WO2018116741A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2018116741A1
WO2018116741A1 PCT/JP2017/042122 JP2017042122W WO2018116741A1 WO 2018116741 A1 WO2018116741 A1 WO 2018116741A1 JP 2017042122 W JP2017042122 W JP 2017042122W WO 2018116741 A1 WO2018116741 A1 WO 2018116741A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
unit
closing
overcurrent
open
Prior art date
Application number
PCT/JP2017/042122
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 前田
大和 宇都宮
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018116741A1 publication Critical patent/WO2018116741A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This disclosure relates to a power supply system applied to a vehicle or the like.
  • Patent Document 1 describes a power supply system including a first storage battery and a second storage battery that are connected in parallel to an electric load.
  • a switch is provided in each energization path that connects the electrical load to the first storage battery and the second storage battery, and charging / discharging of each storage battery is controlled by opening and closing each switch.
  • opening / closing control of each switch is performed by a control unit (microcomputer) based on the charging state of each rechargeable battery.
  • a shut-off process is performed as a fail-safe process by the control unit.
  • the control unit determines that the overcurrent is flowing based on the detection signal output from the current detection unit, and opens the switch of the energization path through which the overcurrent flows, thereby overcurrent. Is shut off.
  • the fail-safe process is performed by the control unit, a determination process that the overcurrent generation state continues for a predetermined time is performed, which may cause a delay in opening the switch. In such a case, the overcurrent will flow in the power supply system for a longer time, which may cause inconvenience.
  • the present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide a power supply system that can quickly protect the power supply system when an overcurrent occurs.
  • a voltage source An electric load supplied with electric power from the voltage source; an electric path connecting the voltage source and the electric load; an opening / closing part for opening or closing the electric path; and the opening / closing part
  • a control unit that outputs an opening command to open and a closing command to close the opening and closing unit to control opening and closing of the opening and closing unit, and a current detection unit that detects a current flowing through the opening and closing unit,
  • the control unit receives a detection signal from the current detection unit, and overloads the switching unit based on the detection signal when the power is supplied from the voltage source to the electrical load through the switching unit.
  • a power supply system that outputs the opening command based on the determination and opens the opening and closing unit
  • a comparison circuit unit that receives a detection signal of the current detection unit, compares the detection signal with a predetermined overcurrent determination value, and outputs an overcurrent signal indicating the occurrence of overcurrent based on the comparison result
  • the open / close unit is opened independently of the open command output from the control unit, and a cutoff circuit unit that cuts off the overcurrent, Is provided.
  • the control unit determines that an overcurrent flows through the open / close unit based on the detection signal, and outputs the open command to open the open / close unit.
  • the shut-off process in the control unit it is considered that it takes time until the switch is actually opened after an overcurrent occurs, resulting in inconvenience in the power supply system.
  • an overcurrent flows through the switching unit based on a detection signal input from the current detection unit using a comparison circuit unit or a shielding circuit unit (electric circuit) provided separately from the control unit.
  • An overcurrent signal indicating the effect is output, and accordingly, the opening / closing part is opened independently of the opening command from the control part. That is, in this case, the overcurrent can be quickly cut off by detecting the overcurrent and opening the opening / closing unit by using a circuit unit of a different system different from the cut-off process by the control unit. Thereby, when an overcurrent occurs, the power supply system can be protected quickly.
  • the second means includes a drive circuit that inputs the opening command and the closing command from the control unit, and that opens and closes the opening / closing unit based on these commands, and the interruption circuit unit includes the overcurrent signal. Is input, the opening / closing part is opened by invalidating the closing drive signal output from the driving circuit to the opening / closing part.
  • the shut-off circuit unit invalidates the closing drive signal from the drive circuit, and accordingly the opening / closing unit is It is forcibly released. Therefore, it is possible to open the opening / closing unit without operating the opening / closing command of the control unit, and as a result, it is possible to respond quickly when an overcurrent occurs.
  • a bypass switch that bypasses the open / close unit and connects the voltage source and the electric load is provided, and a bypass switch that opens or closes the bypass route, and the control unit issues the open command.
  • a bypass circuit unit that closes the bypass switch based on the output, and the control unit determines that an overcurrent flows through the opening / closing unit based on the detection signal.
  • the opening / closing part is opened after the bypass switch is switched from the open state to the closed state, and when the overcurrent signal is input, the cutoff circuit part The opening / closing part is opened before switching from the open state to the closed state.
  • the bypass switch is closed when the opening / closing part is opened so that electric power can be always supplied to the electric load via the electric path or the bypass path. Furthermore, in order to prevent the supply of electric power to the electric load from being interrupted, an opening / closing part opening command is output, and the opening / closing part is opened after the bypass switch is switched from the open state to the closed state. However, in this case, the opening / closing part cannot be opened until the bypass switch is closed even in the interruption process associated with the occurrence of overcurrent. Therefore, there is a further concern about the influence of overcurrent.
  • the cutoff circuit unit when the overcurrent signal is input, the cutoff circuit unit opens the opening / closing unit before the bypass switch is switched from the open state to the closed state, so that the bypass switch is closed.
  • the opening / closing part can be opened without waiting. Thereby, when an overcurrent occurs, the opening / closing part can be opened more quickly, and the power supply system can be suitably protected.
  • control section does not output the opening command of the opening / closing section when the opening / closing section is opened by the interrupting circuit section based on the overcurrent signal.
  • the opening / closing part is opened by the cutoff circuit part earlier than the cutoff process by the control part.
  • the bypass switch is opened when the opening / closing part is opened.
  • the bypass switch is closed. In such a case, although the overcurrent is once interrupted, it is considered that the overcurrent flows again to the power supply system, resulting in inconvenience.
  • the control unit when the opening / closing unit is opened based on the overcurrent signal, the control unit does not output the opening / closing unit opening command, so that the bypass switch is closed along with the opening / closing unit opening command. Can be avoided. Thereby, it is possible to prevent an overcurrent from unintentionally flowing to another path of the power supply system.
  • the bypass switch is a mechanical relay.
  • the sixth means as the voltage source, a first storage battery and a second storage battery connected in parallel to each other are provided, and a current path between the first storage battery and the second storage battery is provided in series as the open / close section.
  • An electrical load is connected to the control unit, the control unit outputs the close command and the open command to the open / close units, respectively, to control the open / close of the open / close units, and the bypass path includes the first open / close unit.
  • the bypass circuit unit is connected to the voltage source and the electrical load, and the bypass circuit unit is based on the opening command being output from the control unit to both of the switching units. Close the bypass switch. To.
  • the power supply system can be quickly shut down when an overcurrent occurs, and thus the power supply system can be properly protected.
  • the detection signal input to the control unit is subjected to a first smoothing process that suppresses a change in the detection value of the current detection unit, and is input to the comparison circuit unit.
  • the detection signal is obtained by performing a second smoothing process that suppresses a change in the detection value of the current detection unit, and the second smoothing process is smoother than the first smoothing process.
  • the degree is set to be small.
  • the second smoothing process is set so that the degree of smoothing is smaller than that of the first smoothing process. Therefore, the detection signal input to the comparison circuit unit is sent to the control unit. The response is better than the input detection signal. Thereby, the comparison circuit unit can detect the overcurrent more quickly.
  • FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment.
  • FIG. 2 is a diagram for explaining opening and closing of a switch by a microcomputer.
  • FIG. 3 is a diagram showing power supply from the storage battery to the electric load.
  • FIG. 4 is a diagram showing a shut-off process when an overcurrent occurs in a conventional power supply system
  • FIG. 5 is a time chart of the interruption process when an overcurrent occurs in the conventional power supply system
  • FIG. 6 is a diagram illustrating forced interruption when an overcurrent occurs in the first embodiment.
  • FIG. 7 is a flowchart showing processing in the microcomputer.
  • FIG. 8 is a time chart of forced cutoff at the occurrence of overcurrent in the first embodiment.
  • FIG. 9 is an electric circuit diagram showing the power supply system of the second embodiment.
  • an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
  • this power supply system is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a first storage battery and a second storage battery.
  • Each storage battery 11 and 12 can be charged by an alternator 13 as a generator, and each storage battery 11 and 12 can supply power to a starter 14 and various electric loads 15 and 16. It has become.
  • the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the alternator 13, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 15 and 16.
  • each of the storage batteries 11 and 12 and the alternator 13 corresponds to a “voltage source”.
  • the lead storage battery 11 is a well-known general-purpose storage battery.
  • the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density.
  • the lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11.
  • the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
  • the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate.
  • the battery unit U has output terminals T1, T2, and T0, of which the lead storage battery 11, the alternator 13, the starter 14, and the electric load 15 are connected to the output terminals T1 and T0, and the electric load is connected to the output terminal T2. 16 is connected.
  • the rotating shaft of the alternator 13 is connected to an engine output shaft (not shown) by a belt or the like, and the rotating shaft of the alternator 13 is rotated by the rotation of the engine output shaft. That is, the alternator 13 generates power (regenerative power generation) by rotating the engine output shaft and the axle.
  • the electric loads 15 and 16 have different requirements for the voltage of the supplied power supplied from the storage batteries 11 and 12.
  • the electric load 16 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power fluctuates within a predetermined range or at least within a predetermined range.
  • the electric load 15 is a general electric load other than the constant voltage required load. It can be said that the electric load 16 is a protected load.
  • the electric load 16 is a load that does not allow a power supply failure
  • the electric load 15 is a load that allows a power supply failure compared to the electric load 16.
  • the electrical load 16 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation.
  • a traveling system actuator such as an electric steering device or a brake device may be included.
  • the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
  • the battery unit U has an energization path L1 that connects the output terminals T1 and T2 and an energization path that connects a connection point N1 on the energization path L1 and the lithium ion storage battery 12 as an in-unit electrical path.
  • L2 is provided.
  • the 1st switch 21 is provided in the electricity supply path
  • the 2nd switch 22 is provided in the electricity supply path
  • the 1st switch 21 will be provided in the lead storage battery 11 side rather than the connection point N1, and the lithium ion storage battery 12 side from the connection point N1.
  • the second switch 22 is provided.
  • Each of these switches 21 and 22 includes, for example, 2 ⁇ n MOSFETs (semiconductor switching elements), and the parasitic diodes of the two sets of MOSFETs are connected in series so as to be opposite to each other. By this parasitic diode, when each switch 21 and 22 is turned off, the current flowing through the path in which the switch is provided is completely cut off.
  • IGBTs, bipolar transistors, or the like can be used as the switches 21 and 22 instead of MOSFETs.
  • reverse diodes may be connected in parallel to the switches 21 and 22, respectively, instead of the parasitic diode.
  • the battery unit U is provided with a bypass path L0 that bypasses the first switch 21.
  • the bypass path L0 is provided in parallel to the energization path L1 so as to connect the output terminal T0 and the connection point N1 on the energization path L1. That is, the lead storage battery 11 and the electrical load 16 can be connected by the bypass path L0 without going through the first switch 21.
  • a fuse 30 and a bypass switch 31 composed of a normally closed mechanical relay are provided in series.
  • the fuse 30 is provided closer to the lead storage battery 11 than the bypass switch 31, that is, between the bypass switch 31 and the output terminal T0.
  • the lead storage battery 11 and the electrical load 16 are electrically connected even when the first switch 21 is turned off (opened) by closing the bypass switch 31.
  • dark current is supplied to the electric load 16 via the bypass switch 31 in a state where the power switch (ignition switch) of the vehicle is turned off.
  • the bypass path L0, the fuse 30 and the bypass switch 31 may be provided outside the battery unit U.
  • the battery unit U includes each of the switches 21 and 22 and a microcomputer 50 (control unit) that controls on / off (opening / closing) of the bypass switch 31.
  • the microcomputer 50 includes a CPU, a ROM, a RAM, an input / output interface, and the like.
  • An ECU 100 outside the battery unit U is connected to the microcomputer 50. That is, the microcomputer 50 and the ECU 100 are connected by a communication network such as CAN and can communicate with each other, and various data stored in the microcomputer 50 and the ECU 100 can be shared with each other.
  • the microcomputer 50 controls on / off of the switches 21 and 22 and the bypass switch 31 based on the storage state of each of the storage batteries 11 and 12 and a command signal from the ECU 100 that is the host controller. Specifically, the microcomputer 50 controls opening and closing by outputting an opening command for opening the switches 21 and 22 and a closing command for closing the switches 21 and 22.
  • the microcomputer 50 outputs a close (ON) command to the drive circuit 52.
  • the drive circuit 52 outputs the gate signal of the corresponding switch, that is, the closing drive signal.
  • the corresponding switch is closed (turned on) by outputting the gate voltage boosted to 10 V, for example.
  • FIG. 1 shows the open / close control for the second switch 22, the same applies to the first switch 21.
  • charging / discharging is performed by selectively using the lead storage battery 11 and the lithium ion storage battery 12 by the on / off control of the switch of the microcomputer 50. Further, the microcomputer 50 controls the electric load 16 (unprotected load) so that electric power is always supplied from each of the storage batteries 11 and 12. Therefore, when both the first switch 21 and the second switch 22 are in an open (off) state, the bypass switch 31 is closed.
  • the microcomputer 50 outputs an open command or a close command to the drive circuit 52 of each switch 21, 22 in order to open or close each switch 21, 22.
  • the switches 21 and 22 are opened and closed by outputting a gate signal from the drive circuit 52 based on the open command or the close command.
  • the opening / closing command of each switch output from the microcomputer 50 is also input to the NOR circuit C 1 that controls the opening / closing of the bypass switch 31.
  • an opening / closing command for the first switch 21 and an opening / closing command for the second switch 22 are input to the NOR circuit C1. If the signal output from the NOR circuit C1 is “1”, the bypass switch 31 is closed, and if it is “0”, the bypass switch 31 is opened.
  • the bypass switch 31 in order to prevent the supply of power to the electric load 16 from being interrupted, the bypass switch 31 is released from the open state in response to the output of an open (off) command to both the switches 21 and 22. After switching to the closed state, the switches 21 and 22 are opened. That is, in this case, there is a delay from when the switch opening command is output until the switch is actually opened, and the drive circuit 52 is provided with a delay circuit (not shown). As a result, the closed state of the first switch 21 or the second switch 22 and the closed state of the bypass switch 31 overlap to prevent the power supply to the electrical load 16 from being interrupted.
  • the battery unit U includes a first current detection unit 41 that detects a current flowing through the first switch 21 and a second current detection unit 42 that detects a current flowing through the second switch 22.
  • the first current detection unit 41 is provided on the energization path L1
  • the second current detection unit 42 is provided on the energization path L2.
  • the first current detection unit 41 may be provided between, for example, a pair of MOSFETs in the first switch 21. In this case, the first current detector 41 detects a current flowing between the MOSFETs.
  • the second current detection unit 42 may be provided for the second switch 22.
  • FIG. 3 shows a case where power is supplied from the lithium ion storage battery 12 to the electric load 16, for example.
  • the microcomputer 50 issues an off command to the first switch 21 so that the first switch 21 is in an open (off) state, and an on command is issued to the second switch 22.
  • the second switch 22 is in a closed (on) state.
  • a detection value (current value) output from the second current detection unit 42 is input as a detection signal to the microcomputer 50 via the first filter 51a.
  • the first filter 51a is a low-pass filter, and here, a first smoothing process is performed to suppress a change in the detected value.
  • the microcomputer 50 determines that an overcurrent is flowing based on the input detection signal. Specifically, it is determined that an overcurrent flows when a state where the input current value (detection signal) is larger than the threshold value Th1 continues for a predetermined time.
  • the microcomputer 50 determines that an overcurrent is flowing, the microcomputer 50 outputs an open (off) command for the second switch 22 to the drive circuit 52.
  • the bypass switch 31 is closed based on the output of the second switch 22 off command from the microcomputer 50 (FIG. 4).
  • the bypass switch 31 is opened (turned off) by closing the bypass switch 31 in a situation where an off command for the second switch 22 is output. Thereby, an overcurrent is interrupted in the power supply system.
  • Such fail-safe processing by the microcomputer 50 will be described with reference to the timing chart of FIG. In FIG. 5, it is assumed that a ground fault has occurred in the electric load 16 when power is supplied from the lithium ion storage battery 12 to the electric load 16.
  • the first switch 21 is in the open state
  • the switch 22 is in a closed state.
  • the current value of the second switch 22 in the figure indicates a value based on the detection signal input to the microcomputer 50. That is, the current value after the first annealing process is shown.
  • the threshold Th1 When a ground fault occurs at the electric load 16 at the timing t1, the current flowing through the second switch 22 increases.
  • the threshold Th1 When the threshold Th1 is exceeded at the timing t2, it is determined whether or not an overcurrent is flowing. Specifically, it is determined that an overcurrent flows when a period in which the current value exceeds the threshold Th1 exceeds a predetermined time.
  • an open (off) command for the second switch 22 is output.
  • energization of the relay coil is turned off as an opening command is output to both the first switch 21 and the second switch 22.
