WO2018112929A1 - 用于多功能望远镜的复合棱镜及其双目望远镜光学系统 - Google Patents

用于多功能望远镜的复合棱镜及其双目望远镜光学系统 Download PDF

Info

Publication number
WO2018112929A1
WO2018112929A1 PCT/CN2016/111830 CN2016111830W WO2018112929A1 WO 2018112929 A1 WO2018112929 A1 WO 2018112929A1 CN 2016111830 W CN2016111830 W CN 2016111830W WO 2018112929 A1 WO2018112929 A1 WO 2018112929A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
roof
light
composite
laser
Prior art date
Application number
PCT/CN2016/111830
Other languages
English (en)
French (fr)
Inventor
朱杰
高明晓
Original Assignee
重庆海蓝川马光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆海蓝川马光电科技有限公司 filed Critical 重庆海蓝川马光电科技有限公司
Priority to US16/472,887 priority Critical patent/US11320643B2/en
Priority to EP16924400.1A priority patent/EP3561554B1/en
Priority to JP2019555523A priority patent/JP6739666B2/ja
Priority to AU2016433012A priority patent/AU2016433012B2/en
Priority to PCT/CN2016/111830 priority patent/WO2018112929A1/zh
Publication of WO2018112929A1 publication Critical patent/WO2018112929A1/zh
Priority to PH12019550102A priority patent/PH12019550102A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/04Catoptric systems, e.g. image erecting and reversing system using prisms only
    • G02B17/045Catoptric systems, e.g. image erecting and reversing system using prisms only having static image erecting or reversing properties only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/10Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors reflecting into the field of view additional indications, e.g. from collimator
    • G02B23/105Sighting devices with light source and collimating reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/04Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors for the purpose of beam splitting or combining, e.g. fitted with eyepieces for more than one observer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the invention relates to the field of optical systems, in particular to a composite prism for a multi-function telescope and an optical system of the binocular telescope.
  • the telescope has become a popular fashion consumer.
  • the existing telescope generally only has the function of telescopic observation, and the conventional laser ranging telescope is monocular observation, which has defects for the user to observe.
  • Designing a telescope not only has binocular observation function, but also can quickly measure target distance and target speed by emitting laser, and can simultaneously or selectively measure its latitude and longitude, azimuth, high and low angle, altitude, horizontality, north direction, etc.
  • the measured data is directly displayed through a transmissive liquid crystal (LCD) or OLED or displayed through an OLED or LED projection, which can make up for this regret.
  • the optical system is one of the technical difficulties.
  • the present invention provides a binocular telescope optical system having a range measuring speed and a projection display function, and a composite prism employed in the system.
  • the binocular telescope system not only has a binocular telescopic and observation function, but also can quickly measure the target distance and the target speed by emitting laser light, and can directly display the measured data through a transmissive liquid crystal (LCD) or OLED in the field of view, or Through the OLED, LED projection display, and through the central axis to adjust the focal length and the pupil distance, the left and right eyepieces respectively adjust the visibility.
  • LCD transmissive liquid crystal
  • the technical solution adopted by the present invention is: a composite prism for a multi-function telescope, comprising a first half pentaprism, a roof prism and a second half pentaprism, a first half pentaprism and a second
  • the long right angle faces of the semi-pentagon prism are glued to the bottom surface of the roof prism.
  • the light incident surface and the exit surface of the roof prism are the same plane and parallel to the roof ridge of the roof prism, so that the incident optical axis of the composite prism is parallel to the exit optical axis.
  • the second half-pentagon prism may be replaced by a triangular prism and a wedge prism or an isosceles prism, and an obtuse angle of the triangular prism is glued to the bottom surface of the roof prism, and another obtuse angle surface is The wedge prism or isosceles prism is glued, and the rest of the structure is unchanged.
  • the two end faces of the roof prism may be non-transmissive surfaces that are not perpendicular to the incident optical axis of the composite prism, or may be light-transmissive surfaces perpendicular to the incident optical axis of the composite prism.
  • the optical system of the binocular telescope based on the above composite prism adopts the following technical scheme: the optical system of the binocular telescope, including the objective lens, the composite prism and the eyepiece, and the light enters the composite prism through the objective lens.
  • the half pentaprism after being reflected by the slope, enters the roof prism from the glued surface of the first half pentaprism and the roof prism, is reflected by the roof surface of the roof prism, and is then emitted from the bottom surface of the roof prism into the second half pentaprism.
  • the other right angle surface of the second half of the five prisms enters the eyepiece, and then exits from the eyepiece, and is observed through the eyepiece.
  • a reticle mirror made of flat glass or transmissive LCD or OLED can be added to the focal plane of the objective lens of the binocular telescope optical system to provide aiming, measuring and information display functions.
  • a spectroscopic film that reflects laser light and transmits visible light is plated on the first semi-pentagon prism and the roof prism glued surface.
  • a laser or a laser receiver is disposed on an optical path perpendicular to the oblique side of the first semi-pentagon prism, or a spectroscopic film that reflects the laser light and transmits visible light on the gravitational surface of the triangular prism and the wedge prism or the isosceles prism, and is larger than the triangular prism
  • a laser or a laser receiver is disposed on the optical path perpendicular to the reflecting surface, so that it can have a laser ranging and speed measuring function.
  • the triangular prism and the isosceles prism bonding surface are plated with a spectroscopic film that reflects laser light and red light and transmits the remaining visible light
  • a display is arranged on the optical path perpendicular to the end face of the roof prism, and the light emitted by the display passes through the two end faces of the roof prism, is reflected by the lens imaging and mirror into the isosceles prism, and is reflected by the split film on the isosceles prism bonding surface.
  • the isosceles prism is projected to project the display content onto the focal plane of the objective lens.
  • each part can be flexibly changed according to needs, and can be used not only for the binocular telescope optical system of different objective lens apertures and magnifications, but also for the binocular telescope optical system to realize various kinds. Functional or selective to achieve different functions.
  • the incident angle of the light on the beam splitting surface of the composite prism is small (not more than 30°), so the polarization is small, which can greatly reduce the plating difficulty of the spectroscopic film or improve the performance of the spectroscopic film.
  • a reticle mirror made of flat glass or transmissive LCD or OLED can be installed at the focal plane of the objective lens, or a projection system can be used to project various numbers and patterns onto the focal plane of the objective lens instead of the reticle mirror, thereby improving Optical system transmittance.
  • the projection system replaces a transmissive LCD or OLED having a low transmittance, the transmittance enhancement effect is more remarkable.
  • FIG. 1 is a schematic view of an optical path system of Embodiment 1;
  • FIG. 2 is a schematic view of an optical path system of Embodiment 2;
  • FIG. 3 is a schematic view of an optical path system of Embodiment 3;
  • FIG. 4 is a schematic view of an optical path system of Embodiment 4.
  • Figure 5 is a schematic view of an optical path system of Embodiment 5;
  • FIG. 6 is a schematic view of an optical path system of Embodiment 6;
  • FIG. 7 is a schematic view of an optical path system of Embodiment 7.
  • the invention applies a uniquely designed composite prism in the optical system of the multifunctional telescope.
  • it is recorded as a HYLON prism
  • the HYLON prism is a glue of several prisms.
  • the main prism is a roof prism.
  • the incident surface and the exit surface of the roof prism are in the same plane and parallel to the roof ridge.
  • the optical axis is perpendicular to its incident and exit surfaces, it is equivalent to a right-angle prism. Therefore, the optical axis is in a non-perpendicular state with its incident and exit surfaces.
  • the two end faces may be non-transmissive surfaces that are not perpendicular to the incident optical axis of the composite prism, or may be translucent surfaces that are perpendicular to the incident surface.
  • HYLON prisms are available in six specific forms: HYLON-A, HYLON-A1, HYLON-A2, HYLON-B, HYLON-B1, and HYLON-B2.
  • the telescope optical system designed with different HYLON prisms has different functions, and its specific shape and corresponding optical system are as follows:
  • Example 1 HYLON-A prism and application examples
  • the HYLON-A prism is made of three pieces of a first half pentaprism 2, a roof prism 3 and a second half pentaprism 4, as shown in Fig. 1.
  • the objective lens 1, the HYLON-A prism and the eyepiece 6 constitute a binocular telescope optical system.
  • the addition of the reticle 5 to one of the barrels has a measurement or aiming function corresponding to the different divisions.
  • the HYLON-A1 prism is made of three pieces of a first half pentaprism 2, a roof prism 3 and a second half pentaprism 4. It differs from the HYLON-A prism in that the long right-angled surface of the half-pentagon 2 is plated with a spectroscopic film that reflects laser light and transmits visible light. See Figure 2.
  • the objective lens 1, the HYLON-A1 prism, the reticle 5 and the eyepiece 6 constitute a telephoto optical system having an aiming and binocular viewing function.
  • the laser 7 and the laser receiver 9 and the lens 8, the prism HYLON-A1, and the objective lens 1 constitute a laser emitting system and a laser receiving system, respectively.
  • the above four systems constitute a binocular laser ranging telescope, see Figure 2.
  • the laser signal measured by the signal processing circuit is converted into data information, and then the reticle 5 composed of a transmissive liquid crystal (LCD) or an OLED is displayed in the field of view of the telescope.
  • LCD transmissive liquid crystal
  • OLED organic light-emitting diode
  • the HYLON-A2 prism is made of four pieces of the first half pentaprism 2, the roof prism 3, the triangular prism 10, and the wedge prism 11. It differs from HYLON-A in that the second half of the five prisms are glued by the triangular prism 10 and the wedge prism 11, and the glued surface is plated with reflected laser light and transmitted visible. Light splitting film. See Figure 3.
  • the objective lens 1, the HYLON-A2 prism, the reticle 5 and the eyepiece 6 constitute a telephoto optical system having an aiming and binocular viewing function.
  • the laser 7 and the laser receiver 9 constitute a laser emitting system and a laser receiving system with the HYLON-A2 prism and the objective lens 1, respectively.
  • the above four systems constitute a binocular laser ranging telescope, see Figure 3.
  • the laser signal measured by the signal processing circuit is converted into data information, and then the reticle 5 composed of a transmissive liquid crystal (LCD) or an OLED is displayed in the field of view of the telescope.
  • LCD transmissive liquid crystal
  • OLED organic light-emitting diode
  • the HYLON-B prism is made of four pieces of a first half pentaprism 2, a roof prism 3, a triangular prism 10, and an isosceles prism 12.
  • the gluing surface of the triangular prism 10 and the isosceles prism 12 is plated with a spectroscopic film that reflects red light and transmits the remaining visible light.
  • the two end faces P1, P2 of the roof prism 3 are light transmissive surfaces and are perpendicular to the incident optical axis of the composite prism to form a light transmissive plate. See Figure 4.
  • the objective lens 1, the HYLON-B prism and the eyepiece 6 constitute a binocular telescope optical system.
  • the projection system is constituted by the display 14, the roof prism 3, the lens 15, the mirror 13, the isosceles prism 12, and the triangular prism 10.
  • a segmentation mirror 5 is added to one of the lens barrels, and may have a measurement or aiming function corresponding to different divisions.
  • the pattern displayed by the display 14 may be projected by the above projection system to the focal plane position of the objective lens instead of the segmentation mirror 5 . , to achieve the split mirror function. See Figure 4.
  • the HYLON-B1 prism is made of four pieces of the first half pentaprism 2, the roof prism 3, the triangular prism 10 and the isosceles prism 12, which is different from the HYLON-B prism in that: the first half five
  • the gluing surface of the prism 2 is plated with a spectroscopic film that reflects laser light and transmits visible light, as shown in FIG.
  • the objective lens 1, the HYLON-B1 prism, the reticle 5 and the eyepiece 6 constitute a telephoto optical system having an aiming and binocular viewing function.
  • the laser 7 and the laser receiver 9 constitute a laser emitting system and a laser receiving system with the lens 8, the prism HYLON-B1, and the objective lens 1, respectively.
  • the above four systems constitute a binocular laser ranging telescope, see Figure 5.
  • the laser signal measured is converted into data information by the signal processing circuit, and then the projection system composed of the display 14, the HYLON-B1 prism, the lens 15, and the mirror 13 is projected onto the focal plane of the objective lens 1 and displayed in the field of view of the telescope.
  • the HYLON-B2 prism is made of four pieces of the first half pentaprism 2, the roof prism 3, the triangular prism 10 and the isosceles prism 12, which is different from the HYLON-B prism in that the triangular prism 10 and The gluing surface of the isosceles prism 12 is plated with a spectroscopic film that reflects laser light and red light and transmits the remaining visible light. See Figure 6.
  • the objective lens 1, the HYLON-B2 prism, the reticle 5 and the eyepiece 6 constitute a telephoto optical system having an aiming and binocular viewing function.
  • the laser 7 and the laser receiver 9 and the HYLON-B2 prism, and the objective lens 1 constitute a laser emitting system and a laser receiving system, respectively.
  • the above four systems form a binocular laser ranging distance Mirror, see Figure 6.
  • the laser signal measured by the signal processing circuit is converted into data information, and then the projection system composed of the display 14, the HYLON-B2 prism, the lens 15, and the mirror 13 is projected onto the focal plane of the objective lens 1 and displayed in the telescope field of view. .
  • the objective lens 1, the HYLON prism, the reticle 5, and the eyepiece 6 constitute a telephoto optical system having an aiming and observation function.
  • the laser 7 (or the laser receiver 9) and the HYLON prism and the objective lens 1 constitute a laser emitting system (or a laser receiving system); the laser receiver 9 (or the laser 7) is not combined with the HYLON prism and the objective lens 1, but is constituted by the objective lens 16.
  • the laser receiving system (or laser emitting system), the above three systems constitute a monocular laser ranging telescope, see Figure 7.
  • the laser signal measured by the signal processing circuit is converted into data information, and the reticle 5 made of LCD or OLED is displayed in the field of view of the telescope; or is composed of the display 14, the HYLON prism, the lens 15, and the mirror 13.
  • the projection system is projected onto the focal plane of the objective lens 1 and displayed within the field of view of the telescope.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Telescopes (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种用于多功能望远镜的复合棱镜及其双目望远镜光学系统。复合棱镜包括第一半五棱镜(2)、屋脊棱镜(3)和第二半五棱镜(4),第一半五棱镜(2)和第二半五棱镜(4)的长直角面均与屋脊棱镜(3)的底面胶合;屋脊棱镜(3)的光线入射面和出射面为同一平面,且平行于屋脊棱镜(3)的屋脊棱,使复合棱镜的入射光轴与出射光轴平行。双目望远镜光路系统包括物镜(1)、复合棱镜、分划镜(5)和目镜(6),具有观察、瞄准、激光发射接收和显示的功能。

Description

用于多功能望远镜的复合棱镜及其双目望远镜光学系统 技术领域
本发明涉及光学系统领域,具体是一种用于多功能望远镜的复合棱镜及其双目望远镜光学系统。
背景技术
望远镜已成为一种大众的时尚消费品。但现有望远镜一般只具备望远观察功能,而通常的激光测距望远镜为单目观察,对使用者来说具有不便于观察的缺陷。设计一种望远镜不仅具有双目观察功能,还能够通过发射激光快速测定目标距离、目标速度,能够同时或选择性测定自身经纬度、方位角、高低角以及海拔高度、水平度、北向方位等,能够在视场内将测得数据通过透射式液晶(LCD)或OLED直接显示或通过OLED、LED投影显示,当能弥补这一遗憾。其中光学系统是技术难点之一。
发明内容
鉴于此,本发明提供了一种具有测距测速和投影显示功能的双目望远镜光学系统,以及该系统中采用的复合棱镜。本双目望远镜系统不仅具有双目望远、观察功能,还能够通过发射激光快速测定目标距离、目标速度,能够在视场内将测得数据通过透射式液晶(LCD)或OLED直接显示、或通过OLED、LED投影显示,并通过中轴调节焦距和瞳距,左右目镜分别调节视度。
为了实现本发明中的发明目的,本发明采用的技术方案是:用于多功能望远镜的复合棱镜,包括第一半五棱镜、屋脊棱镜和第二半五棱镜,第一半五棱镜和第二半五棱镜的长直角面均与屋脊棱镜的底面胶合,屋脊棱镜的光线入射面和出射面为同一平面,且平行于屋脊棱镜的屋脊棱,使复合棱镜的入射光轴与出射光轴平行。
鉴于以上复合棱镜的结构,还可以将所述第二半五棱镜替换为由三角形棱镜与楔形棱镜或等腰棱镜胶合而成,三角形棱镜的一钝角面与屋脊棱镜底面胶合,另一钝角面与楔形棱镜或等腰棱镜胶合,其余结构不变。
在上述两种结构中,屋脊棱镜的两个端面可以是不与复合棱镜入射光轴垂直的非透光面,也可以是与复合棱镜入射光轴垂直的透光面。
基于以上复合棱镜的双目望远镜光学系统,采用了如下技术方案:双目望远镜光学系统,包括物镜、复合棱镜和目镜,光线经过物镜进入复合棱镜的第 一半五棱镜,经其斜面反射后,从第一半五棱镜与屋脊棱镜的胶合面进入屋脊棱镜,经屋脊棱镜的屋脊面反射后由屋脊棱镜的底面射出,进入第二半五棱镜,经第二半五棱镜的斜面反射后,经第二半五棱镜的另一直角面进入目镜,再从目镜出射,通过目镜进行观察。
在上述双目望远镜光学系统的物镜焦面处可以加入用平板玻璃或透射式LCD或OLED制作的分划镜,使其具有瞄准、测量及信息显示功能。
进一步,在所述第一半五棱镜与屋脊棱镜胶合面镀反射激光并透射可见光的分光膜。在垂直于第一半五棱镜斜边的光路上设置有激光器或激光接收器,或者在三角形棱镜与楔形棱镜或等腰棱镜胶合面镀反射激光并透射可见光的分光膜,并在与三角形棱镜大反射面垂直的光路上设置有激光器或激光接收器,则可以使其具有激光测距、测速功能。
当所述屋脊棱镜的两个端面是与复合棱镜的入射光轴垂直的透光面时,在所述三角形棱镜与等腰棱镜胶合面镀反射激光和红光并透射其余可见光的分光膜,并在垂直于屋脊棱镜端面的光路上设置显示器,则显示器发出的光穿过屋脊棱镜的两个端面,经透镜成像和反射镜反射进入等腰棱镜,再经等腰棱镜胶合面上分光膜反射从等腰棱镜射出,将显示器显示内容投影到物镜焦面上。
所述多功能望远镜的复合棱镜及其双目望远镜光学系统的优点是:
(1)复合棱镜的各部分胶合为一整体有利于提高光学透过率,保持光路的稳定性。
(2)复合棱镜的各部分虽然胶合为一整体,但各部分可根据需要灵活变动,不仅可通用于不同物镜孔径和倍率的双目望远镜光学系统,也可以使双目望远镜光学系统实现多种功能或选择性实现不同功能。
(3)光线在复合棱镜的分光面上入射角较小(不大于30°),因此偏振很小,可以大大降低分光膜的镀制难度或提高分光膜性能。
(4)显示器投影系统与复合棱镜巧妙组合,减小了占用空间,使结构紧凑。
(5)既可以在物镜焦面处安装由平板玻璃或透射式LCD或OLED制作的分划镜,也可以用投影系统将各种数码和图案投影到物镜焦面处代替分划镜,从而提高光学系统透过率。尤其是投影系统代替透过率较低的透射式LCD或OLED时,透过率提升效果更为显著。
附图说明
图1为实施例1的光路系统示意图;
图2为实施例2的光路系统示意图;
图3为实施例3的光路系统示意图;
图4为实施例4的光路系统示意图;
图5为实施例5的光路系统示意图;
图6为实施例6的光路系统示意图;
图7为实施例7的光路系统示意图。
具体实施方式
本发明在多功能望远镜光学系统中应用一种独特设计的复合棱镜,本发明中记为HYLON棱镜,HYLON棱镜是几种棱镜的胶合体。其主体棱镜是屋脊棱镜。该屋脊棱镜的入射面与出射面为同一平面且平行于屋脊棱,当光轴与其入射和出射面垂直时等同于直角棱镜,因此,应用中光轴与其入射和出射面处于非垂直状态。其两个端面可以是不与复合棱镜入射光轴垂直的非透光面,也可以是与入射面垂直的透光面。HYLON棱镜有六种具体表现形式,分别为HYLON-A、HYLON-A1、HYLON-A2、HYLON-B、HYLON-B1、HYLON-B2。采用不同的HYLON棱镜而设计的望远镜光学系统具有不同的功能,其具体形状及对应的光学系统如下:
实施例1,HYLON-A棱镜及应用范例
HYLON-A棱镜由第一半五棱镜2、屋脊棱镜3和第二半五棱镜4三件胶合而成,见图1。物镜1、HYLON-A棱镜和目镜6构成双目望远镜光学系统。在其中一个镜筒内加入分划镜5,则具有与不同分划对应的测量或瞄准功能。
实施例2,HYLON-A1棱镜及应用范例
此实施例中,HYLON-A1棱镜由第一半五棱镜2、屋脊棱镜3和第二半五棱镜4三件胶合而成。它与HYLON-A棱镜的不同之处在于:半五棱镜2的长直角面镀有反射激光并透射可见光的分光膜。见图2。物镜1、HYLON-A1棱镜、分划镜5和目镜6构成具有瞄准及双目观察功能的望远光学系统。激光器7和激光接收器9与透镜8、棱镜HYLON-A1、和物镜1分别构成激光发射系统和激光接收系统。上述四个系统组成双目激光测距望远镜,见图2。其所测激光信号,经信号处理电路转变为数据信息,再由透射式液晶(LCD)或OLED构成的分划镜5显示在望远镜视场内。
实施例3,HYLON-A2棱镜及应用范例
此实施例中,HYLON-A2棱镜由第一半五棱镜2、屋脊棱镜3、三角形棱镜10和楔形棱镜11四件胶合而成。它与HYLON-A的不同之处在于第二半五棱镜由三角形棱镜10和楔形棱镜11胶合而成,胶合面上镀有反射激光并透射可见 光的分光膜。见图3。物镜1、HYLON-A2棱镜、分划镜5和目镜6构成具有瞄准及双目观察功能的望远光学系统。激光器7和激光接收器9分别与HYLON-A2棱镜、物镜1构成激光发射系统和激光接收系统。上述四个系统组成双目激光测距望远镜,见图3。其所测激光信号,经信号处理电路转变为数据信息,再由透射式液晶(LCD)或OLED构成的分划镜5显示在望远镜视场内。
实施例4,HYLON-B棱镜及应用范例
此实施例中,HYLON-B棱镜由第一半五棱镜2、屋脊棱镜3、三角形棱镜10和等腰棱镜12四件胶合而成。三角形棱镜10与等腰棱镜12的胶合面镀反射红光并透射其余可见光的分光膜。屋脊棱镜3的两个端面P1、P2为透光面,且垂直于复合棱镜的入射光轴,形成一个透光平板。见图4。物镜1、HYLON-B棱镜和目镜6构成双目望远镜光学系统。由显示器14、屋脊棱镜3、透镜15、反射镜13、等腰棱镜12和三角形棱镜10构成投影系统。在其中一个镜筒内加有分划镜5,可以具有与不同分划对应的测量或瞄准功能,也可以由上述投影系统将显示器14显示的图案投影到物镜焦面位置,代替分划镜5,实现分划镜功能。见图4。
实施例5,HYLON-B1棱镜及应用范例
此实施例中,HYLON-B1棱镜由第一半五棱镜2、屋脊棱镜3、三角形棱镜10和等腰棱镜12四件胶合而成,它与HYLON-B棱镜不同之处在于:第一半五棱镜2的胶合面上镀有反射激光并透射可见光的分光膜,见图5。物镜1、HYLON-B1棱镜、分划镜5和目镜6构成具有瞄准及双目观察功能的望远光学系统。激光器7和激光接收器9分别与透镜8、棱镜HYLON-B1、和物镜1构成激光发射系统和激光接收系统。上述四个系统组成双目激光测距望远镜,见图5。其所测激光信号,经信号处理电路转变为数据信息,再由显示器14、HYLON-B1棱镜、透镜15、反射镜13构成的投影系统投影到物镜1焦面上,显示在望远镜视场内。
实施例6,HYLON-B2棱镜及应用范例
此实施例中,HYLON-B2棱镜由第一半五棱镜2、屋脊棱镜3、三角形棱镜10和等腰棱镜12四件胶合而成,它与HYLON-B棱镜不同之处在于:三角形棱镜10与等腰棱镜12的胶合面上镀反射激光和红光并透射其余可见光的分光膜。见图6。物镜1、HYLON-B2棱镜、分划镜5和目镜6构成具有瞄准及双目观察功能的望远光学系统。激光器7和激光接收器9与HYLON-B2棱镜、和物镜1分别构成激光发射系统和激光接收系统。上述四个系统组成双目激光测距望远 镜,见图6。其所测激光信号,经信号处理电路转变为数据信息,再由显示器14、HYLON-B2棱镜、透镜15、反射镜13构成的投影系统投影到物镜1的焦面上,显示在望远镜视场内。
实施例7,HYLON棱镜及应用范例
此实施例中,物镜1、HYLON棱镜、分划镜5和目镜6构成具有瞄准及观察功能的望远光学系统。激光器7(或激光接收器9)与HYLON棱镜和物镜1构成激光发射系统(或激光接收系统);激光接收器9(或激光器7)不与HYLON棱镜和物镜1组合,而是与物镜16构成激光接收系统(或激光发射系统),上述三个系统组成单目激光测距望远镜,见图7。其所测激光信号,经信号处理电路转变为数据信息,再由LCD或OLED制成的分划镜5显示在望远镜视场内;或者由显示器14、HYLON棱镜、透镜15、反射镜13构成的投影系统投影到物镜1的焦面上,显示在望远镜视场内。

Claims (12)

  1. 用于多功能望远镜的复合棱镜,其特征在于:包括第一半五棱镜(2)、屋脊棱镜(3)和第二半五棱镜(4),第一半五棱镜(2)和第二半五棱镜(4)的长直角面均与屋脊棱镜(3)的底面胶合;屋脊棱镜(3)的光线入射面和出射面为同一平面,且平行于屋脊棱镜(3)的屋脊棱,使复合棱镜的入射光轴与出射光轴平行。
  2. 根据权利要求1所述用于多功能望远镜的复合棱镜,其特征在于:在所述第一半五棱镜(2)的长直角面镀有反射激光并透射可见光的分光膜。
  3. 根据权利要求1所述用于多功能望远镜的复合棱镜,其特征在于:将所述第二半五棱镜(4)替换为三角形棱镜(10)和楔形棱镜(11),三角形棱镜(10)的一钝角面与屋脊棱镜(3)底面胶合,另一钝角面与楔形棱镜(11)胶合,三角形棱镜(10)与楔形棱镜(11)胶合面镀有反射激光并透射可见光的分光膜。
  4. 根据权利要求1所述用于多功能望远镜的复合棱镜,其特征在于:所述屋脊棱镜(3)的两个端面为透光面,且与复合棱镜的入射光轴垂直,将所述第二半五棱镜(4)替换为三角形棱镜(10)和等腰棱镜(12);三角形棱镜(10)的一钝角面与屋脊棱镜(3)底面胶合,另一钝角面与等腰棱镜(12)胶合;在三角形棱镜(10)与等腰棱镜(12)胶合面镀有反射红光并透射其余可见光的分光膜。
  5. 根据权利要求4所述用于多功能望远镜的复合棱镜,其特征在于:在所述第一半五棱镜(2)的长直角面镀有反射激光并透射可见光的分光膜;在三角形棱镜(10)与等腰棱镜(12)胶合面镀有反射红光并透射其余可见光的分光膜。
  6. 根据权利要求4所述用于多功能望远镜的复合棱镜,其特征在于:在所述三角形棱镜(10)与等腰棱镜(12)胶合面镀有反射激光和红光并透射其余可见光的分光膜。
  7. 利用权利要求1或3或4所述复合棱镜的双目望远镜光学系统,其特征在于:包括物镜(1)、复合棱镜、分划镜(5)和目镜(6),分划镜(5)可以是刻制瞄准或测量分划的玻璃平板,也可以是透射型LCD或OLED,光线经过物镜(1)进入第一半五棱镜(2),经第一半五棱镜(2)的斜面反射后,从第 一半五棱镜(2)与屋脊棱镜(3)的胶合面进入屋脊棱镜(3),经屋脊棱镜(3)的屋脊面反射后从屋脊棱镜(3)的底面进入第二半五棱镜(4),经第二半五棱镜(4)的斜面反射后,从第二半五棱镜(4)的另一直角面射出,将景物成像于分划镜(5)上,通过目镜(6)进行观察和瞄准。
  8. 根据权利要求7所述的双目望远镜光学系统,其特征在于:所述第一半五棱镜(2)的长直角面镀有反射激光并透射可见光的分光膜,在垂直于第一半五棱镜(2)斜面的光路上设置有激光器(7)或激光接收器(9)。
  9. 根据权利要求7所述的双目望远镜光学系统,其特征在于:在所述三角形棱镜(10)与楔形棱镜(11)胶合面镀有反射激光并透射可见光的分光膜,在垂直于三角形棱镜(10)的反射面的光路上设置有激光器(7)或激光接收器(9)。
  10. 根据权利要求7所述的双目望远镜光学系统,其特征在于:所述屋脊棱镜(3)的两个端面为垂直于复合棱镜入射光轴的透光面,在所述三角形棱镜(10)与等腰棱镜(12)胶合面镀有反射红光并透射其余可见光的分光膜,在垂直于屋脊棱镜(3)两端面的光路上设置显示器(14),显示器(14)发出的光穿过屋脊棱镜(3)的两个端面,经透镜(15)成像及反射镜(13)反射进入等腰棱镜(12),再从等腰棱镜(12)的非胶合面射出,将显示器(14)显示内容成像于物镜(1)的焦面上。
  11. 根据权利要求10所述的双目望远镜光学系统,其特征在于:所述第一半五棱镜(2)的长直角面镀有反射激光并透射可见光的分光膜,在垂直于第一半五棱镜(2)斜面的光路上设置有激光器(7)或激光接收器(9)。
  12. 根据权利要求10所述的双目望远镜光学系统,其特征在于:在所述三角形棱镜(10)与等腰棱镜(12)胶合面镀有反射激光和红光并透射其余可见光的分光膜,在垂直于三角形棱镜(10)大反射面的光路上设置有激光器(7)或激光接收器(9)。
PCT/CN2016/111830 2016-12-23 2016-12-23 用于多功能望远镜的复合棱镜及其双目望远镜光学系统 WO2018112929A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/472,887 US11320643B2 (en) 2016-12-23 2016-12-23 Composite prism for multi-functional telescope, and binocular telescopic optical system for same
EP16924400.1A EP3561554B1 (en) 2016-12-23 2016-12-23 Composite prism for multi-functional telescope, and binocular telescopic optical system for same
JP2019555523A JP6739666B2 (ja) 2016-12-23 2016-12-23 多機能望遠鏡に用いられる複合プリズム及びその双眼鏡光学システム
AU2016433012A AU2016433012B2 (en) 2016-12-23 2016-12-23 Composite prism for multi-functional telescope, and binocular telescopic optical system for same
PCT/CN2016/111830 WO2018112929A1 (zh) 2016-12-23 2016-12-23 用于多功能望远镜的复合棱镜及其双目望远镜光学系统
PH12019550102A PH12019550102A1 (en) 2016-12-23 2019-06-20 Composite Prism For Multi-Functional Telescope, And Binocular Telescopic Optical System For Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111830 WO2018112929A1 (zh) 2016-12-23 2016-12-23 用于多功能望远镜的复合棱镜及其双目望远镜光学系统

Publications (1)

Publication Number Publication Date
WO2018112929A1 true WO2018112929A1 (zh) 2018-06-28

Family

ID=62624290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111830 WO2018112929A1 (zh) 2016-12-23 2016-12-23 用于多功能望远镜的复合棱镜及其双目望远镜光学系统

Country Status (6)

Country Link
US (1) US11320643B2 (zh)
EP (1) EP3561554B1 (zh)
JP (1) JP6739666B2 (zh)
AU (1) AU2016433012B2 (zh)
PH (1) PH12019550102A1 (zh)
WO (1) WO2018112929A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520467A (zh) * 2018-12-29 2019-03-26 深圳市恒天伟焱科技有限公司 测距仪

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534312B (zh) 2020-04-15 2023-09-12 信泰光学(深圳)有限公司 光学装置及其棱镜模块
TWI727755B (zh) * 2020-04-21 2021-05-11 大陸商信泰光學(深圳)有限公司 光學裝置及其稜鏡模組(二)
CN111694144A (zh) * 2020-06-09 2020-09-22 广州博冠光电科技股份有限公司 一种双筒激光共轴测距望远镜
US20230359014A1 (en) * 2020-09-10 2023-11-09 Chongqing Hylon Co., Ltd Composite prism based on isosceles prism, and laser ranging telescope comprising composite prism
CN215953962U (zh) * 2021-09-03 2022-03-04 佛山市南海威宏模具制造有限公司 双眼式望远镜
CN114167598B (zh) * 2021-12-06 2023-06-16 福建师范大学 三棱镜式放大镜头及医疗手术放大镜
CN116990954B (zh) * 2023-08-25 2024-03-19 昆明汉睿光学仪器有限公司 一种望远镜光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081461A1 (de) * 2009-01-13 2010-07-22 Leica Camera Ag Parallelsichtiges, bildumkehrendes prismensystem
CN202189181U (zh) * 2011-07-25 2012-04-11 贾怀昌 一种红外测距望远镜
CN203133384U (zh) * 2013-02-04 2013-08-14 贾怀昌 一种带测距功能的望远镜光学系统及其应用的模组
CN203274728U (zh) * 2013-05-23 2013-11-06 西安西光威信光电有限公司 一种基于半五棱镜和屋脊棱镜的光学显示棱镜结构
CN203744838U (zh) * 2014-03-05 2014-07-30 珠海天峰光电有限公司 无分划线摆动视差棱镜枪瞄光学系统
CN106680917A (zh) * 2016-12-23 2017-05-17 重庆海蓝川马光电科技有限公司 用于多功能望远镜的复合棱镜及其双目望远镜光学系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE304289C (zh) *
GB672579A (en) * 1949-08-24 1952-05-21 Optische Ind De Oude Delft Nv Improvements in or relating to panoramic telescopes
GB1088431A (en) * 1965-01-29 1967-10-25 Optische Ind De Oude Delft Nv Improvements relating to straight-vision prism systems
FR2266897B1 (zh) * 1974-04-03 1978-04-21 Instruments Sa
JPS5640531U (zh) * 1979-09-07 1981-04-15
EP0201862B1 (en) * 1985-05-09 1992-08-12 Fujitsu Limited Plastic lens array
CA2133597A1 (en) * 1993-10-04 1995-04-05 Hiromi Matsushima Expandable and tiltable optical system and optical apparatus
US6002473A (en) * 1997-12-24 1999-12-14 Dove-Tec, Inc. Optical level and square
US20080083886A1 (en) * 2006-09-14 2008-04-10 3M Innovative Properties Company Optical system suitable for processing multiphoton curable photoreactive compositions
US7551359B2 (en) * 2006-09-14 2009-06-23 3M Innovative Properties Company Beam splitter apparatus and system
CN201637925U (zh) * 2010-03-18 2010-11-17 昆明腾洋光学仪器有限公司 激光测距数显双筒望远镜
KR101233978B1 (ko) * 2010-09-29 2013-02-18 이동희 광학식 스코프
WO2016165569A1 (zh) * 2015-04-09 2016-10-20 深圳市光峰光电技术有限公司 发光装置和投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081461A1 (de) * 2009-01-13 2010-07-22 Leica Camera Ag Parallelsichtiges, bildumkehrendes prismensystem
CN202189181U (zh) * 2011-07-25 2012-04-11 贾怀昌 一种红外测距望远镜
CN203133384U (zh) * 2013-02-04 2013-08-14 贾怀昌 一种带测距功能的望远镜光学系统及其应用的模组
CN203274728U (zh) * 2013-05-23 2013-11-06 西安西光威信光电有限公司 一种基于半五棱镜和屋脊棱镜的光学显示棱镜结构
CN203744838U (zh) * 2014-03-05 2014-07-30 珠海天峰光电有限公司 无分划线摆动视差棱镜枪瞄光学系统
CN106680917A (zh) * 2016-12-23 2017-05-17 重庆海蓝川马光电科技有限公司 用于多功能望远镜的复合棱镜及其双目望远镜光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561554A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520467A (zh) * 2018-12-29 2019-03-26 深圳市恒天伟焱科技有限公司 测距仪

Also Published As

Publication number Publication date
US11320643B2 (en) 2022-05-03
EP3561554A4 (en) 2020-11-25
EP3561554B1 (en) 2023-03-22
AU2016433012A8 (en) 2019-07-11
AU2016433012A1 (en) 2019-07-04
AU2016433012B2 (en) 2022-02-03
EP3561554A1 (en) 2019-10-30
JP6739666B2 (ja) 2020-08-12
JP2020514838A (ja) 2020-05-21
US20200088987A1 (en) 2020-03-19
PH12019550102A1 (en) 2019-09-09

Similar Documents

Publication Publication Date Title
WO2018112929A1 (zh) 用于多功能望远镜的复合棱镜及其双目望远镜光学系统
CN106680917B (zh) 用于多功能望远镜的复合棱镜及其双目望远镜光学系统
US7672049B2 (en) Telescope and panfocal telescope comprising planoconvex of planoconcave lens and deflecting means connected thereto
US10520717B2 (en) Binocular capable of measuring distance and prism module thereof
WO2018014276A1 (zh) 高清紧凑型激光测距仪的光学装置
CN110058419B (zh) 一种正像系统及双筒激光测距望远镜
CN206804903U (zh) 用于多功能望远镜的复合棱镜及其双目望远镜光学系统
CN114730025B (zh) 基于等腰棱镜的复合棱镜及其激光测距望远镜
CN106092039B (zh) 一种转轴式双筒测距望远镜
CN109387847B (zh) 一种激光测距望远镜光学分束系统
CN113534313A (zh) 光学装置及其棱镜模块
CN110286483B (zh) 一种测距双筒望远镜光学系统
US20180314050A1 (en) System and method for introducing display image into afocal optics device
US20230341552A1 (en) Miniaturized wide-range laser range finder
WO2018192068A1 (zh) 一种激光测距单眼望远镜
US2410757A (en) Optical prism system
CN111694144A (zh) 一种双筒激光共轴测距望远镜
CN218995714U (zh) 一种复合棱镜及其激光测距望远镜
CN213069244U (zh) 一种复合棱镜及其激光测距望远镜
CN113534312B (zh) 光学装置及其棱镜模块
JPS5846318A (ja) レ−ザ−照準器
CN209946388U (zh) 一种激光接收与可见光观瞄融合的光学构型
CN109901187B (zh) 一种激光接收与可见光观瞄融合的光学构型
CN117441115A (zh) 两个反射面构成直角的复合棱镜及其激光测距望远镜
JP2004198386A (ja) 測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019555523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016433012

Country of ref document: AU

Date of ref document: 20161223

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016924400

Country of ref document: EP

Effective date: 20190723