WO2018116793A1 - On-board control device - Google Patents

On-board control device Download PDF

Info

Publication number
WO2018116793A1
WO2018116793A1 PCT/JP2017/043398 JP2017043398W WO2018116793A1 WO 2018116793 A1 WO2018116793 A1 WO 2018116793A1 JP 2017043398 W JP2017043398 W JP 2017043398W WO 2018116793 A1 WO2018116793 A1 WO 2018116793A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
module
battery
control unit
Prior art date
Application number
PCT/JP2017/043398
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 京條
裕 射延
暢晃 佐藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017032605A external-priority patent/JP2018103972A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780077850.3A priority Critical patent/CN110087934B/en
Priority to DE112017006492.9T priority patent/DE112017006492T5/en
Publication of WO2018116793A1 publication Critical patent/WO2018116793A1/en
Priority to US16/409,011 priority patent/US11046200B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This disclosure relates to an in-vehicle control device.
  • EV Electric Vehicle
  • PHEV Plug-in Hybrid Electric Vehicle
  • high-voltage batteries inverters that convert DC power from high-voltage batteries to power and motors
  • commercial AC power supplies A charger that converts power from an external power source to charge a high-voltage battery, a low-voltage battery (auxiliary battery) that supplies power to a vehicle auxiliary device, and a DC / DC converter that charges the auxiliary battery Etc. are mounted.
  • Each of these power modules is equipped with an electronic control unit attached to each of them.
  • These electronic control units include a vehicle control unit that performs overall control of each component of the vehicle, and specifications of a CAN (Controller Area Network) communication protocol.
  • CAN Controller Area Network
  • the present disclosure provides an in-vehicle control device that can eliminate restrictions on communication between a vehicle control unit and a vehicle module (particularly, a power module).
  • the vehicle-mounted control device of the present disclosure relays data communication between the vehicle ECU that generates a signal that commands the driving state of the vehicle and the vehicle module.
  • the in-vehicle control device has a first interface that communicates with the vehicle ECU and a second interface that communicates with the vehicle module.
  • the first interface is an interface based on the specification for communicating with the vehicle ECU
  • the second interface is an interface not based on the specification for communicating with the vehicle ECU.
  • FIG. 1 is a diagram illustrating an example of a configuration of a vehicle A according to the present embodiment.
  • the dotted line arrow in a figure represents transmission / reception of the signal between each part, and the continuous line represents the power line.
  • the vehicle A is, for example, an electric vehicle or a plug-in hybrid car, and includes a vehicle ECU (Electronic Control Unit) 10, a junction box 20, and a plurality of power modules (inverter module 30, battery module 40, charging module 50, auxiliary module). 60 (hereinafter also collectively referred to as “power modules 30 to 60”)).
  • vehicle ECU Electronic Control Unit
  • junction box 20 includes a plurality of power modules (inverter module 30, battery module 40, charging module 50, auxiliary module). 60 (hereinafter also collectively referred to as “power modules 30 to 60”)).
  • power modules 30 to 60 hereinafter also collectively referred to as “power modules 30 to 60”).
  • the vehicle ECU 10 is a vehicle control unit that comprehensively controls each part of the vehicle A.
  • the vehicle ECU 10 includes an operation control unit 10a and an interface unit (hereinafter referred to as I / F unit) 10b.
  • the operation control unit 10a generates a command signal to cause each of the power modules 30 to 60 to perform a desired operation.
  • the operation control unit 10a includes, for example, a drive command function for issuing an inverter drive command signal corresponding to the required torque, a charge command function for issuing a charger operation command signal to charge the high voltage battery 41, and an auxiliary battery 61.
  • a drive command function for issuing an inverter drive command signal corresponding to the required torque
  • a charge command function for issuing a charger operation command signal to charge the high voltage battery 41
  • an auxiliary battery 61 On the other hand, it has a DC / DC command function for issuing a DC / DC converter operation command signal for charging, a quick charge command function for issuing a quick charge command for charging the high voltage battery 41 from the external quick charge facility S2, and the like.
  • the command signal generated by the operation control unit 10a includes, for example, an operation instruction and a stop instruction to the power modules 30 to 60. Further, the command signal includes details of the operation of the power modules 30 to 60 to be operated (for example, the amount of charging power for the charging module 50).
  • the I / F unit 10b of the vehicle ECU 10 performs data communication with the I / F unit 22b of the relay device 22.
  • the I / F unit 10b transmits the command signal to the I / F unit 22b of the relay device 22 in response to the operation control unit 10a generating the command signal.
  • the inverter module 30 includes an inverter circuit 31 and an electronic control unit 32 that controls the inverter circuit 31.
  • the inverter circuit 31 converts DC power received from the high voltage battery 41 or the like into AC power and supplies the AC power to the motor 34. Further, when the motor 34 is performing a regenerative operation, the inverter circuit 31 converts the regenerative power sent from the motor 34 into DC power and sends it to the high voltage battery 41 or the like.
  • the inverter circuit 31 is connected to the junction box 20 via the power line L1, and is configured to exchange power with other power modules via the junction box 20.
  • the electronic control unit 32 transmits data between the inverter control unit (INV control unit) 32a that controls switching of the inverter circuit 31 and the I / F unit 22c of the relay device 22 so that the motor 34 performs a desired operation. And an I / F unit 32b that performs communication.
  • the battery module 40 includes a high voltage battery 41 and an electronic control unit 42 that controls the high voltage battery 41.
  • the high voltage battery 41 sends DC power to the inverter circuit 31 or the like when performing a discharging operation, and receives DC power from the charger 51 or the like when performing a charging operation.
  • the high voltage battery 41 is connected to the junction box 20 via the power line L ⁇ b> 2 and configured to exchange power with other power modules via the junction box 20.
  • the electronic control unit 42 includes a battery control unit 42 a that monitors the state of the high voltage battery 41 and an I / F unit 42 b that performs data communication with the I / F unit 22 d of the relay device 22.
  • the charging module 50 includes a charger 51 and an electronic control unit 52 that controls the charger 51.
  • the charger 51 converts AC power supplied from an external power supply S1 outside the vehicle (for example, a single-phase 100V or single-phase 200V household power supply) and sends the DC power to the high voltage battery 41 or the like.
  • the charger 51 is connected to the junction box 20 through the power line L3, and is configured to exchange power with other power modules through the junction box 20.
  • the charger 51 includes, for example, an AC filter (ACF) 51a, a power factor correction circuit (PFC) 51b, a DC / DC converter (DCDC) 51c, and the like, and a charger controller (CHG controller) 52a. Controls the switching of the power factor correction circuit 51b and the DC / DC converter 51c.
  • ACF AC filter
  • PFC power factor correction circuit
  • DCDC DC / DC converter
  • CHG controller charger controller
  • the electronic control unit 52 includes a charger control unit 52a that controls switching of the charger 51, and an I / F unit 52b that performs data communication with the I / F unit 22e of the relay device 22.
  • the auxiliary machine module 60 includes a DC / DC converter 62 and an electronic control unit 63 that controls the DC / DC converter 62.
  • the auxiliary battery (auxiliary BAT) 61 is a battery having a lower voltage than the high voltage battery 41.
  • the DC / DC converter 62 steps down the power supplied from the high voltage battery 41 and charges the auxiliary battery 61.
  • the DC / DC converter 62 is connected to the junction box 20 via the power line L4, and is configured to exchange power with other power modules via the junction box 20.
  • the electronic control unit 63 is an I / F that performs data communication between a DC / DC converter control unit (DCDC control unit) 63 a that controls switching of the DC / DC converter 62 and an I / F unit 22 f of the relay device 22. Part 63b.
  • DCDC control unit DC / DC converter control unit
  • the electronic control units 32, 42, 52 and 63 described above include, for example, a microcomputer (hereinafter referred to as a microcomputer) including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. , Microcomputer) is used.
  • the functions of the control units 32a, 42a, 52a, and 63a included in each of the electronic control units 32, 42, 52, and 63 are, for example, control stored in a storage unit (not shown) included in a CPU (Central Processing Unit). This is realized by referring to programs and various data.
  • a DSP Digital Signal Processor
  • the junction box 20 accommodates the power lines L1 to L4 routed from each of the power modules 30 to 60, the power line L5 routed to connect to the external quick charging facility S2, and the like. Relay power exchange between 60.
  • the junction box 20 has an electric circuit switching circuit (SW) 21 to which the power lines L1 to L5 are connected, and the electric circuit switching circuit 21 switches the connection state between these power lines L1 to L5.
  • the electric circuit switching circuit 21 includes a relay, a fuse, a bus bar, and the like, and switches the connection state between these power lines L1 to L5 based on a control signal from the relay control unit 22a.
  • the junction box 20 includes a relay device 22 that relays data communication between the vehicle ECU 10 and each of the power modules 30 to 60.
  • the relay device 22 includes a relay control unit 22a, a first I / F unit 22b that communicates with the vehicle ECU 10, and second I / F units 22c to 22f that communicate with the respective electronic control units of the power modules 30 to 60. have.
  • the relay device 22 communicates with the I / F unit 32b of the inverter module 30 as the second I / F units 22c to 22f for communicating with the power modules 30 to 60, respectively.
  • the I / F unit 22f communicates with the 63b.
  • the first I / F unit 22b relies on specifications for communicating with the vehicle ECU 10, and conforms to the CAN communication protocol standard, for example.
  • the second I / F units 22c to 22f are interfaces based on specifications for communicating with the respective electronic control units of the power modules 30 to 60.
  • the second I / F units 22c to 22f are interfaces that do not depend on specifications for communicating with the vehicle ECU 10.
  • data that is different from the CAN communication protocol standard, or data that is different from the data transmitted and received by communication with the vehicle ECU 10 may be used even if the communication conforms to the CAN communication protocol standard.
  • the second I / F units 22c to 22f have the same specification, but may have different specifications.
  • Interface here means an input / output unit that performs data communication with other devices, and includes both or any of hardware elements such as connection terminals and software elements such as signal processing.
  • the “interface specification” includes a hardware element such as the number of pins of a connection terminal and / or a software element such as a data format or a signal processing procedure (the same applies hereinafter).
  • the relay control unit 22a performs signal conversion between the first I / F unit 22b and the second I / F units 22c to 22f. Specifically, the relay control unit 22a receives signals received via the first I / F unit 22b (for example, an inverter operation command signal, a charger operation command signal, a DC / DC converter operation command signal from the vehicle ECU 10). ) Is converted into a signal conforming to the specifications of the second I / F units 22c to 22f, and this signal is sent to each of the corresponding power modules 30 to 60 via the second I / F units 22c to 22f. To send.
  • signals received via the first I / F unit 22b for example, an inverter operation command signal, a charger operation command signal, a DC / DC converter operation command signal from the vehicle ECU 10.
  • the relay control unit 22a controls the electric circuit switching circuit 21 in accordance with a command signal from the vehicle ECU 10, and switches the connection state of the power lines L1 to L5 between the plurality of power modules 30 to 60.
  • the relay device 22 is configured by the above-described microcomputer or DSP and performs various signal processing.
  • the relay control unit 22a is based on various data and programs for performing signal conversion between the first I / F unit 22b and the second I / F units 22c to 22f, or a signal processing circuit. Realize the function.
  • the operation of the relay control unit 22a when the first I / F unit 22b receives a charger operation command signal from the vehicle ECU 10 will be described.
  • the relay control unit 22a converts the charger operation command signal into a signal conforming to the specification (specification of the second I / F unit 22e) when communicating with the charging module 50, and the second I / F. This charger operation command signal is transmitted to the charging module 50 via the F unit 22e. At this time, the relay control unit 22 a controls the electric circuit switching circuit 21 to electrically connect the charger 51 and the high voltage battery 41.
  • the charger control unit 52a of the charging module 50 acquires the charger operation command signal from the vehicle ECU 10 via the I / F unit 52b. Thereby, the charger control unit 52a causes the charger 51 to execute corresponding control. At this time, since the charger 51 and the high voltage battery 41 are electrically connected via the electric circuit switching circuit 21, the high voltage by the charger 51 is controlled under the control of the charger controller 52a. Charging the voltage battery 41 is executed.
  • the vehicle ECU 10 and the power modules 30 to 60 do not communicate directly but communicate via the relay device 22.
  • the relay device 22 (or the junction box 20 having the relay device 22). It becomes unnecessary to change each of the power modules 30 to 60.
  • the first I of the relay device 22 is adapted to correspond to the specification for communicating with the I / F unit 10b of the vehicle ECU 10.
  • / F unit 22b and relay control unit 22a are changed, while second I / F units 22c to 22f communicating with each of power modules 30 to 60 do not depend on the specifications of I / F unit 10b of vehicle ECU 10. Will not change.
  • both the hardware element and the software element can be considered.
  • the signal line standard changes (CAN communication protocol).
  • the standard line is changed to a dedicated signal line), the presence / absence of a specific signal line is changed (the number of buses is changed), the type of data exchanged with the signal line is changed, and the like.
  • the vehicle ECU 10 As described above, by using the relay device 22 according to the present embodiment, communication is performed between the vehicle ECU 10 and the power modules 30 to 60 regardless of the specifications of the interface on the vehicle ECU 10 side or the specifications of the interface on the power modules 30 to 60 side. It becomes possible to do. Therefore, the vehicle can be designed by freely combining the vehicle ECU 10 and the power modules 30 to 60 without being restricted by the communication means.
  • signal lines and abnormality detection lines routed to connect to the control system from each of the power modules 30 to 60 are shortened, and power consumption is reduced. This can contribute to a reduction in space and space saving.
  • the relay device 22 is more preferably disposed in the casing of the junction box 20. Thereby, for example, when a sensor (described later in the fourth embodiment) for monitoring the state of power transfer is provided in the relay device 22, the communication line between the relay device 22 and the sensor can be shortened. Superposed electromagnetic noise can be suppressed. This is useful because highly accurate detection is possible.
  • FIG. 2 is a diagram illustrating an example of a configuration of a vehicle A according to the second embodiment.
  • FIG. 2 is different from the first embodiment in that an auxiliary device 23 is newly provided in the junction box 20 and the relay device 22 includes an auxiliary device control unit 22g that controls the auxiliary device 23. To do. Note that description of configurations common to the first embodiment is omitted. Hereinafter, the same applies to other embodiments.
  • the auxiliary machine device 23 is a device that realizes an additional function of any one of the power modules 30 to 60, and is a device that differs depending on the vehicle type or the vehicle model. For example, a fan or the like for cooling the charger 51 is applicable. When the auxiliary device 23 is a fan, electric power is supplied from the auxiliary battery 61 to the fan.
  • the cooling method may vary depending on the output power. For example, the water cooling method is used when the output power is high, and the air cooling method is used when the output power is low.
  • the electronic control unit of the charging module 50 is usually used.
  • an auxiliary device 23 is provided attached to the junction box 20, and the auxiliary device control unit 22g of the relay device 22 is replaced with the electronic control unit of each of the power modules 30 to 60.
  • the operation of the auxiliary device 23 is controlled. That is, the auxiliary device control unit 22g functions as a controller of the auxiliary device 23.
  • the relay control unit 22a sends this command signal to each of the power modules 30 to 60 in response to a command signal from the vehicle ECU 10, and to the auxiliary device control unit 22g. Sends the same command signal.
  • the auxiliary device control unit 22g operates the auxiliary device 23 in accordance with the command signal.
  • the present embodiment if only the junction box 20 is changed, it is not necessary to change or develop each of the power modules 30 to 60 for each necessity of the auxiliary device 23.
  • the manufacturing cost can be suppressed.
  • the additional functions of the power modules 30 to 60 can be variously changed for each vehicle.
  • relay control unit 22a and the auxiliary device control unit 22g are described separately, but both the relay control unit 22a and the auxiliary device control unit 22g may be realized by a single microcomputer or DSP.
  • FIG. 3 is a diagram illustrating an example of a configuration of a vehicle A according to the third embodiment.
  • the relay device 22 according to the present embodiment is different from the relay device 22 according to the first embodiment in that it includes a charge / discharge control unit 22h.
  • the charge / discharge control unit 22h is a function of acquiring the charge state of the high voltage battery 41 and executing charge / discharge in the high voltage battery 41, and generates a command signal to be transmitted to the battery module 40 and the charge module 50.
  • This function is provided in the vehicle ECU 10 in the first embodiment, but in this embodiment, the relay device 22 mainly receives the command signal from the charge / discharge control unit 22h without receiving the command signal from the vehicle ECU 10. Generate.
  • the relay device 22 has a function related to control during parking
  • the vehicle ECU 10 has a function related to control during traveling.
  • the functions related to the control during parking include, for example, a charging command function for acquiring a charging state of the high voltage battery 41 and transmitting a charger operation command signal to the charging module 50, and a DC / DC according to the charging state of the auxiliary battery 61.
  • a DC / DC command function for transmitting a DC converter operation command signal to the auxiliary machine module 60, and a quick charge for communicating with the external quick charge facility S2 and charging the high voltage battery 41 by controlling the electric circuit switching circuit 21 Applicable to command functions.
  • the charging / discharging control unit 22h generates a command signal so as to realize the above function in the relay device 22.
  • the charger 51 is a bidirectional charging circuit capable of bi-directional power conversion, or when the power can be output from the vehicle A to the outside of the vehicle via the power line L5, the high voltage battery 41 is charged. It may include a vehicle discharge command function (V2H / V2G function) for acquiring a state and transmitting an operation command signal for the bidirectional charging circuit to the charging module 50 or generating a discharge command signal for controlling discharge power to the outside of the vehicle. .
  • V2H / V2G function vehicle discharge command function for acquiring a state and transmitting an operation command signal for the bidirectional charging circuit to the charging module 50 or generating a discharge command signal for controlling discharge power to the outside of the vehicle.
  • a drive command function for transmitting an inverter drive command signal corresponding to the accelerator required torque to the inverter module 30 is applicable.
  • the relay device 22 When the relay device 22 has the quick charge command function, the relay device 22 includes an I / F unit 22i for communicating with the external quick charge facility S2.
  • the charge / discharge control unit 22h communicates with the external quick charge facility S2 via the I / F unit 22i, generates a switching command signal for switching the electric circuit switching circuit 21, and generates a high voltage with the external quick charge facility S2.
  • the electric circuit switching circuit 21 is switched so that the battery 41 is electrically connected. Thereby, the high voltage battery 41 is charged with the electric power supplied from the external quick charging facility S2.
  • the relay device 22 has a part of the functions of the conventional vehicle ECU 10, so that the relay device can be used for charge control during parking. 22 and each of the power modules 30 to 60 (charging module 50, battery module 40).
  • each of the power modules 30 to 60 can be controlled without communication loss (delay), compared to the case where communication is performed between the vehicle ECU 10 and each of the power modules 30 to 60 via the relay device 22. It becomes possible.
  • the relay device 22 has a function related to control during parking, the processing load on the vehicle ECU 10 during parking is reduced, so that the vehicle ECU 10 can be in a low power consumption state, and the power consumption during parking can be reduced. Reduction is possible.
  • the relay device 22 can execute charge / discharge control (for example, a DC / DC command function) between the plurality of power modules 30 to 60 even during traveling.
  • charge / discharge control for example, a DC / DC command function
  • the relay device 22 according to the present embodiment instead of the vehicle ECU 10, it is also possible to comprehensively execute operation control of the power system. Therefore, the processing load on the vehicle ECU 10 can be reduced while the control system is complicated.
  • the relay device 22 manages each state of the power modules 30 to 60 in a built-in storage unit (not shown).
  • the communication between the vehicle ECU 10 and the inverter module 30 may be performed directly without using the relay device 22.
  • the vehicle ECU 10 is mainly responsible for the control during traveling, and the processing load on the relay device 22 during traveling can be reduced.
  • relay control unit 22a and the charge / discharge control unit 22h are described separately, but both the relay control unit 22a and the charge / discharge control unit 22h may be realized by one microcomputer or DSP.
  • FIG. 4 is a diagram illustrating an example of a configuration of a vehicle A according to the fourth embodiment.
  • the relay device 22 according to the present embodiment is different from the first embodiment in that it further includes a monitoring unit 22j.
  • the monitoring unit 22j acquires a detection signal from the sensor 24 that detects a current (or voltage) flowing through each of the power lines L1 to L5 provided in the junction box 20, and based on the detection signal, a plurality of power modules Monitor the power transfer status between 30-60.
  • the monitoring unit 22j When the monitoring unit 22j detects, for example, an abnormality in the power transfer state, the monitoring unit 22j generates an abnormality notification signal and notifies the relay control unit 22a of this abnormality. Then, when the relay control unit 22a receives the abnormality notification signal from the monitoring unit 22j, the relay control unit 22a notifies the corresponding power module and the vehicle ECU 10 of the occurrence of the abnormality. Moreover, the relay control part 22a controls the electric circuit switching circuit 21, and interrupts
  • the state of power transmission / reception among the plurality of power modules 30 to 60 is monitored, and the corresponding power module is quickly responded according to the state of power transmission / reception.
  • Can be controlled for example, an operation stop command).
  • relay control unit 22a and the monitoring unit 22j are described separately, but both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
  • FIG. 5 is a diagram illustrating an example of a configuration of a vehicle A according to the fifth embodiment.
  • the vehicle A according to the present embodiment has a main power line L6 to which the power lines L1 to L5 are connected in the electric circuit switching circuit 21, and a current sensor 25 that detects a current flowing through the main power line L6 and an application to the main power line L6.
  • the fourth embodiment is different from the fourth embodiment in that it includes a voltage sensor 26 that detects a voltage to be detected.
  • the relay control unit 22a and the monitoring unit 22j are described separately, but both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
  • the relay device 22 has a function related to control during parking, as in the third embodiment. Therefore, although the relay apparatus 22 has the charging / discharging control part 22h, the relay control part 22a and the charging / discharging control part 22h may be comprised by one microcomputer and DSP similarly to 3rd Embodiment. .
  • the power line L2 is connected to the main power line L6 via the relay 21a
  • the power line L3 is connected to the main power line L6 via the fuse 21b
  • the power line L5 is connected to the main power line via the fuse 21c and the relay 21d.
  • the power lines L1 and L4 are directly connected to the main power line L6.
  • power is exchanged between the power modules 30 to 60 via, for example, the main power line L6, switching control between the relay 21a and the relay 21d, and the power modules 30 to 60.
  • Each control switching control of the inverter circuit 31 of the inverter module 30, the charger 51 of the charging module 50, and the DC / DC converter 62 of the auxiliary device module 60) is performed.
  • the voltage sensor 26 is a sensor that detects a voltage applied to the main power line L6, and thereby detects a voltage applied to each of the power lines L1 to L5.
  • the current sensor 25 is a sensor that detects the current of the main power line L6.
  • the monitoring unit 22j acquires the detection signals of the voltage sensor 26 and the current sensor 25 at a predetermined timing (for example, at intervals of 0.1 seconds), as in the fourth embodiment.
  • the detection signal is transmitted to the relay control unit 22a.
  • the relay control unit 22a transmits the detection signal to the predetermined power modules 30 to 60 in response to receiving the detection signal from the monitoring unit 22j.
  • the relay control unit 22a may be configured to transmit to the transfer target power modules 30 to 60 set in the storage unit in advance.
  • the power lines L1 to L5 are connected to the main power line L6, and the current sensor 25 for detecting the current of the main power line L6 and the voltage sensor 26 for detecting the voltage applied to the main power line L6 are provided.
  • the current sensor 25 for detecting the current of the main power line L6 and the voltage sensor 26 for detecting the voltage applied to the main power line L6 are provided.
  • a voltage sensor that detects the output voltage of the charger 51 a voltage sensor that detects a voltage supplied from the external quick charging facility S2, and a voltage that detects a voltage input to the DC / DC converter 62 or the like. It is possible to collect all or part of the role of the sensor in a voltage sensor that detects a voltage applied to the main power line L6.
  • FIG. 6 is a diagram illustrating an example of a configuration of a vehicle A according to the sixth embodiment.
  • the main power line L6 is disposed in the electric circuit switching circuit 21 as in the fifth embodiment, while the DC / DC converter 62 is substituted for the current sensor 25 and the voltage sensor 26.
  • This is different from the fifth embodiment in that it includes a current sensor 27 that detects a current flowing through the power line L4.
  • the power line L3 of the charger 51 is connected to the power line L2 of the high-voltage battery 41 via the main power line L6 and the main power line L6. It is also connected to the power line L4 of the DC / DC converter 62 via the power line L6.
  • the charger 51 is connected to the high voltage battery 41 in order to shorten the charging time. It is preferable to increase the current supplied to the maximum current allowed by the high voltage battery 41 (hereinafter referred to as “maximum allowable current”).
  • the DC / DC converter 62 operates at the same time when the charger 51 outputs power so as to have a preset maximum allowable current, a part of the current supplied from the charger 51 is: The current is diverted to the DC / DC converter 62 side. As a result, the high voltage battery 41 is charged with a current smaller than the maximum allowable current, and the charging time may be prolonged.
  • the current sensor 27 that detects the current that is shunted to the power line L4 of the DC / DC converter 62 is provided, and the charger 51 outputs in consideration of this shunted current.
  • the current can be controlled.
  • the signal path for transmitting the detection signal of the current sensor 27 is the same as in the fourth embodiment. That is, in the relay device 22, the monitoring unit 22j acquires the detection signal of the current sensor 27 and transmits the detection signal to the electronic control unit 52 of the charging module 50 via the relay control unit 22a.
  • the electronic control unit 52 of the charging module 50 diverts the output current from the charger 51 to the preset maximum allowable current and the DC / DC converter 62 side.
  • the charger 51 is controlled so as to be an amount obtained by adding the current to be added.
  • the high voltage battery 41 when charging the high voltage battery 41, the high voltage battery 41 can be charged with the maximum allowable current even when the DC / DC converter 62 operates simultaneously. This makes it possible to reduce the charging time.
  • FIG. 7 is a diagram illustrating an example of a configuration of a vehicle A according to a modification of the sixth embodiment.
  • the current sensor 27 is configured to detect the current flowing through the power line L2 instead of the configuration detecting the current flowing through the power line L4.
  • the output current of the charger 51 is controlled so that the current value supplied to the high voltage battery 41 during the constant current charging becomes the maximum allowable current value.
  • the second I / F units 22c to 22f are interfaces that do not depend on the specifications for communicating with the vehicle ECU 10. For example, a different one from the CAN communication protocol standard is used.
  • the second I / F units 22c to 22f and the power modules 30 to 60 In the inter-communication it is less likely to be affected immediately and the security performance can be improved.
  • the relay device 22 (relay control unit 22a) can be used to stop the second I / F unit 22c. Communication between each of ⁇ 22f and each of the power modules 30 to 60 can be performed with a low security level, and as a result, development costs can be reduced.
  • FIG. 8 is a diagram illustrating an example of a configuration of a vehicle A according to the eighth embodiment.
  • the vehicle A according to the present embodiment is different from the third embodiment in that the relay device 22 further includes a control power supply unit 22k.
  • the control power supply unit 22k supplies operation power to the second I / F units 22c to 22i and the electronic control units 32, 42, 52, and 63.
  • the control power supply unit 22k supplies power to the second I / F units 22c to 22f and the electronic control units 32, 42, 52, and 63 in response to a command signal from the vehicle ECU 10 acquired by the relay control unit 22a. Do.
  • Each of the electronic control units 32, 42, 52, and 63 starts operating in response to the supply of operating power.
  • control power supply unit 22k is connected to each power supply target via control power lines 22ka to 22ki for sending DC power, and controls the voltage of the DC power sent to each of the control power lines 22ka to 22ki. And controlling the opening and closing of the electric circuit.
  • the specifications of the power supply to the electronic control units 32, 42, 52, and 63 differ depending on the vehicle type or the vehicle model. (For example, when constant power supply is required or when power supply is required only at startup), power supply suitable for each vehicle model or vehicle model is possible under the control of the control power supply unit 22k. It becomes.
  • the electronic control units 32, 42, 52, and 63 have a specification that is activated by the activation command signal from the vehicle ECU 10, the electronic control units 32, 42, 52, and 63 always receive the activation command signal. Standby power needs to be supplied.
  • the relay control unit 22a when the relay control unit 22a receives the start command signal from the vehicle ECU 10, the control power source unit 22k performs the necessary electronic control units 32, 42, and 52. And 63 can be configured to selectively supply power. As a result, unnecessary standby power (dark current) of the electronic control units 32, 42, 52 and 63 can be reduced.
  • relay control unit 22a and the monitoring unit 22j are described separately.
  • both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
  • the function of the relay control unit 22 a is described as being realized by a single microcomputer, but may be realized by a plurality of microcomputers.
  • the relay device 22 may be configured to communicate with a vehicle module of a vehicle auxiliary machine (for example, a compressor for an air conditioner, a battery heater, etc.) instead of or together with the power module.
  • the relay device 22 may be configured to have an interface (an interface that does not depend on the interface specification of the vehicle ECU 10) according to the specification for communicating with each vehicle module.
  • control device can be suitably used for a vehicle.

Abstract

The on-board control device relays data communication between a vehicle ECU, which generates a signal for instructing a driving state of a vehicle, and vehicle modules. The on-board control device has a first interface for communication with the vehicle ECU and a second interface for communication with the vehicle modules. The first interface is an interface relying on specifications for communication with the vehicle ECU, and the second interface is an interface not relying on the specifications for communication with the vehicle ECU.

Description

車載制御装置In-vehicle control device
 本開示は、車載制御装置に関する。 This disclosure relates to an in-vehicle control device.
 電気自動車(EV:Electric Vehicle)やプラグインハイブリッドカー(PHEV:Plug-in Hybrid Electric Vehicle)では、高電圧バッテリ、高電圧バッテリからの直流電力を電力変換してモータに供給するインバータ、商用交流電源などの外部電源からの電力を電力変換して高電圧バッテリを充電する充電器、車両の補機へ電力を供給する低電圧バッテリ(補機バッテリ)、および補機バッテリを充電するDC/DCコンバータ等の電力モジュールが搭載されている。 In electric vehicles (EV: Electric Vehicle) and plug-in hybrid vehicles (PHEV: Plug-in Hybrid Electric Vehicle), high-voltage batteries, inverters that convert DC power from high-voltage batteries to power and motors, and commercial AC power supplies A charger that converts power from an external power source to charge a high-voltage battery, a low-voltage battery (auxiliary battery) that supplies power to a vehicle auxiliary device, and a DC / DC converter that charges the auxiliary battery Etc. are mounted.
 これらの電力モジュールには、それぞれに付随した電子制御ユニットが搭載されており、これらの電子制御ユニットは、車両の各コンポーネントを統括制御する車両制御ユニットと、CAN(Controller Area Network)通信プロトコルの仕様に準じた通信インターフェース等により通信可能に接続されている(例えば、特許文献1を参照)。 Each of these power modules is equipped with an electronic control unit attached to each of them. These electronic control units include a vehicle control unit that performs overall control of each component of the vehicle, and specifications of a CAN (Controller Area Network) communication protocol. Are communicably connected by a communication interface or the like conforming to the above (for example, see Patent Document 1).
特開2014―073023号公報JP 2014-073023 A
 しかしながら、特許文献1に記載されるように、車両制御ユニットと各電力モジュールの電子制御ユニットとがそれぞれ直接接続される構成の場合、車両制御ユニットの通信インターフェースの仕様(ハードウェア要素及びソフトウェア要素の両方またはいずれか)の変更に伴い、各電力モジュールの電子制御ユニットの通信インターフェース(以下、「インターフェース」または「I/F部」と略称する)を全て変更する必要が生じる。 However, as described in Patent Document 1, in the case where the vehicle control unit and the electronic control unit of each power module are directly connected, the specifications of the communication interface of the vehicle control unit (the hardware elements and software elements) With the change of both or any one of them, it is necessary to change all the communication interfaces (hereinafter, abbreviated as “interface” or “I / F unit”) of the electronic control unit of each power module.
 すなわち、全ての電力モジュールの電子制御ユニットのインターフェースを変更された車両制御ユニットのインターフェースに適するインターフェースに変更する必要が生じ、開発コストが増加する。 That is, it is necessary to change the interface of the electronic control unit of all the power modules to an interface suitable for the interface of the changed vehicle control unit, and the development cost increases.
 本開示は、車両制御ユニットと車両モジュール(特に、電力モジュール)の間における通信の制約を解消することを可能とする車載制御装置を提供する。 The present disclosure provides an in-vehicle control device that can eliminate restrictions on communication between a vehicle control unit and a vehicle module (particularly, a power module).
 本開示の車載制御装置は、車両の駆動状態を指令する信号を生成する車両ECUと車両モジュールの間におけるデータ通信を中継する。この車載制御装置は、車両ECUと通信する第1のインターフェースと、車両モジュールと通信する第2のインターフェースとを有する。第1のインターフェースは、車両ECUと通信するための仕様に依拠したインターフェースであり、第2のインターフェースは、車両ECUと通信するための仕様に依拠しないインターフェースである。 The vehicle-mounted control device of the present disclosure relays data communication between the vehicle ECU that generates a signal that commands the driving state of the vehicle and the vehicle module. The in-vehicle control device has a first interface that communicates with the vehicle ECU and a second interface that communicates with the vehicle module. The first interface is an interface based on the specification for communicating with the vehicle ECU, and the second interface is an interface not based on the specification for communicating with the vehicle ECU.
 この車載制御装置によれば、車両制御ユニットと車両モジュールの間における通信の制約を解消することができる。 According to this in-vehicle control device, communication restrictions between the vehicle control unit and the vehicle module can be solved.
第1の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 1st Embodiment. 第2の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 2nd Embodiment. 第3の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 3rd Embodiment. 第4の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 4th Embodiment. 第5の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 5th Embodiment. 第6の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 6th Embodiment. 第6の実施形態の変形例に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on the modification of 6th Embodiment. 第8の実施形態に係る車両の構成の一例を示す図The figure which shows an example of a structure of the vehicle which concerns on 8th Embodiment.
 以下、図面を参照しながら、本開示の種々の実施の形態について説明する。なお各実施の形態において、先行する実施の形態と同様の構成には同じ符号を付して説明し、詳細な説明を省略する場合がある。 Hereinafter, various embodiments of the present disclosure will be described with reference to the drawings. Note that in each embodiment, the same components as those in the preceding embodiment are denoted by the same reference numerals, and detailed description may be omitted.
 (第1の実施形態)
 以下、図1を参照して、第1の実施形態に係る中継装置(本開示の「車載制御装置」に相当)について説明する。
(First embodiment)
Hereinafter, the relay device according to the first embodiment (corresponding to the “vehicle-mounted control device” of the present disclosure) will be described with reference to FIG. 1.
 図1は、本実施形態に係る車両Aの構成の一例を示す図である。なお、図中の点線矢印は、各部の間での信号の授受を表し、実線は電力線を表している。 FIG. 1 is a diagram illustrating an example of a configuration of a vehicle A according to the present embodiment. In addition, the dotted line arrow in a figure represents transmission / reception of the signal between each part, and the continuous line represents the power line.
 車両Aは、例えば、電気自動車やプラグインハイブリッドカーであり、車両ECU(Electronic Control Unit)10、ジャンクションボックス20、及び複数の電力モジュール(インバータモジュール30、バッテリモジュール40、充電モジュール50、補機モジュール60(以下、「電力モジュール30~60」とも総称する))等を有している。 The vehicle A is, for example, an electric vehicle or a plug-in hybrid car, and includes a vehicle ECU (Electronic Control Unit) 10, a junction box 20, and a plurality of power modules (inverter module 30, battery module 40, charging module 50, auxiliary module). 60 (hereinafter also collectively referred to as “power modules 30 to 60”)).
 車両ECU10は、車両Aの各部を統括制御する車両制御ユニットである。車両ECU10は、動作制御部10a及びインターフェース部(以下、I/F部)10bを有している。 The vehicle ECU 10 is a vehicle control unit that comprehensively controls each part of the vehicle A. The vehicle ECU 10 includes an operation control unit 10a and an interface unit (hereinafter referred to as I / F unit) 10b.
 動作制御部10aは、電力モジュール30~60のそれぞれに対して所望の動作をさせるべく、指令信号を生成する。動作制御部10aは、例えば、要求トルクに応じたインバータ駆動指令信号を発する駆動指令機能、高電圧バッテリ41に対して充電を行うべく充電器動作指令信号を発する充電指令機能、補機バッテリ61に対して充電を行うべくDC/DCコンバータ動作指令信号を発するDC/DC指令機能、及び、外部急速充電設備S2から高電圧バッテリ41を充電するべく急速充電指令を発する急速充電指令機能等を有する。 The operation control unit 10a generates a command signal to cause each of the power modules 30 to 60 to perform a desired operation. The operation control unit 10a includes, for example, a drive command function for issuing an inverter drive command signal corresponding to the required torque, a charge command function for issuing a charger operation command signal to charge the high voltage battery 41, and an auxiliary battery 61. On the other hand, it has a DC / DC command function for issuing a DC / DC converter operation command signal for charging, a quick charge command function for issuing a quick charge command for charging the high voltage battery 41 from the external quick charge facility S2, and the like.
 なお、動作制御部10aが生成する指令信号には、例えば、電力モジュール30~60への動作指示及び停止指示が含まれる。また、指令信号には、動作対象の電力モジュール30~60の動作の詳細(例えば、充電モジュール50に対する充電電力量)等が含まれる。 The command signal generated by the operation control unit 10a includes, for example, an operation instruction and a stop instruction to the power modules 30 to 60. Further, the command signal includes details of the operation of the power modules 30 to 60 to be operated (for example, the amount of charging power for the charging module 50).
 車両ECU10のI/F部10bは、中継装置22のI/F部22bとの間でデータ通信を行う。I/F部10bは、例えば、動作制御部10aが指令信号を生成するに応じて、この指令信号を中継装置22のI/F部22bに対して送信する。 The I / F unit 10b of the vehicle ECU 10 performs data communication with the I / F unit 22b of the relay device 22. For example, the I / F unit 10b transmits the command signal to the I / F unit 22b of the relay device 22 in response to the operation control unit 10a generating the command signal.
 インバータモジュール30は、インバータ回路31、及びインバータ回路31を制御する電子制御ユニット32を有している。 The inverter module 30 includes an inverter circuit 31 and an electronic control unit 32 that controls the inverter circuit 31.
 インバータ回路31は、高電圧バッテリ41等から受電する直流電力を交流電力に変換し、モータ34に供給する。また、インバータ回路31は、モータ34が回生運転を行っている場合には、モータ34から送出される回生電力を直流電力に変換して高電圧バッテリ41等に送出する。なお、インバータ回路31は、電力線L1を介してジャンクションボックス20に接続され、ジャンクションボックス20を介して他の電力モジュールと電力の授受が行われるように構成されている。 The inverter circuit 31 converts DC power received from the high voltage battery 41 or the like into AC power and supplies the AC power to the motor 34. Further, when the motor 34 is performing a regenerative operation, the inverter circuit 31 converts the regenerative power sent from the motor 34 into DC power and sends it to the high voltage battery 41 or the like. The inverter circuit 31 is connected to the junction box 20 via the power line L1, and is configured to exchange power with other power modules via the junction box 20.
 電子制御ユニット32は、モータ34が所望の動作を行うように、インバータ回路31のスイッチングを制御するインバータ制御部(INV制御部)32aと、中継装置22のI/F部22cとの間でデータ通信を行うI/F部32bと、を有している。 The electronic control unit 32 transmits data between the inverter control unit (INV control unit) 32a that controls switching of the inverter circuit 31 and the I / F unit 22c of the relay device 22 so that the motor 34 performs a desired operation. And an I / F unit 32b that performs communication.
 バッテリモジュール40は、高電圧バッテリ41、及び高電圧バッテリ41を制御する電子制御ユニット42を有している。 The battery module 40 includes a high voltage battery 41 and an electronic control unit 42 that controls the high voltage battery 41.
 高電圧バッテリ41は、放電動作する際にはインバータ回路31等に直流電力を送出し、充電動作する際には充電器51等から直流電力を受電する。なお、高電圧バッテリ41は、電力線L2を介してジャンクションボックス20に接続され、ジャンクションボックス20を介して他の電力モジュールと電力の授受が行われるように構成されている。 The high voltage battery 41 sends DC power to the inverter circuit 31 or the like when performing a discharging operation, and receives DC power from the charger 51 or the like when performing a charging operation. Note that the high voltage battery 41 is connected to the junction box 20 via the power line L <b> 2 and configured to exchange power with other power modules via the junction box 20.
 電子制御ユニット42は、高電圧バッテリ41の状態を監視するバッテリ制御部42aと、中継装置22のI/F部22dとの間でデータ通信を行うI/F部42bとを有している。 The electronic control unit 42 includes a battery control unit 42 a that monitors the state of the high voltage battery 41 and an I / F unit 42 b that performs data communication with the I / F unit 22 d of the relay device 22.
 充電モジュール50は、充電器51と、充電器51を制御する電子制御ユニット52とを有している。 The charging module 50 includes a charger 51 and an electronic control unit 52 that controls the charger 51.
 充電器51は、車両外部の外部電源S1(例えば、単相100Vまたは単相200Vの家庭用電源)から供給される交流電力を電力変換して、高電圧バッテリ41等に直流電力を送出する。なお、充電器51は、電力線L3を介してジャンクションボックス20に接続され、ジャンクションボックス20を介して他の電力モジュールと電力の授受が行われるように構成されている。 The charger 51 converts AC power supplied from an external power supply S1 outside the vehicle (for example, a single-phase 100V or single-phase 200V household power supply) and sends the DC power to the high voltage battery 41 or the like. The charger 51 is connected to the junction box 20 through the power line L3, and is configured to exchange power with other power modules through the junction box 20.
 なお、充電器51は、例えば、ACフィルタ(ACF)51a、力率改善回路(PFC)51b、DC/DCコンバータ(DCDC)51c等を含んで構成され、充電器制御部(CHG制御部)52aは、力率改善回路51bやDC/DCコンバータ51cのスイッチングを制御する。 The charger 51 includes, for example, an AC filter (ACF) 51a, a power factor correction circuit (PFC) 51b, a DC / DC converter (DCDC) 51c, and the like, and a charger controller (CHG controller) 52a. Controls the switching of the power factor correction circuit 51b and the DC / DC converter 51c.
 電子制御ユニット52は、充電器51のスイッチングを制御する充電器制御部52aと、中継装置22のI/F部22eとの間でデータ通信を行うI/F部52bとを有している。 The electronic control unit 52 includes a charger control unit 52a that controls switching of the charger 51, and an I / F unit 52b that performs data communication with the I / F unit 22e of the relay device 22.
 補機モジュール60は、DC/DCコンバータ62と、DC/DCコンバータ62を制御する電子制御ユニット63とを有している。 The auxiliary machine module 60 includes a DC / DC converter 62 and an electronic control unit 63 that controls the DC / DC converter 62.
 補機バッテリ(補機BAT)61は、高電圧バッテリ41よりも低電圧のバッテリである。DC/DCコンバータ62は、高電圧バッテリ41から供給される電力を降圧して補機バッテリ61を充電する。なお、DC/DCコンバータ62は、電力線L4を介してジャンクションボックス20に接続され、ジャンクションボックス20を介して他の電力モジュールと電力の授受が行われるように構成されている。 The auxiliary battery (auxiliary BAT) 61 is a battery having a lower voltage than the high voltage battery 41. The DC / DC converter 62 steps down the power supplied from the high voltage battery 41 and charges the auxiliary battery 61. The DC / DC converter 62 is connected to the junction box 20 via the power line L4, and is configured to exchange power with other power modules via the junction box 20.
 電子制御ユニット63は、DC/DCコンバータ62のスイッチングを制御するDC/DCコンバータ制御部(DCDC制御部)63aと、中継装置22のI/F部22fとの間でデータ通信を行うI/F部63bとを有している。 The electronic control unit 63 is an I / F that performs data communication between a DC / DC converter control unit (DCDC control unit) 63 a that controls switching of the DC / DC converter 62 and an I / F unit 22 f of the relay device 22. Part 63b.
 なお、上記した電子制御ユニット32、42、52及び63としては、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含んで構成されるマイクロコンピュータ(以下、マイコン)が用いられる。そして、電子制御ユニット32、42、52及び63それぞれが有する制御部32a、42a、52a及び63aの機能は、例えば、CPU(Central Processing Unit)が有する記憶部(図示せず)に格納された制御プログラムや各種データを参照することによって実現される。但し、マイコンに代えて、信号処理に特化したDSP(Digital Signal Processor)等が用いられてもよい。 The electronic control units 32, 42, 52 and 63 described above include, for example, a microcomputer (hereinafter referred to as a microcomputer) including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. , Microcomputer) is used. The functions of the control units 32a, 42a, 52a, and 63a included in each of the electronic control units 32, 42, 52, and 63 are, for example, control stored in a storage unit (not shown) included in a CPU (Central Processing Unit). This is realized by referring to programs and various data. However, instead of the microcomputer, a DSP (Digital Signal Processor) specialized in signal processing may be used.
 ジャンクションボックス20は、電力モジュール30~60のそれぞれから引き回された電力線L1~L4や、外部急速充電設備S2と接続するために引き回された電力線L5等を収納し、複数の電力モジュール30~60間における電力授受の中継を行う。 The junction box 20 accommodates the power lines L1 to L4 routed from each of the power modules 30 to 60, the power line L5 routed to connect to the external quick charging facility S2, and the like. Relay power exchange between 60.
 ジャンクションボックス20は、電力線L1~L5が接続された電路切替回路(SW)21を有し、電路切替回路21でこれらの電力線L1~L5の間の接続状態を切り替える。なお、電路切替回路21は、リレー、ヒューズ、バスバー等を含んで構成され、中継制御部22aからの制御信号に基づいて、これらの電力線L1~L5の間の接続状態を切り替える。 The junction box 20 has an electric circuit switching circuit (SW) 21 to which the power lines L1 to L5 are connected, and the electric circuit switching circuit 21 switches the connection state between these power lines L1 to L5. The electric circuit switching circuit 21 includes a relay, a fuse, a bus bar, and the like, and switches the connection state between these power lines L1 to L5 based on a control signal from the relay control unit 22a.
 ここで、本実施形態に係るジャンクションボックス20は、車両ECU10と電力モジュール30~60のそれぞれとの間のデータ通信を中継する中継装置22を有している。 Here, the junction box 20 according to the present embodiment includes a relay device 22 that relays data communication between the vehicle ECU 10 and each of the power modules 30 to 60.
 中継装置22は、中継制御部22a、車両ECU10と通信する第1のI/F部22b、及び、電力モジュール30~60のそれぞれの電子制御ユニットと通信する第2のI/F部22c~22fを有している。 The relay device 22 includes a relay control unit 22a, a first I / F unit 22b that communicates with the vehicle ECU 10, and second I / F units 22c to 22f that communicate with the respective electronic control units of the power modules 30 to 60. have.
 より具体的には、中継装置22は、電力モジュール30~60のそれぞれと通信するための第2のI/F部22c~22fとして、インバータモジュール30のI/F部32bと通信するI/F部22c、バッテリモジュール40のI/F部42bと通信するI/F部22d、充電モジュール50のI/F部52bと通信するI/F部22e、及び、補機モジュール60のI/F部63bと通信するI/F部22fを有している。 More specifically, the relay device 22 communicates with the I / F unit 32b of the inverter module 30 as the second I / F units 22c to 22f for communicating with the power modules 30 to 60, respectively. Unit 22c, I / F unit 22d communicating with I / F unit 42b of battery module 40, I / F unit 22e communicating with I / F unit 52b of charging module 50, and I / F unit of auxiliary module 60 The I / F unit 22f communicates with the 63b.
 ここで、第1のI/F部22bは、車両ECU10と通信するための仕様に依拠したものであって、例えば、CAN通信プロトコルの規格に準じている。 Here, the first I / F unit 22b relies on specifications for communicating with the vehicle ECU 10, and conforms to the CAN communication protocol standard, for example.
 一方、第2のI/F部22c~22fは、電力モジュール30~60のそれぞれの電子制御ユニットと通信するための仕様に依拠したインターフェースとなっている。換言すると、第2のI/F部22c~22fは、車両ECU10と通信するための仕様に依拠しないインターフェースである。例えば、CAN通信プロトコルの規格とは異なるもの、あるいは、CAN通信プロトコルの規格に準じた通信であっても、車両ECU10との通信で送受されるデータとは種類が異なるデータが用いられてもよい。なお、ここでは、説明の便宜として、第2のI/F部22c~22fは、同一の仕様とするが、異なる仕様であってもよい。 On the other hand, the second I / F units 22c to 22f are interfaces based on specifications for communicating with the respective electronic control units of the power modules 30 to 60. In other words, the second I / F units 22c to 22f are interfaces that do not depend on specifications for communicating with the vehicle ECU 10. For example, data that is different from the CAN communication protocol standard, or data that is different from the data transmitted and received by communication with the vehicle ECU 10 may be used even if the communication conforms to the CAN communication protocol standard. . Here, for convenience of explanation, the second I / F units 22c to 22f have the same specification, but may have different specifications.
 ここで言う「インターフェース」とは、他の装置とデータ通信する入出力部を意味し、接続端子等のハードウェア要素、及び信号の処理等のソフトウェア要素の両方またはいずれかを含むものである。同様に、「インターフェースの仕様」とは、接続端子のピン数等のハードウェア要素、及びデータ形式や信号の処理手順等のソフトウェア要素の両方またはいずれかを含むものである(以下同じ)。 “Interface” here means an input / output unit that performs data communication with other devices, and includes both or any of hardware elements such as connection terminals and software elements such as signal processing. Similarly, the “interface specification” includes a hardware element such as the number of pins of a connection terminal and / or a software element such as a data format or a signal processing procedure (the same applies hereinafter).
 中継制御部22aは、第1のI/F部22bと第2のI/F部22c~22fの間で信号変換を行う。具体的には、中継制御部22aは、第1のI/F部22bを介して受信する信号(例えば、車両ECU10からのインバータ動作指令信号、充電器動作指令信号、DC/DCコンバータ動作指令信号)を第2のI/F部22c~22fの仕様に準じた信号に変換すると共に、この信号を第2のI/F部22c~22fを介して対応する電力モジュール30~60のそれぞれに対して送信する。 The relay control unit 22a performs signal conversion between the first I / F unit 22b and the second I / F units 22c to 22f. Specifically, the relay control unit 22a receives signals received via the first I / F unit 22b (for example, an inverter operation command signal, a charger operation command signal, a DC / DC converter operation command signal from the vehicle ECU 10). ) Is converted into a signal conforming to the specifications of the second I / F units 22c to 22f, and this signal is sent to each of the corresponding power modules 30 to 60 via the second I / F units 22c to 22f. To send.
 また、中継制御部22aは、車両ECU10からの指令信号に応じて、電路切替回路21を制御して、複数の電力モジュール30~60間における電力線L1~L5の接続状態を切り替える。 Further, the relay control unit 22a controls the electric circuit switching circuit 21 in accordance with a command signal from the vehicle ECU 10, and switches the connection state of the power lines L1 to L5 between the plurality of power modules 30 to 60.
 なお、中継装置22は、上記したマイコンやDSPによって構成され、各種の信号処理を行う。中継制御部22aは、第1のI/F部22bと第2のI/F部22c~22fの間で信号変換を行うための各種データやプログラム、または、信号処理回路に基づいて、上記の機能を実現する。 The relay device 22 is configured by the above-described microcomputer or DSP and performs various signal processing. The relay control unit 22a is based on various data and programs for performing signal conversion between the first I / F unit 22b and the second I / F units 22c to 22f, or a signal processing circuit. Realize the function.
 一例として、第1のI/F部22bが車両ECU10から充電器動作指令信号を受信した場合の中継制御部22aの動作について説明する。 As an example, the operation of the relay control unit 22a when the first I / F unit 22b receives a charger operation command signal from the vehicle ECU 10 will be described.
 この際、中継制御部22aは、充電器動作指令信号を充電モジュール50と通信する際の仕様(第2のI/F部22eの仕様)に準じた信号に変換して、第2のI/F部22eを介して、この充電器動作指令信号を充電モジュール50に対して送信する。また、このとき、中継制御部22aは、電路切替回路21を制御して、充電器51と高電圧バッテリ41とを電気的に接続する。 At this time, the relay control unit 22a converts the charger operation command signal into a signal conforming to the specification (specification of the second I / F unit 22e) when communicating with the charging module 50, and the second I / F. This charger operation command signal is transmitted to the charging module 50 via the F unit 22e. At this time, the relay control unit 22 a controls the electric circuit switching circuit 21 to electrically connect the charger 51 and the high voltage battery 41.
 一方、充電モジュール50の充電器制御部52aは、I/F部52bを介して、車両ECU10からの充電器動作指令信号を取得することになる。これにより、充電器制御部52aは、充電器51に対して対応する制御を実行させる。この際、充電器51と高電圧バッテリ41とは、電路切替回路21を介して電気的に接続された状態となっているため、充電器制御部52aの制御のもと、充電器51による高電圧バッテリ41への充電が実行される。 On the other hand, the charger control unit 52a of the charging module 50 acquires the charger operation command signal from the vehicle ECU 10 via the I / F unit 52b. Thereby, the charger control unit 52a causes the charger 51 to execute corresponding control. At this time, since the charger 51 and the high voltage battery 41 are electrically connected via the electric circuit switching circuit 21, the high voltage by the charger 51 is controlled under the control of the charger controller 52a. Charging the voltage battery 41 is executed.
 このように、本実施形態では、車両ECU10と電力モジュール30~60のそれぞれが直接通信を行うのではなく、中継装置22を介して通信が行われる。 As described above, in this embodiment, the vehicle ECU 10 and the power modules 30 to 60 do not communicate directly but communicate via the relay device 22.
 そのため、車両ECU10が変更されるような場合、或いは、電力モジュール30~60のそれぞれを異なる車両ECU10に適用するような場合であっても、中継装置22(あるいは中継装置22を有するジャンクションボックス20)を変更することで、電力モジュール30~60のそれぞれを変更する必要がなくなる。 Therefore, even when the vehicle ECU 10 is changed or when each of the power modules 30 to 60 is applied to a different vehicle ECU 10, the relay device 22 (or the junction box 20 having the relay device 22). It becomes unnecessary to change each of the power modules 30 to 60.
 より具体的には、車両ECU10と通信するための仕様が変更されるような場合、車両ECU10のI/F部10bと通信するための仕様に対応するように、中継装置22の第1のI/F部22b及び中継制御部22aを変更する一方、電力モジュール30~60のそれぞれと通信する第2のI/F部22c~22fは、車両ECU10のI/F部10bの仕様に依存せず、変更されない。 More specifically, when the specification for communicating with the vehicle ECU 10 is changed, the first I of the relay device 22 is adapted to correspond to the specification for communicating with the I / F unit 10b of the vehicle ECU 10. / F unit 22b and relay control unit 22a are changed, while second I / F units 22c to 22f communicating with each of power modules 30 to 60 do not depend on the specifications of I / F unit 10b of vehicle ECU 10. Will not change.
 したがって、車両ECU10のI/F部10bの変更にあわせて、電力モジュール30~60のそれぞれのI/F部32b、42b、52b及び63bを変更する必要がなくなり、新たに電力モジュール30~60のそれぞれを開発するための製造コストを抑制することができる。また、このような構成とすることにより、規格線(例えば、CAN通信プロコトルの規格品)ではなく、専用部品を用いることもできる。 Therefore, it is not necessary to change the I / F units 32b, 42b, 52b and 63b of the power modules 30 to 60 in accordance with the change of the I / F unit 10b of the vehicle ECU 10. Manufacturing costs for developing each can be reduced. Further, by adopting such a configuration, it is possible to use a dedicated part instead of a standard line (for example, a standard product of CAN communication protocol).
 なお、車両ECU10のI/F部10bの仕様が変更される例としては、上記したように、ハードウェア要素及びソフトウェア要素のいずれについても考えられ、例えば、信号線の規格が変わる(CAN通信プロコトルの規格線から専用信号線に変更)、特定の信号線の有無が変わる(バスの本数が変わる)、信号線にて授受するデータ種類が変わる等が考えられる。 In addition, as described above, as an example in which the specification of the I / F unit 10b of the vehicle ECU 10 is changed, both the hardware element and the software element can be considered. For example, the signal line standard changes (CAN communication protocol). The standard line is changed to a dedicated signal line), the presence / absence of a specific signal line is changed (the number of buses is changed), the type of data exchanged with the signal line is changed, and the like.
 以上、本実施形態に係る中継装置22を用いることによって、車両ECU10側のインターフェースの仕様や電力モジュール30~60側のインターフェースの仕様によらず、車両ECU10と電力モジュール30~60との間で通信することが可能となる。したがって、通信手段による制約を受けることなく、車両ECU10と電力モジュール30~60とを自由に組み合わせて車両を設計することができる。 As described above, by using the relay device 22 according to the present embodiment, communication is performed between the vehicle ECU 10 and the power modules 30 to 60 regardless of the specifications of the interface on the vehicle ECU 10 side or the specifications of the interface on the power modules 30 to 60 side. It becomes possible to do. Therefore, the vehicle can be designed by freely combining the vehicle ECU 10 and the power modules 30 to 60 without being restricted by the communication means.
 また、本実施形態に係る中継装置22によれば、電力モジュール30~60のそれぞれから制御系統に接続するために引き回される信号線や異常検知線(図示せず)を短縮し、消費電力の低減及び省スペース化に寄与することができる。 In addition, according to the relay device 22 according to the present embodiment, signal lines and abnormality detection lines (not shown) routed to connect to the control system from each of the power modules 30 to 60 are shortened, and power consumption is reduced. This can contribute to a reduction in space and space saving.
 なお、中継装置22は、より望ましくは、ジャンクションボックス20の筐体内に配設する。これによって、例えば、中継装置22に電力授受の状態を監視するセンサ(第4の実施形態で後述)を設ける場合、中継装置22とセンサの間の通信線を短くすることができ、通信線に重畳される電磁ノイズを抑制できる。これにより、高精度な検知が可能となるため、有用である。 It should be noted that the relay device 22 is more preferably disposed in the casing of the junction box 20. Thereby, for example, when a sensor (described later in the fourth embodiment) for monitoring the state of power transfer is provided in the relay device 22, the communication line between the relay device 22 and the sensor can be shortened. Superposed electromagnetic noise can be suppressed. This is useful because highly accurate detection is possible.
 (第2の実施形態)
 図2は、第2の実施形態に係る車両Aの構成の一例を示す図である。
(Second Embodiment)
FIG. 2 is a diagram illustrating an example of a configuration of a vehicle A according to the second embodiment.
 図2は、ジャンクションボックス20に新たに補機装置23を設けている点、及び中継装置22が補機装置23を制御する補機装置制御部22gを有する点で、第1の実施形態と相違する。なお、第1の実施形態と共通する構成については、説明を省略する。以下、他の実施形態についても同様である。 FIG. 2 is different from the first embodiment in that an auxiliary device 23 is newly provided in the junction box 20 and the relay device 22 includes an auxiliary device control unit 22g that controls the auxiliary device 23. To do. Note that description of configurations common to the first embodiment is omitted. Hereinafter, the same applies to other embodiments.
 補機装置23とは、電力モジュール30~60のいずれかの付加的な機能を実現する装置であって、車種あるいは車両のモデル毎に応じて要否が異なる装置である。例えば、充電器51を冷却するためのファン等が該当する。なお、補機装置23がファンである場合、このファンへは補機バッテリ61から電力が供給される。 The auxiliary machine device 23 is a device that realizes an additional function of any one of the power modules 30 to 60, and is a device that differs depending on the vehicle type or the vehicle model. For example, a fan or the like for cooling the charger 51 is applicable. When the auxiliary device 23 is a fan, electric power is supplied from the auxiliary battery 61 to the fan.
 車種あるいは車両のモデルに応じて充電器51の出力電力が異なる場合に、出力電力に応じて冷却方式が異なる場合が存在する。例えば、出力電力が高い場合は水冷方式が用いられ、出力電力が低い場合には空冷方式が用いられる。 When the output power of the charger 51 varies depending on the vehicle type or vehicle model, the cooling method may vary depending on the output power. For example, the water cooling method is used when the output power is high, and the air cooling method is used when the output power is low.
 ここで、例えば、空冷方式であれば、ファン及びこのファンを制御するコントローラが必要となる。このようなコントローラとして、通常、充電モジュール50の電子制御ユニットが用いられている。 Here, for example, in the case of an air cooling system, a fan and a controller for controlling the fan are required. As such a controller, the electronic control unit of the charging module 50 is usually used.
 したがって、仮に、このような補機装置23を、電力モジュール30~60のそれぞれに搭載する場合、様々な車種あるいは車両のモデルに対応するためには、補機装置23を搭載する電力モジュールと、補機装置23を搭載しない電力モジュールの両方を開発する必要が生じる。例えば、充電器51を冷却するためのファンを充電モジュール50が有している場合、ファンを有する充電モジュール50とファンを有さない充電モジュール50の両方を開発する必要があった。その結果、電力モジュールに付加的な機能を実装させるか否かについて、個別に選択する自由度が制限される。 Therefore, if such an auxiliary device 23 is mounted on each of the power modules 30 to 60, in order to support various vehicle types or vehicle models, a power module on which the auxiliary device 23 is mounted, There is a need to develop both power modules that are not equipped with the auxiliary device 23. For example, when the charging module 50 has a fan for cooling the charger 51, it is necessary to develop both the charging module 50 having a fan and the charging module 50 having no fan. As a result, the degree of freedom for individually selecting whether or not to add an additional function to the power module is limited.
 これに対し、本実施形態では、ジャンクションボックス20に付帯させて補機装置23を設け、電力モジュール30~60のそれぞれの電子制御ユニットに代えて、中継装置22の補機装置制御部22gが、補機装置23の動作を制御する。つまり、補機装置制御部22gが、補機装置23のコントローラとして機能する。 On the other hand, in the present embodiment, an auxiliary device 23 is provided attached to the junction box 20, and the auxiliary device control unit 22g of the relay device 22 is replaced with the electronic control unit of each of the power modules 30 to 60. The operation of the auxiliary device 23 is controlled. That is, the auxiliary device control unit 22g functions as a controller of the auxiliary device 23.
 本実施形態に係る中継制御部22aは、例えば、車両ECU10からの指令信号に応じて、電力モジュール30~60のそれぞれに対してこの指令信号を送出すると共に、補機装置制御部22gに対しても同じ指令信号を送出する。これにより、補機装置制御部22gは、指令信号に応じて、補機装置23を動作させる。 For example, the relay control unit 22a according to the present embodiment sends this command signal to each of the power modules 30 to 60 in response to a command signal from the vehicle ECU 10, and to the auxiliary device control unit 22g. Sends the same command signal. As a result, the auxiliary device control unit 22g operates the auxiliary device 23 in accordance with the command signal.
 以上のように、本実施形態によれば、ジャンクションボックス20のみを変更すれば、補機装置23の要否毎に、電力モジュール30~60のそれぞれを変更したり、開発したりする必要がなくなり、製造コストを抑制することができる。換言すると、車両毎に、電力モジュール30~60の付加的な機能を種々に変更することが可能となる。 As described above, according to the present embodiment, if only the junction box 20 is changed, it is not necessary to change or develop each of the power modules 30 to 60 for each necessity of the auxiliary device 23. The manufacturing cost can be suppressed. In other words, the additional functions of the power modules 30 to 60 can be variously changed for each vehicle.
 なお、図2では、中継制御部22aと補機装置制御部22gを分けて記載したが、1つのマイコンやDSPによって中継制御部22aと補機装置制御部22gの両方が実現されてもよい。 In FIG. 2, the relay control unit 22a and the auxiliary device control unit 22g are described separately, but both the relay control unit 22a and the auxiliary device control unit 22g may be realized by a single microcomputer or DSP.
 (第3の実施形態)
 図3は、第3の実施形態に係る車両Aの構成の一例を示す図である。
(Third embodiment)
FIG. 3 is a diagram illustrating an example of a configuration of a vehicle A according to the third embodiment.
 本実施形態に係る中継装置22は、充放電制御部22hを有する点で、第1の実施形態に係る中継装置22と相違する。 The relay device 22 according to the present embodiment is different from the relay device 22 according to the first embodiment in that it includes a charge / discharge control unit 22h.
 充放電制御部22hは、高電圧バッテリ41の充電状態を取得し、高電圧バッテリ41における充放電を実行する機能であり、バッテリモジュール40や充電モジュール50に対して送信する指令信号を生成する。この機能は、第1の実施形態においては、車両ECU10が有するが、本実施形態では、車両ECU10からの指令信号を受けることなく、中継装置22が充放電制御部22hにより主体的に指令信号を生成する。 The charge / discharge control unit 22h is a function of acquiring the charge state of the high voltage battery 41 and executing charge / discharge in the high voltage battery 41, and generates a command signal to be transmitted to the battery module 40 and the charge module 50. This function is provided in the vehicle ECU 10 in the first embodiment, but in this embodiment, the relay device 22 mainly receives the command signal from the charge / discharge control unit 22h without receiving the command signal from the vehicle ECU 10. Generate.
 換言すると、本実施形態では、中継装置22が駐車中の制御に関する機能を有し、車両ECU10が走行中の制御に関する機能を有する。 In other words, in this embodiment, the relay device 22 has a function related to control during parking, and the vehicle ECU 10 has a function related to control during traveling.
 駐車中の制御に関する機能としては、例えば、高電圧バッテリ41の充電状態を取得し、充電器動作指令信号を充電モジュール50へ送信する充電指令機能、補機バッテリ61の充電状態に応じてDC/DCコンバータ動作指令信号を補機モジュール60へ送信するDC/DC指令機能、及び、外部急速充電設備S2と通信を行うとともに、電路切替回路21の制御を行って高電圧バッテリ41を充電する急速充電指令機能等が該当する。充放電制御部22hは、中継装置22において上記機能を実現するように、指令信号を生成する。 The functions related to the control during parking include, for example, a charging command function for acquiring a charging state of the high voltage battery 41 and transmitting a charger operation command signal to the charging module 50, and a DC / DC according to the charging state of the auxiliary battery 61. A DC / DC command function for transmitting a DC converter operation command signal to the auxiliary machine module 60, and a quick charge for communicating with the external quick charge facility S2 and charging the high voltage battery 41 by controlling the electric circuit switching circuit 21 Applicable to command functions. The charging / discharging control unit 22h generates a command signal so as to realize the above function in the relay device 22.
 また、さらに、充電器51が双方向に電力変換可能な双方向充電回路である場合、或いは、電力線L5を介して車両Aから車外に電力を出力可能な構成の場合、高電圧バッテリ41の充電状態を取得し、双方向充電回路の動作指令信号を充電モジュール50へ送信したり、車外への放電電力を制御する放電指令信号を生成する車外放電指令機能(V2H/V2G機能)を含んでもよい。 Further, when the charger 51 is a bidirectional charging circuit capable of bi-directional power conversion, or when the power can be output from the vehicle A to the outside of the vehicle via the power line L5, the high voltage battery 41 is charged. It may include a vehicle discharge command function (V2H / V2G function) for acquiring a state and transmitting an operation command signal for the bidirectional charging circuit to the charging module 50 or generating a discharge command signal for controlling discharge power to the outside of the vehicle. .
 また、走行中の制御に関する機能としては、例えば、アクセル要求トルクに応じたインバータ駆動指令信号をインバータモジュール30へ送信する駆動指令機能が該当する。 Further, as a function related to control during traveling, for example, a drive command function for transmitting an inverter drive command signal corresponding to the accelerator required torque to the inverter module 30 is applicable.
 急速充電指令機能を中継装置22が有する場合、中継装置22は、外部急速充電設備S2と通信するためのI/F部22iを有する。充放電制御部22hは、I/F部22iを介して、外部急速充電設備S2と通信を行うとともに、電路切替回路21を切り替えるための切り替え指令信号を生成し、外部急速充電設備S2と高電圧バッテリ41が電気的に接続されるように電路切替回路21を切り替える。これにより、外部急速充電設備S2から供給される電力により高電圧バッテリ41が充電される。 When the relay device 22 has the quick charge command function, the relay device 22 includes an I / F unit 22i for communicating with the external quick charge facility S2. The charge / discharge control unit 22h communicates with the external quick charge facility S2 via the I / F unit 22i, generates a switching command signal for switching the electric circuit switching circuit 21, and generates a high voltage with the external quick charge facility S2. The electric circuit switching circuit 21 is switched so that the battery 41 is electrically connected. Thereby, the high voltage battery 41 is charged with the electric power supplied from the external quick charging facility S2.
 以上のように、本実施形態に係る中継装置22によれば、従来の車両ECU10が有する機能の一部を中継装置22が有する構成とすることによって、駐車中の充電制御等に関しては、中継装置22と電力モジュール30~60のそれぞれ(充電モジュール50、バッテリモジュール40)の間での通信のみで実行することができる。これによって、中継装置22を介して、車両ECU10と電力モジュール30~60のそれぞれとの間で通信を行う場合よりも、通信ロス(遅延)なく、電力モジュール30~60のそれぞれを制御することが可能となる。 As described above, according to the relay device 22 according to the present embodiment, the relay device 22 has a part of the functions of the conventional vehicle ECU 10, so that the relay device can be used for charge control during parking. 22 and each of the power modules 30 to 60 (charging module 50, battery module 40). Thus, each of the power modules 30 to 60 can be controlled without communication loss (delay), compared to the case where communication is performed between the vehicle ECU 10 and each of the power modules 30 to 60 via the relay device 22. It becomes possible.
 また、駐車中の制御に関する機能を中継装置22が有する場合、駐車中における車両ECU10による処理負荷が軽減するため、車両ECU10を低消費電力状態とすることが可能であり、駐車中の消費電力の削減が可能となる。 Further, when the relay device 22 has a function related to control during parking, the processing load on the vehicle ECU 10 during parking is reduced, so that the vehicle ECU 10 can be in a low power consumption state, and the power consumption during parking can be reduced. Reduction is possible.
 また、走行中においても、複数の電力モジュール30~60間における充放電の制御(例えば、DC/DC指令機能)を中継装置22が実行することが可能になる。換言すると、本実施形態に係る中継装置22によれば、車両ECU10に代えて、電力系統の動作制御を統括的に実行することも可能となる。したがって、制御系統が複雑化する中で、車両ECU10の処理負荷を軽減することができる。 In addition, the relay device 22 can execute charge / discharge control (for example, a DC / DC command function) between the plurality of power modules 30 to 60 even during traveling. In other words, according to the relay device 22 according to the present embodiment, instead of the vehicle ECU 10, it is also possible to comprehensively execute operation control of the power system. Therefore, the processing load on the vehicle ECU 10 can be reduced while the control system is complicated.
 なお、この場合、中継装置22は、電力モジュール30~60のそれぞれの状態を内蔵する記憶部(図示せず)に管理するのが望ましい。 In this case, it is desirable that the relay device 22 manages each state of the power modules 30 to 60 in a built-in storage unit (not shown).
 また、本実施形態のように、車両ECU10が駆動指令機能を有する場合には、車両ECU10とインバータモジュール30との通信は中継装置22を介さずに直接通信してもよい。 Further, as in the present embodiment, when the vehicle ECU 10 has a drive command function, the communication between the vehicle ECU 10 and the inverter module 30 may be performed directly without using the relay device 22.
 この場合、走行中の制御は、車両ECU10が主体となり、走行中の中継装置22の処理負担を軽減することが可能となる。 In this case, the vehicle ECU 10 is mainly responsible for the control during traveling, and the processing load on the relay device 22 during traveling can be reduced.
 また、図3では、中継制御部22aと充放電制御部22hを分けて記載したが、1つのマイコンやDSPによって中継制御部22aと充放電制御部22hの両方が実現されてもよい。 In FIG. 3, the relay control unit 22a and the charge / discharge control unit 22h are described separately, but both the relay control unit 22a and the charge / discharge control unit 22h may be realized by one microcomputer or DSP.
 (第4の実施形態)
 図4は、第4の実施形態に係る車両Aの構成の一例を示す図である。
(Fourth embodiment)
FIG. 4 is a diagram illustrating an example of a configuration of a vehicle A according to the fourth embodiment.
 本実施形態に係る中継装置22は、さらに監視部22jを有する点で、第1の実施形態と相違する。 The relay device 22 according to the present embodiment is different from the first embodiment in that it further includes a monitoring unit 22j.
 監視部22jは、ジャンクションボックス20に設けられた電力線L1~L5それぞれに通流する電流(または電圧)を検知するセンサ24からの検知信号を取得し、この検知信号に基づいて、複数の電力モジュール30~60間における電力授受の状態を監視する。 The monitoring unit 22j acquires a detection signal from the sensor 24 that detects a current (or voltage) flowing through each of the power lines L1 to L5 provided in the junction box 20, and based on the detection signal, a plurality of power modules Monitor the power transfer status between 30-60.
 監視部22jは、例えば、電力授受の状態の異常を検知した場合、異常通知信号を生成し、中継制御部22aに対してこの異常を通知する。そして、中継制御部22aは、監視部22jから異常通知信号を受信した場合、対応する電力モジュール及び車両ECU10に対して、異常の発生を通知する。また、中継制御部22aは、電路切替回路21を制御して、対応する電路を遮断する。 When the monitoring unit 22j detects, for example, an abnormality in the power transfer state, the monitoring unit 22j generates an abnormality notification signal and notifies the relay control unit 22a of this abnormality. Then, when the relay control unit 22a receives the abnormality notification signal from the monitoring unit 22j, the relay control unit 22a notifies the corresponding power module and the vehicle ECU 10 of the occurrence of the abnormality. Moreover, the relay control part 22a controls the electric circuit switching circuit 21, and interrupts | blocks a corresponding electric circuit.
 このように、本実施形態に係る中継装置22によれば、複数の電力モジュール30~60間における電力授受の状態を監視すると共に、この電力授受の状態に応じて、早期に、対応する電力モジュールを制御(例えば、動作停止指令)することができる。 As described above, according to the relay device 22 according to the present embodiment, the state of power transmission / reception among the plurality of power modules 30 to 60 is monitored, and the corresponding power module is quickly responded according to the state of power transmission / reception. Can be controlled (for example, an operation stop command).
 なお、図4では、中継制御部22aと監視部22jを分けて記載したが、1つのマイコンやDSPによって中継制御部22aと監視部22jの両方が実現されてもよい。 In FIG. 4, the relay control unit 22a and the monitoring unit 22j are described separately, but both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
 (第5の実施形態)
 図5は、第5の実施形態に係る車両Aの構成の一例を示す図である。
(Fifth embodiment)
FIG. 5 is a diagram illustrating an example of a configuration of a vehicle A according to the fifth embodiment.
 本実施形態に係る車両Aは、電路切替回路21内に各電力線L1~L5が接続されるメイン電力線L6を有すると共に、メイン電力線L6に流れる電流を検知する電流センサ25、及びメイン電力線L6に印加する電圧を検知する電圧センサ26を有する点で、第4の実施形態と相違する。なお、第4の実施形態と同様に、中継制御部22aと監視部22jを分けて記載したが、1つのマイコンやDSPによって中継制御部22aと監視部22jの両方が実現されてもよい。 The vehicle A according to the present embodiment has a main power line L6 to which the power lines L1 to L5 are connected in the electric circuit switching circuit 21, and a current sensor 25 that detects a current flowing through the main power line L6 and an application to the main power line L6. The fourth embodiment is different from the fourth embodiment in that it includes a voltage sensor 26 that detects a voltage to be detected. As in the fourth embodiment, the relay control unit 22a and the monitoring unit 22j are described separately, but both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
 また、本実施形態では、第3の実施形態と同様に、駐車中の制御に関する機能を中継装置22が有している。そのため、中継装置22が充放電制御部22hを有しているが、第3の実施形態と同様に、中継制御部22aと充放電制御部22hは1つのマイコンやDSPによって構成されていてもよい。 In this embodiment, the relay device 22 has a function related to control during parking, as in the third embodiment. Therefore, although the relay apparatus 22 has the charging / discharging control part 22h, the relay control part 22a and the charging / discharging control part 22h may be comprised by one microcomputer and DSP similarly to 3rd Embodiment. .
 本実施形態では、電力線L2は、リレー21aを介してメイン電力線L6に接続され、電力線L3は、ヒューズ21bを介してメイン電力線L6に接続され、電力線L5は、ヒューズ21cとリレー21dを介してメイン電力線L6に接続され、電力線L1及びL4は、直接メイン電力線L6に接続される。 In this embodiment, the power line L2 is connected to the main power line L6 via the relay 21a, the power line L3 is connected to the main power line L6 via the fuse 21b, and the power line L5 is connected to the main power line via the fuse 21c and the relay 21d. Connected to the power line L6, the power lines L1 and L4 are directly connected to the main power line L6.
 なお、本実施形態において、電力モジュール30~60のそれぞれの間における電力の授受は、例えば、メイン電力線L6を介して行われ、リレー21a及びリレー21dの切り替え制御、並びに、電力モジュール30~60のそれぞれの制御(インバータモジュール30のインバータ回路31、充電モジュール50の充電器51、補機モジュール60のDC/DCコンバータ62のスイッチング制御)によって行われる。 In the present embodiment, power is exchanged between the power modules 30 to 60 via, for example, the main power line L6, switching control between the relay 21a and the relay 21d, and the power modules 30 to 60. Each control (switching control of the inverter circuit 31 of the inverter module 30, the charger 51 of the charging module 50, and the DC / DC converter 62 of the auxiliary device module 60) is performed.
 電圧センサ26は、メイン電力線L6に印加する電圧を検知するセンサであって、これによって、各電力線L1~L5に印加する電圧を検知する。また、電流センサ25は、メイン電力線L6の電流を検知するセンサである。 The voltage sensor 26 is a sensor that detects a voltage applied to the main power line L6, and thereby detects a voltage applied to each of the power lines L1 to L5. The current sensor 25 is a sensor that detects the current of the main power line L6.
 本実施形態に係る中継装置22は、第4の実施形態と同様に、監視部22jが、所定のタイミング(例えば、0.1秒間隔)で電圧センサ26及び電流センサ25の検知信号を取得し、この検知信号を中継制御部22aに送信する。中継制御部22aは、監視部22jから検知信号を受信するに応じて、所定の電力モジュール30~60に対して送信する。なお、中継制御部22aは、予め、記憶部に設定された転送対象の電力モジュール30~60に対して送信する構成としてもよい。 In the relay device 22 according to the present embodiment, the monitoring unit 22j acquires the detection signals of the voltage sensor 26 and the current sensor 25 at a predetermined timing (for example, at intervals of 0.1 seconds), as in the fourth embodiment. The detection signal is transmitted to the relay control unit 22a. The relay control unit 22a transmits the detection signal to the predetermined power modules 30 to 60 in response to receiving the detection signal from the monitoring unit 22j. The relay control unit 22a may be configured to transmit to the transfer target power modules 30 to 60 set in the storage unit in advance.
 このように、各電力線L1~L5をメイン電力線L6に接続し、メイン電力線L6の電流を検知する電流センサ25、および、メイン電力線L6に印加する電圧を検知する電圧センサ26を有する構成とすることによって、従来、電力モジュール30~60のそれぞれが有していたセンサの一部を削減することができる。すなわち、コストを削減することが可能となる。 As described above, the power lines L1 to L5 are connected to the main power line L6, and the current sensor 25 for detecting the current of the main power line L6 and the voltage sensor 26 for detecting the voltage applied to the main power line L6 are provided. Thus, a part of the sensors that each of the power modules 30 to 60 conventionally has can be reduced. That is, the cost can be reduced.
 具体的には、充電器51の出力電圧を検知する電圧センサ、外部急速充電設備S2から供給される電圧を検知する電圧センサ、及び、DC/DCコンバータ62等に入力される電圧を検知する電圧センサの役割の全てまたは一部を、メイン電力線L6に印加する電圧を検知する電圧センサに集約することが可能である。 Specifically, a voltage sensor that detects the output voltage of the charger 51, a voltage sensor that detects a voltage supplied from the external quick charging facility S2, and a voltage that detects a voltage input to the DC / DC converter 62 or the like. It is possible to collect all or part of the role of the sensor in a voltage sensor that detects a voltage applied to the main power line L6.
 (第6の実施形態)
 図6は、第6の実施形態に係る車両Aの構成の一例を示す図である。
(Sixth embodiment)
FIG. 6 is a diagram illustrating an example of a configuration of a vehicle A according to the sixth embodiment.
 本実施形態に係る車両Aは、第5の実施形態と同様に、電路切替回路21内にメイン電力線L6を配設する一方で、電流センサ25及び電圧センサ26に代えて、DC/DCコンバータ62の電力線L4に流れる電流を検知する電流センサ27を有する点で、第5の実施形態と相違する。 In the vehicle A according to the present embodiment, the main power line L6 is disposed in the electric circuit switching circuit 21 as in the fifth embodiment, while the DC / DC converter 62 is substituted for the current sensor 25 and the voltage sensor 26. This is different from the fifth embodiment in that it includes a current sensor 27 that detects a current flowing through the power line L4.
 上記のように、メイン電力線L6に各電力線L1~L5を接続する構成とした場合、充電器51の電力線L3は、メイン電力線L6を介して高電圧バッテリ41の電力線L2に接続されると共に、メイン電力線L6を介してDC/DCコンバータ62の電力線L4にも接続されることとなる。 As described above, when the power lines L1 to L5 are connected to the main power line L6, the power line L3 of the charger 51 is connected to the power line L2 of the high-voltage battery 41 via the main power line L6 and the main power line L6. It is also connected to the power line L4 of the DC / DC converter 62 via the power line L6.
 このような構成においては、充電器51からの給電によって高電圧バッテリ41を充電している際に、同時に、補機バッテリ61を充電するべく、DC/DCコンバータ62が動作した場合、充電器51の出力電力は、高電圧バッテリ41とDC/DCコンバータ62の両方に供給されることになる。 In such a configuration, when the DC / DC converter 62 is operated to charge the auxiliary battery 61 at the same time when the high voltage battery 41 is charged by the power supply from the charger 51, the charger 51 Output power is supplied to both the high voltage battery 41 and the DC / DC converter 62.
 ここで、例えば、定電流定電圧充電(Constant Current-Constant Voltage:CCCV)方式で高電圧バッテリ41を充電する場合には、充電時間の短縮のために、充電器51は、高電圧バッテリ41に対して供給する電流を、高電圧バッテリ41で許容される最大電流(以下、「最大許容電流」と称する)まで増大させることが好ましい。 Here, for example, when the high voltage battery 41 is charged by a constant current-constant voltage charging (Constant Current-Constant Voltage: CCCV) method, the charger 51 is connected to the high voltage battery 41 in order to shorten the charging time. It is preferable to increase the current supplied to the maximum current allowed by the high voltage battery 41 (hereinafter referred to as “maximum allowable current”).
 しかしながら、充電器51が予め設定された最大許容電流となるように電力を出力しているときに、同時に、DC/DCコンバータ62が動作した場合、充電器51から供給する電流の一部が、DC/DCコンバータ62側に分流してしまう。その結果、高電圧バッテリ41においては、最大許容電流よりも小さい電流で充電がなされることになり、充電時間が長期化するおそれがある。 However, when the DC / DC converter 62 operates at the same time when the charger 51 outputs power so as to have a preset maximum allowable current, a part of the current supplied from the charger 51 is: The current is diverted to the DC / DC converter 62 side. As a result, the high voltage battery 41 is charged with a current smaller than the maximum allowable current, and the charging time may be prolonged.
 このような観点から、本実施形態では、DC/DCコンバータ62の電力線L4に分流している電流を検知する電流センサ27を設け、この分流している電流を考慮して、充電器51が出力電流を制御し得るように構成する。 From this point of view, in the present embodiment, the current sensor 27 that detects the current that is shunted to the power line L4 of the DC / DC converter 62 is provided, and the charger 51 outputs in consideration of this shunted current. The current can be controlled.
 電流センサ27の検知信号を伝達する信号経路は、第4の実施形態と同様である。つまり、中継装置22は、監視部22jが電流センサ27の検知信号を取得し、中継制御部22aを介して、充電モジュール50の電子制御ユニット52に対して送信する。 The signal path for transmitting the detection signal of the current sensor 27 is the same as in the fourth embodiment. That is, in the relay device 22, the monitoring unit 22j acquires the detection signal of the current sensor 27 and transmits the detection signal to the electronic control unit 52 of the charging module 50 via the relay control unit 22a.
 そして、充電モジュール50の電子制御ユニット52は、電流センサ27の検知信号を受信するに応じて、充電器51からの出力電流が、予め設定された最大許容電流とDC/DCコンバータ62側に分流する電流とを加算した量となるように、充電器51を制御する。 Then, in response to receiving the detection signal of the current sensor 27, the electronic control unit 52 of the charging module 50 diverts the output current from the charger 51 to the preset maximum allowable current and the DC / DC converter 62 side. The charger 51 is controlled so as to be an amount obtained by adding the current to be added.
 このように、本実施形態によれば、高電圧バッテリ41を充電する際に、同時にDC/DCコンバータ62が動作した場合であっても、最大許容電流にて高電圧バッテリ41を充電することが可能となり、充電時間の短縮を図ることができる。 Thus, according to the present embodiment, when charging the high voltage battery 41, the high voltage battery 41 can be charged with the maximum allowable current even when the DC / DC converter 62 operates simultaneously. This makes it possible to reduce the charging time.
 (第6の実施形態の変形例)
 図7は、第6の実施形態の変形例に係る車両Aの構成の一例を示す図である。
(Modification of the sixth embodiment)
FIG. 7 is a diagram illustrating an example of a configuration of a vehicle A according to a modification of the sixth embodiment.
 図7では、電流センサ27が、電力線L4に通流する電流を検知する構成に代えて、電力線L2に通流する電流を検知する構成となっている点で、図6と相違する。 7 differs from FIG. 6 in that the current sensor 27 is configured to detect the current flowing through the power line L2 instead of the configuration detecting the current flowing through the power line L4.
 そして、電流センサ27の検知信号に基づき、定電流充電時に高電圧バッテリ41に供給される電流値が最大許容電流値となるように、充電器51の出力電流が制御される。 Then, based on the detection signal of the current sensor 27, the output current of the charger 51 is controlled so that the current value supplied to the high voltage battery 41 during the constant current charging becomes the maximum allowable current value.
 このような構成でも、上記第6の実施形態と同様に、高電圧バッテリ41を充電する際に、同時にDC/DCコンバータ62が動作した場合であっても、最大許容電流にて高電圧バッテリ41を充電することが可能となり、充電時間の短縮を図ることができる。 Even in such a configuration, similarly to the sixth embodiment, even when the DC / DC converter 62 is operated at the same time when the high voltage battery 41 is charged, the high voltage battery 41 is at the maximum allowable current. Can be charged, and the charging time can be shortened.
 (第7の実施形態)
 上記各実施形態で説明したように、第2のI/F部22c~22fは、車両ECU10と通信するための仕様に依拠しないインターフェースである。例えば、CAN通信プロトコルの規格とは異なるものを用いる。
(Seventh embodiment)
As described in the above embodiments, the second I / F units 22c to 22f are interfaces that do not depend on the specifications for communicating with the vehicle ECU 10. For example, a different one from the CAN communication protocol standard is used.
 これにより、仮に、CAN通信プロトコルにセキュリティ上の問題が発生した場合(例えば、ハッキング)があった場合であっても、第2のI/F部22c~22fと電力モジュール30~60のそれぞれと間の通信においては、すぐに影響がうけることが少なくなり、セキュリティ性能の向上が望める。 Thus, even if a security problem occurs in the CAN communication protocol (for example, hacking), the second I / F units 22c to 22f and the power modules 30 to 60 In the inter-communication, it is less likely to be affected immediately and the security performance can be improved.
 また、中継制御部22aのシステムセキュリティレベルを向上させた場合、セキュリティ上の問題が発生したとしても、中継装置22(中継制御部22a)でせき止めることができるため、第2のI/F部22c~22fと電力モジュール30~60のそれぞれと間の通信をセキュリティレベルが低い通信とすることが可能となり、その結果、開発コストを削減することも可能となる。 Further, when the system security level of the relay control unit 22a is improved, even if a security problem occurs, the relay device 22 (relay control unit 22a) can be used to stop the second I / F unit 22c. Communication between each of ˜22f and each of the power modules 30 to 60 can be performed with a low security level, and as a result, development costs can be reduced.
 (第8の実施形態)
 図8は、第8の実施形態に係る車両Aの構成の一例を示す図である。
(Eighth embodiment)
FIG. 8 is a diagram illustrating an example of a configuration of a vehicle A according to the eighth embodiment.
 本実施形態に係る車両Aは、中継装置22がさらに制御電源部22kを有する点で、第3の実施形態と相違する。 The vehicle A according to the present embodiment is different from the third embodiment in that the relay device 22 further includes a control power supply unit 22k.
 制御電源部22kは、第2のI/F部22c~22i、並びに電子制御ユニット32、42、52及び63に対して動作電源の供給を行う。制御電源部22kは、中継制御部22aが取得する車両ECU10からの指令信号に応じて、第2のI/F部22c~22fや電子制御ユニット32、42、52及び63に対して電力供給を行う。そして、電子制御ユニット32、42、52及び63はそれぞれ、動作電源の供給が行われるに応じて、動作を開始することになる。 The control power supply unit 22k supplies operation power to the second I / F units 22c to 22i and the electronic control units 32, 42, 52, and 63. The control power supply unit 22k supplies power to the second I / F units 22c to 22f and the electronic control units 32, 42, 52, and 63 in response to a command signal from the vehicle ECU 10 acquired by the relay control unit 22a. Do. Each of the electronic control units 32, 42, 52, and 63 starts operating in response to the supply of operating power.
 制御電源部22kは、例えば、電力供給する対象それぞれと、直流電力を送出する制御用電力線22ka~22kiで接続されており、制御用電力線22ka~22kiそれぞれに対して送出する直流電力の電圧を制御したり、電路の開閉を制御したりする。 For example, the control power supply unit 22k is connected to each power supply target via control power lines 22ka to 22ki for sending DC power, and controls the voltage of the DC power sent to each of the control power lines 22ka to 22ki. And controlling the opening and closing of the electric circuit.
 このように、制御電源の管理を中継装置22で行うことで、仮に、車種あるいは車両のモデル毎に応じて、電子制御ユニット32、42、52及び63への電源供給の仕様が異なっている場合(例えば、常時電源供給が必要の場合や、起動時のみ電源供給が必要の場合)であっても、制御電源部22kの制御のもと、車種あるいは車両のモデル毎に適した電源供給が可能となる。 As described above, when the control power source is managed by the relay device 22, the specifications of the power supply to the electronic control units 32, 42, 52, and 63 differ depending on the vehicle type or the vehicle model. (For example, when constant power supply is required or when power supply is required only at startup), power supply suitable for each vehicle model or vehicle model is possible under the control of the control power supply unit 22k. It becomes.
 したがって、車種あるいは車両のモデル毎に、電子制御ユニット32、42、52及び63のそれぞれの動作電源生成部を変更したり、開発したりする必要がなくなり、開発コストを抑制することができる。 Therefore, it is not necessary to change or develop the respective operation power generation units of the electronic control units 32, 42, 52, and 63 for each vehicle type or vehicle model, and the development cost can be suppressed.
 また、従来、電子制御ユニット32、42、52及び63が車両ECU10からの起動指令信号で起動する仕様の場合、電子制御ユニット32、42、52及び63においては、起動指令信号を受け取るため、常時、待機電力が供給されている必要がある。 Conventionally, when the electronic control units 32, 42, 52, and 63 have a specification that is activated by the activation command signal from the vehicle ECU 10, the electronic control units 32, 42, 52, and 63 always receive the activation command signal. Standby power needs to be supplied.
 これに対し、本実施形態に係る中継装置22によれば、中継制御部22aが車両ECU10からの起動指令信号を受信した際に、制御電源部22kにより、必要な電子制御ユニット32、42、52及び63へ選択的に電力供給を行う構成とすることができる。その結果、電子制御ユニット32、42、52及び63の不要な待機電力(暗電流)を削減することが可能となる。 On the other hand, according to the relay device 22 according to the present embodiment, when the relay control unit 22a receives the start command signal from the vehicle ECU 10, the control power source unit 22k performs the necessary electronic control units 32, 42, and 52. And 63 can be configured to selectively supply power. As a result, unnecessary standby power (dark current) of the electronic control units 32, 42, 52 and 63 can be reduced.
 なお、上記構成では、中継制御部22aと監視部22jを分けて記載したが、1つのマイコンやDSPによって中継制御部22aと監視部22jの両方が実現されてもよい。 In the above configuration, the relay control unit 22a and the monitoring unit 22j are described separately. However, both the relay control unit 22a and the monitoring unit 22j may be realized by a single microcomputer or DSP.
 (その他の実施形態)
 本開示は、上記実施形態に限らず、種々に変形態様が考えられる。
(Other embodiments)
The present disclosure is not limited to the above embodiment, and various modifications can be considered.
 上記実施形態では、中継装置22の構成の一例を種々に示している。但し、各実施形態で示した態様を種々に組み合わせたものを用いてもよい。 In the above embodiment, various examples of the configuration of the relay device 22 are shown. However, you may use what combined the aspect shown by each embodiment variously.
 また、上記実施形態では、データ通信の一例として、車両ECU10からの指令信号のすべてが中継装置22を介して、電力モジュール30~60のそれぞれに送信される態様を示した。しかし、車両ECU10とインバータモジュール30との通信等、一部のデータ通信は、中継装置22を介さずに直接通信してもよい。 In the above embodiment, as an example of data communication, the mode in which all command signals from the vehicle ECU 10 are transmitted to each of the power modules 30 to 60 via the relay device 22 is shown. However, some data communication such as communication between the vehicle ECU 10 and the inverter module 30 may be directly communicated without using the relay device 22.
 また、上記実施形態では、中継装置22の構成の一例として、中継制御部22aの機能が一つのマイコンによって実現されるものとして記載したが、複数のマイコンによって実現されてもよい。 In the above embodiment, as an example of the configuration of the relay device 22, the function of the relay control unit 22 a is described as being realized by a single microcomputer, but may be realized by a plurality of microcomputers.
 また、上記実施形態では、中継装置22が通信する対象の一例として、電力モジュールのみを示した。しかし、中継装置22は、電力モジュールに代えて、または、電力モジュールと共に、車両補機(例えば、エアコン用コンプレッサ、バッテリヒータ等)の車両モジュールと通信する構成としてもよい。なお、この場合、中継装置22は、各車両モジュールと通信するための仕様に応じたインターフェース(車両ECU10のインターフェースの仕様に依拠しないインターフェース)を有する構成とすればよい。 In the above-described embodiment, only the power module is shown as an example of a target with which the relay device 22 communicates. However, the relay device 22 may be configured to communicate with a vehicle module of a vehicle auxiliary machine (for example, a compressor for an air conditioner, a battery heater, etc.) instead of or together with the power module. In this case, the relay device 22 may be configured to have an interface (an interface that does not depend on the interface specification of the vehicle ECU 10) according to the specification for communicating with each vehicle module.
 本開示に係る制御装置は、車両に好適に用いることができる。 The control device according to the present disclosure can be suitably used for a vehicle.
A  車両
10  車両ECU
10a  動作制御部
10b,22b,22c,22d,22e,22f,22i,32b,42b,52b,63b  インターフェース部(I/F部)
20  ジャンクションボックス
21  電路切替回路
21a,21d  リレー
21b,21c  ヒューズ
22  中継装置
22a  中継制御部
22g  補機装置制御部
22h  充放電制御部
22j  監視部
22k  制御電源部
22ka~22ki  制御用電力線
23  補機装置
24  センサ
25,27  電流センサ
26  電圧センサ
30  インバータモジュール(電力モジュール)
31  インバータ回路
32,42,52  電子制御ユニット
32a  インバータ制御部(制御部)
40  バッテリモジュール(電力モジュール)
41  高電圧バッテリ
42a  バッテリ制御部(制御部)
50  充電モジュール(電力モジュール)
51  充電器
51a  ACフィルタ
51b  力率改善回路
51c,62  DC/DCコンバータ
52a  充電器制御部(制御部)
60  補機モジュール(電力モジュール)
61  補機バッテリ
63  電子制御ユニット
63a  DC/DCコンバータ制御部
S1  外部電源
S2  外部急速充電設備
A Vehicle 10 Vehicle ECU
10a Operation controller 10b, 22b, 22c, 22d, 22e, 22f, 22i, 32b, 42b, 52b, 63b Interface unit (I / F unit)
20 Junction box 21 Electric circuit switching circuit 21a, 21d Relay 21b, 21c Fuse 22 Relay device 22a Relay control unit 22g Auxiliary device control unit 22h Charge / discharge control unit 22j Monitoring unit 22k Control power supply unit 22ka to 22ki Control power line 23 Auxiliary device 24 Sensors 25 and 27 Current sensor 26 Voltage sensor 30 Inverter module (power module)
31 Inverter circuit 32, 42, 52 Electronic control unit 32a Inverter control part (control part)
40 Battery module (power module)
41 High-voltage battery 42a Battery control unit (control unit)
50 Charging module (power module)
51 Charger 51a AC Filter 51b Power Factor Correction Circuit 51c, 62 DC / DC Converter 52a Charger Control Unit (Control Unit)
60 Auxiliary module (power module)
61 Auxiliary Battery 63 Electronic Control Unit 63a DC / DC Converter Control Unit S1 External Power Supply S2 External Quick Charging Facility

Claims (12)

  1. 車両の駆動状態を指令する信号を生成する車両ECUと少なくとも1つの車両モジュールとの間におけるデータ通信を中継する車載制御装置であって、
    前記車両ECUと通信する第1のインターフェースと、
    前記少なくとも1つの車両モジュールと通信する第2のインターフェースと、を備え、
    前記第1のインターフェースは、前記車両ECUと通信するための仕様に依拠したインターフェースであり、
    前記第2のインターフェースは、前記車両ECUと通信するための仕様に依拠しないインターフェースである、
    車載制御装置。
    An in-vehicle control device that relays data communication between a vehicle ECU that generates a signal for instructing a driving state of a vehicle and at least one vehicle module,
    A first interface communicating with the vehicle ECU;
    A second interface in communication with the at least one vehicle module;
    The first interface is an interface based on specifications for communicating with the vehicle ECU,
    The second interface is an interface that does not depend on specifications for communicating with the vehicle ECU.
    In-vehicle control device.
  2. 前記少なくとも1つの車両モジュールは、電力モジュールである、
    請求項1に記載の車載制御装置。
    The at least one vehicle module is a power module;
    The in-vehicle control device according to claim 1.
  3. 前記第1のインターフェースを介して取得した前記車両モジュールに対する指令信号を、前記第2のインターフェースを介して前記車両モジュールに送信し得る信号に変換する中継制御部をさらに備えた、
    請求項1に記載の車載制御装置。
    A relay control unit that converts a command signal for the vehicle module acquired via the first interface into a signal that can be transmitted to the vehicle module via the second interface;
    The in-vehicle control device according to claim 1.
  4. 前記中継制御部は、前記車両モジュールに対する前記指令信号に基づいて、前記車両モジュールの電気的接続状態を切り替える電路切替回路を切り替え制御する、
    請求項3に記載の車載制御装置。
    The relay control unit switches and controls an electric circuit switching circuit that switches an electrical connection state of the vehicle module based on the command signal to the vehicle module.
    The in-vehicle control device according to claim 3.
  5. 前記電力モジュールは、バッテリを含むバッテリモジュール、前記バッテリへの充電を行う充電モジュール、前記バッテリの電力を電力変換しモータへ供給するインバータモジュール、前記バッテリの電力を降圧して補機バッテリを充電する補機モジュールの何れかを含む、
    請求項2に記載の車載制御装置。
    The power module includes a battery module including a battery, a charging module that charges the battery, an inverter module that converts the power of the battery into power and supplies it to the motor, and charges the auxiliary battery by reducing the power of the battery Including any of the accessory modules,
    The in-vehicle control device according to claim 2.
  6. 前記充電モジュールと前記バッテリモジュールとの少なくともいずれか一方に対して充放電動作を実行させるための指令信号を生成する充放電制御部をさらに備えた、
    請求項5に記載の車載制御装置。
    A charge / discharge control unit that generates a command signal for performing a charge / discharge operation on at least one of the charge module and the battery module;
    The in-vehicle control device according to claim 5.
  7. 電力授受の中継を行うジャンクションボックスに搭載された、
    請求項1に記載の車載制御装置。
    Installed in a junction box that relays power transfer,
    The in-vehicle control device according to claim 1.
  8. 前記ジャンクションボックスには、前記車両モジュールの付加的な機能を実現する補機装置が設けられ、
    前記補機装置を制御する補機装置制御部をさらに備えた、
    請求項7に記載の車載制御装置。
    The junction box is provided with an auxiliary device that realizes an additional function of the vehicle module,
    An auxiliary device control unit for controlling the auxiliary device;
    The in-vehicle control device according to claim 7.
  9. 複数の前記車両モジュール間における電力授受の状態を監視し、前記電力授受の状態に基づいて、複数の前記車両モジュールの少なくとも1つに対して出力する指令信号を生成する監視部をさらに備えた、
    請求項2に記載の車載制御装置。
    A monitoring unit that monitors a state of power transmission / reception between the plurality of vehicle modules and generates a command signal to be output to at least one of the plurality of vehicle modules based on the state of power transmission / reception;
    The in-vehicle control device according to claim 2.
  10. 前記監視部は、複数の前記車両モジュールそれぞれから引き出された電力線が共通に接続されたメイン電力線に印加される電圧を監視する、
    請求項9に記載の車載制御装置。
    The monitoring unit monitors a voltage applied to a main power line to which a power line drawn from each of the plurality of vehicle modules is connected in common.
    The in-vehicle control device according to claim 9.
  11. 前記電力モジュールは、バッテリを含むバッテリモジュールと、前記バッテリへの充電を行う充電モジュールと、前記バッテリの電力を降圧して補機バッテリを充電する補機モジュールとを含み、
    前記監視部は、前記補機モジュールから引き出された電力線に通流する電流を監視する、
    請求項9に記載の車載制御装置。
    The power module includes a battery module including a battery, a charging module that charges the battery, and an auxiliary module that charges an auxiliary battery by reducing the power of the battery.
    The monitoring unit monitors a current flowing through a power line drawn from the auxiliary module;
    The in-vehicle control device according to claim 9.
  12. 前記少なくとも1つの車両モジュールに対する指令信号に基づいて、前記少なくとも1つの車両モジュールの電子制御ユニットに対して動作電源を供給する制御電源部をさらに備えた、
    請求項1に記載の車載制御装置。
    A control power supply for supplying operation power to the electronic control unit of the at least one vehicle module based on a command signal for the at least one vehicle module;
    The in-vehicle control device according to claim 1.
PCT/JP2017/043398 2016-12-22 2017-12-04 On-board control device WO2018116793A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780077850.3A CN110087934B (en) 2016-12-22 2017-12-04 Vehicle-mounted control device
DE112017006492.9T DE112017006492T5 (en) 2016-12-22 2017-12-04 Board controller
US16/409,011 US11046200B2 (en) 2016-12-22 2019-05-10 On-board control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-249839 2016-12-22
JP2016249839 2016-12-22
JP2017-032605 2017-02-23
JP2017032605A JP2018103972A (en) 2016-12-22 2017-02-23 On-vehicle control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/409,011 Continuation US11046200B2 (en) 2016-12-22 2019-05-10 On-board control device

Publications (1)

Publication Number Publication Date
WO2018116793A1 true WO2018116793A1 (en) 2018-06-28

Family

ID=62626338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043398 WO2018116793A1 (en) 2016-12-22 2017-12-04 On-board control device

Country Status (1)

Country Link
WO (1) WO2018116793A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175781A (en) * 2001-12-13 2003-06-24 Sumitomo Electric Ind Ltd Electric connection box for vehicle and car-mounted gateway
JP2013051745A (en) * 2011-08-30 2013-03-14 Denso Corp Power conversion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175781A (en) * 2001-12-13 2003-06-24 Sumitomo Electric Ind Ltd Electric connection box for vehicle and car-mounted gateway
JP2013051745A (en) * 2011-08-30 2013-03-14 Denso Corp Power conversion system

Similar Documents

Publication Publication Date Title
CN110087934B (en) Vehicle-mounted control device
JP5808418B2 (en) Battery monitoring device, battery monitoring system
JP6483441B2 (en) Vehicle control system, vehicle information providing apparatus, and vehicle information providing method
US8242627B2 (en) Electrically powered vehicle
WO2010035676A1 (en) Electric vehicle and method for controlling charging of electric vehicle
JP5736057B2 (en) Automotive equipment
WO2013051688A1 (en) Battery state management device, battery state management method
WO2013175605A1 (en) Battery control device
US9973035B2 (en) Power management device for vehicle
JP6187341B2 (en) In-vehicle charging system
WO2013061442A1 (en) Power supply system and power supply device
JP5720620B2 (en) vehicle
JP6446325B2 (en) Power supply device
KR20140114372A (en) System and method for high voltage cable detection in hybrid vehicles
US10668818B2 (en) Vehicle with charge controller controlling vehicle-mounted charger
JP2010207029A (en) Controller and control method
WO2014068782A1 (en) Vehicle
JP2013150497A (en) Electric vehicle
EP3020591B1 (en) Power source device for vehicle
JP5815265B2 (en) Vehicular charging line communication device, charging line communication system
JP2013051745A (en) Power conversion system
JP5398866B2 (en) Charge / discharge control device
KR20150008378A (en) Isolation contactor transition polarity control
KR20130136702A (en) Communication interface system for charging battery of electric vehicle and charging method using thereof, electric vehicle having communication interface system for charging battery
US9083193B2 (en) Vehicular electric power supply device and electric power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883334

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17883334

Country of ref document: EP

Kind code of ref document: A1