WO2018116884A1 - Honeycomb structure and exhaust gas-purifying apparatus - Google Patents

Honeycomb structure and exhaust gas-purifying apparatus Download PDF

Info

Publication number
WO2018116884A1
WO2018116884A1 PCT/JP2017/044364 JP2017044364W WO2018116884A1 WO 2018116884 A1 WO2018116884 A1 WO 2018116884A1 JP 2017044364 W JP2017044364 W JP 2017044364W WO 2018116884 A1 WO2018116884 A1 WO 2018116884A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
zeolite
structure according
honeycomb
mass
Prior art date
Application number
PCT/JP2017/044364
Other languages
French (fr)
Japanese (ja)
Inventor
悠貴 ▲高▼石
昌稔 上谷
俊博 圓尾
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Publication of WO2018116884A1 publication Critical patent/WO2018116884A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Definitions

  • the present invention relates to a honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
  • Exhaust gas discharged from internal combustion engines such as diesel engines contains harmful substances such as particulate matter (PM), nitrogen oxides (NO x ), hydrocarbons, and carbon monoxide.
  • Various methods are being studied to remove harmful substances.
  • PM is collected in a honeycomb structure having a filtration function arranged in a flow path of exhaust gas, and when a predetermined amount of PM is deposited, the honeycomb structure is heated to remove PM by combustion decomposition. be able to.
  • the combustion temperature of PM is as high as 550 ° C. to 650 ° C., there is a problem that the apparatus becomes large and the energy cost for heating increases.
  • a honeycomb structure carrying a catalyst is used.
  • NO X can be removed by disposing the honeycomb structure carrying the NO X reduction catalyst in the exhaust gas flow path.
  • selective catalytic reduction SCR: selective catalytic reduction
  • NO x is reduced to nitrogen by supporting a zeolite catalyst on a honeycomb structure and injecting a reducing agent obtained from an ammonia precursor such as urea or ammonia itself into the honeycomb structure. reduction).
  • honeycomb structure cell walls formed of zeolite has been studied.
  • the cell wall of the honeycomb structure needs to use a large amount of an inorganic binder in addition to zeolite in order to ensure moldability and mechanical strength that can withstand practical use.
  • the honeycomb structure in which the cell wall is made of zeolite cannot increase the amount of zeolite contained in the cell wall so much, and the NO x purification of the honeycomb structure is performed by the upper limit of the amount of zeolite contained in the cell wall. rate is substantially defined, there is a problem that it is difficult to obtain more of the NO X purification rate.
  • Patent Document 1 the honeycomb structure in which the cell wall is composed of zeolite is impregnated with a solution containing zeolite, and the ratio of zeolite on the surface of the cell wall is higher than the center of the cell wall.
  • a featured honeycomb structure is proposed.
  • the honeycomb structure of Patent Document 1 has a problem that moldability and mechanical strength are not sufficient. If the sintering temperature of the honeycomb structure is increased or a large amount of a sintered material is added to increase the mechanical strength, there is a problem that the function of the zeolite is impaired. Further, when the pores on the wall surface of the honeycomb structure are blocked by the formed catalyst layer, the connected pores independently reduce the exhaust gas flow path, and as a result, the NO X removal efficiency may be reduced. Concerned.
  • the catalyst ratio may be coated on the honeycomb structure is reduced, that the purification performance of the PM and NO X decreases Is concerned.
  • the pores on the wall surface of the honeycomb structure are closed by the formed catalyst layer, the connected pores independently reduce the exhaust gas flow path, resulting in an increase in pressure loss due to PM deposition, NO X removal efficiency is a concern that or decreased.
  • the technique of Patent Document 2 is applied to the honeycomb structure of Patent Document 1.
  • the present invention is, or is impregnated with a solution containing zeolite after manufacturing of the honeycomb structure without solution was or coating containing zeolite high NO X reduction efficiency, and high mechanical strength honeycomb structure, and the honeycomb It is a main object to provide an exhaust gas purification apparatus provided with a structure.
  • the present invention provides the following honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
  • Item 1 A honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by a cell wall along a longitudinal direction, and the honeycomb structure includes zeolite, clay mineral, and inorganic It is a sintered body of a mixture containing fibers.
  • the zeolite is at least one selected from mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, ⁇ zeolite, ZSM-5 type zeolite, and CHA type zeolite.
  • Item 2 The honeycomb structure according to Item 1.
  • Item 3 The honeycomb structure according to Item 1 or Item 2, wherein an average particle diameter of primary particles of the zeolite is 0.1 ⁇ m to 20 ⁇ m.
  • Item 4 The honeycomb structure according to any one of Items 1 to 3, wherein the clay mineral is a layered clay mineral.
  • Item 5 The honeycomb structure according to any one of Items 1 to 4, wherein an average fiber length of the inorganic fibers is 1 ⁇ m to 300 ⁇ m and an average aspect ratio is 3 to 200.
  • Item 6 The honeycomb structure according to any one of Items 1 to 5, wherein the inorganic fiber has a Mohs hardness of 5 or less.
  • Item 7 The honeycomb according to any one of Items 1 to 6, wherein a content of the clay mineral in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
  • Item 8 The honeycomb according to any one of Items 1 to 7, wherein a content of the inorganic fiber in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
  • Item 9 The honeycomb structure according to any one of Items 1 to 8, wherein the mixture further contains a ceramic raw material.
  • Item 10 The honeycomb structure according to Item 9, wherein the ceramic raw material is at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate.
  • Item 11 The ratio of the concentration of the zeolite in the surface portion of the cell wall to the concentration of the zeolite contained in the central portion of the cell wall (surface portion / center portion) is in the range of 0.8 to 1.2.
  • Item 11 The honeycomb structure according to any one of Items 1 to 10, wherein:
  • Item 12 The honeycomb structure according to any one of Items 1 to 11, wherein the zeolite is a catalyst for reducing nitrogen oxides to nitrogen.
  • Item 13 is a honeycomb structure used in an exhaust gas purification apparatus, wherein a transition metal oxide is supported on the surface of the cell wall on the exhaust gas inlet side of the honeycomb structure.
  • the honeycomb structure according to any one of the above.
  • Item 14 The honeycomb structure according to Item 13, wherein an amount of the transition metal oxide supported per apparent volume in the honeycomb structure is 1 g / L to 70 g / L.
  • Item 15 An exhaust gas purification apparatus comprising the honeycomb structure according to any one of Items 1 to 14.
  • FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an end face of a modification of the honeycomb structure of FIG.
  • FIG. 3 is a schematic front view for explaining a method for measuring the bending strength.
  • a honeycomb structure of the present invention is a honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by cell walls along a longitudinal direction, the honeycomb structure being It is a sintered body of a mixture containing zeolite, clay mineral and inorganic fiber. Further, from the viewpoint of further improving the mechanical strength of the honeycomb structure, the mixture may further contain a ceramic raw material, if necessary.
  • Zeolite is a crystalline aluminosilicate, which is a porous body having a crystal structure in which four oxygen elements are regularly and three-dimensionally bonded around silicon and aluminum elements.
  • Examples of the crystal structure of the zeolite used in the present invention include mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, ⁇ zeolite, ZSM-5 type zeolite, CHA type zeolite and the like.
  • the silica / alumina ratio of the zeolite used in the present invention is preferably 15 or more, more preferably 20 or more, and still more preferably 30 or more.
  • the upper limit of the silica / alumina ratio is preferably 100, more preferably 70, and still more preferably 50.
  • Zeolite used in the present invention includes naturally-occurring and synthetic zeolites, and any zeolite having the above configuration can be used without any particular limitation.
  • synthetic zeolite is preferred because it has a more uniform silica / alumina ratio, crystal size, crystal morphology, and fewer impurities.
  • the zeolite is preferably one in which primary particles are aggregated to form secondary particles.
  • the average particle size of the primary particles of the zeolite is preferably 0.1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 20 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m.
  • the average particle diameter of primary particles in the above range it is possible to more effectively reduce and remove NO X. What is necessary is just to measure the average particle diameter of a primary particle using the particulate matter before mixing raw material particles.
  • the average particle diameter of the primary particles of zeolite is obtained by selecting 50 arbitrary primary particles from an electron micrograph and averaging the diameters.
  • the average particle size of the secondary particles of the zeolite is preferably 0.5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 10 ⁇ m to 20 ⁇ m.
  • the average particle size of the secondary particles of zeolite is a volume-based cumulative 50% (volume-based cumulative 50% particle size) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter).
  • D 50 density-based cumulative 50% particle diameter
  • the particle size of This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the crushing strength of zeolite is preferably 50 MPa or more, and more preferably 60 MPa or more.
  • the crushing strength of zeolite is preferably 500 MPa or less, and more preferably 300 MPa or less.
  • the zeolite used in the present invention preferably contains ion exchanged zeolite obtained by ion exchange of the above zeolite.
  • a honeycomb structure may be formed by using a previously ion-exchanged zeolite, or the zeolite may be ion-exchanged after the honeycomb structure is formed.
  • a zeolite ion exchanged with a transition metal is preferably used.
  • the transition metal include Cu, Fe, Pt, Ag, Ti, Mn, Ni, Co, Pd, Rh, V, and Cr, and Cu and Fe are preferable.
  • the total amount of transition metals is preferably 1% by mass to 15% by mass, and more preferably 1% by mass to 8% by mass with respect to the total mass of the zeolite.
  • the clay mineral used in the present invention is a main component mineral constituting clay.
  • Layered silicate mineral (phyllosilicate mineral), talc, calcite, dolomite, feldspar, quartz, zeolite (zeolite), and others with chain structure (attapulgite, Sepiolite, etc.) and those that do not have a clear crystal structure (allophane) are called clay minerals.
  • layered silicate minerals are sometimes called layered clay minerals.
  • the clay mineral used in the present invention is preferably a layered clay mineral.
  • the layered clay mineral has a two-dimensional layer of positive and negative ions stacked and bonded in parallel to form a crystal structure.
  • This layer structure has two structural units, one of which surrounds Si 4+.
  • a tetrahedral layer composed of O 2 ⁇ , and the other is composed of an octahedral layer composed of Si 3+ (or Mg 2+ , Fe 2+, etc.) and (OH) ⁇ surrounding it.
  • tetrahedron layer O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
  • the octahedron layer In the octahedron layer, the octahedron formed by (OH) or O at the six apexes of the octahedron and Al, Mg, Fe, etc. located at the center thereof is connected at each apex and is two-dimensionally. A layer lattice having a composition of Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
  • a divalent cation (Mg 2+, etc.) enters the lattice point of the cation surrounded by 6 anions, and occupies all of the lattice points.
  • a 2-octahedron type in which trivalent cations (such as Al 3+ ) enter the lattice points and occupy 2/3, and the remaining 1/3 is empty.
  • tetrahedron and octahedron combinations There are two types of tetrahedron and octahedron combinations, one is a 1: 1 type structure with a unit of one tetrahedron layer and one octahedron layer, and the other is a tetrahedron.
  • a 1: 1 type structure in which a unit is a unit of an octahedral layer sandwiched between layers.
  • one Si 4+ is usually surrounded by four O atoms and has a stable coordination, but sometimes Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ .
  • existing in the tetrahedral layer Since there is no change in the number of coordinated O atoms, every time one Al 3+ replaces Si 4+ , a unit of negative charge is generated in the tetrahedral layer.
  • negative charges are generated with the replacement of Al 3+ and Fe 3+ by Mg 2+ and Fe 2+ .
  • This negatively charged layer is a positive layer such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Co 2+ , Fe 2+ , Al 3+.
  • the ions are electrically neutral due to the presence of ions, resulting in a laminated structure in which these exchangeable cations exist between layers.
  • Examples of the layered clay mineral include at least one selected from smectite, stevensite, vermiculite, mica group, brittle mica group natural product or synthetic product. These can be used in combination.
  • smectite examples include montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, and soconite.
  • Montmorillonite is preferable from the viewpoint of further increasing NO X reduction efficiency and mechanical strength.
  • bentonite mainly composed of montmorillonite can be used, and the content of montmorillonite in the bentonite is preferably 40% or more, and more preferably 70% or more.
  • the average particle size of the clay mineral is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
  • the average particle diameter of the viscosity mineral is the volume-based cumulative 50% particle diameter (volume-based cumulative 50% particle diameter) in the particle size distribution determined by the laser diffraction / scattering method, that is, D 50 (median diameter). It is.
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the inorganic fiber used in the present invention is a powder composed of fibrous particles, and the average fiber length is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 200 ⁇ m.
  • the average aspect ratio is preferably 3 to 200, more preferably 5 to 50.
  • the inorganic fiber preferably has a Mohs hardness of 5 or less from the viewpoint of wear of the extruder.
  • the inorganic fiber include at least one selected from alkali metal titanate, wollastonite, magnesium borate, zonotlite, and basic magnesium sulfate. From the viewpoint of further enhancing the NO X reduction efficiency and mechanical strength, it is preferred inorganic fibers are alkaline metal titanate.
  • the Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and damaged.
  • alkali metal titanate examples include sodium titanate such as Na 2 TiO 3 , Na 2 Ti 2 O 5 , Na 2 Ti 4 O 9 , Na 2 Ti 6 O 13 , Na 2 Ti 8 O 17 ; K 2 TiO 3 , K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , K 2 Ti 6 O 13 , K 2 Ti 8 O 17 and other potassium titanates; Cs 2 TiO 3 , Cs 2 Ti 2 O 5 , Cs 2 Ti 4 Examples thereof include cesium titanate such as O 9 , Cs 2 Ti 6 O 13 , and Cs 2 Ti 8 O 17 .
  • the size of the alkali metal titanate is not particularly limited as long as it is within the above-mentioned range of the inorganic fiber, but usually the average fiber diameter is preferably 0.01 ⁇ m to 1 ⁇ m, more preferably 0.1 ⁇ m to 0.6 ⁇ m.
  • the average fiber length is preferably 1 ⁇ m to 50 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m, and the average aspect ratio is preferably 10 or more, more preferably 15 to 40.
  • commercially available products can also be used.
  • “TISMO D” average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m
  • TISMO N average fiber length 15 ⁇ m manufactured by Otsuka Chemical Co., Ltd.
  • an average fiber diameter of 0.5 ⁇ m can be used.
  • the average fiber length and average fiber diameter of the inorganic fibers can be measured by observation with a scanning electron microscope, and the average aspect ratio (average fiber length / average fiber diameter) is calculated from the average fiber length and average fiber diameter.
  • I can. For example, a plurality of inorganic fibers are photographed with an electron microscope, 300 inorganic fibers are arbitrarily selected from the observed images, their fiber lengths and fiber diameters are measured, and all the fiber diameters are integrated and divided by the number.
  • the average fiber length can be obtained by integrating all of the average fiber length and fiber diameter and dividing the result by the number. What is necessary is just to measure an average fiber length and an average fiber diameter using the particulate matter before mixing raw material particles.
  • the term “fibrous particles” refers to the longest side of the rectangular parallelepiped having the smallest volume (the circumscribed rectangular parallelepiped) having the longest diameter L, the next longest side having the shortest diameter B, and the shortest side having the thickness T.
  • L is defined as (B> T)
  • L / B and L / T are both particles of 3 or more
  • the major axis L corresponds to the fiber length
  • the minor axis B corresponds to the fiber diameter.
  • Ceramic raw material examples include at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate, and these may be used in combination of two or more.
  • the ceramic raw material is preferably aluminum titanate from the viewpoint of further improving heat resistance and stability.
  • the average particle size of the ceramic raw material is preferably 0.5 ⁇ m to 100 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles.
  • the average particle size of the ceramic raw material is the particle size distribution of 50% by volume based on the particle size distribution obtained by the laser diffraction / scattering method (50% particle size by volume reference), that is, D 50 (median diameter). It is.
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention.
  • the honeycomb structure 11 of the present embodiment includes a first end surface 11a and a second end surface 11b facing each other, and a side surface 11c that connects the first end surface 11a and the second end surface 11b. And have.
  • a plurality of cells 12 extending from the first end surface 11 a toward the second end surface 11 b along the longitudinal direction X shown in FIG.
  • the side surface 11c (surface parallel to the longitudinal direction X) of the honeycomb structure 11 is provided with a coating layer in order to reinforce the side surface 11c and maintain strength, and to prevent the exhaust gas passing through the cells from leaking from the side surface 11c. It may be covered with. It does not specifically limit as a material which comprises the said coating layer, For example, what consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle etc. can be mentioned.
  • the honeycomb structure 11 may be used as it is, or a plurality of honeycomb structures 11 may be joined with an adhesive or the like.
  • a joined body in which a plurality of honeycomb structures 11 are joined it is desirable that the longitudinal directions X be arranged in parallel.
  • the single honeycomb structure 11 or the joined body of the plurality of honeycomb structures 11 may be processed by cutting the side surface 11c side along a predetermined shape.
  • the shape of the cross section perpendicular to the longitudinal direction X of the honeycomb structure 11 is not particularly limited, and may be, for example, round, square (square, rectangular), hexagonal, or sector. Further, in the case of a cross-sectional shape such as a square having sharp corners, the sharp corners are chamfered from the viewpoint of relieving stress during regeneration of the honeycomb structure 11 and further suppressing the generation of cracks. It is preferable that In the present invention, the chamfered shape means a shape in which an inclined surface made of a flat surface or a curved surface is attached to the angle of intersection between the surfaces, and a shape having an inclined surface made of a curved surface from the viewpoint of stress relaxation. More preferably, for example, an R chamfered shape made of an arc is particularly preferable as shown in a modified example in FIG.
  • the cross-sectional shape perpendicular to the longitudinal direction X in the cells 12 of the honeycomb structure 11 is not particularly limited, and may be square (square, rectangular) as in the present embodiment. It may be a polygon.
  • the corner portions 15 of the outermost peripheral cells 12a of the honeycomb structure 11 are used. Is preferably provided with a filler having a right-angled triangular cross-sectional shape.
  • the corner 15 provided with the filler is a corner 15 in contact with the outer edge wall 14 of the honeycomb structure 11 among the corners of the cell 12a whose outermost cross section of the honeycomb structure 11 is square.
  • the length of one side of the right triangle filler is preferably 5% to 40% of the length of one side of the rectangular cell 12a.
  • the thickness of the cell wall 13 of the honeycomb structure 11 is not particularly limited, but the preferable lower limit is 100 ⁇ m from the viewpoint of further increasing the strength, and the preferable upper limit is 400 ⁇ m from the viewpoint of further improving the purification performance.
  • the thickness of the cell wall 13a constituting the outer edge wall 14 of the honeycomb structure 11 may be the same as or thicker than the other cell walls 13b, but is 1.3 times that of the cell wall 13b not constituting the outer edge wall 14. By setting the ratio to ⁇ 3.0 times, it is possible to ensure strength while maintaining a high aperture ratio.
  • the aperture ratio of the cells 12 of the honeycomb structure 11 is preferably 60% or more from the viewpoint of pressure loss.
  • the aperture ratio of the cells 12 refers to the ratio of the cells 12 in a cross section perpendicular to the longitudinal direction X of the honeycomb structure 11.
  • the vertical cross section is a cross section that is not plugged with a plugging material.
  • the upper limit of the aperture ratio of the cells 12 of the honeycomb structure 11 is not particularly limited, but can be, for example, 70%.
  • the number of cells 12 in the honeycomb structure 11 is not particularly limited, but is preferably 200 cells / square inch to 400 cells / square inch.
  • the wall surface of the cell 12 is not particularly limited as long as it is porous, but preferably has pores having a major axis of about 2 ⁇ m to 18 ⁇ m and a porosity of 45% to 65%.
  • one end face is opened and the other end face is the eye.
  • a wall flow type honeycomb filter formed of a honeycomb structure in which the sealed cells 12 and the remaining cells whose one end face is plugged and whose other end face is opened are alternately arranged. It is preferable.
  • a raw material mixture containing, as necessary, a ceramic raw material as a main component in the above-described zeolite, clay mineral, and inorganic fiber is prepared.
  • This raw material mixture is formed by extrusion molding or the like.
  • a pore former, an organic binder, a dispersant, water and the like may be added to the raw material mixture.
  • the pore former include graphite, graphite, wood powder, and polyethylene.
  • the organic binder include methyl cellulose, ethyl cellulose, and polyvinyl alcohol.
  • the dispersant include fatty acid soap and ethylene glycol.
  • the amount of the pore former, the organic binder, the dispersant, and water can be appropriately adjusted in consideration of the porosity of the cell wall surface, moldability, and the like.
  • the raw material mixture is not particularly limited, but is preferably mixed and kneaded.
  • the raw material mixture may be mixed using a mixer or the like, or may be sufficiently kneaded using a kneader or the like.
  • a method for forming the raw material mixture is not particularly limited, but it is preferable to form the raw material mixture into a shape having a predetermined cell density by, for example, extrusion molding.
  • the obtained molded body is preferably dried after plugging on one side so that the opening of the cell has a checkered pattern, if necessary.
  • the dryer used for drying is not specifically limited, A microwave dryer, a hot air dryer, a vacuum dryer, etc. are mentioned.
  • the degreasing conditions are not particularly limited and are appropriately selected depending on the type of organic matter contained in the molded body, but are preferably approximately 400 ° C. and 2 hours.
  • the firing temperature is not particularly limited, but can be, for example, 600 ° C. to 1200 ° C., and the firing time can be, for example, 2 hours to 15 hours. If the firing temperature exceeds 1200 ° C, the zeolite crystals may collapse or the sintering may proceed too much to have an appropriate porosity. If the firing temperature is less than 600 ° C, the sintering does not proceed. The strength as a structure may not increase.
  • the firing conditions when the ceramic raw material is used in combination are appropriately selected depending on the ceramic raw material. When aluminum titanate is used as the ceramic raw material, the firing temperature can be set to 900 ° C. to 1100 ° C., for example, as the firing time. For example, it can be 2 to 15 hours.
  • the content of zeolite in the raw material mixture is preferably 10% by mass to 80% by mass, and more preferably 40% by mass to 70% by mass with respect to 100% by mass of the raw material mixture.
  • the content of the clay mineral in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass, with respect to 100 parts by mass of zeolite. More preferably.
  • the content of the inorganic fiber in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite, and 10 parts by mass to 20 parts by mass. More preferably.
  • the content of the ceramic raw material in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite, and 10 parts by mass to 20 parts by mass. More preferably.
  • uniform means that the ratio of the concentration of zeolite in the surface portion of the cell wall to the concentration of zeolite in the central portion of the cell wall of the honeycomb structure (surface portion / center portion) is 0.8 to 1. It is in the range of 2.
  • the ratio is within the above range.
  • examples of the exhaust gas to be treated include exhaust gas discharged from an internal combustion engine such as a diesel engine and a gasoline engine, and exhaust gas from various combustion facilities.
  • the honeycomb structure of the present invention is used in contact with exhaust gas by being disposed in the exhaust gas flow path.
  • the removal of NO x in these exhaust gases is performed in the presence of a reducing agent, for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself.
  • a reducing agent for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself.
  • the reducing agent may be disposed upstream of the honeycomb structure of the present invention in the exhaust gas flow path, and a necessary amount may be appropriately supplied.
  • honeycomb structure of the present invention a combination of a clay mineral that is exfoliated and highly dispersed during molding and an inorganic fiber that has a small area in contact with the other material and that is sintered with only a part of the other material is combined.
  • mechanical strength can be obtained and decomposition of zeolite can be suppressed to a minimum.
  • a highly efficient NO x reduction removal performance and a honeycomb structure having high mechanical strength can be obtained.
  • a catalyst for burning PM can be included in the mixture, whereby the honeycomb structure of the present invention can burn PM, which is a harmful substance in exhaust gas, at a low temperature with one filter, NO X can also be reduced and removed. Because of its excellent function, it can be suitably used for diesel engine filters (DPF), gasoline engine filters, etc., and can meet the demands of downsizing in the market.
  • An exhaust gas purification apparatus of the present invention includes the honeycomb structure of the present invention.
  • a means for supplying a reducing agent or the like to the honeycomb structure is further provided.
  • the honeycomb structure of the present invention includes a catalyst for burning PM
  • the honeycomb structure further includes means for heating the honeycomb structure to decompose the deposited PM.
  • a known means can be adopted as long as the reducing agent or the like can be supplied to the honeycomb structure of the present invention.
  • a means for disposing a reducing agent or the like on the honeycomb structure may be used, which is arranged on the more upstream side (internal combustion engine side). Moreover, you may arrange
  • the honeycomb structure of the present invention can be heated.
  • the fuel of the internal combustion engine is sprayed from the internal combustion engine onto the honeycomb structure, and the combustion heat thereof.
  • a means using electric heating is provided.
  • Exhaust gas purifying apparatus of the present invention further, in order from the upstream side of the exhaust gas flow channel (internal combustion engine side), the oxidation catalyst, NO X storage catalyst, the first catalyst, such as PM combustion catalyst, the honeycomb structure of the present invention, SCR A second catalyst such as a catalyst or a slip oxidation catalyst may be disposed.
  • the first catalyst and the honeycomb structure of the present invention may be disposed in order from the upstream side (internal combustion engine side) on the exhaust gas flow path.
  • the honeycomb structure of the present invention and the second catalyst may be arranged in order from the upstream side (internal combustion engine side) on the exhaust gas flow path. You may select 1 type, or 2 or more types for a 1st catalyst and a 2nd catalyst, respectively.
  • the oxidation catalyst means a catalyst that oxidizes HC, CO, NO X to H 2 O, CO 2 , NO 2 .
  • the NO X storage catalyst to trap NO X under lean conditions, when it becomes stoichiometric or rich conditions, released as NO 2, or catalytic means to N 2.
  • the PM combustion catalyst means a catalyst that burns PM at a temperature lower than the self-combustion temperature under rich conditions.
  • the SCR catalyst means a catalyst capable of turning NO X into N 2 even under lean conditions.
  • the slip oxidation catalyst means a catalyst that captures excess NH 3 used as a reducing agent and NO X that cannot be reduced and purifies it to N 2 .
  • the oxidation catalyst examples include metals such as Pt, Pd, Rh, Ag, and Cu, oxides containing the metals, high heat resistant high specific surface area inorganic substances (alumina, zirconia, etc.), and acidic oxides (silica, etc.).
  • Catalyst comprising at least one of basic oxide (titania, zirconia, alumina containing rare earth, etc.), oxygen storage / release material (ceria, ceria-zirconia composite oxide, sulfate containing rare earth, etc.), zeolite, etc. Is mentioned. These are used by being carried on a filter.
  • Examples of the NO X storage catalyst include substances described in the above oxidation catalyst, compounds containing a basic alkali metal element (sodium carbonate, potassium carbonate, potassium titanate, etc.), and alkaline earth metal elements.
  • Examples thereof include at least one type of catalyst such as a compound (strontium carbonate, barium carbonate, MgAl 2 O 4 and the like) and a compound containing a rare earth element (ceria, ceria-zirconia composite oxide and the like). These are used by being carried on a filter.
  • PM combustion catalysts examples include PGM (Platinum Group Metal) catalysts (Pt, Pd, Rh, etc.), Ce-based oxides (ceria, ceria-zirconia composite oxide, etc.) having oxygen absorption / release capability, and alkali composite oxidation. objects (Na 2 ZrSi 3 O 9, KAlSiO 4, LiAlSiO 4, K 2 TiSiO 5, K 2 Ti 4 O 9 , etc.), transition metal oxide (V 2 O 5, Fe 2 O 3, MnO 2, CuO, CuFe And at least one type of catalyst such as a complex oxide. These are used by being carried on a filter.
  • PGM Platinum Group Metal
  • Ce-based oxides ceria, ceria-zirconia composite oxide, etc.
  • objects Na 2 ZrSi 3 O 9, KAlSiO 4, LiAlSiO 4, K 2 TiSiO 5, K 2 Ti 4 O 9 , etc.
  • transition metal oxide V 2 O 5, Fe 2 O 3, MnO 2, CuO
  • SCR catalyst examples include a catalyst composed of at least one kind such as zeolite and base metal composite TiO 2 (base metals include V 2 O 5 , WO 3 , MoO 3 and the like). These are used by being carried on a filter.
  • base metals include V 2 O 5 , WO 3 , MoO 3 and the like.
  • slip oxidation catalyst examples include a catalyst composed of at least one of the substances described in the above oxidation catalyst, the substances described in the NO X storage catalyst, and the substances described in the SCR catalyst. These are used by being carried on a filter.
  • the SCR catalyst size of the second catalyst can be reduced by using the honeycomb structure of the present invention that can efficiently reduce NO x , or the second catalyst Since the SCR catalyst can be eliminated, the apparatus can be made compact.
  • the size of the slip oxidation catalyst of the second catalyst can be reduced, or the slip oxidation of the second catalyst. Since the catalyst can be eliminated, the apparatus can be made compact.
  • the size of the first catalyst is reduced or the first catalyst is reduced. Can be eliminated, so that the apparatus can be made more compact.
  • the first catalyst supported on the honeycomb structure of the present invention is preferably a transition metal oxide such as V 2 O 5 , Fe 2 O 3 , MnO 2 , CuO, or CuFe composite oxide.
  • a transition metal oxide such as V 2 O 5 , Fe 2 O 3 , MnO 2 , CuO, or CuFe composite oxide.
  • the supported amount of transition metal oxide per apparent volume in the honeycomb structure of the present invention is preferably 1 g / L as the lower limit, more preferably 5 g / L, and even more preferably 8 g / L. preferable.
  • the upper limit of the loading amount of the transition metal oxide per apparent volume in the honeycomb structure of the present invention is preferably 70 g / L, more preferably 60 g / L, and 50 g / L. Is more preferable.
  • the average particle diameter of the transition metal oxide is preferably larger than the pore diameter of the honeycomb structure of the present invention.
  • the average particle diameter of the transition metal oxide is the volume-based cumulative 50% (volume-based cumulative 50% particle diameter) in the particle size distribution determined by the laser diffraction / scattering method, that is, the particle diameter of D 50 (median diameter). It is.
  • This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
  • the exhaust gas purifying apparatus of the present invention can be made compact by the above method, the exhaust gas purifying apparatus can be arranged at a more appropriate position than before.
  • the purification efficiency can be further improved by bringing the exhaust gas purification catalyst close to the internal combustion engine and promoting the activation of the exhaust gas purification catalyst by temperature.
  • it is possible to expect effects such as improvement in fuel consumption due to weight reduction and securing of a space for installing a new device.
  • the honeycomb structure of the present invention is made of a material containing zeolite, and since the specific gravity of zeolite is small, the honeycomb structure can be further lightened. Also. Even if the pore diameter is as small as about 2 ⁇ m, it is considered that the above effect becomes more remarkable by the function that the pressure loss can be lowered and the amount of zeolite to be loaded can be increased. The pressure loss can be reduced even when the pore diameter of the honeycomb structure of the present invention is smaller than the pore diameter (10 ⁇ m to 20 ⁇ m) of a general DPF or SCRF (DFF with SCR catalyst). This is considered to be due to the low gas flow resistance. The reason why the amount of zeolite loaded can be increased is that the strength of the honeycomb structure can be maintained even if the zeolite forms a skeleton.
  • a light honeycomb structure is considered to contribute to weight reduction.
  • Low pressure loss is thought to contribute to a reduction in exhaust gas resistance.
  • the fact that the pore diameter can be reduced in a state where the pressure loss is reduced contributes to efficiently capturing a substance smaller than PM2.5.
  • Rich zeolites amount improves NO X purification catalyst efficiency is believed to contribute to increasing the reducing agent storage amount.
  • the abundant amount of zeolite is considered to contribute also as a catalyst carrier and a catalyst when the first catalyst and the second catalyst are integrated.
  • the present invention will be described in more detail based on examples.
  • the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention.
  • the meanings of the abbreviations are as follows.
  • the average particle diameters of bentonite and ceramic raw material were measured with a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number “SALD-2100”).
  • the length and average fiber diameter were measured with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, product number “S-4800”).
  • Bentonite A Bentonite (average particle size 10 ⁇ m, trade name: Bengel VA, manufactured by Kunimine Industries)
  • Bentonite B Bentonite (average particle size 2 ⁇ m, trade name: Kunipia F, manufactured by Kunimine Industries)
  • Inorganic fiber A K 2 Ti 4 O 9 (average fiber length 20 ⁇ m, average fiber diameter 0.5 ⁇ m)
  • Inorganic fiber B K 2 Ti 6 O 13 (average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m, trade name: TISMON, manufactured by Otsuka Chemical Co., Ltd.)
  • Inorganic fiber C K 2 Ti 8 O 17 (average fiber length 15 ⁇ m, average fiber diameter 0.5 ⁇ m, trade name: TISMOD, manufactured by Otsuka Chemical Co., Ltd.)
  • Inorganic fiber D Na 2 Ti 6 O 13 (average fiber length 20 ⁇ m, average fiber diameter 0.6 ⁇ m)
  • Ceramic raw material Aluminum titanate (average particle size 13 ⁇ m, manufactured by Marusu
  • Zeolite A used in Examples and Comparative Examples was a commercially available ZSM-5 type zeolite (trade name: HSZ-840NHA, manufactured by Tosoh Corporation).
  • zeolites B to G used in the examples were produced as follows. Table 1 shows the crystal structures of zeolites A to G, the silica / alumina ratio, the average particle diameter of primary particles, the average particle diameter of secondary particles, and the crushing strength.
  • the crystal structure is confirmed by an X-ray diffractometer (Rigaku, product number “RINT2000-Utima +”), and the silica / alumina ratio is measured by a fluorescent X-ray analyzer (Rigaku, product number “ZSX Prmus II”).
  • X-ray diffractometer Raster, product number “RINT2000-Utima +”
  • silica / alumina ratio is measured by a fluorescent X-ray analyzer
  • ZSX Prmus II fluorescent X-ray analyzer
  • the average particle size of primary particles was measured with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, product number “S-4800”), and the average particle size of secondary particles was measured with a laser diffraction particle size distribution analyzer ( The product number was “SALD-2100” manufactured by Shimadzu Corporation.
  • Example 1 To 70 parts by mass of zeolite A, 10 parts by mass of ceramic raw material, 8 parts by mass of inorganic fiber B, 8 parts by mass of bentonite A, 3 parts by mass of graphite, 10 parts by mass of methyl cellulose, and 0.5 parts by mass of fatty acid soap are blended. An appropriate amount of water was added and kneaded to obtain an extrudable clay (mixture).
  • the obtained kneaded material (mixture) was extruded and molded to form a honeycomb structure with an extruder, and a molded body was obtained.
  • the cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 300 ⁇ m.
  • the aperture ratio was 63%.
  • a slurry was prepared in which the solid content was almost composed of ceramic raw material, zeolite A, inorganic fiber B, bentonite A, and additives such as viscosity modifiers were added.
  • the ratio of the solid content in a slurry is the same as the above.
  • the slurry was injected into the cells of the honeycomb structure and sealed so that the opened cells and the sealed cells were alternately in a checkered pattern.
  • the obtained molded body was held at 600 ° C. for 10 hours, then heated to 975 ° C. at 25 ° C./hour, and further held at 975 ° C. for 5 hours and fired to obtain a pore diameter of 2.0 ⁇ m and porosity. A 58% honeycomb structure was obtained.
  • honeycomb structure was impregnated with a 5% by mass aqueous copper acetate solution at 60 ° C. for 3 hours. Thereafter, the honeycomb structure of the present invention was manufactured by thoroughly washing with ion-exchanged water and heating at 700 ° C. for 10 hours.
  • Example 2 to Example 53 Comparative Example 1 to Comparative Example 8
  • a honeycomb structure was manufactured in the same manner as in Example 1 except that the mixture was blended so that the blend composition was as shown in Tables 2 to 5.
  • Example 54 The honeycomb structure obtained in Example 2 was impregnated with a slurry of cupric oxide powder (average particle size 4 ⁇ m) so that the supported amount of CuO per volume in the honeycomb structure was 10 g / L, and 700 ° C.
  • the honeycomb structure was manufactured by supporting CuO by heating for 10 hours.
  • Example 55 to Example 57 A honeycomb structure was manufactured in the same manner as in Example 54 except that the supported amount of CuO was changed to the amount shown in Table 6.
  • Example 2 Evaluation of NO X gas performance (500 ° C)
  • the honeycomb structure 2 of 3 ⁇ 3 cells was formed by supporting points 21 and 22 as shown in FIG. In the supported state, the central portion of the honeycomb structure 2 was pressed with the pressing rod 20, and the bending strength was measured according to JIS R1601, and the results are shown in Tables 2 to 5.
  • the confirmation method was as follows. Using tweezers or the like, the surface of the cell wall is scraped, and the surface portion components are recovered in a powder state. Similarly, a powdery sample is collected from the central portion of the cell wall thickness. From the X-ray diffraction analysis of these powdery samples, the concentration of zeolite containing zeolite was measured on the surface and center of the cell wall. For the X-ray diffraction analysis, a RINT 2500PC apparatus (manufactured by Rigaku Corporation) was used.
  • Example 2 For the honeycomb structures obtained in Example 2 and Examples 54 to 57, the initial weight of the honeycomb structures was measured in advance. Next, an exhaust gas purification filter including an oxidation catalyst (DOC) and a honeycomb structure was sequentially installed in the exhaust line of the diesel engine. After installation, the diesel engine is started, PM is deposited in a predetermined amount (about 8 g / L) under the operating conditions where the exhaust temperature is low, the honeycomb structure is once removed, and the weight of the deposited PM (PM deposition weight) was measured.
  • DOC oxidation catalyst
  • the simulated exhaust gas was raised to 480 ° C. and a regeneration test was started.
  • the temperature of 480 ° C. ⁇ 10 ° C. was maintained for 30 minutes from the time when the temperature reached 480 ° C., and after 30 minutes, the entire amount of the simulated exhaust gas was switched to nitrogen gas.
  • Regeneration rate (%) 100 ⁇ [(PM deposition weight (g) ⁇ PM combustion weight (g)) / PM deposition weight (g)] ⁇ 100
  • Comparative Examples 1 to 5 excluding either inorganic fibers or bentonite have low mechanical strength (bending strength). From Comparative Examples 6 to 8, when bentonite is replaced with aluminum hydroxide or silicon dioxide, the mechanical strength (bending strength) decreases in the same manner. When replaced with magnesium hydroxide, NOx (Purification rate) decreases.
  • NO X reduction efficiency by using a combination of zeolite and inorganic fibers and bentonite is high and the mechanical strength (flexural strength) becomes high honeycomb structure.
  • bentonite elemental composition is replaced with the same talc, although the same trend, in view of enhancing NO X reduction efficiency (NOx purification rate) and mechanical strength (flexural strength) and the further, bentonite is preferred over talc .

