WO2018112792A1 - 掘进机刀盘定变排量组合液压马达驱动系统及控制方法 - Google Patents

掘进机刀盘定变排量组合液压马达驱动系统及控制方法 Download PDF

Info

Publication number
WO2018112792A1
WO2018112792A1 PCT/CN2016/111296 CN2016111296W WO2018112792A1 WO 2018112792 A1 WO2018112792 A1 WO 2018112792A1 CN 2016111296 W CN2016111296 W CN 2016111296W WO 2018112792 A1 WO2018112792 A1 WO 2018112792A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic motor
displacement hydraulic
variable displacement
displacement
fixed
Prior art date
Application number
PCT/CN2016/111296
Other languages
English (en)
French (fr)
Inventor
龚国芳
杨旭
王超
张亚坤
吴伟强
刘统
段理文
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2016/111296 priority Critical patent/WO2018112792A1/zh
Priority to US16/335,667 priority patent/US11028691B2/en
Publication of WO2018112792A1 publication Critical patent/WO2018112792A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/093Control of the driving shield, e.g. of the hydraulic advancing cylinders
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1086Drives or transmissions specially adapted therefor

Definitions

  • the invention relates to the technical field of tunnel boring machines, in particular to a drive motor system and a control method for a fixed displacement and displacement hydraulic motor of a boring machine, which can maximize the working efficiency of the tunnel boring machine and improve the reliability of the system. And the purpose of reducing engineering costs.
  • the tunnel boring machine is widely used in water supply engineering, electric power engineering, road construction, urban subway and other national infrastructure projects. It is a large-scale underground engineering machinery equipment integrating the machine-electric-liquid multi-disciplinary field.
  • the disk and its drive system, propulsion system and shield support system are composed.
  • the cutterhead hydraulic system is a very important part of the roadheader's ability to achieve forward tunneling.
  • the driving conditions of the roadheader are poor, and the geological conditions are complex and variable, requiring the cutter main drive system to provide greater power and torque.
  • the heading machine cutter head In order to improve the tunneling speed of the roadheader and adapt to different engineering geological conditions, it is required that the heading machine cutter head can adapt to the dynamic change of the load, provide greater torque, and various speed changes. Under the above conditions, the system is also required to be minimized. Energy consumption, improve system reliability, work efficiency and reduce costs.
  • variable displacement hydraulic motor in parallel as the torque and speed output, but the variable displacement hydraulic motor is expensive, and each variable displacement hydraulic motor is separately equipped with a flushing motor device. This leads to higher costs, and the variable displacement hydraulic motor has lower reliability than the fixed displacement hydraulic motor, and the working efficiency is not as good as the fixed displacement hydraulic motor.
  • a driving machine for variable displacement and displacement hydraulic motor of the roadheader 1. A driving machine for variable displacement and displacement hydraulic motor of the roadheader:
  • the system includes a variable displacement hydraulic motor unit, a fixed displacement hydraulic motor unit and a variable displacement hydraulic pump set, a variable displacement hydraulic motor unit, a fixed displacement hydraulic motor unit and a variable displacement hydraulic pump unit are all connected to the roadheader cutter.
  • the variable displacement hydraulic pump group inputs the flow rate to the main oil circuit, and the variable displacement hydraulic motor group and the fixed displacement hydraulic motor group obtain the flow from the main oil circuit.
  • the system is constructed by a combination of a fixed displacement hydraulic motor and a variable displacement hydraulic motor, and combined with displacement
  • the system controls the displacement of the fixed displacement hydraulic motor group and the variable displacement hydraulic motor group.
  • the motor displacement of the two motor groups and the pump displacement of the pump group determine the rotational speed output to the boring machine cutter.
  • the variable displacement hydraulic motor unit comprises a plurality of variable displacement hydraulic motors connected in parallel to the main oil passage, and two ends of each variable displacement hydraulic motor are respectively connected to two channels of the main oil passage, that is, one end is connected.
  • the oil passage A to the main oil passage, the other end is connected to the oil passage B of the main oil passage, and the variable displacement hydraulic motors in the variable displacement hydraulic motor group are controlled simultaneously or separately, if there is a variable displacement hydraulic motor group e variable displacement hydraulic motors, e variable displacement hydraulic motors can be controlled simultaneously or separately;
  • the fixed displacement hydraulic motor unit comprises a plurality of fixed displacement hydraulic motors connected in parallel to the main oil passage, and two ends of each fixed displacement hydraulic motor are respectively connected to two paths of the main oil passage, that is, one end is connected.
  • the oil passage A of the main oil passage is connected to the oil passage B of the main oil passage, and if there are f fixed displacement hydraulic motors in the fixed displacement hydraulic motor group, f fixed displacement hydraulic motors are simultaneously controlled.
  • the total number of fixed displacement hydraulic motors in the fixed displacement hydraulic motor group is taken as the integral part m of the number of motors x calculated by the following formula, and the maximum value of the fixed displacement hydraulic motor displacement is Vgmax :
  • V gmax represents the maximum displacement of the fixed displacement hydraulic motor itself, and V is the total displacement of the motor required to reach the highest design speed according to the actual engineering load;
  • variable displacement hydraulic motors in the variable displacement hydraulic motor group is nm
  • n is the total number of motors in the design requirements of the roadhead cutter
  • minimum value of the variable displacement hydraulic motor displacement is The design maximum is V gmax '
  • V gmax ' represents the maximum displacement of the variable displacement hydraulic motor itself.
  • variable displacement hydraulic motor adopts a variable displacement hydraulic motor with a displacement setting, specifically a hydraulic proportional control variable displacement hydraulic motor or an electric proportional control variable displacement hydraulic motor.
  • variable displacement hydraulic motor adopts a variable displacement hydraulic motor with a displacement of two steps of V gmin and V gmax , specifically a two-point hydraulic control variable displacement hydraulic motor or an electronic two-point control variable displacement hydraulic pressure. Motor, etc.
  • the motor centralized flushing device is connected between the variable displacement hydraulic motor group, the fixed displacement hydraulic motor group and the main oil circuit, including the speed regulating valve, the accumulator and the two-position three-way valve, and the P port of the two-position three-way valve.
  • the T port is connected to the oil circuit A of the main oil circuit
  • the A port of the two-position three-way valve is connected with the accumulator through the speed regulating valve, and the flow rate of the oil is adjusted by the speed regulating valve.
  • the oil of the speed valve is connected to the variable displacement hydraulic motor via a throttle valve
  • the motor bearing is flushed and cooled, and the oil after the cooling is returned to the oil tank.
  • the accumulator is connected to the oil circuit before the oil enters the motor through the speed regulating valve.
  • the fixed displacement hydraulic motor and the variable displacement hydraulic motor are combined into the main oil passage of the roadhead cutter system to construct the roadhead cutter system, and the fixed displacement hydraulic motor and the variable are set in a specific displacement combination.
  • Displacement hydraulic motor displacement, the motor displacement of the fixed displacement hydraulic motor and the variable displacement hydraulic motor and the displacement of the hydraulic pump of the variable displacement hydraulic pump control the boring machine cutter speed.
  • the total displacement of the motor required to reach the highest design speed of the system is V.
  • the following formula is used to obtain that all motors are operated with a fixed displacement hydraulic motor.
  • the number of motors required x is:
  • V gmax represents the maximum displacement of the fixed displacement hydraulic motor itself
  • n is the design requirement of the boring machine cutter
  • the total number of motors in the middle, n actually represents the total number of all motors in the variable displacement hydraulic motor group and the fixed displacement hydraulic motor group;
  • variable displacement hydraulic motor set the range of the displacement of each of the variable displacement hydraulic motors is set to The design minimum value of the displacement hydraulic motor displacement is set to V gmax ' represents the maximum displacement of the variable displacement hydraulic motor itself.
  • the invention satisfies the requirement of the main drive design of the roadheader, and adopts a fixed displacement hydraulic motor as much as possible to minimize the number of variable displacement hydraulic motors, thereby minimizing cost and improving system reliability and efficiency. .
  • variable displacement hydraulic motor adopts a variable displacement hydraulic motor with a displacement setting, specifically a hydraulic proportional control variable displacement hydraulic motor or an electric proportional control variable displacement hydraulic motor.
  • variable displacement hydraulic motor adopts a variable displacement hydraulic motor with a displacement of two steps of V gmin and V gmax , specifically a two-point hydraulic control variable displacement hydraulic motor or an electronic two-point control variable displacement hydraulic pressure. Motor, etc.
  • control principle of the present invention is as follows:
  • the total displacement of the motor required to reach the highest design speed is V
  • the maximum displacement of the fixed displacement hydraulic motor is V gmax
  • the maximum displacement of the variable displacement hydraulic motor is V gmax '
  • the total number of motors in the design requirements of the roadhead cutter head is n
  • n represents the total number of all motors in the variable displacement hydraulic motor group and the fixed displacement hydraulic motor group;
  • the value of the x integer part is m, and the number of fixed displacement hydraulic motors is determined to be less than or equal to m.
  • the fixed displacement hydraulic motor should be used as much as possible and the variable displacement hydraulic motor should be minimized.
  • the number is to achieve the optimal choice, so the number of optimal fixed displacement hydraulic motors is determined to be m, then the number of variable displacement hydraulic motors is determined to be nm, and the total displacement required is (xm) ⁇ V gmax ,
  • the displacement of each variable displacement hydraulic motor is The displacement range of the variable displacement hydraulic motor is
  • the number of fixed displacement hydraulic motors is m
  • the number of variable displacement hydraulic motors is nm
  • the displacement range of variable displacement hydraulic motors is 0 to V gmax
  • the displacement range of variable displacement hydraulic motors is That is, the control initial value and the end value of the variable displacement hydraulic motor displacement are determined.
  • the fixed displacement hydraulic motor is introduced into the system and the fixed displacement hydraulic motor has the characteristics of low cost, high reliability and high input precision.
  • the hydraulic system improves the reliability and control accuracy of the system and reduces the engineering cost
  • the flexibility of the system is high, and the combination of the fixed displacement hydraulic motor and the variable displacement hydraulic motor can be flexibly selected according to the engineering requirements, and the engineering applicability of the tunnel boring machine cutter system is increased.
  • FIG. 1 is a schematic view showing the principle of a combined system of a variable displacement hydraulic motor and a fixed displacement hydraulic motor according to the present invention
  • FIG. 2 is a schematic view showing the principle of adding a motor centralized flushing device of the combined system of the variable displacement hydraulic motor and the fixed displacement hydraulic motor of the present invention
  • FIG. 3 is a schematic view showing the principle of an HD type hydraulic proportional control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention
  • FIG. 4 is a schematic view showing the principle of an optional HD pressure control type hydraulic proportional control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention
  • Figure 5 is a schematic view showing the principle of an EP type electric proportional control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention
  • FIG. 6 is a schematic diagram showing the principle of an EP pressure control type electric proportional control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention
  • Figure 7 is a schematic view showing the principle of an HZ two-point hydraulic control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention.
  • Fig. 8 is a schematic view showing the principle of an EZ electronic two-point control variable displacement hydraulic motor of the variable displacement hydraulic motor of the present invention.
  • E1, E2, ..., Ee are variable displacement hydraulic motors
  • F1, F2, ... Ff are fixed displacement hydraulic motors
  • G1...Gg are variable displacement hydraulic pumps, 1, throttle valves, 2 , speed control valve, 3, accumulator, 4 two-position three-way valve.
  • variable displacement hydraulic motor E1 oil port B11 is connected to main oil circuit B, oil port A11 is connected to main oil circuit A;
  • variable displacement hydraulic motor E2 oil port B12 is connected Entering the main oil passage B, the oil port A12 is connected to the main oil passage A;
  • the oil port B1e of the variable displacement hydraulic motor Ee is connected to the main oil passage B, and the oil port A1e is connected to the main oil passage A.
  • variable displacement hydraulic motors herein is determined according to the method, the illustration is omitted, and the subscripts B11 to B1e are used to indicate that the number of variable displacement hydraulic motors is e, not a certain value.
  • Each variable displacement hydraulic motor is connected to main oil passages A and B.
  • the port B21 of the fixed displacement hydraulic motor F1 is connected to the main oil passage B, the oil port A21 is connected to the main oil passage A; the oil port B22 of the fixed displacement hydraulic motor F2 is connected to the main oil passage B, and the oil port A22 is connected to the main port The oil passage A; the oil port B2f of the fixed displacement hydraulic motor Ff is connected to the main oil passage B, and the oil port A2f is connected to the main oil passage A.
  • the number f of the fixed displacement hydraulic motors herein is determined according to the method, the illustration is omitted, and the subscripts B21 to B2f are used to indicate that the number of fixed displacement hydraulic motors is f, not a certain value.
  • Each fixed displacement hydraulic motor is connected to main oil passages A and B.
  • the port PB1 of the variable displacement hydraulic pump G1 is connected to the main oil passage B, the oil port PA2 is connected to the main oil passage A; the port PBg of the variable displacement hydraulic pump Gg is connected to the main oil passage B, and the port PAg is connected to the main port Oil circuit A.
  • the number g of the variable displacement hydraulic pump herein is determined according to actual requirements, so the illustration is omitted, and the subscripts PB1 to PBg are used to indicate that the number of variable displacement hydraulic pumps is g, and For non-deterministic values, each variable displacement hydraulic pump is connected to main oil circuits A and B.
  • variable displacement hydraulic motors E1, E2, ..., Ee can be selected in a variety of types, and some optional types are listed in Figures 3 through 8.
  • Figure 3 shows the HD hydraulic proportional control variable displacement hydraulic motor.
  • Figure 4 shows the HD.D type fixed pressure control hydraulic proportional control variable displacement hydraulic motor.
  • Figure 5 shows the EP type electric proportional control.
  • the variable displacement hydraulic motor Figure 6 shows the EP.D type fixed pressure control electric proportional control variable displacement hydraulic motor
  • Figure 7 shows the HZ two-point hydraulic control variable displacement hydraulic motor
  • Figure 8 Shown is the EZ-type electronic two-point control variable displacement hydraulic motor.
  • the variable displacement hydraulic motor types listed herein are just a few of the many variable displacement hydraulic motors, and the present invention also relates to other types of variable displacement hydraulic motors.
  • FIG. 2 is a schematic diagram showing the principle of adding a motor centralized flushing device to a combined system of a variable displacement hydraulic motor and a fixed displacement hydraulic motor.
  • the motor centralized flushing device is connected to a variable displacement hydraulic motor unit and a fixed displacement.
  • the P port of the two-position three-way valve 4 is connected to the oil path B of the main oil path, and the T port is connected to the main
  • the oil passage A of the oil passage, the A port of the two-position three-way valve 4 is connected to the accumulator 3 via the speed regulating valve 2, and the flow rate of the oil is adjusted by the speed regulating valve 2, and the accumulators 3 are respectively connected via the throttle valve 1.
  • the motor bearing In the motor housing of the variable displacement hydraulic motor unit and the fixed displacement hydraulic motor unit, the motor bearing is flushed and cooled, and the oil after the cooling is returned to the oil tank.
  • the accumulator 3 In order to prevent the flushing flow from peaking due to excessive oil pressure on the back pressure side due to the cutter wheel braking process, the accumulator 3 is inserted into the oil passage before the oil enters the motor through the speed regulating valve 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种掘进机刀盘定变排量组合液压马达驱动系统及控制方法,该系统包括变排量液压马达组(E1,…,Ee)、定排量液压马达组(F1,…,Ff)和变排量液压泵组(G1,…,Gg),变排量液压马达组、定排量液压马达组和变排量液压泵组均接入到掘进机刀盘系统的主油路中,变排量液压泵组输入流量到主油路,变排量液压马达组和定排量液压马达组从主油路得到流量;以定排量液压马达和变排量液压马达组合方式构建系统,并以特定排量组方式设定定排量液压马达组和变排量液压马达组的排量,由两个马达组的马达排量和泵组的泵排量决定输出给掘进机刀盘的转速。该系统和方法由于使用了定排量液压马达,可降低工程成本、提高系统可靠性和效率。

Description

掘进机刀盘定变排量组合液压马达驱动系统及控制方法 技术领域
本发明涉及隧道掘进机技术领域,具体地说,特别涉及一种掘进机刀盘定变排量组合液压马达驱动系统及控制方法,达到最大限度的提高隧道掘进机的工作效率、提升系统可靠性和降低工程成本的目的。
背景技术
隧道掘进机广泛用于供水工程、电力工程、道路建设、城市地铁等国家基础设施工程,它是一种集机-电-液多学科领域于一体的大型地下工程机械装备,其主机主要由刀盘及其驱动系统、推进系统和护盾支护系统等构成。
刀盘液压系统是保证掘进机实现向前掘进工作的十分重要的关键部分。通常,掘进机所处的掘进工况恶劣,面临的地质条件复杂多变,要求刀盘主驱动系统提供较大的功率和扭矩。为了提高掘进机的掘进速度,适应不同的工程地质条件,要求掘进机刀盘能够适应负载的动态变化,提供较大的扭矩,多种转速变化,在满足以上条件下,还要求系统尽量减小能耗,提升系统可靠性、工作效率和降低成本。
目前使用的掘进机的刀盘液压系统完全采用了多个变排量液压马达并联作为扭矩和转速输出,但是变排量液压马达造价高昂,每个变排量液压马达均单独配置了冲洗马达装置,导致更高的成本,并且变排量液压马达可靠性较定排量液压马达低,工作效率也不如定排量液压马达。
发明内容
为了解决背景技术中掘进机的刀盘液压系统存在的问题,提出了一种掘进机刀盘定变排量组合液压马达驱动系统及控制方法,用于掘进机刀盘系统在针对不同工况需求下的自由调整,达到降低工程成本、提高系统效率和可靠性的目的。
本发明解决其技术问题所采用的技术方案及其步骤如下:
一、一种掘进机刀盘定变排量组合液压马达驱动系统:
系统包括变排量液压马达组、定排量液压马达组和变排量液压泵组,变排量液压马达组、定排量液压马达组和变排量液压泵组均接入到掘进机刀盘系统的主油路中,变排量液压泵组输入流量到主油路,变排量液压马达组和定排量液压马达组从主油路得到流量。
以定排量液压马达和变排量液压马达组合方式构建系统,并以排量组合控 制方式控制定排量液压马达组和变排量液压马达组的排量,由两个马达组的马达排量和泵组的泵排量决定输出给掘进机刀盘的转速。
所述的变排量液压马达组包括多个并联连接到主油路的变排量液压马达,每个变排量液压马达的两端分别接入到主油路的两路,即一端接入到主油路的的油路A,另一端接入主油路的油路B,变排量液压马达组中的各个变排量液压马达同时或分别控制,若变排量液压马达组中有e个变排量液压马达,e个变排量液压马达可同时或分别控制;
所述的定排量液压马达组包括多个并联连接到主油路的定排量液压马达,每个定排量液压马达的两端分别接入到主油路的两路,即一端接入主油路的油路A,另一端接入主油路的油路B,若定排量液压马达组中有f个定排量液压马达,f个定排量液压马达同时控制。
所述的定排量液压马达组中定排量液压马达的总数取为以下公式计算得到的马达个数x的整数部分m,并且定排量液压马达排量的最大值为Vgmax
Figure PCTCN2016111296-appb-000001
其中,Vgmax表示定排量液压马达自身的最大排量,V为根据实际工程负载确定系统达到最高设计转速所需马达的总排量;
所述的变排量液压马达组中的变排量液压马达的总数为n-m,n为掘进机刀盘设计要求中的马达总数量,并且变排量液压马达排量的最小值为
Figure PCTCN2016111296-appb-000002
设计最大值为Vgmax′,Vgmax′表示变排量液压马达自身的最大排量。
所述的变排量液压马达采用对排量无极设定的变排量液压马达,具体为液压比例控制变排量液压马达或者电气比例控制变排量液压马达等。
所述的变排量液压马达采用将排量设置为Vgmin和Vgmax两档的变排量液压马达,具体为两点式液压控制变排量液压马达或者电子两点式控制变排量液压马达等,
所述的变排量液压马达组、定排量液压马达组中的轴承的冲洗和降温有两种方式:一是采用马达自带冲洗装置,二是采用马达集中式冲洗装置如图2所示。马达集中式冲洗装置连接在变排量液压马达组、定排量液压马达组和主油路之间,包括调速阀、蓄能器和二位三通阀,二位三通阀的P口接主油路的油路B,T口接主油路的油路A,二位三通阀的A口经调速阀与蓄能器连接,通过调速阀调节油液的流速,通过调速阀的油液经节流阀连接到变排量液压马达 组和定排量液压马达组的马达壳体中,对马达轴承进行冲洗和降温,冲洗降温后的油液流回油箱。为防止由于刀盘制动过程导致背压侧油压过大引起冲洗流量出现峰值,在油液通过调速阀进入马达之前的油路中接入蓄能器。
二、一种掘进机刀盘定变排量组合液压马达驱动系统的控制方法:
以定排量液压马达和变排量液压马达组合方式连接到掘进机刀盘系统的主油路中以构建掘进机刀盘系统,并以特定排量组合方式设定定排量液压马达和变排量液压马达的排量,由定排量液压马达和变排量液压马达的马达排量以及变排量液压泵的泵排量控制掘进机刀盘转速。
所述的特定排量组合方式具体如下:
首先根据实际工程负载确定系统达到最高设计转速所需马达的总排量为V,在掘进机刀盘系统工作在最大排量下,采用以下公式获得所有马达均采用定排量液压马达工作时所需要的马达个数x为:
Figure PCTCN2016111296-appb-000003
其中,Vgmax表示定排量液压马达自身的最大排量;
取个数x的整数部分m作为定排量液压马达组中定排量液压马达的总数,取n-m为变排量液压马达组中变排量液压马达的总数,n为掘进机刀盘设计要求中的马达总数量,n实际表示变排量液压马达组、定排量液压马达组中的所有马达的总数;
并且针对变排量液压马达组,将其中每个变排量液压马达的排量的范围设置为
Figure PCTCN2016111296-appb-000004
即将变排量液压马达排量的设计最小值设置为
Figure PCTCN2016111296-appb-000005
Vgmax′表示变排量液压马达自身的最大排量。
本发明在满足掘进机主驱动设计转速要求的前提下,尽量多地采用定排量液压马达,尽量减少变排量液压马达的数量,达到最大限度的降低成本,提高系统可靠性和效率的目的。
所述的变排量液压马达采用对排量无极设定的变排量液压马达,具体为液压比例控制变排量液压马达或者电气比例控制变排量液压马达等。
所述的变排量液压马达采用将排量设置为Vgmin和Vgmax两档的变排量液压马达,具体为两点式液压控制变排量液压马达或者电子两点式控制变排量液压马达等,
本发明控制原理如下:
1)首先,根据实际工程负载确定系统达到最高设计转速所需马达的总排量为V,定排量液压马达最大排量为Vgmax,变排量液压马达的最大排量为Vgmax′,掘进机刀盘设计要求中的马达总数量为n,n表示变排量液压马达组、定排量液压马达组中的所有马达的总数;
2)接着,确定所有马达工作在最大排量下需要的个数为
Figure PCTCN2016111296-appb-000006
3)然后,x整数部分的数值为m,确定定排量液压马达的数量小于或者等于m,在满足设计转速要求的前提下,尽量多采用定排量液压马达并且尽量减少变排量液压马达的数量,以达到最优选择,因此确定最优定排量液压马达的数量为m,则变排量液压马达数量确定为n-m,其需要的总排量为(x-m)·Vgmax,分到每一个变排量液压马达的排量为
Figure PCTCN2016111296-appb-000007
变排量液压马达的排量范围为
Figure PCTCN2016111296-appb-000008
至此,定排量液压马达数量为m,变排量液压马达的数量为n-m,变排量液压马达的排量范围为0~Vgmax,变排量液压马达的排量范围为
Figure PCTCN2016111296-appb-000009
即是确定了变排量液压马达排量的控制初始值和终止值。
本发明与背景技术相比具有的有益效果是:
在保证提供给刀盘的转速可调节,转速范围满足需求的条件下,由于将定排量液压马达引入系统且定排量液压马达具有成本低,可靠性高及输入精度高的特点,
所以本液压系统提高了系统的可靠性和控制精度,降低了工程成本;
同时,本系统灵活性较高,可以根据工程需求灵活的选用定排量液压马达和变排量液压马达的组合方式,增加了隧道掘进机刀盘系统的工程适用性。
附图说明
图1是本发明的变排量液压马达、定排量液压马达的组合系统的原理示意图;
图2是本发明的变排量液压马达、定排量液压马达的组合系统添加马达集中式冲洗装置的原理示意图;
图3是本发明变排量液压马达可选类型的HD型液压比例控制变排量液压马达原理示意图;
图4是本发明变排量液压马达可选类型的HD压力控制型液压比例控制变排量液压马达原理示意图;
图5是本发明变排量液压马达可选类型的EP型电气比例控制变排量液压马达原理示意图;
图6是本发明变排量液压马达可选类型的EP压力控制型电气比例控制变排量液压马达原理示意图;
图7是本发明变排量液压马达可选类型的HZ两点式液压控制变排量液压马达原理示意图;
图8是本发明变排量液压马达可选类型的EZ电子两点式控制变排量液压马达原理示意图。
图中:E1、E2、…,Ee均为变排量液压马达,F1、F2、…Ff均为定排量液压马达,G1…Gg均为变排量液压泵,1、节流阀,2、调速阀,3、蓄能器,4二位三通阀。
具体实施方式
下面结合附图和实施例对本发明做进一步的说明。
如图1所示,本发明包括e个变排量液压马达E1、E2、……、Ee,f个定排量液压马达F1、F2、……、Ff,g个变排量液压泵G1、……、Gg和主油路A、B,变排量液压马达E1的油口B11接入主油路B,油口A11接入主油路A;变排量液压马达E2的油口B12接入主油路B,油口A12接入主油路A;变排量液压马达Ee的油口B1e接入主油路B,油口A1e接入主油路A。需要说明的是,此处的变排量液压马达的数量e根据方法确定,图中给出省略画法,并用下标B11到B1e表示变排量液压马达的数量为e,而非确定值,每个变排量液压马达均连接至主油路A和B。定排量液压马达F1的油口B21接入主油路B,油口A21接入主油路A;定排量液压马达F2的油口B22接入主油路B,油口A22接入主油路A;定排量液压马达Ff的油口B2f接入主油路B,油口A2f接入主油路A。需要说明的是,此处的定排量液压马达的数量f根据方法确定,图中给出省略画法,并用下标B21到B2f表示定排量液压马达的数量为f,而非确定值, 每个定排量液压马达均连接至主油路A和B。变排量液压泵G1的油口PB1接入主油路B,油口PA2接入主油路A;变排量液压泵Gg的油口PBg接入主油路B,油口PAg接入主油路A。需要说明的是,此处的变排量液压泵的数量g根据实际要求而确定的,所以图中给出省略画法,并用下标PB1到PBg表示变排量液压泵的数量为g,而非确定值,每个变排量液压泵均连接至主油路A和B。
变排量液压马达E1、E2、……、Ee可以选择多种类型,图3到图8列出了部分可选类型。图3所示为HD型液压比例控制变排量液压马达,图4所示为HD.D型固定设置的压力控制的液压比例控制变排量液压马达,图5所示为EP型电气比例控制变排量液压马达,图6所示为EP.D型固定设置的压力控制的电气比例控制变排量液压马达,图7所示为HZ型两点式液压控制变排量液压马达,图8所示为EZ型电子两点式控制变排量液压马达。需要说明的是,此处列出的变排量液压马达类型只是众多变排量液压马达中的几种类型,本发明也涉及其他类型的变排量液压马达。
图2所示为具体实施在变排量液压马达、定排量液压马达的组合系统添加马达集中式冲洗装置的原理图示意,马达集中式冲洗装置连接在变排量液压马达组、定排量液压马达组和主油路之间,包括调速阀2、蓄能器3和二位三通阀4,二位三通阀4的P口接主油路的油路B,T口接主油路的油路A,二位三通阀4的A口经调速阀2与蓄能器3连接,通过调速阀2调节油液的流速,蓄能器3分别经节流阀1连接到变排量液压马达组和定排量液压马达组的马达壳体中,对马达轴承进行冲洗和降温,冲洗降温后的油液流回油箱。为防止由于刀盘制动过程导致背压侧油压过大引起冲洗流量出现峰值,在油液通过调速阀2进入马达之前的油路中接入蓄能器3。
本发明的实施例及其实施过程如下:
实施例1
假设图1系统根据实际工程负载及其他限定条件确定需要的马达总数量n=8个,所需要的马达的总排量V=2200cm3,定排量液压马达和变排量液压马达的最大排量为Vgmax=500cm3。则所有马达工作在最大排量下需要的个数为
Figure PCTCN2016111296-appb-000010
则定排量液压马达的数量应小于等于4,应用最优原则,即尽量多使用定排量液压马达少使用变排量液压马达,取最大值4,即定排量液压马达的数量m=4,变排量液压马达的数量为n-m=8-4=4个,变排量液压马达 需要提供的总排量为(x-m)·Vgmax=(4.4-4)·Vgmax=0.4·Vgmax=200cm3,每一个变排量液压马达的最小排量为
Figure PCTCN2016111296-appb-000011
至此,确定了定排量液压马达的数量为4个,变排量液压马达的数量为4个,变排量液压马达的排量范围为50cm3~500cm3
实施例2
假设图1系统根据实际工程负载及其他限定条件确定需要的马达总数量n=9个,所需要的马达的总排量V=2475cm3,定排量液压马达和变排量液压马达的最大排量为Vgmax=500cm3。则所有马达工作在最大排量下需要的个数为
Figure PCTCN2016111296-appb-000012
则定排量液压马达的数量应小于等于4,应用最优原则,即尽量多使用定排量液压马达少使用变排量液压马达,取最大值4,即定排量液压马达的数量m=4,变排量液压马达的数量为n-m=9-4=5个,变排量液压马达需要提供的总排量为(x-m)·Vgmax=(4.95-4)·Vgmax=0.95·Vgmax=475cm3,每一个变排量液压马达的最小排量为
Figure PCTCN2016111296-appb-000013
至此,确定了定排量液压马达的数量为4个,变排量液压马达的数量为5个,变排量液压马达的排量范围为95cm3~500cm3
实施例3
假设图1系统根据实际工程负载及其他限定条件确定需要的马达总数量n=7个,所需要的马达的总排量V=2000cm3,定排量液压马达和变排量液压马达的最大排量为Vgmax=500cm3。则所有马达工作在最大排量下需要的个数为
Figure PCTCN2016111296-appb-000014
则定排量液压马达的数量应小于等于4,应用最优原则,即尽量多使用定排量液压马达少使用变排量液压马达,取最大值4,即定排量液压马达的数量m=4,变排量液压马达的数量为n-m=7-4=3个,变排量液压马达 需要提供的总排量为(x-m)·Vgmax=(4-4)·Vgmax=0·Vgmax=0,每一个变排量液压马达的最小排量为
Figure PCTCN2016111296-appb-000015
至此,确定了定排量液压马达的数量为4个,变排量液压马达的数量为3个,变排量液压马达的排量范围为0cm3~500cm3
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:包括变排量液压马达组、定排量液压马达组和变排量液压泵组,变排量液压马达组、定排量液压马达组和变排量液压泵组均接入到掘进机刀盘系统的主油路中,变排量液压泵组输入流量到主油路,变排量液压马达组和定排量液压马达组从主油路得到流量。
  2. 根据权利要求1所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:以定排量液压马达和变排量液压马达组合方式构建系统,并以排量组合方式设定定排量液压马达组和变排量液压马达组的排量,由两个马达组的马达排量和泵组的泵排量决定输出给掘进机刀盘的转速。
  3. 根据权利要求1或2所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:所述的变排量液压马达组包括多个并联连接到主油路的变排量液压马达,每个变排量液压马达的两端分别接入到主油路的两路,变排量液压马达组中的各个变排量液压马达同时或分别控制。
  4. 根据权利要求1或2所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:所述的定排量液压马达组包括多个并联连接到主油路的定排量液压马达,每个定排量液压马达的两端分别接入到主油路的两路。
  5. 根据权利要求1-4任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:所述的定排量液压马达组中定排量液压马达的总数取为以下公式计算得到的马达个数x的整数部分m,并且定排量液压马达排量的最大值为Vg max
    Figure PCTCN2016111296-appb-100001
    其中,Vg max表示定排量液压马达自身的最大排量,V为根据实际工程负载确定系统达到最高设计转速所需马达的总排量;
    所述的变排量液压马达组中的变排量液压马达的总数为n-m,n为掘进机系统设计要求中的马达总数量,并且变排量液压马达排量的设计最小值为
    Figure PCTCN2016111296-appb-100002
    设计最大值为Vg max′,Vg max′表示变排量液压马达自身的最大排量。
  6. 根据权利要求1-5任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:所述的变排量液压马达采用对排量无极设定的变排量液 压马达,具体为液压比例控制变排量液压马达或者电气比例控制变排量液压马达等;
  7. 根据权利要求1-5任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:所述的变排量液压马达采用将排量设置为Vg min和Vg max两档的变排量液压马达,具体为两点式液压控制变排量液压马达或者电子两点式控制变排量液压马达等。
  8. 根据权利要求1-7任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统,其特征在于:还包括马达集中式冲洗装置,马达集中式冲洗装置连接在变排量液压马达组、定排量液压马达组和主油路之间,包括调速阀(2)、蓄能器(3)和二位三通阀(4),二位三通阀(4)的P口接主油路的油路B,T口接主油路的油路A,二位三通阀(4)的A口经调速阀(2)与蓄能器(3)连接,通过调速阀(2)调节油液的流速,通过调速阀(2)的油液经节流阀(1)连接到变排量液压马达组和定排量液压马达组的马达壳体中,对马达轴承进行冲洗和降温,冲洗降温后的油液流回油箱。
  9. 一种掘进机刀盘定变排量组合液压马达驱动系统的控制方法,其特征在于:以定排量液压马达和变排量液压马达组合方式连接到掘进机刀盘系统的主油路中以构建掘进机刀盘液压驱动系统,并以特定排量组合方式设定定排量液压马达和变排量液压马达的排量,由定排量液压马达和变排量液压马达的马达排量以及变排量液压泵的泵排量控制掘进机刀盘转速。
  10. 根据权利要求9所述的一种掘进机刀盘定变排量组合液压马达驱动系统的控制方法,其特征在于:所述的特定排量组合方式具体如下:
    首先根据实际工程负载确定系统达到最高设计转速所需马达的总排量为V,在掘进机刀盘系统工作在最大排量下,采用以下公式获得所有马达均采用定排量液压马达工作时所需要的马达个数x为:
    Figure PCTCN2016111296-appb-100003
    其中,Vg max表示定排量液压马达自身的最大排量;
    取个数x的整数部分m作为定排量液压马达组中定排量液压马达的总数,取n-m为变排量液压马达组中变排量液压马达的总数,n为掘进机系统设计要求中的马达总数量,n实际表示变排量液压马达组、定排量液压马达组中的所有马达的总数;
    并且针对变排量液压马达组,将其中每个变排量液压马达的排量的范围设 置为
    Figure PCTCN2016111296-appb-100004
    即将变排量液压马达排量的设计最小值设置为
    Figure PCTCN2016111296-appb-100005
    Vg max′表示变排量液压马达自身的最大排量。
  11. 根据权利要求9-10任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统的控制方法,其特征在于:所述的变排量液压马达采用对排量无极设定的变排量液压马达,具体为液压比例控制变排量液压马达或者电气比例控制变排量液压马达等。
  12. 根据权利要求9-10任一所述的一种掘进机刀盘定变排量组合液压马达驱动系统的控制方法,其特征在于:所述的变排量液压马达采用将排量设置为Vg min和Vg max两档的变排量液压马达,具体为两点式液压控制变排量液压马达或者电子两点式控制变排量液压马达等。
PCT/CN2016/111296 2016-12-21 2016-12-21 掘进机刀盘定变排量组合液压马达驱动系统及控制方法 WO2018112792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/111296 WO2018112792A1 (zh) 2016-12-21 2016-12-21 掘进机刀盘定变排量组合液压马达驱动系统及控制方法
US16/335,667 US11028691B2 (en) 2016-12-21 2016-12-21 Drive system with both fixed-displacement hydraulic motors and variable-displacement hydraulic motors for cutter head of boring machine and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/111296 WO2018112792A1 (zh) 2016-12-21 2016-12-21 掘进机刀盘定变排量组合液压马达驱动系统及控制方法

Publications (1)

Publication Number Publication Date
WO2018112792A1 true WO2018112792A1 (zh) 2018-06-28

Family

ID=62624564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111296 WO2018112792A1 (zh) 2016-12-21 2016-12-21 掘进机刀盘定变排量组合液压马达驱动系统及控制方法

Country Status (2)

Country Link
US (1) US11028691B2 (zh)
WO (1) WO2018112792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538231A (zh) * 2018-12-17 2019-03-29 中铁工程装备集团隧道设备制造有限公司 悬臂掘进机数字智能化液压系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159992A (en) * 1989-03-09 1992-11-03 O&K Orenstein & Koppel Aktiengesellschaft Infinitely variable hydrostatic transmission drive
CN201288567Y (zh) * 2008-11-11 2009-08-12 浙江大学 一种拓宽调速范围的盾构刀盘液压控制系统
CN101503960A (zh) * 2009-03-02 2009-08-12 浙江大学 采用多泵组合驱动的盾构刀盘液压系统
CN201372799Y (zh) * 2009-03-02 2009-12-30 浙江大学 一种盾构刀盘液压装置
CN106837363A (zh) * 2016-12-21 2017-06-13 浙江大学 掘进机刀盘定变排量组合液压马达驱动系统及控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957791A1 (de) * 1999-12-01 2001-06-07 Guenter W Klemm Hydraulischer Bohrantrieb
JP5097883B2 (ja) * 2004-09-02 2012-12-12 株式会社 神崎高級工機製作所 油圧駆動車両
US7640998B2 (en) * 2007-03-06 2010-01-05 Howell Jr Richard L Excavation apparatus
US8118113B2 (en) * 2009-03-26 2012-02-21 Longyear Tm, Inc. Hydraulic control system for drilling systems
US9005079B2 (en) * 2012-11-19 2015-04-14 Tigercat Industries Inc. Drive transmission system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159992A (en) * 1989-03-09 1992-11-03 O&K Orenstein & Koppel Aktiengesellschaft Infinitely variable hydrostatic transmission drive
CN201288567Y (zh) * 2008-11-11 2009-08-12 浙江大学 一种拓宽调速范围的盾构刀盘液压控制系统
CN101503960A (zh) * 2009-03-02 2009-08-12 浙江大学 采用多泵组合驱动的盾构刀盘液压系统
CN201372799Y (zh) * 2009-03-02 2009-12-30 浙江大学 一种盾构刀盘液压装置
CN106837363A (zh) * 2016-12-21 2017-06-13 浙江大学 掘进机刀盘定变排量组合液压马达驱动系统及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109538231A (zh) * 2018-12-17 2019-03-29 中铁工程装备集团隧道设备制造有限公司 悬臂掘进机数字智能化液压系统及控制方法
CN109538231B (zh) * 2018-12-17 2023-11-21 中铁工程装备集团隧道设备制造有限公司 悬臂掘进机数字智能化液压系统及控制方法

Also Published As

Publication number Publication date
US20200032650A1 (en) 2020-01-30
US11028691B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
CN103807223B (zh) 单液压马达双回路控制系统
CN101408107B (zh) 采用分区控制的节能型盾构推进液压系统
CN101864965B (zh) 压力流量复合同步控制的节能型盾构推进系统
CN102425426B (zh) 推进进油口侧安装蓄能器的节能盾构液压推进系统
WO2016074509A1 (zh) 全液压钻式采煤机液压控制系统
CN101408108B (zh) 采用马达串并联混合驱动的盾构刀盘液压系统
CN108953255B (zh) 一种矿用机载锚钻装置全液压自动控制系统
CN108223467B (zh) 用于全液压履带式反循环工程钻机的液压系统
CN102996138B (zh) 集除尘防突于一体掘进机的液压控制系统
CN110030304B (zh) 一种大惯量负载的协同驱动及无源主动制动方法
WO2018112792A1 (zh) 掘进机刀盘定变排量组合液压马达驱动系统及控制方法
CN203022764U (zh) 集除尘防突于一体掘进机的液压控制系统
CN209586823U (zh) 一种盾构掘进机液压推进系统
CN106837363B (zh) 掘进机刀盘定变排量组合液压马达驱动系统及控制方法
CN204754960U (zh) 一种履带式掘进机超前支护液压装置
CN201372799Y (zh) 一种盾构刀盘液压装置
CN101858339B (zh) 多排油口轴向柱塞液压泵
CN209586824U (zh) 一种盾构掘进机双活塞杆对称液压油缸串联连接推进系统
CN113803329B (zh) 一种用于盾构机的慢速推进液压系统及盾构机
CN204003679U (zh) 一种隧道掘进机扭矩负载模拟液压系统
CN211259165U (zh) 一种新型柔臂tbm推进液压系统
CN209875591U (zh) 单活塞杆对称液压油缸串联连接的盾构掘进机推进系统
CN212202675U (zh) 液压控制系统及旋挖钻机
CN211252203U (zh) 用于工程机械行走的液压系统
CN209586861U (zh) 盾构掘进机串联连接双活塞杆对称液压油缸推进系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924545

Country of ref document: EP

Kind code of ref document: A1