WO2018113256A1 - 光电遥感系统的扫描方法 - Google Patents

光电遥感系统的扫描方法 Download PDF

Info

Publication number
WO2018113256A1
WO2018113256A1 PCT/CN2017/091950 CN2017091950W WO2018113256A1 WO 2018113256 A1 WO2018113256 A1 WO 2018113256A1 CN 2017091950 W CN2017091950 W CN 2017091950W WO 2018113256 A1 WO2018113256 A1 WO 2018113256A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing system
remote sensing
scanning
circular
photographing device
Prior art date
Application number
PCT/CN2017/091950
Other languages
English (en)
French (fr)
Inventor
刘若鹏
栾琳
许发国
Original Assignee
东莞前沿技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞前沿技术研究院 filed Critical 东莞前沿技术研究院
Priority to EP17883688.8A priority Critical patent/EP3543788A4/en
Publication of WO2018113256A1 publication Critical patent/WO2018113256A1/zh
Priority to US16/445,292 priority patent/US11050940B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • G01C11/025Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures by scanning the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • the invention relates to a scanning method of a photoelectric remote sensing system.
  • an object of the present invention is to provide a scanning method of a photoelectric remote sensing system, which can ensure that a scanning area completely covers a target area and that pictures taken at different target points have the same spatial resolution.
  • the photoelectric remote sensing system comprising a hovering device, a pan/tilt set on the hovering device, and a photographing device disposed on the pan/tilt;
  • pan/tilt to drive the camera to switch between multiple concentric circular tracks for shooting
  • the scanning area of the device covers the entire target area, and the optical parameters of the imaging device are adjusted while switching the circular trajectory so that the spatial resolution of the pictures taken at all scanning points is the same.
  • the pan/tilt includes an orientation frame and a pitch adjustment device disposed on the orientation frame, and the camera device is disposed on the pitch adjustment device.
  • the radius of the circular trajectory is changed by changing the pitch angle of the photographing device to effect switching of the photographing device between a plurality of concentrically surrounded circular trajectories.
  • the position of the scanning point of the photographing device on each circular trajectory is changed by changing the horizontal angle of the azimuth frame.
  • the optical parameters and the pitch angle of the photographing device are adjusted according to the radius of each circular trajectory and the spatial resolution requirement of the picture, and the optical parameters and the pitch angle are kept stable during the scanning of each circular trajectory.
  • the interval of the horizontal angle between adjacent scanning points in the current circular trajectory is determined according to the demand of the size of a single picture and the amount of overlapping of adjacent pictures in the scanning process of the current circular trajectory.
  • the radius R 2 of the next circular trajectory is determined according to the radius R 1 of the current circular trajectory, the floating height H of the photographing device, and the field of view a ⁇ b of the photographing device:
  • R 2 R 1 - ⁇ R 1 ;
  • [Delta] R is a radius R of the circular path of the current difference between 1 and the next circular path of radius R 2, the amount of overlap between images captured by two adjacent scanning and set points of 20%, a The horizontal angle of view in the direction of the axis of rotation adjusted parallel to the pitch angle of the pan/tilt camera, and b represents the vertical field of view perpendicular to the horizontal field of view.
  • the optical parameters of the imaging device are adjusted based on the radius of the current circular trajectory and the field of view theory of the optical camera.
  • the optical parameters include the field of view size and focal length of the camera.
  • the next circle is determined according to the relevant mathematical relationship.
  • the positional relationship between the shape trajectory and the current circular trajectory, the mathematical relationship of the gimbal is derived as follows:
  • the shooting distance L refers to the distance between the shooting device and the shooting area along the optical axis direction; here, the instantaneous field of view captured by the shooting device is kept at any distance, and the field of view is a ⁇ b, and the shooting area corresponding to the single photo is taken.
  • the size is c ⁇ d (c, d respectively represents the circumferential width and radius width of the circular trajectory of the shooting area, in meters or kilometers):
  • the number of photographs A required to cover the circle is:
  • the invention realizes the high efficiency of scanning while reducing the hovering device suspended in the air and the shooting device running along a plurality of concentrically surrounded circular trajectories covering the entire target area.
  • the complexity of the control only after one scan is completed Adjust camera optical parameters. Since the spatial resolution of the photoelectric remote sensing system is determined by the product of the current angular resolution of the system and the target distance, when the optical parameters of the system are kept stable and scanned along the same circular trajectory, the resolution of each scanning point can be obtained. An image that exactly matches the size of the frame.
  • Figure 1 is a top plan view of a scanning area of a photoelectric remote sensing system of the present invention.
  • FIG. 2 is a side elevational view of the optoelectronic remote sensing system and scanning area of the present invention.
  • the scanning method of the photoelectric remote sensing system provided by the present invention comprises the following steps:
  • the photoelectric remote sensing system comprises a hovering device 1, a pan/tilt 2 disposed on the hovering device 1, and a photographing device 3 disposed on the pan/tilt 2; wherein the hovering device 1 is preferably For the tethered airship and the pod thereon, the pan/tilt 2 is placed on the pod.
  • the hovering device of the present invention may also be other suitable aerostats, such as helicopters and the like.
  • the camera 3 is driven by the pan/tilt 2 to scan the target area along a plurality of concentric circular tracks 4; the projection of the hovering device 1 in the area defined by the pan-tilt circular track 4 is located in a plurality of concentric circles.
  • the center position of the track 4; the camera 2 is driven by the pan/tilt 2 to switch between a plurality of concentric circular tracks 4 so that the scanning area of the camera 3 covers the entire target area, and the shooting is adjusted while switching the circular track 4
  • the optical parameters of the device 3 are such that the spatial resolution of the pictures taken at all scanning points is the same.
  • the invention adopts a hovering device 1 which is suspended in the air at rest and a photographing device 3 which runs along a plurality of concentrically surrounded circular trajectories 4, which cover the entire target area, thereby realizing efficient scanning. Sex, while reducing the complexity of the control, just adjust the camera optical parameters after a lap of scanning. Since the spatial resolution of the photoelectric remote sensing system is determined by the product of the current angular resolution of the system and the target distance, when the optical parameters of the system are kept stable and scanned along the same circular trajectory, the resolution of each scanning point can be obtained. An image that exactly matches the size of the frame.
  • the platform 2 includes an orientation frame 21 and a pitch adjustment device 22 disposed on the orientation frame 21, and the imaging device 3 is disposed on the pitch adjustment device 22.
  • the pitch adjustment device 22 and the azimuth frame 21 are driven by a motor controlled by a control signal to rotate about their respective pivots, thereby achieving continuous adjustment of the pitch angle in both the pitch and horizontal directions.
  • the radius R of the circular trajectory 4 is changed by changing the pitch angle ⁇ of the photographing device 3 to effect switching of the photographing device 3 between a plurality of concentrically surrounded circular trajectories 4.
  • the scanning point position of the photographing device 3 on each circular trajectory 4 is changed by changing the horizontal angle ⁇ of the azimuth frame 21.
  • the horizontal angle ⁇ can be understood as a setting of a starting scanning position, and the angle between the line connecting the current scanning position and the center of the circle and the line connecting the starting scanning position and the center of the circle is the horizontal angle ⁇ .
  • the radius R may be any one of the radii R 0 , R 1 , R 2 , R i and R n shown in FIG. 1 and FIG. 2 , where R 0 represents the maximum radius of the circular trajectory 4 .
  • R n represents the minimum radius of the circular trajectory 4.
  • the pitch angle ⁇ refers to an angle between the optical axis of the imaging device 3 and the vertical direction
  • the radius R is a radius at the intersection of the optical axis of the imaging device 3 and the scanning region.
  • FIG. 2 is only intended to be a schematic representation and is not necessarily drawn to scale, and any appropriate enlargement or reduction for illustrative purposes is within the scope of the present invention.
  • the optical parameters and the tilt angle ⁇ of the photographing device 3 are adjusted according to the radius R of each circular trajectory 4 and the spatial resolution requirement of the picture, and the optical parameters are maintained during the scanning of each circular trajectory 4
  • the pitch angle ⁇ is stable.
  • the photographing device 3 has an amount of overlap between the photographed pictures of the adjacent two scanning points 31.
  • each scanning point 31 is a size of a region to be scanned covered by a photographing device 31, and in some cases, for convenience of presentation, the scanning point 31 is treated as a point.
  • the amount of overlap is 20%. It should be understood that other suitable amounts of overlap may be set as needed for the actual stitching of the picture.
  • the overlap amount refers to the ratio of the area of the same area in the area to be scanned covered by two adjacent pictures to the total area of the area covered by each picture.
  • the interval of the horizontal angle ⁇ between adjacent scanning points in the current circular trajectory is determined according to the demand of the size of a single picture and the amount of overlapping of adjacent pictures in the scanning process of the current circular trajectory 4.
  • the floating height H of the photographing device 3, and the field of view a ⁇ b of the photographing device 3 (a, b represents the angle of view angle, the unit is the angle °, and a represents the level
  • the field of view angle, b represents the vertical field of view angle
  • the horizontal field of view angle and the vertical field of view angle are a pair of mutually perpendicular two field of view angles.
  • the horizontal field of view angle a is perpendicular to the paper surface.
  • the field of view angle in the direction that is, the angle of view of the direction of the rotation axis parallel to the pitch angle adjustment of the camera 3
  • the vertical field of view angle refers to the angle of view in the direction in the plane of the paper, that is, perpendicular to the horizontal field of view.
  • the angle of view determines the radius R 2 of the next circular trajectory:
  • [Delta] R 1 is a difference between the current circular path with a radius R 4 of the next circular path of radius R 4 is 2, the amount of overlap between images captured by two adjacent and set the scanning spot 31 20%.
  • the optical parameters of the imaging device 3 are adjusted in accordance with the radius of the current circular trajectory 4 and the field of view theory of the optical camera.
  • the optical parameters include the field of view size and focal length of the camera 3, wherein the field of view is adjusted by adjusting the size of the field of view.
  • the scanning method of the photoelectric remote sensing system of the present invention is exemplarily:
  • the shooting distance L refers to the distance between the shooting device (the shooting device can be assumed to be a point) along the optical axis direction and the shooting region; here, the instantaneous field of view captured by the camera is kept at any distance, and the field of view is a ⁇ b, the size of the shooting area corresponding to a single photo is c ⁇ d (c, d respectively represents the circumferential width and the radial width of the circular trajectory of the shooting area, in meters or kilometers):
  • the overlapping area is preferably 20%.
  • the number of photos A required to cover the circle is:
  • the total number of shots taken at this time is:
  • the correlation algorithm is used to determine the rotation speed and the position of the stop point and complete the automatic control. After completing a circle of scanning, the parameters such as the new target distance and optical focal length are determined according to the relevant algorithm, and the shooting attitude of the photoelectric remote sensing system is adjusted. Until the entire target area is scanned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

一种光电遥感系统的扫描方法,包括如下步骤:S10,提供悬浮在空中的光电遥感系统,光电遥感系统包括悬停装置(1)、设置在悬停装置(1)上的云台(2)以及设置在云台(2)上的拍摄装置(3);S20,通过云台(2)带动拍摄装置(3)沿多个同心环绕的圆形轨迹(4)扫描目标区域;并通过云台(2)带动拍摄装置(3)在多个同心环绕的圆形轨迹(4)间切换,以使拍摄装置(3)的扫描区域覆盖整个目标区域,在切换圆形轨迹(4)的同时调整拍摄装置(3)的光学参数以使在所有扫描点拍摄的图片的空间分辨率相同。该方法能够保证扫描区域完全覆盖目标区域并使在不同目标点拍摄的图片有相同的空间分辨率。

Description

光电遥感系统的扫描方法 技术领域
本发明涉及一种光电遥感系统的扫描方法。
背景技术
在现今的机载光电吊舱等的应用中,主要是利用载体的机动实时对正下方垂直区域的拍摄,尚未涉及吊舱在空中静止悬浮状态下对地面大范围的区域进行扫描观测。现阶段常用扫描方式是以矩形轨迹进行扫描。该方法由于每一相邻位置相对于吊舱的距离都在不断变化中。因此,扫描过程中需要同时控制角度和镜头焦距等参数,来确保相邻点拍摄到的照片分辨率等参数吻合。因而该方案控制难度大,控制精度要求高,容易产生误差等,不利于后续图像拼接等处理。
因此,本领域亟需一种技术,一方面要提高扫描的精度,保证对区域的完全覆盖,并保证不同目标点拍摄的图片有相同的空间分辨率,便于后期处理;另一方面要尽量减少扫描需要的时间。
发明内容
针对相关技术中存在的问题,本发明的目的在于提供一种光电遥感系统的扫描方法,该方法能够保证扫描区域完全覆盖目标区域并使在不同目标点拍摄的图片有相同的空间分辨率。
本发明提供一种光电遥感系统的扫描方法,包括如下步骤:
S10,提供悬浮在空中的光电遥感系统,光电遥感系统包括悬停装置、设置在悬停装置上的云台以及设置在云台上的拍摄装置;
S20,通过云台带动拍摄装置沿多个同心环绕的圆形轨迹扫描目标区域;并
通过云台带动拍摄装置在多个同心环绕的圆形轨迹间切换,以使拍摄 装置的扫描区域覆盖整个目标区域,在切换圆形轨迹的同时调整拍摄装置的光学参数以使在所有扫描点拍摄的图片的空间分辨率相同。
根据本发明,云台包括方位框架和设置在方位框架上的俯仰调节装置,拍摄装置设置在俯仰调节装置上。
根据本发明,通过改变拍摄装置的俯仰角度来改变圆形轨迹的半径以实现拍摄装置在多个同心环绕的圆形轨迹间的切换。
根据本发明,通过改变方位框架的水平角来改变拍摄装置在每个圆形轨迹上的扫描点位置。
根据本发明,根据每个圆形轨迹的半径和图片的空间分辨率需求,调节拍摄装置的光学参数和俯仰角度,并在每个圆形轨迹的扫描过程中保持光学参数和俯仰角度稳定。
根据本发明,在同一圆形轨迹中,拍摄装置在相邻的两个扫描点的拍摄的图片之间具有重叠量。
根据本发明,根据在当前圆形轨迹的扫描过程中单幅图片的大小和相邻图片的重叠量的需求,确定在当前圆形轨迹中相邻扫描点之间的水平角的间隔。
根据本发明,根据当前圆形轨迹的半径R1、拍摄装置的浮空高度H和拍摄装置的视场a×b,确定下一个圆形轨迹的半径R2:
R2=R1-ΔR1
Figure PCTCN2017091950-appb-000001
其中,ΔR1为当前圆形轨迹的半径R1与下一个圆形轨迹半径R2的差值,并设定相邻的两个扫描点的拍摄的图片之间的重叠量为20%,a为平行于云台拍摄装置的俯仰角调整的旋转轴方向的水平视场角、b表示垂直于水平视场角的垂直视场角。
根据本发明,根据当前圆形轨迹的半径及光学相机的视场理论,调整拍摄装置的光学参数。
根据本发明,光学参数包括拍摄装置的视场大小和焦距。
根据本发明,当完成一圈扫描后,根据相关数学关系,确定下一个圆 形轨迹与当前圆形轨迹的位置关系,云台相关数学关系推导如下:
地面距离为R处的目标的拍摄距离
Figure PCTCN2017091950-appb-000002
拍摄距离L是指拍摄装置沿其光轴方向与拍摄区域的距离;此处保持任何距离拍摄装置拍摄的瞬时视场不变,设视场为a×b,则单幅照片所对应的拍摄区域的大小为c×d(c,d分别表示该拍摄区域的圆形轨迹的圆周方向宽度及半径方向宽度,单位为米或者千米):
c=L×πa/180;
d=L×πb/180。
根据本发明,在同一半径为R的圆形轨迹上,考虑相邻M%的重叠面积,则覆盖该圈需要的照片数A为:
Figure PCTCN2017091950-appb-000003
Figure PCTCN2017091950-appb-000004
根据本发明,设两相邻圆形轨迹的半径分别为R1和R2,两圆形轨迹的间距为ΔR1,则:
Figure PCTCN2017091950-appb-000005
Figure PCTCN2017091950-appb-000006
依此类推,当
Figure PCTCN2017091950-appb-000007
时,表示完成了对全部目标区域的扫描拍摄,此时拍摄的总张数为:
Figure PCTCN2017091950-appb-000008
设拍摄一张照片耗时为t0,则完成拍照的总时间为:
t=Nt0
本发明的有益技术效果在于:
本发明通过静止悬浮在空中的悬停装置以及沿多个同心环绕的圆形轨迹运行的拍摄装置,该多个同心环绕的圆形轨迹覆盖整个目标区域,从而实现了扫描的高效性,同时降低了控制的复杂性,只需在一圈扫描完成后 调整相机光学参数。由于光电遥感系统的空间分辨率由系统的当前角分辨率和目标距离的乘积决定,当保持系统的光学参数稳定的情况下,沿着同一圆形轨迹进行扫描,则可以得到各扫描点分辨率和图幅大小等指标完全一致的图像。
附图说明
图1是本发明的光电遥感系统的扫描区域的俯视示意图。
图2是本发明的光电遥感系统与扫描区域的侧视示意图。
具体实施方式
参考图1和图2,本发明提供的光电遥感系统的扫描方法,包括如下步骤:
S10,提供悬浮在空中的光电遥感系统,光电遥感系统包括悬停装置1、设置在悬停装置1上的云台2以及设置在云台2上的拍摄装置3;其中,悬停装置1优选为系留飞艇及其上的吊舱,云台2设置在该吊舱上。应当理解,本发明的悬停装置还可以是其他合适的浮空器,如直升飞机等。
S20,通过云台2带动拍摄装置3沿多个同心环绕的圆形轨迹4扫描目标区域;悬停装置1在云台圆形轨迹4所限定的区域内的投影位于多个同心环绕的圆形轨迹4的圆心位置;通过云台2带动拍摄装置3在多个同心环绕的圆形轨迹4间切换,以使拍摄装置3的扫描区域覆盖整个目标区域,在切换圆形轨迹4的同时调整拍摄装置3的光学参数以使在所有扫描点拍摄的图片的空间分辨率相同。
本发明通过静止悬浮在空中的悬停装置1以及沿多个同心环绕的圆形轨迹4运行的拍摄装置3,该多个同心环绕的圆形轨迹4覆盖整个目标区域,从而实现了扫描的高效性,同时降低了控制的复杂性,只需在一圈扫描完成后调整相机光学参数。由于光电遥感系统的空间分辨率由系统的当前角分辨率和目标距离的乘积决定,当保持系统的光学参数稳定的情况下,沿着同一圆形轨迹进行扫描,则可以得到各扫描点分辨率和图幅大小等指标完全一致的图像。
参照图2,云台2包括方位框架21和设置在方位框架21上的俯仰调节装置22,拍摄装置3设置在俯仰调节装置22上。俯仰调节装置22和方位框架21通过由控制信号控制的电机驱动以绕其各自的枢轴旋转,从而实现俯仰角度在俯仰和水平两个方向的连续调节。通过改变拍摄装置3的俯仰角度α来改变圆形轨迹4的半径R以实现拍摄装置3在多个同心环绕的圆形轨迹4间的切换。通过改变方位框架21的水平角β来改变拍摄装置3在每个圆形轨迹4上的扫描点位置。水平角β可以理解为,设定一个起始扫描位置,那么当前扫描位置和圆心的连线与起始扫描位置与圆心的连线之间的夹角即为水平角β。需要说明的是,半径R可以是图1和图2中示出的半径R0、R1、R2、Ri和Rn中的任一者,其中R0表示圆形轨迹4的最大半径,Rn表示圆形轨迹4的最小半径。本实施例中,俯仰角度α是指拍摄装置3的光轴与竖直方向的夹角,半径R是拍摄装置3的光轴与扫描区域的交点处的半径。图2仅起示意作用,未必按实际比例来进行绘制,出于示意目的的适当放大或缩小均在本发明的保护范围之内。
参照图2,根据每个圆形轨迹4的半径R和图片的空间分辨率需求,调节拍摄装置3的光学参数和俯仰角度α,并在每个圆形轨迹4的扫描过程中保持光学参数和俯仰角度α稳定。
根据本发明,拍摄装置3在相邻的两个扫描点31的拍摄的图片之间具有重叠量。请参见图1,每个扫描点31为拍摄装置31拍摄一张图片所覆盖的待扫描区域的大小,在一些情况下,为表述方便,会将扫描点31作为点来处理。优选地,该重叠量为20%。应当理解,根据实际拼接图片的需要,还可以设置其他合适的重叠量。重叠量是指相邻两张图片所覆盖的待扫描区域中相同的区域的面积占每张图片所覆盖区域的总面积的比例。
根据本发明,根据在当前圆形轨迹4的扫描过程中单幅图片的大小和相邻图片的重叠量的需求,确定在当前圆形轨迹中相邻扫描点之间的水平角β的间隔。
参照图2,根据当前圆形轨迹的半径R1、拍摄装置3的浮空高度H和拍摄装置3的视场a×b(a,b表示视场角大小,单位为角度°,a表示水平视场角,b表示垂直视场角,水平视场角与垂直视场角是一对相互垂直的 两个视场角,例如在图2中,水平视场角a是指垂直于纸面的方向上视场角,即平行于拍摄装置3俯仰角调整的旋转轴方向的视场角,垂直视场角是指在纸面内的方向上的视场角,即垂直于水平视场角的视场角),确定下一个圆形轨迹的半径R2:
R2=R1-ΔR1
Figure PCTCN2017091950-appb-000009
其中,ΔR1为当前圆形轨迹4的半径R1与下一个圆形轨迹4的半径R2的差值,并设定相邻的两个扫描点的拍摄的图片31之间的重叠量为20%。
根据本发明,根据当前圆形轨迹4的半径及光学相机的视场理论,调整拍摄装置3的光学参数。光学参数包括拍摄装置3的视场大小和焦距,其中通过调整视场角的大小来调整视场大小。
具体而言,在一个实施例中,本发明的光电遥感系统的扫描方法示例性地为:
1)根据待扫描目标区域的最大半径和图片的空间分辨率需求,调节拍摄装置的光学参数和拍摄装置的俯仰角度α,并保持稳定。并标记当前的水平角为扫描的起点;
2)根据当前圆形轨迹中单幅照片的大小和相邻照片重叠量的需求,确定在当前圆形轨迹中相邻点间的水平角的间隔,并根据云台的水平角转动角速度,确定转动时间。并根据每一点拍照停留的时间,设置好云台自动控制的相关参数;
3)当完成一圈扫描后,根据相关数学关系,确定下一个圆形轨迹与当前圆形轨迹的位置关系。数学关系推导如下:
设拍摄装置的浮空高度为H,地面距离为R处的目标的拍摄距离
Figure PCTCN2017091950-appb-000010
拍摄距离L是指拍摄装置(此时拍摄装置可假想为一个点)沿其光轴方向与拍摄区域的距离;此处保持任何距离拍摄装置拍摄的瞬时视场不变,设视场为a×b,则单幅照片所对应的拍摄区域的大小为c×d(c,d分别表示该拍摄区域的圆形轨迹的圆周方向宽度及半径方向宽度,单位为米或者千米):
c=L×πa/180;    (2)
d=L×πb/180;    (3)
在同一R处,即半径为R的圆形轨迹上,考虑相邻M%的重叠面积,重叠面积优选为20%。则覆盖该圈需要的照片数A为:
Figure PCTCN2017091950-appb-000011
当重叠面积为20%时,
Figure PCTCN2017091950-appb-000012
由(4)可知,在H和a不变时,单圈照片数A只与R相关。公式(4)里存在一个假设,即相邻两张照片的水平角由于很小,所以这个圆对应于照片部分的圆弧是当作线段来看的。
同时,设两相邻圆形轨迹的半径分别为R1和R2,两圆形轨迹的间距为ΔR1,则:
Figure PCTCN2017091950-appb-000013
当重叠面积为20%时,
Figure PCTCN2017091950-appb-000014
Figure PCTCN2017091950-appb-000015
依此类推,当
Figure PCTCN2017091950-appb-000016
时,表示完成了对全部目标区域的扫描拍摄。此时拍摄的总张数为:
Figure PCTCN2017091950-appb-000017
设拍摄一张照片耗时为t0,则完成拍照的总时间为:
t=Nt0;    (9)
确定云台的俯仰角度和拍摄装置的光学参数的调节量,完成拍摄姿态的调整,其中d1和d2分别为半径为R1和R2圆形轨迹的每幅照片对应的拍摄区域的半径方向宽度,Ai为第i个圆形轨迹的照片张数;
4)重复步骤1~3,直到完成整个目标区域的扫描。
根据3)中的数学式推导过程,确定相邻的R的变化量,以及对应任意R的实际拍摄距离L。同时根据光学相机FOV(视场)理论,在拍摄距 离和相机靶面确定的情况下,其视场大小与焦距成线性反比。根据实际需求,若需保持相幅大小一致(式中的c、d值不变),则视场角大小(a、b)需随R变化而调整,则相机焦距等光学参数亦需同步调节。通过编程来完成云台角度控制和相机光学参数的精确自动控制调节。根据估算,在悬空1km,常规的航空级相机完成半径10km的区域的扫描耗时约13分钟,能够有效的完成区域扫描。
根据光电遥感系统的当前光学参数和目标距离,利用相关算法确定云台的转动速率和停留点位置并完成自动控制。当完成一圈的扫描后,根据相关算法确定新的目标距离和光学焦距等参数,调整光电遥感系统拍摄姿态。直到完成整个目标区域的扫描。
本发明的光电遥感系统的扫描方法,相比与现有扫描方式,可以提供较高效的区域扫描的工作模式,使系统能够在尽量短的时间内实现对地面较大区域范围内的自动扫描监测,获取全域图像信息。并在减少自动控制难度的情况下保持较高的扫描精度。
本发明结合了相机拍摄的固有性质,设计了径向圆环扫描的方式,是一种更新颖的思路。后续的控制部分和图像处理等部分在新的思路下都能开发出新的实用的方法来实现。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种光电遥感系统的扫描方法,其特征在于,包括如下步骤:
    S10,提供悬浮在空中的光电遥感系统,所述光电遥感系统包括悬停装置、设置在所述悬停装置上的云台以及设置在所述云台上的拍摄装置;
    S20,通过所述云台带动所述拍摄装置沿多个同心环绕的圆形轨迹扫描目标区域,并通过所述云台带动所述拍摄装置在所述多个同心环绕的圆形轨迹间切换,以使所述拍摄装置的扫描区域覆盖整个目标区域,在切换所述圆形轨迹的同时调整所述拍摄装置的光学参数以使在所有扫描点拍摄的图片的空间分辨率相同。
  2. 根据权利要求1所述的光电遥感系统的扫描方法,其特征在于,所述云台包括方位框架和设置在所述方位框架上的俯仰调节装置,所述拍摄装置设置在所述俯仰调节装置上。
  3. 根据权利要求2所述的光电遥感系统的扫描方法,其特征在于,通过改变所述拍摄装置的俯仰角度来改变所述圆形轨迹的半径以实现所述拍摄装置在所述多个同心环绕的圆形轨迹间的切换。
  4. 根据权利要求2所述的光电遥感系统的扫描方法,其特征在于,通过改变所述方位框架的水平角来改变所述拍摄装置在每个圆形轨迹上的扫描点位置。
  5. 根据权利要求3所述的光电遥感系统的扫描方法,其特征在于,根据每个所述圆形轨迹的半径和所述图片的空间分辨率需求,调节所述拍摄装置的光学参数和所述俯仰角度,并在每个所述圆形轨迹的扫描过程中保持所述光学参数和所述俯仰角度稳定。
  6. 根据权利要求1所述的光电遥感系统的扫描方法,其特征在于,在同一圆形轨迹中,所述拍摄装置在相邻的两个所述扫描点的拍摄的图片之间具有重叠量。
  7. 根据权利要求6所述的光电遥感系统的扫描方法,其特征在于,根据在当前所述圆形轨迹的扫描过程中单幅所述图片的大小和相邻所述图片的重叠量的需求,确定在当前所述圆形轨迹中相邻所述扫描点之间的水平 角的间隔。
  8. 根据权利要求1所述的光电遥感系统的扫描方法,其特征在于,根据当前所述圆形轨迹的半径R1、所述拍摄装置的浮空高度H和所述拍摄装置的视场a×b,确定下一个所述圆形轨迹的半径R2:
    R2=R1-ΔR1
    Figure PCTCN2017091950-appb-100001
    其中,ΔR1为当前所述圆形轨迹的半径R1与下一个所述圆形轨迹半径R2的差值,并设定相邻的两个所述扫描点的拍摄的图片之间的重叠量为20%,a为平行于所述拍摄装置的俯仰角调整的旋转轴方向的水平视场角、b表示垂直于水平视场角的垂直视场角。
  9. 根据权利要求1所述的光电遥感系统的扫描方法,其特征在于,根据当前所述圆形轨迹的半径及光学相机的视场理论,调整所述拍摄装置的光学参数。
  10. 根据权利要求1所述的光电遥感系统的扫描方法,其特征在于,所述光学参数包括所述拍摄装置的视场大小和焦距。
  11. 根据权利要求8所述的光电遥感系统的扫描方法,其特征在于,
    当完成一圈扫描后,根据相关数学关系,确定下一个圆形轨迹与当前圆形轨迹的位置关系,所述相关数学关系推导如下:
    地面距离为R处的目标的拍摄距离
    Figure PCTCN2017091950-appb-100002
    拍摄距离L是指拍摄装置沿其光轴方向与拍摄区域的距离;此处保持任何距离拍摄装置拍摄的瞬时视场不变,设视场为a×b,则单幅照片所对应的拍摄区域的大小为c×d(c,d分别表示该拍摄区域的圆形轨迹的圆周方向宽度及半径方向宽度,单位为米或者千米):
    c=L×πa/180;
    d=L×πb/180。
  12. 根据权利要求8所述的光电遥感系统的扫描方法,其特征在于,
    在同一半径为R的圆形轨迹上,考虑相邻M%的重叠面积,则覆盖该 圈需要的照片数A为:
    Figure PCTCN2017091950-appb-100003
  13. 根据权利要求11所述的光电遥感系统的扫描方法,其特征在于,设两相邻圆形轨迹的半径分别为R1和R2,两圆形轨迹的间距为ΔR1,则:
    Figure PCTCN2017091950-appb-100004
    依此类推,当
    Figure PCTCN2017091950-appb-100005
    时,表示完成了对全部目标区域的扫描拍摄,此时拍摄的总张数为:
    Figure PCTCN2017091950-appb-100006
    设拍摄一张照片耗时为t0,则完成拍照的总时间为:
    t=Nt0
PCT/CN2017/091950 2016-12-19 2017-07-06 光电遥感系统的扫描方法 WO2018113256A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17883688.8A EP3543788A4 (en) 2016-12-19 2017-07-06 SCANING METHOD OF A SYSTEM FOR PHOTOELECTRIC REMOTE MEASUREMENT
US16/445,292 US11050940B2 (en) 2016-12-19 2019-06-19 Scanning method of photoelectric remote sensing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611178556.5A CN108205235B (zh) 2016-12-19 2016-12-19 光电遥感系统的扫描方法
CN201611178556.5 2016-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/445,292 Continuation US11050940B2 (en) 2016-12-19 2019-06-19 Scanning method of photoelectric remote sensing system

Publications (1)

Publication Number Publication Date
WO2018113256A1 true WO2018113256A1 (zh) 2018-06-28

Family

ID=62602433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091950 WO2018113256A1 (zh) 2016-12-19 2017-07-06 光电遥感系统的扫描方法

Country Status (4)

Country Link
US (1) US11050940B2 (zh)
EP (1) EP3543788A4 (zh)
CN (1) CN108205235B (zh)
WO (1) WO2018113256A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107169412B (zh) * 2017-04-09 2021-06-22 北方工业大学 基于混合模型决策的遥感图像靠港船只检测方法
CN110296687B (zh) * 2019-06-10 2021-03-16 东南大学 一种基于定点视频监控中预置点最优布设的目标定位方法
CN112154391A (zh) * 2019-07-31 2020-12-29 深圳市大疆创新科技有限公司 确定环绕航线的方法、航拍方法、终端、无人飞行器及系统
JP2022155056A (ja) * 2021-03-30 2022-10-13 キヤノン株式会社 撮像装置、撮像装置の制御方法、およびプログラム
CN113252008B (zh) * 2021-04-17 2022-09-20 应急管理部国家自然灾害防治研究院 一种航空遥感窄视场相机拍摄控制方法
CN113654526B (zh) * 2021-07-30 2023-11-14 北京控制与电子技术研究所 一种低空快速飞行条件下的光电吊舱扫描方法
CN114739361B (zh) * 2022-02-25 2023-06-13 中国科学院空天信息创新研究院 对地观测方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455425A (zh) * 2010-10-20 2012-05-16 银河港(北京)技术有限公司 一种全视景光电雷达及利用地面目标图像定位的扫描方法
CN102568034A (zh) * 2011-12-30 2012-07-11 中国科学院长春光学精密机械与物理研究所 空间光学遥感器对实际地物成像的计算机仿真系统
CN103345737A (zh) * 2013-06-04 2013-10-09 北京航空航天大学 一种基于误差补偿的uav高分辨率影像几何校正方法
CN103776426A (zh) * 2014-01-03 2014-05-07 北京农业信息技术研究中心 一种旋转平台农田成像几何校正方法
US20140362177A1 (en) * 2012-01-13 2014-12-11 Logos Technologies Llc Method and device for controlling a motion-compensating mirror for a rotating camera
CN205067960U (zh) * 2015-10-09 2016-03-02 合肥艾图瑞信息科技有限公司 一种能实现螺旋全景成像技术的单红外相机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130705A (en) * 1998-07-10 2000-10-10 Recon/Optical, Inc. Autonomous electro-optical framing camera system with constant ground resolution, unmanned airborne vehicle therefor, and methods of use
WO2006044844A2 (en) * 2004-10-18 2006-04-27 Mark Segal Method and apparatus for creating aerial panoramic photography
US8018489B2 (en) * 2005-02-04 2011-09-13 Mccutchen David Surveillance system
CN103446426A (zh) * 2013-01-14 2013-12-18 贾晋科 一种降血压、降血脂的中药泡茶
CN105208260B (zh) * 2014-06-17 2019-03-01 科友国际有限公司 多功能全景云台、摄像系统及摄像定位方法
CN106199560A (zh) * 2016-07-08 2016-12-07 车国锋 一种扫描式光电雷达
CN106249221A (zh) * 2016-07-08 2016-12-21 车国锋 扫描式光电雷达的图像获取方法和扫描式光电雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102455425A (zh) * 2010-10-20 2012-05-16 银河港(北京)技术有限公司 一种全视景光电雷达及利用地面目标图像定位的扫描方法
CN102568034A (zh) * 2011-12-30 2012-07-11 中国科学院长春光学精密机械与物理研究所 空间光学遥感器对实际地物成像的计算机仿真系统
US20140362177A1 (en) * 2012-01-13 2014-12-11 Logos Technologies Llc Method and device for controlling a motion-compensating mirror for a rotating camera
CN103345737A (zh) * 2013-06-04 2013-10-09 北京航空航天大学 一种基于误差补偿的uav高分辨率影像几何校正方法
CN103776426A (zh) * 2014-01-03 2014-05-07 北京农业信息技术研究中心 一种旋转平台农田成像几何校正方法
CN205067960U (zh) * 2015-10-09 2016-03-02 合肥艾图瑞信息科技有限公司 一种能实现螺旋全景成像技术的单红外相机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543788A4 *

Also Published As

Publication number Publication date
US11050940B2 (en) 2021-06-29
CN108205235A (zh) 2018-06-26
EP3543788A4 (en) 2020-07-29
CN108205235B (zh) 2020-09-08
EP3543788A1 (en) 2019-09-25
US20190313032A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018113256A1 (zh) 光电遥感系统的扫描方法
CN108614273B (zh) 一种机载双波段光电广域侦察与跟踪装置及方法
JP6658532B2 (ja) 制御装置、制御方法および飛行体デバイス
CN109739239B (zh) 一种用于巡检机器人的不间断仪表识别的规划方法
CN105744163B (zh) 一种基于深度信息跟踪对焦的摄像机及摄像方法
JP6122591B2 (ja) 写真測量用カメラ及び航空写真装置
CN103149788A (zh) 空中360°全景照片拍摄装置及方法
US10133929B2 (en) Positioning method and positioning device for unmanned aerial vehicle
JP5748561B2 (ja) 航空写真撮像方法及び航空写真撮像装置
CN106403900B (zh) 飞行物追踪定位系统及方法
CN109415126B (zh) 用于改进的移动平台成像的系统和方法
WO2017185309A1 (en) System and method for obtaining spherical panorama image
CN109655065A (zh) 一种无人机五航线规划方法及装置
JP2018160228A (ja) 経路生成装置、経路制御システム、及び経路生成方法
CN106871787A (zh) 大空间线扫描成像三维测量方法
CN106441278A (zh) 一种无人机室内定位系统及方法
CN102495522A (zh) 基于无人直升机航拍的360°空中全景互动漫游系统的制作方法
SG177909A1 (en) Airborne photogrammetric imaging system and method
CN203204299U (zh) 空中360°全景照片拍摄装置
WO2021031159A1 (zh) 比赛拍摄方法、电子设备、无人机与存储介质
JP6957304B2 (ja) 架線撮影システム及び架線撮影方法
JP2018084528A (ja) 航空写真測量装置及び航空写真測量方法
CN107144264A (zh) 一种用于固定翼无人机采集高清路面图像的航空摄影方法
WO2019183789A1 (zh) 无人机的控制方法、装置和无人机
CN110351483B (zh) 一种多镜头自适应变焦无人机监控平台的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883688

Country of ref document: EP

Effective date: 20190620