Abstract

The present invention provides a honeycomb structure with high NOx reduction efficiency and high mechanical strength without immersing the honeycomb structure after manufacture in a zeolite-containing solution or applying thereon a zeolite-containing solution. The honeycomb structure 11 has a shape wherein multiple cells 12 extending along the longitudinal direction X from one end face 11a to the other end face 11b are subdivided by cell walls 13, and the honeycomb structure 11 is characterized by being a sintered compact of a mixture containing zeolite, clay mineral and inorganic fiber.

Description

ハニカム構造体及び排ガス浄化装置Honeycomb structure and exhaust gas purification device
 本発明は、ハニカム構造体及び該ハニカム構造体を備える排ガス浄化装置に関する。 The present invention relates to a honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
 ディーゼルエンジンなどの内燃機関から排出される排ガスには、粒子状物質(PM:particulate matter)、窒素酸化物(NO)、炭化水素、一酸化炭素等の有害成分が含まれており、これらの有害物質を除去するために様々な手法が検討されている。特にトラック、バス等のディーゼル車から排出されるPMやNOが都市部の大気汚染の一因となっていることから、ますますこれらの有害物質に対する規制が強化されている。 Exhaust gas discharged from internal combustion engines such as diesel engines contains harmful substances such as particulate matter (PM), nitrogen oxides (NO x ), hydrocarbons, and carbon monoxide. Various methods are being studied to remove harmful substances. In particular trucks, PM and NO X discharged from diesel vehicles such as a bus from that one of the causes of air pollution in urban areas, it is increasingly strengthened regulations on these harmful substances.
 PMについては、排ガスの流路中に配置した濾過機能を有するハニカム構造体にPMを捕集し、PMが所定量堆積したところで、ハニカム構造体を加熱してPMを燃焼分解することにより除去することができる。しかし、PMの燃焼温度は550℃~650℃と高いことから、装置が大がかりになり、また加熱するためのエネルギーコストが高くなる問題がある。より低温でPMを燃焼するために、触媒を担持したハニカム構造体が用いられている。 Regarding PM, PM is collected in a honeycomb structure having a filtration function arranged in a flow path of exhaust gas, and when a predetermined amount of PM is deposited, the honeycomb structure is heated to remove PM by combustion decomposition. be able to. However, since the combustion temperature of PM is as high as 550 ° C. to 650 ° C., there is a problem that the apparatus becomes large and the energy cost for heating increases. In order to burn PM at a lower temperature, a honeycomb structure carrying a catalyst is used.
 NOについては、NO還元触媒を担持したハニカム構造体を排ガスの流路中に配置することで除去することができる。例えば、ハニカム構造体にゼオライト系触媒を担持し、そこへ尿素等のアンモニア前駆物質から得られる還元剤又はアンモニア自体を注入することによりNOを窒素へ還元する選択的接触還元(SCR:selective catalytic reduction)が挙げられる。 NO X can be removed by disposing the honeycomb structure carrying the NO X reduction catalyst in the exhaust gas flow path. For example, selective catalytic reduction (SCR: selective catalytic reduction) in which NO x is reduced to nitrogen by supporting a zeolite catalyst on a honeycomb structure and injecting a reducing agent obtained from an ammonia precursor such as urea or ammonia itself into the honeycomb structure. reduction).
 NOを効率的に浄化するためには、NO浄化に寄与するゼオライトの使用量を増やすことが重要であることから、セル壁がゼオライトで構成されたハニカム構造体が検討されている。しかし、ハニカム構造体のセル壁は、成形性や実用に耐えられる機械的強度を確保するため、ゼオライトの他に多量の無機バインダ等を併用する必要がある。このため、セル壁がゼオライトで構成されたハニカム構造体は、セル壁に含まれるゼオライト量を、それほど増やすことはできず、セル壁に含まれるゼオライト量の上限により、ハニカム構造体のNO浄化率が実質的に規定され、それ以上のNO浄化率を得ることは難しいという問題がある。そこで、特許文献1では、セル壁がゼオライトで構成されたハニカム構造体を、ゼオライトを含む溶液に含浸させることで製造した、セル壁の中心部よりセル壁の表面におけるゼオライトの割合が高いことを特徴とするハニカム構造体を提案している。 To purify the NO X efficiently, since it is possible to increase the amount of zeolite contributing to the NO X purification is important, honeycomb structure cell walls formed of zeolite has been studied. However, the cell wall of the honeycomb structure needs to use a large amount of an inorganic binder in addition to zeolite in order to ensure moldability and mechanical strength that can withstand practical use. For this reason, the honeycomb structure in which the cell wall is made of zeolite cannot increase the amount of zeolite contained in the cell wall so much, and the NO x purification of the honeycomb structure is performed by the upper limit of the amount of zeolite contained in the cell wall. rate is substantially defined, there is a problem that it is difficult to obtain more of the NO X purification rate. Therefore, in Patent Document 1, the honeycomb structure in which the cell wall is composed of zeolite is impregnated with a solution containing zeolite, and the ratio of zeolite on the surface of the cell wall is higher than the center of the cell wall. A featured honeycomb structure is proposed.
 PMとNOの両方を除去するためには、PMがNO還元触媒に付着するとNO還元効率が低下することから、PMを除去する装置の下流にNOを除去する装置を配置する必要がある。また、市場のダウンサイジングの要請から、PMを除去する装置とNOを除去する装置を一体化させた装置が望まれている。そこで、特許文献2では、ウォールフロー型のハニカム構造体の壁面を、NO還元触媒からなるNO還元触媒層により被覆し、さらに酸化触媒からなる酸化触媒層により被覆することが提案されている。 In order to remove both PM and NO X , if PM adheres to the NO X reduction catalyst, the NO X reduction efficiency decreases. Therefore, it is necessary to arrange a device for removing NO X downstream of the device for removing PM. There is. Moreover, the demand for market downsizing device with integrated device for removing apparatus and NO X removing the PM has been desired. Therefore, in Patent Document 2, the wall surface of the honeycomb structure of wall flow, coated with NO X reduction catalyst layer consisting of NO X reduction catalyst, it has been proposed to coat by addition of an oxide catalyst oxidation catalyst layer .
特開2010-229012号公報JP 2010-229012 A 特開2000-282852号公報JP 2000-282852 A
 しかし、特許文献1のハニカム構造体は、成形性や機械的強度は十分でないという問題がある。機械的強度を上げるためにハニカム構造体の焼結温度を上げたり、焼結材を多く添加したりするとゼオライトの機能が損なわれる問題がある。また、形成された触媒層によりハニカム構造体の壁面における細孔が閉塞すると、連結していた細孔同士が独立して排ガス流路が減少し、結果としてNOの除去効率が低下することが懸念される。 However, the honeycomb structure of Patent Document 1 has a problem that moldability and mechanical strength are not sufficient. If the sintering temperature of the honeycomb structure is increased or a large amount of a sintered material is added to increase the mechanical strength, there is a problem that the function of the zeolite is impaired. Further, when the pores on the wall surface of the honeycomb structure are blocked by the formed catalyst layer, the connected pores independently reduce the exhaust gas flow path, and as a result, the NO X removal efficiency may be reduced. Concerned.
 特許文献2の方法のように、PMを除去する装置とNOを除去する装置を一体化させると、ハニカム構造体に被覆できる触媒割合が低下し、PMとNOの浄化性能が低下することが懸念される。また、形成された触媒層によりハニカム構造体壁面の細孔が閉塞すると、連結していた細孔同士が独立して排ガス流路が減少し、結果としてPM堆積による圧力損失が上昇したり、PMとNOの除去効率が低下したりすることが懸念される。また、特許文献1のハニカム構造体に、特許文献2の技術を応用した場合も同様である。 As in the method of Patent Document 2, when integrating the device for removing the device and NO X removing the PM, the catalyst ratio may be coated on the honeycomb structure is reduced, that the purification performance of the PM and NO X decreases Is concerned. In addition, when the pores on the wall surface of the honeycomb structure are closed by the formed catalyst layer, the connected pores independently reduce the exhaust gas flow path, resulting in an increase in pressure loss due to PM deposition, NO X removal efficiency is a concern that or decreased. The same applies when the technique of Patent Document 2 is applied to the honeycomb structure of Patent Document 1.
 本発明は、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりせずともNO還元効率が高く、かつ機械的強度が高いハニカム構造体、及び該ハニカム構造体を備えた排ガス浄化装置を提供することを主な目的とする。 The present invention is, or is impregnated with a solution containing zeolite after manufacturing of the honeycomb structure without solution was or coating containing zeolite high NO X reduction efficiency, and high mechanical strength honeycomb structure, and the honeycomb It is a main object to provide an exhaust gas purification apparatus provided with a structure.
 本発明は、以下のハニカム構造体、及び該ハニカム構造体を備えた排ガス浄化装置を提供する。 The present invention provides the following honeycomb structure and an exhaust gas purification apparatus including the honeycomb structure.
 項1 長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体であって、前記ハニカム構造体がゼオライトと粘土鉱物と無機繊維とを含有する混合物の焼結体であることを特徴とする。 Item 1: A honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by a cell wall along a longitudinal direction, and the honeycomb structure includes zeolite, clay mineral, and inorganic It is a sintered body of a mixture containing fibers.
 項2 前記ゼオライトが、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、βゼオライト、ZSM-5型ゼオライト、及びCHA型ゼオライトから選ばれる少なくとも1種であることを特徴とする、項1に記載のハニカム構造体。 Item 2: The zeolite is at least one selected from mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, β zeolite, ZSM-5 type zeolite, and CHA type zeolite. Item 2. The honeycomb structure according to Item 1.
 項3 前記ゼオライトの一次粒子の平均粒子径が0.1μm~20μmであることを特徴とする、項1または項2に記載のハニカム構造体。 Item 3. The honeycomb structure according to Item 1 or Item 2, wherein an average particle diameter of primary particles of the zeolite is 0.1 μm to 20 μm.
 項4 前記粘土鉱物が、層状粘土鉱物であることを特徴とする、項1~項3のいずれか一項に記載のハニカム構造体。 Item 4. The honeycomb structure according to any one of Items 1 to 3, wherein the clay mineral is a layered clay mineral.
 項5 前記無機繊維の平均繊維長が1μm~300μmであり、且つ平均アスペクト比が3~200であることを特徴とする、項1~項4のいずれか一項に記載のハニカム構造体。 Item 5. The honeycomb structure according to any one of Items 1 to 4, wherein an average fiber length of the inorganic fibers is 1 μm to 300 μm and an average aspect ratio is 3 to 200.
 項6 前記無機繊維のモース硬度が5以下であることを特徴とする、項1~項5のいずれか一項に記載のハニカム構造体。 Item 6. The honeycomb structure according to any one of Items 1 to 5, wherein the inorganic fiber has a Mohs hardness of 5 or less.
 項7 前記混合物における前記粘土鉱物の含有量が、前記ゼオライト100質量部に対して1質量部~50質量部であることを特徴とする、項1~項6のいずれか一項に記載のハニカム構造体。 Item 7 The honeycomb according to any one of Items 1 to 6, wherein a content of the clay mineral in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
 項8 前記混合物における前記無機繊維の含有量が、前記ゼオライト100質量部に対して1質量部~50質量部であることを特徴とする、項1~項7のいずれか一項に記載のハニカム構造体。 Item 8 The honeycomb according to any one of Items 1 to 7, wherein a content of the inorganic fiber in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
 項9 前記混合物が、セラミック原料をさらに含有していることを特徴とする、項1~項8のいずれか一項に記載のハニカム構造体。 Item 9 The honeycomb structure according to any one of Items 1 to 8, wherein the mixture further contains a ceramic raw material.
 項10 前記セラミック原料が、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種であることを特徴とする、項9に記載のハニカム構造体。 Item 10. The honeycomb structure according to Item 9, wherein the ceramic raw material is at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate.
 項11 前記セル壁の中心部分に含まれる前記ゼオライトの濃度に対する、前記セル壁の表面部分の前記ゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲であることを特徴とする、項1~項10のいずれか一項に記載のハニカム構造体。 Item 11: The ratio of the concentration of the zeolite in the surface portion of the cell wall to the concentration of the zeolite contained in the central portion of the cell wall (surface portion / center portion) is in the range of 0.8 to 1.2. Item 11. The honeycomb structure according to any one of Items 1 to 10, wherein:
 項12 前記ゼオライトが、窒素酸化物を窒素に還元する触媒であることを特徴とする、項1~項11のいずれか一項に記載のハニカム構造体。 Item 12. The honeycomb structure according to any one of Items 1 to 11, wherein the zeolite is a catalyst for reducing nitrogen oxides to nitrogen.
 項13 排ガス浄化装置に用いられるハニカム構造体であって、前記ハニカム構造体における排ガス入口側の前記セル壁表面に、遷移金属酸化物を担持していることを特徴とする、項1~項12のいずれか一項に記載のハニカム構造体。 Item 13 is a honeycomb structure used in an exhaust gas purification apparatus, wherein a transition metal oxide is supported on the surface of the cell wall on the exhaust gas inlet side of the honeycomb structure. The honeycomb structure according to any one of the above.
 項14 前記ハニカム構造体における見かけ体積当たりの前記遷移金属酸化物の担持量が1g/L~70g/Lであることを特徴とする、項13に記載のハニカム構造体。 Item 14. The honeycomb structure according to Item 13, wherein an amount of the transition metal oxide supported per apparent volume in the honeycomb structure is 1 g / L to 70 g / L.
 項15 項1~項14のいずれか一項に記載のハニカム構造体を備えることを特徴とする、排ガス浄化装置。 Item 15. An exhaust gas purification apparatus comprising the honeycomb structure according to any one of Items 1 to 14.
 本発明によれば、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりせずともNO還元効率が高く、かつ機械的強度が高いハニカム構造体を提供することができる。 According to the present invention, provided or impregnated with a solution containing zeolite after manufacturing of the honeycomb structure without solution was or coating containing zeolite high NO X reduction efficiency and the mechanical strength is high honeycomb structure can do.
図1は、本発明の一実施形態に係るハニカム構造体を示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention. 図2は、図1のハニカム構造体の変形例の端面を示す模式図である。FIG. 2 is a schematic view showing an end face of a modification of the honeycomb structure of FIG. 図3は、曲げ強度の測定方法を説明するための模式的正面図である。FIG. 3 is a schematic front view for explaining a method for measuring the bending strength.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 本発明のハニカム構造体は、長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体であって、該ハニカム構造体がゼオライトと粘土鉱物と無機繊維とを含有する混合物の焼結体であることを特徴とする。また、ハニカム構造体の機械的強度をより一層向上させる観点から、必要に応じて、上記混合物がセラミック原料をさらに含有していてもよい。 A honeycomb structure of the present invention is a honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face are partitioned by cell walls along a longitudinal direction, the honeycomb structure being It is a sintered body of a mixture containing zeolite, clay mineral and inorganic fiber. Further, from the viewpoint of further improving the mechanical strength of the honeycomb structure, the mixture may further contain a ceramic raw material, if necessary.
 以下に、具体的な本発明のハニカム構造体と、その各構成成分について説明する。 Hereinafter, a specific honeycomb structure of the present invention and each component thereof will be described.
 (ゼオライト)
 ゼオライトとは、結晶性アルミノケイ酸塩で、ケイ素元素とアルミニウム元素のまわりに4つの酸素元素が規則正しく三次元的に結合した結晶構造を持つ多孔質体である。本発明で用いるゼオライトの結晶構造としては、例えば、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、βゼオライト、ZSM-5型ゼオライト、CHA型ゼオライト等がある。
(Zeolite)
Zeolite is a crystalline aluminosilicate, which is a porous body having a crystal structure in which four oxygen elements are regularly and three-dimensionally bonded around silicon and aluminum elements. Examples of the crystal structure of the zeolite used in the present invention include mordenite type zeolite, faujasite type zeolite, A type zeolite, L type zeolite, β zeolite, ZSM-5 type zeolite, CHA type zeolite and the like.
 本発明で使用するゼオライトのシリカ/アルミナ比は、15以上であることが好ましく、20以上であることがより好ましく、30以上であることが更に好ましい。シリカ/アルミナ比の上限値は、100であることが好ましく、70であることがより好ましく、50であることが更に好ましい。この構成にすることにより他の添加剤より溶出するアルカリ金属イオンの影響をより一層受けることなく、NOをより一層効果的に還元除去できるものと考えられる。 The silica / alumina ratio of the zeolite used in the present invention is preferably 15 or more, more preferably 20 or more, and still more preferably 30 or more. The upper limit of the silica / alumina ratio is preferably 100, more preferably 70, and still more preferably 50. Without further subject that the effect of alkali metal ions dissolved from the other additives With this structure, is believed to be more effectively reduce and remove NO X.
 本発明で使用するゼオライトは、天然産及び合成ゼオライトがあるが、上記構成のものであれば特に制限なく使用できる。好ましくは、より均一なシリカ/アルミナ比、結晶サイズ、結晶形態を有し、不純物が少ないことから、合成ゼオライトがよい。 Zeolite used in the present invention includes naturally-occurring and synthetic zeolites, and any zeolite having the above configuration can be used without any particular limitation. Preferably, synthetic zeolite is preferred because it has a more uniform silica / alumina ratio, crystal size, crystal morphology, and fewer impurities.
 ゼオライトは、一次粒子が凝集し二次粒子を形成したものであることが好ましい。ゼオライトの一次粒子の平均粒子径は、0.1μm~20μmであることが好ましく、1μm~20μmであることがより好ましく、5μm~15μmであることが更に好ましい。一次粒子の平均粒子径を上記範囲にすることで、NOをより一層効果的に還元除去することができる。一次粒子の平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。本発明において、ゼオライトの一次粒子の平均粒子径は、電子顕微鏡写真から任意の一次粒子50個を選択し、その径を平均したものである。 The zeolite is preferably one in which primary particles are aggregated to form secondary particles. The average particle size of the primary particles of the zeolite is preferably 0.1 μm to 20 μm, more preferably 1 μm to 20 μm, and even more preferably 5 μm to 15 μm. The average particle diameter of primary particles in the above range, it is possible to more effectively reduce and remove NO X. What is necessary is just to measure the average particle diameter of a primary particle using the particulate matter before mixing raw material particles. In the present invention, the average particle diameter of the primary particles of zeolite is obtained by selecting 50 arbitrary primary particles from an electron micrograph and averaging the diameters.
