WO2018113227A1 - 一种煤层气井电脉冲解堵增渗方法 - Google Patents

一种煤层气井电脉冲解堵增渗方法 Download PDF

Info

Publication number
WO2018113227A1
WO2018113227A1 PCT/CN2017/089966 CN2017089966W WO2018113227A1 WO 2018113227 A1 WO2018113227 A1 WO 2018113227A1 CN 2017089966 W CN2017089966 W CN 2017089966W WO 2018113227 A1 WO2018113227 A1 WO 2018113227A1
Authority
WO
WIPO (PCT)
Prior art keywords
wellbore
positive electrode
negative electrode
coal bed
coalbed
Prior art date
Application number
PCT/CN2017/089966
Other languages
English (en)
French (fr)
Inventor
林柏泉
王一涵
闫发志
张祥良
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2017344366A priority Critical patent/AU2017344366A1/en
Priority to RU2018137016A priority patent/RU2686742C1/ru
Priority to US15/767,141 priority patent/US20200240245A1/en
Publication of WO2018113227A1 publication Critical patent/WO2018113227A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B28/00Vibration generating arrangements for boreholes or wells, e.g. for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the invention relates to an electric pulse deblocking and infiltration method, in particular to an electric pulse deblocking and infiltration method suitable for a low gas permeability coal bed gas well.
  • Coalbed methane has great potential for development as a clean energy source.
  • most of China's coal seams are characterized by low gas permeability, such as poor permeability of coal seams, low mining rate and high mining cost, which seriously restrict the development and utilization of coalbed methane in China.
  • hydraulic fracturing is currently the most commonly used technical means in coalbed methane mining.
  • the conventional hydraulic fracturing technology has a small number of cracks formed in the coal seam, and the crack extension range is small, and the overall fracturing effect is not good, eventually resulting in a low production of the coalbed methane well.
  • the cracks in the coal seam will gradually close or be blocked by particulate impurities, resulting in further reduction of the extraction efficiency of the coalbed methane well.
  • the patent publication number is CN104061014A, and the name is “a high-power electric detonation-assisted hydraulic fracturing stimulation method for coalbed methane wells”.
  • the high-voltage pulse power supply supplies power to the discharge electrode, which breaks down the water medium and forms a shock wave in the water to act on the surrounding.
  • the effective cracking range of the method is small.
  • the pulse-punching technology of the pulsed coal seam is characterized by high pulse voltage, high risk, high energy consumption of shock wave, small cracking range and low efficiency.
  • the object of the present invention is to overcome the deficiencies in the prior art, and to provide a method for simplifying the plugging and osmosis of a coal bed gas well with a simple method, capable of releasing coal seam clogging, low energy consumption, and high efficiency.
  • the method for removing and osmosis of an electric pulse in a coalbed methane well of the present invention is as follows:
  • the positive electrode coalbed methane wellbore and the negative electrode coalbed methane wellbore are respectively constructed from the ground to the coal seam, and then hydraulic fracturing is performed in the positive electrode coalbed methane wellbore and the negative electrode coalbed methane wellbore according to conventional techniques, after the hydraulic fracturing is completed, Positive electrode coalbed methane wellbore and negative electrode coalbed methane wellbore for CBM extraction;
  • a conductive ion solution pumping station is placed near the positive electrode CBM wellbore and will be connected
  • the conductive ion solution delivery tube on the conductive ion solution pumping station is placed in the positive electrode coalbed gas wellbore, and the high-voltage conductive ion solution is injected into the positive electrode coalbed gas wellbore through the conductive ion solution pumping station, and the conductive is detected in the negative electrode coalbed methane wellbore
  • the injection of the high-pressure conductive ion solution into the positive electrode coalbed gas wellbore is stopped, the derrick is arranged at the two wellbore ports, and a balance bracket is arranged between the two wellbores;
  • the platform with the positive electrode and the high-voltage electric pulse generating device is lowered through the derrick to the pre-enrichment site of the coal seam in the positive electrode coalbed methane wellbore, and the platform with the negative electrode installed is lowered through the derrick to the negative electrode coalbed methane wellbore Pre-increasing part of the middle coal seam;
  • the high voltage pulse generating device Turn on the high voltage power supply and charge the high voltage pulse generating device through the cable.
  • the high voltage pulse generating device discharges to the coal seam between the positive electrode and the negative electrode, and the discharge shock wave causes the closed crack in the coal layer to be again Open and expand, at the same time, the shock wave produces shearing action on the coal pore medium, and the clay cement on the surface of the coal particles is shaken off, thereby releasing the blockage of the coal seam;
  • the high-voltage power source is turned off, and the platform of the positive electrode coalbed methane wellbore with the positive electrode and the high-voltage pulse generating device is removed from the positive electrode coalbed gas wellbore, and the platform with the negative electrode installed in the negative electrode coalbed methane wellbore is removed.
  • the negative electrode coalbed methane wellbore continues to conduct coalbed methane extraction for the positive electrode coalbed methane wellbore and the negative electrode coalbed methane wellbore;
  • the high-voltage pulse generating device has a discharge frequency of 10-60 Hz and a voltage range of 300-9000 kV.
  • the distance between the positive electrode coalbed methane wellbore and the negative electrode coalbed methane wellbore is 200-1500 m.
  • the pressure of the high-pressure conductive ion solution that can be output by the conductive ion solution pumping station ranges from 30 to 300 MPa.
  • the number of times of the discharge is 15 to 100 times.
  • the present invention is suitable for efficient mining of coalbed methane wells, and uses high-voltage electric pulse discharge to break through a coal layer in which a conductive plasma solution is injected between a positive electrode and a negative electrode, and a shock wave is applied to the coal seam through a huge energy to close the coal seam.
  • the cracks are opened and expanded again, and the cracked particles are also removed, effectively increasing the number of cracks in the coal seam and improving the crack connectivity.
  • coalbed methane extraction is carried out. When the amount of extraction decreases, a conductive plasma solution is added, and a high-voltage electric pulse discharge is used to break through the coal layer in which a conductive plasma solution is injected between the positive electrode and the negative electrode.
  • FIG. 1 is a schematic view of an electric pulse deblocking and infiltration system for a coalbed gas well of the present invention.
  • the method for electrical pulse unblocking and infiltration of a coalbed gas well of the present invention comprises the following steps:
  • the coal bed gas well electric pulse deblocking and infiltration method of the invention has the following specific steps:
  • Two coalbed methane wellbore are respectively constructed from the ground to the coal seam 1 as the positive electrode coalbed methane wellbore 2 and the negative electrode coalbed methane wellbore 3, respectively, using conventional techniques for the positive electrode coalbed methane wellbore 2 and the negative electrode coalbed methane wellbore 3 respectively.
  • the coalbed methane drainage pipeline is introduced, and the coalbed methane extraction is performed on the positive electrode coalbed methane wellbore 2 and the negative electrode coalbed methane wellbore 3;
  • the positive electrode coalbed methane wellbore 2 and the negative electrode coalbed methane wellbore 3 are arranged with a conductive ion solution pumping station 4 near the positive electrode coalbed methane wellbore 2 after the gas production is reduced.
  • the conductive ion solution delivery tube 5 connected to the conductive ion solution pumping station 4 is placed in the positive electrode coalbed gas wellbore 2, and the high-voltage conductive ion solution is injected into the positive electrode coalbed gas wellbore 2 through the conductive ion solution pumping station 4, when When the conductive ion solution is detected from the negative electrode coalbed gas wellbore 3, the injection of the high pressure conductive ion solution into the positive electrode coalbed methane well 2 is stopped, the derrick 10 is disposed at the two wellbore ports, and a balance bracket is disposed between the two wellbores.
  • the distance between the positive electrode CBM wellbore 2 and the negative electrode CBM wellbore 3 is 200-1500 m; the pressure of the high-voltage conductive ion solution outputted by the conductive ion solution pumping station is 30-300 MPa;
  • the platform 9 on which the positive electrode 6 and the high-voltage electric pulse generating device 8 are mounted is lowered by the derrick 10 to the pre-enrichment portion of the coal seam 1 in the positive electrode coalbed methane well 2, and the platform 9 on which the negative electrode 7 is mounted is passed
  • the derrick 10 is lowered to a pre-enrichment site of the coal seam 1 in the negative electrode coalbed methane well 3;
  • the high voltage pulse generating device 8 discharges to the coal seam between the positive electrode 6 and the negative electrode 7, and discharges the shock wave to the coal seam.
  • the closed crack in the middle is opened and expanded again, and the shock wave shears the coal pore medium, and the clay cement on the surface of the coal particle is shaken off, thereby releasing the blockage of the coal seam;
  • the discharge frequency of the high-voltage pulse generating device 8 is 10-60Hz, voltage range is 300-9000kV;
  • the high-voltage power supply 12 is turned off, and the platform 9 of the positive electrode coalbed methane well 2 with the positive electrode 6 and the high-voltage pulse generating device 8 is removed from the positive electrode coalbed gas wellbore 2, and the negative electrode coalbed methane wellbore
  • the platform 9 in which the negative electrode 7 is installed is removed from the negative electrode coalbed methane well 3, and the positive electrode coalbed methane well 2 and the negative electrode coalbed methane well 3 are continued. Carry out coalbed methane extraction;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种煤层气井电脉冲解堵增渗方法,适用于煤层气井高效开采,其解堵増渗方法:从地面向煤层(1)施工正电极煤层气井筒(2)和负电极煤层气井筒(3),水力压裂后随着煤层气抽采,煤层中的裂隙逐渐闭合或者被颗粒杂质堵塞导致产气量下降,此时向正电极煤层气井筒中注入导电离子溶液,使正电极煤层气井筒和负电极煤层气井筒之间煤层充满导电离子溶液,随后将正电极(6)和负电极(7)分别下放至正电极煤层气井筒和负电极煤层气井筒中煤层预增渗部位,利用高压电脉冲放电击穿正电极和负电极之间注入了导电等离子溶液的煤层,巨大的能量形成冲击波作用于煤层,使煤层中闭合的裂缝再次张开并扩展,裂缝堵塞颗粒也被剔除,有效地增加煤层内的裂缝数量并改善裂缝连通性。

Description

一种煤层气井电脉冲解堵增渗方法 技术领域
本发明涉及一种电脉冲解堵增渗方法,尤其是一种适用于低透气性煤层气井的电脉冲解堵增渗方法。
背景技术
煤层气,作为一种清洁能源具有很大的开发潜力。但是目前我国绝大多数煤层均具有低透气性的特点,存在着煤层透气性差、开采率低下、开采成本较高等问题,这些都严重制约了我国煤层气的开发利用。其中,水力压裂是目前煤层气开采中最常用的技术手段。但是,常规的水力压裂技术在煤层内形成的裂缝数量较少,且裂缝延伸范围较小,整体压裂效果不好,最终导致煤层气井产量低。同时,随着煤层气的抽采,煤层中的裂缝会逐渐闭合或者被颗粒杂质堵塞,导致煤层气井抽采效率进一步降低。
近些年来,高功率电脉冲技术得到了快速发展,国内对利用高功率电脉冲技术来实现储层增透的方法进行了一些研究。如专利公开号为CN104061014A,名称为“一种煤层气井高功率电爆震辅助水力压裂增产方法”,由高压脉冲电源给放电电极供电,将水介质击穿,在水中形成冲击波作用于周围的煤体,周围煤体中形成裂隙,但是冲击波是以球形波向周围传播,衰减速度很快,能量消耗大,效率低,该方法有效致裂范围很小。现阶段下电脉冲煤层增透増渗技术存在脉冲电压过高,危险性较高,冲击波能量消耗大,致裂范围很小,效率比较低等问题。
发明内容
技术问题:本发明的目的是克服已有技术中的不足,提供一种方法简单、能解除煤层堵塞、能量消耗小,效率高的煤层气井电脉冲解堵增渗的方法。
技术方案:本发明的煤层气井电脉冲解堵增渗方法,其步骤如下:
a、从地面向煤层分别施工正电极煤层气井筒和负电极煤层气井筒,然后按常规技术分别在正电极煤层气井筒和负电极煤层气井筒中实施水力压裂,完成水力压裂之后,对正电极煤层气井筒和负电极煤层气井筒进行煤层气抽采;
b、正电极煤层气井筒和负电极煤层气井筒在进行三个月的煤层气抽采后,当产气量下降时,在正电极煤层气井筒附近安置一个导电离子溶液泵站,并将连接在导电离子溶液泵站上的导电离子溶液输送管安置于正电极煤层气井筒中,通过导电离子溶液泵站向正电极煤层气井筒中注入高压导电离子溶液,当负电极煤层气井筒中检测到导电离子溶液时,停止向正电极煤层气井筒中注入高压导电离子溶液,在两个井筒口处设置井架,并在两个井筒之间设置平衡支架;
c、将安装有正电极和高压电脉冲发生装置的平台通过井架下放至正电极煤层气井筒中煤层的预增渗部位,并将安装有负电极的平台通过井架下放至负电极煤层气井筒中煤层的预增渗部位;
d、通过平衡支架调节正电极煤层气井筒和负电极煤层气井筒中的平台位置,分别使两个井筒中安装在平台上的正电极和负电极与井筒壁紧密接触,并使正电极和负电极在同一水平上相向安置;
e、开启高压电源,通过电缆向高压脉冲发生装置充电,当充电达到设定放电电压时,高压脉冲发生装置向正电极和负电极之间的煤层放电,放电冲击波使煤层中已闭合的裂缝再次张开并扩展,同时冲击波对煤层孔隙介质产生剪切作用,振落煤体颗粒表面的黏土胶结物,从而解除煤层的堵塞;
f、放电多次后,关闭高压电源,将正电极煤层气井筒中安装有正电极和高压脉冲发生装置的平台移出正电极煤层气井筒,将负电极煤层气井筒中安装有负电极的平台移出负电极煤层气井筒,继续对正电极煤层气井筒和负电极煤层气井筒进行煤层气抽采;
g、当煤层气抽产量下降时,重复步骤c-f,多次进行电脉冲放电和煤层气抽采。
所述高压脉冲发生装置的放电频率为10-60Hz,电压范围在300-9000kV。
所述的正电极煤层气井筒和负电极煤层气井筒之间的距离为200-1500m。
所述的导电离子溶液泵站可以输出的高压导电离子溶液的压力范围为30-300MPa。
所述放电多次的次数为15-100次。
有益效果:本发明适用于煤层气井高效开采,利用高压电脉冲放电击穿正电极和负电极之间注入了导电等离子溶液的煤层,通过巨大的能量形成冲击波作用于煤层,使煤层中闭合的裂缝再次张开并扩展,裂缝堵塞颗粒也被剔除,有效地增加煤层内的裂缝数量并改善裂缝连通性。在水力压裂的基础上,进行煤层气抽采,当抽采量下降时,加入导电等离子溶液,利用高压电脉冲放电击穿正电极和负电极之间注入了导电等离子溶液的煤层,产生能量更高的冲击波,冲击波煤层中闭合的裂缝再次张开并扩展,同时冲击波对煤层孔隙介质产生剪切作用,能够振落煤体颗粒表面的黏土胶结物,从而解除煤层堵塞问题,经过多次脉冲,可以达到解堵、増渗的目的。与现有技术相比有如下优点:
(1)在常规压裂的基础上,当煤层气产量下降时,重复利用电脉冲击穿煤体,增加煤层内裂隙数量并剔除裂隙内的堵塞物,可以保持煤层气井长期维持较高的产气量;
(2)在常规压裂后,采用电脉冲击穿煤体,不需要用大量的压裂液,可以减少对水资源的浪费和污染,特别是干旱地区,更适用于该技术;
(3)在常规压裂形成的裂缝中注入导电离子溶液,可以增加煤层的导电性,降低正电极和负电极之间煤层的击穿电压,可以实现在较低电压下击穿煤体,降低电脉冲击穿的成本。
附图说明
图1是本发明的煤层气井电脉冲解堵增渗系统示意图。
图中:1-煤层,2-正电极煤层气井筒,3-负电极煤层气井筒,4-导电离子溶液泵站,5-导电离子溶液输送管,6-正电极,7-负电极,8-高压电脉冲发生装置,9-平台,10-井架,11-平衡支架,12-高压电源,13-电缆。
具体实施方式
下面结合附图对本发明的实施例作进一步的描述:
图1所示,本发明的煤层气井电脉冲解堵增渗方法,包括如下步骤:
本发明的煤层气井电脉冲解堵增渗方法,具体步骤如下:
a、从地面向煤层1分别施工两个煤层气井筒,分别作为正电极煤层气井筒2和负电极煤层气井筒3,采用常规技术分别对正电极煤层气井筒2和负电极煤层气井筒3中实施水力压裂,完成水力压裂之后,通入煤层气抽采管路,对正电极煤层气井筒2和负电极煤层气井筒3进行煤层气抽采;
b、正电极煤层气井筒2和负电极煤层气井筒3在进行三个月的煤层气抽采后,当产气量下降时,在正电极煤层气井筒2附近安置一个导电离子溶液泵站4,并将连接在导电离子溶液泵站4上的导电离子溶液输送管5安置于正电极煤层气井筒2中,通过导电离子溶液泵站4向正电极煤层气井筒2中注入高压导电离子溶液,当从负电极煤层气井筒3中检测到导电离子溶液时,停止向正电极煤层气井筒2中注入高压导电离子溶液,在两个井筒口处设置井架10,并在两个井筒之间设置平衡支架11;所述的正电极煤层气井筒2和负电极煤层气井筒3之间的距离为200-1500m;所述导电离子溶液泵站的输出的高压导电离子溶液的压力范围为30-300MPa;
c、将安装有正电极6和高压电脉冲发生装置8的平台9通过井架10下放至正电极煤层气井筒2中煤层1的预增渗部位,并将安装有负电极7的平台9通过井架10下放至负电极煤层气井筒3中煤层1的预增渗部位;
d、通过平衡支架11调节正电极煤层气井筒2和负电极煤层气井筒3中的平台9位置,分别使两个井筒中安装在平台9上的正电极6和负电极7与井筒壁紧密接触,并使正电极6和负电极7在同一水平上相向安置;
e、开启高压电源12,通过电缆13向高压脉冲发生装置8充电,当充电达到设定放电电压时,高压脉冲发生装置8向正电极6和负电极7之间的煤层放电,放电冲击波使煤层中已闭合的裂缝再次张开并扩展,同时冲击波对煤层孔隙介质产生剪切作用,振落煤体颗粒表面的黏土胶结物,从而解除煤层的堵塞;所述高压脉冲发生装置8的放电频率为10-60Hz,电压范围在300-9000kV;
f、放电15-100次后,关闭高压电源12,将正电极煤层气井筒2中安装有正电极6和高压脉冲发生装置8的平台9移出正电极煤层气井筒2,将负电极煤层气井筒3中安装有负电极7的平台9移出负电极煤层气井筒3,继续对正电极煤层气井筒2和负电极煤层气井筒3 进行煤层气抽采;
g、当煤层气抽产量下降时,重复步骤c-f,多次进行电脉冲放电和煤层气抽采。

Claims (5)

  1. 一种煤层气井电脉冲解堵增渗方法,其特征在于包括如下步骤:
    a、从地面向煤层(1)分别施工正电极煤层气井筒(2)和负电极煤层气井筒(3),然后按常规技术分别在正电极煤层气井筒(2)和负电极煤层气井筒(3)中实施水力压裂,完成水力压裂之后,对正电极煤层气井筒(2)和负电极煤层气井筒(3)进行煤层气抽采;
    b、正电极煤层气井筒(2)和负电极煤层气井筒(3)在进行三个月的煤层气抽采后,当产气量下降时,在正电极煤层气井筒(2)附近安置一个导电离子溶液泵站(4),并将连接在导电离子溶液泵站(4)上的导电离子溶液输送管(5)安置于正电极煤层气井筒(2)中,通过导电离子溶液泵站(4)向正电极煤层气井筒(2)中注入高压导电离子溶液,当负电极煤层气井筒(3)中检测到导电离子溶液时,停止向正电极煤层气井筒(2)中注入高压导电离子溶液,在两个井筒口处设置井架(10),并在两个井筒之间设置平衡支架(11);
    c、将安装有正电极(6)和高压电脉冲发生装置(8)的平台(9)通过井架(10)下放至正电极煤层气井筒(2)中煤层(1)的预增渗部位,并将安装有负电极(7)的平台(9)通过井架(10)下放至负电极煤层气井筒(3)中煤层(1)的预增渗部位;
    d、通过平衡支架(11)调节正电极煤层气井筒(2)和负电极煤层气井筒(3)中的平台(9)位置,分别使两个井筒中安装在平台(9)上的正电极(6)和负电极(7)与井筒壁紧密接触,并使正电极(6)和负电极(7)在同一水平上相向安置;
    e、开启高压电源(12),通过电缆(13)向高压脉冲发生装置(8)充电,当充电达到设定放电电压时,高压脉冲发生装置(8)向正电极(6)和负电极(7)之间的煤层放电,放电冲击波使煤层中已闭合的裂缝再次张开并扩展,同时冲击波对煤层孔隙介质产生剪切作用,振落煤体颗粒表面的黏土胶结物,从而解除煤层的堵塞;
    f、放电多次后,关闭高压电源(12),将正电极煤层气井筒(2)中安装有正电极(6)和高压脉冲发生装置(8)的平台(9)移出正电极煤层气井筒(2),将负电极煤层气井筒(3)中安装有负电极(7)的平台(9)移出负电极煤层气井筒(3),继续对正电极煤层气井筒(2)和负电极煤层气井筒(3)进行煤层气抽采;
    g、当煤层气抽产量下降时,重复步骤c-f,多次进行电脉冲放电和煤层气抽采。
  2. 根据权利要求1所述的一种煤层气井电脉冲解堵增渗方法,其特征在于:所述高压脉冲发生装置(8)的放电频率为10-60Hz,电压范围在300-9000kV。
  3. 根据权利要求1所述的一种煤层气井电脉冲解堵增渗方法,其特征在于:所述的正电极煤层气井筒(2)和负电极煤层气井筒(3)之间的距离为200-1500m。
  4. 根据权利要求1所述的一种煤层气井电脉冲解堵增渗方法,其特征在于:所述的导电离子溶液泵站可以输出的高压导电离子溶液的压力范围为30-300MPa。
  5. 根据权利要求1所述的一种煤层气井电脉冲解堵增渗方法,其特征在于:所述放电多次的次数为15-100次。
PCT/CN2017/089966 2016-12-22 2017-06-26 一种煤层气井电脉冲解堵增渗方法 WO2018113227A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2017344366A AU2017344366A1 (en) 2016-12-22 2017-06-26 Blockage removal and permeability enhancement method for coalbed methane wells by using electric pulses
RU2018137016A RU2686742C1 (ru) 2016-12-22 2017-06-26 Способ устранения блокировки и увеличения газопроницаемости для скважин метана угольных пластов под воздействием электрических импульсов
US15/767,141 US20200240245A1 (en) 2016-12-22 2017-06-26 Blockage removal and permeability enhancement method for coalbed methane wells by using electric pulses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611200053.3A CN106593388B (zh) 2016-12-22 2016-12-22 一种煤层气井电脉冲解堵增渗方法
CN2016112000533 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018113227A1 true WO2018113227A1 (zh) 2018-06-28

Family

ID=58602738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089966 WO2018113227A1 (zh) 2016-12-22 2017-06-26 一种煤层气井电脉冲解堵增渗方法

Country Status (5)

Country Link
US (1) US20200240245A1 (zh)
CN (1) CN106593388B (zh)
AU (1) AU2017344366A1 (zh)
RU (1) RU2686742C1 (zh)
WO (1) WO2018113227A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112709595A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 定向冲击波产生装置及基于该装置的松软煤层瓦斯抽采方法
CN114165197A (zh) * 2021-12-09 2022-03-11 中国矿业大学(北京) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285608A (zh) * 2016-10-28 2017-01-04 中国矿业大学 一种煤层气井脉冲爆震致裂增渗方法
CN106593388B (zh) * 2016-12-22 2019-02-22 中国矿业大学 一种煤层气井电脉冲解堵增渗方法
CN107630717B (zh) * 2017-09-18 2020-02-07 中国矿业大学 一种电脉冲与煤层注水相协同的煤层增透方法
CN108318528A (zh) * 2018-01-09 2018-07-24 中国石油天然气股份有限公司 电脉冲压裂的工作参数的确定方法和装置
CN109538209B (zh) * 2018-09-11 2020-01-21 中国矿业大学 一种基于电脉冲技术的弱化煤层坚硬顶板方法
CN110388206B (zh) * 2019-06-13 2020-11-27 太原理工大学 一种等离子体上行致裂残采区遗留煤柱的方法和装置
CN111271038A (zh) * 2020-03-12 2020-06-12 内蒙古科技大学 一种低渗透性煤体的新型煤层气增产方法
CN111929422A (zh) * 2020-07-13 2020-11-13 中国矿业大学 一种煤层高压电脉冲致裂增渗范围的测定方法
CN112392540B (zh) * 2020-11-19 2022-02-01 中国矿业大学 微波辅助预裂与高压脉冲协同的煤层弱化增透装置及方法
CN112412425B (zh) * 2020-11-19 2021-11-09 中国矿业大学 一种电脉冲预制裂缝定向水力压裂一体化的方法
CN112710450B (zh) * 2020-12-16 2021-12-28 中国矿业大学 一种颗粒物堵塞裂隙的水力脉冲解堵实验系统及方法
CN112648873B (zh) * 2020-12-22 2022-03-18 东北大学 一种干热岩高压脉冲复合水压致裂热储方法
CN112922575B (zh) * 2021-02-04 2021-11-23 中国矿业大学 一种电脉冲定向割缝-水压爆破一体化煤层增透的方法
CN112943210A (zh) * 2021-02-08 2021-06-11 中国矿业大学 一种电脉冲协同超声波的煤层气强化开采方法
CN113504125B (zh) * 2021-07-27 2024-03-19 辽宁工程技术大学 一种真三轴物理化学联合煤岩增透试验装置及方法
CN114412418B (zh) * 2022-01-21 2022-09-27 中国矿业大学 一种用于叠置煤层气藏多向闭环抽采煤层气的方法
CN115405279B (zh) * 2022-08-26 2023-09-15 武汉华工融军科技有限公司 一种液电脉冲激波石油增产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084638A (en) * 1975-10-16 1978-04-18 Probe, Incorporated Method of production stimulation and enhanced recovery of oil
US20110088905A1 (en) * 2008-08-19 2011-04-21 Flow Industries Ltd. Method for impulse stimulation of oil and gas well production
CN102155254A (zh) * 2011-02-28 2011-08-17 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
CN104204405A (zh) * 2012-03-29 2014-12-10 国际壳牌研究有限公司 电致裂地层
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法
CN106593388A (zh) * 2016-12-22 2017-04-26 中国矿业大学 一种煤层气井电脉冲解堵增渗方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801090A (en) * 1956-04-02 1957-07-30 Exxon Research Engineering Co Sulfur mining using heating by electrolysis
US3103975A (en) * 1959-04-10 1963-09-17 Dow Chemical Co Communication between wells
UA19253A (uk) * 1990-07-30 1997-12-25 Державний Макіївський Науково-Дослідний Інститут По Безпеці Робіт В Гірничій Промисловості Спосіб дегазації вугільhого пласта
RU2102587C1 (ru) * 1995-11-10 1998-01-20 Линецкий Александр Петрович Способ разработки и увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
CN102296982B (zh) * 2011-05-15 2013-05-08 太原理工大学 一种电化学强化煤瓦斯解吸渗流的方法
RU2518581C2 (ru) * 2012-07-17 2014-06-10 Александр Петрович Линецкий Способ разработки нефтегазовых, сланцевых  и угольных месторождений
CA2933622A1 (en) * 2013-12-13 2015-06-18 Chevron U.S.A. Inc. System and methods for controlled fracturing in formations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084638A (en) * 1975-10-16 1978-04-18 Probe, Incorporated Method of production stimulation and enhanced recovery of oil
US20110088905A1 (en) * 2008-08-19 2011-04-21 Flow Industries Ltd. Method for impulse stimulation of oil and gas well production
CN102155254A (zh) * 2011-02-28 2011-08-17 中国矿业大学 一种低透气性煤层脉冲压裂增透抽采瓦斯方法
CN104204405A (zh) * 2012-03-29 2014-12-10 国际壳牌研究有限公司 电致裂地层
CN104863561A (zh) * 2015-04-15 2015-08-26 中国矿业大学 一种井下煤层脉冲爆震波定向致裂增透方法
CN106593388A (zh) * 2016-12-22 2017-04-26 中国矿业大学 一种煤层气井电脉冲解堵增渗方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112709595A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 定向冲击波产生装置及基于该装置的松软煤层瓦斯抽采方法
CN114165197A (zh) * 2021-12-09 2022-03-11 中国矿业大学(北京) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法
CN114165197B (zh) * 2021-12-09 2022-07-05 中国矿业大学(北京) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法

Also Published As

Publication number Publication date
US20200240245A1 (en) 2020-07-30
CN106593388B (zh) 2019-02-22
AU2017344366A1 (en) 2018-07-12
RU2686742C1 (ru) 2019-04-30
CN106593388A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
WO2018113227A1 (zh) 一种煤层气井电脉冲解堵增渗方法
WO2018076737A1 (zh) 一种煤层气井脉冲爆震致裂增渗方法
CN105370257B (zh) 一种煤层气井高功率电爆震辅助水力压裂增产方法
CN105275443B (zh) 一种煤矿井下高功率电爆震辅助水力压裂增透方法
CN104863628B (zh) 一种利用脉冲爆震波致裂增透掩护煤巷掘进方法
CN107630717B (zh) 一种电脉冲与煤层注水相协同的煤层增透方法
CN104863561B (zh) 一种井下煤层脉冲爆震波定向致裂增透方法
CN105298462A (zh) 一种底抽巷高功率电爆震辅助水力压裂煤层增透方法
CN105971660A (zh) 超声波空化与水力压裂联合激励煤层气抽采方法
WO2019075884A1 (zh) 基于可控冲击波技术的煤矿井下钻孔增透方法
CN104481574A (zh) 一种利用高能声电复合技术提高煤层透气性的方法
CN205876286U (zh) 电磁高频脉冲解堵造缝增产工具
CN108397182A (zh) 电脉冲协同液氮冻融增透煤层的装置及方法
CN106930746B (zh) 钻孔丙酮侵袭与水力压裂相结合的交替式煤层增透方法
CN105952426A (zh) 一种基于液电脉冲激波的油井解堵增产装置
WO2019075885A1 (zh) 基于可控冲击波复合浪涌式增压注水的煤层气井改造方法
CN204753611U (zh) 一种深基坑承压水降水井气囊封堵装置
CN112943210A (zh) 一种电脉冲协同超声波的煤层气强化开采方法
CN110107272B (zh) 一种高聚能电脉冲解堵装置及操作方法
CN104963674A (zh) 低渗煤层液氮冻融裂化增透方法
CN114483177A (zh) 一种电脉冲与水脉冲同频增注陷落柱充填装置及方法
CN105201477A (zh) 一种用于油页岩原位体积破碎定向造缝方法
CN108825195A (zh) 一种煤层气水平井塌孔造洞穴卸压开发系统及方法
CN114542071A (zh) 基于压裂与超声激励一体化的煤层注水系统及其操作方法
CN206972212U (zh) 一种井下双振源低频大功率振动系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017344366

Country of ref document: AU

Date of ref document: 20170626

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883484

Country of ref document: EP

Kind code of ref document: A1