  • the bypass switch 31 is closed at timing t4.
  • the second switch 22 is opened (off) due to the bypass switch 31 being closed. Specifically, it is detected that a current has flowed through the bypass path L0 as the bypass switch 31 is closed, and based on this, the second switch 22 is opened (timing t5).
  • timing t1 to t5 in the fail safe process by the microcomputer 50, it takes time (several hundred ms) from timing t1 to t5 until the second switch 22 is opened after the ground fault occurs in the electric load 16.
  • the time from timing t1 to t5 is specifically the time from the occurrence of the ground fault to the time when the threshold Th1 is exceeded (timing t1 to t2), the time required to determine overcurrent (timing t2 to t3), the bypass switch 31
  • the connection time (timing t3 to t4) corresponds to the opening time of the second switch 22 (timing t4 to t5).
  • the detection signal of each of the current detection units 41 and 42 is compared with a predetermined overcurrent determination value, and an overcurrent signal indicating the occurrence of overcurrent is based on the comparison result.
  • a shutoff circuit unit 70 that shuts off the overcurrent by opening the switches 21 and 22 independently of the open command output from the microcomputer 50 when an overcurrent signal is input. And so on. That is, by using hardware configured by an electric circuit, the switches 21 and 22 are opened independently of the fail-safe process by the microcomputer 50, and the power supply system is forcibly cut off.
  • the currents flowing through the switches 21 and 22 are detected by shunt resistors as the current detectors 41 and 42, and are input to the filters 51a and 51b via amplifiers.
  • the detection values (current values) of the current detection units 41 and 42 are input as detection signals to the comparison circuit unit 60 via the second filter 51b.
  • the second filter 51b is a low-pass filter, and here, a second smoothing process is performed to suppress a change in the detected value.
  • the degree of smoothing of the second smoothing process is set to be smaller than the degree of smoothing of the first smoothing process. That is, the detection signal (current value Ib) output from the second filter 51b has better responsiveness than the detection signal (current value Ia) output from the first filter 51a.
  • the comparison circuit unit 60 includes a comparator 61 and a latch circuit 62.
  • the comparator 61 the current value Ib that has been subjected to the second smoothing process is compared with the threshold value Th2.
  • the threshold value Th ⁇ b> 2 is provided as an overcurrent determination value that can determine that an overcurrent is flowing, and is a value that takes into account the variation of the current detection unit in the normal current use region.
  • the threshold Th2 is set to several hundred A.
  • the threshold value Th2 and the threshold value Th1 are the same value, but may be different values.
  • the threshold value Th2 may be a value greater than the threshold value Th1
  • the threshold value Th2 may be a value smaller than the threshold value Th1.
  • the comparator 61 outputs a high-state signal, that is, an overcurrent signal to the latch circuit 62 when the input current value Ib exceeds the threshold Th2.
  • the latch circuit 62 is configured by using, for example, a flip-flop circuit, and can hold a signal output from the comparator 61. Therefore, while the signal output from the comparator 61 is a high state signal, the high state signal is held. That is, when an overcurrent is detected, an overcurrent signal is output from the comparison circuit unit 60.
  • the overcurrent signal output from the comparison circuit unit 60 is input to the interruption circuit unit 70.
  • the cutoff circuit unit 70 includes a cutoff circuit 71 and a bipolar transistor 72.
  • the cutoff circuit 71 outputs the base signal of the bipolar transistor 72 based on the overcurrent signal.
  • the bipolar transistor 72 is closed (turned on).
  • the collector side of the bipolar transistor 72 is connected to the signal path of the gate signals of the switches 21 and 22 output from the drive circuit 52.
  • the emitter side is connected to the ground. Therefore, when an overcurrent signal is input to the cutoff circuit unit 70, the bipolar transistor 72 is turned on, and the voltage based on the closing drive signals of the switches 21 and 22 falls to the ground level.
  • each switch 21 and 22 is forcibly invalidated (stopped). Thereby, each switch 21 and 22 is opened, and an overcurrent is interrupted
  • an IGBT, a MOSFET, or the like can be used.
  • the overcurrent signal output from the latch circuit 62 is reset by a reset signal from the microcomputer 50.
  • FIG. 6 shows an outline of forced cutoff in this embodiment.
  • the on-command of the second switch 22 output from the microcomputer 50 is stopped by the cutoff circuit unit 70.
  • the second switch 22 is forcibly opened (off). That is, in this case, before the switching from the on command to the off command is performed by the fail safe process of the microcomputer 50, the second switch 22 is opened by the cutoff circuit unit 70. Therefore, the second switch 22 is opened while the bypass switch 31 is opened. Thereby, it is avoided that the fuse 30 is blown.
  • FIG. 6 shows the case where the second switch 22 is forcibly opened (turned off), the same applies to the first switch 21. That is, when a ground fault occurs in the electrical load 16 during power feeding from the lead storage battery 11 to the electrical load 16, the cutoff circuit unit 70 stops the ON command for the first switch 21 output from the microcomputer 50. The first switch 21 is forcibly opened (off).
  • fail-safe processing by the microcomputer 50 is also performed in parallel with the forced cutoff by hardware.
  • processing executed by the microcomputer 50 will be described with reference to a flowchart of FIG. The process according to the flowchart of FIG. 7 is repeatedly executed at predetermined intervals.
  • step S11 it is determined whether or not the ignition switch is on. If step S11 is YES, the process proceeds to step S12. If step S11 is NO, the process is terminated.
  • step S12 it is determined whether or not a command to turn off the first switch 21 (open command) is output.
  • step S13 a command to open the second switch 22 (open command) is output. Determine whether or not.
  • step S12 being YES means that the first switch 21 is in an off state and the second switch 22 is in an on state
  • step S13 is YES that the first switch 21 is in an on state
  • the second switch 22 is in an off state
  • NO in step S13 means that the first switch 21 and the second switch 22 are in an on state.
  • step S12 when step S12 is affirmed, power is being supplied from the lithium ion storage battery 12 to the electrical load 16, and when step S13 is affirmed, power is supplied from the lead storage battery 11 to the electrical load 16.
  • step S13 When step S13 is negative, power is being supplied from the lead storage battery 11 and the lithium ion storage battery 12 to the electrical load 16.
  • step S14 it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not the current value Ia detected by the second current detection unit 42 and input to the microcomputer 50 exceeds the threshold Th1 and continues for a predetermined time. If step S14 is YES, the command which turns off the 2nd switch 22 as a fail safe process is output (step S15). In subsequent step S16, the bypass switch 31 is closed.
  • step S17 it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not the current value Ia detected by the first current detector 41 and input to the microcomputer 50 exceeds the threshold value Th1 and has continued for a predetermined time. If step S17 is YES, the command which turns off the 1st switch 21 as a fail safe process is output (step S18). In subsequent step S16, the bypass switch 31 is closed.
  • step S19 it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not each current value Ia detected by each current detection unit 41 and 42 and input to the microcomputer 50 exceeds the threshold Th1 and continues for a predetermined time. If step S19 is YES, that is, if at least one of the current values Ia exceeds the threshold Th1 and continues for a predetermined time, a command to turn off the first switch 21 and the second switch 22 as a fail-safe process is issued. Output (step S20). In subsequent step S15, the bypass switch 31 is closed.
  • Steps S14, S17, and S19 are NO, this processing is terminated as it is.
  • the overcurrent is detected by the comparison circuit unit 60 under the circumstances in which these steps S14, S17, and S19 are denied, that is, before the microcomputer 50 determines that the overcurrent is flowing. Then, the switches 21 and 22 are opened by the cutoff circuit unit 70.
  • the bypass switch 31 is closed.
  • the overcurrent flows again through the power supply system, which is considered to cause inconvenience.
  • an overcurrent flows through the bypass path L0, and the fuse 30 is blown.
  • the bypass switch 31 is not closed. Specifically, the microcomputer 50 does not output an OFF command for the switches 21 and 22 as fail-safe processing. More specifically, the latch circuit 62 outputs a signal indicating that the switches 21 and 22 are forcibly opened to the microcomputer 50, and the microcomputer 50 continues to turn on the corresponding switch based on the signal. That is, the bypass switch 31 is prevented from being closed by preventing the off command from being output to both the switches 21 and 22.
  • the forced cutoff in the present embodiment will be described using the timing chart of FIG. In FIG. 8, as in FIG. 5, it is assumed that a ground fault has occurred in the electric load 16 when power is supplied from the lithium ion storage battery 12 to the electric load 16.
  • the first switch 21 is In the off state
  • the second switch 22 is in the on state.
  • the solid line of the current value of the second switch 22 in the figure indicates the value Ib based on the detection signal input to the comparison circuit unit 60. That is, the current value obtained by performing the second annealing process is shown.
  • the alternate long and short dash line indicates the value Ia based on the detection signal input to the microcomputer 50 shown in FIG.
  • the shutoff circuit unit 70 stops the second switch 22 closing (on) command at the timing t3, so that the second switch 22 is opened (off). Thereby, an overcurrent is interrupted and the power supply system is protected.
  • a signal indicating that the second switch 22 has been opened is input to the microcomputer 50, whereby the close (on) command for the second switch 22 is maintained. That is, the timing t13 is earlier than the timing t14 at which the microcomputer 50 determines that an overcurrent is flowing. Then, by keeping the second switch 22 closed (ON) command, the bypass switch 31 is kept open.
  • the time from when the ground fault occurs in the electrical load 16 until the second switch 22 is opened is the time (several hundred ⁇ s) from timing t11 to t13.
  • the detection signal (current value Ib) input to the comparison circuit unit 60 passes through the second filter 51b, the time from the occurrence of the ground fault to exceeding the threshold value Th1 (timing t11 to t12) is also shown in FIG. 5 is shorter than the timing t1 to t2.
  • the forced shutdown in the present embodiment can protect the power supply system more quickly than the fail-safe process by the microcomputer 50.
  • the fail-safe process by the microcomputer 50 is a control that prioritizes certainty, whereas the forced interruption in the present embodiment can be regarded as a control that prioritizes rapidity.
  • the overcurrent signal output from the latch circuit 62 is reset by the microcomputer 50.
  • the overcurrent determination of the microcomputer 50 does not determine that overcurrent is flowing, that is, when the current value is determined to be normal.
  • the overcurrent signal output from the latch circuit 62 may be reset.
  • the overcurrent generation can be regarded as temporary (mixed noise, etc.) and the forcibly opened switch is closed again.
  • the power supply system can be restored. That is, in such a configuration, in addition to being able to quickly respond when an overcurrent occurs, it is possible to cope with a recovery from an erroneous determination of overcurrent.
  • the fail-safe process by the microcomputer 50 takes time for overcurrent determination and the like, and it is considered that a delay occurs in the opening of the switch, which may cause inconvenience associated with the overcurrent.
  • the detection signal input from the current detection units 41 and 42 is compared with a predetermined overcurrent determination value using the comparison circuit unit 60 and the cutoff circuit unit 70 (electric circuit) separately from the microcomputer 50.
  • An overcurrent signal indicating the occurrence of overcurrent is output based on the comparison result, and the switches 21 and 22 are opened independently of the opening command from the microcomputer 50 based on the overcurrent signal.
  • the time required for overcurrent determination in the microcomputer 50 (timing t2 to timing t3) is detected by detecting the overcurrent and opening the opening / closing section by a circuit unit of a different system different from the fail-safe process by the microcomputer 50. ) Can be omitted, and the overcurrent can be cut off quickly. Thereby, when an overcurrent occurs, the power supply system can be protected quickly.
  • the switches 21 and 22 are forcibly opened. Therefore, the switches 21 and 22 can be opened without operating the microcomputer open / close command, and as a result, it is possible to respond quickly when an overcurrent occurs.
  • the cutoff circuit unit 70 opens the switches 21 and 22 before the bypass switch 31 is switched from the open state to the closed state when an overcurrent signal is input, the bypass switch 31 is closed.
  • the switches 21 and 22 can be opened without waiting for this.
  • the bypass switch 31 is a mechanical relay, the time required for relay connection (timing t3 to timing t4) can be saved. Thereby, an overcurrent can be interrupted more rapidly.
  • the microcomputer 50 does not output an open (off) command for the switches 21 and 22. It can be avoided that 31 is closed. As a result, it is possible to prevent an overcurrent from unintentionally flowing to the bypass path L0 and to prevent the fuse 30 from being blown.
  • the second smoothing process in the second filter 51b is set to have a smaller smoothing degree than the first smoothing process in the first filter 51a.
  • the detected signal (current value Ib) is more responsive than the detection signal (current value Ia) input to the microcomputer 50.
  • the comparison circuit unit 60 can detect the overcurrent more quickly.
  • the first switch 21 is provided in the energization path L1
  • the second switch 22 is provided in the energization path L2.
  • One end of the branch path L3 is connected to a connection point N2 between the output terminal T1 and the first switch 21 in the energization path L1, and between the lithium ion storage battery 12 and the second switch 22 in the energization path L2.
  • One end of the branch path L4 is connected to the connection point N4, and the other ends of the branch paths L3 and L4 are connected at an intermediate point N3. Further, the intermediate point N3 and the output terminal T3 are connected by the energization path L5.
  • the third switch 23 and the fourth switch 24 are provided on the branch paths L3 and L4, respectively.
  • the third switch 23 and the fourth switch 24 are each composed of a semiconductor switch such as a MOSFET. Power can be supplied from the storage batteries 11 and 12 to the electric load 16 through the paths L3 to L5.
  • the branch path L3 is provided with a third current detector 43 that detects a current flowing through the third switch 23, and the branch path L4 is provided with a fourth current detector 44 that detects a current flowing through the fourth switch 24. .
  • the battery unit U is provided with bypass paths L0 and L6 that allow the lead storage battery 11 to be connected to the electric load 16 without using the switches 21 to 24 in the unit.
  • the battery unit U is provided with a bypass path L0 that connects the output terminal T0 and the connection point N1 on the energization path L1, and a bypass path L6 that connects the connection point N1 and the output terminal T3. Is provided.
  • a bypass switch 31 is provided on the bypass path L0, and a bypass switch 32 is provided on the bypass path L6.
  • the bypass switches 31 and 32 are, for example, normally closed relay switches.
  • the above switches 21 to 24 and bypass switches 31 and 32 are on / off controlled (open / close controlled) by the microcomputer 50. In this case, for example, on / off of each of the switches 21 to 24 is controlled based on the storage state of each of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively.
  • the bypass switches 31 and 32 are basically kept open when the power supply system is in operation, and are switched to the closed state when the operation is stopped.
  • the switch closing (ON) command output from the microcomputer 50 is continued.
  • the present invention is not limited to this, and any configuration may be used as long as the bypass switch 31 is not closed after the switch is forcibly opened.
  • a process for invalidating the off command may be performed, or the fail safe process itself of the microcomputer 50 may be stopped. It is good.
  • the detection value detected by the current detection unit is input to the microcomputer 50 and the comparison circuit unit 60 via two different filters 51a and 51b. It is good also as a structure input into the microcomputer 50 and the comparison circuit part 60, respectively. That is, in this case, the same annealing process is performed on the detection signal input to the microcomputer 50 and the signal input to the comparison circuit unit 60.
  • the bypass switches 31 and 32 are not closed, but this may be changed. Since the comparison circuit unit 60 is configured with emphasis on responsiveness, a case where an overcurrent signal is erroneously output based on noise can be considered. In such a case, the switch is opened even though no overcurrent actually occurs.
  • the bypass switch 31 may be closed after a predetermined time has elapsed since the switch was opened. In such a configuration, for example, the maintenance of the switch closing (ON) command is canceled after a predetermined time has elapsed.
  • the bypass switch 31 By intentionally closing the bypass switch 31 in this manner, it can be determined whether or not the detection of the overcurrent in the comparison circuit unit 60 was a false detection. Furthermore, in the case of erroneous detection, the power supply to the electric load 16 can be resumed, that is, the power supply system can be restored.
  • the forced shutdown in the above embodiment may be applied to other power supply systems.
  • a power supply system for example, a power supply system having only a lead storage battery 11 as a voltage source and provided with a switch in a path connecting the lead storage battery 11 and the electric load 16 can be cited.
  • you may apply to the power supply system which has the lead storage battery 11 and a generator as a voltage source, and charges the lead storage battery 11 from a generator. Note that these power supply systems may not have a bypass path.
  • the lead storage battery 11 is provided as the storage battery and the lithium ion storage battery 12 is provided.
  • the lithium ion storage battery 12 instead of the lithium ion storage battery 12, other high-density storage batteries such as nickel-hydrogen batteries may be used.
  • a capacitor can be used as at least one of the storage batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The power supply system is provided with: a voltage source (11, 12, 13, 17); electrical loads (16, 17) to which electric power is supplied from the voltage source; switch parts (21 through 24) for opening and closing electric paths (L1 through L4) connecting the voltage source to the electrical loads; a control unit (50) for outputting an open command and a close command to control the open switch parts; and current detection parts (41 through 44) for detecting currents flowing into the switch parts. The control unit receives detection signals from the current detection parts as input, determines whether or not an overcurrent is flowing in the switch parts on the basis of the detection signals when electric power is being supplied to the electrical loads, and outputs the open command on the basis of the determination to open the switch parts. The detection signals are input to the power supply system. The power supply system is provided with: a comparison circuit for comparing the detection signals with an overcurrent determination value and outputting an overcurrent signal on the basis of the comparison result; and a cutoff circuit unit (70) for opening the switch parts independently of the open command if the overcurrent signal is input thereto and cutting off the overcurrent.

Description

電源システムPower system 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年12月20日に出願された日本出願番号2016-246539号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-246539 filed on December 20, 2016, the contents of which are incorporated herein by reference.
 本開示は、車両等に適用される電源システムに関するものである。 This disclosure relates to a power supply system applied to a vehicle or the like.
 従来、蓄電池と電気負荷とを備える電源システムにおいて、蓄電池における充放電の制御を適正化する技術が各種提案されている。例えば、特許文献1では、電気負荷に対して並列接続された第1蓄電池及び第2蓄電池を備える電源システムが記載されている。この電源システムでは、電気負荷と第1蓄電池及び第2蓄電池とを接続する各通電経路にスイッチがそれぞれ設けられており、各スイッチを開閉させることで各蓄電池の充放電を制御している。具体的には、各充電池の充電状態等に基づいて、制御部(マイクロコンピュータ)により各スイッチの開閉制御が実施されている。 Conventionally, in a power supply system including a storage battery and an electric load, various techniques for optimizing charge / discharge control in the storage battery have been proposed. For example, Patent Document 1 describes a power supply system including a first storage battery and a second storage battery that are connected in parallel to an electric load. In this power supply system, a switch is provided in each energization path that connects the electrical load to the first storage battery and the second storage battery, and charging / discharging of each storage battery is controlled by opening and closing each switch. Specifically, opening / closing control of each switch is performed by a control unit (microcomputer) based on the charging state of each rechargeable battery.
特開2012-130108号公報JP2012-130108A
 ところで、上記電源システムにおいて、過電流が生じた場合には制御部によってフェールセーフ処理として遮断処理が実施される。例えば、蓄電池から電気負荷への電力供給時において、電気負荷で地絡が生じると、電気的に導通している経路に過電流が流れる。かかる場合には、制御部において、電流検出部により出力される検出信号に基づいて過電流が流れていることを判定し、過電流が流れている通電経路のスイッチを開放させることで、過電流を遮断している。しかしこの場合、制御部によるフェールセーフ処理の実施に際しては、過電流発生の状態が所定時間継続されることの判定処理などが行われ、これによりスイッチの開放に遅れが生じることが考えられる。かかる場合には、過電流が電源システムにその分長く流れることになり、不都合が生じるおそれがある。 By the way, in the above power supply system, when an overcurrent occurs, a shut-off process is performed as a fail-safe process by the control unit. For example, when a ground fault occurs in the electric load during power supply from the storage battery to the electric load, an overcurrent flows through the electrically conducting path. In such a case, the control unit determines that the overcurrent is flowing based on the detection signal output from the current detection unit, and opens the switch of the energization path through which the overcurrent flows, thereby overcurrent. Is shut off. However, in this case, when the fail-safe process is performed by the control unit, a determination process that the overcurrent generation state continues for a predetermined time is performed, which may cause a delay in opening the switch. In such a case, the overcurrent will flow in the power supply system for a longer time, which may cause inconvenience.
 本開示は上記事情を鑑みてなされたものであり、その主たる目的は、過電流が生じた場合に電源システムを迅速に保護することができる電源システムを提供することにある。 The present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide a power supply system that can quickly protect the power supply system when an overcurrent occurs.
 第1の手段では、
 電圧源と、前記電圧源から電力を供給される電気負荷と、前記電圧源と前記電気負荷とを接続する電気経路に設けられ、該電気経路を開放又は閉鎖する開閉部と、前記開閉部を開放させる開指令及び前記開閉部を閉鎖させる閉指令を出力し前記開閉部の開閉を制御する制御部と、前記開閉部に流れる電流を検出する電流検出部と、を備え、
 前記制御部は、前記電流検出部の検出信号を入力し、前記電圧源から前記開閉部を介して前記電気負荷へ給電が行われる負荷給電時において前記検出信号に基づいて前記開閉部に過電流が流れていることを判定するとともに、その判定に基づいて前記開指令を出力し、前記開閉部を開放させる電源システムであって、
 前記電流検出部の検出信号が入力され、前記検出信号と所定の過電流判定値とを比較し、その比較の結果に基づいて、過電流発生の旨を示す過電流信号を出力する比較回路部と、
 前記過電流信号が入力された場合に、前記制御部から出力される開指令とは独立して前記開閉部を開放させ、過電流を遮断する遮断回路部と、
を備える。
In the first means,
A voltage source; an electric load supplied with electric power from the voltage source; an electric path connecting the voltage source and the electric load; an opening / closing part for opening or closing the electric path; and the opening / closing part A control unit that outputs an opening command to open and a closing command to close the opening and closing unit to control opening and closing of the opening and closing unit, and a current detection unit that detects a current flowing through the opening and closing unit,
The control unit receives a detection signal from the current detection unit, and overloads the switching unit based on the detection signal when the power is supplied from the voltage source to the electrical load through the switching unit. A power supply system that outputs the opening command based on the determination and opens the opening and closing unit,
A comparison circuit unit that receives a detection signal of the current detection unit, compares the detection signal with a predetermined overcurrent determination value, and outputs an overcurrent signal indicating the occurrence of overcurrent based on the comparison result When,
When the overcurrent signal is input, the open / close unit is opened independently of the open command output from the control unit, and a cutoff circuit unit that cuts off the overcurrent,
Is provided.
 上記電源システムでは、電気経路に設けられた開閉部が閉鎖されることで、電圧源から電気負荷に電力が供給される。この給電時において、電気負荷に地絡等が発生することにより電気経路に過電流が流れる場合がある。かかる場合には、制御部は、検出信号に基づいて開閉部に過電流が流れていることを判定し、開指令を出力することで開閉部を開放させる。しかしこの場合、制御部における遮断処理では、過電流が生じてから実際にスイッチが開放されるまでに時間がかかり、それに起因して電源システムに不都合が生じると考えられる。 In the power supply system, power is supplied from the voltage source to the electric load by closing the open / close section provided in the electric path. During this power supply, an overcurrent may flow in the electrical path due to a ground fault or the like occurring in the electrical load. In such a case, the control unit determines that an overcurrent flows through the open / close unit based on the detection signal, and outputs the open command to open the open / close unit. However, in this case, in the shut-off process in the control unit, it is considered that it takes time until the switch is actually opened after an overcurrent occurs, resulting in inconvenience in the power supply system.
 この点上記構成では、制御部とは別に設けられた比較回路部や遮蔽回路部(電気回路)を用いて、電流検出部から入力される検出信号に基づいて開閉部に過電流が流れている旨を示す過電流信号を出力させ、それに伴って、制御部による開指令とは独立して開閉部を開放させるようにした。つまりこの場合、制御部による遮断処理とは異なる別系統の回路部によって、過電流を検出するとともに開閉部を開放させることで、過電流を迅速に遮断することができる。これにより、過電流が生じた場合に電源システムを迅速に保護することができる。 In this regard, in the above configuration, an overcurrent flows through the switching unit based on a detection signal input from the current detection unit using a comparison circuit unit or a shielding circuit unit (electric circuit) provided separately from the control unit. An overcurrent signal indicating the effect is output, and accordingly, the opening / closing part is opened independently of the opening command from the control part. That is, in this case, the overcurrent can be quickly cut off by detecting the overcurrent and opening the opening / closing unit by using a circuit unit of a different system different from the cut-off process by the control unit. Thereby, when an overcurrent occurs, the power supply system can be protected quickly.
 第2の手段では、前記制御部からの前記開指令及び前記閉指令を入力し、これら各指令に基づいて前記開閉部を開閉駆動させる駆動回路を備え、前記遮断回路部は、前記過電流信号が入力された場合に、前記駆動回路から前記開閉部に対して出力される閉鎖駆動信号を無効化することにより前記開閉部を開放させる。 The second means includes a drive circuit that inputs the opening command and the closing command from the control unit, and that opens and closes the opening / closing unit based on these commands, and the interruption circuit unit includes the overcurrent signal. Is input, the opening / closing part is opened by invalidating the closing drive signal output from the driving circuit to the opening / closing part.
 上記構成によれば、仮に過電流の発生後において制御部から閉指令が継続的に出力されていても、遮断回路部によって、駆動回路からの閉鎖駆動信号が無効化され、それに伴い開閉部が強制的に開放される。したがって、制御部の開閉指令を操作しなくても開閉部の開放が可能となり、ひいては過電流の発生時においていち早い対応が可能となる。 According to the above configuration, even if a closing command is continuously output from the control unit after the occurrence of an overcurrent, the shut-off circuit unit invalidates the closing drive signal from the drive circuit, and accordingly the opening / closing unit is It is forcibly released. Therefore, it is possible to open the opening / closing unit without operating the opening / closing command of the control unit, and as a result, it is possible to respond quickly when an overcurrent occurs.
 第3の手段では、前記開閉部をバイパスして前記電圧源と前記電気負荷とを接続するバイパス経路に設けられ、該バイパス経路を開放又は閉鎖するバイパススイッチと、前記制御部から前記開指令が出力されたことに基づいて前記バイパススイッチを閉鎖するバイパス回路部と、を備え、前記制御部は、前記検出信号に基づいて前記開閉部に過電流が流れていると判定した場合に前記開指令を出力し、前記バイパススイッチが開放状態から閉鎖状態に切り替えられた後に、前記開閉部を開放させるものであって、前記遮断回路部は、前記過電流信号が入力された場合に、前記バイパススイッチが開放状態から閉鎖状態に切り替えられる前に前記開閉部を開放させる。 In the third means, a bypass switch that bypasses the open / close unit and connects the voltage source and the electric load is provided, and a bypass switch that opens or closes the bypass route, and the control unit issues the open command. A bypass circuit unit that closes the bypass switch based on the output, and the control unit determines that an overcurrent flows through the opening / closing unit based on the detection signal. And the opening / closing part is opened after the bypass switch is switched from the open state to the closed state, and when the overcurrent signal is input, the cutoff circuit part The opening / closing part is opened before switching from the open state to the closed state.
 上記電源システムでは、電気経路又はバイパス経路を介して電気負荷へ電力の供給が常時可能となるよう、開閉部が開放される場合にはバイパススイッチが閉鎖される構成となっている。さらに、電気負荷への電力供給が途絶えることを防ぐため、開閉部の開指令が出力され、バイパススイッチが開放状態から閉鎖状態に切り替えられた後に、開閉部が開放される構成となっている。しかしこの場合、過電流発生に伴う遮断処理においても、バイパススイッチが閉鎖されるまで開閉部を開放することができない。そのため、過電流による影響が一層懸念される。 In the above power supply system, the bypass switch is closed when the opening / closing part is opened so that electric power can be always supplied to the electric load via the electric path or the bypass path. Furthermore, in order to prevent the supply of electric power to the electric load from being interrupted, an opening / closing part opening command is output, and the opening / closing part is opened after the bypass switch is switched from the open state to the closed state. However, in this case, the opening / closing part cannot be opened until the bypass switch is closed even in the interruption process associated with the occurrence of overcurrent. Therefore, there is a further concern about the influence of overcurrent.
 この点上記構成では、遮断回路部は、過電流信号が入力された場合に、バイパススイッチが開放状態から閉鎖状態に切り替えられる前に開閉部を開放させるようにしたため、バイパススイッチが閉鎖されることを待たずに開閉部を開放することができる。これにより、過電流発生時において開閉部をより迅速に開放させることができ、ひいては電源システムを好適に保護することができる。 In this regard, in the above configuration, when the overcurrent signal is input, the cutoff circuit unit opens the opening / closing unit before the bypass switch is switched from the open state to the closed state, so that the bypass switch is closed. The opening / closing part can be opened without waiting. Thereby, when an overcurrent occurs, the opening / closing part can be opened more quickly, and the power supply system can be suitably protected.
 第4の手段では、前記制御部は、前記過電流信号に基づいて前記遮断回路部により前記開閉部が開放された場合には、前記開閉部の前記開指令を出力しない。 In the fourth means, the control section does not output the opening command of the opening / closing section when the opening / closing section is opened by the interrupting circuit section based on the overcurrent signal.
 上記電源システムでは、過電流が生じた場合、制御部による遮断処理よりも早く遮断回路部により開閉部が開放される。この場合、開閉部が開放される時点では、バイパススイッチは開放されている。しかしその後において、制御部による遮断処理によって開閉部の開指令が出力されると、バイパススイッチが閉鎖される。かかる場合には、過電流が一旦遮断されたにもかかわらず、過電流が再度電源システムに流れることになり不都合が生じると考えられる。 In the above power supply system, when an overcurrent occurs, the opening / closing part is opened by the cutoff circuit part earlier than the cutoff process by the control part. In this case, the bypass switch is opened when the opening / closing part is opened. However, after that, when the opening / closing unit opening command is output by the blocking process by the control unit, the bypass switch is closed. In such a case, although the overcurrent is once interrupted, it is considered that the overcurrent flows again to the power supply system, resulting in inconvenience.
 この点上記構成では、過電流信号に基づいて開閉部が開放された場合には、制御部は、開閉部の開指令を出力しないようにしたため、開閉部の開指令に伴ってバイパススイッチが閉鎖されることを回避することができる。これにより、過電流が意図せずに電源システムの別経路に流れることを防ぐことができる。 In this configuration, when the opening / closing unit is opened based on the overcurrent signal, the control unit does not output the opening / closing unit opening command, so that the bypass switch is closed along with the opening / closing unit opening command. Can be avoided. Thereby, it is possible to prevent an overcurrent from unintentionally flowing to another path of the power supply system.
 第5の手段では、前記バイパススイッチは、機械式リレーである。 In the fifth means, the bypass switch is a mechanical relay.
 機械式リレーの場合、接点の開閉のための時間を要し、半導体スイッチに比べてスイッチの切り替わりにより多くの時間を要する。そのため、バイパススイッチが機械式リレーである場合、制御部による遮断処理では過電流の影響が一層懸念される。この点上記構成では、過電流発生時において、機械式リレーのバイパススイッチが閉鎖されることを待たずに開閉部を開放することができるため、開放部を開放させるまでの時間を一層短縮することができる。 In the case of mechanical relays, it takes time to open and close the contacts, and more time is required to switch the switch than a semiconductor switch. For this reason, when the bypass switch is a mechanical relay, there is a greater concern about the influence of overcurrent in the interruption process by the control unit. In this respect, in the above configuration, when an overcurrent occurs, the opening / closing part can be opened without waiting for the bypass switch of the mechanical relay to be closed, thereby further reducing the time until the opening part is opened. Can do.
 第6の手段では、前記電圧源として、互いに並列接続される第1蓄電池及び第2蓄電池を備えるとともに、それら第1蓄電池及び第2蓄電池の間の通電経路に前記開閉部として直列で設けられる第1開閉部及び第2開閉部と、前記各開閉部に流れる電流を検出する第1電流検出部と第2電流検出部とを備え、それら第1開閉部及び第2開閉部の間の中間点に電気負荷が接続され、前記制御部は、前記各開閉部に対し、前記閉指令及び前記開指令をそれぞれ出力し、前記各開閉部の開閉を制御し、前記バイパス経路は、前記第1開閉部をバイパスして前記電圧源と前記電気負荷とを接続するものであって、前記バイパス回路部は、前記制御部から前記各開閉部の両方に対して前記開指令が出力されたことに基づいて前記バイパススイッチを閉鎖する。 In the sixth means, as the voltage source, a first storage battery and a second storage battery connected in parallel to each other are provided, and a current path between the first storage battery and the second storage battery is provided in series as the open / close section. 1 opening and closing part and 2nd opening and closing part, the 1st current detection part and the 2nd current detection part which detect the current which flows through each said opening and closing part, and the middle point between these 1st opening and closing part and the 2nd opening and closing part An electrical load is connected to the control unit, the control unit outputs the close command and the open command to the open / close units, respectively, to control the open / close of the open / close units, and the bypass path includes the first open / close unit. The bypass circuit unit is connected to the voltage source and the electrical load, and the bypass circuit unit is based on the opening command being output from the control unit to both of the switching units. Close the bypass switch. To.
 上記構成によれば、2電源システムにおいても、過電流が生じた場合に電源システムを迅速に遮断することができ、ひいては電源システムを適正に保護することができる。 According to the above configuration, even in a two-power supply system, the power supply system can be quickly shut down when an overcurrent occurs, and thus the power supply system can be properly protected.
 第7の手段では、前記制御部に入力される検出信号は、前記電流検出部の検出値の変化を抑制する第1なまし処理が実施されたものであり、前記比較回路部に入力される検出信号は、前記電流検出部の検出値の変化を抑制する第2なまし処理が実施されたものであって、前記第2なまし処理の方が、第1なまし処理に比べてなまし度合いが小さくなるように設定される。 In the seventh means, the detection signal input to the control unit is subjected to a first smoothing process that suppresses a change in the detection value of the current detection unit, and is input to the comparison circuit unit. The detection signal is obtained by performing a second smoothing process that suppresses a change in the detection value of the current detection unit, and the second smoothing process is smoother than the first smoothing process. The degree is set to be small.
 電流検出部の検出値に対するなまし処理において、なまし度合いが小さい方が、それよりも大きい場合に比べて、応答性が良くなる。この点を考慮し、第2なまし処理の方が、第1なまし処理に比べてなまし度合いが小さくなるように設定したため、比較回路部に入力される検出信号の方が、制御部に入力される検出信号よりも応答性が良くなる。これにより、比較回路部の方が過電流をより迅速に検出することができる。 In the annealing process for the detection value of the current detection unit, the smaller the degree of annealing, the better the response than when it is larger. In consideration of this point, the second smoothing process is set so that the degree of smoothing is smaller than that of the first smoothing process. Therefore, the detection signal input to the comparison circuit unit is sent to the control unit. The response is better than the input detection signal. Thereby, the comparison circuit unit can detect the overcurrent more quickly.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電源システムを示す電気回路図であり、 図2は、マイコンによるスイッチの開閉を説明するための図であり、 図3は、蓄電池から電気負荷への電力供給を示す図であり、 図4は、従来の電源システムにおける過電流発生時の遮断処理を示す図であり、 図5は、従来の電源システムにおける過電流発生時の遮断処理のタイムチャートであり、 図6は、第1実施形態における過電流発生時の強制遮断を示す図であり、 図7は、マイコンにおける処理を示すフローチャートであり、 図8は、第1実施形態の過電流発生時の強制遮断のタイムチャートであり、 図9は、第2実施形態の電源システムを示す電気回路図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is an electric circuit diagram showing the power supply system of the first embodiment. FIG. 2 is a diagram for explaining opening and closing of a switch by a microcomputer. FIG. 3 is a diagram showing power supply from the storage battery to the electric load. FIG. 4 is a diagram showing a shut-off process when an overcurrent occurs in a conventional power supply system, FIG. 5 is a time chart of the interruption process when an overcurrent occurs in the conventional power supply system, FIG. 6 is a diagram illustrating forced interruption when an overcurrent occurs in the first embodiment. FIG. 7 is a flowchart showing processing in the microcomputer. FIG. 8 is a time chart of forced cutoff at the occurrence of overcurrent in the first embodiment. FIG. 9 is an electric circuit diagram showing the power supply system of the second embodiment.
 (第1実施形態)
 以下、本開示を具体化した実施形態を図面に基づいて説明する。本実施形態では、エンジン(内燃機関)を駆動源として走行する車両において当該車両の各種機器に電力を供給する車載電源システムを具体化するものとしている。
(First embodiment)
Hereinafter, an embodiment embodying the present disclosure will be described with reference to the drawings. In the present embodiment, an in-vehicle power supply system that supplies power to various devices of the vehicle in a vehicle that runs using an engine (internal combustion engine) as a drive source is embodied.
 図1に示すように、本電源システムは、第1蓄電池及び第2蓄電池として鉛蓄電池11とリチウムイオン蓄電池12とを有する2電源システムである。各蓄電池11,12に対しては発電機としてのオルタネータ13による充電が可能となっており、また、各蓄電池11,12からはスタータ14や、各種の電気負荷15,16への給電が可能となっている。本システムでは、オルタネータ13に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されるとともに、電気負荷15,16に対して並列に鉛蓄電池11及びリチウムイオン蓄電池12が接続されている。なお、本実施形態において、各蓄電池11,12、及びオルタネータ13が「電圧源」に相当する。 As shown in FIG. 1, this power supply system is a dual power supply system having a lead storage battery 11 and a lithium ion storage battery 12 as a first storage battery and a second storage battery. Each storage battery 11 and 12 can be charged by an alternator 13 as a generator, and each storage battery 11 and 12 can supply power to a starter 14 and various electric loads 15 and 16. It has become. In this system, the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the alternator 13, and the lead storage battery 11 and the lithium ion storage battery 12 are connected in parallel to the electrical loads 15 and 16. In the present embodiment, each of the storage batteries 11 and 12 and the alternator 13 corresponds to a “voltage source”.
 鉛蓄電池11は周知の汎用蓄電池である。これに対し、リチウムイオン蓄電池12は、鉛蓄電池11に比べて、充放電における電力損失が少なく、出力密度、及びエネルギ密度の高い高密度蓄電池である。リチウムイオン蓄電池12は、鉛蓄電池11に比べて充放電時のエネルギ効率が高い蓄電池であるとよい。また、リチウムイオン蓄電池12は、それぞれ複数の単電池を有してなる組電池として構成されている。これら各蓄電池11,12の定格電圧はいずれも同じであり、例えば12Vである。 The lead storage battery 11 is a well-known general-purpose storage battery. On the other hand, the lithium ion storage battery 12 is a high-density storage battery that has less power loss during charging / discharging than the lead storage battery 11, and has a high output density and energy density. The lithium ion storage battery 12 may be a storage battery having higher energy efficiency during charging / discharging than the lead storage battery 11. Moreover, the lithium ion storage battery 12 is comprised as an assembled battery which has a some single cell, respectively. These storage batteries 11 and 12 have the same rated voltage, for example, 12V.
 図示による具体的な説明は割愛するが、リチウムイオン蓄電池12は、収容ケースに収容されて基板一体の電池ユニットUとして構成されている。電池ユニットUは、出力端子T1,T2,T0を有しており、このうち出力端子T1,T0に鉛蓄電池11とオルタネータ13とスタータ14と電気負荷15とが接続され、出力端子T2に電気負荷16が接続されている。 Although the detailed description by illustration is omitted, the lithium ion storage battery 12 is housed in a housing case and configured as a battery unit U integrated with a substrate. The battery unit U has output terminals T1, T2, and T0, of which the lead storage battery 11, the alternator 13, the starter 14, and the electric load 15 are connected to the output terminals T1 and T0, and the electric load is connected to the output terminal T2. 16 is connected.
 オルタネータ13の回転軸は、図示しないエンジン出力軸に対してベルト等により駆動連結されており、エンジン出力軸の回転によってオルタネータ13の回転軸が回転する。すなわち、オルタネータ13は、エンジン出力軸や車軸の回転により発電(回生発電)を行う。 The rotating shaft of the alternator 13 is connected to an engine output shaft (not shown) by a belt or the like, and the rotating shaft of the alternator 13 is rotated by the rotation of the engine output shaft. That is, the alternator 13 generates power (regenerative power generation) by rotating the engine output shaft and the axle.
 各電気負荷15,16は、各蓄電池11,12から供給される供給電力の電圧について要求が相違するものである。このうち電気負荷16には、供給電力の電圧が一定又は少なくとも所定範囲内で変動するよう安定であることが要求される定電圧要求負荷が含まれる。これに対し、電気負荷15は、定電圧要求負荷以外の一般的な電気負荷である。電気負荷16は被保護負荷とも言える。また、電気負荷16は電源失陥が許容されない負荷であり、電気負荷15は、電気負荷16に比べて電源失陥が許容される負荷であるとも言える。 The electric loads 15 and 16 have different requirements for the voltage of the supplied power supplied from the storage batteries 11 and 12. Among these, the electric load 16 includes a constant voltage required load that is required to be stable so that the voltage of the supplied power fluctuates within a predetermined range or at least within a predetermined range. On the other hand, the electric load 15 is a general electric load other than the constant voltage required load. It can be said that the electric load 16 is a protected load. In addition, it can be said that the electric load 16 is a load that does not allow a power supply failure, and the electric load 15 is a load that allows a power supply failure compared to the electric load 16.
 定電圧要求負荷である電気負荷16の具体例としては、ナビゲーション装置やオーディオ装置、メータ装置、エンジンECU等の各種ECUが挙げられる。この場合、供給電力の電圧変動が抑えられることで、上記各装置において不要なリセット等が生じることが抑制され、安定動作が実現可能となっている。電気負荷16として、電動ステアリング装置やブレーキ装置等の走行系アクチュエータが含まれていてもよい。また、電気負荷15の具体例としては、シートヒータやリヤウインドウのデフロスタ用ヒータ、ヘッドライト、フロントウインドウのワイパ、空調装置の送風ファン等が挙げられる。 Specific examples of the electrical load 16 that is a constant voltage required load include various ECUs such as a navigation device, an audio device, a meter device, and an engine ECU. In this case, by suppressing the voltage fluctuation of the supplied power, it is possible to suppress an unnecessary reset or the like in each of the above devices, and to realize a stable operation. As the electric load 16, a traveling system actuator such as an electric steering device or a brake device may be included. Specific examples of the electric load 15 include a seat heater, a heater for a defroster for a rear window, a headlight, a wiper for a front window, and a blower fan for an air conditioner.
 次に、電池ユニットUにおける電気的構成を説明する。図1に示すように、電池ユニットUには、ユニット内電気経路として、各出力端子T1,T2を繋ぐ通電経路L1と、通電経路L1上の接続点N1とリチウムイオン蓄電池12とを繋ぐ通電経路L2とが設けられている。このうち通電経路L1に第1スイッチ21が設けられ、通電経路L2に第2スイッチ22が設けられている。なお、鉛蓄電池11とリチウムイオン蓄電池12とを接続する電気経路で言えば、接続点N1よりも鉛蓄電池11の側に第1スイッチ21が設けられ、接続点N1よりもリチウムイオン蓄電池12の側に第2スイッチ22が設けられている。 Next, the electrical configuration of the battery unit U will be described. As shown in FIG. 1, the battery unit U has an energization path L1 that connects the output terminals T1 and T2 and an energization path that connects a connection point N1 on the energization path L1 and the lithium ion storage battery 12 as an in-unit electrical path. L2 is provided. Among these, the 1st switch 21 is provided in the electricity supply path | route L1, and the 2nd switch 22 is provided in the electricity supply path | route L2. In addition, if it says by the electrical path which connects the lead storage battery 11 and the lithium ion storage battery 12, the 1st switch 21 will be provided in the lead storage battery 11 side rather than the connection point N1, and the lithium ion storage battery 12 side from the connection point N1. The second switch 22 is provided.
 これら各スイッチ21,22は、例えば2×n個のMOSFET(半導体スイッチング素子)を備え、その2つ一組のMOSFETの寄生ダイオードが互いに逆向きになるように直列に接続されている。この寄生ダイオードによって、各スイッチ21,22をオフ状態とした場合にそのスイッチが設けられた経路に流れる電流が完全に遮断される。なお、スイッチ21,22として、MOSFETに代えて、IGBTやバイポーラトランジスタ等を用いることも可能である。スイッチ21,22としてIGBTやバイポーラトランジスタを用いた場合、上記の寄生ダイオードの代わりに、スイッチ21,22それぞれに逆向きのダイオードを並列接続させてもよい。 Each of these switches 21 and 22 includes, for example, 2 × n MOSFETs (semiconductor switching elements), and the parasitic diodes of the two sets of MOSFETs are connected in series so as to be opposite to each other. By this parasitic diode, when each switch 21 and 22 is turned off, the current flowing through the path in which the switch is provided is completely cut off. Note that IGBTs, bipolar transistors, or the like can be used as the switches 21 and 22 instead of MOSFETs. In the case where IGBTs or bipolar transistors are used as the switches 21 and 22, reverse diodes may be connected in parallel to the switches 21 and 22, respectively, instead of the parasitic diode.
 また、電池ユニットUには、第1スイッチ21を迂回するバイパス経路L0が設けられている。バイパス経路L0は、出力端子T0と通電経路L1上の接続点N1とを接続するように、通電経路L1に並列に設けられている。つまり、バイパス経路L0によって、第1スイッチ21を介さずに、鉛蓄電池11と電気負荷16との接続が可能となっている。バイパス経路L0上には、ヒューズ30と、常閉式の機械式リレーからなるバイパススイッチ31とが直列に設けられている。なお、ヒューズ30は、バイパススイッチ31よりも鉛蓄電池11の側に、すなわちバイパススイッチ31と出力端子T0との間に設けられている。 The battery unit U is provided with a bypass path L0 that bypasses the first switch 21. The bypass path L0 is provided in parallel to the energization path L1 so as to connect the output terminal T0 and the connection point N1 on the energization path L1. That is, the lead storage battery 11 and the electrical load 16 can be connected by the bypass path L0 without going through the first switch 21. On the bypass path L0, a fuse 30 and a bypass switch 31 composed of a normally closed mechanical relay are provided in series. The fuse 30 is provided closer to the lead storage battery 11 than the bypass switch 31, that is, between the bypass switch 31 and the output terminal T0.
 この構成により、バイパススイッチ31を閉鎖状態にすることで、第1スイッチ21がオフ(開放)されていても鉛蓄電池11と電気負荷16とが電気的に接続される。例えば、車両の電源スイッチ(イグニッションスイッチ)がオフされている状態では、バイパススイッチ31を介して電気負荷16に対して暗電流が供給される。なお、バイパス経路L0、ヒューズ30及びバイパススイッチ31を、電池ユニットU外に設けることも可能である。 With this configuration, the lead storage battery 11 and the electrical load 16 are electrically connected even when the first switch 21 is turned off (opened) by closing the bypass switch 31. For example, dark current is supplied to the electric load 16 via the bypass switch 31 in a state where the power switch (ignition switch) of the vehicle is turned off. Note that the bypass path L0, the fuse 30 and the bypass switch 31 may be provided outside the battery unit U.
 電池ユニットUは、各スイッチ21,22、及びバイパススイッチ31のオンオフ(開閉)を制御するマイコン50(制御部)を備えている。マイコン50は、CPU、ROM、RAM、入出力インターフェース等を備えている。マイコン50には、電池ユニットU外のECU100が接続されている。つまり、これらマイコン50及びECU100は、CAN等の通信ネットワークにより接続されて相互に通信可能となっており、マイコン50及びECU100に記憶される各種データが互いに共有できるものとなっている。 The battery unit U includes each of the switches 21 and 22 and a microcomputer 50 (control unit) that controls on / off (opening / closing) of the bypass switch 31. The microcomputer 50 includes a CPU, a ROM, a RAM, an input / output interface, and the like. An ECU 100 outside the battery unit U is connected to the microcomputer 50. That is, the microcomputer 50 and the ECU 100 are connected by a communication network such as CAN and can communicate with each other, and various data stored in the microcomputer 50 and the ECU 100 can be shared with each other.
 マイコン50は、各蓄電池11,12の蓄電状態や、上位制御装置であるECU100からの指令信号に基づいて、各スイッチ21,22、及びバイパススイッチ31のオンオフを制御する。具体的には、マイコン50は、各スイッチ21,22を開放させる開指令、及び各スイッチ21,22を閉鎖させる閉指令を出力することで開閉を制御する。ここで、スイッチを閉鎖させることに関して言えば、マイコン50は、閉(オン)指令を駆動回路52に出力する。そして、駆動回路52によって、対応するスイッチのゲート信号、つまり閉鎖駆動信号が出力される。具体的には、例えば10Vに昇圧生成されたゲート電圧が出力されることで、対応するスイッチが閉鎖(オン)される。なお、図1では、第2スイッチ22に対する開閉制御を示しているが、第1スイッチ21に対しても同様に実施される。 The microcomputer 50 controls on / off of the switches 21 and 22 and the bypass switch 31 based on the storage state of each of the storage batteries 11 and 12 and a command signal from the ECU 100 that is the host controller. Specifically, the microcomputer 50 controls opening and closing by outputting an opening command for opening the switches 21 and 22 and a closing command for closing the switches 21 and 22. Here, in terms of closing the switch, the microcomputer 50 outputs a close (ON) command to the drive circuit 52. Then, the drive circuit 52 outputs the gate signal of the corresponding switch, that is, the closing drive signal. Specifically, the corresponding switch is closed (turned on) by outputting the gate voltage boosted to 10 V, for example. Although FIG. 1 shows the open / close control for the second switch 22, the same applies to the first switch 21.
 このように、マイコン50のスイッチのオンオフ制御により、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。また、マイコン50は、電気負荷16(非保護負荷)に対して、各蓄電池11,12から常時電力が供給されるよう制御している。そのため、第1スイッチ21及び第2スイッチ22のいずれもが開放(オフ)状態となる場合には、バイパススイッチ31が閉鎖されるようになっている。 Thus, charging / discharging is performed by selectively using the lead storage battery 11 and the lithium ion storage battery 12 by the on / off control of the switch of the microcomputer 50. Further, the microcomputer 50 controls the electric load 16 (unprotected load) so that electric power is always supplied from each of the storage batteries 11 and 12. Therefore, when both the first switch 21 and the second switch 22 are in an open (off) state, the bypass switch 31 is closed.
 ここで、スイッチの開閉について図2を用いて説明する。マイコン50は、各スイッチ21,22を開放又は閉鎖させるため、各スイッチ21,22の駆動回路52に対して開指令又は閉指令をそれぞれ出力する。そして、その開指令又は閉指令に基づいて駆動回路52からゲート信号が出力されることでスイッチ21,22の開閉が実施される。一方、マイコン50から出力された各スイッチの開閉指令は、バイパススイッチ31の開閉を制御するNOR回路C1にも入力される。具体的には、NOR回路C1には、第1スイッチ21の開閉指令と、第2スイッチ22の開閉指令とが入力される。そして、NOR回路C1から出力された信号が「1」であればバイパススイッチ31が閉鎖され、「0」であればバイパススイッチ31が開放される。 Here, opening and closing of the switch will be described with reference to FIG. The microcomputer 50 outputs an open command or a close command to the drive circuit 52 of each switch 21, 22 in order to open or close each switch 21, 22. The switches 21 and 22 are opened and closed by outputting a gate signal from the drive circuit 52 based on the open command or the close command. On the other hand, the opening / closing command of each switch output from the microcomputer 50 is also input to the NOR circuit C 1 that controls the opening / closing of the bypass switch 31. Specifically, an opening / closing command for the first switch 21 and an opening / closing command for the second switch 22 are input to the NOR circuit C1. If the signal output from the NOR circuit C1 is “1”, the bypass switch 31 is closed, and if it is “0”, the bypass switch 31 is opened.
 図2において、NOR回路C1には、各スイッチ21,22の指令が開指令の場合に「0」が入力され、閉指令の場合に「1」が入力されるようになっている。そのため、各スイッチ21,22の少なくともいずれかに閉指令が出力されている場合はバイパススイッチ31が開放され、各スイッチ21,22の両方に対して開指令が出力されている場合はバイパススイッチ31が閉鎖される。このように、各スイッチ21,22の開放(オフ)とバイパススイッチ31の閉鎖(オン)が行われる際には、電気負荷16に対する電源遮断が生じないよう、マイコン50から第1スイッチ21及び第2スイッチ22の両方に対して開(オフ)指令が出力されたことに基づいてバイパススイッチ31が閉鎖されるようになっている。 In FIG. 2, “0” is input to the NOR circuit C1 when the commands of the switches 21 and 22 are open commands, and “1” is input when the commands are close commands. Therefore, when the close command is output to at least one of the switches 21 and 22, the bypass switch 31 is opened, and when the open command is output to both the switches 21 and 22, the bypass switch 31 is open. Is closed. As described above, when the switches 21 and 22 are opened (off) and the bypass switch 31 is closed (on), the first switch 21 and the first switch 21 are connected from the microcomputer 50 so that the power supply to the electric load 16 is not interrupted. The bypass switch 31 is closed based on the output of an open (off) command to both the two switches 22.
 さらに、本電源システムでは、電気負荷16への電力供給が途絶えるのを防ぐため、各スイッチ21,22の両方に対して開(オフ)指令が出力されることに伴いバイパススイッチ31が開放状態から閉鎖状態に切り替えられた後に、各スイッチ21,22が開放される構成となっている。つまりこの場合、スイッチの開指令が出力されてから実際にそのスイッチが開放されるまでに遅れを持たせており、駆動回路52には、図示しないディレイ回路が設けられている。これにより、第1スイッチ21又は第2スイッチ22の閉鎖状態とバイパススイッチ31の閉鎖状態とが重複し、電気負荷16への給電が途絶えることを防止している。 Furthermore, in this power supply system, in order to prevent the supply of power to the electric load 16 from being interrupted, the bypass switch 31 is released from the open state in response to the output of an open (off) command to both the switches 21 and 22. After switching to the closed state, the switches 21 and 22 are opened. That is, in this case, there is a delay from when the switch opening command is output until the switch is actually opened, and the drive circuit 52 is provided with a delay circuit (not shown). As a result, the closed state of the first switch 21 or the second switch 22 and the closed state of the bypass switch 31 overlap to prevent the power supply to the electrical load 16 from being interrupted.
 また、電池ユニットUは、第1スイッチ21に流れる電流を検出する第1電流検出部41と、第2スイッチ22に流れる電流を検出する第2電流検出部42とを備えている。具体的には、通電経路L1上に第1電流検出部41が設けられ、通電経路L2上に第2電流検出部42が設けられている。なお、第1電流検出部41を、例えば、第1スイッチ21における2つ1組の対になったMOSFETの間に設けてもよい。この場合、第1電流検出部41は、MOSFET間に流れる電流を検出する。なお、第2電流検出部42も同様に、第2スイッチ22に対して設けてもよい。 The battery unit U includes a first current detection unit 41 that detects a current flowing through the first switch 21 and a second current detection unit 42 that detects a current flowing through the second switch 22. Specifically, the first current detection unit 41 is provided on the energization path L1, and the second current detection unit 42 is provided on the energization path L2. Note that the first current detection unit 41 may be provided between, for example, a pair of MOSFETs in the first switch 21. In this case, the first current detector 41 detects a current flowing between the MOSFETs. Similarly, the second current detection unit 42 may be provided for the second switch 22.
 以上のように構成される電源システムでは、鉛蓄電池11及びリチウムイオン蓄電池12の少なくとも一方から電気負荷16への電力の供給が可能となっている。図3では、例えばリチウムイオン蓄電池12から電気負荷16へ給電を行っている場合を示している。この場合、マイコン50によって、第1スイッチ21に対してはオフ指令がなされることにより第1スイッチ21が開放(オフ)状態となっており、第2スイッチ22に対してはオン指令がなされることにより第2スイッチ22が閉鎖(オン)状態となっている。 In the power supply system configured as described above, power can be supplied from at least one of the lead storage battery 11 and the lithium ion storage battery 12 to the electric load 16. FIG. 3 shows a case where power is supplied from the lithium ion storage battery 12 to the electric load 16, for example. In this case, the microcomputer 50 issues an off command to the first switch 21 so that the first switch 21 is in an open (off) state, and an on command is issued to the second switch 22. Thus, the second switch 22 is in a closed (on) state.
 ところで、電気負荷16への給電時において、例えば電気負荷16で地絡が発生すると、電気的に導通した経路に過電流が流れることになる。図3の場合、第2スイッチ22を経由してリチウムイオン蓄電池12から電気負荷16に過電流が流れ、スイッチや電気経路の耐性等が問題となる。このような過電流異常が生じた場合、従来の電源システムでは、マイコン50によるフェールセーフ処理(遮断処理)が実施される。かかるフェールセーフ処理について以下に説明する。 By the way, when a ground fault occurs at the electric load 16 when power is supplied to the electric load 16, for example, an overcurrent flows through the electrically conductive path. In the case of FIG. 3, overcurrent flows from the lithium ion storage battery 12 to the electric load 16 via the second switch 22, and the resistance of the switch and the electric path becomes a problem. When such an overcurrent abnormality occurs, fail safe processing (cut-off processing) by the microcomputer 50 is performed in the conventional power supply system. Such fail-safe processing will be described below.
 図1において、まず第2電流検出部42から出力される検出値(電流値)が、第1フィルタ51aを介し、マイコン50に検出信号として入力される。第1フィルタ51aは、ローパスフィルタであり、ここでは検出値の変化を抑制するために第1なまし処理が実施される。そして、マイコン50にて、入力された検出信号に基づいて過電流が流れていることが判定される。具体的には、入力された電流値(検出信号)が閾値Th1よりも大きくなっている状態が所定時間継続した場合に過電流が流れていると判定される。そして、マイコン50は、過電流が流れていると判定すると駆動回路52に第2スイッチ22の開(オフ)指令を出力する。 In FIG. 1, first, a detection value (current value) output from the second current detection unit 42 is input as a detection signal to the microcomputer 50 via the first filter 51a. The first filter 51a is a low-pass filter, and here, a first smoothing process is performed to suppress a change in the detected value. Then, the microcomputer 50 determines that an overcurrent is flowing based on the input detection signal. Specifically, it is determined that an overcurrent flows when a state where the input current value (detection signal) is larger than the threshold value Th1 continues for a predetermined time. When the microcomputer 50 determines that an overcurrent is flowing, the microcomputer 50 outputs an open (off) command for the second switch 22 to the drive circuit 52.
 そして、マイコン50から第2スイッチ22のオフ指令が出力されたことに基づいてバイパススイッチ31が閉鎖される(図4)。この場合、地絡した電気負荷16と鉛蓄電池11とが導通することでバイパス経路L0に過電流が流れ、ヒューズ30が溶断される。そしてこれにより、バイパス経路L0が遮断される。また、第2スイッチ22のオフ指令が出力されている状況下においてバイパススイッチ31が閉鎖されることで、第2スイッチ22が開放(オフ)される。これにより、電源システムにおいて過電流が遮断される。 Then, the bypass switch 31 is closed based on the output of the second switch 22 off command from the microcomputer 50 (FIG. 4). In this case, when the grounded electrical load 16 and the lead storage battery 11 are conducted, an overcurrent flows through the bypass path L0, and the fuse 30 is blown. As a result, the bypass path L0 is blocked. Further, the second switch 22 is opened (turned off) by closing the bypass switch 31 in a situation where an off command for the second switch 22 is output. Thereby, an overcurrent is interrupted in the power supply system.
 このようなマイコン50によるフェールセーフ処理を、図5のタイミングチャートを用いて説明する。図5では、リチウムイオン蓄電池12から電気負荷16への給電時において電気負荷16で地絡が生じた場合を想定しており、タイミングチャートの開始時において、第1スイッチ21は開放状態、第2スイッチ22は閉鎖状態となっている。なお、図中の第2スイッチ22の電流値は、マイコン50に入力される検出信号に基づく値を示している。つまり、第1なまし処理が実施された電流値を示している。 Such fail-safe processing by the microcomputer 50 will be described with reference to the timing chart of FIG. In FIG. 5, it is assumed that a ground fault has occurred in the electric load 16 when power is supplied from the lithium ion storage battery 12 to the electric load 16. At the start of the timing chart, the first switch 21 is in the open state, The switch 22 is in a closed state. The current value of the second switch 22 in the figure indicates a value based on the detection signal input to the microcomputer 50. That is, the current value after the first annealing process is shown.
 タイミングt1において電気負荷16で地絡が発生すると第2スイッチ22を流れる電流が大きくなり、タイミングt2にて閾値Th1を上回ると、過電流が流れているか否かの判定が開始される。具体的には、電流値が閾値Th1を上回った期間が所定時間を超えた場合に、過電流が流れていると判定される。 When a ground fault occurs at the electric load 16 at the timing t1, the current flowing through the second switch 22 increases. When the threshold Th1 is exceeded at the timing t2, it is determined whether or not an overcurrent is flowing. Specifically, it is determined that an overcurrent flows when a period in which the current value exceeds the threshold Th1 exceeds a predetermined time.
 タイミングt3にて、第2スイッチ22に過電流が流れていると判定されると、第2スイッチ22の開(オフ)指令が出力される。このとき、第1スイッチ21及び第2スイッチ22の両方に対し開指令が出力されることに伴いリレーコイルの通電がオフされる。そして、タイミングt4にてバイパススイッチ31が閉鎖される。その後、バイパススイッチ31が閉鎖されたことに起因して、第2スイッチ22が開放(オフ)される。具体的には、バイパススイッチ31の閉鎖に伴いバイパス経路L0に電流が流れたことが検出され、それに基づいて第2スイッチ22が開放される(タイミングt5)。 When it is determined that an overcurrent flows through the second switch 22 at timing t3, an open (off) command for the second switch 22 is output. At this time, energization of the relay coil is turned off as an opening command is output to both the first switch 21 and the second switch 22. Then, the bypass switch 31 is closed at timing t4. Thereafter, the second switch 22 is opened (off) due to the bypass switch 31 being closed. Specifically, it is detected that a current has flowed through the bypass path L0 as the bypass switch 31 is closed, and based on this, the second switch 22 is opened (timing t5).
 図5において、マイコン50によるフェールセーフ処理では、電気負荷16で地絡が発生してから第2スイッチ22が開放されるまでタイミングt1~t5の時間(数百ms)を要することになる。なお、タイミングt1~t5の時間として具体的には、地絡発生から閾値Th1を超えるまでの時間(タイミングt1~t2)、過電流の判定に要する時間(タイミングt2~t3)、バイパススイッチ31の接続時間(タイミングt3~t4)、第2スイッチ22の開放時間(タイミングt4~t5)が相当する。 In FIG. 5, in the fail safe process by the microcomputer 50, it takes time (several hundred ms) from timing t1 to t5 until the second switch 22 is opened after the ground fault occurs in the electric load 16. Specifically, the time from timing t1 to t5 is specifically the time from the occurrence of the ground fault to the time when the threshold Th1 is exceeded (timing t1 to t2), the time required to determine overcurrent (timing t2 to t3), the bypass switch 31 The connection time (timing t3 to t4) corresponds to the opening time of the second switch 22 (timing t4 to t5).
 このようにマイコン50におけるフェールセーフ処理では、過電流が生じてから実際に電源システムが遮断されるまでの時間に起因して電源システムに不都合が生じると考えられる。さらに、マイコン50における演算負荷等によっては、過電流判定等のフェールセーフ処理自体に遅れが生じることも考えられる。 As described above, in the fail-safe process in the microcomputer 50, it is considered that there is a problem in the power supply system due to the time from when the overcurrent occurs until the power supply system is actually shut down. Furthermore, depending on the calculation load in the microcomputer 50, a delay may occur in the fail safe process itself such as overcurrent determination.
 そこで、本実施形態における電源システムでは、各電流検出部41,42の検出信号と所定の過電流判定値とを比較し、その比較の結果に基づいて、過電流発生の旨を示す過電流信号を出力する比較回路部60と、過電流信号が入力された場合に、マイコン50から出力される開指令とは独立して各スイッチ21,22を開放させて過電流を遮断する遮断回路部70と、を備えるようにした。すなわち、電気回路により構成されるハードウェアを用いることにより、マイコン50によるフェールセーフ処理とは独立して、各スイッチ21,22を開放させ、電源システムを強制的に遮断するようにした。 Therefore, in the power supply system according to the present embodiment, the detection signal of each of the current detection units 41 and 42 is compared with a predetermined overcurrent determination value, and an overcurrent signal indicating the occurrence of overcurrent is based on the comparison result. And a shutoff circuit unit 70 that shuts off the overcurrent by opening the switches 21 and 22 independently of the open command output from the microcomputer 50 when an overcurrent signal is input. And so on. That is, by using hardware configured by an electric circuit, the switches 21 and 22 are opened independently of the fail-safe process by the microcomputer 50, and the power supply system is forcibly cut off.
 上記ハードウェアによる強制遮断について説明する。各スイッチ21,22を流れる電流は、各電流検出部41,42としてのシャント抵抗により検出され、アンプを介して各フィルタ51a,51bに入力される。そして、各電流検出部41,42の検出値(電流値)が、第2フィルタ51bを介し、比較回路部60に検出信号として入力される。第2フィルタ51bは、ローパスフィルタであり、ここでは検出値の変化を抑制するために第2なまし処理が実施される。なお、本実施形態では、第1なまし処理のなまし度合に比べて、第2なまし処理のなまし度合の方が小さくなるように設定されている。すなわち、第2フィルタ51bから出力される検出信号(電流値Ib)は、第1フィルタ51aから出力される検出信号(電流値Ia)よりも応答性が良いものとなっている。 Explain the forced shutdown by the above hardware. The currents flowing through the switches 21 and 22 are detected by shunt resistors as the current detectors 41 and 42, and are input to the filters 51a and 51b via amplifiers. The detection values (current values) of the current detection units 41 and 42 are input as detection signals to the comparison circuit unit 60 via the second filter 51b. The second filter 51b is a low-pass filter, and here, a second smoothing process is performed to suppress a change in the detected value. In the present embodiment, the degree of smoothing of the second smoothing process is set to be smaller than the degree of smoothing of the first smoothing process. That is, the detection signal (current value Ib) output from the second filter 51b has better responsiveness than the detection signal (current value Ia) output from the first filter 51a.
 比較回路部60は、コンパレータ61とラッチ回路62とを有している。コンパレータ61では、第2なまし処理が実施された電流値Ibと、閾値Th2とが大小比較される。閾値Th2は、過電流が流れていることを判定できる過電流判定値として設けられるものであって、通常時の電流の使用領域に電流検出部のばらつきを考慮した値となっている。ここでは、閾値Th2は数百Aに設定される。なお、本実施形態では、閾値Th2と閾値Th1を同じ値としているが、互いに異なる値としてもよい。例えば、閾値Th2を閾値Th1よりも大きい値としてもよく、又、閾値Th2を閾値Th1よりも小さい値としてもよい。コンパレータ61は、入力された電流値Ibが閾値Th2を超えるとハイ状態の信号、すなわち過電流信号をラッチ回路62に出力する。 The comparison circuit unit 60 includes a comparator 61 and a latch circuit 62. In the comparator 61, the current value Ib that has been subjected to the second smoothing process is compared with the threshold value Th2. The threshold value Th <b> 2 is provided as an overcurrent determination value that can determine that an overcurrent is flowing, and is a value that takes into account the variation of the current detection unit in the normal current use region. Here, the threshold Th2 is set to several hundred A. In the present embodiment, the threshold value Th2 and the threshold value Th1 are the same value, but may be different values. For example, the threshold value Th2 may be a value greater than the threshold value Th1, and the threshold value Th2 may be a value smaller than the threshold value Th1. The comparator 61 outputs a high-state signal, that is, an overcurrent signal to the latch circuit 62 when the input current value Ib exceeds the threshold Th2.
 ラッチ回路62は、例えばフリップフロップ回路を用いて構成されており、コンパレータ61から出力される信号を保持できるようになっている。そのためコンパレータ61から出力される信号がハイ状態の信号である間、そのハイ状態の信号が保持される。つまり過電流が検出された場合、比較回路部60から過電流信号が出力される。 The latch circuit 62 is configured by using, for example, a flip-flop circuit, and can hold a signal output from the comparator 61. Therefore, while the signal output from the comparator 61 is a high state signal, the high state signal is held. That is, when an overcurrent is detected, an overcurrent signal is output from the comparison circuit unit 60.
 そして、比較回路部60から出力された過電流信号は、遮断回路部70に入力される。遮断回路部70は、遮断回路71とバイポーラトランジスタ72とを有している。遮断回路71は過電流信号に基づいて、バイポーラトランジスタ72のベース信号を出力する。これにより、バイポーラトランジスタ72が閉鎖(オン)される。バイポーラトランジスタ72のコレクタ側は、駆動回路52が出力するスイッチ21,22のゲート信号の信号経路に接続されている。一方、エミッタ側は、グランドに接続されている。そのため、遮断回路部70に過電流信号が入力されるとバイポーラトランジスタ72がオン状態となり、スイッチ21,22の閉鎖駆動信号に基づく電圧がグランドレベルに落ちる。つまり、各スイッチ21,22の閉(オン)指令が強制的に無効化(停止)される。これにより、各スイッチ21,22が開放され、過電流が遮断される。なお、バイポーラトランジスタ72に代えて、IGBTやMOSFET等を用いることも可能である。 The overcurrent signal output from the comparison circuit unit 60 is input to the interruption circuit unit 70. The cutoff circuit unit 70 includes a cutoff circuit 71 and a bipolar transistor 72. The cutoff circuit 71 outputs the base signal of the bipolar transistor 72 based on the overcurrent signal. As a result, the bipolar transistor 72 is closed (turned on). The collector side of the bipolar transistor 72 is connected to the signal path of the gate signals of the switches 21 and 22 output from the drive circuit 52. On the other hand, the emitter side is connected to the ground. Therefore, when an overcurrent signal is input to the cutoff circuit unit 70, the bipolar transistor 72 is turned on, and the voltage based on the closing drive signals of the switches 21 and 22 falls to the ground level. That is, the close (on) command of each switch 21 and 22 is forcibly invalidated (stopped). Thereby, each switch 21 and 22 is opened, and an overcurrent is interrupted | blocked. In place of the bipolar transistor 72, an IGBT, a MOSFET, or the like can be used.
 また、ラッチ回路62から出力される過電流信号は、マイコン50からのリセット信号によりリセットされる。 Further, the overcurrent signal output from the latch circuit 62 is reset by a reset signal from the microcomputer 50.
 図6には、本実施形態における強制遮断の概略を示す。図6では、リチウムイオン蓄電池12から電気負荷16への給電時において電気負荷16で地絡が生じた場合に、マイコン50から出力される第2スイッチ22のオン指令を遮断回路部70によって停止させることで、第2スイッチ22を強制的に開放(オフ)させている。つまりこの場合、マイコン50のフェールセーフ処理によってオン指令からオフ指令に切り替わるよりも前に、遮断回路部70によって第2スイッチ22が開放される。そのため、バイパススイッチ31が開放された状態で、第2スイッチ22が開放される。これにより、ヒューズ30が溶断されることも回避される。 FIG. 6 shows an outline of forced cutoff in this embodiment. In FIG. 6, when a ground fault occurs in the electric load 16 when power is supplied from the lithium ion storage battery 12 to the electric load 16, the on-command of the second switch 22 output from the microcomputer 50 is stopped by the cutoff circuit unit 70. Thus, the second switch 22 is forcibly opened (off). That is, in this case, before the switching from the on command to the off command is performed by the fail safe process of the microcomputer 50, the second switch 22 is opened by the cutoff circuit unit 70. Therefore, the second switch 22 is opened while the bypass switch 31 is opened. Thereby, it is avoided that the fuse 30 is blown.
 なお、図6では、第2スイッチ22を強制的に開放(オフ)させる場合を示しているが、第1スイッチ21に対しても同様に実施される。すなわち、鉛蓄電池11から電気負荷16への給電時において電気負荷16で地絡が生じた場合には、マイコン50から出力される第1スイッチ21のオン指令を遮断回路部70が停止させることで、第1スイッチ21が強制的に開放(オフ)されることになる。 Although FIG. 6 shows the case where the second switch 22 is forcibly opened (turned off), the same applies to the first switch 21. That is, when a ground fault occurs in the electrical load 16 during power feeding from the lead storage battery 11 to the electrical load 16, the cutoff circuit unit 70 stops the ON command for the first switch 21 output from the microcomputer 50. The first switch 21 is forcibly opened (off).
 一方、本実施形態ではハードウェアによる強制遮断と並行してマイコン50によるフェールセーフ処理も実施される。ここでマイコン50が実行する処理について、図7のフローチャートを参照して説明する。図7のフローチャートに係る処理は、所定の周期毎に繰り返し実行される。 On the other hand, in this embodiment, fail-safe processing by the microcomputer 50 is also performed in parallel with the forced cutoff by hardware. Here, processing executed by the microcomputer 50 will be described with reference to a flowchart of FIG. The process according to the flowchart of FIG. 7 is repeatedly executed at predetermined intervals.
 まず、ステップS11にて、イグニッションスイッチがオンであるか否かを判定する。ステップS11がYESであればステップS12に進み、ステップS11がNOであればそのまま本処理を終了する。 First, in step S11, it is determined whether or not the ignition switch is on. If step S11 is YES, the process proceeds to step S12. If step S11 is NO, the process is terminated.
 ステップS12では、第1スイッチ21をオフとする指令(開指令)を出力しているか否かを判定し、ステップS13では、第2スイッチ22をオフとする指令(開指令)を出力しているか否かを判定する。ここで、本電源システムでは、イグニッションスイッチがオンである場合は原則として各スイッチ21,22が共にオフ状態になることはなく、少なくともいずれかがオン状態となっている。そのため、ステップS12がYESであることは、第1スイッチ21がオフ状態、第2スイッチ22がオン状態であることを意味し、ステップS13がYESであることは、第1スイッチ21がオン状態、第2スイッチ22がオフ状態であることを意味し、ステップS13がNOであることは、第1スイッチ21及び第2スイッチ22がオン状態であることを意味する。 In step S12, it is determined whether or not a command to turn off the first switch 21 (open command) is output. In step S13, a command to open the second switch 22 (open command) is output. Determine whether or not. Here, in this power supply system, when the ignition switch is on, in principle, both the switches 21 and 22 are not turned off, and at least one of them is turned on. Therefore, step S12 being YES means that the first switch 21 is in an off state and the second switch 22 is in an on state, and that step S13 is YES that the first switch 21 is in an on state, The second switch 22 is in an off state, and NO in step S13 means that the first switch 21 and the second switch 22 are in an on state.
 すなわち、ステップS12が肯定される場合は、リチウムイオン蓄電池12から電気負荷16へ給電が行われている状態であり、ステップS13が肯定される場合は、鉛蓄電池11から電気負荷16へ給電が行われている状態であり、ステップS13が否定される場合は、鉛蓄電池11及びリチウムイオン蓄電池12から電気負荷16へ給電が行われている状態となる。 That is, when step S12 is affirmed, power is being supplied from the lithium ion storage battery 12 to the electrical load 16, and when step S13 is affirmed, power is supplied from the lead storage battery 11 to the electrical load 16. When step S13 is negative, power is being supplied from the lead storage battery 11 and the lithium ion storage battery 12 to the electrical load 16.
 ステップS14では、過電流を検出したか否かを判定する。具体的には、第2電流検出部42によって検出されマイコン50に入力される電流値Iaが閾値Th1を超え、かつ所定時間継続したか否かを判定する。ステップS14がYESであれば、フェールセーフ処理として第2スイッチ22をオフとする指令を出力する(ステップS15)。続くステップS16では、バイパススイッチ31を閉鎖させる。 In step S14, it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not the current value Ia detected by the second current detection unit 42 and input to the microcomputer 50 exceeds the threshold Th1 and continues for a predetermined time. If step S14 is YES, the command which turns off the 2nd switch 22 as a fail safe process is output (step S15). In subsequent step S16, the bypass switch 31 is closed.
 ステップS17では、過電流を検出したか否かを判定する。具体的には、第1電流検出部41によって検出されマイコン50に入力される電流値Iaが閾値Th1を超え、かつ所定時間継続したか否かを判定する。ステップS17がYESであれば、フェールセーフ処理として第1スイッチ21をオフとする指令を出力する(ステップS18)。続くステップS16では、バイパススイッチ31を閉鎖させる。 In step S17, it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not the current value Ia detected by the first current detector 41 and input to the microcomputer 50 exceeds the threshold value Th1 and has continued for a predetermined time. If step S17 is YES, the command which turns off the 1st switch 21 as a fail safe process is output (step S18). In subsequent step S16, the bypass switch 31 is closed.
 ステップS19では、過電流を検出したか否かを判定する。具体的には、各電流検出部41,42によって検出されマイコン50に入力される各電流値Iaが閾値Th1を超え、かつ所定時間継続したか否かを判定する。ステップS19がYESであれば、すなわち各電流値Iaの少なくともいずれかが閾値Th1を超え、かつ所定時間継続した場合は、フェールセーフ処理として第1スイッチ21及び第2スイッチ22をオフとする指令を出力する(ステップS20)。続くステップS15では、バイパススイッチ31を閉鎖させる。 In step S19, it is determined whether or not an overcurrent is detected. Specifically, it is determined whether or not each current value Ia detected by each current detection unit 41 and 42 and input to the microcomputer 50 exceeds the threshold Th1 and continues for a predetermined time. If step S19 is YES, that is, if at least one of the current values Ia exceeds the threshold Th1 and continues for a predetermined time, a command to turn off the first switch 21 and the second switch 22 as a fail-safe process is issued. Output (step S20). In subsequent step S15, the bypass switch 31 is closed.
 一方、ステップS14,S17,S19がNOであれば、そのまま本処理を終了する。なお、本実施形態では、これらステップS14,S17,S19が否定されている状況下、すなわちマイコン50において過電流が流れていることが判定される前に、比較回路部60で過電流を検出し、遮断回路部70によりスイッチ21,22を開放させる。 On the other hand, if Steps S14, S17, and S19 are NO, this processing is terminated as it is. In the present embodiment, the overcurrent is detected by the comparison circuit unit 60 under the circumstances in which these steps S14, S17, and S19 are denied, that is, before the microcomputer 50 determines that the overcurrent is flowing. Then, the switches 21 and 22 are opened by the cutoff circuit unit 70.
 ここで、本実施形態における強制遮断によって過電流が遮断された後において、マイコン50のフェールセーフ処理(遮断処理)としてスイッチのオフ指令が出力されると、バイパススイッチ31が閉鎖されることになる。この場合、過電流が一旦遮断された状態となっているにもかかわらず、過電流が再び電源システムを流れることになり、不都合が生じると考えられる。例えば、バイパス経路L0に過電流が流れ、ヒューズ30が溶断されることになる。 Here, after the overcurrent is cut off by the forced cut-off in the present embodiment, when a switch-off command is output as the fail-safe process (cut-off process) of the microcomputer 50, the bypass switch 31 is closed. . In this case, although the overcurrent is once interrupted, the overcurrent flows again through the power supply system, which is considered to cause inconvenience. For example, an overcurrent flows through the bypass path L0, and the fuse 30 is blown.
 そこで、本実施形態では、遮断回路部70によってスイッチ21,22が開放された後には、バイパススイッチ31が閉鎖されないようにしている。具体的には、マイコン50がフェールセーフ処理としてスイッチ21,22のオフ指令を出力しないようにしている。より詳しくは、ラッチ回路62が、スイッチ21,22が強制的に開放された旨を示す信号をマイコン50に出力し、その信号に基づいてマイコン50が対応するスイッチのオン指令を継続する。つまり、スイッチ21,22の両方に対してオフ指令が出力されないようにすることで、バイパススイッチ31が閉鎖されることを回避している。 Therefore, in the present embodiment, after the switches 21 and 22 are opened by the cutoff circuit unit 70, the bypass switch 31 is not closed. Specifically, the microcomputer 50 does not output an OFF command for the switches 21 and 22 as fail-safe processing. More specifically, the latch circuit 62 outputs a signal indicating that the switches 21 and 22 are forcibly opened to the microcomputer 50, and the microcomputer 50 continues to turn on the corresponding switch based on the signal. That is, the bypass switch 31 is prevented from being closed by preventing the off command from being output to both the switches 21 and 22.
 続いて、図8のタイミングチャートを用いて、本実施形態における強制遮断について説明する。図8では、図5と同様、リチウムイオン蓄電池12から電気負荷16への給電時において電気負荷16で地絡が生じた場合を想定しており、タイミングチャートの開始時において、第1スイッチ21はオフ状態、第2スイッチ22はオン状態となっている。なお、図中の第2スイッチ22の電流値の実線は、比較回路部60に入力される検出信号に基づく値Ibを示している。つまり、第2なまし処理が実施された電流値を示している。一方、一点鎖線は、図5に示したマイコン50に入力される検出信号に基づく値Iaを示している。 Subsequently, the forced cutoff in the present embodiment will be described using the timing chart of FIG. In FIG. 8, as in FIG. 5, it is assumed that a ground fault has occurred in the electric load 16 when power is supplied from the lithium ion storage battery 12 to the electric load 16. At the start of the timing chart, the first switch 21 is In the off state, the second switch 22 is in the on state. Note that the solid line of the current value of the second switch 22 in the figure indicates the value Ib based on the detection signal input to the comparison circuit unit 60. That is, the current value obtained by performing the second annealing process is shown. On the other hand, the alternate long and short dash line indicates the value Ia based on the detection signal input to the microcomputer 50 shown in FIG.
 タイミングt11において電気負荷16で地絡が発生すると第2スイッチ22を流れる電流が大きくなり、タイミングt12にて電流値Ibが閾値Th2を上回ると、比較回路部60のコンパレータ61の出力信号がハイの状態となり、過電流信号として直ちに遮断回路部70へ出力される。 When a ground fault occurs at the electric load 16 at the timing t11, the current flowing through the second switch 22 increases. When the current value Ib exceeds the threshold Th2 at the timing t12, the output signal of the comparator 61 of the comparison circuit unit 60 is high. It becomes a state and is immediately output to the cutoff circuit unit 70 as an overcurrent signal.
 そして、過電流信号に基づいて、タイミングt3にて遮断回路部70により第2スイッチ22の閉(オン)指令が停止されることで、第2スイッチ22が開放(オフ)される。これにより、過電流が遮断され、電源システムが保護される。 Then, based on the overcurrent signal, the shutoff circuit unit 70 stops the second switch 22 closing (on) command at the timing t3, so that the second switch 22 is opened (off). Thereby, an overcurrent is interrupted and the power supply system is protected.
 またこのとき、第2スイッチ22が開放された旨を示す信号がマイコン50に入力されることで、第2スイッチ22の閉(オン)指令が維持される。つまり、タイミングt13は、マイコン50にて過電流が流れていると判定されるタイミングt14よりも早くなっている。そして、第2スイッチ22の閉(オン)指令が維持されることで、バイパススイッチ31が開放状態のまま維持される。 At this time, a signal indicating that the second switch 22 has been opened is input to the microcomputer 50, whereby the close (on) command for the second switch 22 is maintained. That is, the timing t13 is earlier than the timing t14 at which the microcomputer 50 determines that an overcurrent is flowing. Then, by keeping the second switch 22 closed (ON) command, the bypass switch 31 is kept open.
 図8において、本実施形態における強制遮断では、電気負荷16で地絡が発生してから第2スイッチ22が開放されるまでの時間は、タイミングt11~t13の時間(数百μs)となり、図5のタイミングt1~t5の時間(数百ms)に比べて、大いに短縮されている。具体的には、マイコン50とは別に設けられた電気回路を用いる強制遮断を実施することで、マイコン50での過電流の判定時間(タイミングt2~t3)や、バイパススイッチ31の接続時間(タイミングt3~t4)を省くことができるため、第2スイッチ22を開放させるまでの時間を好適に短縮することができる。さらに、比較回路部60に入力される検出信号(電流値Ib)は、第2フィルタ51bを介しているため、地絡発生から閾値Th1を超えるまでの時間(タイミングt11~t12)についても、図5におけるタイミングt1~t2の時間より短縮されている。 In FIG. 8, in the forced cutoff in the present embodiment, the time from when the ground fault occurs in the electrical load 16 until the second switch 22 is opened is the time (several hundred μs) from timing t11 to t13. Compared with the time 5 (several hundred ms) of the timing t1 to t5 of FIG. Specifically, by performing forced interruption using an electric circuit provided separately from the microcomputer 50, the overcurrent determination time (timing t2 to t3) in the microcomputer 50 and the connection time (timing of the bypass switch 31) Since t3 to t4) can be omitted, the time until the second switch 22 is opened can be suitably shortened. Further, since the detection signal (current value Ib) input to the comparison circuit unit 60 passes through the second filter 51b, the time from the occurrence of the ground fault to exceeding the threshold value Th1 (timing t11 to t12) is also shown in FIG. 5 is shorter than the timing t1 to t2.
 上記のように本実施形態における強制遮断では、マイコン50によるフェールセーフ処理に比べて、迅速に電源システムを保護することができる。この場合、マイコン50によるフェールセーフ処理は確実性を優先した制御であるのに対して、本実施形態における強制遮断は、迅速性を優先した制御であるとみなすことができる。 As described above, the forced shutdown in the present embodiment can protect the power supply system more quickly than the fail-safe process by the microcomputer 50. In this case, the fail-safe process by the microcomputer 50 is a control that prioritizes certainty, whereas the forced interruption in the present embodiment can be regarded as a control that prioritizes rapidity.
 さらに、本実施形態では、ラッチ回路62から出力される過電流信号がマイコン50によってリセットされる。本実施形態において、例えば、強制遮断により電源システムが一旦遮断された後において、マイコン50の過電流判定では過電流が流れていると判定されない、つまり電流値は正常であると判定された場合には、ラッチ回路62から出力される過電流信号がリセットされる構成としてもよい。この場合、マイコン50の過電流判定では過電流が流れていると判定されなければ、過電流発生が一時的なもの(ノイズ混入等)とみなすことができ、強制的に開放したスイッチを再び閉鎖させ電源システムを復帰させることができる。つまり、かかる構成では、過電流発生時において、いち早い対応が可能となることに加え、過電流の誤判定の復帰対応が可能となる。 Furthermore, in this embodiment, the overcurrent signal output from the latch circuit 62 is reset by the microcomputer 50. In the present embodiment, for example, after the power supply system is once shut down by forced shut-off, the overcurrent determination of the microcomputer 50 does not determine that overcurrent is flowing, that is, when the current value is determined to be normal. The overcurrent signal output from the latch circuit 62 may be reset. In this case, if it is not determined that overcurrent is flowing in the overcurrent determination of the microcomputer 50, the overcurrent generation can be regarded as temporary (mixed noise, etc.) and the forcibly opened switch is closed again. The power supply system can be restored. That is, in such a configuration, in addition to being able to quickly respond when an overcurrent occurs, it is possible to cope with a recovery from an erroneous determination of overcurrent.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 電源システムにおける過電流発生時において、マイコン50によるフェールセーフ処理では過電流判定等に時間がかかり、スイッチの開放に遅れが生じることが考えられ、過電流に伴う不都合が生じるおそれがある。この点を考慮し、マイコン50とは別に比較回路部60や遮断回路部70(電気回路)を用い、電流検出部41,42から入力される検出信号と所定の過電流判定値とを比較し、その比較の結果に基づいて過電流発生の旨を示す過電流信号を出力させ、その過電流信号に基づいてマイコン50による開指令とは独立してスイッチ21,22を開放させるようにした。つまりこの場合、マイコン50によるフェールセーフ処理とは異なる別系統の回路部によって、過電流を検出するとともに開閉部を開放させることで、例えばマイコン50における過電流判定に要する時間(タイミングt2~タイミングt3)を省くことができ、過電流を迅速に遮断することができる。これにより、過電流が生じた場合に電源システムを迅速に保護することができる。 When an overcurrent occurs in the power supply system, the fail-safe process by the microcomputer 50 takes time for overcurrent determination and the like, and it is considered that a delay occurs in the opening of the switch, which may cause inconvenience associated with the overcurrent. In consideration of this point, the detection signal input from the current detection units 41 and 42 is compared with a predetermined overcurrent determination value using the comparison circuit unit 60 and the cutoff circuit unit 70 (electric circuit) separately from the microcomputer 50. An overcurrent signal indicating the occurrence of overcurrent is output based on the comparison result, and the switches 21 and 22 are opened independently of the opening command from the microcomputer 50 based on the overcurrent signal. In other words, in this case, for example, the time required for overcurrent determination in the microcomputer 50 (timing t2 to timing t3) is detected by detecting the overcurrent and opening the opening / closing section by a circuit unit of a different system different from the fail-safe process by the microcomputer 50. ) Can be omitted, and the overcurrent can be cut off quickly. Thereby, when an overcurrent occurs, the power supply system can be protected quickly.
 上記構成によれば、仮に過電流の発生後においてマイコン50から閉(オン)指令が継続的に出力されていても、遮断回路部70によって、駆動回路52からの閉鎖駆動信号が無効化され、それに伴いスイッチ21,22が強制的に開放される。したがって、マイコンの開閉指令を操作しなくてもスイッチ21,22の開放が可能となり、ひいては過電流の発生時においていち早い対応が可能となる。 According to the above configuration, even if a closing (on) command is continuously output from the microcomputer 50 after the occurrence of an overcurrent, the closing drive signal from the driving circuit 52 is invalidated by the cutoff circuit unit 70, Accordingly, the switches 21 and 22 are forcibly opened. Therefore, the switches 21 and 22 can be opened without operating the microcomputer open / close command, and as a result, it is possible to respond quickly when an overcurrent occurs.
 また、遮断回路部70は、過電流信号が入力された場合に、バイパススイッチ31が開放状態から閉鎖状態に切り替えられる前にスイッチ21,22を開放させるようにしたため、バイパススイッチ31が閉鎖されることを待たずにスイッチ21,22を開放することができる。さらに、バイパススイッチ31は機械式リレーであるため、リレー接続に要する時間(タイミングt3~タイミングt4)を省くことができる。これにより、過電流を一層迅速に遮断することができる。 Moreover, since the cutoff circuit unit 70 opens the switches 21 and 22 before the bypass switch 31 is switched from the open state to the closed state when an overcurrent signal is input, the bypass switch 31 is closed. The switches 21 and 22 can be opened without waiting for this. Furthermore, since the bypass switch 31 is a mechanical relay, the time required for relay connection (timing t3 to timing t4) can be saved. Thereby, an overcurrent can be interrupted more rapidly.
 さらに、遮断回路部70によってスイッチ21,22が開放された場合、マイコン50は、スイッチ21,22の開(オフ)指令を出力しないようにしたため、スイッチ21,22のオフ指令に伴ってバイパススイッチ31が閉鎖されることを回避することができる。これにより、過電流が意図せずにバイパス経路L0に流れることを防ぐことができ、ヒューズ30が溶断されることも防ぐことができる。 Further, when the switches 21 and 22 are opened by the shut-off circuit unit 70, the microcomputer 50 does not output an open (off) command for the switches 21 and 22. It can be avoided that 31 is closed. As a result, it is possible to prevent an overcurrent from unintentionally flowing to the bypass path L0 and to prevent the fuse 30 from being blown.
 電流検出部41,42の検出値に対するなまし処理において、なまし度合いが小さい方が、それよりも大きい場合に比べて、応答性が良くなる。この点を考慮し、第2フィルタ51bにおける第2なまし処理の方が、第1フィルタ51aにおける第1なまし処理に比べてなまし度合いが小さくなるように設定したため、比較回路部60に入力される検出信号(電流値Ib)の方が、マイコン50に入力される検出信号(電流値Ia)よりも応答性が良くなる。これにより、比較回路部60の方が過電流をより迅速に検出することができる。 In the annealing process for the detection values of the current detection units 41 and 42, the smaller the degree of annealing, the better the response than when the degree of annealing is larger. In consideration of this point, the second smoothing process in the second filter 51b is set to have a smaller smoothing degree than the first smoothing process in the first filter 51a. The detected signal (current value Ib) is more responsive than the detection signal (current value Ia) input to the microcomputer 50. Thereby, the comparison circuit unit 60 can detect the overcurrent more quickly.
 (第2実施形態)
 次に、第2実施形態について、第1実施形態との相違点を中心に説明する。かかる電源システムについて、図9を用いて説明する。なお、図においては、説明の便宜上、上述の図1に準ずる構成については同じ符号を付すとともに説明を適宜割愛する。また、マイコン50や、比較回路部60、遮断回路部70等について、図示は省略している。
(Second Embodiment)
Next, the second embodiment will be described focusing on differences from the first embodiment. Such a power supply system will be described with reference to FIG. In the figure, for convenience of explanation, the same reference numerals are given to the configuration similar to that of FIG. 1 and the description is omitted as appropriate. Further, the microcomputer 50, the comparison circuit unit 60, the cutoff circuit unit 70, etc. are not shown.
 図9に示す電池ユニットUでは、出力端子T1,T0に鉛蓄電池11とスタータ14と電気負荷15とが接続され、出力端子T2に発電機としてのISG17(Integrated Starter Generator)が接続され、出力端子T3に電気負荷16が接続されている。ISG17は、エンジン出力軸の回転により発電(回生発電)を行う発電機として機能する一方、エンジン出力軸に回転力を付与する力行機能も併せ持っている。なお、ISG17が力行機能を発揮する(力行駆動する)場合は、各蓄電池11,12から電力が供給されることになり、かかる場合のISG17は電気負荷とみなすことができる。また、図9では、電気負荷15,16のうち、電気負荷16に定電圧要求負荷が含まれる。なお、出力端子T2に他の電気負荷が接続されていてもよい。 In the battery unit U shown in FIG. 9, the lead storage battery 11, the starter 14, and the electrical load 15 are connected to the output terminals T1 and T0, the ISG 17 (Integrated Starter Generator) as a generator is connected to the output terminal T2, and the output terminal An electric load 16 is connected to T3. The ISG 17 functions as a power generator that generates electric power (regenerative power generation) by rotating the engine output shaft, and also has a power running function that applies rotational force to the engine output shaft. In addition, when ISG17 exhibits a power running function (power running drive), electric power will be supplied from each storage battery 11 and 12, and ISG 17 in such a case can be regarded as an electric load. In FIG. 9, among the electric loads 15 and 16, the electric load 16 includes a constant voltage request load. Note that another electrical load may be connected to the output terminal T2.
 電池ユニットUにおいて、通電経路L1に第1スイッチ21が設けられ、通電経路L2に第2スイッチ22が設けられている。また、通電経路L1において出力端子T1と第1スイッチ21との間の接続点N2には分岐経路L3の一端が接続されるとともに、通電経路L2においてリチウムイオン蓄電池12と第2スイッチ22との間の接続点N4には分岐経路L4の一端が接続されており、これら分岐経路L3,L4の他端同士が中間点N3で接続されている。また、中間点N3と出力端子T3とが通電経路L5により接続されている。 In the battery unit U, the first switch 21 is provided in the energization path L1, and the second switch 22 is provided in the energization path L2. One end of the branch path L3 is connected to a connection point N2 between the output terminal T1 and the first switch 21 in the energization path L1, and between the lithium ion storage battery 12 and the second switch 22 in the energization path L2. One end of the branch path L4 is connected to the connection point N4, and the other ends of the branch paths L3 and L4 are connected at an intermediate point N3. Further, the intermediate point N3 and the output terminal T3 are connected by the energization path L5.
 分岐経路L3,L4にはそれぞれ第3スイッチ23,第4スイッチ24が設けられている。第3スイッチ23,第4スイッチ24はそれぞれMOSFET等の半導体スイッチにより構成されている。そして、各経路L3~L5を通じて、各蓄電池11,12からそれぞれ電気負荷16への給電が可能となっている。また、分岐経路L3には第3スイッチ23に流れる電流を検出する第3電流検出部43が、分岐経路L4には第4スイッチ24に流れる電流を検出する第4電流検出部44がそれぞれ設けられる。 The third switch 23 and the fourth switch 24 are provided on the branch paths L3 and L4, respectively. The third switch 23 and the fourth switch 24 are each composed of a semiconductor switch such as a MOSFET. Power can be supplied from the storage batteries 11 and 12 to the electric load 16 through the paths L3 to L5. The branch path L3 is provided with a third current detector 43 that detects a current flowing through the third switch 23, and the branch path L4 is provided with a fourth current detector 44 that detects a current flowing through the fourth switch 24. .
 電池ユニットUには、ユニット内のスイッチ21~24を介さずに、鉛蓄電池11を電気負荷16に対して接続可能とするバイパス経路L0,L6が設けられている。具体的には、電池ユニットUには、出力端子T0と通電経路L1上の接続点N1とを接続するバイパス経路L0が設けられるとともに、接続点N1と出力端子T3とを接続するバイパス経路L6が設けられている。そして、バイパス経路L0上にはバイパススイッチ31が設けられ、バイパス経路L6上にはバイパススイッチ32が設けられている。各バイパススイッチ31,32は例えば常閉式のリレースイッチである。 The battery unit U is provided with bypass paths L0 and L6 that allow the lead storage battery 11 to be connected to the electric load 16 without using the switches 21 to 24 in the unit. Specifically, the battery unit U is provided with a bypass path L0 that connects the output terminal T0 and the connection point N1 on the energization path L1, and a bypass path L6 that connects the connection point N1 and the output terminal T3. Is provided. A bypass switch 31 is provided on the bypass path L0, and a bypass switch 32 is provided on the bypass path L6. The bypass switches 31 and 32 are, for example, normally closed relay switches.
 両方のバイパススイッチ31,32を閉鎖することで、スイッチ21~24が全てオフであっても鉛蓄電池11と電気負荷16とが電気的に接続される。 By closing both the bypass switches 31, 32, the lead storage battery 11 and the electric load 16 are electrically connected even if the switches 21 to 24 are all off.
 上記の各スイッチ21~24やバイパススイッチ31,32は、マイコン50によってオンオフ制御(開閉制御)される。この場合、例えば各蓄電池11,12の蓄電状態に基づいて、各スイッチ21~24のオンオフが制御される。これにより、鉛蓄電池11とリチウムイオン蓄電池12とを選択的に用いて充放電が実施される。なお、バイパススイッチ31,32は、本電源システムの稼働時において基本的には開放状態で保持され、稼働停止状態において閉鎖状態に切り替えられる。 The above switches 21 to 24 and bypass switches 31 and 32 are on / off controlled (open / close controlled) by the microcomputer 50. In this case, for example, on / off of each of the switches 21 to 24 is controlled based on the storage state of each of the storage batteries 11 and 12. Thereby, charging / discharging is implemented using the lead storage battery 11 and the lithium ion storage battery 12 selectively. The bypass switches 31 and 32 are basically kept open when the power supply system is in operation, and are switched to the closed state when the operation is stopped.
 上記電源システムにおいても、ハードウェア(比較回路部60及び遮断回路部70)による強制遮断を実施することが可能である。すなわち、各電流検出部41~44により検出される電流値に基づいて、比較回路部60により過電流を検出するとともに、遮断回路部70によってマイコン50から出力される各スイッチ21~24の閉(オン)指令を停止することで、各スイッチ21~24を強制的に開放させることができる。またこの場合、各スイッチ21~24の閉(オン)指令が維持されることで、バイパススイッチ31,32が開放(オフ)された状態で維持される。これにより、マイコン50によるフェールセーフ処理よりも迅速に、かつバイパス経路L0,L6を導通させることなく過電流を遮断することができ、電源システムを好適に保護することができる。 Also in the above power supply system, it is possible to perform forced shut-off by hardware (comparison circuit unit 60 and shut-off circuit unit 70). That is, based on the current values detected by the current detection units 41 to 44, the comparison circuit unit 60 detects an overcurrent, and the cutoff circuit unit 70 closes the switches 21 to 24 output from the microcomputer 50 ( By turning off the ON command, the switches 21 to 24 can be forcibly opened. In this case, the bypass switches 31 and 32 are maintained in the open (off) state by maintaining the close (on) commands of the switches 21 to 24. As a result, overcurrent can be interrupted more rapidly than the fail-safe process by the microcomputer 50 and without conducting the bypass paths L0 and L6, and the power supply system can be suitably protected.
 (他の実施形態)
 ・上記実施形態では、遮断回路部70によってスイッチが強制開放された場合において、マイコン50から出力される当該スイッチの閉(オン)指令を継続するようにした。この点これに限定されず、スイッチの強制開放後においてバイパススイッチ31が閉鎖されない構成であればよい。例えば、スイッチの強制開放後において、マイコン50から開(オフ)指令が出力されてもそのオフ指令を無効とする処理をする構成としてもよく、又、マイコン50のフェールセーフ処理自体を停止する構成としてもよい。
(Other embodiments)
In the above-described embodiment, when the switch is forcibly opened by the shut-off circuit unit 70, the switch closing (ON) command output from the microcomputer 50 is continued. However, the present invention is not limited to this, and any configuration may be used as long as the bypass switch 31 is not closed after the switch is forcibly opened. For example, after the switch is forcibly opened, even when an open (off) command is output from the microcomputer 50, a process for invalidating the off command may be performed, or the fail safe process itself of the microcomputer 50 may be stopped. It is good.
 ・上記実施形態では、電流検出部により検出された検出値が、異なる2つのフィルタ51a,51bを介して、マイコン50と比較回路部60にそれぞれ入力される構成としたが、同じフィルタを介してマイコン50と比較回路部60にそれぞれ入力される構成としてもよい。つまりこの場合、マイコン50に入力される検出信号と比較回路部60に入力される信号とで同じなまし処理が実施される。 In the above embodiment, the detection value detected by the current detection unit is input to the microcomputer 50 and the comparison circuit unit 60 via two different filters 51a and 51b. It is good also as a structure input into the microcomputer 50 and the comparison circuit part 60, respectively. That is, in this case, the same annealing process is performed on the detection signal input to the microcomputer 50 and the signal input to the comparison circuit unit 60.
 ・上記実施形態では、遮断回路部70によってスイッチが強制開放された場合において、バイパススイッチ31,32が閉鎖されないようにしたが、これを変更してもよい。比較回路部60は、応答性を重視した構成としているため、ノイズに基づいて誤って過電流信号を出力してしまう場合が考え得る。かかる場合には、実際には過電流が生じていないにもかかわらず、スイッチが開放されることになる。この点を考慮し、遮断回路部70によってスイッチが強制開放された場合には、スイッチが開放されてから所定時間経過後にバイパススイッチ31を閉鎖させる構成としてもよい。かかる構成では、例えば、所定時間経過後にスイッチの閉(オン)指令の維持が解除されるようにする。このように意図的にバイパススイッチ31を閉鎖させることで、比較回路部60における過電流の検出が誤検出であったか否かを判断することができる。さらに、誤検出であった場合には、電気負荷16への電力供給を再開させる、すなわち電源システムを復帰させることができる。 In the above embodiment, when the switch is forcibly opened by the cutoff circuit unit 70, the bypass switches 31 and 32 are not closed, but this may be changed. Since the comparison circuit unit 60 is configured with emphasis on responsiveness, a case where an overcurrent signal is erroneously output based on noise can be considered. In such a case, the switch is opened even though no overcurrent actually occurs. In consideration of this point, when the switch is forcibly opened by the cutoff circuit unit 70, the bypass switch 31 may be closed after a predetermined time has elapsed since the switch was opened. In such a configuration, for example, the maintenance of the switch closing (ON) command is canceled after a predetermined time has elapsed. By intentionally closing the bypass switch 31 in this manner, it can be determined whether or not the detection of the overcurrent in the comparison circuit unit 60 was a false detection. Furthermore, in the case of erroneous detection, the power supply to the electric load 16 can be resumed, that is, the power supply system can be restored.
 ・上記実施形態における強制遮断をその他の電源システムに適用してもよい。その他の電源システムとしては、例えば、電圧源として鉛蓄電池11のみを有しその鉛蓄電池11と電気負荷16とを繋ぐ経路にスイッチを設けた電源システムが挙げられる。また、電圧源として鉛蓄電池11と発電機を有し発電機から鉛蓄電池11へ充電する電源システムに適用してもよい。なお、これらの電源システムは、バイパス経路が設けられていなくてもよい。 -The forced shutdown in the above embodiment may be applied to other power supply systems. As another power supply system, for example, a power supply system having only a lead storage battery 11 as a voltage source and provided with a switch in a path connecting the lead storage battery 11 and the electric load 16 can be cited. Moreover, you may apply to the power supply system which has the lead storage battery 11 and a generator as a voltage source, and charges the lead storage battery 11 from a generator. Note that these power supply systems may not have a bypass path.
 ・上記実施形態では、蓄電池として鉛蓄電池11を設けるとともに、リチウムイオン蓄電池12を設ける構成としたが、これを変更してもよい。例えば、リチウムイオン蓄電池12に代えて、それ以外の高密度蓄電池、例えばニッケル-水素電池を用いてもよい。その他、少なくともいずれかの蓄電池としてキャパシタを用いることも可能である。 In the above embodiment, the lead storage battery 11 is provided as the storage battery and the lithium ion storage battery 12 is provided. However, this may be changed. For example, instead of the lithium ion storage battery 12, other high-density storage batteries such as nickel-hydrogen batteries may be used. In addition, a capacitor can be used as at least one of the storage batteries.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  電圧源(11,12,13,17)と、前記電圧源から電力を供給される電気負荷(16,17)と、前記電圧源と前記電気負荷とを接続する電気経路(L1~L4)に設けられ、該電気経路を開放又は閉鎖する開閉部(21~24)と、前記開閉部を開放させる開指令及び前記開閉部を閉鎖させる閉指令を出力し前記開閉部の開閉を制御する制御部(50)と、前記開閉部に流れる電流を検出する電流検出部(41~44)と、を備え、
     前記制御部は、前記電流検出部の検出信号を入力し、前記電圧源から前記開閉部を介して前記電気負荷へ給電が行われる負荷給電時において前記検出信号に基づいて前記開閉部に過電流が流れていることを判定するとともに、その判定に基づいて前記開指令を出力し、前記開閉部を開放させる電源システムであって、
     前記電流検出部の検出信号が入力され、前記検出信号と所定の過電流判定値とを比較し、その比較の結果に基づいて、過電流発生の旨を示す過電流信号を出力する比較回路部(60)と、
     前記過電流信号が入力された場合に、前記制御部から出力される開指令とは独立して前記開閉部を開放させ、過電流を遮断する遮断回路部(70)と、
    を備える電源システム。
    A voltage source (11, 12, 13, 17), an electric load (16, 17) supplied with electric power from the voltage source, and an electric path (L1 to L4) connecting the voltage source and the electric load. An open / close unit (21 to 24) that opens or closes the electrical path, and a control unit that outputs an open command to open the open / close unit and a close command to close the open / close unit to control opening / closing of the open / close unit (50) and a current detection unit (41 to 44) for detecting a current flowing through the opening / closing unit,
    The control unit receives a detection signal from the current detection unit, and overloads the switching unit based on the detection signal when the power is supplied from the voltage source to the electrical load through the switching unit. A power supply system that outputs the opening command based on the determination and opens the opening and closing unit,
    A comparison circuit unit that receives a detection signal of the current detection unit, compares the detection signal with a predetermined overcurrent determination value, and outputs an overcurrent signal indicating the occurrence of overcurrent based on the comparison result (60)
    When the overcurrent signal is input, a shut-off circuit unit (70) that opens the open / close unit independently of an open command output from the control unit and interrupts the overcurrent;
    Power supply system comprising.
  2.  前記制御部からの前記開指令及び前記閉指令を入力し、これら各指令に基づいて前記開閉部を開閉駆動させる駆動回路(52)を備え、
     前記遮断回路部は、前記過電流信号が入力された場合に、前記駆動回路から前記開閉部に対して出力される閉鎖駆動信号を無効化することにより前記開閉部を開放させる請求項1に記載の電源システム。
    A drive circuit (52) for inputting the opening command and the closing command from the control unit and driving the opening / closing unit to open and close based on each command,
    The said interruption | blocking circuit part opens the said opening / closing part by invalidating the closing drive signal output with respect to the said opening / closing part from the said drive circuit, when the said overcurrent signal is input. Power system.
  3.  前記開閉部をバイパスして前記電圧源と前記電気負荷とを接続するバイパス経路(L0,L6)に設けられ、該バイパス経路を開放又は閉鎖するバイパススイッチ(31,32)と、
     前記制御部から前記開指令が出力されたことに基づいて前記バイパススイッチを閉鎖するバイパス回路部(C1)と、を備え、
     前記制御部は、前記検出信号に基づいて前記開閉部に過電流が流れていると判定した場合に前記開指令を出力し、前記バイパススイッチが開放状態から閉鎖状態に切り替えられた後に、前記開閉部を開放させるものであって、
     前記遮断回路部は、前記過電流信号が入力された場合に、前記バイパススイッチが開放状態から閉鎖状態に切り替えられる前に前記開閉部を開放させる請求項1又は2に記載の電源システム。
    A bypass switch (31, 32) provided in a bypass path (L0, L6) for connecting the voltage source and the electric load by bypassing the opening / closing section, and opening or closing the bypass path;
    A bypass circuit section (C1) for closing the bypass switch based on the output of the opening command from the control section,
    The control unit outputs the opening command when it is determined that an overcurrent flows through the opening / closing unit based on the detection signal, and the opening / closing is performed after the bypass switch is switched from an open state to a closed state. To open the part,
    3. The power supply system according to claim 1, wherein, when the overcurrent signal is input, the shut-off circuit unit opens the opening / closing unit before the bypass switch is switched from an open state to a closed state.
  4.  前記制御部は、前記過電流信号に基づいて前記遮断回路部により前記開閉部が開放された場合には、前記開閉部の前記開指令を出力しない請求項3に記載の電源システム。 4. The power supply system according to claim 3, wherein the control unit does not output the opening command of the opening / closing unit when the opening / closing unit is opened by the interrupting circuit unit based on the overcurrent signal.
  5.  前記バイパススイッチは、機械式リレーである請求項3又は4に記載の電源システム。 The power supply system according to claim 3 or 4, wherein the bypass switch is a mechanical relay.
  6.  前記電圧源として、互いに並列接続される第1蓄電池(11)及び第2蓄電池(12)を備えるとともに、それら第1蓄電池及び第2蓄電池の間の通電経路に前記開閉部として直列で設けられる第1開閉部(21,23)及び第2開閉部(22,24)と、前記各開閉部に流れる電流を検出する第1電流検出部(41,43)と第2電流検出部(42,44)とを備え、それら第1開閉部及び第2開閉部の間の中間点に電気負荷が接続され、
     前記制御部は、前記各開閉部に対し、前記閉指令及び前記開指令をそれぞれ出力し、前記各開閉部の開閉を制御し、
     前記バイパス経路は、前記第1開閉部をバイパスして前記電圧源と前記電気負荷とを接続するものであって、
     前記バイパス回路部は、前記制御部から前記各開閉部の両方に対して前記開指令が出力されたことに基づいて前記バイパススイッチを閉鎖する請求項3乃至5のいずれか1項に記載の電源システム。
    The voltage source includes a first storage battery (11) and a second storage battery (12) that are connected in parallel to each other, and is provided in series in the energization path between the first storage battery and the second storage battery as the open / close section. 1 opening / closing part (21, 23) and 2nd opening / closing part (22, 24), the 1st electric current detection part (41, 43) and the 2nd electric current detection part (42, 44) which detect the electric current which flows through each said opening / closing part. And an electrical load is connected to an intermediate point between the first opening and closing part and the second opening and closing part,
    The control unit outputs the close command and the open command to the open / close units, and controls the open / close of the open / close units.
    The bypass path connects the voltage source and the electric load by bypassing the first opening / closing part,
    The power supply according to any one of claims 3 to 5, wherein the bypass circuit section closes the bypass switch based on the opening command being output from the control section to both of the opening / closing sections. system.
  7.  前記制御部に入力される検出信号は、前記電流検出部の検出値の変化を抑制する第1なまし処理が実施されたものであり、前記比較回路部に入力される検出信号は、前記電流検出部の検出値の変化を抑制する第2なまし処理が実施されたものであって、
     前記第2なまし処理の方が、第1なまし処理に比べてなまし度合いが小さくなるように設定される請求項1乃至6のいずれか一項に記載の電源システム。
    The detection signal input to the control unit is obtained by performing a first smoothing process that suppresses a change in the detection value of the current detection unit. The detection signal input to the comparison circuit unit is the current signal. The second smoothing process for suppressing the change in the detection value of the detection unit is performed,
    The power supply system according to any one of claims 1 to 6, wherein the second smoothing process is set to have a smaller smoothing degree than the first smoothing process.
PCT/JP2017/042122 2016-12-20 2017-11-23 Power supply system WO2018116741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246539 2016-12-20
JP2016246539A JP6662282B2 (en) 2016-12-20 2016-12-20 Power system

Publications (1)

Publication Number Publication Date
WO2018116741A1 true WO2018116741A1 (en) 2018-06-28

Family

ID=62626300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042122 WO2018116741A1 (en) 2016-12-20 2017-11-23 Power supply system

Country Status (2)

Country Link
JP (1) JP6662282B2 (en)
WO (1) WO2018116741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562172A (en) * 2019-09-19 2019-12-13 浙江大华技术股份有限公司 Power supply device and method and vehicle power supply system
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
EP3780331A1 (en) * 2019-08-13 2021-02-17 Yasaki Corporation Power supply device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844366B2 (en) * 2017-03-24 2021-03-17 株式会社デンソー Power system
JP7268489B2 (en) * 2018-07-27 2023-05-08 株式会社デンソー storage battery system
JP6696706B1 (en) * 2019-04-15 2020-05-20 三菱電機株式会社 Power converter
JP7120160B2 (en) * 2019-06-05 2022-08-17 株式会社デンソー power supply controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045670A (en) * 1999-07-30 2001-02-16 Fujitsu Ltd Battery pack
JP2010068689A (en) * 2008-09-12 2010-03-25 Toyota Motor Corp Motor controller
JP2010187532A (en) * 2009-01-14 2010-08-26 Mitsumi Electric Co Ltd Protection monitoring circuit, battery pack, secondary battery monitor circuit, and protection circuit
JP2013141907A (en) * 2012-01-11 2013-07-22 Suzuki Motor Corp Power source device for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045670A (en) * 1999-07-30 2001-02-16 Fujitsu Ltd Battery pack
JP2010068689A (en) * 2008-09-12 2010-03-25 Toyota Motor Corp Motor controller
JP2010187532A (en) * 2009-01-14 2010-08-26 Mitsumi Electric Co Ltd Protection monitoring circuit, battery pack, secondary battery monitor circuit, and protection circuit
JP2013141907A (en) * 2012-01-11 2013-07-22 Suzuki Motor Corp Power source device for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
JP2020114074A (en) * 2019-01-09 2020-07-27 株式会社デンソー Energization control device
JP7014191B2 (en) 2019-01-09 2022-02-01 株式会社デンソー Energization control device
EP3780331A1 (en) * 2019-08-13 2021-02-17 Yasaki Corporation Power supply device
US11114888B2 (en) 2019-08-13 2021-09-07 Yazaki Corporation Power supply device
CN110562172A (en) * 2019-09-19 2019-12-13 浙江大华技术股份有限公司 Power supply device and method and vehicle power supply system
CN110562172B (en) * 2019-09-19 2021-02-26 浙江大华汽车技术有限公司 Power supply device and method and vehicle power supply system

Also Published As

Publication number Publication date
JP2018102048A (en) 2018-06-28
JP6662282B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2018116741A1 (en) Power supply system
JP6623937B2 (en) Relay device and power supply device
WO2016174828A1 (en) Battery management device and power supply system
JP6090199B2 (en) Battery unit
JP6244987B2 (en) Power system
CN109716614B (en) Control system
WO2018062324A1 (en) Power supply control device
JP6627732B2 (en) Power supply circuit device
US20170187179A1 (en) Junction box
JP2007089240A (en) Fault detector of power supply circuit
JP7306237B2 (en) power system
WO2018193782A1 (en) Dynamo-electric machine control device, and power supply system
JP6760091B2 (en) Power supply and power system
JP2022178780A (en) Shutdown control device and shutdown control system
JP6844366B2 (en) Power system
JP2018139462A (en) Power unit
JP6986402B2 (en) Control device and failure determination method
JP2020114074A (en) Energization control device
WO2021039177A1 (en) Energization control device and power supply unit
WO2021039130A1 (en) Energization control device and power supply unit
JP2018182888A (en) Power supply system
JP7155712B2 (en) storage battery system
JP7565803B2 (en) On-board power supply device and on-board power supply control method
US12051931B2 (en) Onboard power supply device and onboard power supply control method
JP7268489B2 (en) storage battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883559

Country of ref document: EP

Kind code of ref document: A1