 ゼオライトの二次粒子の平均粒子径は、0.5μm~40μmであることが好ましく、5μm~30μmであることがより好ましく、10μm~20μmであることが更に好ましい。二次粒子の平均粒子径を上記範囲にすることで、ハニカム構造体の製造工程における焼成においてゼオライトと焼結材との反応性をより一層低減することができ、ゼオライト骨格構造をより一層確実に維持することができる。二次粒子の平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、ゼオライトの二次粒子の平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%(体積基準累積50%粒子径)、すなわちD50(メジアン径)の粒子径である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle size of the secondary particles of the zeolite is preferably 0.5 μm to 40 μm, more preferably 5 μm to 30 μm, and even more preferably 10 μm to 20 μm. By making the average particle diameter of the secondary particles in the above range, the reactivity between the zeolite and the sintered material can be further reduced in the firing in the manufacturing process of the honeycomb structure, and the zeolite skeleton structure is more reliably secured. Can be maintained. What is necessary is just to measure the average particle diameter of a secondary particle using the particulate matter before mixing raw material particles. Further, in the present invention, the average particle size of the secondary particles of zeolite is a volume-based cumulative 50% (volume-based cumulative 50% particle size) in a particle size distribution determined by a laser diffraction / scattering method, that is, D 50 (median diameter). The particle size of This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
 ゼオライトの圧壊強度は、50MPa以上であることが好ましく、60MPa以上であることがより好ましい。ゼオライトの圧壊強度は、500MPa以下であることが好ましく、300MPa以下であることがより好ましい。圧壊強度を上記範囲にすることで、ハニカム構造体の成形時における成形圧によりゼオライトの一次粒子径及び/又は二次粒子径が小さくなることをより一層抑制することができる。ゼオライトの圧壊強度は原料粒子を混合する前の粒子状物を用いて測定すればよい。 The crushing strength of zeolite is preferably 50 MPa or more, and more preferably 60 MPa or more. The crushing strength of zeolite is preferably 500 MPa or less, and more preferably 300 MPa or less. By setting the crushing strength within the above range, it is possible to further suppress the primary particle diameter and / or the secondary particle diameter of the zeolite from being reduced by the forming pressure at the time of forming the honeycomb structure. What is necessary is just to measure the crushing strength of a zeolite using the particulate matter before mixing raw material particles.
 本発明で使用するゼオライトは、上記ゼオライトをイオン交換した、イオン交換ゼオライトを含んでいることが好ましい。イオン交換ゼオライトは、あらかじめイオン交換されたゼオライトを使用してハニカム構造体を形成してもよく、ハニカム構造体を形成した後にゼオライトをイオン交換してもよい。 The zeolite used in the present invention preferably contains ion exchanged zeolite obtained by ion exchange of the above zeolite. As the ion-exchanged zeolite, a honeycomb structure may be formed by using a previously ion-exchanged zeolite, or the zeolite may be ion-exchanged after the honeycomb structure is formed.
 イオン交換ゼオライトとしては、遷移金属でイオン交換されたゼオライトが好ましく用いられる。遷移金属としては、例えば、Cu、Fe、Pt、Ag、Ti、Mn、Ni、Co、Pd、Rh、V、Cr等が挙げられ、Cu、Feが好ましい。遷移金属の合計量は、ゼオライトの総質量に対して1質量%~15質量%とすることが好ましく、1質量%~8質量%とすることがより好ましい。 As the ion exchange zeolite, a zeolite ion exchanged with a transition metal is preferably used. Examples of the transition metal include Cu, Fe, Pt, Ag, Ti, Mn, Ni, Co, Pd, Rh, V, and Cr, and Cu and Fe are preferable. The total amount of transition metals is preferably 1% by mass to 15% by mass, and more preferably 1% by mass to 8% by mass with respect to the total mass of the zeolite.
 (粘土鉱物)
 本発明で用いる粘土鉱物とは、粘土を構成する主成分鉱物である。層状珪酸塩鉱物(フィロ珪酸塩鉱物)、滑石(タルク)、方解石(カルサイト)、苦灰石(ドロマイト)、長石類、石英、沸石(ゼオライト)類、その他鎖状構造を持つもの(アタパルジャイト、セピオライトなど)、はっきりとした結晶構造を持たないもの(アロフェン)等が粘土鉱物と呼ばれているが、一般的にはそのなかの層状珪酸塩鉱物のことを層状粘土鉱物と呼ぶこともある。本発明で用いる粘土鉱物としては、層状粘土鉱物が好ましい。
(Clay mineral)
The clay mineral used in the present invention is a main component mineral constituting clay. Layered silicate mineral (phyllosilicate mineral), talc, calcite, dolomite, feldspar, quartz, zeolite (zeolite), and others with chain structure (attapulgite, Sepiolite, etc.) and those that do not have a clear crystal structure (allophane) are called clay minerals. In general, layered silicate minerals are sometimes called layered clay minerals. The clay mineral used in the present invention is preferably a layered clay mineral.
 層状粘土鉱物は、正負のイオンの二次元的な層が平行に積み重なって結合し結晶構造を作っており、この層構造のなかには2つの構造単位を有し、一つはSi4+とこれを囲んだO2-とからなる四面体層、他はSi3+(あるいはMg2+、Fe2+など)とこれを囲んだ(OH)とからなる八面体層で構成されている。 The layered clay mineral has a two-dimensional layer of positive and negative ions stacked and bonded in parallel to form a crystal structure. This layer structure has two structural units, one of which surrounds Si 4+. A tetrahedral layer composed of O 2−, and the other is composed of an octahedral layer composed of Si 3+ (or Mg 2+ , Fe 2+, etc.) and (OH) surrounding it.
 四面体層中では、四面体の4つの頂点にあるOと中心に位置するSiによりSi-Oの四面体が形成され、これが3つの頂点で互いに連結して二次元的に広がり、Si10の組成を有する層格子を形成している。Si4+はしばしばAl3+で置換される。 In the tetrahedron layer, O at the four vertices of the tetrahedron and Si located at the center form an Si—O tetrahedron, which is connected to each other at the three vertices to spread two-dimensionally, and Si 4 O A layer lattice having a composition of 10 is formed. Si 4+ is often replaced by Al 3+ .
 八面体層中では、八面体の6つの頂点にある(OH)またはOと、その中心に位置するAl、Mg、Feなどにより形成された八面体が、各頂点で連結して二次元的に広がり、Al(OH)あるいはMg(OH)の組成を有する層格子を形成している。 In the octahedron layer, the octahedron formed by (OH) or O at the six apexes of the octahedron and Al, Mg, Fe, etc. located at the center thereof is connected at each apex and is two-dimensionally. A layer lattice having a composition of Al 2 (OH) 6 or Mg 3 (OH) 6 is formed.
 八面体層には、6個の陰イオンで囲まれた陽イオンの格子点に2価の陽イオン(Mg2+など)が入り格子点の全てを占めている3-八面体型、陽イオンの格子点に3価の陽イオン(Al3+など)が入り2/3を占め、残りの1/3は空所となっている2-八面体型がある。 In the octahedral layer, a divalent cation (Mg 2+, etc.) enters the lattice point of the cation surrounded by 6 anions, and occupies all of the lattice points. There is a 2-octahedron type in which trivalent cations (such as Al 3+ ) enter the lattice points and occupy 2/3, and the remaining 1/3 is empty.
 四面体層と八面体層の組合せには2種類あり、一つは1枚の四面体層と1枚の八面体層の結合を単位とする1:1型構造、他は1枚の四面体層とその間に挟まれた1枚の八面体層の結合を単位とする1:1型構造がある。 There are two types of tetrahedron and octahedron combinations, one is a 1: 1 type structure with a unit of one tetrahedron layer and one octahedron layer, and the other is a tetrahedron. There is a 1: 1 type structure in which a unit is a unit of an octahedral layer sandwiched between layers.
 四面体層では通常は1個のSi4+が4個のO原子で囲まれて安定な配位をとっているが、ときにこのSi4+よりわずかにイオン半径の大きいAl3+がSi4+の代わりに四面体層に存在する。配位するO原子の数には変化が無いので、一つのAl3+がSi4+を置換するごとに四面体層には一単位の負電荷を生じる。同様に八面体層でもMg2+、Fe2+によるAl3+、Fe3+の置換に伴い負電荷を生じる。 In the tetrahedral layer, one Si 4+ is usually surrounded by four O atoms and has a stable coordination, but sometimes Al 3+ having a slightly larger ion radius than this Si 4+ replaces Si 4+ . Exists in the tetrahedral layer. Since there is no change in the number of coordinated O atoms, every time one Al 3+ replaces Si 4+ , a unit of negative charge is generated in the tetrahedral layer. Similarly, in the octahedron layer, negative charges are generated with the replacement of Al 3+ and Fe 3+ by Mg 2+ and Fe 2+ .
 この負電荷を生じた層は、Li、K、Na、NH 、H、Ca2+、Mg2+、Sr2+、Ba2+、Co2+、Fe2+、Al3+などの陽イオンが介在することで電気的中性になり、層間にこれら交換性陽イオンが存在した積層構造となる。 This negatively charged layer is a positive layer such as Li + , K + , Na + , NH 4 + , H 3 O + , Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ , Co 2+ , Fe 2+ , Al 3+. The ions are electrically neutral due to the presence of ions, resulting in a laminated structure in which these exchangeable cations exist between layers.
 層状粘土鉱物としては、スメクタイト、スチーブンサイト、バーミキュライト、雲母族、脆雲母族の天然品又は合成品から選ばれる少なくとも1種が例示される。これらを組み合わせ用いることができる。 Examples of the layered clay mineral include at least one selected from smectite, stevensite, vermiculite, mica group, brittle mica group natural product or synthetic product. These can be used in combination.
 上記スメクタイトとしては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、鉄サポナイト、ヘクトライト、ソーコナイト等が挙げられる。NO還元効率、機械的強度をより一層高める観点から、モンモリロナイトが好ましい。例えば、モンモリロナイトを主成分とするベントナイトを用いることができ、ベントナイト中のモンモリロナイトの含有量は40%以上であることが好ましく、70%以上であることがより好ましい。 Examples of the smectite include montmorillonite, beidellite, nontronite, saponite, iron saponite, hectorite, and soconite. Montmorillonite is preferable from the viewpoint of further increasing NO X reduction efficiency and mechanical strength. For example, bentonite mainly composed of montmorillonite can be used, and the content of montmorillonite in the bentonite is preferably 40% or more, and more preferably 70% or more.
 粘土鉱物の平均粒子径は、0.5μm~100μmであることが好ましく、1μm~20μmであることがより好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、粘度鉱物の平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle size of the clay mineral is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 20 μm. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles. Further, in the present invention, the average particle diameter of the viscosity mineral is the volume-based cumulative 50% particle diameter (volume-based cumulative 50% particle diameter) in the particle size distribution determined by the laser diffraction / scattering method, that is, D 50 (median diameter). It is. This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
 (無機繊維)
 本発明で使用する無機繊維は、繊維状粒子から構成される粉末であり、平均繊維長は、好ましくは1μm~300μmであり、より好ましくは1μm~200μmである。また、平均アスペクト比は、好ましくは3~200であり、より好ましくは5~50である。
(Inorganic fiber)
The inorganic fiber used in the present invention is a powder composed of fibrous particles, and the average fiber length is preferably 1 μm to 300 μm, more preferably 1 μm to 200 μm. The average aspect ratio is preferably 3 to 200, more preferably 5 to 50.
 無機繊維は、押出成形機の摩耗の観点から、モース硬度が5以下であることが好ましい。無機繊維としては、例えば、チタン酸アルカリ金属塩、ワラストナイト、ホウ酸マグネシウム、ゾノトライト、塩基性硫酸マグネシウムから選ばれる少なくとも1種が挙げられる。また、NO還元効率及び機械的強度をより一層高める観点から、無機繊維はチタン酸アルカリ金属塩であることが好ましい。モース硬度とは、物質の硬さを表す指標であり、鉱物同士を擦り付けて傷ついたほうが硬度の小さい物質となる。 The inorganic fiber preferably has a Mohs hardness of 5 or less from the viewpoint of wear of the extruder. Examples of the inorganic fiber include at least one selected from alkali metal titanate, wollastonite, magnesium borate, zonotlite, and basic magnesium sulfate. From the viewpoint of further enhancing the NO X reduction efficiency and mechanical strength, it is preferred inorganic fibers are alkaline metal titanate. The Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and damaged.
 チタン酸アルカリ金属塩としては、NaTiO、NaTi、NaTi、NaTi13、NaTi17等のチタン酸ナトリウム;KTiO、KTi、KTi、KTi13、KTi17等のチタン酸カリウム;CsTiO、CsTi、CsTi、CsTi13、CsTi17等のチタン酸セシウム等を例示することができる。 Examples of the alkali metal titanate include sodium titanate such as Na 2 TiO 3 , Na 2 Ti 2 O 5 , Na 2 Ti 4 O 9 , Na 2 Ti 6 O 13 , Na 2 Ti 8 O 17 ; K 2 TiO 3 , K 2 Ti 2 O 5 , K 2 Ti 4 O 9 , K 2 Ti 6 O 13 , K 2 Ti 8 O 17 and other potassium titanates; Cs 2 TiO 3 , Cs 2 Ti 2 O 5 , Cs 2 Ti 4 Examples thereof include cesium titanate such as O 9 , Cs 2 Ti 6 O 13 , and Cs 2 Ti 8 O 17 .
 チタン酸アルカリ金属塩の寸法は、上述の無機繊維の寸法の範囲であれば特に制限はないが、通常、平均繊維径が好ましくは0.01μm~1μm、より好ましくは0.1μm~0.6μmであり、平均繊維長が好ましくは1μm~50μm、より好ましくは3μm~30μmであり、平均アスペクト比が好ましくは10以上、より好ましくは15~40である。本発明では市販品も使用でき、例えば、大塚化学社製の「ティスモ(TISMO)D」(平均繊維長15μm、平均繊維径0.5μm)や、「ティスモ(TISMO)N」(平均繊維長15μm、平均繊維径0.5μm)等を使用することができる。 The size of the alkali metal titanate is not particularly limited as long as it is within the above-mentioned range of the inorganic fiber, but usually the average fiber diameter is preferably 0.01 μm to 1 μm, more preferably 0.1 μm to 0.6 μm. The average fiber length is preferably 1 μm to 50 μm, more preferably 3 μm to 30 μm, and the average aspect ratio is preferably 10 or more, more preferably 15 to 40. In the present invention, commercially available products can also be used. For example, “TISMO D” (average fiber length 15 μm, average fiber diameter 0.5 μm) or “TISMO N” (average fiber length 15 μm) manufactured by Otsuka Chemical Co., Ltd. And an average fiber diameter of 0.5 μm) can be used.
 上述の無機繊維の平均繊維長及び平均繊維径は、走査型電子顕微鏡の観察により測定することができ、平均アスペクト比(平均繊維長/平均繊維径)は平均繊維長及び平均繊維径より算出することできる。例えば、電子顕微鏡により、複数の無機繊維を撮影し、その観察像から無機繊維を任意に300個選択し、それらの繊維長及び繊維径を測定し、繊維径の全てを積算して個数で除したものを平均繊維長、繊維径の全てを積算し個数で除したものを平均繊維径とすることができる。平均繊維長及び平均繊維径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。 The average fiber length and average fiber diameter of the inorganic fibers can be measured by observation with a scanning electron microscope, and the average aspect ratio (average fiber length / average fiber diameter) is calculated from the average fiber length and average fiber diameter. I can. For example, a plurality of inorganic fibers are photographed with an electron microscope, 300 inorganic fibers are arbitrarily selected from the observed images, their fiber lengths and fiber diameters are measured, and all the fiber diameters are integrated and divided by the number. The average fiber length can be obtained by integrating all of the average fiber length and fiber diameter and dividing the result by the number. What is necessary is just to measure an average fiber length and an average fiber diameter using the particulate matter before mixing raw material particles.
 本発明において繊維状粒子とは、粒子に外接する直方体のうち最小の体積をもつ直方体(外接直方体)の最も長い辺を長径L、次に長い辺を短径B、最も短い辺を厚さTと定義(B>Tとする)したときに、L/BおよびL/Tがいずれも3以上の粒子のことをいい、長径Lが繊維長、短径Bが繊維径に相当する。 In the present invention, the term “fibrous particles” refers to the longest side of the rectangular parallelepiped having the smallest volume (the circumscribed rectangular parallelepiped) having the longest diameter L, the next longest side having the shortest diameter B, and the shortest side having the thickness T. When L is defined as (B> T), L / B and L / T are both particles of 3 or more, the major axis L corresponds to the fiber length, and the minor axis B corresponds to the fiber diameter.
 (セラミック原料)
 セラミック原料としては、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種が例示され、これらを2種以上組み合わせて用いることもできる。セラミック原料は、耐熱性、安定性をより一層高める観点から、チタン酸アルミニウムが好ましい。
(Ceramic raw material)
Examples of the ceramic raw material include at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate, and these may be used in combination of two or more. The ceramic raw material is preferably aluminum titanate from the viewpoint of further improving heat resistance and stability.
 セラミック原料の平均粒子径は、0.5μm~100μmであることが好ましく、1μm~20μmであることより好ましい。平均粒子径は、原料粒子を混合する前の粒子状物を用いて測定すればよい。また、本発明において、セラミック原料の平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%の粒子径(体積基準累積50%粒子径)、すなわちD50(メジアン径)である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle size of the ceramic raw material is preferably 0.5 μm to 100 μm, and more preferably 1 μm to 20 μm. What is necessary is just to measure an average particle diameter using the particulate matter before mixing raw material particles. Further, in the present invention, the average particle size of the ceramic raw material is the particle size distribution of 50% by volume based on the particle size distribution obtained by the laser diffraction / scattering method (50% particle size by volume reference), that is, D 50 (median diameter). It is. This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
 (ハニカム構造体)
 図1は、本発明の一実施形態に係るハニカム構造体を示す模式的斜視図である。
(Honeycomb structure)
FIG. 1 is a schematic perspective view showing a honeycomb structure according to an embodiment of the present invention.
 図1に示すように、本実施形態のハニカム構造体11は、互いに対向している第1の端面11a及び第2の端面11bと、第1の端面11a及び第2の端面11bを結ぶ側面11cとを有する。ハニカム構造体11においては、図1に示す長手方向Xに沿って、第1の端面11aから第2の端面11bに向かって延伸している複数のセル12がセル壁13によって区画されている。なお、ハニカム構造体11の側面11c(長手方向Xと平行な面)は、側面11cを補強し強度を保つため、また側面11cからセルを通過する排ガスが漏れ出すことを防止するため、コーティング層で覆われていてもよい。上記コーティング層を構成する材料としては、特に限定されず、例えば、無機バインダと有機バインダと無機繊維及び/又は無機粒子とからなるものと等を挙げることができる。 As shown in FIG. 1, the honeycomb structure 11 of the present embodiment includes a first end surface 11a and a second end surface 11b facing each other, and a side surface 11c that connects the first end surface 11a and the second end surface 11b. And have. In the honeycomb structure 11, a plurality of cells 12 extending from the first end surface 11 a toward the second end surface 11 b along the longitudinal direction X shown in FIG. The side surface 11c (surface parallel to the longitudinal direction X) of the honeycomb structure 11 is provided with a coating layer in order to reinforce the side surface 11c and maintain strength, and to prevent the exhaust gas passing through the cells from leaking from the side surface 11c. It may be covered with. It does not specifically limit as a material which comprises the said coating layer, For example, what consists of an inorganic binder, an organic binder, an inorganic fiber, and / or an inorganic particle etc. can be mentioned.
 ハニカム構造体11はそのまま用いてもよいし、複数のハニカム構造体11を接着剤などにより接合して用いてもよい。複数のハニカム構造体11を接合した接合体として用いる場合は、長手方向Xが平行に配列されるように形成することが望ましい。また、単一のハニカム構造体11又は複数のハニカム構造体11の接合体は、側面11c側を所定の形状に沿って切削加工してもよい。 The honeycomb structure 11 may be used as it is, or a plurality of honeycomb structures 11 may be joined with an adhesive or the like. When using as a joined body in which a plurality of honeycomb structures 11 are joined, it is desirable that the longitudinal directions X be arranged in parallel. In addition, the single honeycomb structure 11 or the joined body of the plurality of honeycomb structures 11 may be processed by cutting the side surface 11c side along a predetermined shape.
 ハニカム構造体11の長手方向Xに対して垂直な断面の形状は、特に限定されるものではなく、例えば丸形、方形(正方形、長方形)、六角形、扇形であってもよい。また、尖った形状の角部を有する方形等の断面形状の場合、ハニカム構造体11の再生時の応力を緩和しクラックの発生をより一層抑制する観点から、尖った形状の角部を面取り形状とすることが好ましい。本発明において面取り形状とは、面と面との交わりの角に平面又は曲面からなる斜めの面を付けた形状のことをいい、応力緩和性の観点から曲面からなる斜めの面を付けた形状が更に好ましく、例えば図2に変形例で示すように円弧からなるR面取り形状が特に好ましい。 The shape of the cross section perpendicular to the longitudinal direction X of the honeycomb structure 11 is not particularly limited, and may be, for example, round, square (square, rectangular), hexagonal, or sector. Further, in the case of a cross-sectional shape such as a square having sharp corners, the sharp corners are chamfered from the viewpoint of relieving stress during regeneration of the honeycomb structure 11 and further suppressing the generation of cracks. It is preferable that In the present invention, the chamfered shape means a shape in which an inclined surface made of a flat surface or a curved surface is attached to the angle of intersection between the surfaces, and a shape having an inclined surface made of a curved surface from the viewpoint of stress relaxation. More preferably, for example, an R chamfered shape made of an arc is particularly preferable as shown in a modified example in FIG.
 ハニカム構造体11のセル12における長手方向Xに対して垂直な断面形状は、特に限定されず、本実施形態のように方形(正方形、長方形)であってもよく、方形以外に、例えば三角形、多角形としてもよい。また、上記断面形状が方形の場合、ハニカム構造体11の強度向上、熱と応力分散の観点から、例えば図2に変形例で示すようにハニカム構造体11の最外周のセル12aの角部15には、断面形状が直角三角形状の充填体が設けられていることが好ましい。充填体が設けられている角部15は、ハニカム構造体11の最外周の断面が方形のセル12aの角部のうち、ハニカム構造体11の外縁壁14と接する角部15である。上記直角三角形の充填体の一辺の長さは、方形セル12aの一辺の長さの5%~40%であることが好ましい。 The cross-sectional shape perpendicular to the longitudinal direction X in the cells 12 of the honeycomb structure 11 is not particularly limited, and may be square (square, rectangular) as in the present embodiment. It may be a polygon. When the cross-sectional shape is square, from the viewpoint of improving the strength of the honeycomb structure 11 and heat and stress distribution, for example, as shown in a modified example in FIG. 2, the corner portions 15 of the outermost peripheral cells 12a of the honeycomb structure 11 are used. Is preferably provided with a filler having a right-angled triangular cross-sectional shape. The corner 15 provided with the filler is a corner 15 in contact with the outer edge wall 14 of the honeycomb structure 11 among the corners of the cell 12a whose outermost cross section of the honeycomb structure 11 is square. The length of one side of the right triangle filler is preferably 5% to 40% of the length of one side of the rectangular cell 12a.
 ハニカム構造体11のセル壁13の厚みは、特に限定されないが、強度をより一層高める観点から好ましい下限値は100μmであり、浄化性能をより一層高める観点から好ましい上限値は400μmである。ハニカム構造体11の外縁壁14を構成するセル壁13aの厚さは、それ以外のセル壁13bの厚さと同じでも厚くてもよいが、外縁壁14を構成しないセル壁13bの1.3倍~3.0倍とすることで、高い開口率を維持しつつ、強度を確保することが可能となる。 The thickness of the cell wall 13 of the honeycomb structure 11 is not particularly limited, but the preferable lower limit is 100 μm from the viewpoint of further increasing the strength, and the preferable upper limit is 400 μm from the viewpoint of further improving the purification performance. The thickness of the cell wall 13a constituting the outer edge wall 14 of the honeycomb structure 11 may be the same as or thicker than the other cell walls 13b, but is 1.3 times that of the cell wall 13b not constituting the outer edge wall 14. By setting the ratio to ˜3.0 times, it is possible to ensure strength while maintaining a high aperture ratio.
 ハニカム構造体11のセル12の開口率は、圧力損失の観点から60%以上であることが好ましい。本発明において、セル12の開口率とは、ハニカム構造体11の長手方向Xに対して垂直な断面において、セル12の割合のことをいう。なお、上記垂直な断面は、目封止材により目封止されていない断面とする。ハニカム構造体11のセル12の開口率の上限は、特に限定されないが、例えば、70%とすることができる。 The aperture ratio of the cells 12 of the honeycomb structure 11 is preferably 60% or more from the viewpoint of pressure loss. In the present invention, the aperture ratio of the cells 12 refers to the ratio of the cells 12 in a cross section perpendicular to the longitudinal direction X of the honeycomb structure 11. The vertical cross section is a cross section that is not plugged with a plugging material. The upper limit of the aperture ratio of the cells 12 of the honeycomb structure 11 is not particularly limited, but can be, for example, 70%.
 ハニカム構造体11のセル12の数は特に限定されないが、200セル/平方インチ~400セル/平方インチであることが好ましい。また、セル12の壁面は多孔質であれば特に制限されないが、長径が2μm~18μm程度の細孔を有していることが好ましく、気孔率は45%~65%であることが好ましい。 The number of cells 12 in the honeycomb structure 11 is not particularly limited, but is preferably 200 cells / square inch to 400 cells / square inch. The wall surface of the cell 12 is not particularly limited as long as it is porous, but preferably has pores having a major axis of about 2 μm to 18 μm and a porosity of 45% to 65%.
 また、本発明においては、NO還元効率をより一層高める観点、又はNO除去機能とPM除去機能を一体化させ双方をより一層高める観点で、一方の端面が開口され且つ他方の端面が目封止されたセル12と、一方の端面が目封止され且つ他方の端面が開口された残余のセルとが交互に配置されたハニカム構造体から形成された、ウォールフロー型のハニカムフィルタであることが好ましい。 Further, in the present invention, from the viewpoint of further increasing the NO X reduction efficiency, or from the viewpoint of further enhancing both by integrating the NO X removal function and the PM removal function, one end face is opened and the other end face is the eye. A wall flow type honeycomb filter formed of a honeycomb structure in which the sealed cells 12 and the remaining cells whose one end face is plugged and whose other end face is opened are alternately arranged. It is preferable.
 (製造方法)
 上述した本発明のハニカム構造体の製造方法の一例について説明する。まず、上述したゼオライトと粘土鉱物と無機繊維とに、必要に応じて、さらにセラミック原料とを主成分として含有する原料混合物を作製する。この原料混合物を押出成形等することにより成形体とする。原料混合物には、これらの他に造孔材、有機バインダ、分散剤、及び水等を加えてもよい。造孔材としては、黒鉛、グラファイト、木粉、ポリエチレンが挙げられる。また、有機バインダとしては、メチルセルロース、エチルセルロース、ポリビニルアルコールが挙げられる。分散剤としては、脂肪酸石鹸、エチレングリコールが挙げられる。造孔材、有機バインダ、分散剤、及び水の量は、セル壁面の気孔率、成形性等を考慮して適宜調整することができる。
(Production method)
An example of the above-described method for manufacturing the honeycomb structure of the present invention will be described. First, a raw material mixture containing, as necessary, a ceramic raw material as a main component in the above-described zeolite, clay mineral, and inorganic fiber is prepared. This raw material mixture is formed by extrusion molding or the like. In addition to these, a pore former, an organic binder, a dispersant, water and the like may be added to the raw material mixture. Examples of the pore former include graphite, graphite, wood powder, and polyethylene. Examples of the organic binder include methyl cellulose, ethyl cellulose, and polyvinyl alcohol. Examples of the dispersant include fatty acid soap and ethylene glycol. The amount of the pore former, the organic binder, the dispersant, and water can be appropriately adjusted in consideration of the porosity of the cell wall surface, moldability, and the like.
 原料混合物は、特に限定されるものではないが、混合・混練することが好ましく、例えば、ミキサー等を用いて混合してもよく、ニーダー等で十分に混練してもよい。原料混合物を成形する方法は、特に限定されるものではないが、例えば、押出成形などによって所定のセル密度を有する形状に成形することが好ましい。 The raw material mixture is not particularly limited, but is preferably mixed and kneaded. For example, the raw material mixture may be mixed using a mixer or the like, or may be sufficiently kneaded using a kneader or the like. A method for forming the raw material mixture is not particularly limited, but it is preferable to form the raw material mixture into a shape having a predetermined cell density by, for example, extrusion molding.
 次に、得られた成形体は、必要に応じて、セルの開口が市松模様となるように片側の目封止を行った後に乾燥することが好ましい。乾燥に用いる乾燥機は、特に限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、真空乾燥機などが挙げられる。また、得られた成形体は、脱脂することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の種類によって適宜選択されるが、おおよそ400℃、2時間が好ましい。 Next, the obtained molded body is preferably dried after plugging on one side so that the opening of the cell has a checkered pattern, if necessary. Although the dryer used for drying is not specifically limited, A microwave dryer, a hot air dryer, a vacuum dryer, etc. are mentioned. Moreover, it is preferable to degrease the obtained molded object. The degreasing conditions are not particularly limited and are appropriately selected depending on the type of organic matter contained in the molded body, but are preferably approximately 400 ° C. and 2 hours.
 次に、得られた成形体を、焼成する。焼成温度としては、特に限定されるものではないが、例えば600℃~1200℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。焼成温度が1200℃を超えると、ゼオライト結晶が崩壊したり、焼結が進行しすぎて適度な気孔率を有することができないことがあり、焼成温度が600℃未満では焼結が進行せずハニカム構造体としての強度があがらないことがある。セラミック原料を併用した場合の焼成条件は、セラミック原料により適宜選択されるが、セラミック原料としてチタン酸アルミニウムを用いる場合、焼成温度としては例えば900℃~1100℃とすることができ、焼成時間としては例えば2時間~15時間とすることができる。 Next, the obtained molded body is fired. The firing temperature is not particularly limited, but can be, for example, 600 ° C. to 1200 ° C., and the firing time can be, for example, 2 hours to 15 hours. If the firing temperature exceeds 1200 ° C, the zeolite crystals may collapse or the sintering may proceed too much to have an appropriate porosity. If the firing temperature is less than 600 ° C, the sintering does not proceed. The strength as a structure may not increase. The firing conditions when the ceramic raw material is used in combination are appropriately selected depending on the ceramic raw material. When aluminum titanate is used as the ceramic raw material, the firing temperature can be set to 900 ° C. to 1100 ° C., for example, as the firing time. For example, it can be 2 to 15 hours.
 原料混合物(混合物)におけるゼオライトの含有量は、原料混合物100質量%に対して、10質量%~80質量%であることが好ましく、40質量%~70質量%であることがより好ましい。 The content of zeolite in the raw material mixture (mixture) is preferably 10% by mass to 80% by mass, and more preferably 40% by mass to 70% by mass with respect to 100% by mass of the raw material mixture.
 混合物における粘土鉱物の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。混合物における無機繊維の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。混合物におけるセラミック原料の含有量は、ゼオライト100質量部に対して1質量部~50質量部であることが好ましく、5質量部~30質量部であることがより好ましく、10質量部~20質量部であることがさらに好ましい。 The content of the clay mineral in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass, with respect to 100 parts by mass of zeolite. More preferably. The content of the inorganic fiber in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite, and 10 parts by mass to 20 parts by mass. More preferably. The content of the ceramic raw material in the mixture is preferably 1 part by mass to 50 parts by mass, more preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of zeolite, and 10 parts by mass to 20 parts by mass. More preferably.
 上記方法で製造することで、ゼオライトをセル壁中に均一に分布させることでき、効率よくNOを還元することが可能となる。本発明において均一とは、ハニカム構造体のセル壁の中心部分に含まれるゼオライトの濃度に対する、セル壁の表面部分のゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲にあることをいう。上記製造方法では、ハニカム構造体の作製後にゼオライトを含む溶液に含浸させたり、ゼオライトを含む溶液を塗布したりしていないので、比(表面部分/中心部分)が上記範囲内となる。 By producing by the above method, zeolite can be uniformly distributed in the cell wall, and NO X can be efficiently reduced. In the present invention, uniform means that the ratio of the concentration of zeolite in the surface portion of the cell wall to the concentration of zeolite in the central portion of the cell wall of the honeycomb structure (surface portion / center portion) is 0.8 to 1. It is in the range of 2. In the above manufacturing method, since the honeycomb structure is not impregnated with the solution containing zeolite or the solution containing zeolite is not applied, the ratio (surface portion / center portion) is within the above range.
 本発明において、処理の対象となる排ガスは、ディーゼルエンジン、ガソリンエンジン等の内燃機関等から排出される排ガス、各種燃焼設備等の排ガスを挙げることができる。 In the present invention, examples of the exhaust gas to be treated include exhaust gas discharged from an internal combustion engine such as a diesel engine and a gasoline engine, and exhaust gas from various combustion facilities.
 本発明のハニカム構造体は、排ガス流路中に配置することで排ガスに接触させて用いられる。これらの排ガス中のNOの除去は、還元剤、例えば尿素、炭酸アンモニウム、ヒドラジン、炭酸水素アンモニウム等のアンモニア前駆物質、又はアンモニア自体の存在下で行われる。還元剤は、排ガス流路中において、本発明のハニカム構造体の上流に配置し、適宜必要量を供給してもよい。 The honeycomb structure of the present invention is used in contact with exhaust gas by being disposed in the exhaust gas flow path. The removal of NO x in these exhaust gases is performed in the presence of a reducing agent, for example, an ammonia precursor such as urea, ammonium carbonate, hydrazine, ammonium hydrogen carbonate, or ammonia itself. The reducing agent may be disposed upstream of the honeycomb structure of the present invention in the exhaust gas flow path, and a necessary amount may be appropriately supplied.
 本発明のハニカム構造体は、成形中に剥離し高分散する粘土鉱物と、他材と接触する面積が小さく他材と一部のみ焼結する無機繊維とを組み合わせることにより、この2つが反応焼結し機械的強度を持たせることが可能となり、かつゼオライトの分解を最小まで抑えることが可能となると考えられる。その結果、高効率のNO還元除去性能と、高い機械的強度を有するハニカム構造体を得ることができると考えられる。 In the honeycomb structure of the present invention, a combination of a clay mineral that is exfoliated and highly dispersed during molding and an inorganic fiber that has a small area in contact with the other material and that is sintered with only a part of the other material is combined. Thus, it is considered that mechanical strength can be obtained and decomposition of zeolite can be suppressed to a minimum. As a result, it is considered that a highly efficient NO x reduction removal performance and a honeycomb structure having high mechanical strength can be obtained.
 ハニカム構造体の製造において、混合物にPMを燃焼させる触媒を含ませることもでき、これにより本発明のハニカム構造体は、1つのフィルタで、排ガス中の有害物質であるPMを低温において燃焼でき、NOを還元除去することもできる。その優れた機能から、ディーゼルエンジン用フィルタ(DPF)、ガソリンエンジン用フィルタ等に好適に使用することができ、市場のダウンサイジングの要請に応えることもできる。 In the manufacture of the honeycomb structure, a catalyst for burning PM can be included in the mixture, whereby the honeycomb structure of the present invention can burn PM, which is a harmful substance in exhaust gas, at a low temperature with one filter, NO X can also be reduced and removed. Because of its excellent function, it can be suitably used for diesel engine filters (DPF), gasoline engine filters, etc., and can meet the demands of downsizing in the market.
 (排ガス浄化装置)
 本発明の排ガス浄化装置は、上記本発明のハニカム構造体を備えている。上記本発明のハニカム構造体の他にも、例えば、ハニカム構造体に還元剤等を供給する手段をさらに備えている。又は、上記本発明のハニカム構造体にPMを燃焼させる触媒が含まれている場合は、堆積したPMを分解するためハニカム構造体を加熱する手段等をさらに備えている。
(Exhaust gas purification device)
An exhaust gas purification apparatus of the present invention includes the honeycomb structure of the present invention. In addition to the honeycomb structure of the present invention, for example, a means for supplying a reducing agent or the like to the honeycomb structure is further provided. Alternatively, when the honeycomb structure of the present invention includes a catalyst for burning PM, the honeycomb structure further includes means for heating the honeycomb structure to decompose the deposited PM.
 ハニカム構造体に還元剤等を供給する手段としては、本発明のハニカム構造体に還元剤等を供給できれば公知の手段を採用することができ、例えば、排ガス流路上において、本発明のハニカム構造体より上流側(内燃機関側)に配置し、ハニカム構造体に還元剤等を噴霧する手段が挙げられる。また、適宜、還元剤等を均一供給するミキサーを配置してもよい。 As a means for supplying the reducing agent or the like to the honeycomb structure, a known means can be adopted as long as the reducing agent or the like can be supplied to the honeycomb structure of the present invention. A means for disposing a reducing agent or the like on the honeycomb structure may be used, which is arranged on the more upstream side (internal combustion engine side). Moreover, you may arrange | position the mixer which supplies a reducing agent etc. uniformly suitably.
 堆積したPMを分解するためのハニカム構造体を加熱する手段としては、本発明のハニカム構造体を加熱できればよく、例えば、内燃機関の燃料を、内燃機関からハニカム構造体に噴霧し、その燃焼熱を利用する手段や、電気加熱を利用する手段が挙げられる。 As a means for heating the honeycomb structure for decomposing the deposited PM, it is sufficient if the honeycomb structure of the present invention can be heated. For example, the fuel of the internal combustion engine is sprayed from the internal combustion engine onto the honeycomb structure, and the combustion heat thereof. And a means using electric heating.
 本発明の排ガス浄化装置は、更に、排ガス流路上の上流側(内燃機関側)から順に、酸化触媒、NO貯蔵触媒、PM燃焼触媒等の第1の触媒、本発明のハニカム構造体、SCR触媒、スリップ酸化触媒等の第2の触媒が配置されていてもよい。排ガス流路上の上流側(内燃機関側)から順に、上記第1の触媒、本発明のハニカム構造体が配置されていてもよい。また、排ガス流路上の上流側(内燃機関側)から順に、本発明のハニカム構造体、上記第2の触媒が配置されていてもよい。第1の触媒および第2の触媒は、それぞれ1種又は2種以上を選択してもよい。 Exhaust gas purifying apparatus of the present invention, further, in order from the upstream side of the exhaust gas flow channel (internal combustion engine side), the oxidation catalyst, NO X storage catalyst, the first catalyst, such as PM combustion catalyst, the honeycomb structure of the present invention, SCR A second catalyst such as a catalyst or a slip oxidation catalyst may be disposed. The first catalyst and the honeycomb structure of the present invention may be disposed in order from the upstream side (internal combustion engine side) on the exhaust gas flow path. Further, the honeycomb structure of the present invention and the second catalyst may be arranged in order from the upstream side (internal combustion engine side) on the exhaust gas flow path. You may select 1 type, or 2 or more types for a 1st catalyst and a 2nd catalyst, respectively.
 本発明において酸化触媒とは、HC、CO、NOを、HO、CO、NOに酸化する触媒を意味する。NO貯蔵触媒とは、リーン条件下でNOをトラップし、ストイキやリッチ条件になった際に、NOとして放出、又はNにする触媒を意味する。PM燃焼触媒とは、リッチ条件下において自燃温度より低温でPMを燃焼させる触媒を意味する。SCR触媒とは、リーン条件下においても、NOをNにできる触媒を意味する。また、スリップ酸化触媒とは、還元剤として使用した余剰のNHや、還元できなかったNOを、捕捉しNに浄化する触媒を意味する。酸化触媒としては、例えば、Pt、Pd、Rh、Ag、Cu等の金属、該金属を含む酸化物、耐熱性が高い高比表面積無機物質(アルミナ、ジルコニア等)、酸性酸化物(シリカ等)、塩基性酸化物(チタニア、ジルコニア、希土類を含有するアルミナ等)、酸素吸放出物質(セリア、セリア-ジルコニア複合酸化物、希土類を含有する硫酸塩等)、ゼオライト等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。 In the present invention, the oxidation catalyst means a catalyst that oxidizes HC, CO, NO X to H 2 O, CO 2 , NO 2 . The NO X storage catalyst, to trap NO X under lean conditions, when it becomes stoichiometric or rich conditions, released as NO 2, or catalytic means to N 2. The PM combustion catalyst means a catalyst that burns PM at a temperature lower than the self-combustion temperature under rich conditions. The SCR catalyst means a catalyst capable of turning NO X into N 2 even under lean conditions. Further, the slip oxidation catalyst means a catalyst that captures excess NH 3 used as a reducing agent and NO X that cannot be reduced and purifies it to N 2 . Examples of the oxidation catalyst include metals such as Pt, Pd, Rh, Ag, and Cu, oxides containing the metals, high heat resistant high specific surface area inorganic substances (alumina, zirconia, etc.), and acidic oxides (silica, etc.). Catalyst comprising at least one of basic oxide (titania, zirconia, alumina containing rare earth, etc.), oxygen storage / release material (ceria, ceria-zirconia composite oxide, sulfate containing rare earth, etc.), zeolite, etc. Is mentioned. These are used by being carried on a filter.
 NO貯蔵触媒としては、例えば、上記酸化触媒に記載の物質や、塩基性の強いアルカリ金属元素を含有する化合物(炭酸ナトリウム、炭酸カリウム、チタン酸カリウム等)、アルカリ土類金属元素を含有する化合物(炭酸ストロンチウム、炭酸バリウム、MgAl等)、希土類元素を含有する化合物(セリア、セリア-ジルコニア複合酸化物等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。 Examples of the NO X storage catalyst include substances described in the above oxidation catalyst, compounds containing a basic alkali metal element (sodium carbonate, potassium carbonate, potassium titanate, etc.), and alkaline earth metal elements. Examples thereof include at least one type of catalyst such as a compound (strontium carbonate, barium carbonate, MgAl 2 O 4 and the like) and a compound containing a rare earth element (ceria, ceria-zirconia composite oxide and the like). These are used by being carried on a filter.
 PM燃焼触媒としては、例えば、PGM(Platinum Group Metal)触媒(Pt、Pd、Rh等)、酸素吸放出能を有するCe系の酸化物(セリア、セリア-ジルコニア複合酸化物等)、アルカリ複合酸化物(NaZrSi、KAlSiO、LiAlSiO、KTiSiO、KTi等)、遷移金属酸化物(V、Fe、MnO、CuO、CuFe複合酸化物等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。 Examples of PM combustion catalysts include PGM (Platinum Group Metal) catalysts (Pt, Pd, Rh, etc.), Ce-based oxides (ceria, ceria-zirconia composite oxide, etc.) having oxygen absorption / release capability, and alkali composite oxidation. objects (Na 2 ZrSi 3 O 9, KAlSiO 4, LiAlSiO 4, K 2 TiSiO 5, K 2 Ti 4 O 9 , etc.), transition metal oxide (V 2 O 5, Fe 2 O 3, MnO 2, CuO, CuFe And at least one type of catalyst such as a complex oxide. These are used by being carried on a filter.
 SCR触媒としては、例えば、ゼオライトや、卑金属複合TiO(卑金属としては、V、WO、MoO等)等の少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。 Examples of the SCR catalyst include a catalyst composed of at least one kind such as zeolite and base metal composite TiO 2 (base metals include V 2 O 5 , WO 3 , MoO 3 and the like). These are used by being carried on a filter.
 スリップ酸化触媒としては、例えば、上記酸化触媒に記載の物質、NO貯蔵触媒に記載の物質、SCR触媒に記載の物質等のうち少なくとも一種類からなる触媒が挙げられる。これらは、フィルタに担持して使用される。 Examples of the slip oxidation catalyst include a catalyst composed of at least one of the substances described in the above oxidation catalyst, the substances described in the NO X storage catalyst, and the substances described in the SCR catalyst. These are used by being carried on a filter.
 本発明の排ガス浄化装置において、NOの還元を効率的に行える本発明のハニカム構造体を用いることで、第2の触媒のSCR触媒サイズを小さくすることができ、又は、第2の触媒のSCR触媒を無くすことができるために、装置をコンパクトにすることができる。また、本発明のハニカム構造体の排ガス出口側の一部に、スリップ酸化触媒を担持すれば、第2の触媒のスリップ酸化触媒サイズを小さくすることができ、又は、第2の触媒のスリップ酸化触媒を無くすことができるために、装置をコンパクトにすることができる。 In the exhaust gas purification apparatus of the present invention, the SCR catalyst size of the second catalyst can be reduced by using the honeycomb structure of the present invention that can efficiently reduce NO x , or the second catalyst Since the SCR catalyst can be eliminated, the apparatus can be made compact. In addition, if a slip oxidation catalyst is supported on a part of the exhaust gas outlet side of the honeycomb structure of the present invention, the size of the slip oxidation catalyst of the second catalyst can be reduced, or the slip oxidation of the second catalyst. Since the catalyst can be eliminated, the apparatus can be made compact.
 本発明のハニカム構造体における排ガス入口側、または排ガス入口側のセル壁表面の一部または全部に、第1の触媒を担持すれば、第1の触媒のサイズを小さく、又は、第1の触媒を無くすことができるために、装置をより一層コンパクトにすることができる。 If the first catalyst is supported on the exhaust gas inlet side or part or all of the cell wall surface on the exhaust gas inlet side of the honeycomb structure of the present invention, the size of the first catalyst is reduced or the first catalyst is reduced. Can be eliminated, so that the apparatus can be made more compact.
 上述の本発明のハニカム構造体に担持する第1の触媒としては、V、Fe、MnO、CuO、CuFe複合酸化物等の遷移金属酸化物が好ましい。遷移金属酸化物を担持することで、NO除去機能だけでなく、PM除去機能をより一層向上することができる。また、遷移金属酸化物は非アルカリ系触媒であることからアルカリに起因するゼオライトの機能低下のおそれがない。 The first catalyst supported on the honeycomb structure of the present invention is preferably a transition metal oxide such as V 2 O 5 , Fe 2 O 3 , MnO 2 , CuO, or CuFe composite oxide. By carrying a transition metal oxide, as well as NO X removal function, it is possible to further improve the PM removal function. Further, since the transition metal oxide is a non-alkali catalyst, there is no risk of the zeolite's function being lowered due to alkali.
 本発明のハニカム構造体における見かけ体積当たりの遷移金属酸化物の担持量は、下限値が1g/Lであることが好ましく、5g/Lであることがより好ましく、8g/Lであることが更に好ましい。また、本発明のハニカム構造体における見かけ体積当たりの遷移金属酸化物の担持量は、上限値が70g/Lであることが好ましく、60g/Lであることがより好ましく、50g/Lであることが更に好ましい。遷移金属酸化物の担持量を上記範囲とすることで、NO除去機能を損ない難く、しかもPM除去機能をより一層向上することができる。 The supported amount of transition metal oxide per apparent volume in the honeycomb structure of the present invention is preferably 1 g / L as the lower limit, more preferably 5 g / L, and even more preferably 8 g / L. preferable. In addition, the upper limit of the loading amount of the transition metal oxide per apparent volume in the honeycomb structure of the present invention is preferably 70 g / L, more preferably 60 g / L, and 50 g / L. Is more preferable. The supported amount of the transition metal oxide within the above range, it is difficult impair NO X removal function, moreover it is possible to further improve the PM removal function.
 上記遷移金属酸化物の平均粒子径としては、本発明のハニカム構造体の細孔径よりも大きいことが好ましい。本発明において、遷移金属酸化物の平均粒子径とはレーザー回折・散乱法によって求めた粒度分布における体積基準累積50%(体積基準累積50%粒子径)、すなわちD50(メジアン径)の粒子径である。この体積基準累積50%粒子径(D50)は、体積基準で粒度分布を求め、全体積を100%とした累積曲線において、粒子サイズの小さいものから粒子数をカウントしていき、累積値が50%となる点の粒子径である。 The average particle diameter of the transition metal oxide is preferably larger than the pore diameter of the honeycomb structure of the present invention. In the present invention, the average particle diameter of the transition metal oxide is the volume-based cumulative 50% (volume-based cumulative 50% particle diameter) in the particle size distribution determined by the laser diffraction / scattering method, that is, the particle diameter of D 50 (median diameter). It is. This volume-based cumulative 50% particle diameter (D 50 ) is obtained by calculating the particle size distribution on a volume basis, and counting the number of particles from the smallest particle size in the cumulative curve with the total volume being 100%. It is the particle size at a point where it becomes 50%.
 上記方法で、本発明の排ガス浄化装置をコンパクト化できれば、従来よりも排ガス浄化装置を適切な位置に配置することができる。例えば、内燃機関に近接させ、温度による排ガス浄化触媒の活性化を促進することで、浄化効率をさらに一層向上することができる。また、軽量化による燃費改善や、新たな装置を搭載するスペースが確保できる等の効果が期待できる。 If the exhaust gas purifying apparatus of the present invention can be made compact by the above method, the exhaust gas purifying apparatus can be arranged at a more appropriate position than before. For example, the purification efficiency can be further improved by bringing the exhaust gas purification catalyst close to the internal combustion engine and promoting the activation of the exhaust gas purification catalyst by temperature. In addition, it is possible to expect effects such as improvement in fuel consumption due to weight reduction and securing of a space for installing a new device.
 本発明のハニカム構造体は、ゼオライトを含む材料で構成されており、ゼオライトの比重が小さいことから、ハニカム構造体をより一層軽くすることができる。また。細孔径が2μm程度と小さくとも圧力損失を低くでき、搭載されるゼオライト量を多くできる等の機能により、上記の効果がより一層顕著になると考えられる。本発明のハニカム構造体の細孔径が、一般的なDPFや、SCRF(SCR触媒付きDPF)の細孔径(10μm~20μm)より小さくても圧力損失を低くできるのは、細孔径分布が揃っており、ガス流通抵抗が少ないことによるものと考えられる。ゼオライト搭載量を多くできるのは、ゼオライトが骨格を形成していてもハニカム構造体の強度を保てるためである。 The honeycomb structure of the present invention is made of a material containing zeolite, and since the specific gravity of zeolite is small, the honeycomb structure can be further lightened. Also. Even if the pore diameter is as small as about 2 μm, it is considered that the above effect becomes more remarkable by the function that the pressure loss can be lowered and the amount of zeolite to be loaded can be increased. The pressure loss can be reduced even when the pore diameter of the honeycomb structure of the present invention is smaller than the pore diameter (10 μm to 20 μm) of a general DPF or SCRF (DFF with SCR catalyst). This is considered to be due to the low gas flow resistance. The reason why the amount of zeolite loaded can be increased is that the strength of the honeycomb structure can be maintained even if the zeolite forms a skeleton.
 軽いハニカム構造体は軽量化に貢献すると考えられる。低い圧力損失は、排気ガス抵抗の低減に貢献すると考えられる。また、圧力損失を低くした状態で細孔径を小さくできることは、PM2.5よりも小さい物質を効率的に捕捉することに貢献すると考えられる。豊富なゼオライト量は、NO浄化触媒効率を向上し、還元剤貯蔵量を増すことに貢献すると考えられる。また、豊富なゼオライト量は、第1の触媒、第2の触媒を一体化する際の、触媒担体や、触媒としても貢献すると考えられる。 A light honeycomb structure is considered to contribute to weight reduction. Low pressure loss is thought to contribute to a reduction in exhaust gas resistance. Moreover, it can be considered that the fact that the pore diameter can be reduced in a state where the pressure loss is reduced contributes to efficiently capturing a substance smaller than PM2.5. Rich zeolites amount improves NO X purification catalyst efficiency is believed to contribute to increasing the reducing agent storage amount. Further, the abundant amount of zeolite is considered to contribute also as a catalyst carrier and a catalyst when the first catalyst and the second catalyst are integrated.
 以下、本発明について、実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。なお、略号の意味は下記の通りであり、ベントナイト及びセラミック原料の平均粒子径はレーザー回折式粒度分布測定装置(島津製作所社製、品番「SALD-2100」)により測定し、無機繊維の平均繊維長及び平均繊維径は走査型電子顕微鏡(日立ハイテクノロジー社製、品番「S-4800」)より測定した。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the invention. The meanings of the abbreviations are as follows. The average particle diameters of bentonite and ceramic raw material were measured with a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation, product number “SALD-2100”). The length and average fiber diameter were measured with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, product number “S-4800”).
 ベントナイトA:ベントナイト(平均粒子径10μm、商品名:ベンゲルVA、クニミネ工業社製)
 ベントナイトB:ベントナイト(平均粒子径2μm、商品名:クニピアF、クニミネ工業社製)
 無機繊維A:KTi(平均繊維長20μm、平均繊維径0.5μm)
 無機繊維B:KTi13(平均繊維長15μm、平均繊維径0.5μm、商品名:TISMO N、大塚化学社製)
 無機繊維C:KTi17(平均繊維長15μm、平均繊維径0.5μm、商品名:TISMO D、大塚化学社製)
 無機繊維D:NaTi13(平均繊維長20μm、平均繊維径0.6μm)
 セラミック原料:チタン酸アルミニウム(平均粒子径13μm、丸ス釉薬社製
Bentonite A: Bentonite (average particle size 10 μm, trade name: Bengel VA, manufactured by Kunimine Industries)
Bentonite B: Bentonite (average particle size 2 μm, trade name: Kunipia F, manufactured by Kunimine Industries)
Inorganic fiber A: K 2 Ti 4 O 9 (average fiber length 20 μm, average fiber diameter 0.5 μm)
Inorganic fiber B: K 2 Ti 6 O 13 (average fiber length 15 μm, average fiber diameter 0.5 μm, trade name: TISMON, manufactured by Otsuka Chemical Co., Ltd.)
Inorganic fiber C: K 2 Ti 8 O 17 (average fiber length 15 μm, average fiber diameter 0.5 μm, trade name: TISMOD, manufactured by Otsuka Chemical Co., Ltd.)
Inorganic fiber D: Na 2 Ti 6 O 13 (average fiber length 20 μm, average fiber diameter 0.6 μm)
Ceramic raw material: Aluminum titanate (average particle size 13 μm, manufactured by Marusu Glaze
 <ゼオライトの製造>
 実施例及び比較例で用いたゼオライトAは市販品であるZSM-5型ゼオライト(商品名:HSZ-840NHA、東ソー社製)をそのまま用いた。また、実施例で用いたゼオライトB~Gは、以下の通り製造した。なお、ゼオライトA~Gの結晶構造、シリカ/アルミナ比、一次粒子の平均粒子径、二次粒子の平均粒子径及び圧壊強度を表1に示した。また、結晶構造は、X線回折測定装置(リガク社製、品番「RINT2000-Ultima+」)により確認し、シリカ/アルミナ比は蛍光X線分析装置(リガク社製、品番「ZSX PrmusII」)による測定結果から算出し、一次粒子の平均粒子径は走査型電子顕微鏡(日立ハイテクノロジー社製、品番「S-4800」)より測定し、二次粒子の平均粒子径はレーザー回折式粒度分布測定装置(島津製作所製、品番「SALD-2100」)により測定した。また、圧壊強度は、微小圧縮試験機MCTW-500MC(島津製作所社製、使用圧子:Φ=50μm)を使用し、室温(20℃)・大気中において、負荷速度0.892mN/sにて圧縮したときの強度を測定した。
<Manufacture of zeolite>
Zeolite A used in Examples and Comparative Examples was a commercially available ZSM-5 type zeolite (trade name: HSZ-840NHA, manufactured by Tosoh Corporation). In addition, zeolites B to G used in the examples were produced as follows. Table 1 shows the crystal structures of zeolites A to G, the silica / alumina ratio, the average particle diameter of primary particles, the average particle diameter of secondary particles, and the crushing strength. The crystal structure is confirmed by an X-ray diffractometer (Rigaku, product number “RINT2000-Utima +”), and the silica / alumina ratio is measured by a fluorescent X-ray analyzer (Rigaku, product number “ZSX Prmus II”). Calculated from the results, the average particle size of primary particles was measured with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, product number “S-4800”), and the average particle size of secondary particles was measured with a laser diffraction particle size distribution analyzer ( The product number was “SALD-2100” manufactured by Shimadzu Corporation. The crushing strength was measured using a micro compression tester MCTW-500MC (manufactured by Shimadzu Corporation, used indenter: Φ = 50 μm) and compressed at a load speed of 0.892 mN / s at room temperature (20 ° C.) and in the atmosphere. The strength was measured.
 (製造例1:ゼオライトB)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬社製)、構造規定剤にテトラブチルアンモニウム水酸化物(TBAOH、関東化学社製)、鉱化剤に水酸化カリウム(和光純薬製)を使用し、組成がSiO/Al=40、TBAOH/SiO=0.1、KOH/SiO=0.05、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトBを得た。
(Production Example 1: Zeolite B)
Silica as the silica source (Cabot, trade name “Cab-O-Sil M5”), aluminum hydroxide as the alumina source (Wako Pure Chemical Industries), and tetrabutylammonium hydroxide (TBAOH, Kanto Chemical) as the structure directing agent Co., Ltd.), potassium hydroxide (manufactured by Wako Pure Chemical Industries) is used as a mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TBAOH / SiO 2 = 0.1, KOH / SiO 2 = 0.05 , H 2 O / SiO 2 = 100 was prepared, and the aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite B.
 (製造例2:ゼオライトC)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬社製)、構造規定剤にテトラブチルアンモニウム水酸化物(TBAOH、関東化学社製)、鉱化剤にフッ化ナトリウム(和光純薬社製)を使用し、組成がSiO/Al=40、TBAOH/SiO=0.1、NaF/SiO=1.6、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトCを得た。
(Production Example 2: Zeolite C)
Silica as the silica source (Cabot, trade name “Cab-O-Sil M5”), aluminum hydroxide as the alumina source (Wako Pure Chemical Industries), and tetrabutylammonium hydroxide (TBAOH, Kanto Chemical) as the structure directing agent ), Sodium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TBAOH / SiO 2 = 0.1, NaF / SiO 2 = 1. 6. An aqueous gel having H 2 O / SiO 2 = 100 was prepared, and this aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite C.
 (製造例3:ゼオライトD)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬社製)、構造規定剤にテトラブチルアンモニウム水酸化物(TBAOH、関東化学社製)、鉱化剤にフッ化ナトリウム(和光純薬社製)を使用し、組成がSiO/Al=40、TBAOH/SiO=0.1、NaF/SiO=0.8、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトDを得た。
(Production Example 3: Zeolite D)
Silica as the silica source (Cabot, trade name “Cab-O-Sil M5”), aluminum hydroxide as the alumina source (Wako Pure Chemical Industries), and tetrabutylammonium hydroxide (TBAOH, Kanto Chemical) as the structure directing agent ), Sodium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TBAOH / SiO 2 = 0.1, NaF / SiO 2 = 0. 8. An aqueous gel was prepared so that H 2 O / SiO 2 = 100, and this aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite D.
 (製造例4:ゼオライトE)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬製)、構造規定剤にテトラブチルアンモニウム水酸化物(TBAOH、関東化学製)、鉱化剤に水酸化カリウム(和光純薬製)を使用し、組成がSiO/Al=40、TBAOH/SiO=0.1、KOH/SiO=1.0、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトEを得た。
(Production Example 4: Zeolite E)
Silica (Cabot, trade name “Cab-O-Sil M5”) as the silica source, aluminum hydroxide (Wako Pure Chemicals) as the alumina source, and tetrabutylammonium hydroxide (TBAOH, manufactured by Kanto Chemical) as the structure directing agent ), Potassium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) is used as the mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TBAOH / SiO 2 = 0.1, KOH / SiO 2 = 1.0, H An aqueous gel was prepared so that 2 O / SiO 2 = 100, and this aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite E.
 (製造例5:ゼオライトF)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬社製)、構造規定剤にテトラブチルアンモニウム水酸化物(TBAOH、関東化学社製)、鉱化剤にフッ化ナトリウム(和光純薬社製)を使用し、組成がSiO/Al=40、TBAOH/SiO=0.1、NaF/SiO=0.4、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトFを得た。
(Production Example 5: Zeolite F)
Silica as the silica source (Cabot, trade name “Cab-O-Sil M5”), aluminum hydroxide as the alumina source (Wako Pure Chemical Industries), and tetrabutylammonium hydroxide (TBAOH, Kanto Chemical) as the structure directing agent ), Sodium fluoride (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TBAOH / SiO 2 = 0.1, NaF / SiO 2 = 0. 4. An aqueous gel was prepared such that H 2 O / SiO 2 = 100, and this aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite F.
 (製造例6:ゼオライトG)
 シリカ源にシリカ(Cabot社製、商品名「Cab-O-Sil M5」)、アルミナ源に水酸化アルミニウム(和光純薬社製)、構造規定剤にテトラプロピルアンモニウム水酸化物(TPAOH、関東化学社製)、鉱化剤に水酸化ナトリウム(和光純薬製)を使用し、組成がSiO/Al=40、TPAOH/SiO=0.1、NaOH/SiO=0.1、HO/SiO=100となるような水性ゲルを調製し、この水性ゲルをオートクレーブ内で160℃で5日間水熱合成を行った。その後、固体をろ取し、蒸留水で洗浄し、80℃で12時間乾燥することで、ゼオライトGを得た。
(Production Example 6: Zeolite G)
Silica as a silica source (Cabot, trade name “Cab-O-Sil M5”), Alumina as an aluminum source (Wako Pure Chemicals), Tetrapropylammonium hydroxide (TPAOH, Kanto Chemical) as a structure directing agent Company), sodium hydroxide (manufactured by Wako Pure Chemical Industries) is used as a mineralizer, and the composition is SiO 2 / Al 2 O 3 = 40, TPAOH / SiO 2 = 0.1, NaOH / SiO 2 = 0.1 , H 2 O / SiO 2 = 100 was prepared, and the aqueous gel was hydrothermally synthesized in an autoclave at 160 ° C. for 5 days. Thereafter, the solid was collected by filtration, washed with distilled water, and dried at 80 ° C. for 12 hours to obtain zeolite G.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <ハニカム構造体の製造>
 (実施例1)
 ゼオライトA 70質量部に対し、セラミック原料 10質量部、無機繊維B 8質量部、ベントナイトA 8重量部、黒鉛 3質量部、メチルセルロース 10質量部、及び脂肪酸石鹸 0.5質量部を配合し、さらに水を適当量添加して混練し、押出成形可能な坏土(混合物)を得た。
<Manufacture of honeycomb structure>
Example 1
To 70 parts by mass of zeolite A, 10 parts by mass of ceramic raw material, 8 parts by mass of inorganic fiber B, 8 parts by mass of bentonite A, 3 parts by mass of graphite, 10 parts by mass of methyl cellulose, and 0.5 parts by mass of fatty acid soap are blended. An appropriate amount of water was added and kneaded to obtain an extrudable clay (mixture).
 得られた坏土(混合物)を押出成形機にてハニカム構造体となるように押し出して成形し、成形体を得た。金型のセル密度は、300セル/平方インチ(46.5セル/cm)とし、隔壁厚みは300μmとした。開口率は63%とした。 The obtained kneaded material (mixture) was extruded and molded to form a honeycomb structure with an extruder, and a molded body was obtained. The cell density of the mold was 300 cells / square inch (46.5 cells / cm 2 ), and the partition wall thickness was 300 μm. The aperture ratio was 63%.
 固形分がほぼセラミック原料、ゼオライトA、無機繊維B、ベントナイトAからなり、粘度調整材等の添加物を加えたスラリーを調製した。なお、スラリー中における固形分の比率は上記と同様である。ハニカム構造体である成形体において、開口したセルと封止したセルが交互に市松模様となるように、ハニカム構造体のセルに、このスラリーを注入し、目封じを行った。 A slurry was prepared in which the solid content was almost composed of ceramic raw material, zeolite A, inorganic fiber B, bentonite A, and additives such as viscosity modifiers were added. In addition, the ratio of the solid content in a slurry is the same as the above. In the formed body which is a honeycomb structure, the slurry was injected into the cells of the honeycomb structure and sealed so that the opened cells and the sealed cells were alternately in a checkered pattern.
 得られた成形体を、600℃で10時間保持し、その後25℃/時間で975℃まで昇温し、さらに975℃で5時間保持して焼成することで、細孔径2.0μm、気孔率58%のハニカム構造体を得た。 The obtained molded body was held at 600 ° C. for 10 hours, then heated to 975 ° C. at 25 ° C./hour, and further held at 975 ° C. for 5 hours and fired to obtain a pore diameter of 2.0 μm and porosity. A 58% honeycomb structure was obtained.
 得られたハニカム構造体を5質量%酢酸銅水溶液に60℃で3時間含浸した。その後イオン交換水で充分洗浄し、700℃で10時間加熱することで本発明のハニカム構造体を製造した。 The obtained honeycomb structure was impregnated with a 5% by mass aqueous copper acetate solution at 60 ° C. for 3 hours. Thereafter, the honeycomb structure of the present invention was manufactured by thoroughly washing with ion-exchanged water and heating at 700 ° C. for 10 hours.
 (実施例2~実施例53、比較例1~比較例8)
 混合物の配合組成が表2~5に示した組成になるように配合した以外は実施例1と同様の方法でハニカム構造体を製造した。
(Example 2 to Example 53, Comparative Example 1 to Comparative Example 8)
A honeycomb structure was manufactured in the same manner as in Example 1 except that the mixture was blended so that the blend composition was as shown in Tables 2 to 5.
 (実施例54)
 ハニカム構造体における体積当たりのCuOの担持量が10g/Lとなるように、実施例2で得られたハニカム構造体を酸化第二銅粉末(平均粒子径4μm)のスラリーに含浸し、700℃で10時間加熱することでCuOを坦持させハニカム構造体を製造した。
(Example 54)
The honeycomb structure obtained in Example 2 was impregnated with a slurry of cupric oxide powder (average particle size 4 μm) so that the supported amount of CuO per volume in the honeycomb structure was 10 g / L, and 700 ° C. The honeycomb structure was manufactured by supporting CuO by heating for 10 hours.
 (実施例55~実施例57)
 CuOの担持量を表6に示す量とした以外は、実施例54と同様の方法でハニカム構造体を製造した。
(Example 55 to Example 57)
A honeycomb structure was manufactured in the same manner as in Example 54 except that the supported amount of CuO was changed to the amount shown in Table 6.
 実施例1~実施例53、比較例1~比較例8で得られたハニカム構造体の細孔径、気孔率を下記表2~表5に示した。 The pore diameters and the porosity of the honeycomb structures obtained in Examples 1 to 53 and Comparative Examples 1 to 8 are shown in Tables 2 to 5 below.
 <ハニカム構造体の評価>
 (NOガス性能の評価(250℃))
 実施例1~実施例57、比較例1~比較例8で得られたハニカム構造体について、予めハニカム構造体を100℃にて乾燥させ、ハニカム構造体を模擬排ガス排気ラインに設置した。その後、模擬排ガス(O:10%、N:85%、NO:500ppm、NH:500ppm、HO:5%、SV=50000/h)を250℃まで上昇させ、NO濃度を測定した。得られた結果からNO浄化率を算出した。結果を表2~表6に示した。
<Evaluation of honeycomb structure>
(Evaluation of NO X gas performance (250 ° C))
For the honeycomb structures obtained in Examples 1 to 57 and Comparative Examples 1 to 8, the honeycomb structures were dried in advance at 100 ° C., and the honeycomb structures were placed in a simulated exhaust gas exhaust line. Thereafter, the simulated exhaust gas (O 2 : 10%, N 2 : 85%, NO: 500 ppm, NH 3 : 500 ppm, H 2 O: 5%, SV = 50000 / h) is raised to 250 ° C., and the NO X concentration is increased. It was measured. From the obtained results were calculated NO X purification rate. The results are shown in Tables 2-6.
 (NOガス性能の評価(500℃))
 実施例2、実施例54~実施例57で得られたハニカム構造体について、予めハニカム構造体を100℃にて乾燥させ、ハニカム構造体を模擬排ガス排気ラインに設置した。その後、模擬排ガス(O:10%、N:85%、NO:500ppm、NH:500ppm、HO:5%、SV=50000/h)を500℃まで上昇させ、NO濃度を測定した。得られた結果からNO浄化率を算出した。結果を表6に示した。
(Evaluation of NO X gas performance (500 ° C))
Regarding the honeycomb structures obtained in Example 2 and Examples 54 to 57, the honeycomb structures were previously dried at 100 ° C., and the honeycomb structures were installed in the simulated exhaust gas exhaust line. Thereafter, the simulated exhaust gas (O 2 : 10%, N 2 : 85%, NO: 500 ppm, NH 3 : 500 ppm, H 2 O: 5%, SV = 50000 / h) is raised to 500 ° C., and the NO X concentration is increased. It was measured. From the obtained results were calculated NO X purification rate. The results are shown in Table 6.
 (曲げ強度)
 実施例1~実施例53、比較例1~比較例8で得られたハニカム構造体について、図3に示すように、3×3セルのハニカム構造体2を、支持点21及び支持点22により支持した状態で、ハニカム構造体2の中心部を押圧棒20で押圧することにより、JIS R1601に準拠して、曲げ強度を測定し、結果を表2~表5に示した。
(Bending strength)
With respect to the honeycomb structures obtained in Examples 1 to 53 and Comparative Examples 1 to 8, the honeycomb structure 2 of 3 × 3 cells was formed by supporting points 21 and 22 as shown in FIG. In the supported state, the central portion of the honeycomb structure 2 was pressed with the pressing rod 20, and the bending strength was measured according to JIS R1601, and the results are shown in Tables 2 to 5.
 (ゼオライト濃度)
 実施例1~実施例53、比較例1~比較例8で得られたハニカム構造体について、セル壁の中心部分に含まれるゼオライトの濃度に対する、セル壁の表面部分のゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲であることを確認した。
(Zeolite concentration)
For the honeycomb structures obtained in Examples 1 to 53 and Comparative Examples 1 to 8, the ratio of the concentration of zeolite in the surface portion of the cell wall to the concentration of zeolite contained in the central portion of the cell wall (surface (Part / center part) was confirmed to be in the range of 0.8 to 1.2.
 確認方法は次のように行った。ピンセット等を用いて、セル壁の表面を削り、表面部分の成分を粉末状態で回収する。同様に、セル壁の厚さの中心部分から、粉末状サンプルを回収する。これらの粉末状サンプルのX線回折分析から、セル壁の表面および中心部に、ゼオライトが含まれているゼオライト濃度を測定した。X線回折分析には、RINT2500PC装置(リガク社製)を使用した。 The confirmation method was as follows. Using tweezers or the like, the surface of the cell wall is scraped, and the surface portion components are recovered in a powder state. Similarly, a powdery sample is collected from the central portion of the cell wall thickness. From the X-ray diffraction analysis of these powdery samples, the concentration of zeolite containing zeolite was measured on the surface and center of the cell wall. For the X-ray diffraction analysis, a RINT 2500PC apparatus (manufactured by Rigaku Corporation) was used.
 (再生率)
 実施例2、実施例54~実施例57で得られたハニカム構造体について、ハニカム構造体の初期重量を予め測定した。次に、ディーゼルエンジンの排気ラインに、酸化触媒(DOC)とハニカム構造体を備える排ガス浄化フィルタを順に設置した。設置後、ディーゼルエンジンを始動させ、排気温度が低温となる運転条件でPMを所定量(約8g/L)堆積させた後、一度ハニカム構造体を取り外し、堆積したPMの重量(PM堆積重量)を測定した。
(Playback rate)
For the honeycomb structures obtained in Example 2 and Examples 54 to 57, the initial weight of the honeycomb structures was measured in advance. Next, an exhaust gas purification filter including an oxidation catalyst (DOC) and a honeycomb structure was sequentially installed in the exhaust line of the diesel engine. After installation, the diesel engine is started, PM is deposited in a predetermined amount (about 8 g / L) under the operating conditions where the exhaust temperature is low, the honeycomb structure is once removed, and the weight of the deposited PM (PM deposition weight) Was measured.
 次いで、PMを堆積させたハニカム構造体を模擬排ガスの排気ラインに設置した後、模擬排ガスを480℃まで上昇させ再生試験を開始した。480℃に到達した時点から30分間480℃±10℃の温度を保持し、30分経過後、模擬排ガスの全量を窒素ガスに切り替えた。 Next, after the honeycomb structure on which PM was deposited was installed in the exhaust line of the simulated exhaust gas, the simulated exhaust gas was raised to 480 ° C. and a regeneration test was started. The temperature of 480 ° C. ± 10 ° C. was maintained for 30 minutes from the time when the temperature reached 480 ° C., and after 30 minutes, the entire amount of the simulated exhaust gas was switched to nitrogen gas.
 温度が室温まで低下後、再度、ハニカム構造体を取り出し、重量減少分(=PM燃焼重量)を測定し、以下の計算式により再生率を算出した。結果を表6に示した。 After the temperature dropped to room temperature, the honeycomb structure was taken out again, the weight loss (= PM combustion weight) was measured, and the regeneration rate was calculated by the following formula. The results are shown in Table 6.
 再生率(%)=100-[(PM堆積重量(g)-PM燃焼重量(g))/PM堆積重量(g)]×100 Regeneration rate (%) = 100 − [(PM deposition weight (g) −PM combustion weight (g)) / PM deposition weight (g)] × 100
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表5に示す結果から明らかなように、本発明に従う実施例1~実施例18及び実施例48~実施例53のハニカム構造体を用いた場合、NO還元効率(NOx浄化率)が高く、かつ機械的強度(曲げ強度)が高いハニカム構造体となっている。また、実施例1~実施例18と実施例19~実施例36との比較から、ベントナイトを、モンモリロナイトの割合がベントナイトAより高いベントナイトBを選択することで、機械的強度(曲げ強度)をより高くすることができる。また、実施例2、実施例52及び実施例53と実施例48~実施例51との比較から、ゼオライトの一次粒子の平均粒子径を特定の範囲にすることで、NO還元効率(NOx浄化率)が更に向上することが分かる。 As is apparent from the results shown in Tables 1 to 5, when the honeycomb structures of Examples 1 to 18 and Examples 48 to 53 according to the present invention were used, NO X reduction efficiency (NOx purification rate) And a honeycomb structure having high mechanical strength (bending strength). Further, from comparison between Example 1 to Example 18 and Example 19 to Example 36, the mechanical strength (bending strength) can be further improved by selecting bentonite and bentonite B in which the proportion of montmorillonite is higher than bentonite A. Can be high. In Example 2, from the comparison between Example 52 and Example 53 to Example 48 to Example 51, the average particle diameter of the zeolite primary particles by a specific range, NO X reduction efficiency (NOx purification It can be seen that the ratio is further improved.
 これに対し、無機繊維とベントナイトのどちらかを除いた比較例1~比較例5は、機械的強度(曲げ強度)が低くなる。比較例6~比較例8より、ベントナイトを、水酸化アルミニウム、二酸化珪素に代替した場合も同様に機械的強度(曲げ強度)が下がり、水酸化マグネシウムに代替した場合は、NO還元効率(NOx浄化率)が低くなる。 On the other hand, Comparative Examples 1 to 5 excluding either inorganic fibers or bentonite have low mechanical strength (bending strength). From Comparative Examples 6 to 8, when bentonite is replaced with aluminum hydroxide or silicon dioxide, the mechanical strength (bending strength) decreases in the same manner. When replaced with magnesium hydroxide, NO X reduction efficiency (NOx (Purification rate) decreases.
 ゼオライトと無機繊維とベントナイトとの組合せを用いることでNO還元効率(NOx浄化率)が高く、かつ機械的強度(曲げ強度)が高いハニカム構造体となる。 NO X reduction efficiency by using a combination of zeolite and inorganic fibers and bentonite (NOx purification rate) is high and the mechanical strength (flexural strength) becomes high honeycomb structure.
 ベントナイトを元素組成が同じタルクに代替しても、同様の傾向にあるが、NO還元効率(NOx浄化率)と機械的強度(曲げ強度)とをより一層高める観点から、タルクよりベントナイトが好ましい。 Even bentonite elemental composition is replaced with the same talc, although the same trend, in view of enhancing NO X reduction efficiency (NOx purification rate) and mechanical strength (flexural strength) and the further, bentonite is preferred over talc .
 表6に示す結果から明らかなように、本発明に従う実施例54~実施例57のハニカム構造体を用いた場合、NO還元効率(NOx浄化率)を低下することなく、PM除去効率(再生率)が向上していることが分かる。なお、実施例54~57のハニカム構造体について、CuOを坦持させた場合においても、実施例2と同等の曲げ強度を有することが確認されている。 As apparent from the results shown in Table 6, if according to the invention using the honeycomb structures of Examples 54 to Example 57, without reducing the NO X reduction efficiency (NOx purification rate), PM removal efficiency (regeneration It can be seen that the rate is improved. It is confirmed that the honeycomb structures of Examples 54 to 57 have the same bending strength as that of Example 2 even when CuO is supported.
2,11…ハニカム構造体
11a,11b…第1,第2の端面
11c…側面
12…セル
12a…最外周のセル
13…セル壁
13a…外縁壁を構成するセル壁
13b…外縁壁を構成しないセル壁
14…外縁壁
15…角部
20…押圧棒
21,22…支持点
DESCRIPTION OF SYMBOLS 2,11 ... Honeycomb structure 11a, 11b ... 1st, 2nd end surface 11c ... Side surface 12 ... Cell 12a ... Outermost cell 13 ... Cell wall 13a ... Cell wall 13b which comprises an outer edge wall ... No outer edge wall is comprised Cell wall 14 ... outer edge wall 15 ... corner portion 20 ... pressing bars 21, 22 ... support points

Claims (13)

  1.  長手方向に沿って、一方の端面から他方の端面に延伸している複数のセルがセル壁によって区画された形状のハニカム構造体であって、前記ハニカム構造体がゼオライトと粘土鉱物と無機繊維とを含有する混合物の焼結体であることを特徴とする、ハニカム構造体。 A honeycomb structure having a shape in which a plurality of cells extending from one end face to the other end face along a longitudinal direction is partitioned by a cell wall, wherein the honeycomb structure includes zeolite, clay mineral, and inorganic fiber. A honeycomb structure comprising a sintered body of a mixture containing
  2.  前記ゼオライトが、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、A型ゼオライト、L型ゼオライト、βゼオライト、ZSM-5型ゼオライト、及びCHA型ゼオライトから選ばれる少なくとも1種であることを特徴とする、請求項1に記載のハニカム構造体。 The zeolite is at least one selected from mordenite-type zeolite, faujasite-type zeolite, A-type zeolite, L-type zeolite, β-zeolite, ZSM-5-type zeolite, and CHA-type zeolite. Item 2. The honeycomb structure according to Item 1.
  3.  前記ゼオライトの一次粒子の平均粒子径が0.1μm~20μmであることを特徴とする、請求項1または請求項2に記載のハニカム構造体。 The honeycomb structure according to claim 1 or 2, wherein an average particle size of primary particles of the zeolite is 0.1 µm to 20 µm.
  4.  前記粘土鉱物が、層状粘土鉱物であることを特徴とする、請求項1~請求項3のいずれか一項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 3, wherein the clay mineral is a layered clay mineral.
  5.  前記無機繊維の平均繊維長が1μm~300μmであり、且つ平均アスペクト比が3~200であることを特徴とする、請求項1~請求項4のいずれか一項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 4, wherein the inorganic fibers have an average fiber length of 1 µm to 300 µm and an average aspect ratio of 3 to 200.
  6.  前記無機繊維のモース硬度が5以下であることを特徴とする、請求項1~請求項5のいずれか一項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 5, wherein the inorganic fiber has a Mohs hardness of 5 or less.
  7.  前記混合物における前記粘土鉱物の含有量が、前記ゼオライト100質量部に対して1質量部~50質量部であることを特徴とする、請求項1~請求項6のいずれか一項に記載のハニカム構造体。 The honeycomb according to any one of claims 1 to 6, wherein a content of the clay mineral in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
  8.  前記混合物における前記無機繊維の含有量が、前記ゼオライト100質量部に対して1質量部~50質量部であることを特徴とする、請求項1~請求項7のいずれか一項に記載のハニカム構造体。 The honeycomb according to any one of claims 1 to 7, wherein a content of the inorganic fiber in the mixture is 1 to 50 parts by mass with respect to 100 parts by mass of the zeolite. Structure.
  9.  前記混合物が、セラミック原料をさらに含有していることを特徴とする、請求項1~請求項8のいずれか一項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 8, wherein the mixture further contains a ceramic raw material.
  10.  前記セラミック原料が、シリコンカーバイド、コージェライト、ムライト、アルミナ、チタン酸アルミニウムから選ばれる少なくとも1種であることを特徴とする、請求項9に記載のハニカム構造体。 The honeycomb structure according to claim 9, wherein the ceramic raw material is at least one selected from silicon carbide, cordierite, mullite, alumina, and aluminum titanate.
  11.  前記セル壁の中心部分に含まれる前記ゼオライトの濃度に対する、前記セル壁の表面部分の前記ゼオライトの濃度の比(表面部分/中心部分)が、0.8~1.2の範囲であることを特徴とする、請求項1~請求項10のいずれか一項に記載のハニカム構造体。 The ratio of the concentration of the zeolite in the surface portion of the cell wall to the concentration of the zeolite contained in the central portion of the cell wall (surface portion / center portion) is in the range of 0.8 to 1.2. The honeycomb structure according to any one of claims 1 to 10, wherein the honeycomb structure is characterized.
  12.  前記ゼオライトが、窒素酸化物を窒素に還元する触媒であることを特徴とする、請求項1~請求項11のいずれか一項に記載のハニカム構造体。 The honeycomb structure according to any one of claims 1 to 11, wherein the zeolite is a catalyst for reducing nitrogen oxides to nitrogen.
  13.  請求項1~請求項12のいずれか一項に記載のハニカム構造体を備えることを特徴とする、排ガス浄化装置。 An exhaust gas purification apparatus comprising the honeycomb structure according to any one of claims 1 to 12.
PCT/JP2017/044364 2016-12-20 2017-12-11 Honeycomb structure and exhaust gas-purifying apparatus WO2018116884A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016246660 2016-12-20
JP2016-246660 2016-12-20
JP2017-105647 2017-05-29
JP2017105647 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018116884A1 true WO2018116884A1 (en) 2018-06-28

Family

ID=62626600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044364 WO2018116884A1 (en) 2016-12-20 2017-12-11 Honeycomb structure and exhaust gas-purifying apparatus

Country Status (1)

Country Link
WO (1) WO2018116884A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146676A (en) * 1991-11-27 1993-06-15 Kawata Mfg Co Ltd Honeycomb-like ceramic body containing adsorptive zeolite and production thereof
JPH069214A (en) * 1991-09-13 1994-01-18 Takeda Chem Ind Ltd Composition for molding zeolite, molded article and burnt material of zeolite and its production
JPH07275712A (en) * 1994-04-12 1995-10-24 Mitsubishi Heavy Ind Ltd Production of zeolite denox catalyst
WO2009141887A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069214A (en) * 1991-09-13 1994-01-18 Takeda Chem Ind Ltd Composition for molding zeolite, molded article and burnt material of zeolite and its production
JPH05146676A (en) * 1991-11-27 1993-06-15 Kawata Mfg Co Ltd Honeycomb-like ceramic body containing adsorptive zeolite and production thereof
JPH07275712A (en) * 1994-04-12 1995-10-24 Mitsubishi Heavy Ind Ltd Production of zeolite denox catalyst
WO2009141887A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure

Similar Documents

Publication Publication Date Title
JP6041902B2 (en) Honeycomb filter and manufacturing method thereof
JP5042632B2 (en) Honeycomb structure
CN101678349B (en) Honeycomb structure
WO2009141873A1 (en) Honeycomb structure
US8629074B2 (en) Zeolite honeycomb structure
WO2009141880A1 (en) Honeycomb structure
JP5580090B2 (en) Zeolite structure and method for producing the same
JP6121542B2 (en) Exhaust gas purification filter and exhaust gas purification device
WO2009141889A1 (en) Honeycomb structure
EP2368631B1 (en) Zeolite structure and manufacturing method thereof
JP7289813B2 (en) CERAMIC POROUS BODY, MANUFACTURING METHOD THEREOF, AND FILTER FOR DUST COLLECTION
WO2009141877A1 (en) Honeycomb structure
WO2018198999A1 (en) Honeycomb structure and exhaust gas purification device
JP2010215414A (en) Honeycomb structure
JP2010095435A (en) Honeycomb structure
WO2018181100A1 (en) Honeycomb structure and exhaust gas cleaning device
WO2018116884A1 (en) Honeycomb structure and exhaust gas-purifying apparatus
WO2014014059A1 (en) Honeycomb filter
JP6199532B2 (en) Exhaust gas purification filter manufacturing method, exhaust gas purification filter, and exhaust gas purification device
JP5356063B2 (en) Honeycomb structure
JP2016131918A (en) Method for producing exhaust gas purification filter, exhaust gas purification filter, and exhaust gas purification device
US20140357473A1 (en) Formed ceramic substrate composition for catalyst integration
JP2010096176A (en) Honeycomb structure
EP4063003A1 (en) Filter for the aftertreatment of exhaust gases of internal combustion engines
JP2016107259A (en) Exhaust gas purification filter and method for manufacturing the same and exhaust gas purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP