WO2018116574A1 - Alkaline storage battery - Google Patents

Alkaline storage battery Download PDF

Info

Publication number
WO2018116574A1
WO2018116574A1 PCT/JP2017/035901 JP2017035901W WO2018116574A1 WO 2018116574 A1 WO2018116574 A1 WO 2018116574A1 JP 2017035901 W JP2017035901 W JP 2017035901W WO 2018116574 A1 WO2018116574 A1 WO 2018116574A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
current collector
core material
collector plate
Prior art date
Application number
PCT/JP2017/035901
Other languages
French (fr)
Japanese (ja)
Inventor
徹 川勝
大山 秀明
後藤 浩之
宏樹 竹島
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017088576A external-priority patent/JP2020024784A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018116574A1 publication Critical patent/WO2018116574A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an alkaline storage battery using a negative electrode active material containing a hydrogen storage alloy.
  • Alkaline storage batteries such as nickel metal hydride storage batteries are expected to be used in various applications due to their high capacity.
  • the use of alkaline storage batteries is also envisaged in applications such as the main power source of electronic devices such as portable devices or backup power sources.
  • it has been studied to use an alkaline storage battery as an auxiliary power source for a charged battery or as an emergency power source during a disaster.
  • the alkaline storage battery is required to have characteristics such as high output and durability.
  • Nickel metal hydride storage batteries use a hydrogen storage alloy as the negative electrode active material.
  • Patent Document 1 proposes using a hydrogen storage alloy having a storage hydrogen equilibrium pressure of 0.03 MPa to 0.17 MPa for a nickel metal hydride storage battery from the viewpoint of reducing self-discharge.
  • a 30% by mass potassium hydroxide aqueous solution is used as the electrolytic solution.
  • Patent Document 2 it is proposed to increase the bonding area between the electrode group including the electrode and the current collector plate connected to the electrode group, thereby increasing the bonding strength and reducing the internal resistance to increase the output. .
  • metal components in the battery may be corroded or the hydrogen storage alloy may be deteriorated by the action of an alkaline electrolyte or oxygen generated in the battery.
  • the output of the battery decreases.
  • durability particularly, high temperature durability
  • One aspect of the present disclosure includes a bottomed battery case having an opening, Housed in the battery case, an electrode group, a positive current collector electrically connected to the electrode group, and an alkaline electrolyte, A sealing plate that seals the opening and is electrically connected to the positive current collector;
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,
  • the positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material,
  • the positive current collector plate is connected to the end portion of the positive electrode core material, and is connected to the sealing plate via a lead,
  • the positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel,
  • the lead is made of nickel metal,
  • the negative electrode comprises a negative electrode core material and a negative electrode active material carried on the negative electrode core material,
  • the negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45
  • the alkaline electrolyte contains at least NaOH,
  • the alkaline electrolyte has an alkaline concentration of 6.5 mol / L or less, and a sodium ion concentration of 3 mol / L or more.
  • an alkaline storage battery having high low-temperature output characteristics and excellent high-temperature durability can be provided.
  • An alkaline storage battery includes a bottomed battery case having an opening, an electrode group housed in the battery case, a positive electrode current collector electrically connected to the electrode group, and alkaline electrolysis A liquid and a sealing plate that seals the opening and is electrically connected to the positive electrode current collector plate are provided.
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material.
  • the positive electrode current collector plate is connected to the end portion of the positive electrode core member and is connected to the sealing plate via a lead.
  • the positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel.
  • the lead is made of nickel metal.
  • the negative electrode includes a negative electrode core material and a negative electrode active material supported on the negative electrode core material.
  • the negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm to 3.5 atm.
  • the alkaline electrolyte contains at least NaOH. In the alkaline electrolyte, the alkali concentration is 6.5 mol / L or less, and the sodium ion concentration is 3 mol / L or more.
  • a positive electrode current collector plate or a negative electrode current collector plate may be provided at the end of the electrode group from the viewpoint of enhancing the current collecting performance from the electrode group.
  • the positive electrode current collector plate and the negative electrode current collector plate are electrically connected to a positive electrode and a negative electrode (particularly a core material) included in the electrode group, and are also electrically connected to a battery case and a sealing plate.
  • the positive electrode current collector plate includes a plate formed of iron or an iron alloy and a plating film containing nickel covering the plate.
  • the positive electrode current collector plate is welded to the end portion of the positive electrode core member, and is welded to the end portion of the lead connected to the sealing plate.
  • the positive electrode core material usually contains nickel.
  • Oxygen generation is particularly noticeable when trickle charging is performed at high temperatures. In these applications, high durability is required even when exposed to a low temperature environment or a high temperature environment, and a high output is required when operating the battery.
  • the sodium ion concentration is set to 3 mol / L or more, and the alkali concentration is set to 6.5 mol / L or less.
  • the corrosion of the connection location with the positive electrode and sealing plate of a positive electrode current collecting plate can be suppressed.
  • a negative electrode active material containing a hydrogen storage alloy having a hydrogen equilibrium pressure of 0.5 atm or more and 3.5 atm or less hydrogen is easily generated from the hydrogen storage alloy.
  • oxygen in the battery is quickly consumed, and corrosion of the connection portion between the positive electrode current collector plate and the positive electrode and the sealing plate is suppressed, and deterioration of the hydrogen storage alloy is suppressed. With these actions, the low temperature output characteristics and high temperature durability of the alkaline storage battery can be enhanced.
  • the hydrogen equilibrium pressure (45 ° C.) of the hydrogen storage alloy used as the negative electrode active material in an alkaline storage battery is, for example, As in Patent Document 1, it is often adjusted to about 0.2 MPa or less.
  • overcharging is performed at a low current value as in trickle charging, an increase in internal pressure is hardly a problem.
  • the hydrogen equilibrium pressure is a pressure (equilibrium dissociation pressure) when the hydrogen storage alloy releases hydrogen at 45 ° C.
  • the hydrogen equilibrium pressure is a value measured under a condition where the atomic molar ratio of hydrogen to the metal element M (H / M ratio) in the hydrogen storage alloy is 0.4.
  • a pressure-composition isotherm is created according to JIS H 7201: 2007, and based on this isotherm, the hydrogen release pressure (hydrogen equilibrium pressure) when the H / M ratio is 0.4 at 45 ° C. Can be requested.
  • KOH is frequently used as an alkali in an alkaline electrolyte.
  • the potassium ion concentration in the alkaline electrolyte is 1.5 mol / L from the viewpoint of further enhancing the effect of suppressing corrosion at the connection point between the positive electrode current collector plate and the positive electrode or the sealing plate, and improving the high temperature charging efficiency. Or less, more preferably 1 mol / L or less. It is also preferable when the alkaline electrolyte does not substantially contain KOH (for example, when the potassium ion concentration in the alkaline electrolyte is 0.01 mol / L or less).
  • the alkaline storage battery has a bottomed battery case having an opening, an electrode group, a positive electrode current collector electrically connected to the electrode group, and an alkaline electrolyte, and the opening sealed in the battery case. And a sealing plate electrically connected to the positive electrode current collector plate.
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material.
  • the positive electrode current collector plate is connected to the end portion of the positive electrode core member, and is connected to the sealing plate via a lead.
  • FIG. 1 is a longitudinal sectional view schematically showing the structure of an alkaline storage battery according to an embodiment of the present invention.
  • the alkaline storage battery includes a bottomed cylindrical battery case 1, an electrode group 2 accommodated in the battery case 1, and an alkaline electrolyte (not shown).
  • the positive electrode 3 includes a strip-like porous positive electrode core material and a positive electrode active material filled in the positive electrode core material.
  • the negative electrode 4 includes a strip-like porous negative electrode core material and a negative electrode active material filled in the negative electrode core material.
  • a sealing plate 7 is disposed in the opening of the battery case 1 via an insulating gasket 6, and the opening end of the battery case 1 is caulked inward to seal the alkaline storage battery.
  • the alkaline storage battery further includes a negative electrode current collector plate 8 and a positive electrode current collector plate 9.
  • the electrode group 2 is disposed on a disc-shaped negative electrode current collector plate 8 disposed on the inner bottom surface of the battery case 1, and the end surface of the electrode group 2 on the opening side of the battery case 1 is arranged in a plane direction.
  • a disc-shaped positive current collector plate 9 having a hole in the center is disposed.
  • the end 3 a of the positive electrode core material in the positive electrode 3 protrudes from the end of the electrode group 2 than the ends of the negative electrode 4 and the separator 5.
  • the protruding end 3a is welded to and electrically connected to the positive electrode current collector plate 9.
  • the positive electrode current collector plate 9 and the bottom surface of the sealing plate 7 are connected via a lead (positive electrode lead) 10, whereby the positive electrode current collector plate 9 is electrically connected to the sealing plate 7 also serving as a positive electrode terminal.
  • a lead positive electrode lead
  • the end 4 a of the negative electrode core member in the negative electrode 4 protrudes from the end of the electrode group 2 than the ends of the positive electrode 3 and the separator 5.
  • the protruding end 4a is connected to and electrically connected to the negative electrode current collector plate 8 by welding.
  • the negative electrode current collector plate 8 is connected to the inner bottom surface of the battery case 1 serving also as a negative electrode terminal by welding, and is thereby electrically connected to the battery case 1.
  • the electrode group 2 is accommodated in the battery case 1, an alkaline electrolyte is injected, a sealing plate 7 is disposed in the opening of the battery case 1 via the insulating gasket 6, and the battery case It can be obtained by caulking and sealing the open end of one.
  • the negative electrode 4 of the electrode group 2 and the battery case 1 are electrically connected via the negative electrode current collector plate 8 disposed between the electrode group 2 and the inner bottom surface of the battery case 1.
  • the positive electrode 3 of the electrode group 2 and the sealing plate 7 are electrically connected via the positive electrode current collector plate 9 and the positive electrode lead 10.
  • the positive electrode current collector plate 9 may be electrically connected to the sealing plate 7 after being electrically connected to the positive electrode 3.
  • the negative electrode current collector plate 8 may be electrically connected to the battery case 1 after being electrically connected to the negative electrode 4.
  • the order of connection is not limited to these cases, and may be determined as appropriate in consideration of ease of work.
  • the positive electrode current collector plate 9 includes a plate formed of iron or an iron alloy and a plating film that covers the plate, and the plating film contains nickel.
  • the positive electrode lead 10 is made of nickel metal.
  • the positive electrode core material usually contains nickel.
  • a negative electrode active material layer of the negative electrode 4 a negative electrode active material containing a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm or more and 3.5 atm or less is used, and an alkaline electrolyte containing at least NaOH is used.
  • the alkali concentration in the alkaline electrolyte is 6.5 mol / L or less, and the sodium ion concentration is 3 mol / L or more.
  • the electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the electrode group may be a wound electrode group formed by winding a positive electrode and a negative electrode with a separator interposed therebetween, and a separator is interposed between the positive electrode and the negative electrode.
  • a stacked electrode group in which a plurality of layers are stacked in an intervening state may be used.
  • the positive electrode includes a positive electrode core material and a positive electrode active material (or a positive electrode active material layer) carried on the positive electrode core material.
  • the positive electrode may be either a paste type positive electrode or a sintered type positive electrode.
  • the paste type positive electrode can be formed, for example, by attaching a positive electrode paste containing at least a positive electrode active material to a positive electrode core material. More specifically, the positive electrode can be formed by applying or filling a positive electrode paste on a positive electrode core material, then drying and compressing (or rolling).
  • the sintered positive electrode is obtained, for example, by impregnating a perforated steel sheet (positive electrode core material) in which nickel particles are sintered with a nickel nitrate aqueous solution or the like to neutralize and depositing nickel hydroxide as an active material. .
  • the positive electrode core material known materials can be used, and examples thereof include a nickel foam, and a porous substrate formed of nickel or a nickel alloy such as a sintered nickel plate.
  • the positive electrode active material for example, a nickel compound such as nickel hydroxide and / or nickel oxyhydroxide is used.
  • the positive electrode paste usually contains a dispersion medium, and a known component used for the positive electrode, such as a conductive agent, a binder, and / or a thickener, may be added as necessary.
  • a known component used for the positive electrode such as a conductive agent, a binder, and / or a thickener
  • dispersion medium water, an organic medium, or a mixed medium in which two or more media selected from these are mixed can be used.
  • the conductive agent is not particularly limited as long as it is a material having electronic conductivity.
  • graphite such as natural graphite (flaky graphite etc.), artificial graphite and expanded graphite; carbon black such as acetylene black and ketjen black; conductive fibers such as carbon fiber and metal fiber; metal particles such as copper powder
  • An organic conductive material such as a polyphenylene derivative can be exemplified.
  • These conductive agents may be used alone or in combination of two or more.
  • conductive cobalt oxide such as cobalt hydroxide and / or ⁇ -type cobalt oxyhydroxide may be used.
  • the amount of the conductive agent is, for example, from 0.01 parts by mass to 20 parts by mass, and preferably from 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the active material.
  • the conductive agent may be added to the positive electrode paste and mixed with other components. Further, the surface of the active material particles may be previously coated with a conductive agent.
  • the conductive agent is coated mechanically by a known method, for example, by coating the surface of the active material particles with a conductive agent, attaching a dispersion containing the conductive agent to dry, and / or a mechanochemical method. It can be carried out by coating.
  • resin materials for example, rubber-like materials such as styrene-butadiene copolymer rubber; polyolefin resins such as polyethylene and polypropylene; fluororesins such as polyvinylidene fluoride; ethylene-acrylic acid copolymers, ethylene-acrylic An acrylic resin such as an acid methyl copolymer and its Na ion crosslinked body can be exemplified.
  • resin materials for example, rubber-like materials such as styrene-butadiene copolymer rubber; polyolefin resins such as polyethylene and polypropylene; fluororesins such as polyvinylidene fluoride; ethylene-acrylic acid copolymers, ethylene-acrylic An acrylic resin such as an acid methyl copolymer and its Na ion crosslinked body can be exemplified.
  • These binders can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the binder is, for example, 7 parts by mass or less with respect to 100 parts by mass of the active material, and may be 0.01 parts by mass or more and 5 parts by mass or less.
  • thickener examples include carboxymethyl cellulose and modified products thereof (including salts such as Na salt and ammonium salt), cellulose derivatives such as methyl cellulose; saponified polymers having vinyl acetate units such as polyvinyl alcohol; polyethylene oxide, etc. And polyalkylene oxide. These thickeners can be used singly or in combination of two or more.
  • the amount of the thickener is, for example, 5 parts by mass or less, and may be 0.01 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the active material.
  • the positive electrode paste may contain, as an additive, a metal compound such as zinc oxide and / or zinc hydroxide (oxide and / or hydroxide).
  • a metal compound such as zinc oxide and / or zinc hydroxide (oxide and / or hydroxide).
  • the negative electrode includes a negative electrode core material and a negative electrode active material supported on the negative electrode core material.
  • the negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm or more ( ⁇ 0.05 MPa or more) and 3.5 atm or less ( ⁇ 0.35 MPa or more).
  • the hydrogen equilibrium pressure at 45 ° C. is less than 0.5 atm, the low-temperature output characteristics are degraded, and when it exceeds 3.5 atm, the high-temperature durability is degraded.
  • the hydrogen equilibrium pressure at 45 ° C. is preferably 0.6 atm or more ( ⁇ 0.06 MPa or more) and 3.5 atm or less.
  • the hydrogen storage alloy has a metallic bond and includes a combination of an element having a high hydrogen affinity and an element having a low hydrogen affinity.
  • An element with high hydrogen affinity is likely to be located at the A site, and an element with low hydrogen affinity is likely to be located at the B site.
  • the crystal structure of the hydrogen storage alloy is not particularly limited, for example, AB 2 type (e.g., MgCu 2 type), AB 3 type (e.g., CeNi 3 type), AB 5 type (e.g., CaCu 5 type), A 2 B Any of 7 types (for example, Ce 2 Ni 7 type) may be used.
  • a plurality of hydrogen storage alloys having different crystal structures may be used in combination.
  • the crystalline structure of the hydrogen storage alloy in addition to the above, is also known 19-A 5 B.
  • the hydrogen storage alloy having the AB 5 type crystal structure has a higher value of the enthalpy of the hydrogen dissociation reaction than the other crystal structures, particularly the hydrogen storage alloy having the AB 3 type or A 5 B 19 type crystal structure. .
  • This suppresses the collapse of the alloy crystal structure, which is one of the deteriorations of battery characteristics at high temperatures. Therefore, in the case of using a hydrogen storage alloy having a crystal structure of the 5 type AB, it is particularly advantageous since it is possible to ensure the high temperature durability.
  • the ratio of the hydrogen storage alloy having AB 5 type crystal structure occupying in the negative electrode active material is preferably 80 mass% or more, preferably 90 mass% or more.
  • the elements located at the A site include Group 2 to 4 elements of the periodic table, and other elements are likely to be located at the B site.
  • the element located at the A site for example, at least one selected from the group consisting of a lanthanoid element, an actinoid element, an alkaline earth metal element, Sc, Y, Ti, Zr, and Hf is preferable.
  • the element located at the A site preferably contains at least a lanthanoid element, and includes lanthanoid elements, actinoid elements, alkaline earth metal elements, Sc, Y, Ti, Zr, and Hf. And at least one selected from the group consisting of:
  • Lanthanoid elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • Examples of actinoid elements include Ac, Th, Pa, Np, and the like.
  • Examples of the alkaline earth metal element include Mg, Ca, Sr, Ba, and the like. From the viewpoint of easily ensuring high high temperature durability, the ratio of an alkaline earth metal element such as Mg to the element located at the A site is preferably small, and more preferably, for example, 1 mol% or less.
  • (not including or Mg) ratio is small Mg hydrogen storage alloy having AB 5 type crystal structure, an alkali electrolyte solution containing sodium ion, a high corrosion resistance. Therefore, such a hydrogen storage alloy is particularly suitable for use in combination with an alkaline electrolyte having a high sodium ion concentration, like the alkaline storage battery according to this embodiment.
  • the element located at the A site preferably contains La and / or Ce among lanthanoid elements, and at least La is contained. It is further preferable to include it.
  • the hydrogen equilibrium pressure can be increased by increasing the ratio of La and Ce.
  • the ratio of La in the elements located at the A site is preferably 50% by mass or more, and may be 55% by mass or more or 60% by mass or more. When the La ratio is within such a range, the effect of promoting the reduction reaction of oxygen by hydrogen is further enhanced.
  • the hydrogen storage alloy may contain Group 4 elements of the periodic table such as Zr in addition to La and / or Ce.
  • the element located at the B site is selected from the group consisting of transition metal elements of Group 5 to Group 11 of the periodic table, Group 12 elements, and elements of Groups 3 to 14 of Groups 3 to 14 At least one of the above is preferred.
  • Elements located at the B site include transition metal elements such as V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pd, Cu, and Ag; Group 12 elements such as Zn; Al Group 13 elements such as Si, Ge and Sn; and Group 14 elements such as Si, Ge and Sn are preferred.
  • the element located at the B site is composed of V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, Al, Ga, In, Si, Ge, and Sn.
  • the element located at the B site preferably contains Mn, but from the viewpoint of increasing the hydrogen equilibrium pressure, a smaller Mn ratio is preferred.
  • the hydrogen storage alloy preferably contains Mn, Co, and Ni. When the hydrogen storage alloy contains Mn and Co, even if the crystal of the hydrogen storage alloy expands and contracts, the crystal structure can be prevented from being disturbed, and the pulverization of the hydrogen storage alloy particles can be suppressed. In addition, when the hydrogen storage alloy contains Ni, high capacity can be secured and low temperature characteristics can be improved. From the viewpoint of further increasing the capacity and low temperature characteristics, it is preferable that the Ni ratio is large.
  • the hydrogen storage alloy preferably contains Al, and more preferably contains Al and Mn.
  • Al and Mn are contained, the pulverization of the hydrogen storage alloy particles can be suppressed by the synergistic effect of these elements.
  • the molar ratio of Al to the element located at the A site is preferably 0.25 or more, more preferably more than 0.3. When the molar ratio of Al is within such a range, durability can be further enhanced. From the viewpoint of easily obtaining a synergistic effect with Mn, the molar ratio of Al to the element located at the A site is preferably 0.5 or less.
  • the hydrogen storage alloy examples include La 0.849 Ce 0.151 Ni 4.304 Co 0.418 Mn 0.240 Al 0.310 , La 0.836 Ce 0.142 Ni 4.456 Co 0.147 Mn 0.252 Al 0.401 Zr 0.022 , La 0.625 Ce 0.375 Ni 4.287 Co 0.448 Mn 0.099 Al 0.304, etc. Is mentioned.
  • One kind of hydrogen storage alloy may be used alone, or two or more kinds may be used in combination.
  • the hydrogen equilibrium pressure can be adjusted, for example, by adjusting the type and / or ratio of the constituent elements of the hydrogen storage alloy.
  • the hydrogen equilibrium pressure can be increased by using a large amount of La and Ce or using a small amount of Mn, but the present invention is not limited to these cases.
  • the hydrogen storage alloy As the hydrogen storage alloy, a commercially available one may be used, or one manufactured by a known manufacturing method may be used.
  • the hydrogen storage alloy is, for example, a process A in which an alloy is formed from a single element constituting the hydrogen storage alloy, a process B in which the alloy obtained in the process A is granulated, and a granular material obtained in the process B is activated. It can be obtained through Step C, etc. Each step can be performed according to a known method.
  • the negative electrode core material known materials can be used, and examples thereof include a porous or non-porous substrate formed of an iron alloy (such as stainless steel), nickel or an alloy thereof.
  • the negative electrode core material may be subjected to a plating treatment such as nickel plating.
  • the support is a porous substrate, the active material may be filled in the pores of the support.
  • the negative electrode can be formed by attaching a negative electrode paste containing at least a negative electrode active material to the negative electrode core material. Specifically, the negative electrode can be formed by applying or filling a negative electrode paste on a support, drying, and compressing in the thickness direction according to the case of the positive electrode.
  • the negative electrode paste may contain known components used for the negative electrode, for example, a conductive agent, a binder, a thickener, and the like, if necessary.
  • the dispersion medium, conductive agent, binder and thickener, and their amounts can be selected from the same or range as in the case of the positive electrode paste.
  • As the conductive agent artificial graphite, ketjen black, carbon fiber and the like are preferable.
  • the negative electrode is electrically connected to the battery case, but the positive electrode and the battery case may be electrically connected via a lead. However, as in the case of the positive electrode, the negative electrode It is preferable to electrically connect the battery case. By using the negative electrode current collector plate, the output is easily increased. The negative electrode current collector plate will be described later.
  • separator As a separator, the well-known thing used for an alkaline storage battery, for example, a microporous film, a nonwoven fabric, these laminated bodies, etc. can be used.
  • the material for the microporous membrane and the nonwoven fabric include polyolefin resins such as polyethylene and polypropylene; fluororesins; polyamide resins and the like. From the viewpoint of high decomposition resistance to an alkaline electrolyte, it is preferable to use a separator made of polyolefin resin.
  • hydrophilic group it is preferable to introduce a hydrophilic group into a separator formed of a highly hydrophobic material such as a polyolefin resin by a hydrophilic treatment.
  • the hydrophilic treatment include corona discharge treatment, plasma treatment, and sulfonation treatment.
  • a sulfonated separator that is, a separator having a sulfonic acid group (such as a polyolefin separator).
  • the positive electrode current collector plate is connected to the end portion of the positive electrode core material of the positive electrode included in the electrode group, and is thereby electrically connected to the electrode group (specifically, the positive electrode). At the end of the electrode group on the positive electrode current collector plate side, the end of the positive electrode core material (specifically, the end in the width direction of the core material) protrudes beyond the end of the separator or negative electrode.
  • the positive electrode current collector plate (specifically, the main surface on the electrode group side of the positive electrode current collector plate) is connected to the end of the positive electrode core material. A high current collecting property can be ensured by directly connecting the end of the positive electrode core member and the positive electrode current collector plate.
  • the positive electrode current collector plate is connected to the sealing plate via a lead. Thereby, the positive electrode current collector plate is electrically connected to the sealing plate.
  • the positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel.
  • a positive electrode current collector plate By using such a positive electrode current collector plate, it is possible to ensure high welding strength with a positive electrode core material formed of a nickel-containing material such as nickel or a nickel alloy, and nickel for connecting to a sealing plate High weld strength with a lead made of metal can be secured.
  • iron or iron alloy is contained in the plate, the iron element is diffused by welding at the connection point between the positive electrode current collector plate and the positive electrode core material or the lead (the crack of the plating film containing nickel). Is likely to be corroded by the alkaline electrolyte.
  • the alkali concentration and sodium ion concentration in the alkaline electrolyte are controlled, and the hydrogen equilibrium pressure of the hydrogen storage alloy of the negative electrode active material is controlled, so that the positive electrode current collector plate, the positive electrode core material, and the lead Corrosion at the connection point can be suppressed.
  • the nickel plating may be either electroless plating or electrolytic plating.
  • the plating film preferably covers the entire surface of the positive electrode current collector plate.
  • the thickness of the positive electrode current collector plate is, for example, 0.2 mm or more and 0.5 mm or less.
  • the shape of the positive electrode current collector plate is selected according to the shape of the battery.
  • a cylindrical battery has a disk shape as shown in FIG. 1, and a rectangular battery has a square (or a shape close to a square) plate shape.
  • the positive electrode current collector plate usually has a hole in the center in the surface direction in order to insert a welding electrode rod when the negative electrode current collector plate (or the negative electrode) is connected to the inner bottom surface of the battery case.
  • Positive lead Leads connected to both the positive electrode current collector plate and the sealing plate (hereinafter also referred to as positive electrode leads) are made of nickel metal. Therefore, corrosion to the alkaline electrolyte is suppressed, and an increase in resistance due to corrosion is suppressed, so that a high output can be secured. Moreover, it is easy to increase the bonding strength with the nickel-plated positive electrode current collector plate.
  • the nickel metal constituting the positive electrode lead may contain impurities other than nickel.
  • the content of impurities in the nickel metal is preferably smaller, for example, 1% by mass or less, and more preferably 0.5% by mass or less.
  • the positive electrode lead is connected to the positive electrode current collector plate and the sealing plate using a tab-like lead that can easily obtain a larger cross-sectional area than the lead wire.
  • the width of the tab-like lead is determined according to the battery size.
  • the thickness of the tab-like lead is also selected according to the battery size, and is, for example, not less than 0.3 mm and not more than 0.6 mm.
  • the negative electrode current collector plate may be any material as long as it can electrically connect the negative electrode and the battery case, and known materials and shapes can be employed.
  • a negative electrode current collector plate provided with a plate formed of iron or an iron alloy, and a plating film covering the plate and containing nickel may be used.
  • the description of the positive electrode current collector plate can be referred to.
  • the negative electrode current collector plate In order to weld the negative electrode current collector plate and the inner bottom surface of the battery case, it is desirable that the negative electrode current collector plate has no hole in the center portion in the surface direction.
  • the negative electrode current collector plate is preferably disposed at the bottom of the battery case, and the electrode group is disposed on the negative electrode current collector plate.
  • the negative electrode current collector plate may be electrically connected to the inner bottom surface of the battery case, for example.
  • the negative electrode current collector plate and the battery case may be connected via a lead (negative electrode lead), but in many cases, they are directly connected by welding.
  • the negative electrode current collector plate may be electrically connected to the negative electrode, and an exposed portion of the negative electrode core material may be provided on the negative electrode, and the exposed portion and the negative electrode current collector plate may be connected via a lead.
  • the negative electrode current collector plate is preferably connected to the end of the negative electrode core material in the same manner as the positive electrode current collector plate.
  • the end of the negative electrode core material (specifically, the end in the width direction of the negative electrode core material) is the end of the separator or positive electrode at the end of the electrode group on the bottom side of the battery case. It is preferable that the end portion of the negative electrode core material and the negative electrode current collector plate be directly connected to each other.
  • Alkaline electrolyte As the alkaline electrolyte, an aqueous solution containing alkali as a solute is used.
  • the alkaline electrolyte only needs to contain at least NaOH, may contain only NaOH, or may contain NaOH and an alkali other than NaOH.
  • the alkali other than NaOH include KOH and / or LiOH.
  • the alkali concentration is 6.5 mol / L or less, preferably 6.2 mol / L or less, and more preferably 6 mol / L or less. If the alkali concentration exceeds 6.5 mol / L, the effect of inhibiting corrosion at the connection point between the positive electrode current collector plate and the positive electrode core material or the positive electrode lead is reduced, and the high-temperature durability is greatly reduced.
  • the sodium ion concentration is 3 mol / L or more.
  • the sodium ion concentration in the alkaline electrolyte is preferably 3.5 mol / L or more, more preferably 3.8 mol / L or more, or 4 mol / L or more. preferable.
  • the sodium ion concentration is 6.5 mol / L or less, preferably 6 mol / L or less.
  • Sodium ion concentration is 3 mol / L or more and 6.5 mol / L or less, for example, 3 mol / L or more and 6 mol / L or less, 3.5 mol / L or more and 6.5 mol / L or less, 3.5 mol / L or more and 6 mol / L or less. L or less, 3.8 mol / L or more and 6 mol / L or less, or 4 mol / L or more and 6 mol / L or less may be sufficient.
  • the potassium ion concentration in the alkaline electrolyte is, for example, 3 mol / L or less, and preferably 2 mol / L or less.
  • the potassium ion concentration in the alkaline electrolyte is, for example, 3 mol / L or less, and preferably 2 mol / L or less.
  • the potassium ion concentration in the alkaline electrolyte is preferably 1.5 mol / L or less, more preferably 1.2 mol / L or less or 1 mol / L or less. .
  • the battery case only needs to be able to accommodate at least the electrode group, the positive electrode current collector plate, and the alkaline electrolyte, and a known case used for alkaline storage batteries is used.
  • the shape of the battery case is not particularly limited, and examples thereof include a cylindrical shape, an elliptical cylindrical shape, and a rectangular shape.
  • the battery case material examples include iron and iron alloys (stainless steel, etc.).
  • the battery case is usually subjected to a plating treatment such as nickel plating.
  • the sealing plate is not particularly limited as long as it can be electrically connected to the positive electrode current collecting plate and seal the opening of the battery case, and a known structure can be adopted.
  • Examples of the material of the sealing plate include iron and iron alloys (stainless steel, etc.).
  • the sealing plate (at least a portion connected to the positive electrode lead (such as the bottom surface of the sealing plate)) is usually subjected to a plating treatment such as nickel plating.
  • insulating gasket for insulating between the sealing plate and the battery case at the peripheral edge of the sealing plate, a known one is used without any particular limitation.
  • Example 1 According to the following procedure, an alkaline storage battery (nickel metal hydride storage battery) as shown in FIG. 1 was produced and evaluated.
  • a positive electrode paste was prepared by mixing nickel oxide particles and a predetermined amount of water.
  • the positive electrode paste was filled in a foamed nickel porous body (porosity 95%, surface density 300 g / cm 2 ) as a core material and dried. The dried product was compressed in the thickness direction, and then cut into predetermined dimensions (thickness: 0.4 mm, length: 80 mm, width: 40 mm) to produce a positive electrode. When the theoretical capacity of the positive electrode is one-electron reaction by charge / discharge of nickel oxide, the filling amount of the positive electrode paste was adjusted so as to be 800 mAh. One end of the positive electrode in the width direction was not filled with the positive electrode paste, and only the positive electrode core material was in a protruding state.
  • the negative electrode paste was applied to both surfaces of nickel-plated iron punching metal (thickness 30 ⁇ m) as a negative electrode core material to form a coating film. After the obtained coating film was dried, it was pressed together with the core material and cut into a predetermined size (thickness: 0.3 mm, length: 120 mm, width: 40 mm) to produce a hydrogen storage alloy negative electrode. The capacity of the negative electrode was adjusted to 1600 mAh. In addition, only the negative electrode core material was made to protrude in one end part of the width direction of a negative electrode core material, without forming the coating film of negative electrode paste.
  • the separator 5 interposed between the positive electrode 3 and the negative electrode 4, these were overlapped and wound into a spiral shape to form the electrode group 2.
  • the positive electrode 3 and the negative electrode 4 were overlapped so that the end portion 3 a of the positive electrode core material of the positive electrode 3 and the end portion 4 a of the negative electrode core material of the negative electrode 4 were positioned opposite to each other.
  • a sulfonated polypropylene separator was used as the separator 5.
  • the end portion 3 a of the positive electrode core member protruding from one end portion in the width direction of the positive electrode 3 was welded to the positive electrode current collector plate 9.
  • the end 4a of the negative electrode core member protruding to the side opposite to the end 3a of the positive electrode core member was welded to the negative electrode current collector plate 8.
  • the electrode group 2 is accommodated in a bottomed cylindrical battery case 1, and a welding electrode rod is inserted into the central cavity of the electrode group 2, thereby The electric plate 8 and the inner bottom surface of the battery case 1 were spot welded.
  • As the positive electrode current collector plate 9, a nickel plate plated square plate having a hole in the center was used.
  • the size of the positive electrode current collector plate 9 was 11 mm long ⁇ 11 mm wide ⁇ 1 mm thick, and the hole in the center was circular with a diameter of 3 mm.
  • the size of the negative electrode current collector plate 8 was 11 mm in diameter ⁇ 1 in thickness.
  • the positive electrode current collector plate 9 and the sealing plate 7 use nickel-made (Ni purity: 99.9%) tab-shaped leads (width 5 mm, thickness 1 mm) as the positive electrode leads 10. Each part was connected by welding.
  • the outer periphery in the vicinity of the opening of the battery case 1 was recessed to provide a groove, and an alkaline electrolyte was injected into the battery case 1.
  • an alkaline electrolyte an aqueous sodium hydroxide solution having a concentration of 6 mol / L was used.
  • a sealing plate 7 was attached to the opening of the battery case 1 through the insulating gasket 6.
  • AA-size alkaline storage battery (sealed nickel-metal hydride storage battery) having a theoretical capacity of 800 mAh in which the opening capacity of the battery case 1 is caulked toward the gasket 6 and the battery case 1 is sealed to regulate the battery capacity with the positive electrode.
  • the alkaline storage battery was activated by charging / discharging (temperature: 20 ° C., charging condition: 80 mA for 16 hours, discharging condition: 160 mA for 5 hours), and then subjected to evaluation (4).
  • pulse charge / discharge was performed under the following conditions (i) to (iv) in an atmosphere of 0 ° C., and the internal resistance was calculated from the voltage drop after 10 seconds of discharge.
  • Example 1 For other examples and comparative examples described later, the initial internal resistance of Example 1 was evaluated as 100.
  • Example 1 For other examples and comparative examples described later, the internal resistance after the trickle durability test of Example 1 was evaluated as 100.
  • Example 1 For other examples and comparative examples described later, evaluation was made with values when the high-temperature charge / discharge efficiency of Example 1 was 100.
  • Examples 2 to 9 and Comparative Examples 1 to 3 An alkaline electrolyte containing sodium ions and potassium ions at concentrations shown in Tables 1 and 2 was used. As an alkaline electrolyte containing both sodium ions and potassium ions, an aqueous solution containing NaOH and KOH was used. As the hydrogen storage alloy, those having the hydrogen equilibrium pressure (45 ° C.) shown in Tables 1 and 2 were used. Except for these, alkaline storage batteries were produced and evaluated in the same manner as in Example 1.
  • compositions of the hydrogen storage alloys used in the examples and comparative examples are as follows.
  • Composition La 0.895 Ce 0.081 Ni 4.395 Co 0.146 Mn 0.250 Al 0.397 Zr 0.024 , Hydrogen equilibrium pressure: 0.5atm ( ⁇ 0.05MPa)
  • Comparative Example 5 The positive electrode current collector plate 9 is not provided, and one end portion of the same positive electrode lead as in Example 1 is welded to the end portion 3a of the positive electrode core material, and the other end portion is welded to the bottom surface of the sealing plate 7, thereby The positive electrode 3 and the sealing plate 7 were electrically connected to each other. Except for this, an alkaline storage battery was produced and evaluated in the same manner as in Example 1.
  • Tables 1 and 2 show the results of Examples and Comparative Examples.
  • A1 to A9 are Examples 1 to 9, and B1 to B5 are Comparative Examples 1 to 5.
  • the hydrogen equilibrium pressure of the hydrogen storage alloy at 45 ° C. is preferably 0.6 atm or more.
  • the sodium ion concentration is preferably a concentration exceeding 3 mol / L, and more preferably 4 mol / L or more. It is also advantageous to make the potassium ion concentration less than 2 mol / L (preferably 1 mol / L or less) in order to further enhance the high-temperature durability or increase the high-temperature charging efficiency.
  • the alkaline storage battery according to the embodiment of the present invention has high low-temperature output characteristics and high-temperature durability, it can be used for applications exposed to low and high temperatures.
  • the alkaline storage battery is suitable for use as an auxiliary power source for backup, an emergency power source, a standby power source for a fire alarm, a power source for emergency broadcasting, and the like.
  • the alkaline storage battery can also be used as a power source for various electronic devices, transportation devices, power storage devices, and the like.
  • SYMBOLS 1 Battery case 2: Electrode group 3: Positive electrode 3a: End part 4 of positive electrode core material: Negative electrode 4a: End part of negative electrode core material 5: Separator 6: Insulating gasket 7: Sealing plate 8: Negative electrode collector plate 9: Positive electrode Current collector plate 10: positive electrode lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

This alkaline storage battery is provided with: a battery case; an electrode group; a positive electrode collector plate; an alkaline electrolyte solution; and a cover plate. The electrode group comprises a positive electrode, a negative electrode and a separator that is interposed between the positive electrode and the negative electrode; and the positive electrode comprises a positive electrode core material and a positive electrode active material that is supported by the positive electrode core material. The positive electrode collector plate is connected to an end part of the positive electrode core material, while being connected to the cover plate via a lead. The positive electrode collector plate comprises: a plate that is formed from iron or an iron alloy; and a plating film that covers the plate and contains nickel. The lead is configured from a nickel metal. The negative electrode comprises a negative electrode core material and a negative electrode active material that is supported by the negative electrode core material; and the negative electrode active material contains a hydrogen storage alloy that has a hydrogen equilibrium pressure of from 0.5 atm to 3.5 atm (inclusive) at 45°C. The alkaline electrolyte solution contains at least NaOH; the alkali concentration is 6.5 mol/L or less; and the Na ion concentration is 3 mol/L or more.

Description

アルカリ蓄電池Alkaline storage battery
 本発明は、水素吸蔵合金を含む負極活物質を用いたアルカリ蓄電池に関する。 The present invention relates to an alkaline storage battery using a negative electrode active material containing a hydrogen storage alloy.
 ニッケル水素蓄電池などのアルカリ蓄電池は、高容量であるため様々な用途での利用が期待されている。特に近年では、携帯機器などの電子機器の主電源、またはバックアップ電源などの用途においてもアルカリ蓄電池の使用が想定されている。このような用途では、アルカリ蓄電池を、充電しておいた電池の補助電源として利用したり、災害時の非常電源として利用したりすることが検討されている。これらの用途では、アルカリ蓄電池に、高出力や耐久性などの特性が求められる。 Alkaline storage batteries such as nickel metal hydride storage batteries are expected to be used in various applications due to their high capacity. In particular, in recent years, the use of alkaline storage batteries is also envisaged in applications such as the main power source of electronic devices such as portable devices or backup power sources. In such applications, it has been studied to use an alkaline storage battery as an auxiliary power source for a charged battery or as an emergency power source during a disaster. In these applications, the alkaline storage battery is required to have characteristics such as high output and durability.
 ニッケル水素蓄電池では、負極活物質として水素吸蔵合金が使用される。 Nickel metal hydride storage batteries use a hydrogen storage alloy as the negative electrode active material.
 特許文献1では、自己放電を低減する観点から、吸蔵水素平衡圧が0.03MPa~0.17MPaの水素吸蔵合金をニッケル水素蓄電池に用いることが提案されている。なお、特許文献1では、30質量%濃度の水酸化カリウム水溶液が電解液として使用されている。 Patent Document 1 proposes using a hydrogen storage alloy having a storage hydrogen equilibrium pressure of 0.03 MPa to 0.17 MPa for a nickel metal hydride storage battery from the viewpoint of reducing self-discharge. In Patent Document 1, a 30% by mass potassium hydroxide aqueous solution is used as the electrolytic solution.
 また、出力を高めるには、電池の内部抵抗を低減することも重要になる。 In order to increase the output, it is also important to reduce the internal resistance of the battery.
 特許文献2では、電極を含む電極群と電極群に接続する集電板との接合面積を増やすことで、接合強度を高め、内部抵抗を低減して高出力化を図ることが提案されている。 In Patent Document 2, it is proposed to increase the bonding area between the electrode group including the electrode and the current collector plate connected to the electrode group, thereby increasing the bonding strength and reducing the internal resistance to increase the output. .
特開2009-176712号公報JP 2009-176712 A 特開2006-221890号公報JP 2006-221890 A
 アルカリ蓄電池では、アルカリ電解液や電池内で発生する酸素の作用により、電池内の金属製の構成要素が腐食したり、水素吸蔵合金が劣化したりすることがある。電池の構成要素の腐食により内部抵抗が増加すると、電池の出力(特に、低温出力特性)が低下する。また、構成要素が腐食したり、水素吸蔵合金が劣化すると、耐久性(特に、高温耐久性)が低下する。バックアップ電源や非常電源などの用途では、低温環境や高温環境に晒された場合でも電池の性能を十分に発揮させる必要がある。 In an alkaline storage battery, metal components in the battery may be corroded or the hydrogen storage alloy may be deteriorated by the action of an alkaline electrolyte or oxygen generated in the battery. When the internal resistance increases due to corrosion of the battery components, the output of the battery (particularly, the low-temperature output characteristics) decreases. Further, when the constituent elements are corroded or the hydrogen storage alloy is deteriorated, durability (particularly, high temperature durability) is lowered. In applications such as a backup power source and an emergency power source, it is necessary to fully demonstrate the performance of the battery even when exposed to a low temperature environment or a high temperature environment.
 本開示の一局面は、開口部を有する有底の電池ケースと、
 前記電池ケース内に収容された、電極群、前記電極群と電気的に接続した正極集電板、ならびにアルカリ電解液と、
 前記開口部を封口し、かつ前記正極集電板と電気的に接続した封口板とを備え、
 前記電極群は、正極、負極、および前記正極と前記負極との間に介在するセパレータを備え、
 前記正極は、正極芯材と前記正極芯材に担持された正極活物質とを備え、
 前記正極集電板は、前記正極芯材の端部に接続しているとともに、リードを介して前記封口板に接続しており、
 前記正極集電板は、鉄または鉄合金で形成されたプレートと、前記プレートを被覆し、かつニッケルを含むめっき被膜とを備え、
 前記リードは、ニッケル金属で構成され、
 前記負極は、負極芯材と前記負極芯材に担持された負極活物質とを備え、
 前記負極活物質は、45℃での水素平衡圧が0.5atm以上3.5atm以下の水素吸蔵合金を含み、
 前記アルカリ電解液は、少なくともNaOHを含み、
 前記アルカリ電解液中、アルカリの濃度は、6.5mol/L以下であり、ナトリウムイオン濃度は、3mol/L以上である、アルカリ蓄電池に関する。
One aspect of the present disclosure includes a bottomed battery case having an opening,
Housed in the battery case, an electrode group, a positive current collector electrically connected to the electrode group, and an alkaline electrolyte,
A sealing plate that seals the opening and is electrically connected to the positive current collector;
The electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,
The positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material,
The positive current collector plate is connected to the end portion of the positive electrode core material, and is connected to the sealing plate via a lead,
The positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel,
The lead is made of nickel metal,
The negative electrode comprises a negative electrode core material and a negative electrode active material carried on the negative electrode core material,
The negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm to 3.5 atm,
The alkaline electrolyte contains at least NaOH,
The alkaline electrolyte has an alkaline concentration of 6.5 mol / L or less, and a sodium ion concentration of 3 mol / L or more.
 本開示の上記局面によれば、低温出力特性が高く、高温耐久性に優れる、アルカリ蓄電池を提供できる。 According to the above aspect of the present disclosure, an alkaline storage battery having high low-temperature output characteristics and excellent high-temperature durability can be provided.
本発明の一実施形態に係るアルカリ蓄電池(ニッケル水素蓄電池)を概略的に示す縦断面図である。It is a longitudinal section showing an alkaline storage battery (nickel metal hydride storage battery) concerning one embodiment of the present invention roughly.
 本発明の一実施形態に係るアルカリ蓄電池は、開口部を有する有底の電池ケースと、電池ケース内に収容された、電極群、電極群と電気的に接続した正極集電板、ならびにアルカリ電解液と、開口部を封口し、かつ正極集電板と電気的に接続した封口板とを備える。電極群は、正極、負極、および正極と負極との間に介在するセパレータを備える。正極は、正極芯材と前記正極芯材に担持された正極活物質とを備える。正極集電板は、正極芯材の端部に接続しているとともに、リードを介して前記封口板に接続している。正極集電板は、鉄または鉄合金で形成されたプレートと、プレートを被覆し、かつニッケルを含むめっき被膜とを備える。リードは、ニッケル金属で構成されている。負極は、負極芯材と負極芯材に担持された負極活物質とを備える。負極活物質は、45℃での水素平衡圧が0.5atm以上3.5atm以下の水素吸蔵合金を含む。アルカリ電解液は、少なくともNaOHを含み、アルカリ電解液中、アルカリの濃度は、6.5mol/L以下であり、ナトリウムイオン濃度は、3mol/L以上である。 An alkaline storage battery according to an embodiment of the present invention includes a bottomed battery case having an opening, an electrode group housed in the battery case, a positive electrode current collector electrically connected to the electrode group, and alkaline electrolysis A liquid and a sealing plate that seals the opening and is electrically connected to the positive electrode current collector plate are provided. The electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material. The positive electrode current collector plate is connected to the end portion of the positive electrode core member and is connected to the sealing plate via a lead. The positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel. The lead is made of nickel metal. The negative electrode includes a negative electrode core material and a negative electrode active material supported on the negative electrode core material. The negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm to 3.5 atm. The alkaline electrolyte contains at least NaOH. In the alkaline electrolyte, the alkali concentration is 6.5 mol / L or less, and the sodium ion concentration is 3 mol / L or more.
 アルカリ蓄電池では、電極群からの集電性を高める観点から、電極群の端部に正極集電板や負極集電板を設けることがある。正極集電板や負極集電板は、電極群に含まれる正極や負極(特に、芯材)に電気的に接続されるとともに、電池ケースや封口板に電気的に接続される。 In the alkaline storage battery, a positive electrode current collector plate or a negative electrode current collector plate may be provided at the end of the electrode group from the viewpoint of enhancing the current collecting performance from the electrode group. The positive electrode current collector plate and the negative electrode current collector plate are electrically connected to a positive electrode and a negative electrode (particularly a core material) included in the electrode group, and are also electrically connected to a battery case and a sealing plate.
 高い溶接強度が得られる観点から、正極集電板は、鉄または鉄合金で形成されたプレートと、このプレートを被覆するニッケルを含むめっき被膜とを備える。正極集電板は、正極芯材の端部に溶接され、封口板に接続されるリードの端部に溶接される。正極芯材は、通常、ニッケルを含んでいる。これらの溶接箇所(接続箇所)は、アルカリ電解液による腐食を受け易い。アルカリ蓄電池では、充放電により電解液や電極から酸素が発生するが、この酸素は充電時に負極から発生する水素と反応して水に還元される。水への還元の速度が遅く、酸素が電池内に多量に存在した状態が続くと、正極集電板と正極芯材やリードとの接続箇所の腐食がさらに進行し易くなるとともに、水素吸蔵合金が酸化され、劣化し易くなる。接続箇所が腐食すると抵抗が大きくなり、出力が低下する。接続箇所が腐食したり、水素吸蔵合金が劣化すると電池の寿命が短くなり、十分な耐久性能が得られない。電池の出力低下は特に低温で顕著であり、水素吸蔵合金の劣化は特に高温で顕著になる。また、バックアップ電源や非常電源などの用途では、アルカリ蓄電池は、長期間、トリクル充電が行なわれるため、特に、多くの酸素が発生し、水素吸蔵合金が酸化され易い状態となり、劣化が進行し易くなる。酸素の発生は、高温でトリクル充電が行なわれる場合には、特に顕著になる。また、これらの用途では、低温環境下や高温環境下に晒されても、高い耐久性が求められるとともに、電池を作動させる際には高出力が必要とされる。 From the viewpoint of obtaining high welding strength, the positive electrode current collector plate includes a plate formed of iron or an iron alloy and a plating film containing nickel covering the plate. The positive electrode current collector plate is welded to the end portion of the positive electrode core member, and is welded to the end portion of the lead connected to the sealing plate. The positive electrode core material usually contains nickel. These welding locations (connection locations) are susceptible to corrosion by the alkaline electrolyte. In an alkaline storage battery, oxygen is generated from the electrolyte and the electrode by charging and discharging, and this oxygen reacts with hydrogen generated from the negative electrode during charging and is reduced to water. If the rate of reduction to water is slow and oxygen continues to exist in a large amount in the battery, corrosion at the connection point between the positive electrode current collector plate and the positive electrode core material and leads will be further facilitated, and a hydrogen storage alloy Is oxidized and easily deteriorates. When the connection is corroded, the resistance increases and the output decreases. If the connection location is corroded or the hydrogen storage alloy is deteriorated, the battery life is shortened and sufficient durability performance cannot be obtained. The decrease in the output of the battery is particularly noticeable at low temperatures, and the deterioration of the hydrogen storage alloy is particularly noticeable at high temperatures. In addition, in applications such as backup power supplies and emergency power supplies, alkaline storage batteries are trickle charged for a long period of time. In particular, a large amount of oxygen is generated, and the hydrogen storage alloy is easily oxidized, and deterioration is likely to proceed. Become. Oxygen generation is particularly noticeable when trickle charging is performed at high temperatures. In these applications, high durability is required even when exposed to a low temperature environment or a high temperature environment, and a high output is required when operating the battery.
 本実施形態では、少なくともNaOHを含むアルカリ電解液中において、ナトリウムイオン濃度を3mol/L以上とし、アルカリ濃度を6.5mol/L以下とする。これにより、正極集電板の正極や封口板との接続箇所の腐食を抑制することができる。また、水素平衡圧が0.5atm以上3.5atm以下の水素吸蔵合金を含む負極活物質を用いることで、水素吸蔵合金から水素を発生し易くする。これにより、電池内の酸素が速やかに消費され、正極集電板の正極や封口板との接続箇所の腐食を抑制するとともに、水素吸蔵合金の劣化を抑制する。これらの作用により、アルカリ蓄電池の低温出力特性および高温耐久性を高めることができる。 In this embodiment, in an alkaline electrolyte containing at least NaOH, the sodium ion concentration is set to 3 mol / L or more, and the alkali concentration is set to 6.5 mol / L or less. Thereby, the corrosion of the connection location with the positive electrode and sealing plate of a positive electrode current collecting plate can be suppressed. Further, by using a negative electrode active material containing a hydrogen storage alloy having a hydrogen equilibrium pressure of 0.5 atm or more and 3.5 atm or less, hydrogen is easily generated from the hydrogen storage alloy. As a result, oxygen in the battery is quickly consumed, and corrosion of the connection portion between the positive electrode current collector plate and the positive electrode and the sealing plate is suppressed, and deterioration of the hydrogen storage alloy is suppressed. With these actions, the low temperature output characteristics and high temperature durability of the alkaline storage battery can be enhanced.
 一般に、水素吸蔵合金の水素平衡圧が高くなると、過充電時に内圧が上がり易くなると考えられており、アルカリ蓄電池で負極活物質として使用される水素吸蔵合金の水素平衡圧(45℃)は、例えば、特許文献1のように、約0.2MPa以下に調節されることが多い。しかし、トリクル充電のように低い電流値で過充電される場合には、内圧の上昇はほとんど問題にならない。 In general, it is considered that when the hydrogen equilibrium pressure of the hydrogen storage alloy is increased, the internal pressure is likely to increase during overcharge. The hydrogen equilibrium pressure (45 ° C.) of the hydrogen storage alloy used as the negative electrode active material in an alkaline storage battery is, for example, As in Patent Document 1, it is often adjusted to about 0.2 MPa or less. However, when overcharging is performed at a low current value as in trickle charging, an increase in internal pressure is hardly a problem.
 なお、本明細書中、水素平衡圧とは、45℃で、水素吸蔵合金が水素を放出するときの圧力(平衡解離圧)である。水素平衡圧は、水素吸蔵合金における金属元素Mに対する水素の原子モル比(H/M比)が0.4の条件下での測定値であるものとする。例えば、JIS H 7201:2007に準拠して、圧力-組成等温線を作成し、この等温線に基づいて、45℃でH/M比が0.4のときの水素放出圧(水素平衡圧)を求めることができる。 In this specification, the hydrogen equilibrium pressure is a pressure (equilibrium dissociation pressure) when the hydrogen storage alloy releases hydrogen at 45 ° C. The hydrogen equilibrium pressure is a value measured under a condition where the atomic molar ratio of hydrogen to the metal element M (H / M ratio) in the hydrogen storage alloy is 0.4. For example, a pressure-composition isotherm is created according to JIS H 7201: 2007, and based on this isotherm, the hydrogen release pressure (hydrogen equilibrium pressure) when the H / M ratio is 0.4 at 45 ° C. Can be requested.
 アルカリ電解液には、一般に、アルカリとしてKOHが多用されている。しかし、正極集電板と正極や封口板との接続箇所の腐食を抑制する効果をさらに高め、高温充電効率を向上する観点からは、アルカリ電解液中のカリウムイオン濃度は、1.5mol/L以下であることが好ましく、1mol/L以下であることがさらに好ましい。アルカリ電解液がKOHを実質的に含まない場合(例えば、アルカリ電解液中のカリウムイオン濃度が0.01mol/L以下である場合)も好ましい。 In general, KOH is frequently used as an alkali in an alkaline electrolyte. However, the potassium ion concentration in the alkaline electrolyte is 1.5 mol / L from the viewpoint of further enhancing the effect of suppressing corrosion at the connection point between the positive electrode current collector plate and the positive electrode or the sealing plate, and improving the high temperature charging efficiency. Or less, more preferably 1 mol / L or less. It is also preferable when the alkaline electrolyte does not substantially contain KOH (for example, when the potassium ion concentration in the alkaline electrolyte is 0.01 mol / L or less).
 以下に、本実施形態に係るアルカリ蓄電池についてより詳細に説明する。 Hereinafter, the alkaline storage battery according to this embodiment will be described in more detail.
 アルカリ蓄電池は、開口部を有する有底の電池ケースと、電池ケース内に収容された、電極群、電極群と電気的に接続した正極集電板、ならびにアルカリ電解液と、開口部を封口し、かつ正極集電板と電気的に接続した封口板とを備える。電極群は、正極、負極、および正極と負極との間に介在するセパレータを備える。正極は、正極芯材と正極芯材に担持された正極活物質とを備える。正極集電板は、正極芯材の端部に接続しており、リードを介して封口板に接続している。 The alkaline storage battery has a bottomed battery case having an opening, an electrode group, a positive electrode current collector electrically connected to the electrode group, and an alkaline electrolyte, and the opening sealed in the battery case. And a sealing plate electrically connected to the positive electrode current collector plate. The electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material. The positive electrode current collector plate is connected to the end portion of the positive electrode core member, and is connected to the sealing plate via a lead.
 アルカリ蓄電池の構成を、図1を参照しながら以下に説明する。図1は、本発明の一実施形態に係るアルカリ蓄電池の構造を模式的に示す縦断面図である。アルカリ蓄電池は、有底円筒型の電池ケース1と、電池ケース1内に収容された電極群2および図示しないアルカリ電解液とを含む。電極群2では、正極3と、負極4と、これらの間に介在するセパレータ5とが、渦巻き状に巻回されている。正極3は、帯状で多孔質の正極芯材と、正極芯材に充填された正極活物質とを備えている。負極4は、帯状で多孔質の負極芯材と、負極芯材に充填された負極活物質とを備えている。電池ケース1の開口部には、絶縁ガスケット6を介して、封口板7が配置され、電池ケース1の開口端部が内側にかしめられることにより、アルカリ蓄電池が密閉されている。 The configuration of the alkaline storage battery will be described below with reference to FIG. FIG. 1 is a longitudinal sectional view schematically showing the structure of an alkaline storage battery according to an embodiment of the present invention. The alkaline storage battery includes a bottomed cylindrical battery case 1, an electrode group 2 accommodated in the battery case 1, and an alkaline electrolyte (not shown). In the electrode group 2, the positive electrode 3, the negative electrode 4, and the separator 5 interposed therebetween are wound in a spiral shape. The positive electrode 3 includes a strip-like porous positive electrode core material and a positive electrode active material filled in the positive electrode core material. The negative electrode 4 includes a strip-like porous negative electrode core material and a negative electrode active material filled in the negative electrode core material. A sealing plate 7 is disposed in the opening of the battery case 1 via an insulating gasket 6, and the opening end of the battery case 1 is caulked inward to seal the alkaline storage battery.
 アルカリ蓄電池は、さらに負極集電板8と正極集電板9とを備えている。電極群2は、電池ケース1の内底面に配置された円盤状の負極集電板8上に配置されており、電極群2の電池ケース1の開口部側の端面上には、面方向の中央部に孔を有する円盤状の正極集電板9が配置されている。電池ケース1の開口部側において、電極群2の端部では、負極4およびセパレータ5の端部よりも、正極3における正極芯材の端部3aが突出している。この突出した端部3aは、正極集電板9と溶接され、電気的に接続されている。正極集電板9と封口板7の底面とは、リード(正極リード)10を介して接続されており、これにより、正極集電板9は、正極端子を兼ねる封口板7に電気的に接続されている。また、電池ケース1の底部側において、電極群2の端部では、正極3およびセパレータ5の端部よりも、負極4における負極芯材の端部4aが突出している。この突出した端部4aは、負極集電板8と溶接により接続され、電気的に接続されている。負極集電板8は、負極端子を兼ねる電池ケース1の内底面に溶接により接続されており、これにより、電池ケース1と電気的に接続されている。 The alkaline storage battery further includes a negative electrode current collector plate 8 and a positive electrode current collector plate 9. The electrode group 2 is disposed on a disc-shaped negative electrode current collector plate 8 disposed on the inner bottom surface of the battery case 1, and the end surface of the electrode group 2 on the opening side of the battery case 1 is arranged in a plane direction. A disc-shaped positive current collector plate 9 having a hole in the center is disposed. On the opening side of the battery case 1, the end 3 a of the positive electrode core material in the positive electrode 3 protrudes from the end of the electrode group 2 than the ends of the negative electrode 4 and the separator 5. The protruding end 3a is welded to and electrically connected to the positive electrode current collector plate 9. The positive electrode current collector plate 9 and the bottom surface of the sealing plate 7 are connected via a lead (positive electrode lead) 10, whereby the positive electrode current collector plate 9 is electrically connected to the sealing plate 7 also serving as a positive electrode terminal. Has been. On the bottom side of the battery case 1, the end 4 a of the negative electrode core member in the negative electrode 4 protrudes from the end of the electrode group 2 than the ends of the positive electrode 3 and the separator 5. The protruding end 4a is connected to and electrically connected to the negative electrode current collector plate 8 by welding. The negative electrode current collector plate 8 is connected to the inner bottom surface of the battery case 1 serving also as a negative electrode terminal by welding, and is thereby electrically connected to the battery case 1.
 このようなアルカリ蓄電池は、電極群2を、電池ケース1内に収容し、アルカリ電解液を注液し、電池ケース1の開口部に絶縁ガスケット6を介して封口板7を配置し、電池ケース1の開口端部を、かしめ封口することにより得ることができる。このとき、電極群2の負極4と、電池ケース1とは、電極群2と電池ケース1の内底面との間に配置された負極集電板8を介して電気的に接続させる。また、電極群2の正極3と、封口板7とは、正極集電板9および正極リード10を介して電気的に接続させる。正極集電板9は、正極3と電気的に接続させた後に、封口板7と電気的に接続させてもよい。負極集電板8は、負極4と電気的に接続させた後に、電池ケース1と電気的に接続させればよい。これらの場合に限らず、接続の順序は作業のし易さなどを考慮して適宜決定すればよい。 In such an alkaline storage battery, the electrode group 2 is accommodated in the battery case 1, an alkaline electrolyte is injected, a sealing plate 7 is disposed in the opening of the battery case 1 via the insulating gasket 6, and the battery case It can be obtained by caulking and sealing the open end of one. At this time, the negative electrode 4 of the electrode group 2 and the battery case 1 are electrically connected via the negative electrode current collector plate 8 disposed between the electrode group 2 and the inner bottom surface of the battery case 1. Further, the positive electrode 3 of the electrode group 2 and the sealing plate 7 are electrically connected via the positive electrode current collector plate 9 and the positive electrode lead 10. The positive electrode current collector plate 9 may be electrically connected to the sealing plate 7 after being electrically connected to the positive electrode 3. The negative electrode current collector plate 8 may be electrically connected to the battery case 1 after being electrically connected to the negative electrode 4. The order of connection is not limited to these cases, and may be determined as appropriate in consideration of ease of work.
 本実施形態では、正極集電板9は、鉄または鉄合金で形成されたプレートと、プレートを被覆するめっき被膜とを備えており、めっき被膜は、ニッケルを含む。また、正極リード10は、ニッケル金属で構成されている。正極芯材は、通常、ニッケルを含んでいる。そして、負極4の負極活物質層に、45℃での水素平衡圧が0.5atm以上3.5atm以下の水素吸蔵合金を含む負極活物質を用いとともに、少なくともNaOHを含むアルカリ電解液を用いる。アルカリ電解液中のアルカリの濃度は、6.5mol/L以下であり、ナトリウムイオン濃度は、3mol/L以上である。 In the present embodiment, the positive electrode current collector plate 9 includes a plate formed of iron or an iron alloy and a plating film that covers the plate, and the plating film contains nickel. The positive electrode lead 10 is made of nickel metal. The positive electrode core material usually contains nickel. For the negative electrode active material layer of the negative electrode 4, a negative electrode active material containing a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm or more and 3.5 atm or less is used, and an alkaline electrolyte containing at least NaOH is used. The alkali concentration in the alkaline electrolyte is 6.5 mol / L or less, and the sodium ion concentration is 3 mol / L or more.
 以下にアルカリ蓄電池の構成要素についてより具体的に説明する。 Hereinafter, the components of the alkaline storage battery will be described more specifically.
 (電極群)
 電極群は、正極、負極、および正極と負極との間に介在するセパレータを備える。電極群は、正極と負極とをこれらの間にセパレータを介在させた状態で巻回することにより形成される巻回式電極群であってもよく、正極と負極とをこれらの間にセパレータを介在させた状態で複数層積層させた積層式電極群であってもよい。
(Electrode group)
The electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The electrode group may be a wound electrode group formed by winding a positive electrode and a negative electrode with a separator interposed therebetween, and a separator is interposed between the positive electrode and the negative electrode. A stacked electrode group in which a plurality of layers are stacked in an intervening state may be used.
 (正極)
 正極は、正極芯材と、正極芯材に担持された正極活物質(または正極活物質層)とを備える。正極は、ペースト式正極および焼結式正極のいずれであってもよい。ペースト式正極は、例えば、正極芯材に少なくとも正極活物質を含む正極ペーストを付着させることにより形成できる。より具体的には、正極は、正極芯材に正極ペーストを塗布または充填した後、乾燥し、圧縮(または圧延)することにより形成できる。焼結式正極は、例えば、ニッケル粒子が焼結された穿孔鋼板(正極芯材)を、硝酸ニッケル水溶液などに含浸させて中和させ、活物質である水酸化ニッケルを析出させることにより得られる。
(Positive electrode)
The positive electrode includes a positive electrode core material and a positive electrode active material (or a positive electrode active material layer) carried on the positive electrode core material. The positive electrode may be either a paste type positive electrode or a sintered type positive electrode. The paste type positive electrode can be formed, for example, by attaching a positive electrode paste containing at least a positive electrode active material to a positive electrode core material. More specifically, the positive electrode can be formed by applying or filling a positive electrode paste on a positive electrode core material, then drying and compressing (or rolling). The sintered positive electrode is obtained, for example, by impregnating a perforated steel sheet (positive electrode core material) in which nickel particles are sintered with a nickel nitrate aqueous solution or the like to neutralize and depositing nickel hydroxide as an active material. .
 正極芯材としては、公知のものが使用でき、ニッケル発泡体、および焼結ニッケル板などのニッケルまたはニッケル合金などで形成された多孔性基板が例示できる。 As the positive electrode core material, known materials can be used, and examples thereof include a nickel foam, and a porous substrate formed of nickel or a nickel alloy such as a sintered nickel plate.
 正極活物質としては、例えば、水酸化ニッケル、および/またはオキシ水酸化ニッケルなどのニッケル化合物が使用される。 As the positive electrode active material, for example, a nickel compound such as nickel hydroxide and / or nickel oxyhydroxide is used.
 正極ペーストには、通常、分散媒が含まれ、必要に応じて、正極に使用される公知の成分、例えば、導電剤、結着剤、および/または増粘剤などを添加してもよい。 The positive electrode paste usually contains a dispersion medium, and a known component used for the positive electrode, such as a conductive agent, a binder, and / or a thickener, may be added as necessary.
 分散媒としては、水、有機媒体、またはこれらから選択される二種以上の媒体を混合した混合媒体などが使用できる。 As the dispersion medium, water, an organic medium, or a mixed medium in which two or more media selected from these are mixed can be used.
 導電剤としては、電子伝導性を有する材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト;アセチレンブラック、ケッチェンブラックなどのカ-ボンブラック;炭素繊維、金属繊維などの導電性繊維;銅粉などの金属粒子;ポリフェニレン誘導体などの有機導電性材料などが例示できる。これらの導電剤は、一種を単独でまたは二種以上を組み合わせて用いてもよい。導電剤としては、水酸化コバルト、および/またはγ型のオキシ水酸化コバルトなどの導電性のコバルト酸化物を用いてもよい。 The conductive agent is not particularly limited as long as it is a material having electronic conductivity. For example, graphite such as natural graphite (flaky graphite etc.), artificial graphite and expanded graphite; carbon black such as acetylene black and ketjen black; conductive fibers such as carbon fiber and metal fiber; metal particles such as copper powder An organic conductive material such as a polyphenylene derivative can be exemplified. These conductive agents may be used alone or in combination of two or more. As the conductive agent, conductive cobalt oxide such as cobalt hydroxide and / or γ-type cobalt oxyhydroxide may be used.
 導電剤の量は、活物質100質量部に対して、例えば、0.01質量部以上20質量部以下であり、好ましくは0.1質量部以上10質量部以下である。 The amount of the conductive agent is, for example, from 0.01 parts by mass to 20 parts by mass, and preferably from 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the active material.
 導電剤は、正極ペーストに添加し、他の成分とともに混合して用いてもよい。また、活物質粒子の表面に、導電剤を予め被覆させてもよい。導電剤の被覆は、公知の方法、例えば、活物質粒子の表面に、導電剤をまぶしたり、導電剤を含む分散液を付着させて乾燥させたり、および/またはメカノケミカル法などにより機械的に被覆させたりすることにより行うことができる。 The conductive agent may be added to the positive electrode paste and mixed with other components. Further, the surface of the active material particles may be previously coated with a conductive agent. The conductive agent is coated mechanically by a known method, for example, by coating the surface of the active material particles with a conductive agent, attaching a dispersion containing the conductive agent to dry, and / or a mechanochemical method. It can be carried out by coating.
 結着剤としては、樹脂材料、例えば、スチレン-ブタジエン共重合ゴムなどのゴム状材料;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;ポリフッ化ビニリデンなどのフッ素樹脂;エチレン-アクリル酸共重合体、エチレン-アクリル酸メチル共重合体などのアクリル樹脂およびそのNaイオン架橋体などが例示できる。これらの結着剤は、一種を単独でまたは二種以上を組み合わせて使用できる。 As the binder, resin materials, for example, rubber-like materials such as styrene-butadiene copolymer rubber; polyolefin resins such as polyethylene and polypropylene; fluororesins such as polyvinylidene fluoride; ethylene-acrylic acid copolymers, ethylene-acrylic An acrylic resin such as an acid methyl copolymer and its Na ion crosslinked body can be exemplified. These binders can be used individually by 1 type or in combination of 2 or more types.
 結着剤の量は、活物質100質量部に対して、例えば、7質量部以下であり、0.01質量部以上5質量部以下であってもよい。 The amount of the binder is, for example, 7 parts by mass or less with respect to 100 parts by mass of the active material, and may be 0.01 parts by mass or more and 5 parts by mass or less.
 増粘剤としては、例えば、カルボキシメチルセルロースおよびその変性体(Na塩、アンモニウム塩などの塩も含む)、メチルセルロースなどのセルロース誘導体;ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエチレンオキシドなどのポリアルキレンオキサイドなどが挙げられる。これらの増粘剤は、一種を単独でまたは二種以上を組み合わせて使用できる。 Examples of the thickener include carboxymethyl cellulose and modified products thereof (including salts such as Na salt and ammonium salt), cellulose derivatives such as methyl cellulose; saponified polymers having vinyl acetate units such as polyvinyl alcohol; polyethylene oxide, etc. And polyalkylene oxide. These thickeners can be used singly or in combination of two or more.
 増粘剤の量は、活物質100質量部に対して、例えば、5質量部以下であり、0.01質量部以上3質量部以下であってもよい。 The amount of the thickener is, for example, 5 parts by mass or less, and may be 0.01 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the active material.
 また、正極ペーストは、添加剤として、酸化亜鉛、および/または水酸化亜鉛などの金属化合物(酸化物、および/または水酸化物など)などを含んでもよい。 Also, the positive electrode paste may contain, as an additive, a metal compound such as zinc oxide and / or zinc hydroxide (oxide and / or hydroxide).
 (負極)
 負極は、負極芯材と負極芯材に担持された負極活物質とを備える。
(Negative electrode)
The negative electrode includes a negative electrode core material and a negative electrode active material supported on the negative electrode core material.
 負極活物質は、45℃での水素平衡圧が0.5atm以上(≒0.05MPa以上)、3.5atm以下(≒0.35MPa以上)の水素吸蔵合金を含む。45℃での水素平衡圧が0.5atm未満では、低温出力特性が低下し、3.5atmを超えると、高温耐久性が低下する。より高い低温出力特性が得られる観点からは、45℃での水素平衡圧は、0.6atm以上(≒0.06MPa以上)3.5atm以下であることが好ましい。 The negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm or more (≈0.05 MPa or more) and 3.5 atm or less (≈0.35 MPa or more). When the hydrogen equilibrium pressure at 45 ° C. is less than 0.5 atm, the low-temperature output characteristics are degraded, and when it exceeds 3.5 atm, the high-temperature durability is degraded. From the viewpoint of obtaining higher low-temperature output characteristics, the hydrogen equilibrium pressure at 45 ° C. is preferably 0.6 atm or more (≈0.06 MPa or more) and 3.5 atm or less.
 水素吸蔵合金は、金属性結合を有するものであり、水素親和性の高い元素と水素親和性の低い元素とを組み合わせて含む。水素親和性の高い元素は、Aサイトに位置し易く、水素親和性の低い元素は、Bサイトに位置し易い。水素吸蔵合金の結晶構造は特に制限されず、例えば、AB2型(例えば、MgCu2型)、AB3型(例えば、CeNi3型)、AB5型(例えば、CaCu5型)、A27型(例えば、Ce2Ni7型)などのいずれであってもよい。結晶構造の異なる複数の水素吸蔵合金を併用してもよい。水素吸蔵合金の結晶構造としては、上記以外に、A19型も知られている。AB型の結晶構造を有する水素吸蔵合金は、水素解離反応のエンタルピーが、他の結晶構造、特にAB3型あるいはA19型の結晶構造を有する水素吸蔵合金に比べ、高い値を有する。このことにより、高温での電池特性の劣化の一つである合金結晶構造の崩れが抑制される。よって、AB型の結晶構造を有する水素吸蔵合金を用いる場合、高い高温耐久性を確保することができるため特に有利である。負極活物質に占めるAB型の結晶構造を有する水素吸蔵合金の比率は、80質量%以上であることが好ましく、90質量%以上であることが好ましい。 The hydrogen storage alloy has a metallic bond and includes a combination of an element having a high hydrogen affinity and an element having a low hydrogen affinity. An element with high hydrogen affinity is likely to be located at the A site, and an element with low hydrogen affinity is likely to be located at the B site. The crystal structure of the hydrogen storage alloy is not particularly limited, for example, AB 2 type (e.g., MgCu 2 type), AB 3 type (e.g., CeNi 3 type), AB 5 type (e.g., CaCu 5 type), A 2 B Any of 7 types (for example, Ce 2 Ni 7 type) may be used. A plurality of hydrogen storage alloys having different crystal structures may be used in combination. The crystalline structure of the hydrogen storage alloy, in addition to the above, is also known 19-A 5 B. The hydrogen storage alloy having the AB 5 type crystal structure has a higher value of the enthalpy of the hydrogen dissociation reaction than the other crystal structures, particularly the hydrogen storage alloy having the AB 3 type or A 5 B 19 type crystal structure. . This suppresses the collapse of the alloy crystal structure, which is one of the deteriorations of battery characteristics at high temperatures. Therefore, in the case of using a hydrogen storage alloy having a crystal structure of the 5 type AB, it is particularly advantageous since it is possible to ensure the high temperature durability. The ratio of the hydrogen storage alloy having AB 5 type crystal structure occupying in the negative electrode active material is preferably 80 mass% or more, preferably 90 mass% or more.
 結晶構造の種類にもよるが、Aサイトに位置する元素としては、周期表第2~4族元素が挙げられ、それ以外の元素は、Bサイトに位置し易い。Aサイトに位置する元素としては、例えば、ランタノイド元素、アクチノイド元素、アルカリ土類金属元素、Sc、Y、Ti、Zr、およびHfからなる群より選択される少なくとも一種が好ましい。高容量が得られ易い観点から、Aサイトに位置する元素は、少なくともランタノイド元素を含むことが好ましく、ランタノイド元素と、アクチノイド元素、アルカリ土類金属元素、Sc、Y、Ti、Zr、およびHfからなる群より選択される少なくとも一種とを含んでもよい。 Depending on the type of crystal structure, the elements located at the A site include Group 2 to 4 elements of the periodic table, and other elements are likely to be located at the B site. As the element located at the A site, for example, at least one selected from the group consisting of a lanthanoid element, an actinoid element, an alkaline earth metal element, Sc, Y, Ti, Zr, and Hf is preferable. From the viewpoint of easily obtaining a high capacity, the element located at the A site preferably contains at least a lanthanoid element, and includes lanthanoid elements, actinoid elements, alkaline earth metal elements, Sc, Y, Ti, Zr, and Hf. And at least one selected from the group consisting of:
 ランタノイド元素には、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuが含まれる。アクチノイド元素としては、例えば、Ac、Th、Pa、Npなどが挙げられる。アルカリ土類金属元素としては、例えば、Mg、Ca、Sr、Baなどが挙げられる。高い高温耐久性を確保し易い観点からは、Aサイトに位置する元素に占める、Mgなどのアルカリ土類金属元素の比率は小さいことが好ましく、例えば、1モル%以下であることがさらに好ましい。特に、Mgの比率が小さい(またはMgを含まない)AB型の結晶構造を有する水素吸蔵合金は、ナトリウムイオンを含むアルカリ電解液に対して、耐食性が高い。そのため、このような水素吸蔵合金は、本実施形態に係るアルカリ蓄電池のように、ナトリウムイオン濃度が高いアルカリ電解液と組み合わせて用いるのに特に適している。 Lanthanoid elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Examples of actinoid elements include Ac, Th, Pa, Np, and the like. Examples of the alkaline earth metal element include Mg, Ca, Sr, Ba, and the like. From the viewpoint of easily ensuring high high temperature durability, the ratio of an alkaline earth metal element such as Mg to the element located at the A site is preferably small, and more preferably, for example, 1 mol% or less. In particular, (not including or Mg) ratio is small Mg hydrogen storage alloy having AB 5 type crystal structure, an alkali electrolyte solution containing sodium ion, a high corrosion resistance. Therefore, such a hydrogen storage alloy is particularly suitable for use in combination with an alkaline electrolyte having a high sodium ion concentration, like the alkaline storage battery according to this embodiment.
 水素吸蔵量を高めて、水素吸蔵合金の表面に水素リッチな状態を作り易い観点から、Aサイトに位置する元素は、ランタノイド元素のうち、Laおよび/またはCeを含むことが好ましく、少なくともLaを含むことがさらに好ましい。LaやCeの比率を多くすることで水素平衡圧を高めることができる。Aサイトに位置する元素に占めるLaの比率は、50質量%以上であることが好ましく、55質量%以上または60質量%以上であってもよい。Laの比率がこのような範囲では、水素による酸素の還元反応を促進させる効果がさらに高くなる。よって、水素吸蔵合金の酸化を抑制する効果がさらに高まるとともに、正極集電板と正極芯材や正極リードとの接続箇所の腐食を抑制する効果をさらに高めることができる。水素吸蔵合金は、Laおよび/またはCeに加えて、Zrなどの周期表第4族元素を含んでいてもよい。 From the viewpoint of easily increasing the hydrogen storage amount and forming a hydrogen-rich state on the surface of the hydrogen storage alloy, the element located at the A site preferably contains La and / or Ce among lanthanoid elements, and at least La is contained. It is further preferable to include it. The hydrogen equilibrium pressure can be increased by increasing the ratio of La and Ce. The ratio of La in the elements located at the A site is preferably 50% by mass or more, and may be 55% by mass or more or 60% by mass or more. When the La ratio is within such a range, the effect of promoting the reduction reaction of oxygen by hydrogen is further enhanced. Therefore, the effect of suppressing the oxidation of the hydrogen storage alloy can be further enhanced, and the effect of suppressing the corrosion of the connection portion between the positive electrode current collector plate and the positive electrode core material or the positive electrode lead can be further enhanced. The hydrogen storage alloy may contain Group 4 elements of the periodic table such as Zr in addition to La and / or Ce.
 Bサイトに位置する元素としては、周期表第5族~第11族の遷移金属元素、第12族元素、および第13族~14族の第3周期~第5周期の元素からなる群より選択される少なくとも一種が好ましい。Bサイトに位置する元素としては、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Pd、Cu、およびAgなどの遷移金属元素;Znなどの第12族元素;Al、Ga、Inなどの第13族元素;ならびに、Si、Ge、およびSnなどの第14族元素が好ましい。中でも、Bサイトに位置する元素は、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Zn、Al、Ga、In、Si、Ge、およびSnからなる群より選択される少なくとも1種であることが好ましい。Bサイトに位置する元素は、Mnを含むことが好ましいが、水素平衡圧を高める観点からは、Mnの比率は小さい方が好ましい。水素吸蔵合金は、Mn、Co、およびNiを含むことが好ましい。水素吸蔵合金がMnおよびCoを含むことで、水素吸蔵合金の結晶が膨張収縮しても、結晶構造が乱れるのを抑制できるとともに、水素吸蔵合金粒子の微粉化を抑制することができる。また、水素吸蔵合金がNiを含むことで、高容量を確保できるとともに、低温特性を向上できる。容量および低温特性をさらに高める観点からは、Niの比率が多い方が好ましいが、Niの比率が多くなると、膨張収縮に伴う、原子の結晶格子位置のズレが、より大きくなり、構造破壊による微粉化がより生じ易くなる傾向がある。水素吸蔵合金がNiに加え、MnおよびCoを含むことで、これらの元素による微粉化抑制効果がさらに効果的に発揮されることとなる。 The element located at the B site is selected from the group consisting of transition metal elements of Group 5 to Group 11 of the periodic table, Group 12 elements, and elements of Groups 3 to 14 of Groups 3 to 14 At least one of the above is preferred. Elements located at the B site include transition metal elements such as V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pd, Cu, and Ag; Group 12 elements such as Zn; Al Group 13 elements such as Si, Ge and Sn; and Group 14 elements such as Si, Ge and Sn are preferred. Among them, the element located at the B site is composed of V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, Al, Ga, In, Si, Ge, and Sn. It is preferably at least one selected from the group. The element located at the B site preferably contains Mn, but from the viewpoint of increasing the hydrogen equilibrium pressure, a smaller Mn ratio is preferred. The hydrogen storage alloy preferably contains Mn, Co, and Ni. When the hydrogen storage alloy contains Mn and Co, even if the crystal of the hydrogen storage alloy expands and contracts, the crystal structure can be prevented from being disturbed, and the pulverization of the hydrogen storage alloy particles can be suppressed. In addition, when the hydrogen storage alloy contains Ni, high capacity can be secured and low temperature characteristics can be improved. From the viewpoint of further increasing the capacity and low temperature characteristics, it is preferable that the Ni ratio is large. However, as the Ni ratio increases, the displacement of the crystal lattice position of the atoms accompanying expansion and contraction becomes larger, resulting in fine powder due to structural destruction. It tends to occur more easily. When the hydrogen storage alloy contains Mn and Co in addition to Ni, the effect of suppressing pulverization by these elements will be more effectively exhibited.
 また、高い耐久性が得られる観点から、水素吸蔵合金は、Alを含むことが好ましく、AlとMnとを含むことがさらに好ましい。AlとMnとを含む場合、これらの元素の相乗効果により、水素吸蔵合金粒子の微粉化を抑制することができる。Aサイトに位置する元素に対するAlのモル比は、0.25以上であることが好ましく、0.3を超えることがさらに好ましい。Alのモル比がこのような範囲である場合、耐久性をさらに高めることができる。Mnとの相乗効果が得られ易い観点からは、Aサイトに位置する元素に対するAlのモル比は、0.5以下であることが好ましい。 Further, from the viewpoint of obtaining high durability, the hydrogen storage alloy preferably contains Al, and more preferably contains Al and Mn. When Al and Mn are contained, the pulverization of the hydrogen storage alloy particles can be suppressed by the synergistic effect of these elements. The molar ratio of Al to the element located at the A site is preferably 0.25 or more, more preferably more than 0.3. When the molar ratio of Al is within such a range, durability can be further enhanced. From the viewpoint of easily obtaining a synergistic effect with Mn, the molar ratio of Al to the element located at the A site is preferably 0.5 or less.
 水素吸蔵合金の具体例としては、La0.849Ce0.151Ni4.304Co0.418Mn0.240Al0.310、La0.836Ce0.142Ni4.456Co0.147Mn0.252Al0.401Zr0.022、La0.625Ce0.375Ni4.287Co0.448Mn0.099Al0.304などが挙げられる。 Specific examples of the hydrogen storage alloy include La 0.849 Ce 0.151 Ni 4.304 Co 0.418 Mn 0.240 Al 0.310 , La 0.836 Ce 0.142 Ni 4.456 Co 0.147 Mn 0.252 Al 0.401 Zr 0.022 , La 0.625 Ce 0.375 Ni 4.287 Co 0.448 Mn 0.099 Al 0.304, etc. Is mentioned.
 水素吸蔵合金は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 One kind of hydrogen storage alloy may be used alone, or two or more kinds may be used in combination.
 水素平衡圧は、例えば、水素吸蔵合金の構成元素の種類および/または比率を調節することにより調節することができる。例えば、上述のように、LaやCeを多く用いたり、Mnを少なく用いたりすることで水素平衡圧を高めることができるが、これらの場合に限らない。 The hydrogen equilibrium pressure can be adjusted, for example, by adjusting the type and / or ratio of the constituent elements of the hydrogen storage alloy. For example, as described above, the hydrogen equilibrium pressure can be increased by using a large amount of La and Ce or using a small amount of Mn, but the present invention is not limited to these cases.
 水素吸蔵合金としては、市販のものを用いてもよく、公知の製造方法により製造したものを用いてもよい。水素吸蔵合金は、例えば、水素吸蔵合金の構成元素の単体から合金を形成する工程A、工程Aで得られた合金を粒状化する工程B、および工程Bで得られた粒状物を活性化処理する工程C、などを経ることにより、得ることができる。各工程は、公知の方法に準じて行うことができる。 As the hydrogen storage alloy, a commercially available one may be used, or one manufactured by a known manufacturing method may be used. The hydrogen storage alloy is, for example, a process A in which an alloy is formed from a single element constituting the hydrogen storage alloy, a process B in which the alloy obtained in the process A is granulated, and a granular material obtained in the process B is activated. It can be obtained through Step C, etc. Each step can be performed according to a known method.
 負極芯材としては、公知のものが使用でき、鉄合金(ステンレス鋼など)、ニッケルまたはその合金などで形成された多孔性または無孔の基板が例示できる。負極芯材は、ニッケルめっきなどのめっき処理が施されていてもよい。支持体が多孔性基板の場合、活物質は、支持体の空孔に充填されていてもよい。 As the negative electrode core material, known materials can be used, and examples thereof include a porous or non-porous substrate formed of an iron alloy (such as stainless steel), nickel or an alloy thereof. The negative electrode core material may be subjected to a plating treatment such as nickel plating. When the support is a porous substrate, the active material may be filled in the pores of the support.
 負極は、負極芯材に少なくとも負極活物質を含む負極ペーストを付着させることにより形成できる。具体的には、負極は、正極の場合に準じて、支持体に負極ペーストを塗布または充填した後、乾燥し、厚み方向に圧縮することにより形成できる。 The negative electrode can be formed by attaching a negative electrode paste containing at least a negative electrode active material to the negative electrode core material. Specifically, the negative electrode can be formed by applying or filling a negative electrode paste on a support, drying, and compressing in the thickness direction according to the case of the positive electrode.
 負極ペーストは、必要に応じて、負極に使用される公知の成分、例えば、導電剤、結着剤、増粘剤などを含んでもよい。分散媒、導電剤、結着剤および増粘剤、ならびにこれらの量としては、それぞれ、正極ペーストの場合と同様のものまたは範囲から選択できる。導電剤としては、人造黒鉛、ケッチェンブラック、炭素繊維などが好ましい。 The negative electrode paste may contain known components used for the negative electrode, for example, a conductive agent, a binder, a thickener, and the like, if necessary. The dispersion medium, conductive agent, binder and thickener, and their amounts can be selected from the same or range as in the case of the positive electrode paste. As the conductive agent, artificial graphite, ketjen black, carbon fiber and the like are preferable.
 負極は、電池ケースに電気的に接続されるが、正極と電池ケースとをリードを介して電気的に接続してもよいが、正極の場合のように、負極集電板を用いて、負極と電池ケースとを電気的に接続することが好ましい。負極集電板を用いることで、出力を高めやすくなる。負極集電板については後述する。 The negative electrode is electrically connected to the battery case, but the positive electrode and the battery case may be electrically connected via a lead. However, as in the case of the positive electrode, the negative electrode It is preferable to electrically connect the battery case. By using the negative electrode current collector plate, the output is easily increased. The negative electrode current collector plate will be described later.
 (セパレータ)
 セパレータとしては、アルカリ蓄電池に使用される公知のもの、例えば、微多孔膜、不織布、これらの積層体などが使用できる。微多孔膜および不織布の材質としては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;フッ素樹脂;ポリアミド樹脂などが例示できる。アルカリ電解液に対する耐分解性が高い点からは、ポリオレフィン樹脂製のセパレータを用いることが好ましい。
(Separator)
As a separator, the well-known thing used for an alkaline storage battery, for example, a microporous film, a nonwoven fabric, these laminated bodies, etc. can be used. Examples of the material for the microporous membrane and the nonwoven fabric include polyolefin resins such as polyethylene and polypropylene; fluororesins; polyamide resins and the like. From the viewpoint of high decomposition resistance to an alkaline electrolyte, it is preferable to use a separator made of polyolefin resin.
 ポリオレフィン樹脂などの疎水性の高い材料で形成されたセパレータには、親水化処理により、親水性基を導入しておくことが好ましい。親水化処理としては、コロナ放電処理、プラズマ処理、スルホン化処理などが例示できる。これらのうち、特に、スルホン化処理されたセパレータ、つまり、スルホン酸基を有するセパレータ(ポリオレフィン製のセパレータなど)を用いることが好ましい。 It is preferable to introduce a hydrophilic group into a separator formed of a highly hydrophobic material such as a polyolefin resin by a hydrophilic treatment. Examples of the hydrophilic treatment include corona discharge treatment, plasma treatment, and sulfonation treatment. Among these, it is particularly preferable to use a sulfonated separator, that is, a separator having a sulfonic acid group (such as a polyolefin separator).
 (正極集電板)
 正極集電板は、電極群に含まれる正極の正極芯材の端部に接続しており、これにより電極群(具体的には正極)と電気的に接続している。電極群の正極集電板側の端部において、正極芯材の端部(具体的には、芯材の幅方向の端部)は、セパレータや負極の端部よりも突出しており、この突出した正極芯材の端部に正極集電板(具体的には、正極集電板の電極群側の主面)が接続される。正極芯材の端部と正極集電板とが直接接続されることで、高い集電性を確保できる。また、正極集電板は、リードを介して封口板に接続されている。これにより、正極集電板は、封口板と電気的に接続される。
(Positive electrode current collector)
The positive electrode current collector plate is connected to the end portion of the positive electrode core material of the positive electrode included in the electrode group, and is thereby electrically connected to the electrode group (specifically, the positive electrode). At the end of the electrode group on the positive electrode current collector plate side, the end of the positive electrode core material (specifically, the end in the width direction of the core material) protrudes beyond the end of the separator or negative electrode. The positive electrode current collector plate (specifically, the main surface on the electrode group side of the positive electrode current collector plate) is connected to the end of the positive electrode core material. A high current collecting property can be ensured by directly connecting the end of the positive electrode core member and the positive electrode current collector plate. Moreover, the positive electrode current collector plate is connected to the sealing plate via a lead. Thereby, the positive electrode current collector plate is electrically connected to the sealing plate.
 正極集電板は、鉄または鉄合金で形成されたプレートと、プレートを被覆し、かつニッケルを含むめっき被膜とを備えている。このような正極集電板を用いることで、ニッケルやニッケル合金などのニッケルを含む材料で形成される正極芯材との高い溶接強度を確保することができるとともに、封口板と接続するためのニッケル金属で構成されたリードとの高い溶接強度も確保できる。しかし、プレートに鉄または鉄合金が含まれるため、正極集電板と、正極芯材との接続箇所やリードとの接続箇所に、溶接により鉄元素が拡散して(ニッケルを含むめっき被膜の亀裂が生じて)、アルカリ電解液による腐食を受け易くなる。本実施形態では、アルカリ電解液中のアルカリ濃度およびナトリウムイオン濃度を制御するとともに、負極活物質の水素吸蔵合金の水素平衡圧を制御することで、正極集電板と正極芯材およびリードとの接続箇所の腐食を抑制できる。 The positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel. By using such a positive electrode current collector plate, it is possible to ensure high welding strength with a positive electrode core material formed of a nickel-containing material such as nickel or a nickel alloy, and nickel for connecting to a sealing plate High weld strength with a lead made of metal can be secured. However, since iron or iron alloy is contained in the plate, the iron element is diffused by welding at the connection point between the positive electrode current collector plate and the positive electrode core material or the lead (the crack of the plating film containing nickel). Is likely to be corroded by the alkaline electrolyte. In the present embodiment, the alkali concentration and sodium ion concentration in the alkaline electrolyte are controlled, and the hydrogen equilibrium pressure of the hydrogen storage alloy of the negative electrode active material is controlled, so that the positive electrode current collector plate, the positive electrode core material, and the lead Corrosion at the connection point can be suppressed.
 プレートを構成する鉄合金としては、ステンレス鋼などが挙げられる。ニッケルめっきは、無電解めっきおよび電解めっきのいずれでもよい。めっき被膜は、正極集電板の表面全体を覆っていることが好ましい。 ¡Stainless steel can be used as the iron alloy that composes the plate. The nickel plating may be either electroless plating or electrolytic plating. The plating film preferably covers the entire surface of the positive electrode current collector plate.
 正極集電板の厚みは、例えば、0.2mm以上0.5mm以下である。 The thickness of the positive electrode current collector plate is, for example, 0.2 mm or more and 0.5 mm or less.
 正極集電板の形状は、電池の形状に応じて選択される。例えば、円筒形電池では、図1に示すような円盤状であり、角形電池では、角形(または角形に近い形状)の板状である。正極集電板は、負極集電板(や負極)と電池ケースの内底面とを接続する際に、溶接用の電極棒を挿入するため、通常、面方向の中央部に孔を有する。 The shape of the positive electrode current collector plate is selected according to the shape of the battery. For example, a cylindrical battery has a disk shape as shown in FIG. 1, and a rectangular battery has a square (or a shape close to a square) plate shape. The positive electrode current collector plate usually has a hole in the center in the surface direction in order to insert a welding electrode rod when the negative electrode current collector plate (or the negative electrode) is connected to the inner bottom surface of the battery case.
 (正極リード)
 正極集電板と封口板との双方に接続されるリード(以下、正極リードとも言う)は、ニッケル金属で構成されている。そのため、アルカリ電解液に対する腐食が抑制され、腐食による抵抗の増加が抑制されることで、高い出力を確保できる。また、ニッケルめっきされた正極集電板との接合強度も高め易い。
(Positive lead)
Leads connected to both the positive electrode current collector plate and the sealing plate (hereinafter also referred to as positive electrode leads) are made of nickel metal. Therefore, corrosion to the alkaline electrolyte is suppressed, and an increase in resistance due to corrosion is suppressed, so that a high output can be secured. Moreover, it is easy to increase the bonding strength with the nickel-plated positive electrode current collector plate.
 正極リードを構成するニッケル金属は、ニッケル以外の不純物を含む場合がある。ニッケル金属中の不純物の含有量は少ない方が好ましく、例えば、1質量%以下であり、0.5質量%以下であることがより好ましい。 The nickel metal constituting the positive electrode lead may contain impurities other than nickel. The content of impurities in the nickel metal is preferably smaller, for example, 1% by mass or less, and more preferably 0.5% by mass or less.
 高出力が得られ易い観点からは、正極リードは、リード線よりも大きい断面積が得られ易いタブ状のリードを用いて、正極集電板と封口板とを接続することが好ましい。タブ状のリードの幅は、電池サイズに応じて決定される。タブ状のリードの厚みも電池サイズに応じて選択されるが、例えば、0.3mm以上0.6mm以下である。 From the viewpoint of easily obtaining a high output, it is preferable that the positive electrode lead is connected to the positive electrode current collector plate and the sealing plate using a tab-like lead that can easily obtain a larger cross-sectional area than the lead wire. The width of the tab-like lead is determined according to the battery size. The thickness of the tab-like lead is also selected according to the battery size, and is, for example, not less than 0.3 mm and not more than 0.6 mm.
 (負極集電板)
 アルカリ蓄電池が負極集電板を含む場合、負極集電板は、負極と電池ケースとを電気的に接続できればよく、材質や形状は公知のものが採用できる。正極集電板の場合と同様に、鉄または鉄合金で形成されたプレートと、プレートを被覆し、かつニッケルを含むめっき被膜とを備える負極集電板を用いてもよい。負極集電板については、正極集電板の説明を参照できる。負極集電板は、負極集電板と電池ケースの内底面とを溶接するためには、面方向の中央部には孔を有しないことが望ましい。
(Negative electrode current collector plate)
When the alkaline storage battery includes a negative electrode current collector plate, the negative electrode current collector plate may be any material as long as it can electrically connect the negative electrode and the battery case, and known materials and shapes can be employed. As in the case of the positive electrode current collector plate, a negative electrode current collector plate provided with a plate formed of iron or an iron alloy, and a plating film covering the plate and containing nickel may be used. For the negative electrode current collector plate, the description of the positive electrode current collector plate can be referred to. In order to weld the negative electrode current collector plate and the inner bottom surface of the battery case, it is desirable that the negative electrode current collector plate has no hole in the center portion in the surface direction.
 負極集電板は、好ましくは、電池ケースの底部に配置され、負極集電板上に電極群が配置される。負極集電板は、例えば、電池ケースの内底面に電気的に接続させてもよい。負極集電板と電池ケースとは、リード(負極リード)を介して接続させてもよいが、多くの場合、溶接により直接接続させる。 The negative electrode current collector plate is preferably disposed at the bottom of the battery case, and the electrode group is disposed on the negative electrode current collector plate. The negative electrode current collector plate may be electrically connected to the inner bottom surface of the battery case, for example. The negative electrode current collector plate and the battery case may be connected via a lead (negative electrode lead), but in many cases, they are directly connected by welding.
 負極集電板は、負極に電気的に接続していればよく、負極に負極芯材の露出部を設けてこの露出部と負極集電板とをリードを介して接続させてもよい。高出力が得られ易い観点からは、負極集電板は、正極集電板の場合と同様に、負極芯材の端部に接続させることが好ましい。内部短絡を抑制する観点からは、電池ケースの底部側の電極群の端部において、負極芯材の端部(具体的には、負極芯材の幅方向の端部)をセパレータや正極の端部よりも突出させ、負極芯材の端部と負極集電板とを直接接続させることが好ましい。 The negative electrode current collector plate may be electrically connected to the negative electrode, and an exposed portion of the negative electrode core material may be provided on the negative electrode, and the exposed portion and the negative electrode current collector plate may be connected via a lead. From the viewpoint of easily obtaining a high output, the negative electrode current collector plate is preferably connected to the end of the negative electrode core material in the same manner as the positive electrode current collector plate. From the viewpoint of suppressing internal short circuit, the end of the negative electrode core material (specifically, the end in the width direction of the negative electrode core material) is the end of the separator or positive electrode at the end of the electrode group on the bottom side of the battery case. It is preferable that the end portion of the negative electrode core material and the negative electrode current collector plate be directly connected to each other.
 (アルカリ電解液)
 アルカリ電解液としては、アルカリを溶質として含む水溶液が使用される。本実施形態では、アルカリ電解液は、少なくともNaOHを含んでいればよく、NaOHのみを含んでもよく、NaOHとNaOH以外のアルカリとを含んでいてもよい。NaOH以外のアルカリとしては、例えば、KOHおよび/またはLiOHなどが挙げられる。少なくともNaOHを含むアルカリ電解液を用いることで、高い高温耐久性が得られる。
(Alkaline electrolyte)
As the alkaline electrolyte, an aqueous solution containing alkali as a solute is used. In the present embodiment, the alkaline electrolyte only needs to contain at least NaOH, may contain only NaOH, or may contain NaOH and an alkali other than NaOH. Examples of the alkali other than NaOH include KOH and / or LiOH. By using an alkaline electrolyte containing at least NaOH, high temperature durability can be obtained.
 アルカリ電解液中、アルカリの濃度は、6.5mol/L以下であり、6.2mol/L以下であることが好ましく、6mol/L以下であることがさらに好ましい。アルカリの濃度が6.5mol/Lを超えると、正極集電板と正極芯材や正極リードとの接続箇所の腐食の抑制効果が低減するとともに、高温耐久性が大きく低下する。 In the alkaline electrolyte, the alkali concentration is 6.5 mol / L or less, preferably 6.2 mol / L or less, and more preferably 6 mol / L or less. If the alkali concentration exceeds 6.5 mol / L, the effect of inhibiting corrosion at the connection point between the positive electrode current collector plate and the positive electrode core material or the positive electrode lead is reduced, and the high-temperature durability is greatly reduced.
 アルカリ電解液中、ナトリウムイオン濃度は、3mol/L以上である。ナトリウムイオン濃度が3mol/L未満である場合、高温耐久性が低下する。より高い高温耐久性が得られる観点からは、アルカリ電解液中のナトリウムイオン濃度は、3.5mol/L以上であることが好ましく、3.8mol/L以上または4mol/L以上であることがさらに好ましい。ナトリウムイオン濃度は、6.5mol/L以下であり、6mol/L以下であることが好ましい。ナトリウムイオン濃度の上限がこのような値であることで、特に高温における正極集電板と正極芯材や正極リードとの接合箇所の腐食をより効果的に抑制することができる。これらの下限値と上限値とは任意に組み合わせることができる。ナトリウムイオン濃度は、例えば、3mol/L以上6.5mol/L以下であり、3mol/L以上6mol/L以下、3.5mol/L以上6.5mol/L以下、3.5mol/L以上6mol/L以下、3.8mol/L以上6mol/L以下、または4mol/L以上6mol/L以下であってもよい。 In the alkaline electrolyte, the sodium ion concentration is 3 mol / L or more. When the sodium ion concentration is less than 3 mol / L, the high-temperature durability decreases. From the viewpoint of obtaining higher temperature durability, the sodium ion concentration in the alkaline electrolyte is preferably 3.5 mol / L or more, more preferably 3.8 mol / L or more, or 4 mol / L or more. preferable. The sodium ion concentration is 6.5 mol / L or less, preferably 6 mol / L or less. When the upper limit of the sodium ion concentration is such a value, corrosion of the joint portion between the positive electrode current collector plate and the positive electrode core material or the positive electrode lead, particularly at a high temperature, can be more effectively suppressed. These lower limit values and upper limit values can be arbitrarily combined. Sodium ion concentration is 3 mol / L or more and 6.5 mol / L or less, for example, 3 mol / L or more and 6 mol / L or less, 3.5 mol / L or more and 6.5 mol / L or less, 3.5 mol / L or more and 6 mol / L or less. L or less, 3.8 mol / L or more and 6 mol / L or less, or 4 mol / L or more and 6 mol / L or less may be sufficient.
 アルカリ電解液中のカリウムイオン濃度は、例えば、3mol/L以下であり、2mol/L以下であることが好ましい。カリウムイオン濃度がこのような範囲である場合、正極集電板の正極芯材や正極リードとの接続箇所の腐食や水素吸蔵合金の劣化が進行し易くなる。しかし、本実施形態では、電解液のアルカリ濃度およびナトリウムイオン濃度と、水素吸蔵合金の水素平衡圧とを制御するため、カリウムイオン濃度がこのような範囲でも、接続箇所の腐食や水素吸蔵合金の劣化を抑制することができる。高い高温充電効率を確保する観点からは、アルカリ電解液中のカリウムイオン濃度は、1.5mol/L以下であることが好ましく、1.2mol/L以下または1mol/L以下であることがさらに好ましい。 The potassium ion concentration in the alkaline electrolyte is, for example, 3 mol / L or less, and preferably 2 mol / L or less. When the potassium ion concentration is in such a range, corrosion of the connection portion between the positive electrode core plate and the positive electrode lead of the positive electrode current collector plate and deterioration of the hydrogen storage alloy are likely to proceed. However, in this embodiment, in order to control the alkali concentration and sodium ion concentration of the electrolytic solution and the hydrogen equilibrium pressure of the hydrogen storage alloy, even if the potassium ion concentration is in such a range, the corrosion of the connection site and the hydrogen storage alloy Deterioration can be suppressed. From the viewpoint of ensuring high high-temperature charging efficiency, the potassium ion concentration in the alkaline electrolyte is preferably 1.5 mol / L or less, more preferably 1.2 mol / L or less or 1 mol / L or less. .
 (その他)
 電池ケースは、電極群、正極集電板およびアルカリ電解液を少なくとも内部に収容できればよく、アルカリ蓄電池に使用される公知のものが使用される。電池ケースの形状は、特に制限されないが、例えば、円筒形、楕円筒形、角形などが挙げられる。
(Other)
The battery case only needs to be able to accommodate at least the electrode group, the positive electrode current collector plate, and the alkaline electrolyte, and a known case used for alkaline storage batteries is used. The shape of the battery case is not particularly limited, and examples thereof include a cylindrical shape, an elliptical cylindrical shape, and a rectangular shape.
 電池ケースの材質としては、例えば、鉄や鉄合金(ステンレス鋼など)などが挙げられる。電池ケースには、通常、ニッケルめっきなどのめっき処理が施されている。 Examples of the battery case material include iron and iron alloys (stainless steel, etc.). The battery case is usually subjected to a plating treatment such as nickel plating.
 封口板としては、正極集電板と電気的に接続し、電池ケースの開口部を封口できる限り特に制限されず、公知の構造が採用できる。 The sealing plate is not particularly limited as long as it can be electrically connected to the positive electrode current collecting plate and seal the opening of the battery case, and a known structure can be adopted.
 封口板の材質(少なくとも正極リードと接続される部分(封口板の底面など)の材質)としては、例えば、鉄や鉄合金(ステンレス鋼など)などが挙げられる。封口板(少なくとも正極リードと接続される部分(封口板の底面など))には、通常、ニッケルめっきなどのめっき処理が施されている。 Examples of the material of the sealing plate (at least the material connected to the positive electrode lead (such as the bottom surface of the sealing plate)) include iron and iron alloys (stainless steel, etc.). The sealing plate (at least a portion connected to the positive electrode lead (such as the bottom surface of the sealing plate)) is usually subjected to a plating treatment such as nickel plating.
 封口板の周縁部において、封口板と電池ケースとの間を絶縁するための絶縁ガスケットとしては、公知のものが特に制限なく使用される。 As the insulating gasket for insulating between the sealing plate and the battery case at the peripheral edge of the sealing plate, a known one is used without any particular limitation.
 [実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to a following example.
 実施例1
 下記の手順に従って、図1に示すようなアルカリ蓄電池(ニッケル水素蓄電池)を作製し、評価を行った。
Example 1
According to the following procedure, an alkaline storage battery (nickel metal hydride storage battery) as shown in FIG. 1 was produced and evaluated.
 (1)正極の作製
 ニッケル酸化物粒子と、所定量の水とを混合することにより、正極ペーストを調製した。
(1) Production of positive electrode A positive electrode paste was prepared by mixing nickel oxide particles and a predetermined amount of water.
 正極ペーストを、芯材としての発泡ニッケル多孔体(多孔度95%、面密度300g/cm2)に充填し、乾燥させた。乾燥物を厚み方向に圧縮した後、所定の寸法(厚み:0.4mm、長さ:80mm、幅:40mm)にカットすることにより、正極を作製した。正極の理論容量が、ニッケル酸化物が充放電で1電子反応を行うとした場合、800mAhとなるように、正極ペーストの充填量を調整した。正極の幅方向の一端部には、正極ペーストを充填せず、正極芯材のみが突出した状態とした。 The positive electrode paste was filled in a foamed nickel porous body (porosity 95%, surface density 300 g / cm 2 ) as a core material and dried. The dried product was compressed in the thickness direction, and then cut into predetermined dimensions (thickness: 0.4 mm, length: 80 mm, width: 40 mm) to produce a positive electrode. When the theoretical capacity of the positive electrode is one-electron reaction by charge / discharge of nickel oxide, the filling amount of the positive electrode paste was adjusted so as to be 800 mAh. One end of the positive electrode in the width direction was not filled with the positive electrode paste, and only the positive electrode core material was in a protruding state.
 (2)負極の作製
 水素吸蔵合金として、La0.849Ce0.151Ni4.304Co0.418Mn0.240Al0.310(45℃における水素平衡圧=3.0atm)100質量部、増粘剤としてのカルボシキメチルセルロース0.15質量部、導電剤としてのカーボンブラック0.3質量部および結着剤としてのスチレンブタジエン共重合体0.7質量部を混合し、得られた混合物に水を添加してさらに混合することにより、負極ペーストを調製した。
(2) Production of negative electrode As a hydrogen storage alloy, La 0.849 Ce 0.151 Ni 4.304 Co 0.418 Mn 0.240 Al 0.310 (hydrogen equilibrium pressure at 45 ° C. = 3.0 atm) 100 parts by mass, carboxymethyl cellulose 0.15 as a thickener By mixing 0.3 parts by mass of carbon black as a conductive agent and 0.7 parts by mass of a styrene butadiene copolymer as a binder, adding water to the resulting mixture and further mixing, A negative electrode paste was prepared.
 負極ペーストを、負極芯材としての、ニッケルめっきを施した鉄製パンチングメタル(厚み30μm)の両面に塗布して塗膜を形成した。得られた塗膜を乾燥した後、芯材とともにプレスし、所定のサイズ(厚み:0.3mm、長さ:120mm、幅:40mm)にカットすることにより、水素吸蔵合金負極を作製した。負極の容量は1600mAhに調整した。なお、負極芯材の幅方向の一端部には、負極ペーストの塗膜を形成せずに、負極芯材のみを突出させた。 The negative electrode paste was applied to both surfaces of nickel-plated iron punching metal (thickness 30 μm) as a negative electrode core material to form a coating film. After the obtained coating film was dried, it was pressed together with the core material and cut into a predetermined size (thickness: 0.3 mm, length: 120 mm, width: 40 mm) to produce a hydrogen storage alloy negative electrode. The capacity of the negative electrode was adjusted to 1600 mAh. In addition, only the negative electrode core material was made to protrude in one end part of the width direction of a negative electrode core material, without forming the coating film of negative electrode paste.
 (3)アルカリ蓄電池の作製
 (1)で得られた正極および(2)で得られた負極を用いて、図1に示す構造を有するニッケル水素蓄電池を作製した。
(3) Production of alkaline storage battery Using the positive electrode obtained in (1) and the negative electrode obtained in (2), a nickel hydride storage battery having the structure shown in FIG. 1 was produced.
 まず、正極3と、負極4との間に、セパレータ5を介在させた状態で、これらを重ねて渦巻き状に巻回することにより、電極群2を形成した。このとき、正極3の正極芯材の端部3aと負極4の負極芯材の端部4aとが反対に位置するように、正極3と負極4とを重ねた。セパレータ5としては、スルホン化されたポリプロピレン製のセパレータを用いた。 First, with the separator 5 interposed between the positive electrode 3 and the negative electrode 4, these were overlapped and wound into a spiral shape to form the electrode group 2. At this time, the positive electrode 3 and the negative electrode 4 were overlapped so that the end portion 3 a of the positive electrode core material of the positive electrode 3 and the end portion 4 a of the negative electrode core material of the negative electrode 4 were positioned opposite to each other. As the separator 5, a sulfonated polypropylene separator was used.
 正極3の幅方向の一端部に突出した正極芯材の端部3aを、正極集電板9に溶接した。正極芯材の端部3aとは反対側に突出した負極芯材の端部4aを、負極集電板8に溶接した。正極集電板9および負極集電板8とともに、電極群2を、有底円筒型の電池ケース1に収容し、電極群2の中央の空洞に溶接用の電極棒を挿入して、負極集電板8と電池ケース1の内底面とをスポット溶接した。正極集電板9としては、中央部に孔を有する角形のプレートを、ニッケルめっきしたものを用いた。正極集電板9のサイズは、縦11mm×横11mm×厚み1mmであり、中央部の孔は直径3mmの円形であった。負極集電板8としては、円盤状のプレートを、ニッケルめっきしたものを用いた。負極集電板8のサイズは、直径11mm×厚み1であった。正極集電板9と封口板7とは、正極リード10として、ニッケル製(Niの純度:99.9%)のタブ状のリード(幅5mm、厚み1mm)を用い、このリードの双方の端部とそれぞれ溶接することにより接続した。 The end portion 3 a of the positive electrode core member protruding from one end portion in the width direction of the positive electrode 3 was welded to the positive electrode current collector plate 9. The end 4a of the negative electrode core member protruding to the side opposite to the end 3a of the positive electrode core member was welded to the negative electrode current collector plate 8. Along with the positive electrode current collector plate 9 and the negative electrode current collector plate 8, the electrode group 2 is accommodated in a bottomed cylindrical battery case 1, and a welding electrode rod is inserted into the central cavity of the electrode group 2, thereby The electric plate 8 and the inner bottom surface of the battery case 1 were spot welded. As the positive electrode current collector plate 9, a nickel plate plated square plate having a hole in the center was used. The size of the positive electrode current collector plate 9 was 11 mm long × 11 mm wide × 1 mm thick, and the hole in the center was circular with a diameter of 3 mm. As the negative electrode current collector plate 8, a disk-shaped plate plated with nickel was used. The size of the negative electrode current collector plate 8 was 11 mm in diameter × 1 in thickness. The positive electrode current collector plate 9 and the sealing plate 7 use nickel-made (Ni purity: 99.9%) tab-shaped leads (width 5 mm, thickness 1 mm) as the positive electrode leads 10. Each part was connected by welding.
 電池ケース1の開口近傍の外周を窪ませて溝部を設け、電池ケース1内にアルカリ電解液を注入した。アルカリ電解液としては、濃度6mol/Lの水酸化ナトリウム水溶液を用いた。 The outer periphery in the vicinity of the opening of the battery case 1 was recessed to provide a groove, and an alkaline electrolyte was injected into the battery case 1. As the alkaline electrolyte, an aqueous sodium hydroxide solution having a concentration of 6 mol / L was used.
 次に、絶縁ガスケット6を介して電池ケース1の開口部に、封口板7を装着した。電池ケース1の開口端部をガスケット6に向けてかしめ、電池ケース1を封口することにより、正極で電池容量を規制した800mAhの理論容量をもつAAサイズのアルカリ蓄電池(密閉形ニッケル水素蓄電池)を作製した。なお、アルカリ蓄電池は、充放電(温度:20℃、充電条件:80mAで16時間、放電条件:160mAで5時間)することにより活性化させた後、評価(4)に供した。 Next, a sealing plate 7 was attached to the opening of the battery case 1 through the insulating gasket 6. AA-size alkaline storage battery (sealed nickel-metal hydride storage battery) having a theoretical capacity of 800 mAh in which the opening capacity of the battery case 1 is caulked toward the gasket 6 and the battery case 1 is sealed to regulate the battery capacity with the positive electrode. Produced. The alkaline storage battery was activated by charging / discharging (temperature: 20 ° C., charging condition: 80 mA for 16 hours, discharging condition: 160 mA for 5 hours), and then subjected to evaluation (4).
 (4)評価
 上記(3)で得られたアルカリ蓄電池を用いて、以下の評価を行った。
(4) Evaluation The following evaluation was performed using the alkaline storage battery obtained in (3) above.
 (a)初期の内部抵抗(低温出力特性)
 20℃雰囲気下、160mAの電流で、電圧が1.0Vに達するまで放電し、次いで、80mAの電流で16時間充電することにより、放電および充電試験を行った。
(A) Initial internal resistance (low temperature output characteristics)
Discharging and charging tests were performed by discharging at a current of 160 mA in a 20 ° C. atmosphere until the voltage reached 1.0 V, and then charging for 16 hours at a current of 80 mA.
 その後、0℃雰囲気下で、以下の(i)~(iv)のそれぞれの条件で、パルス充放電を行い、放電10秒後の電圧降下から内部抵抗を算出した。
(i)放電:400mAの電流で20秒パルス放電し、5分放電を休止。充電:400mAの電流で20秒パルス充電し、5分充電を休止。
(ii)放電:800mAの電流で20秒パルス放電し、5分間放電を休止。充電:800mAの電流で20秒パルス充電し、4分間休止。
(iii)放電:1600mAの電流にて20秒放電し、5分間放電を休止。充電:1600mAの電流で20秒充電し、5分間充電を休止。
(iv)放電:2400mAの電流で20秒放電し、5分間放電を休止。充電:2400mAの電流で20秒充電し、5分間充電を休止。
この4つの電流値と放電10秒後の電圧降下から内部抵抗を算出した。
Thereafter, pulse charge / discharge was performed under the following conditions (i) to (iv) in an atmosphere of 0 ° C., and the internal resistance was calculated from the voltage drop after 10 seconds of discharge.
(I) Discharge: Pulse discharge for 20 seconds at a current of 400 mA, and rest for 5 minutes. Charging: Pulse charging for 20 seconds at a current of 400 mA, and charging is stopped for 5 minutes.
(Ii) Discharge: Pulse discharge at a current of 800 mA for 20 seconds, and stop the discharge for 5 minutes. Charging: Pulsed for 20 seconds at a current of 800 mA and rested for 4 minutes.
(Iii) Discharge: Discharge for 20 seconds at a current of 1600 mA and pause the discharge for 5 minutes. Charging: Charged for 20 seconds at a current of 1600 mA and paused for 5 minutes.
(Iv) Discharge: Discharge for 20 seconds at a current of 2400 mA and pause for 5 minutes. Charging: Charging for 20 seconds at a current of 2400 mA and stopping charging for 5 minutes.
The internal resistance was calculated from these four current values and the voltage drop after 10 seconds of discharge.
 後述の他の実施例および比較例については、実施例1の初期の内部抵抗を100としたときの値で評価した。 For other examples and comparative examples described later, the initial internal resistance of Example 1 was evaluated as 100.
 (b)トリクル耐久試験(高温耐久性)
 70℃雰囲気下、以下に示す条件で、トリクル充電を行った後、放電を実施した。
トリクル充電:40mAの電流で60日間充電。
放電:160mAの電流で電圧が1.0Vに達するまで放電。
このトリクル充電と放電とを3回繰り返し、トリクル耐久試験とした。
(B) Trickle durability test (high temperature durability)
In a 70 ° C. atmosphere, trickle charging was performed under the following conditions, and then discharging was performed.
Trickle charge: Charge for 60 days at a current of 40 mA.
Discharge: Discharge until the voltage reaches 1.0 V at a current of 160 mA.
This trickle charge and discharge were repeated three times to obtain a trickle durability test.
 その後、上記(a)と同様の条件で内部抵抗試験を実施し、トリクル耐久試験後の内部抵抗とした。 Thereafter, an internal resistance test was performed under the same conditions as in (a) above to obtain an internal resistance after the trickle durability test.
 後述の他の実施例および比較例については、実施例1のトリクル耐久試験後の内部抵抗を100としたときの値で評価した。 For other examples and comparative examples described later, the internal resistance after the trickle durability test of Example 1 was evaluated as 100.
 (c)高温充放電効率
 以下に示す常温充放電試験と高温充電試験を実施し、常温充放電試験の放電容量に対する高温充電試験の放電容量の比を高温充電効率とした。
(C) High temperature charge / discharge efficiency The room temperature charge / discharge test and the high temperature charge test shown below were performed, and the ratio of the discharge capacity of the high temperature charge test to the discharge capacity of the room temperature charge / discharge test was defined as the high temperature charge efficiency.
 (常温充放電試験)
 20℃雰囲気下、以下の条件で充放電を行った。
充電:20℃雰囲気下、80mAの電流で16時間充電し、その後1時間放置。
放電:20℃雰囲気下、160mAの電流で電圧が1.0Vに達するまで放電。
(Normal temperature charge / discharge test)
Charge and discharge were performed under the following conditions in an atmosphere of 20 ° C.
Charging: Charged at 80 mA current for 16 hours in an atmosphere of 20 ° C., then left for 1 hour.
Discharge: Discharge in a 20 ° C. atmosphere at a current of 160 mA until the voltage reaches 1.0V.
 (高温充電試験)
充電:60℃雰囲気下、80mAの電流で16時間充電し、その後20℃雰囲気下で3時間放置。
放電:20℃雰囲気下、160mAの電流で電圧が1.0Vに達するまで放電。
(High temperature charge test)
Charging: Charged at a current of 80 mA for 16 hours in a 60 ° C. atmosphere, and then left for 3 hours in a 20 ° C. atmosphere.
Discharge: Discharge in a 20 ° C. atmosphere at a current of 160 mA until the voltage reaches 1.0V.
 後述の他の実施例および比較例については、実施例1の高温充放電効率を100としたときの値で評価した。 For other examples and comparative examples described later, evaluation was made with values when the high-temperature charge / discharge efficiency of Example 1 was 100.
 実施例2~9および比較例1~3
 表1および表2に示す濃度のナトリウムイオンおよびカリウムイオンを含むアルカリ電解液を用いた。ナトリウムイオンおよびカリウムイオンの双方を含むアルカリ電解液としては、NaOHとKOHを含む水溶液を用いた。水素吸蔵合金としては、表1および表2に示す水素平衡圧(45℃)を有するものを用いた。これら以外は、実施例1と同様にしてアルカリ蓄電池を作製し、評価を行った。
Examples 2 to 9 and Comparative Examples 1 to 3
An alkaline electrolyte containing sodium ions and potassium ions at concentrations shown in Tables 1 and 2 was used. As an alkaline electrolyte containing both sodium ions and potassium ions, an aqueous solution containing NaOH and KOH was used. As the hydrogen storage alloy, those having the hydrogen equilibrium pressure (45 ° C.) shown in Tables 1 and 2 were used. Except for these, alkaline storage batteries were produced and evaluated in the same manner as in Example 1.
 実施例および比較例で用いた水素吸蔵合金の組成は以下の通りである。
(i)組成:La0.849Ce0.151Ni4.304Co0.418Mn0.240Al0.310、水素平衡圧:3.0atm(≒0.3MPa)
(ii)組成:La0.836Ce0.142Ni4.456Co0.147Mn0.252Al0.401Zr0.022
水素平衡圧:0.6atm(≒0.06MPa)
(iii)組成:La0.895Ce0.081Ni4.395Co0.146Mn0.250Al0.397Zr0.024
水素平衡圧:0.5atm(≒0.05MPa)
(iv)組成:La0.625Ce0.375Ni4.287Co0.448Mn0.099Al0.304、水素平衡圧:3.5atm(≒0.35MPa)
(v)組成:La0.672Ce0.327Ni3.632Co0.721Mn0.387Al0.315、水素平衡圧:0.2atm(≒0.02MPa)
(vi)組成:La0.622Ce0.378Ni4.226Co0.516Mn0.111Al0.290、水素平衡圧:3.6atm(≒0.36MPa)
 比較例4
 ステンレス鋼製のタブ状のリードをニッケルめっきしたものを、正極集電板9と接続する正極リード10として用いた。これ以外は、実施例1と同様にしてアルカリ蓄電池を作製し、評価を行った。
The compositions of the hydrogen storage alloys used in the examples and comparative examples are as follows.
(I) Composition: La 0.849 Ce 0.151 Ni 4.304 Co 0.418 Mn 0.240 Al 0.310 , hydrogen equilibrium pressure: 3.0 atm (≈0.3 MPa)
(Ii) Composition: La 0.836 Ce 0.142 Ni 4.456 Co 0.147 Mn 0.252 Al 0.401 Zr 0.022,
Hydrogen equilibrium pressure: 0.6 atm (≒ 0.06 MPa)
(Iii) Composition: La 0.895 Ce 0.081 Ni 4.395 Co 0.146 Mn 0.250 Al 0.397 Zr 0.024 ,
Hydrogen equilibrium pressure: 0.5atm (≒ 0.05MPa)
(Iv) Composition: La 0.625 Ce 0.375 Ni 4.287 Co 0.448 Mn 0.099 Al 0.304 , hydrogen equilibrium pressure: 3.5 atm (≈0.35 MPa)
(V) Composition: La 0.672 Ce 0.327 Ni 3.632 Co 0.721 Mn 0.387 Al 0.315 , hydrogen equilibrium pressure: 0.2 atm (≈0.02 MPa)
(Vi) Composition: La 0.622 Ce 0.378 Ni 4.226 Co 0.516 Mn 0.111 Al 0.290 , hydrogen equilibrium pressure: 3.6 atm (≈0.36 MPa)
Comparative Example 4
A stainless steel tab-shaped lead plated with nickel was used as the positive electrode lead 10 connected to the positive electrode current collector plate 9. Except for this, an alkaline storage battery was produced and evaluated in the same manner as in Example 1.
 比較例5
 正極集電板9を設けず、実施例1と同じ正極リードの一端部を正極芯材の端部3aに溶接するとともに、他端部を封口板7の底面に溶接することで、正極リードを介して正極3と封口板7とを電気的に接続させた。これ以外は、実施例1と同様にしてアルカリ蓄電池を作製し、評価を行った。
Comparative Example 5
The positive electrode current collector plate 9 is not provided, and one end portion of the same positive electrode lead as in Example 1 is welded to the end portion 3a of the positive electrode core material, and the other end portion is welded to the bottom surface of the sealing plate 7, thereby The positive electrode 3 and the sealing plate 7 were electrically connected to each other. Except for this, an alkaline storage battery was produced and evaluated in the same manner as in Example 1.
 実施例および比較例の結果を表1および表2に示す。A1~A9は、実施例1~9であり、B1~B5は、比較例1~5である。 Tables 1 and 2 show the results of Examples and Comparative Examples. A1 to A9 are Examples 1 to 9, and B1 to B5 are Comparative Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の電池では、0℃における初期の内部抵抗が低く、高い低温出力特性が得られた。また、実施例では、高温でトリクル耐久試験後の内部抵抗も低く抑えられており、高い高温耐久性が得られた。それに対し、表2に示すように、比較例では、実施例に比べて、高温耐久性が顕著に低下した。リードにより正極と封口板とを接続した比較例7では、低温出力特性が極めて低くなった。 As shown in Table 1, in the batteries of the examples, the initial internal resistance at 0 ° C. was low, and high low-temperature output characteristics were obtained. In the examples, the internal resistance after the trickle durability test was kept low at a high temperature, and a high temperature durability was obtained. On the other hand, as shown in Table 2, in the comparative example, the high temperature durability was remarkably reduced as compared with the example. In Comparative Example 7 in which the positive electrode and the sealing plate were connected by the lead, the low-temperature output characteristics were extremely low.
 低温出力特性をさらに高める観点からは、水素吸蔵合金の45℃における水素平衡圧を0.6atm以上とすることが好ましい。また、高温耐久性をさらに高めたり、高い高温充電効率を確保する観点からは、ナトリウムイオン濃度を3mol/Lを超える濃度とすることが好ましく、4mol/L以上とすることがより好ましい。また、カリウムイオン濃度を2mol/L未満(好ましくは1mol/L以下)とすることも、高温耐久性をさらに高めたり、高温充電効率を高める上では有利である。 From the viewpoint of further improving the low temperature output characteristics, the hydrogen equilibrium pressure of the hydrogen storage alloy at 45 ° C. is preferably 0.6 atm or more. Further, from the viewpoint of further enhancing the high temperature durability and ensuring high high temperature charging efficiency, the sodium ion concentration is preferably a concentration exceeding 3 mol / L, and more preferably 4 mol / L or more. It is also advantageous to make the potassium ion concentration less than 2 mol / L (preferably 1 mol / L or less) in order to further enhance the high-temperature durability or increase the high-temperature charging efficiency.
 本発明の実施形態に係るアルカリ蓄電池は、低温出力特性および高温耐久性が高いため、低温や高温に晒される用途にも利用できる。アルカリ蓄電池は、バックアップ用の補助電源、非常電源、火災報知機の予備電源、非常放送用の電源などに使用したりするのに適している。また、アルカリ蓄電池は、各種電子機器、輸送機器、蓄電機器などの電源に使用することもできる。 Since the alkaline storage battery according to the embodiment of the present invention has high low-temperature output characteristics and high-temperature durability, it can be used for applications exposed to low and high temperatures. The alkaline storage battery is suitable for use as an auxiliary power source for backup, an emergency power source, a standby power source for a fire alarm, a power source for emergency broadcasting, and the like. The alkaline storage battery can also be used as a power source for various electronic devices, transportation devices, power storage devices, and the like.
1 :電池ケース
2 :電極群
3 :正極
3a:正極芯材の端部
4 :負極
4a:負極芯材の端部
5 :セパレータ
6 :絶縁ガスケット
7 :封口板
8 :負極集電板
9 :正極集電板
10:正極リード
DESCRIPTION OF SYMBOLS 1: Battery case 2: Electrode group 3: Positive electrode 3a: End part 4 of positive electrode core material: Negative electrode 4a: End part of negative electrode core material 5: Separator 6: Insulating gasket 7: Sealing plate 8: Negative electrode collector plate 9: Positive electrode Current collector plate 10: positive electrode lead

Claims (6)

  1.  開口部を有する有底の電池ケースと、
     前記電池ケース内に収容された、電極群、前記電極群と電気的に接続した正極集電板、ならびにアルカリ電解液と、
     前記開口部を封口し、かつ前記正極集電板と電気的に接続した封口板とを備え、
     前記電極群は、正極、負極、および前記正極と前記負極との間に介在するセパレータを備え、
     前記正極は、正極芯材と前記正極芯材に担持された正極活物質とを備え、
     前記正極集電板は、前記正極芯材の端部に接続しているとともに、リードを介して前記封口板に接続しており、
     前記正極集電板は、鉄または鉄合金で形成されたプレートと、前記プレートを被覆し、かつニッケルを含むめっき被膜とを備え、
     前記リードは、ニッケル金属で構成され、
     前記負極は、負極芯材と前記負極芯材に担持された負極活物質とを備え、
     前記負極活物質は、45℃での水素平衡圧が0.5atm以上3.5atm以下の水素吸蔵合金を含み、
     前記アルカリ電解液は、少なくともNaOHを含み、
     前記アルカリ電解液中、アルカリの濃度は、6.5mol/L以下であり、ナトリウムイオン濃度は、3mol/L以上である、アルカリ蓄電池。
    A bottomed battery case having an opening;
    Housed in the battery case, an electrode group, a positive current collector electrically connected to the electrode group, and an alkaline electrolyte,
    A sealing plate that seals the opening and is electrically connected to the positive current collector;
    The electrode group includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode,
    The positive electrode includes a positive electrode core material and a positive electrode active material supported on the positive electrode core material,
    The positive current collector plate is connected to the end portion of the positive electrode core material, and is connected to the sealing plate via a lead,
    The positive electrode current collector plate includes a plate formed of iron or an iron alloy, and a plating film that covers the plate and contains nickel,
    The lead is made of nickel metal,
    The negative electrode comprises a negative electrode core material and a negative electrode active material carried on the negative electrode core material,
    The negative electrode active material includes a hydrogen storage alloy having a hydrogen equilibrium pressure at 45 ° C. of 0.5 atm to 3.5 atm,
    The alkaline electrolyte contains at least NaOH,
    The alkaline storage battery in which the alkali concentration in the alkaline electrolyte is 6.5 mol / L or less and the sodium ion concentration is 3 mol / L or more.
  2.  前記水素吸蔵合金の水素平衡圧は、0.6atm以上3.5atm以下である、請求項1に記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1, wherein the hydrogen equilibrium pressure of the hydrogen storage alloy is 0.6 atm or more and 3.5 atm or less.
  3.  前記アルカリ電解液中のカリウムイオン濃度は、1.5mol/L以下である、請求項1または2に記載のアルカリ蓄電池。 The alkaline storage battery according to claim 1 or 2, wherein a potassium ion concentration in the alkaline electrolyte is 1.5 mol / L or less.
  4.  前記アルカリ電解液中の前記ナトリウムイオン濃度は、3.5mol/L以上である、請求項1~3のいずれか1項に記載のアルカリ蓄電池。 The alkaline storage battery according to any one of claims 1 to 3, wherein the sodium ion concentration in the alkaline electrolyte is 3.5 mol / L or more.
  5.  前記アルカリ電解液中の前記アルカリの濃度は、6mol/L以下である、請求項1~4のいずれか1項に記載のアルカリ蓄電池。 The alkaline storage battery according to any one of claims 1 to 4, wherein a concentration of the alkali in the alkaline electrolyte is 6 mol / L or less.
  6.  さらに負極集電板を備え、
     前記負極集電板は、前記負極芯材の端部に接続しているとともに、前記電池ケースの内底面に接続している、請求項1~5のいずれか1項に記載のアルカリ蓄電池。
    Furthermore, a negative electrode current collector plate is provided,
    The alkaline storage battery according to any one of claims 1 to 5, wherein the negative electrode current collector plate is connected to an end portion of the negative electrode core member and to an inner bottom surface of the battery case.
PCT/JP2017/035901 2016-12-19 2017-10-03 Alkaline storage battery WO2018116574A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016245331 2016-12-19
JP2016-245331 2016-12-19
JP2017-088576 2017-04-27
JP2017088576A JP2020024784A (en) 2016-12-19 2017-04-27 Alkaline storage battery

Publications (1)

Publication Number Publication Date
WO2018116574A1 true WO2018116574A1 (en) 2018-06-28

Family

ID=62626199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035901 WO2018116574A1 (en) 2016-12-19 2017-10-03 Alkaline storage battery

Country Status (1)

Country Link
WO (1) WO2018116574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171112A1 (en) * 2019-02-22 2020-08-27 Fdk株式会社 Alkaline secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320775A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Cell and unit cell of sealed nickel-hydrogen storage battery
WO2006129778A1 (en) * 2005-05-30 2006-12-07 Gs Yuasa Corporation Lead for enclosed battery, enclosed battery using the lead, and method of producing the battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320775A (en) * 1994-05-27 1995-12-08 Matsushita Electric Ind Co Ltd Cell and unit cell of sealed nickel-hydrogen storage battery
WO2006129778A1 (en) * 2005-05-30 2006-12-07 Gs Yuasa Corporation Lead for enclosed battery, enclosed battery using the lead, and method of producing the battery
JP2010073424A (en) * 2008-09-17 2010-04-02 Gs Yuasa Corporation Nickel hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171112A1 (en) * 2019-02-22 2020-08-27 Fdk株式会社 Alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP5624323B2 (en) Rechargeable nickel-zinc battery cell and cathode
JP5257823B2 (en) Method for producing hydrogen storage electrode and method for producing nickel metal hydride battery
WO2017136545A1 (en) Rechargeable alkaline manganese dioxide-zinc bipolar batteries
JP3805876B2 (en) Nickel metal hydride battery
JP2016507871A (en) Paste-type nickel hydroxide electrodes and additives for rechargeable alkaline batteries
WO2007004703A1 (en) Nickel-hydrogen battery
US10079385B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP2015130249A (en) Positive electrode for alkali storage batteries and alkali storage battery using the same
Jindra Sealed nickel—zinc cells
CN106463786B (en) Nickel-hydrogen secondary battery
JP5557385B2 (en) Energy storage device with proton as insertion species
WO2018116574A1 (en) Alkaline storage battery
JP6153156B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP6057369B2 (en) Nickel metal hydride secondary battery
JP2020024784A (en) Alkaline storage battery
JP2014026899A (en) Nickel-hydrogen storage battery
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
WO2024070232A1 (en) Negative electrode for alkaline secondary batteries, alkaline secondary battery, and method for producing negative electrode for alkaline secondary batteries
WO2017110033A1 (en) Nickel-metal hydride storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JP5355038B2 (en) Non-sintered nickel electrode and alkaline storage battery
JP3436059B2 (en) Nickel-hydrogen storage battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP2019075291A (en) Positive electrode and alkaline secondary battery provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17882379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP