Bに示すように、隔壁4に隣接する形で所望のドット11が形成された有機EL素子12を得る。 Next, depending on the type of the ink 10 used, for example, a process such as drying and / or heating is performed to remove or cure the solvent, and as shown in FIG. The organic EL element 12 in which 11 is formed is obtained.
 本発明に係る実施形態の光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)、は、本発明に係る隔壁を用いることで、製造過程において隔壁で仕切られた開口部にインクがムラなく均一に濡れ広がることが可能であり、これにより精度よく形成されたドットを有する光学素子(有機EL素子、量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池)である。 An optical element (an organic EL element, a quantum dot display, a TFT array, or a thin film solar cell) according to an embodiment of the present invention uses a partition wall according to the present invention, so that ink is formed in an opening partitioned by the partition wall in the manufacturing process. Is an optical element (an organic EL element, a quantum dot display, a TFT array, or a thin-film solar cell) having dots formed with high accuracy.
 なお、有機EL素子は、例えば、以下のように製造できるがこれに限定されない。
 ガラス等の透光性基板にスズドープ酸化インジウム(ITO)等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。
In addition, although an organic EL element can be manufactured as follows, for example, it is not limited to this.
A light-transmitting electrode such as tin-doped indium oxide (ITO) is formed on a light-transmitting substrate such as glass by a sputtering method or the like. The translucent electrode is patterned as necessary.
 次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。次に、ドット形成用開口部内に、IJ法により、正孔注入層、正孔輸送層、発光層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット形成用開口部内に形成される有機層の種類および数は適宜設計される。最後に、アルミニウム等の反射電極、またはITO等の透光性電極を蒸着法等によって形成する。 Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice pattern in plan view along the outline of each dot by a photolithography method including coating, exposure and development. Next, the materials for the hole injection layer, the hole transport layer, the light emitting layer, the hole blocking layer, and the electron injection layer are respectively applied and dried in the dot formation openings by the IJ method. Laminate. The kind and number of organic layers formed in the opening for forming dots are appropriately designed. Finally, a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
 また、量子ドットディスプレイは、例えば、以下のように製造できるがこれに限定されない。 Further, the quantum dot display can be manufactured, for example, as follows, but is not limited thereto.
 ガラス等の透光性基板にITO等の透光性電極をスパッタ法等によって成膜する。この透光性電極は必要に応じてパターニングされる。次に、本発明のネガ型感光性樹脂組成物を用い、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。次に、ドット形成用開口部内に、IJ法により、正孔注入層、正孔輸送層、量子ドット層、正孔阻止層および電子注入層の材料をそれぞれ塗布および乾燥して、これらの層を順次積層する。ドット形成用開口部内に形成される有機層の種類および数は適宜設計される。最後に、アルミニウム等の反射電極、またはITO等の透光性電極を蒸着法等によって形成する。 A light-transmitting electrode such as ITO is formed on a light-transmitting substrate such as glass by a sputtering method or the like. The translucent electrode is patterned as necessary. Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice shape in plan view along the outline of each dot by photolithography including coating, exposure and development. Next, the materials for the hole injection layer, the hole transport layer, the quantum dot layer, the hole blocking layer, and the electron injection layer are applied and dried in the dot formation openings by the IJ method. Laminate sequentially. The kind and number of organic layers formed in the opening for forming dots are appropriately designed. Finally, a reflective electrode such as aluminum or a translucent electrode such as ITO is formed by vapor deposition or the like.
 さらに本発明に係る実施形態の光学素子は、例えば以下のように製造される、青色光変換型の量子ドットディスプレイにも応用可能である。 Furthermore, the optical element of the embodiment according to the present invention can be applied to a blue light conversion type quantum dot display manufactured as follows, for example.
 ガラス等の透光性基板に本発明のネガ型感光性樹脂組成物を用い、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。次に、ドット形成用開口部内に、IJ法により青色光を緑色光に変換するナノ粒子溶液、青色光を赤色光に変換するナノ粒子溶液、必要に応じて青色のカラーインクを塗布、乾燥して、モジュールを作製する。青色を発色する光源をバックライトとして使用し前記モジュールをカラーフィルター代替として使用することにより、色再現性の優れた液晶ディスプレイが得られる。 A negative photosensitive resin composition of the present invention is used for a translucent substrate such as glass, and partition walls are formed in a lattice shape in plan view along the outline of each dot. Next, a nanoparticle solution that converts blue light to green light, a nanoparticle solution that converts blue light to red light, and a blue color ink if necessary are dried in the dot formation opening by the IJ method. To make a module. A liquid crystal display having excellent color reproducibility can be obtained by using a light source that emits blue light as a backlight and using the module as a color filter alternative.
 TFTアレイは、例えば、以下のように製造できるがこれに限定されない。
 ガラス等の透光性基板にアルミニウムやその合金等のゲート電極をスパッタ法等によって成膜する。このゲート電極は必要に応じてパターニングされる。
The TFT array can be manufactured, for example, as follows, but is not limited thereto.
A gate electrode such as aluminum or an alloy thereof is formed on a light-transmitting substrate such as glass by a sputtering method or the like. This gate electrode is patterned as necessary.
 次に、窒化ケイ素等のゲート絶縁膜をプラズマCVD法等によって形成する。ゲート絶縁膜上にソース電極、ドレイン電極を形成してもよい。ソース電極およびドレイン電極は、例えば、真空蒸着やスパッタリングでアルミニウム、金、銀、銅やそれらの合金などの金属薄膜を形成し、作製することができる。ソース電極およびドレイン電極をパターニングする方法としては、金属薄膜を形成後、レジストを塗装し、露光、現像して電極を形成させたい部分にレジストを残し、その後、リン酸や王水などで露出した金属を除去、最後にレジストを除去する手法がある。 Next, a gate insulating film such as silicon nitride is formed by a plasma CVD method or the like. A source electrode and a drain electrode may be formed over the gate insulating film. The source electrode and the drain electrode can be produced by forming a metal thin film such as aluminum, gold, silver, copper, or an alloy thereof by, for example, vacuum deposition or sputtering. As a method of patterning the source electrode and the drain electrode, after forming a metal thin film, a resist is coated, exposed and developed to leave the resist in a portion where the electrode is to be formed, and then exposed with phosphoric acid or aqua regia. There is a method of removing the metal and finally removing the resist.
 また、金などの金属薄膜を形成させた場合は、予めレジストを塗装し、露光、現像して電極を形成させたくない部分にレジストを残し、その後金属薄膜を形成後、金属薄膜と共にフォトレジストを除去する手法もある。また、銀や銅等の金属ナノコロイド等を用いてインクジェット等の手法により、ソース電極およびドレイン電極を形成してもよい。次に、本発明のネガ型感光性樹脂組成物を用いて、塗布、露光および現像を含むフォトリソグラフィ法により、各ドットの輪郭に沿って、平面視格子状に隔壁を形成する。 In addition, when a metal thin film such as gold is formed, a resist is applied in advance, exposed and developed to leave the resist in a portion where it is not desired to form an electrode, and after forming the metal thin film, the photoresist is applied together with the metal thin film. There is also a technique to remove. Further, the source electrode and the drain electrode may be formed by a method such as ink jet using a metal nanocolloid such as silver or copper. Next, using the negative photosensitive resin composition of the present invention, partition walls are formed in a lattice pattern in plan view along the outline of each dot by photolithography including coating, exposure and development.
 次にドット形成用開口部内に半導体溶液をIJ法によって塗布し、溶液を乾燥させることによって半導体層を形成する。この半導体溶液としては有機半導体溶液、無機の塗布型酸化物半導体溶液も用いることができる。ソース電極、ドレイン電極は、この半導体層形成後にインクジェットなどの手法を用いて形成されてもよい。最後にITO等の透光性電極をスパッタ法等によって成膜し、窒化ケイ素等の保護膜を成膜することで形成する。 Next, a semiconductor solution is applied in the dot forming opening by the IJ method, and the solution is dried to form a semiconductor layer. As this semiconductor solution, an organic semiconductor solution or an inorganic coating type oxide semiconductor solution can also be used. The source electrode and the drain electrode may be formed by using a method such as inkjet after forming the semiconductor layer. Finally, a transparent electrode such as ITO is formed by sputtering or the like, and a protective film such as silicon nitride is formed.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。なお、例1~9が実施例であり、例10~16が比較例である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Examples 1 to 9 are examples, and examples 10 to 16 are comparative examples.
 各測定は以下の方法で行った。
[数平均分子量(Mn)および質量平均分子量(Mw)]
 分子量測定用の標準試料として市販されている重合度の異なる複数種の単分散ポリスチレン重合体のゲルパーミエーションクロマトグラフィ(GPC)を、市販のGPC測定装置(東ソー社製、装置名:HLC-8320GPC)を用いて測定した。ポリスチレンの分子量と保持時間(リテンションタイム)との関係をもとに検量線を作成した。
Each measurement was performed by the following method.
[Number average molecular weight (Mn) and mass average molecular weight (Mw)]
Gel permeation chromatography (GPC) of a plurality of types of monodisperse polystyrene polymers with different degrees of polymerization, which is commercially available as a standard sample for molecular weight measurement, is a commercially available GPC measurement device (manufactured by Tosoh Corporation, device name: HLC-8320GPC). It measured using. A calibration curve was prepared based on the relationship between the molecular weight of polystyrene and the retention time (retention time).
 各試料について、テトラヒドロフランで1.0質量%に希釈し、0.5μmのフィルタを通過させた後、上記装置を用いてGPCを測定した。上記検量線を用いて、GPCスペクトルをコンピュータ解析することにより、試料の数平均分子量(Mn)および質量平均分子量(Mw)を求めた。 Each sample was diluted to 1.0% by mass with tetrahydrofuran, passed through a 0.5 μm filter, and then GPC was measured using the above apparatus. Using the calibration curve, the number average molecular weight (Mn) and the mass average molecular weight (Mw) of the sample were determined by computer analysis of the GPC spectrum.
[PGMEA接触角]
 静滴法により、JIS R3257「基板ガラス表面のぬれ性試験方法」に準拠して、基材上の測定表面の3ヶ所にPGMEA滴を載せ、各PGMEA滴について測定した。液滴は2μL/滴とし、測定は20℃で行った。接触角は、3測定値の平均値(n=3)から求めた。なお、PGMEAは、プロピレングリコールモノメチルエーテルアセテートの略号である。
[PGMEA contact angle]
According to JIS R3257 “Test method for wettability of substrate glass surface”, PGMEA droplets were placed at three locations on the measurement surface on the substrate by the sessile drop method, and each PGMEA droplet was measured. The droplet was 2 μL / droplet, and the measurement was performed at 20 ° C. The contact angle was determined from the average value of three measured values (n = 3). PGMEA is an abbreviation for propylene glycol monomethyl ether acetate.
 各例で用いた化合物の略語は以下の通りである。
(アルカリ可溶性樹脂(A))
 A-1:クレゾールノボラック型エポキシ樹脂を、アクリル酸、次いで1,2,3,6-テトラヒドロ無水フタル酸と反応させて、アクリロイル基とカルボキシ基とを導入した樹脂をヘキサンで精製した樹脂溶液(固形分70質量%、酸価60mgKOH/g、質量平均分子量9.2×10)。
 A-2:特開2003-268067における実施例1(段落番号0045)に記載の、RE-310S(日本化薬製、2官能ビスフェノール-A型エポキシ樹脂、エポキシ当量:184.0g/当量)を、アクリル酸、次いでジメチロールプロピオン酸、トリメチルヘキサメチレンジイソシアネートと反応させ、最後にグリシジルメタクリレートと反応させて得られるポリウレタン化合物溶液(固形分65質量%、酸価79.32mgKOH/g)。
Abbreviations of the compounds used in each example are as follows.
(Alkali-soluble resin (A))
A-1: A resin solution obtained by reacting a cresol novolac type epoxy resin with acrylic acid and then with 1,2,3,6-tetrahydrophthalic anhydride to purify a resin into which an acryloyl group and a carboxy group have been introduced with hexane ( Solid content 70% by mass, acid value 60 mgKOH / g, mass average molecular weight 9.2 × 10 3 ).
A-2: RE-310S (manufactured by Nippon Kayaku Co., Ltd., bifunctional bisphenol-A type epoxy resin, epoxy equivalent: 184.0 g / equivalent) described in Example 1 (paragraph 0045) in JP-A-2003-268067 A polyurethane compound solution obtained by reacting with acrylic acid, then with dimethylolpropionic acid and trimethylhexamethylene diisocyanate, and finally with glycidyl methacrylate (solid content 65 mass%, acid value 79.32 mg KOH / g).
(多官能低分子量化合物(B1))
B1-1:2,2,2-トリアクリロイロオキシメチルエチルフタル酸(酸価87mgKOH/g、分子量446)。
B1-2:ジペンタエリスリトールペンタアクリレートのコハク酸エステル(酸価92mgKOH/g、分子量612)。
(非酸性架橋剤(B2))
B2-1:ジペンタエリスリトールヘキサアクリレートおよびジペンタエリスリトールペンタアクリレートの混合物。
(Polyfunctional low molecular weight compound (B1))
B1-1: 2,2,2-triacryloyloxymethylethylphthalic acid (acid value 87 mg KOH / g, molecular weight 446).
B1-2: Succinic acid ester of dipentaerythritol pentaacrylate (acid value 92 mg KOH / g, molecular weight 612).
(Non-acidic crosslinking agent (B2))
B2-1: A mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate.
(撥インク剤(C1)の原料)
C6FMA:CH=C(CH)COOCHCH(CF
MAA:メタクリル酸
2-HEMA:2-ヒドロキシエチルメタクリレート
V-65:(2,2’-アゾビス(2,4-ジメチルバレロニトリル))
n-DM:n-ドデシルメルカプタン
BEI:1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート。
DBTDL:ジブチル錫ジラウレート
TBQ:t-ブチル-p-ベンゾキノン
MEK:2-ブタノン
(Ink repellent agent (C1) raw material)
C6FMA: CH 2 = C (CH 3) COOCH 2 CH 2 (CF 2) 6 F
MAA: methacrylic acid 2-HEMA: 2-hydroxyethyl methacrylate V-65: (2,2′-azobis (2,4-dimethylvaleronitrile))
n-DM: n-dodecyl mercaptan BEI: 1,1- (bisacryloyloxymethyl) ethyl isocyanate.
DBTDL: Dibutyltin dilaurate TBQ: t-butyl-p-benzoquinone MEK: 2-butanone
(撥インク剤(C2)の原料)
化合物(s1)に相当する化合物(cx-1):F(CFCHCHSi(OCH(公知の方法で製造した。)。
(Ink repellent (C2) raw material)
Compound (cx-1) corresponding to compound (s1): F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 (produced by a known method).
化合物(s2)に相当する化合物(cx-21)、化合物(cx-22)の原料
AC:アクリル酸
MMA:メタクリル酸メチル
AIBN:アゾビスイソブチロニトリル
V-65:(2,2’-アゾビス(2,4-ジメチルバレロニトリル))
3-メルカトプロピルトリメトキシシラン
PGME:プロピレングリコールモノメチルエーテル
Compound (cx-21) corresponding to compound (s2), raw material of compound (cx-22) AC: acrylic acid MMA: methyl methacrylate AIBN: azobisisobutyronitrile V-65: (2,2′-azobis) (2,4-dimethylvaleronitrile))
3-mercatopropyltrimethoxysilane PGME: propylene glycol monomethyl ether
化合物(s3)に相当する化合物(cx-3):Si(OC
化合物(s4)に相当する化合物(cx-4):CH=CHCOO(CHSi(OCH
化合物(s5)に相当する化合物(cx-51):SH(CHSi(OCH
化合物(s5)に相当する化合物(cx-52):[(1,2,3,4-テトラチアブタン-1,4-ジイル)ビス(トリメチレン)]ビス(トリエトキシシラン)
化合物(s6)に相当する化合物(cx-6):(CHSiOCH
Compound (cx-3) corresponding to compound (s3): Si (OC 2 H 5 ) 4 .
Compound (cx-4) corresponding to compound (s4): CH 2 ═CHCOO (CH 2 ) 3 Si (OCH 3 ) 3
Compound (cx-51) corresponding to compound (s5): SH (CH 2 ) 3 Si (OCH 3 ) 3
Compound (cx-52) corresponding to compound (s5): [(1,2,3,4-tetrathiabutane-1,4-diyl) bis (trimethylene)] bis (triethoxysilane)
Compound (cx-6) corresponding to compound (s6): (CH 3 ) 3 SiOCH 3 .
(光重合開始剤(D))
D-1:2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン。
D-2:4,4’-ビス(ジエチルアミノ)ベンゾフェノン。
(Photopolymerization initiator (D))
D-1: 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
D-2: 4,4′-bis (diethylamino) benzophenone.
(溶媒(E))
E-1:PGME:プロピレングリコールモノメチルエーテル。
E-2:PGMEA:プロピレングリコールモノメチルエーテルアセテート。
E-3:EDGAC:エチルジグリコールアセテート。
E-4:DMIB:N,N-ジメチルイソブチルアミド。
(Solvent (E))
E-1: PGME: Propylene glycol monomethyl ether.
E-2: PGMEA: Propylene glycol monomethyl ether acetate.
E-3: EDGAC: ethyl diglycol acetate.
E-4: DMIB: N, N-dimethylisobutyramide.
[撥インク剤(C)の合成]
 実施例に使用する撥インク剤(C1-1)、撥インク剤(C2-1)~(C2-3)および比較例用の撥インク剤(Cf-1)~(Cf-3)を以下のとおり合成した。
[Synthesis of ink repellent agent (C)]
Ink repellent agents (C1-1), ink repellent agents (C2-1) to (C2-3) and ink repellent agents (Cf-1) to (Cf-3) for comparative examples used in Examples are as follows. Synthesized as follows.
(合成例1:撥インク剤(C1-1)の合成)
 撹拌機を備えた内容積1,000cmのオートクレーブに、MEKの415.1g、C6FMAの81.0g、MAAの18.0g、2-HEMAの81.0g、重合開始剤V-65の5.0gおよびn-DMの4.7gを仕込み、窒素雰囲気下で撹拌しながら、50℃で24時間重合させ、さらに70℃にて5時間加熱し、重合開始剤を不活性化し、共重合体の溶液を得た。共重合体は、数平均分子量が5,540、質量平均分子量が13,200であった。
(Synthesis Example 1: Synthesis of ink repellent agent (C1-1))
In an autoclave with an internal volume of 1,000 cm 3 equipped with a stirrer, 415.1 g of MEK, 81.0 g of C6FMA, 18.0 g of MAA, 81.0 g of 2-HEMA, and 5.5 of polymerization initiator V-65. 0 g and 4.7 g of n-DM were charged, polymerized at 50 ° C. for 24 hours with stirring under a nitrogen atmosphere, and further heated at 70 ° C. for 5 hours to inactivate the polymerization initiator, A solution was obtained. The copolymer had a number average molecular weight of 5,540 and a mass average molecular weight of 13,200.
 次いで、撹拌機を備えた内容積300cmのオートクレーブに上記共重合体の溶液の130.0g、BEIの33.5g、DBTDLの0.13g、TBQの1.5gを仕込み、撹拌しながら、40℃で24時間反応させ、粗重合体を合成した。得られた粗重合体の溶液にヘキサンを加えて再沈精製した後、真空乾燥し、撥インク剤(C1-1)の65.6gを得た。その後、PGMEAで希釈し、撥インク剤(C1-1)のPGMEA溶液(撥インク剤(C1-1)濃度:10質量%、以下、「撥インク剤(C1-1)溶液」ともいう。)を得た。 Next, 130.0 g of the above copolymer solution, 33.5 g of BEI, 0.13 g of DBTDL, and 1.5 g of TBQ were charged in an autoclave having an internal volume of 300 cm 3 equipped with a stirrer, The reaction was carried out at 24 ° C. for 24 hours to synthesize a crude polymer. Hexane was added to the obtained crude polymer solution for purification by reprecipitation, followed by vacuum drying to obtain 65.6 g of an ink repellent agent (C1-1). Thereafter, it is diluted with PGMEA, and the PGMEA solution of the ink repellent agent (C1-1) (ink repellent agent (C1-1) concentration: 10 mass%, hereinafter also referred to as “ink repellent agent (C1-1) solution”). Got.
 撥インク剤(C1-1)は数平均分子量(Mn)7,540、質量平均分子量(Mw)16,200、フッ素原子の含有率14.1(質量%)、C=Cの含有量3.79(mmol/g)および酸価35.7(mgKOH/g)であった。 The ink repellent agent (C1-1) has a number average molecular weight (Mn) of 7,540, a mass average molecular weight (Mw) of 16,200, a fluorine atom content of 14.1 (mass%), and a C = C content of 3. It was 79 (mmol / g) and acid value 35.7 (mgKOH / g).
(合成例2:加水分解性シラン化合物(cx-21)の合成)
 撹拌機と温度計を備えた50cmの三口フラスコに、3-メルカトプロピルトリメトキシシランの0.40g、MMAの2.06g、ACの1.48g、V-65の0.05g、PGMEの35.59gを入れ、60℃で12時間撹拌した。ガスクロマトグラフィにより、原料の3-メルカトプロピルトリメトキシシラン、MMAおよびACのピーク消失を確認し、加水分解性シラン化合物(cx-21)のPGME溶液(濃度:10質量%)を得た。
(Synthesis Example 2: Synthesis of hydrolyzable silane compound (cx-21))
In a 50 cm 3 three-necked flask equipped with a stirrer and a thermometer, 0.40 g of 3-mercaptopropyltrimethoxysilane, 2.06 g of MMA, 1.48 g of AC, 0.05 g of V-65, PGME 35.59 g was added and stirred at 60 ° C. for 12 hours. By gas chromatography, the disappearance of the peaks of the starting 3-mercaptopropyltrimethoxysilane, MMA and AC was confirmed, and a PGME solution (concentration: 10% by mass) of the hydrolyzable silane compound (cx-21) was obtained.
(合成例3:撥インク剤(C2-1)の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.35g、化合物(cx-21)のPGME溶液1.03g、化合物(cx-3)0.56g、化合物(cx-4)0.63gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを6.67g入れて、原料溶液とした。
(Synthesis Example 3: Preparation of ink repellent agent (C2-1))
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.35 g of compound (cx-1), 1.03 g of PGME solution of compound (cx-21), 0.56 g of compound (cx-3), compound (cx-4) ) 0.63 g was added to obtain a hydrolyzable silane compound mixture. Subsequently, 6.67g of PGME was put into this mixture, and it was set as the raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.76g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(C2-1)のPGME溶液(撥インク剤(C2-1)濃度:10質量%、以下、「撥インク剤(C2-1)溶液」ともいう。)を得た。 0.76 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of the dropping, the mixture was stirred at 40 ° C. for 5 hours to prepare a PGME solution of the ink repellent agent (C2-1) (ink repellent agent (C2-1) concentration: 10% by mass, hereinafter “ink repellent agent (C2-1)”. Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(C2-1)は、数平均分子量(Mn)1,105、質量平均分子量(Mw)2,082、フッ素原子の含有率18.2(質量%)、C=Cの含有量2.69(mmol/g)および酸価32.8(mgKOH/g)であった。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (C2-1) has a number average molecular weight (Mn) of 1,105, a mass average molecular weight (Mw) of 2,082, a fluorine atom content of 18.2 (mass%), and C = C. The content was 2.69 (mmol / g) and the acid value was 32.8 (mgKOH / g).
(合成例4:撥インク剤(C2-2)液の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.38g、化合物(cx-21)のPGME溶液1.09g、化合物(cx-3)0.59g、化合物(cx-4)0.44g、化合物(cx-6)0.05g、化合物(cx-51)0.22gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを6.37g入れて、原料溶液とした。
(Synthesis Example 4: Preparation of ink repellent (C2-2) solution)
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.38 g of compound (cx-1), 1.09 g of PGME solution of compound (cx-21), 0.59 g of compound (cx-3), compound (cx-4) ) 0.44 g, compound (cx-6) 0.05 g, and compound (cx-51) 0.22 g were added to obtain a hydrolyzable silane compound mixture. Subsequently, 6.37g of PGME was put into this mixture, and it was set as the raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.85g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(C2-2)のPGME溶液(撥インク剤(C2-2)濃度:10質量%、以下、「撥インク剤(C2-2)溶液」ともいう。)を得た。 0.85 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of the dropping, the mixture was stirred at 40 ° C. for 5 hours to prepare a PGME solution of the ink repellent agent (C2-2) (ink repellent agent (C2-2) concentration: 10% by mass, hereinafter “ink repellent agent (C2-2)”. Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(C2-2)は、数平均分子量(Mn)945、質量平均分子量(Mw)1,944、フッ素原子の含有率18.2(質量%)、C=Cの含有量1.73(mmol/g)および酸価31.6(mgKOH/g)であった。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (C2-2) has a number average molecular weight (Mn) of 945, a mass average molecular weight (Mw) of 1,944, a fluorine atom content of 18.2 (mass%), and a content of C = C. The acid value was 1.73 (mmol / g) and the acid value was 31.6 (mgKOH / g).
(合成例5:加水分解性シラン化合物(cx-22)の合成)
 撹拌機と温度計を備えた50cmの三口フラスコに、3-メルカトプロピルトリメトキシシランの0.40g、MMAの1.00g、ACの2.20g、AIBNの0.03g、PGMEの31.50gを入れ、60℃で12時間撹拌した。ガスクロマトグラフィにより、原料の3-メルカトプロピルトリメトキシシラン、MMAおよびACのピーク消失を確認し、加水分解性シラン化合物(cx-22)のPGME溶液(濃度:10質量%)を得た。
(Synthesis Example 5: Synthesis of hydrolyzable silane compound (cx-22))
In a 50 cm 3 three-necked flask equipped with a stirrer and thermometer, 0.40 g of 3-mercaptopropyltrimethoxysilane, 1.00 g of MMA, 2.20 g of AC, 0.03 g of AIBN, 31. 50 g was added and stirred at 60 ° C. for 12 hours. By gas chromatography, the disappearance of peaks of the starting materials 3-mercaptopropyltrimethoxysilane, MMA and AC was confirmed, and a PGME solution (concentration: 10% by mass) of the hydrolyzable silane compound (cx-22) was obtained.
(合成例6:撥インク剤(C2-3)液の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.38g、化合物(cx-22)のPGME溶液0.90g、化合物(cx-3)0.28g、化合物(cx-4)0.21g、化合物(cx-6)0.06g、化合物(cx-52)0.33gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを6.88g入れて、原料溶液とした。
(Synthesis Example 6: Preparation of ink repellent (C2-3) solution)
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.38 g of compound (cx-1), 0.90 g of PGME solution of compound (cx-22), 0.28 g of compound (cx-3), compound (cx-4) ) 0.21 g, compound (cx-6) 0.06 g, and compound (cx-52) 0.33 g were added to obtain a hydrolyzable silane compound mixture. Subsequently, 6.88g of PGME was put into this mixture, and it was set as the raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.47g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(C2-3)のPGME溶液(撥インク剤(C2-3)濃度:10質量%、以下、「撥インク剤(C2-3)溶液」ともいう。)を得た。 0.47 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After the completion of dropping, the mixture was stirred at 40 ° C. for 5 hours to prepare a PGME solution of the ink repellent agent (C2-3) (ink repellent agent (C2-3) concentration: 10% by mass, hereinafter “ink repellent agent (C2-3)”. Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(C2-3)は、数平均分子量(Mn)1,330、質量平均分子量(Mw)2,980、フッ素原子の含有率23.1(質量%)、C=Cの含有量1.05(mmol/g)および酸価50.3(mgKOH/g)であった。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (C2-3) has a number average molecular weight (Mn) of 1,330, a mass average molecular weight (Mw) of 2,980, a fluorine atom content of 23.1 (mass%), and C = C. The content was 1.05 (mmol / g) and the acid value was 50.3 (mgKOH / g).
(合成例7:撥インク剤(Cf-1)の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.22g、化合物(cx-22)4.27g、化合物(cx-3)0.36g、化合物(cx-4)0.40gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを4.22g入れて、原料溶液とした。
(Synthesis Example 7: Preparation of ink repellent agent (Cf-1))
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.22 g of compound (cx-1), 4.27 g of compound (cx-22), 0.36 g of compound (cx-3), and 0.36 g of compound (cx-4). 40 g was added to obtain a hydrolyzable silane compound mixture. Next, 4.22 g of PGME was added to this mixture to prepare a raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.53g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(Cf-1)のPGME溶液(撥インク剤(Cf-1)濃度:10質量%、以下、「撥インク剤(Cf-1)溶液」ともいう。)を得た。 0.53 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of dropping, the mixture was stirred at 40 ° C. for 5 hours, and the PGME solution of the ink repellent agent (Cf-1) (ink repellent agent (Cf-1) concentration: 10% by mass, hereinafter, “ink repellent agent (Cf-1) Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(Cf-1)は、数平均分子量(Mn)1,130、質量平均分子量(Mw)2,170、フッ素原子の含有率11.4(質量%)、C=Cの含有量1.76(mmol/g)および酸価227.1(mgKOH/g)であった。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (Cf-1) has a number average molecular weight (Mn) of 1,130, a mass average molecular weight (Mw) of 2,170, a fluorine atom content of 11.4 (mass%), and C = C. The content was 1.76 (mmol / g) and the acid value was 227.1 (mgKOH / g).
(合成例8:撥インク剤(Cf-2)の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.38g、化合物(cx-3)0.55g、化合物(cx-4)0.41g、化合物(cx-6)0.12g、化合物(cx-51)0.21gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを7.52g入れて、原料溶液とした。
(Synthesis Example 8: Preparation of ink repellent agent (Cf-2))
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.38 g of compound (cx-1), 0.55 g of compound (cx-3), 0.41 g of compound (cx-4), 0. 12 g and 0.21 g of compound (cx-51) were added to obtain a hydrolyzable silane compound mixture. Next, 7.52 g of PGME was added to this mixture to prepare a raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.81g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(Cf-2)のPGME溶液(撥インク剤(Cf-2)濃度:10質量%、以下、「撥インク剤(Cf-2)溶液」ともいう。)を得た。 0.81 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of dropping, the mixture was stirred at 40 ° C. for 5 hours, and the PGME solution of the ink repellent agent (Cf-2) (ink repellent agent (Cf-2) concentration: 10% by mass, hereinafter, “ink repellent agent (Cf-2) Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(Cf-2)は、数平均分子量(Mn)678、質量平均分子量(Mw)745、フッ素原子の含有率20.0(質量%)、C=Cの含有量1.76(mmol/g)であった。なお、撥インク剤(Cf-2)は酸性基を有しないため、酸価は0(mgKOH/g)である。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (Cf-2) has a number average molecular weight (Mn) of 678, a mass average molecular weight (Mw) of 745, a fluorine atom content of 20.0 (mass%), and a C = C content of 1. It was 76 (mmol / g). Since the ink repellent agent (Cf-2) has no acidic group, the acid value is 0 (mgKOH / g).
(合成例9:撥インク剤(Cf-3)の調製)
 撹拌機を備えた50cmの三口フラスコに、化合物(cx-1)0.38g、化合物(cx-3)0.31g、化合物(cx-4)0.23g、化合物(cx-6)0.06g、化合物(cx-52)0.34gを入れて、加水分解性シラン化合物混合物を得た。次いで、この混合物にPGMEを6.43g入れて、原料溶液とした。
(Synthesis Example 9: Preparation of ink repellent agent (Cf-3))
In a 50 cm 3 three-necked flask equipped with a stirrer, 0.38 g of compound (cx-1), 0.31 g of compound (cx-3), 0.23 g of compound (cx-4), 0. 06 g and 0.34 g of compound (cx-52) were added to obtain a hydrolyzable silane compound mixture. Subsequently, 6.43g of PGME was put into this mixture, and it was set as the raw material solution.
 得られた原料溶液に、1%塩酸水溶液を0.50g滴下した。滴下終了後、40℃で5時間撹拌して、撥インク剤(Cf-3)のPGME溶液(撥インク剤(Cf-3)濃度:10質量%、以下、「撥インク剤(Cf-3)溶液」ともいう。)を得た。 0.50 g of 1% hydrochloric acid aqueous solution was dropped into the obtained raw material solution. After completion of dropping, the mixture was stirred at 40 ° C. for 5 hours, and a PGME solution of the ink repellent agent (Cf-3) (ink repellent agent (Cf-3) concentration: 10% by mass, hereinafter “ink repellent agent (Cf-3)” Also referred to as a “solution”.
 なお、反応終了後、反応液の成分をガスクロマトグラフィを使用して測定し、原料としての各化合物が検出限界以下になったことを確認した。得られた撥インク剤(Cf-3)は、数平均分子量(Mn)1,030、質量平均分子量(Mw)1,520、フッ素原子の含有率24.3(質量%)、C=Cの含有量1.19(mmol/g)であった。なお、撥インク剤(Cf-3)は酸性基を有しないため、酸価は0(mgKOH/g)である。 After completion of the reaction, the components of the reaction solution were measured using gas chromatography, and it was confirmed that each compound as a raw material was below the detection limit. The obtained ink repellent (Cf-3) has a number average molecular weight (Mn) of 1,030, a mass average molecular weight (Mw) of 1,520, a fluorine atom content of 24.3 (mass%), and C = C. The content was 1.19 (mmol / g). Since the ink repellent agent (Cf-3) has no acidic group, the acid value is 0 (mgKOH / g).
[例1:ネガ型感光性樹脂組成物の製造および硬化膜(隔壁)の製造]
(ネガ型感光性樹脂組成物の製造)
 上記合成例1で得られた(C1-1)溶液の0.25g、A-1の16.07g(固形分は11.25g、残りは溶媒のEDGAC)、B1-1の6.25g、B2-1の5.00g、D-1の1.50g、D-2の0.75g、E-1の70.18g、を200cmの撹拌用容器に入れ、5時間撹拌してネガ型感光性樹脂組成物を製造した。表1に、ネガ型感光性樹脂組成物の固形分濃度(質量%)、ネガ型感光性樹脂組成物中の固形分の組成(質量%)、溶媒の組成(質量%)、および多官能低分子量化合物(B1)と非酸性架橋剤(B2)の合計に対する多官能低分子量化合物(B1)の割合(質量%)を示す。
[Example 1: Production of negative photosensitive resin composition and production of cured film (partition)]
(Manufacture of negative photosensitive resin composition)
0.25 g of the (C1-1) solution obtained in Synthesis Example 1 above, 16.07 g of A-1 (solid content is 11.25 g, the rest is EDGAC as a solvent), 6.25 g of B1-1, B2 -1 g of 5.00 g, D-1.50 g, D-2 0.75 g, E-1 70.18 g were placed in a 200 cm 3 stirring vessel and stirred for 5 hours to give negative photosensitivity. A resin composition was produced. Table 1 shows the solid content concentration (% by mass) of the negative photosensitive resin composition, the composition (% by mass) of the solid content in the negative photosensitive resin composition, the composition of the solvent (% by mass), and the multifunctional low The ratio (mass%) of the polyfunctional low molecular weight compound (B1) with respect to the sum total of a molecular weight compound (B1) and a non-acidic crosslinking agent (B2) is shown.
(硬化膜1の製造)
 10cm四方のITO基板(Indium-Tin-Oxideをガラス基板上に成膜したもの)をエタノールで30秒間超音波洗浄し、次いで、5分間のUV/O処理を行った。UV/O処理には、UV/O発生装置としてPL2001N-58(センエンジニアリング社製)を使用した。254nm換算の光パワー(光出力)は10mW/cmであった。なお、以下の全てのUV/O処理においても本装置を使用した。
(Manufacture of cured film 1)
A 10 cm square ITO substrate (indium-tin-oxide formed on a glass substrate) was ultrasonically cleaned with ethanol for 30 seconds, and then subjected to UV / O 3 treatment for 5 minutes. For the UV / O 3 treatment, PL2001N-58 (manufactured by Sen Engineering Co., Ltd.) was used as a UV / O 3 generator. The optical power (optical output) in terms of 254 nm was 10 mW / cm 2 . Note was also used the device in all the UV / O 3 treatment follows.
 上記洗浄後のITO基板表面に、スピンナを用いて、上記ネガ型感光性樹脂組成物を塗布した後、100℃で2分間ホットプレート上で乾燥させ、膜厚2.4μmの乾燥膜を形成した。得られた乾燥膜に対して、開口パターンを有するフォトマスク(開口部(露光部)がそれぞれ1、2、3、4、5、6、7、8,9、10、12、14、16、18、20、30、40、50μm×1000μm(パターン間の間隔は50μm)のパターンが20mm×20mmの範囲に繰り返されているもの)を介して、365nm換算の露光パワー(露光出力)が25mW/cmである超高4圧水銀ランプのUV光を全面一括照射した。露光の際に、330nm以下の光はカットした。また、乾燥膜とフォトマスクとの離間距離は50μmとした。各例において、露光条件は、露光時間が6秒間であり、露光量が150mJ/cmとした。 The negative photosensitive resin composition was applied to the cleaned ITO substrate surface using a spinner and then dried on a hot plate at 100 ° C. for 2 minutes to form a dry film having a thickness of 2.4 μm. . A photomask having an opening pattern (opening portions (exposure portions) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, The exposure power (exposure output) in terms of 365 nm is 25 mW / through 18, 20, 30, 40, 50 μm × 1000 μm (a pattern having a spacing of 50 μm is repeated in a range of 20 mm × 20 mm). The entire surface was irradiated with UV light from an ultra-high 4 pressure mercury lamp of cm 2 . During the exposure, light of 330 nm or less was cut. The distance between the dry film and the photomask was 50 μm. In each example, the exposure conditions were an exposure time of 6 seconds and an exposure amount of 150 mJ / cm 2 .
 次いで、上記露光処理後のITO基板を0.4質量%テトラメチル水酸化アンモニウム水溶液に40秒間浸漬して現像し、非露光部を水により洗い流し、乾燥させた。次いで、ホットプレート上、230℃で60分間加熱することにより、フォトマスクの開口パターンに対応したパターンを有する硬化膜(隔壁)1付きITO基板を得た。 Next, the ITO substrate after the exposure treatment was developed by immersing it in a 0.4 mass% tetramethylammonium hydroxide aqueous solution for 40 seconds, and the unexposed portion was washed away with water and dried. Next, an ITO substrate with a cured film (partition wall) 1 having a pattern corresponding to the opening pattern of the photomask was obtained by heating on a hot plate at 230 ° C. for 60 minutes.
(硬化膜2の製造)
 また、上記と同様にしてITO基板表面に上記ネガ型感光性樹脂組成物の乾燥膜を形成し、フォトマスク(遮光部の大きさ:100μm×200μmで、開口部(露光部)の幅:20μmの格子パターンが20mm×20mmの範囲に繰り返されているもの)を使用して上記と同様の露光条件で、露光量が150mJ/cmとなるように乾燥膜を露光し、次いで上記現像条件と同様の条件で現像し、ホットプレート上、230℃で60分間加熱することにより、線幅20μmの隔壁でドット部(100μm×200μm)を囲むパターンで硬化膜2付きITO基板を得た。
(Manufacture of cured film 2)
Similarly, a dry film of the negative photosensitive resin composition is formed on the surface of the ITO substrate in the same manner as described above, and a photomask (the size of the light shielding part: 100 μm × 200 μm and the width of the opening (exposed part): 20 μm. The dried film is exposed under the same exposure conditions as above using an exposure pattern of 20 m × 20 mm, and the exposure amount is 150 mJ / cm 2. Development was performed under the same conditions, and heating was performed on a hot plate at 230 ° C. for 60 minutes to obtain an ITO substrate with a cured film 2 in a pattern in which a dot portion (100 μm × 200 μm) was surrounded by a partition having a line width of 20 μm.
[例2~16]
 上記例1において、ネガ型感光性樹脂組成物を表1または表2に示す組成に変更した以外は、同様の方法で、ネガ型感光性樹脂組成物、樹脂硬化膜および隔壁を製造した。
[Examples 2 to 16]
A negative photosensitive resin composition, a cured resin film, and a partition wall were produced in the same manner as in Example 1 except that the negative photosensitive resin composition was changed to the composition shown in Table 1 or Table 2.
(評価)
 例1~16において得られたネガ型感光性樹脂組成物、樹脂硬化膜および隔壁について、以下の評価を実施した。結果を表1または表2の下欄に示す。
(Evaluation)
The following evaluation was carried out on the negative photosensitive resin compositions, resin cured films and partition walls obtained in Examples 1 to 16. The results are shown in the lower column of Table 1 or Table 2.
<隔壁上面の撥インク性>
 上記樹脂硬化膜1で露光量が150mJ/cmで得られた隔壁上面のPGMEA接触角を上記の方法で測定した。
<Ink repellency on top of partition wall>
The PGMEA contact angle on the upper surface of the partition wall obtained by the resin cured film 1 with an exposure amount of 150 mJ / cm 2 was measured by the above method.
◎:接触角40°以上
○:接触角30°以上40°未満
×:接触角30°未満
◎: Contact angle of 40 ° or more ○: Contact angle of 30 ° or more and less than 40 ° ×: Contact angle of less than 30 °
<IJ塗布性>
 上記樹脂硬化膜2付ITO基板で隔壁に囲まれたドット内部に、IJ装置(LaboJET 500マイクロジェット社製)を用いて1%TPD(トリフェニルジアミン)のシクロヘキシルベンゼン溶液を20pl滴下した。乾燥後のドット内部の乾燥物の広がりを確認した。なお判定は下記の基準とした。
<IJ applicability>
20 pl of 1% TPD (triphenyldiamine) cyclohexylbenzene solution was dropped into the inside of the dots surrounded by the partition walls by the ITO substrate with the cured resin film 2 using an IJ apparatus (manufactured by LaboJET 500 Microjet). The spread of the dried material inside the dots after drying was confirmed. The determination was based on the following criteria.
○:ドット内に均一に広がっていて、隔壁ぎわまで材料が届いている。
×:ドット内に広がっていない。
○: Spreads uniformly within the dot, and the material reaches the partition wall.
X: Not spread within the dot.
<現像密着性>
 上記樹脂硬化膜1の開口パターンを有するフォトマスク(開口部(露光部)がそれぞれ1、2、3、4、5、6、7、8,9、10、12、14、16、18、20、30、40、50μm×1000μm、)を介して、露光量150mJ/cmで得られた隔壁を顕微鏡で観察し、下記基準にて判定を行った
<Development adhesion>
Photomask having an opening pattern of the cured resin film 1 (opening portions (exposure portions) are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20 , 30, 40, 50 μm × 1000 μm), the partition walls obtained with an exposure amount of 150 mJ / cm 2 were observed with a microscope, and judged according to the following criteria:
○:マスク幅10μm未満のラインが残っている。
△:10μm以上20μm未満のラインが残っている。
×:20μm以上50μm以下のラインが残っている。
××:ラインパターン無し。
○: A line with a mask width of less than 10 μm remains.
Δ: A line of 10 μm or more and less than 20 μm remains.
X: A line of 20 μm or more and 50 μm or less remains.
XX: No line pattern.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から明らかなように、実施例に相当する例1~9のネガ型感光性樹脂組成物において、架橋剤(B)、撥インク剤(C)を選定することにより、隔壁上部の撥液性が良好で、隔壁に囲まれたドット内のIJ塗布性が良好であり、高精細な隔壁パターンを形成することができる。 As is clear from Table 1, in the negative photosensitive resin compositions of Examples 1 to 9 corresponding to the examples, the liquid repellent at the upper part of the partition wall was selected by selecting the crosslinking agent (B) and the ink repellent agent (C). The coating property is good, the IJ coating property in the dots surrounded by the partition walls is good, and a high-definition partition pattern can be formed.
 本発明のネガ型感光性樹脂組成物は、有機EL素子や量子ドットディスプレイ、TFTアレイまたは薄膜太陽電池において、IJ法によるパターン印刷を行う際の隔壁形成用等の組成物として好適に用いることができる。 The negative photosensitive resin composition of the present invention can be suitably used as a composition for forming barrier ribs when performing pattern printing by the IJ method in organic EL elements, quantum dot displays, TFT arrays, or thin film solar cells. it can.
 本発明に係る隔壁は、有機EL素子において、発光層等の有機層をIJ法にてパターン印刷するための隔壁(バンク)、あるいは量子ドットディスプレイにおいて量子ドット層や正孔輸送層などをIJ法にてパターン印刷するための隔壁(バンク)等として利用できる。本発明に係る隔壁はまた、TFTアレイにおいて導体パターンまたは半導体パターンをIJ法にてパターン印刷するための隔壁等として利用できる。本発明に係る隔壁は例えば、TFTのチャネル層をなす有機半導体層、ゲート電極、ソース電極、ドレイン電極、ゲート配線、およびソース配線等をIJ法にてパターン印刷するための隔壁等として利用できる。 The barrier ribs according to the present invention include barrier ribs (banks) for pattern printing of organic layers such as light emitting layers by the IJ method in organic EL elements, or quantum dot layers and hole transport layers in quantum dot displays by the IJ method. Can be used as partition walls (banks) for pattern printing. The partition according to the present invention can also be used as a partition for pattern printing of a conductor pattern or a semiconductor pattern by the IJ method in a TFT array. The partition according to the present invention can be used as a partition for pattern printing of an organic semiconductor layer, a gate electrode, a source electrode, a drain electrode, a gate wiring, a source wiring, and the like forming a channel layer of a TFT by an IJ method.
1…基板、21…塗膜、22…乾燥膜、23…露光膜、23A…露光部、23B…非露光部、4…隔壁、4A…撥インク層、5…開口部、31…マスキング部、30…フォトマスク、9…インクジェットヘッド、10…インク、11…ドット、12…有機EL素子。 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 21 ... Coating film, 22 ... Dry film, 23 ... Exposure film | membrane, 23A ... Exposure part, 23B ... Non-exposure part, 4 ... Partition, 4A ... Ink-repellent layer, 5 ... Opening part, 31 ... Masking part, DESCRIPTION OF SYMBOLS 30 ... Photomask, 9 ... Inkjet head, 10 ... Ink, 11 ... Dot, 12 ... Organic EL element.

Claims (7)

  1.  光硬化性官能基を有するアルカリ可溶性樹脂(A)、1分子中に酸性基と2個以上の光硬化性官能基を有する多官能低分子量化合物(B1)を含む架橋剤(B)、酸性基とフッ素原子を有し酸価が10~100mgKOH/gである撥インク剤(C)、光重合開始剤(D)、および溶媒(E)を含むネガ型感光性樹脂組成物。 Alkali-soluble resin (A) having photocurable functional group (A), crosslinker (B) containing acidic group and polyfunctional low molecular weight compound (B1) having two or more photocurable functional groups in one molecule, acidic group And a negative photosensitive resin composition comprising an ink repellent (C) having a fluorine atom and an acid value of 10 to 100 mgKOH / g, a photopolymerization initiator (D), and a solvent (E).
  2.  前記多官能低分子量化合物(B1)は、光硬化性官能基を4個以上有する請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the polyfunctional low molecular weight compound (B1) has four or more photocurable functional groups.
  3.  前記多官能低分子量化合物(B1)は、ジペンタエリスリトール骨格を有する請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1 or 2, wherein the polyfunctional low molecular weight compound (B1) has a dipentaerythritol skeleton.
  4.  前記撥インク剤(C)中のフッ素原子の含有率は、5~55質量%である請求項1~3のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 3, wherein the content of fluorine atoms in the ink repellent agent (C) is 5 to 55 mass%.
  5.  前記撥インク剤(C)は、光硬化性官能基を含む請求項1~4のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the ink repellent agent (C) contains a photocurable functional group.
  6.  前記架橋剤(B)は、さらに1分子中に2個以上の光硬化性官能基を有し、酸性基を有しない架橋剤(B2)を含む、請求項1~5のいずれか1項に記載のネガ型感光性樹脂組成物。 6. The crosslinking agent (B) according to any one of claims 1 to 5, further comprising a crosslinking agent (B2) having two or more photocurable functional groups in one molecule and having no acidic group. The negative photosensitive resin composition as described.
  7.  前記多官能低分子量化合物(B1)と前記架橋剤(B2)の合計100質量部に対して前記多官能低分子量化合物(B1)を10~90質量部の割合で含有する請求項6記載のネガ型感光性樹脂組成物。 The negative according to claim 6, comprising 10 to 90 parts by mass of the polyfunctional low molecular weight compound (B1) with respect to 100 parts by mass in total of the polyfunctional low molecular weight compound (B1) and the crosslinking agent (B2). Type photosensitive resin composition.
PCT/JP2017/044590 2016-12-22 2017-12-12 Negative photosensitive resin composition WO2018116914A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197017335A KR102611589B1 (en) 2016-12-22 2017-12-12 Negative photosensitive resin composition
JP2018557698A JP7010240B2 (en) 2016-12-22 2017-12-12 Negative photosensitive resin composition
CN201780079323.6A CN110088681B (en) 2016-12-22 2017-12-12 Negative photosensitive resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248988 2016-12-22
JP2016248988 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116914A1 true WO2018116914A1 (en) 2018-06-28

Family

ID=62627347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044590 WO2018116914A1 (en) 2016-12-22 2017-12-12 Negative photosensitive resin composition

Country Status (5)

Country Link
JP (1) JP7010240B2 (en)
KR (1) KR102611589B1 (en)
CN (1) CN110088681B (en)
TW (1) TWI753982B (en)
WO (1) WO2018116914A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021177251A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
WO2022029857A1 (en) * 2020-08-04 2022-02-10 シャープ株式会社 Light-emitting element, and light-emitting device
CN114901715A (en) * 2019-12-26 2022-08-12 住友化学株式会社 Curable resin composition and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054634A (en) * 2008-08-26 2010-03-11 Fujifilm Corp Negative resist composition and pattern forming method
JP2010062123A (en) * 2008-08-06 2010-03-18 Mitsubishi Chemicals Corp Photosensitive composition for barrier rib of active driving type organic electroluminescent element, and active driving type organic electroluminescent display device
JP2012014932A (en) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd Photosensitive resin composition
WO2012086610A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Photosensitive resin composition, partition wall, color filter, and organic el element
WO2014069478A1 (en) * 2012-10-31 2014-05-08 旭硝子株式会社 Negative photosensitive resin composition, resin cured film, partition wall and optical element
JP2015172742A (en) * 2014-02-18 2015-10-01 旭硝子株式会社 Negative type photosensitive resin composition, resin cured film, partition wall and optical element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428910B2 (en) 2010-02-05 2014-02-26 三菱化学株式会社 Photosensitive composition for partition walls of active drive type organic electroluminescent device and active drive type organic electroluminescent display device
CN103946747B (en) * 2011-11-11 2018-06-05 旭硝子株式会社 Negative light-sensitive resin combination, partition wall, black matrix" and optical element
JP2015227387A (en) 2012-09-24 2015-12-17 旭硝子株式会社 Partially hydrolyzed condensate, ink-repelling agent, negative photosensitive resin composition, cured film, partition wall, and optical element
KR102107962B1 (en) * 2012-11-28 2020-05-07 에이지씨 가부시키가이샤 Negative photosensitive resin composition, cured resin film, partition wall and optical element
CN106462069B (en) * 2014-04-25 2019-10-18 Agc株式会社 Negative light-sensitive resin combination, partition wall and optical element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062123A (en) * 2008-08-06 2010-03-18 Mitsubishi Chemicals Corp Photosensitive composition for barrier rib of active driving type organic electroluminescent element, and active driving type organic electroluminescent display device
JP2010054634A (en) * 2008-08-26 2010-03-11 Fujifilm Corp Negative resist composition and pattern forming method
JP2012014932A (en) * 2010-06-30 2012-01-19 Sanyo Chem Ind Ltd Photosensitive resin composition
WO2012086610A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Photosensitive resin composition, partition wall, color filter, and organic el element
WO2014069478A1 (en) * 2012-10-31 2014-05-08 旭硝子株式会社 Negative photosensitive resin composition, resin cured film, partition wall and optical element
JP2015172742A (en) * 2014-02-18 2015-10-01 旭硝子株式会社 Negative type photosensitive resin composition, resin cured film, partition wall and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114901715A (en) * 2019-12-26 2022-08-12 住友化学株式会社 Curable resin composition and display device
WO2021177251A1 (en) * 2020-03-04 2021-09-10 Agc株式会社 Positive-type photosensitive resin composition
WO2022029857A1 (en) * 2020-08-04 2022-02-10 シャープ株式会社 Light-emitting element, and light-emitting device

Also Published As

Publication number Publication date
TWI753982B (en) 2022-02-01
KR102611589B1 (en) 2023-12-07
KR20190097031A (en) 2019-08-20
JP7010240B2 (en) 2022-01-26
JPWO2018116914A1 (en) 2019-10-24
CN110088681A (en) 2019-08-02
CN110088681B (en) 2022-11-15
TW201835139A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP6398774B2 (en) Negative photosensitive resin composition, cured resin film, partition and optical element
JP6350287B2 (en) Negative photosensitive resin composition, cured resin film, partition and optical element
JP6115471B2 (en) Negative photosensitive resin composition, partition, black matrix, and optical element
JP6593331B2 (en) Ink-repellent agent, negative photosensitive resin composition, partition and optical element
KR20080073302A (en) Process for producing organic el, color filter and diaphragm
JP6020557B2 (en) Negative photosensitive resin composition, cured film, partition wall and optical element
JP6341093B2 (en) Negative photosensitive resin composition, cured resin film, partition and optical element
JP6136928B2 (en) Negative photosensitive resin composition, method for producing partition wall, and method for producing optical element
JP6036699B2 (en) Method for producing ink repellent agent, negative photosensitive resin composition, partition wall and optical element
JP2008298859A (en) Photosensitive composition, partition using the same, method for producing partition, method for producing color filter, method for producing organic el display element and method for producing organic tft array
JP6065915B2 (en) Negative photosensitive resin composition, cured film, partition, and optical element
WO2015093415A1 (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element
JP7010240B2 (en) Negative photosensitive resin composition
WO2014046210A1 (en) Partial hydrolysis-condensation product and ink repellent agent using same
JP2017040869A (en) Negative photosensitive resin composition, resin cured film, partition wall, and optical element and method for manufacturing the same
WO2017033835A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
WO2017033834A1 (en) Negative-type photosensitive resin composition, cured resin film, partition, optical element, and production method therefor
WO2023149406A1 (en) Curable resin composition, resin cured film, partition wall and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557698

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197017335

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882783

Country of ref document: EP

Kind code of ref document: A1