WO2018110399A1 - Photoacid generator and resin composition for photolithography - Google Patents

Photoacid generator and resin composition for photolithography Download PDF

Info

Publication number
WO2018110399A1
WO2018110399A1 PCT/JP2017/043929 JP2017043929W WO2018110399A1 WO 2018110399 A1 WO2018110399 A1 WO 2018110399A1 JP 2017043929 W JP2017043929 W JP 2017043929W WO 2018110399 A1 WO2018110399 A1 WO 2018110399A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoacid generator
parts
acid
resin
Prior art date
Application number
PCT/JP2017/043929
Other languages
French (fr)
Japanese (ja)
Inventor
友治 中村
智幸 柴垣
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to JP2018556616A priority Critical patent/JP6591699B2/en
Priority to KR1020197006989A priority patent/KR102438543B1/en
Publication of WO2018110399A1 publication Critical patent/WO2018110399A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide

Definitions

  • the present invention relates to a photoacid generator and a resin composition for photolithography. More specifically, the present invention relates to a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays), and a photolithographic resin composition containing the nonionic photoacid generator.
  • a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays)
  • i rays ultraviolet rays
  • a photolithography process using i-line having a wavelength of 365 nm as exposure light has been widely used.
  • a resist material used in the photolithography process for example, a resin composition containing a polymer having a tert-butyl ester group of carboxylic acid or a tert-butyl carbonate group of phenol and a photoacid generator is used. Yes.
  • Nonionic photoacid generators such as triarylsulfonium salts (Patent Document 1), phenacylsulfonium salts having a naphthalene skeleton (Patent Document 2), and acid generators having an oxime sulfonate structure (Patent Documents) 3)
  • Nonionic acid generators such as acid generators having a sulfonyldiazomethane structure (Patent Document 4) are known.
  • the tert-butyl ester group or tert-butyl carbonate group in the polymer is dissociated by the strong acid to form a carboxylic acid or a phenolic hydroxyl group. It becomes readily soluble in an alkaline developer. Pattern formation is performed using this phenomenon.
  • Ion photoacid generators lack compatibility with hydrophobic materials containing these alicyclic skeletons and fluorine-containing skeletons, so they exhibit sufficient resist performance due to phase separation in resist materials. There is a problem that the pattern cannot be formed.
  • the nonionic photoacid generator has good compatibility with the hydrophobic material, but there is a problem that scum is generated in the exposed portion in the alkali development step.
  • the sensitivity to i-line is insufficient and a problem that the allowance is narrow because it is decomposed by post-exposure heating (PEB) because heat resistance is insufficient.
  • PEB post-exposure heating
  • nonionic photoacid generator having high photosensitivity to i-line, excellent heat resistance stability, solubility in hydrophobic materials and excellent alkali developability.
  • the present invention provides a nonionic photoacid generator (A) represented by the following general formula (1); and a resin composition for photolithography comprising the nonionic photoacid generator (A) It is a thing (Q).
  • X is a monovalent organic group that can be eliminated by the action of an acid and substituted with a hydrogen atom
  • Rf is a hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is fluorine. Which may be substituted with ]
  • the nonionic photoacid generator (A) of the present invention is nonionic, it is more compatible with a hydrophobic material than the ionic acid generator. Moreover, since it has a naphthalimide skeleton, it has excellent heat stability and can be subjected to post-exposure heating (PEB). Further, since it has a substituent on the naphthalimide skeleton, it can act on the electronic state of naphthalene ring and has a high molar extinction coefficient for i-line. Thereby, by irradiating with i-line, the nonionic photoacid generator (A) can be easily decomposed to generate sulfonic acid which is a strong acid. Further, since X can be eliminated by the action of an acid and replaced with a hydrogen atom, only the exposed area has excellent affinity for an alkaline developer, and scum is less generated in the exposed area.
  • the resin composition for photolithography (Q) containing the nonionic photoacid generator (A) of the present invention is highly sensitive to i-line and has an allowance in post-exposure heating (PEB). Excellent workability because it is wide. Furthermore, the resin composition for photolithography (Q) of the present invention generates little scum in the alkali development step and can provide a good resist pattern.
  • the nonionic acid generator (A) of the present invention is represented by the following general formula (1).
  • X is a monovalent organic group that can be removed by the action of an acid and substituted with a hydrogen atom
  • Rf is a hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is fluorine. Which may be substituted).
  • the monovalent organic group that can be eliminated by the action of an acid of X and substituted with a hydrogen atom is represented by a 1-branched alkyl group, a silyl group, an acyl group, an alkyloxycarbonyl group, and the following general formula (2). Groups.
  • R 1 represents a hydrocarbon group having 1 to 10 carbon atoms
  • R 2 and R 3 represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 1 and R 2 or R 3 are They may combine to form a ring structure.
  • Examples of the 1-branched alkyl group include isopropyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like.
  • silyl group examples include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, methyldiisopropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, methyldi-tert- Examples include tricarbylsilyl groups such as butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
  • Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioroyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group
  • Examples of the group represented by the general formula (2) include methoxymethyl group, ethoxymethyl group, benzyloxymethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, 1-ethoxypropyl group, 1-propoxyethyl. Group, 1-phenoxyethyl group, 1-benzyloxyethyl group, tetrahydropyranyl group, tetrahydrofuranyl group and the like.
  • an alkyloxycarbonyl group represented by the following general formula (3) is preferable, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a 2-ethylhexyloxycarbonyl group, a tert-butoxycarbonyl group. Groups and the like.
  • R 4 , R 5 and R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, which may have a ring structure or a branched structure, A ring structure may be formed.
  • a silyl group an alkyloxycarbonyl group and a group represented by the general formula (2) More preferably an alkyloxycarbonyl group, and particularly preferably a tert-butoxycarbonyl group and a 2-ethylhexyloxycarbonyl group.
  • Rf is a hydrocarbon group having 1 to 18 carbon atoms (part or all of hydrogen may be substituted with fluorine).
  • the hydrocarbon group having 1 to 18 carbon atoms may have a substituent.
  • Examples of the hydrocarbon group having 1 to 18 carbon atoms include an alkyl group, an aryl group, and a heterocyclic hydrocarbon group.
  • alkyl group examples include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl and n-octadecyl, etc.), branched chain alkyl groups having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, isooctadecyl, etc.), and carbon And a cycloalkyl group having a number of 3 to 18 (such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-
  • aryl group examples include aryl groups having 6 to 10 carbon atoms (such as phenyl, tolyl, dimethylphenyl, naphthyl and pentafluorophenyl).
  • heterocyclic hydrocarbon group examples include a heterocyclic hydrocarbon group having 4 to 18 carbon atoms (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, quinolyl.
  • Examples of the group in which part or all of hydrogen of the hydrocarbon group having 1 to 18 carbon atoms is substituted with fluorine include a linear alkyl group (Rf1) in which a hydrogen atom represented by CxFy is substituted with a fluorine atom, a branched chain Examples include an alkyl group (Rf2), a cycloalkyl group (Rf3), and an aryl group (Rf4).
  • Rf a linear alkyl group (Rf1) in which a hydrogen atom is substituted with a fluorine atom is preferable from the viewpoints of decomposability of a sulfonic acid ester moiety, deprotection of a photoresist, and availability of raw materials.
  • nonionic photoacid generators represented by the general formula (1) preferred specific examples are shown below.
  • the method for synthesizing the nonionic photoacid generator (A) of the present invention is not particularly limited as long as the target product can be synthesized.
  • the target product can be synthesized.
  • 3-hydroxy-1,8-naphthalic anhydride and silyl chloride, 3,4- Hydroxylamine is reacted with a precursor (P1) obtained by reacting dihydro-2H-pyran or di-tert-butyl dicarbonate. It can then be synthesized by reacting the corresponding sulfonic anhydride or sulfonic acid chloride.
  • reaction conditions between 3-hydroxy-1,8-naphthalic anhydride and silyl chloride, 3,4-dihydro-2H-pyran, di-tert-butyl dicarbonate, etc. are as follows: 1 at a temperature of ⁇ 30 to 80 ° C. It is preferable that a reaction solvent, a base catalyst, and an acid catalyst are used in order to complete the reaction promptly with a good yield.
  • the reaction solvent is not particularly limited, but acetonitrile, tetrahydrofuran, dichloromethane, chloroform and the like are preferable.
  • the base catalyst for example, pyridine, methylmorpholine, dimethylaminopyridine, 2,6-lutidine, triethylamine, imidazole, DBU, sodium hydride and the like are preferable, and as the acid catalyst, p-toluenesulfonic acid can be mentioned. 1 to 100 mol% is added to 3-hydroxy-1,8-naphthalic anhydride. The molar ratio of 3-hydroxy-1,8-naphthalic anhydride to silyl chloride, 3,4-dihydro-2H-pyran or di-tert-butyl dicarbonate is usually 1: 1 to 1: 2. .
  • the nonionic photoacid generator (A) of the present invention obtained by reacting the precursor (P1) with hydroxylamine and then reacting with the corresponding sulfonic acid anhydride or sulfonic acid chloride is suitable as required. It can be purified by recrystallization from an organic solvent.
  • the nonionic photoacid generator (A) of the present invention may be dissolved in advance in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
  • Solvents include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.); esters (ethyl acetate, ethyl lactate, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -Valerolactone and ⁇ -caprolactone, etc.); ethers (ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether, etc.); and ether esters ( Ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate And diethylene glycol monobutyl ether acetate, etc.) and the like.
  • the proportion of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight with respect to 100 parts by weight of the photoacid generator of the present invention.
  • the resin composition for photolithography (Q) of the present invention contains the nonionic photoacid generator (A) as an essential component, the exposed portion and the unexposed portion are exposed by performing ultraviolet irradiation and post-exposure heating (PEB). Difference in solubility in the developer of the part.
  • a nonionic photoacid generator (A) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the resin composition (Q) for photolithography include a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid.
  • QN negative chemical amplification resin
  • QP positive chemical amplification resin
  • a mixture with a generator (A) is mentioned.
  • the negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a crosslinking agent (QN2).
  • the phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group.
  • a novolak resin a polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene Polymer, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation resin, cresol-xylylene glycol condensation resin, polyimide containing phenolic hydroxyl group, polyamic containing phenolic hydroxyl group Acid, phenol-dicyclopentadiene condensation resin and the like are used.
  • novolak resin polyhydroxystyrene, copolymer of hydroxystyrene, copolymer of hydroxystyrene and styrene, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation Resins are preferred.
  • these phenolic hydroxyl group containing resin (QN1) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, ⁇ -naphthol, ⁇ -naphthol and the like.
  • aldehydes include formaldehyde, paraformaldehyde, ace
  • novolak resin examples include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like.
  • the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as a part of the component.
  • the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-hydroxyphenyl) -1- [4
  • the content ratio of the phenolic low molecular weight compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less, more preferably, based on 100% by weight of the phenolic hydroxyl group-containing resin (QN1). 1 to 30% by weight.
  • the weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, more preferably 2000 from the viewpoint of the resolution, thermal shock resistance, heat resistance, residual film ratio, etc. of the obtained insulating film. About 20,000.
  • the content of the phenolic hydroxyl group-containing resin (QN1) in the negative chemically amplified resin (QN) is 30 to 90% by weight when the total composition excluding the solvent is 100% by weight. Is more preferable, and 40 to 80% by weight is more preferable.
  • the content of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
  • the crosslinking agent (QN2) is not particularly limited as long as it is a compound capable of crosslinking the phenolic hydroxyl group-containing resin (QN1) with a strong acid generated from the nonionic photoacid generator (A).
  • crosslinking agent (QN2) examples include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol S epoxy compounds, novolac resin epoxy compounds, resole resin epoxy compounds, poly (hydroxystyrene) epoxy compounds, and oxetanes.
  • methylol group-containing phenol compounds methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds
  • methoxymethyl group-containing melamine compounds for example, hexamethoxymethyl melamine
  • methoxymethyl group-containing glycoluril compounds methoxymethyl group-containing urea compounds
  • the methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Cyanamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Cyanamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
  • the content of the crosslinking agent (QN2) is usually 5 to 5 with respect to all acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoints of reduction of the remaining film ratio, pattern meandering and swelling, and developability.
  • the amount is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
  • a positive chemical amplification resin As a positive chemical amplification resin (QP), a part of hydrogen atoms of acidic functional groups in an alkali-soluble resin (QP1) containing one or more acidic functional groups such as phenolic hydroxyl group, carboxyl group, or sulfonyl group Or the protecting group introduction
  • transduction resin which substituted all by the acid dissociable group is mentioned.
  • the acid dissociable group is a group that can be dissociated in the presence of a strong acid generated from the nonionic photoacid generator (A).
  • the protecting group-introduced resin (QP2) is itself insoluble in alkali or hardly soluble in alkali.
  • alkali-soluble resin examples include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
  • the phenolic hydroxyl group-containing resin (QP11) the same one as the hydroxyl group-containing resin (QN1) can be used.
  • the carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group.
  • the carboxyl group-containing vinyl monomer (Ba) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are vinyl-polymerized. Can be obtained.
  • carboxyl group-containing vinyl monomer (Ba) examples include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.], unsaturated polyvalent (2- to 4-valent) carboxylic acids [(anhydrous) maleic acid, and the like. Acid, itaconic acid, fumaric acid, citraconic acid and the like], unsaturated polyvalent carboxylic acid alkyl (alkyl group having 1 to 10 carbon atoms) ester [maleic acid monoalkyl ester, fumaric acid monoalkyl ester, citraconic acid monoalkyl ester, etc.
  • salts thereof [alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, etc.), amine salts, ammonium salts, etc.].
  • unsaturated monocarboxylic acids are preferred from the viewpoint of polymerizability and availability, and (meth) acrylic acid is more preferred.
  • hydrophobic group-containing vinyl monomer (Bb) examples include (meth) acrylic acid ester (Bb1) and aromatic hydrocarbon monomer (Bb2).
  • Examples of the (meth) acrylic acid ester (Bb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, Isopropyl (meth) acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, etc.] and alicyclic group-containing (meth) acrylate [dicyclopentanyl (meth) acrylate, Sidiclopentenyl (meth) acrylate, isobornyl (meth) acrylate, etc.].
  • alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group for example, methyl (meth) acrylate, ethyl (meth)
  • aromatic hydrocarbon monomer (Bb2) examples include hydrocarbon monomers having a styrene skeleton [for example, styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benzyl styrene] and vinyl naphthalene.
  • hydrocarbon monomers having a styrene skeleton for example, styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benz
  • the charged monomer molar ratio of (Ba) / (Bb) in the carboxyl group-containing resin (QP12) is usually from 10 to 100/0 to 90, preferably from 10 to 80/20 to 90, more preferably from the viewpoint of developability. 25-85 / 15-75.
  • the sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group.
  • a sulfonic acid group-containing vinyl monomer (Bc) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are used. Obtained by vinyl polymerization.
  • the hydrophobic group-containing vinyl monomer (Bb) the same ones as described above can be used.
  • Examples of the sulfonic acid group-containing vinyl monomer (Bc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ⁇ -methyl styrene sulfonic acid, 2- (meth) acryloylamide-2-methylpropane sulfonic acid. And salts thereof.
  • Examples of the salt include alkali metal (such as sodium and potassium) salts, alkaline earth metal (such as calcium and magnesium) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
  • the charged monomer molar ratio of (Bc) / (Bb) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90, more preferably from the viewpoint of developability. Is 25 to 85/15 to 75.
  • the preferred range of the HLB value of the alkali-soluble resin (QP1) varies depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
  • the HLB value is 4 or more, developability is further improved when developing, and when it is 19 or less, the water resistance of the cured product is further improved.
  • the HLB value in the present invention is an HLB value according to the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio between the organic value and the inorganic value of the organic compound. . HLB ⁇ 10 ⁇ inorganic / organic
  • the inorganic value and the organic value are described on page 501 of the document “Synthesis of Surfactant and its Application” (published by Tsuji Shoten, written by Oda, Teramura); It is described in detail on page 198 of “Introduction to New Surfactants” (Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd.).
  • Examples of the acid dissociable group in the protecting group-introduced resin (QP2) include a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a germyl group, an alkoxycarbonyl group, an acyl group, and a cyclic acid.
  • Examples include a dissociable group. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the 1-substituted methyl group include methoxymethyl group, methylthiomethyl group, ethoxymethyl group, ethylthiomethyl group, methoxyethoxymethyl group, benzyloxymethyl group, benzylthiomethyl group, phenacyl group, bromophenacyl group, methoxyphena Sil group, methylthiophenacyl group, ⁇ -methylphenacyl group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl Group, ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, n-propoxycarbonylmethyl group, i-propoxycarbonylmethyl group, n-butoxycarbonylmethyl group, tert-
  • Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl.
  • Examples of the 1-branched alkyl group include i-propyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like. it can.
  • silyl group examples include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl group, tert-butyl.
  • examples thereof include tricarbylsilyl groups such as dimethylsilyl group, methyldi-tert-butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
  • germyl group examples include trimethylgermyl group, ethyldimethylgermyl group, methyldiethylgermyl group, triethylgermyl group, isopropyldimethylgermyl group, methyldi-i-propylgermyl group, and tri-i-propylgel.
  • Tricarbylgermyl groups such as mil group, tert-butyldimethylgermyl group, methyldi-tert-butylgermyl group, tri-tert-butylgermyl group, phenyldimethylgermyl group, methyldiphenylgermyl group, triphenylgermyl group, etc. Can be mentioned.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, an i-propoxycarbonyl group, a tert-butoxycarbonyl group, and the like.
  • Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioroyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group
  • cyclic acid dissociable group examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group.
  • tert-butyl group benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group, a tetrahydrofuranyl group, and the like are preferable.
  • Introduction rate of acid-dissociable groups in protecting group-introducing resin (QP2) ⁇ Ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in protecting group-introducing resin (QP2) ⁇ Cannot be generally defined by the type of acid-dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
  • the polystyrene-converted weight average molecular weight (hereinafter referred to as “Mw”) of the protecting group-introduced resin (QP2) measured by gel permeation chromatography (GPC) is preferably 1,000 to 150,000, more preferably 3, 000 to 100,000.
  • the ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 to 10, preferably 1-5.
  • the content of the nonionic photoacid generator (A) based on the weight of the solid content of the resin composition for photography (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. %, Particularly preferably 0.05 to 7% by weight. If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble part in the alkali developer can be further improved.
  • the resist using the resin composition for photography (Q) of the present invention is prepared by, for example, applying a resin solution dissolved in a predetermined organic solvent (dissolved and dispersed when inorganic fine particles are included) to a spin coat, curtain coat, roll It can be formed by drying the solvent by heating or hot air blowing after applying to the substrate using a known method such as coating, spray coating or screen printing.
  • the organic solvent for dissolving the resin composition for photography (Q) is not particularly limited as long as the resin composition can be dissolved and the resin solution can be adjusted to physical properties (viscosity, etc.) applicable to spin coating or the like.
  • known solvents such as N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
  • these solvents those having a boiling point of 200 ° C.
  • the amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, more preferably based on the weight of the solid content of the resin composition for photography (Q). It is 40 to 900% by weight, particularly preferably 50 to 800% by weight.
  • the drying condition of the resin solution after coating varies depending on the solvent used, but is preferably carried out at 50 to 2000 ° C. for 2 to 30 minutes, and the residual solvent amount of the resin composition for photography (Q) after drying ( Weight%) and the like.
  • the wiring pattern shape is irradiated with light. Then, after performing post-exposure heating (PEB), alkali development is performed to form a wiring pattern.
  • PEB post-exposure heating
  • actinic ray used for the light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the resin composition for photography (Q) of the present invention can be decomposed.
  • Actinic rays include low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high-pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiation device, X-ray irradiation device, laser (argon laser, dye laser, nitrogen laser, LED, helium Cadmium laser). Of these, high pressure mercury lamps and ultrahigh pressure mercury lamps are preferred.
  • the post-exposure heating (PEB) temperature is usually 40 to 200 ° C., preferably 50 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C., the deprotection reaction or the crosslinking reaction cannot be sufficiently performed. Therefore, there is not enough difference in solubility between the ultraviolet irradiated portion and the ultraviolet unirradiated portion, and a pattern cannot be formed. There is. When the heating time is usually less than 0.5 to 120 minutes, it is difficult to control the time and temperature, and when it is longer than 120 minutes, the productivity is lowered.
  • Examples of the alkali developing method include a method of dissolving and removing the wiring pattern shape using an alkali developer.
  • the alkali developer is not particularly limited as long as the solubility of the ultraviolet light irradiated portion and the ultraviolet light unirradiated portion of the resin composition for photography (Q) can be varied.
  • Examples of the alkali developer include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, sodium hydrogen carbonate, and a tetramethylammonium salt aqueous solution.
  • These alkaline developers may contain a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone and the like.
  • a developing method there are a dip method, a shower method, and a spray method using an alkali developer, and a spray method is preferable.
  • the temperature of the developer is preferably 25 to 40 ° C.
  • the development time is appropriately determined according to the resist thickness.
  • ⁇ Production Example 1> ⁇ Production Method of N-Hydroxy-3-tert-Butoxycarbonyloxy-1,8-Naphthalimide [Intermediate (1)]> Disperse 5.5 parts of 3-hydroxy-1,8-naphthalic anhydride (Tokyo Chemical Industry Co., Ltd.) and 5.9 parts di-tert-butyl dicarbonate (Tokyo Chemical Industry Co., Ltd.) in 32 parts of acetonitrile. Then, 2.2 parts of pyridine was added and stirred at 50 ° C. for 2 hours. After cooling to room temperature, it was poured into water and the precipitate was filtered off to obtain a white solid.
  • Example 1 ⁇ Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalimide trifluoromethanesulfonate [nonionic photoacid generator (A-1)]> 8.0 parts of N-hydroxy-3-tert-butoxycarbonyloxy-1,8-naphthalimide [Intermediate (1)] obtained in Production Example 1 is dispersed in 52 parts of dichloromethane to obtain 3.8 parts of pyridine. Then, 10.2 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower, and the mixture was stirred for 2 hours. The reaction mixture was poured into water while maintaining 0 ° C. and washed four times, and then dichloromethane was distilled off under reduced pressure to obtain 10.0 parts of the title compound [nonionic photoacid generator (A-1)]. Obtained.
  • Example 2 ⁇ Synthesis Method of 3-tert-Butoxycarbonyloxy-1,8-Naphthalimidopentafluoroethanesulfonate [Nonionic Photoacid Generator (A-2)]>
  • Example 1 10.2 parts of trifluoromethanesulfonic anhydride was changed to 7.9 parts of pentafluoroethanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), and the same operation as in Example 1 was performed. 11.1 parts of the title compound [nonionic photoacid generator (A-2)] were obtained.
  • Example 3 ⁇ Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalic acid imidoheptafluoropropane sulfonate [nonionic photoacid generator (A-3)]>
  • Example 1 10.2 parts of trifluoromethanesulfonic anhydride was changed to 9.7 parts of heptafluoropropanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), and the same operation as in Example 1 was performed. 12.2 parts of the title compound [nonionic photoacid generator (A-3)] were obtained.
  • Example 4 ⁇ Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalic acid imidononafluorobutanesulfonate [nonionic photoacid generator (A-4)]>
  • Example 1 10.2 parts of trifluoromethanesulfonic anhydride was changed to 11.6 parts of nonafluorobutanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.). 13.3 parts of the title compound [nonionic photoacid generator (A-4)] were obtained.
  • Example 5 ⁇ Synthesis Method of 3-tert-Butoxycarbonyloxy-1,8-Naphthalimide Imidopentafluorobenzenesulfonate [Nonionic Photoacid Generator (A-5)]>
  • Example 1 except that 10.2 parts of trifluoromethanesulfonic anhydride was changed to 9.7 parts of pentafluorobenzenesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), the same operation as in Example 1 was performed, 12.2 parts of the title compound [nonionic photoacid generator (A-5)] were obtained.
  • Example 7 ⁇ Synthesis of 3- (2-tetrahydropyranyl) oxy-1,8-naphthalic acid imide trifluoromethanesulfonate [nonionic photoacid generator (A-7)]> 7.6 parts of N-hydroxy-3- (2-tetrahydropyranyl) oxy-1,8-naphthalimide [Intermediate (3)] obtained in Production Example 3 is dispersed in 52 parts of dichloromethane to give pyridine 3 After adding 8 parts, 10.2 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower and stirred for 2 hours. The reaction solution was poured into water while maintaining 0 ° C. and washed four times, and then dichloromethane was distilled off under reduced pressure to obtain 9.7 parts of the title compound [nonionic photoacid generator (A-7)]. Obtained.
  • ⁇ Comparative example 2> ⁇ Synthesis Method of 3-Hydroxy-1,8-Naphthalimide Imidotrifluoromethanesulfonate [Nonionic Photoacid Generator (A'-2)]> 10.0 parts of 3-tert-butoxycarbonyloxy-1,8-naphthalimide trifluoromethanesulfonate [nonionic photoacid generator (A-1)] obtained in Example 1 was dissolved in 52 parts of dichloromethane. Then, 4.0 parts of trifluoromethanesulfonic acid was added dropwise and stirred at room temperature for 1 hour. The precipitate was filtered off from the reaction solution, washed with water and dried to obtain 7.9 parts of a nonionic photoacid generator (A′-2) represented by the following formula (5).
  • ⁇ Molar extinction coefficient> The synthesized photoacid generator was diluted to 0.25 mmol / L with acetonitrile, and the absorbance of a cell length of 1 cm was measured in the range of 200 nm to 500 nm using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2550). It was measured.
  • PGMEA resin solution of acetate
  • a resist having a film thickness of about 3 ⁇ m.
  • An ultraviolet ray irradiation device (OMW Corporation, HMW-661F-01) is used for this resist, and the wavelength is limited by an L-34 (Kenko Optical Co., Ltd. filter that cuts light of less than 340 nm) filter. A predetermined amount of light was exposed on the entire surface. The integrated exposure was measured at a wavelength of 365 nm. Subsequently, after performing post-exposure heating (PEB) for 10 minutes with a 120 ° C. normal air dryer, development was performed by immersing in a 0.5% potassium hydroxide solution for 30 seconds, followed by immediately washing with water and drying.
  • PEB post-exposure heating
  • the film thickness of the resist was measured using a shape measurement microscope (ultra-depth shape measurement microscope UK-8550, manufactured by Keyence Corporation).
  • the resist curability was evaluated according to the following criteria from the minimum exposure amount at which the change in resist film thickness before and after development was within 10%. ⁇ : minimum exposure amount 250 mJ / cm 2 or less ⁇ : Minimum exposure amount greater than 250mJ / cm 2, 500mJ / cm 2 or less ⁇ : Minimum exposure amount is greater than 500 mJ / cm 2
  • Thermal decomposition temperature Using the differential thermal / thermogravimetric simultaneous measurement device (TG / DTA6200, manufactured by SII), the synthesized photoacid generator was subjected to weight change from 30 ° C. to 500 ° C. under a temperature rising condition of 10 ° C./min. The point at which 5% weight was measured was determined as the thermal decomposition temperature.
  • ⁇ Alkali developability> Take 0.5 parts of the synthesized photoacid generator in a test tube, add 2.38% tetramethylammonium hydroxide aqueous solution to 100 parts, and then in an aqueous solution of tetramethylammonium hydroxide for 1 minute with an ultrasonic cleaner. Dispersed. Two dispersions of this photoacid generator were prepared for each dispersion, and only one of them was limited in wavelength by a filter that cuts light of less than 340 nm using an ultraviolet irradiation device (ECS-151U, manufactured by Eye Graphics). The irradiated ultraviolet light was irradiated at 100 mJ / cm 2 .
  • ECS-151U ultraviolet irradiation device
  • alkali developability was evaluated according to the following criteria. ⁇ : completely dissolved ⁇ : not completely dissolved and turbid ⁇ : not completely dissolved, and undissolved residue is deposited at the bottom of the test tube
  • the nonionic photoacid generators (A) of Examples 1 to 8 of the present invention have a molar extinction coefficient in the range of 500 to 10,000 and are excellent in resist curability. Further, it can be seen that the acid dissociable group is eliminated when irradiated with ultraviolet light, so that the polarity is increased and the alkali developability is excellent, so that the occurrence of scum is small. Moreover, it turns out that it has sufficient performance for using as a photoresist from the viewpoint of the solubility with respect to a solvent, and thermal decomposition temperature.
  • Comparative Example 1 composed of a naphthylimide skeleton having no substituent
  • the naphthyl skeletons are easily molecularly aligned with each other, and the crystallinity is high, so that the solubility in a solvent is too low.
  • Comparative Example 2 in which the hydroxyl group is not protected by the acid dissociable group, the resist curability and the solvent solubility are insufficient.
  • Comparative Example 3 of the ionic photoacid generator it can be seen that the resist curability is lowered because the dispersibility of the acid generator in the resist is low.
  • the nonionic photoacid generator (A) of the present invention has high photosensitivity to i-line and excellent alkali developability, so it is useful as a photolithography material for microfabrication represented by semiconductor manufacturing. It is.

Abstract

The objective of the present invention is to provide a non-ionic photoacid generator having high photosensitivity to an i-line, and excellent heat-resistance stability, solubility in hydrophobic materials, and alkali developability. The present invention is a non-ionic photoacid generator (A) characterized by being represented by formula (1). [In formula (1), X is a monovalent organic group that is desorbed by the action of an acid and can be substituted by a hydrogen atom, and Rf is a C1-18 hydrocarbon group (all or part of the hydrogen may be replaced by fluorine).]

Description

光酸発生剤及びフォトリソグラフィー用樹脂組成物Photoacid generator and resin composition for photolithography
 本発明は、光酸発生剤及びフォトリソグラフィー用樹脂組成物に関する。さらに詳しくは、紫外線(i線)を作用させて強酸を発生させるのに適する非イオン系光酸発生剤、及びそれを含有するフォトリソグラフィー用樹脂組成物に関する。 The present invention relates to a photoacid generator and a resin composition for photolithography. More specifically, the present invention relates to a nonionic photoacid generator suitable for generating a strong acid by the action of ultraviolet rays (i rays), and a photolithographic resin composition containing the nonionic photoacid generator.
 従来より、半導体の製造に代表される微細加工の分野では、露光光として波長365nmのi線を用いたフォトリソグラフィー工程が広く用いられている。
 フォトリソグラフィー工程に用いられるレジスト材料としては、例えば、カルボン酸のtert-ブチルエステル基、又はフェノールのtert-ブチルカーボネート基を有する重合体と光酸発生剤とを含有する樹脂組成物が用いられている。光酸発生剤として、トリアリールスルホニウム塩(特許文献1)、ナフタレン骨格を有するフェナシルスルホニウム塩(特許文献2)等のイオン系光酸発生剤、及びオキシムスルホネート構造を有する酸発生剤(特許文献3)、スルホニルジアゾメタン構造を有する酸発生剤(特許文献4)等の非イオン系酸発生剤が知られている。さらに露光後加熱(PEB)を行うことで、この強酸により重合体中のtert-ブチルエステル基、又はtert-ブチルカーボネート基が解離し、カルボン酸、又はフェノール性水酸基が形成され、紫外線照射部がアルカリ現像液に易溶性となる。この現象を利用してパターン形成が行われている。
Conventionally, in the field of microfabrication represented by semiconductor manufacturing, a photolithography process using i-line having a wavelength of 365 nm as exposure light has been widely used.
As a resist material used in the photolithography process, for example, a resin composition containing a polymer having a tert-butyl ester group of carboxylic acid or a tert-butyl carbonate group of phenol and a photoacid generator is used. Yes. As photoacid generators, ionic photoacid generators such as triarylsulfonium salts (Patent Document 1), phenacylsulfonium salts having a naphthalene skeleton (Patent Document 2), and acid generators having an oxime sulfonate structure (Patent Documents) 3) Nonionic acid generators such as acid generators having a sulfonyldiazomethane structure (Patent Document 4) are known. Further, by performing post-exposure heating (PEB), the tert-butyl ester group or tert-butyl carbonate group in the polymer is dissociated by the strong acid to form a carboxylic acid or a phenolic hydroxyl group. It becomes readily soluble in an alkaline developer. Pattern formation is performed using this phenomenon.
 しかしフォトリソグラフィー工程がより微細加工になるに従い、アルカリ現像液により未露光部のパターンが膨潤する膨れの影響が大きくなり、レジスト材料の膨潤を抑制する必要がある。
 これらを解決するためにレジスト材料中の重合体に脂環式骨格、又はフッ素含有骨格等を含有させ疎水性にすることで、レジスト材料の膨潤を抑制する方法が提案させている。
However, as the photolithography process becomes finer, the influence of the swelling that the pattern of the unexposed portion is swollen by the alkali developer increases, and it is necessary to suppress the swelling of the resist material.
In order to solve these problems, a method for suppressing swelling of the resist material by making the polymer in the resist material hydrophobic by adding an alicyclic skeleton or a fluorine-containing skeleton has been proposed.
 これら脂環式骨格、及びフッ素含有骨格等を含有する疎水性材料に対し、イオン系光酸発生剤は相溶性が不足しているため、レジスト材料中で相分離するため十分なレジスト性能を発揮できず、パターン形成できない問題がある。一方、非イオン系光酸発生剤は疎水性材料に対する相溶性が良好であるが、アルカリ現像工程において露光部にスカムが生じる問題がある。またi線に対する感度が不足する問題、及び耐熱安定性が不足するため露光後加熱(PEB)で分解するためアローアンスが狭い問題をもつ。 Ion photoacid generators lack compatibility with hydrophobic materials containing these alicyclic skeletons and fluorine-containing skeletons, so they exhibit sufficient resist performance due to phase separation in resist materials. There is a problem that the pattern cannot be formed. On the other hand, the nonionic photoacid generator has good compatibility with the hydrophobic material, but there is a problem that scum is generated in the exposed portion in the alkali development step. In addition, there is a problem that the sensitivity to i-line is insufficient and a problem that the allowance is narrow because it is decomposed by post-exposure heating (PEB) because heat resistance is insufficient.
特開昭50-151997号公報Japanese Patent Laid-Open No. 50-151997 特開平9-118663号公報JP-A-9-118663 特開平6-67433号公報JP-A-6-67433 特開平10-213899号公報Japanese Patent Laid-Open No. 10-213899
 そこで、i線に高い光感度を有し、耐熱安定性に優れ、疎水性材料のへの溶解性及びアルカリ現像性に優れる非イオン系光酸発生剤を提供することを目的とする。 Accordingly, it is an object to provide a nonionic photoacid generator having high photosensitivity to i-line, excellent heat resistance stability, solubility in hydrophobic materials and excellent alkali developability.
 本発明者らは、上記の目的を達成するべく検討を行った結果、本発明に到達した。
 すなわち、本発明は、下記一般式(1)で表されることを特徴とする非イオン系光酸発生剤(A);及び該非イオン系光酸発生剤(A)を含むフォトリソグラフィー用樹脂組成物(Q)である。
The inventors of the present invention have reached the present invention as a result of studies to achieve the above object.
That is, the present invention provides a nonionic photoacid generator (A) represented by the following general formula (1); and a resin composition for photolithography comprising the nonionic photoacid generator (A) It is a thing (Q).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式(1)中、Xは酸の作用により脱離して水素原子に置換されうる1価の有機基であり、Rfは炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)を表す。] [In the formula (1), X is a monovalent organic group that can be eliminated by the action of an acid and substituted with a hydrogen atom, and Rf is a hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is fluorine. Which may be substituted with ]
 本発明の非イオン系光酸発生剤(A)は、非イオン系であるため、イオン系酸発生剤に比べて疎水性材料との相溶性に優れる。またナフタルイミド骨格を有するために、耐熱安定性に優れ露光後加熱(PEB)を行うことができる。
 またナフタルイミド骨格上に置換基を持つため、ナフタレン環状の電子状態に作用することができi線に対するモル吸光係数が高い。これによりi線を照射することで非イオン系光酸発生剤(A)は容易に分解し、強酸であるスルホン酸を発生することができる。
 またXは酸の作用により脱離して水素原子に置換されうるため、露光部のみアルカリ現像液に対する親和性に優れ、露光部におけるスカムの発生が少ない。
Since the nonionic photoacid generator (A) of the present invention is nonionic, it is more compatible with a hydrophobic material than the ionic acid generator. Moreover, since it has a naphthalimide skeleton, it has excellent heat stability and can be subjected to post-exposure heating (PEB).
Further, since it has a substituent on the naphthalimide skeleton, it can act on the electronic state of naphthalene ring and has a high molar extinction coefficient for i-line. Thereby, by irradiating with i-line, the nonionic photoacid generator (A) can be easily decomposed to generate sulfonic acid which is a strong acid.
Further, since X can be eliminated by the action of an acid and replaced with a hydrogen atom, only the exposed area has excellent affinity for an alkaline developer, and scum is less generated in the exposed area.
 このため本発明の非イオン系光酸発生剤(A)を含有するフォトリソグラフィー用樹脂組成物(Q)は、i線に対して高感度であり、また露光後加熱(PEB)でのアローアンスが広いため作業性に優れる。
 さらに、本発明のフォトリソグラフィー用樹脂組成物(Q)はアルカリ現像工程においてスカムの発生が少なく、良好なレジストパターンを得ることができる。
For this reason, the resin composition for photolithography (Q) containing the nonionic photoacid generator (A) of the present invention is highly sensitive to i-line and has an allowance in post-exposure heating (PEB). Excellent workability because it is wide.
Furthermore, the resin composition for photolithography (Q) of the present invention generates little scum in the alkali development step and can provide a good resist pattern.
 本発明の非イオン系酸発生剤(A)は下記一般式(1)で表される。 The nonionic acid generator (A) of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Xは酸の作用により脱離して水素原子に置換されうる1価の有機基であり、Rfは炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)を表す。 In the formula (1), X is a monovalent organic group that can be removed by the action of an acid and substituted with a hydrogen atom, and Rf is a hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is fluorine. Which may be substituted).
 Xの酸の作用により脱離して水素原子に置換されうる1価の有機基としては、1-分岐アルキル基、シリル基、アシル基、アルキルオキシカルボニル基及び下記一般式(2)で表される基が挙げられる。 The monovalent organic group that can be eliminated by the action of an acid of X and substituted with a hydrogen atom is represented by a 1-branched alkyl group, a silyl group, an acyl group, an alkyloxycarbonyl group, and the following general formula (2). Groups.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは炭素数1~10の炭化水素基、R及びRは水素原子又は炭素数1~10の炭化水素基を表し、RとR又はRは互いに結合して環構造を形成してもよい。 In the formula (2), R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, R 2 and R 3 represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 1 and R 2 or R 3 are They may combine to form a ring structure.
 1-分岐アルキル基としては、例えば、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基及び1,1-ジメチルブチル基等が挙げられる。 Examples of the 1-branched alkyl group include isopropyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like.
 シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、メチルジイソプロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、メチルジ-tert-ブチルシリル基、トリ-tert-ブチルシリル基、フェニルジメチルシリル基、メチルジフェニルシリル基及びトリフェニルシリル基等のトリカルビルシリル基が挙げられる。 Examples of the silyl group include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, isopropyldimethylsilyl group, methyldiisopropylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group, methyldi-tert- Examples include tricarbylsilyl groups such as butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
 アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p-トルエンスルホニル基及びメシル基等が挙げられる。 Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioroyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group, atropoyl group, cinnamoyl group, furoyl group, thenoyl group, nicotinoyl group, isonico Hexanoyl group, p- toluenesulfonyl group, and mesyl group, and the like.
 一般式(2)で表される基としては、例えば、メトキシメチル基、エトキシメチル基、ベンジルオキシメチル基、1-メトキシエチル基、1-エトキシエチル基、1-エトキシプロピル基、1-プロポキシエチル基、1-フェノキシエチル基、1-ベンジルオキシエチル基、テトラヒドロピラニル基及びテトラヒドロフラニル基等が挙げられる。 Examples of the group represented by the general formula (2) include methoxymethyl group, ethoxymethyl group, benzyloxymethyl group, 1-methoxyethyl group, 1-ethoxyethyl group, 1-ethoxypropyl group, 1-propoxyethyl. Group, 1-phenoxyethyl group, 1-benzyloxyethyl group, tetrahydropyranyl group, tetrahydrofuranyl group and the like.
 アルキルオキシカルボニル基としては、下記一般式(3)で表されるアルキルオキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、2-エチルヘキシルオキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 As the alkyloxycarbonyl group, an alkyloxycarbonyl group represented by the following general formula (3) is preferable, for example, a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a 2-ethylhexyloxycarbonyl group, a tert-butoxycarbonyl group. Groups and the like.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式(3)中、R、R及びRはそれぞれ独立に、水素原子又は炭素数1~10の炭化水素基を表し、環構造又は分岐構造を有してもよく、互いに結合して環構造を形成してもよい。 In formula (3), R 4 , R 5 and R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, which may have a ring structure or a branched structure, A ring structure may be formed.
 これらXのうち、酸の作用による脱離のしやすさ、及び脱離した際の副生物の観点から、好ましくは、シリル基、アルキルオキシカルボニル基及び一般式(2)で表される基であり、さらに好ましくは、アルキルオキシカルボニル基であり、特に好ましくはtert-ブトキシカルボニル基及び2-エチルヘキシルオキシカルボニル基である。 Of these X, from the viewpoint of ease of elimination by the action of an acid and by-products upon elimination, preferably a silyl group, an alkyloxycarbonyl group and a group represented by the general formula (2) More preferably an alkyloxycarbonyl group, and particularly preferably a tert-butoxycarbonyl group and a 2-ethylhexyloxycarbonyl group.
 Rfは、炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)である。炭素数1~18の炭化水素基は置換基を有してもよい。
 炭素数1~18の炭化水素基としては、アルキル基、アリール基及び複素環式炭化水素基等が挙げられる。
Rf is a hydrocarbon group having 1 to 18 carbon atoms (part or all of hydrogen may be substituted with fluorine). The hydrocarbon group having 1 to 18 carbon atoms may have a substituent.
Examples of the hydrocarbon group having 1 to 18 carbon atoms include an alkyl group, an aryl group, and a heterocyclic hydrocarbon group.
 アルキル基としては、例えば、炭素数1~18の直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、炭素数1~18の分岐鎖アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル及びイソオクタデシル等)、及び炭素数3~18のシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、4-デシルシクロヘキシル及び10-カンファーイル等)等が挙げられる。 Examples of the alkyl group include linear alkyl groups having 1 to 18 carbon atoms (methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl and n-octadecyl, etc.), branched chain alkyl groups having 1 to 18 carbon atoms (isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, isooctadecyl, etc.), and carbon And a cycloalkyl group having a number of 3 to 18 (such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-decylcyclohexyl and 10-camphoryl).
 アリール基としては、例えば、炭素数6~10のアリール基(フェニル、トリル、ジメチルフェニル、ナフチル及びペンタフルオロフェニル等)等が挙げられる。 Examples of the aryl group include aryl groups having 6 to 10 carbon atoms (such as phenyl, tolyl, dimethylphenyl, naphthyl and pentafluorophenyl).
 複素環式炭化水素基としては、例えば、炭素数4~18の複素環式炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル、インドリル、ベンゾフラニル、ベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、ジベンゾチエニル、キサントニル、チオキサントニル及びジベンゾフラニル等)等が挙げられる。 Examples of the heterocyclic hydrocarbon group include a heterocyclic hydrocarbon group having 4 to 18 carbon atoms (thienyl, furanyl, pyranyl, pyrrolyl, oxazolyl, thiazolyl, pyridyl, pyrimidyl, pyrazinyl, indolyl, benzofuranyl, benzothienyl, quinolyl. , Isoquinolyl, quinoxalinyl, quinazolinyl, carbazolyl, acridinyl, phenothiazinyl, phenazinyl, xanthenyl, thiantenyl, phenoxazinyl, phenoxathinyl, chromanyl, isochromanyl, dibenzothienyl, xanthonyl, thioxanthonyl, and dibenzofuranyl).
 炭素数1~18の炭化水素基の水素の一部又は全部がフッ素で置換された基としては、CxFyで表される水素原子がフッ素原子で置換された直鎖アルキル基(Rf1)、分岐鎖アルキル基(Rf2)、シクロアルキル基(Rf3)、及びアリール基(Rf4)等が挙げられる。 Examples of the group in which part or all of hydrogen of the hydrocarbon group having 1 to 18 carbon atoms is substituted with fluorine include a linear alkyl group (Rf1) in which a hydrogen atom represented by CxFy is substituted with a fluorine atom, a branched chain Examples include an alkyl group (Rf2), a cycloalkyl group (Rf3), and an aryl group (Rf4).
 水素原子がフッ素原子で置換された直鎖アルキル基(Rf1)としては、例えば、トリフルオロメチル基(x=1,y=3)、ペンタフルオロエチル基(x=2,y=5)、ヘプタフルオロプロピル基(x=3,y=7)、ノナフルオロブチル基(x=4,y=9)、パーフルオロヘキシル基(x=6,y=13)、及びパーフルオロオクチル基(x=8,y=17)等が挙げられる。 Examples of the linear alkyl group (Rf1) in which a hydrogen atom is substituted with a fluorine atom include a trifluoromethyl group (x = 1, y = 3), a pentafluoroethyl group (x = 2, y = 5), and hepta. Fluoropropyl group (x = 3, y = 7), nonafluorobutyl group (x = 4, y = 9), perfluorohexyl group (x = 6, y = 13), and perfluorooctyl group (x = 8 , Y = 17).
 水素原子がフッ素原子で置換された分岐鎖アルキル基(Rf2)としては、例えば、パーフルオロイソプロピル基(x=3,y=7)、パーフルオロ-tert-ブチル基(x=4,y=9)、及びパーフルオロ-2-エチルヘキシル基(x=8,y=17)等が挙げられる。 Examples of the branched alkyl group (Rf2) in which a hydrogen atom is substituted with a fluorine atom include a perfluoroisopropyl group (x = 3, y = 7) and a perfluoro-tert-butyl group (x = 4, y = 9). And a perfluoro-2-ethylhexyl group (x = 8, y = 17) and the like.
 水素原子がフッ素原子で置換されたシクロアルキル基(Rf3)としては、例えば、パーフルオロシクロブチル基(x=4,y=7)、パーフルオロシクロペンチル基(x=5,y=9)、パーフルオロシクロヘキシル基(x=6,y=11)、及びパーフルオロ(1-シクロヘキシル)メチル基(x=7,y=13)等が挙げられる。 Examples of the cycloalkyl group (Rf3) in which a hydrogen atom is substituted with a fluorine atom include a perfluorocyclobutyl group (x = 4, y = 7), a perfluorocyclopentyl group (x = 5, y = 9), Examples thereof include a fluorocyclohexyl group (x = 6, y = 11) and a perfluoro (1-cyclohexyl) methyl group (x = 7, y = 13).
 水素原子がフッ素原子で置換されたアリール基(Rf4)としては、例えば、ペンタフルオロフェニル基(x=6,y=5)、及び3-トリフルオロメチルテトラフルオロフェニル基(x=7,y=7)等が挙げられる。 Examples of the aryl group (Rf4) in which a hydrogen atom is substituted with a fluorine atom include a pentafluorophenyl group (x = 6, y = 5) and a 3-trifluoromethyltetrafluorophenyl group (x = 7, y = 7) and the like.
 Rfのうち、スルホン酸エステル部分の分解性、フォトレジストの脱保護性、および原料の入手のしやすさの観点から、好ましくは、水素原子がフッ素原子で置換された直鎖アルキル基(Rf1)、分岐鎖アルキル基(Rf2)、及びアリール基(Rf4)であり、さらに好ましくは直鎖アルキル基(Rf1)、及びアリール基(Rf4)であり、特に好ましくはトリフルオロメチル基(x=1,y=3)、ペンタフルオロエチル基(x=2,y=5)、ヘプタフルオロプロピル基(x=3,y=7)、ノナフルオロブチル基(x=4,y=9)、及びペンタフルオロフェニル基(x=6,y=5)である。 Of Rf, a linear alkyl group (Rf1) in which a hydrogen atom is substituted with a fluorine atom is preferable from the viewpoints of decomposability of a sulfonic acid ester moiety, deprotection of a photoresist, and availability of raw materials. A branched alkyl group (Rf2) and an aryl group (Rf4), more preferably a linear alkyl group (Rf1) and an aryl group (Rf4), particularly preferably a trifluoromethyl group (x = 1, y = 3), pentafluoroethyl group (x = 2, y = 5), heptafluoropropyl group (x = 3, y = 7), nonafluorobutyl group (x = 4, y = 9), and pentafluoro It is a phenyl group (x = 6, y = 5).
 一般式(1)で表される非イオン系光酸発生剤のうち、好ましい具体例を以下に示す。 Among the nonionic photoacid generators represented by the general formula (1), preferred specific examples are shown below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明の非イオン系光酸発生剤(A)の合成方法は目的物を合成できれば特に限定はされないが、例えば、3-ヒドロキシ-1,8-ナフタル酸無水物とシリルクロリド、3,4-ジヒドロ-2H-ピラン又は二炭酸ジ-tert-ブチル等を反応させて得られる前駆体(P1)にヒドロキシルアミンを反応させる。ついで対応するスルホン酸無水物又はスルホン酸クロリドを反応させることによって合成できる。 The method for synthesizing the nonionic photoacid generator (A) of the present invention is not particularly limited as long as the target product can be synthesized. For example, 3-hydroxy-1,8-naphthalic anhydride and silyl chloride, 3,4- Hydroxylamine is reacted with a precursor (P1) obtained by reacting dihydro-2H-pyran or di-tert-butyl dicarbonate. It can then be synthesized by reacting the corresponding sulfonic anhydride or sulfonic acid chloride.
 3-ヒドロキシ-1,8-ナフタル酸無水物とシリルクロリド、3,4-ジヒドロ-2H-ピラン又は二炭酸ジ-tert-ブチル等との反応条件としては、温度-30~80℃にて1~50時間であり、反応を速やかに収率良く完結するために、反応溶媒、塩基触媒及び酸触媒を使用することが好ましい。
 反応溶媒としては特に限定されるものではないが、アセトニトリル、テトラヒドロフラン、ジクロロメタン、クロロホルム等が好ましい。塩基触媒としては、例えば、ピリジン、メチルモルホリン、ジメチルアミノピリジン、2,6-ルチジン、トリエチルアミン、イミダゾール、DBU、水素化ナトリウム等が好ましく、酸触媒としては、p-トルエンスルホン酸が挙げられ、通常3-ヒドロキシ-1,8-ナフタル酸無水物に対し、1~100mol%を添加する。
 3-ヒドロキシ-1,8-ナフタル酸無水物とシリルクロリド、3,4-ジヒドロ-2H-ピラン又は二炭酸ジ-tert-ブチル等のモル比は、通常、1:1~1:2で行う。
The reaction conditions between 3-hydroxy-1,8-naphthalic anhydride and silyl chloride, 3,4-dihydro-2H-pyran, di-tert-butyl dicarbonate, etc. are as follows: 1 at a temperature of −30 to 80 ° C. It is preferable that a reaction solvent, a base catalyst, and an acid catalyst are used in order to complete the reaction promptly with a good yield.
The reaction solvent is not particularly limited, but acetonitrile, tetrahydrofuran, dichloromethane, chloroform and the like are preferable. As the base catalyst, for example, pyridine, methylmorpholine, dimethylaminopyridine, 2,6-lutidine, triethylamine, imidazole, DBU, sodium hydride and the like are preferable, and as the acid catalyst, p-toluenesulfonic acid can be mentioned. 1 to 100 mol% is added to 3-hydroxy-1,8-naphthalic anhydride.
The molar ratio of 3-hydroxy-1,8-naphthalic anhydride to silyl chloride, 3,4-dihydro-2H-pyran or di-tert-butyl dicarbonate is usually 1: 1 to 1: 2. .
 前駆体(P1)にヒドロキシルアミンを反応させ、ついで対応するスルホン酸無水物又はスルホン酸クロリドを反応させて得られる本発明の非イオン系光酸発生剤(A)は、必要に応じて適当な有機溶媒で再結晶することで精製することができる。 The nonionic photoacid generator (A) of the present invention obtained by reacting the precursor (P1) with hydroxylamine and then reacting with the corresponding sulfonic acid anhydride or sulfonic acid chloride is suitable as required. It can be purified by recrystallization from an organic solvent.
本発明の非イオン系光酸発生剤(A)は、レジスト材料への溶解を容易にするため、あらかじめ反応を阻害しない溶剤に溶かしておいてもよい。 The nonionic photoacid generator (A) of the present invention may be dissolved in advance in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
 溶剤としては、カーボネート(プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネート等);エステル(酢酸エチル、乳酸エチル、β-プロピオラクトン、β―ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン及びε-カプロラクトン等);エーテル(エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等);及びエーテルエステル(エチレングリコールモノメチルエーテル酢酸エステル、プロピレングリコールモノエチルエーテル酢酸エステル及びジエチレングリコールモノブチルエーテル酢酸エステル等)等が挙げられる。 Solvents include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.); esters (ethyl acetate, ethyl lactate, β-propiolactone, β-butyrolactone, γ-butyrolactone, δ -Valerolactone and ε-caprolactone, etc.); ethers (ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol dibutyl ether, etc.); and ether esters ( Ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate And diethylene glycol monobutyl ether acetate, etc.) and the like.
 溶剤を使用する場合、溶剤の使用割合は、本発明の光酸発生剤100重量部に対して、15~1000重量部が好ましく、さらに好ましくは30~500重量部である。 When a solvent is used, the proportion of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight with respect to 100 parts by weight of the photoacid generator of the present invention.
 本発明のフォトリソグラフィー用樹脂組成物(Q)は、非イオン系光酸発生剤(A)を必須成分として含むため、紫外線照射及び露光後加熱(PEB)を行うことで、露光部と未露光部の現像液に対する溶解性に差がつく。非イオン系光酸発生剤(A)は1種単独、又は2種以上を組み合わせて使用することができる。
 フォトリソグラフィー用樹脂組成物(Q)としては、ネガ型化学増幅樹脂(QN)と非イオン系光酸発生剤(A)との混合物;及びポジ型化学増幅樹脂(QP)と非イオン系光酸発生剤(A)との混合物が挙げられる。
Since the resin composition for photolithography (Q) of the present invention contains the nonionic photoacid generator (A) as an essential component, the exposed portion and the unexposed portion are exposed by performing ultraviolet irradiation and post-exposure heating (PEB). Difference in solubility in the developer of the part. A nonionic photoacid generator (A) can be used individually by 1 type or in combination of 2 or more types.
Examples of the resin composition (Q) for photolithography include a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid. A mixture with a generator (A) is mentioned.
 ネガ型化学増幅樹脂(QN)としては、フェノール性水酸基含有樹脂(QN1)と架橋剤(QN2)から構成される。 The negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a crosslinking agent (QN2).
 フェノール性水酸基含有樹脂(QN1)としてはフェノール性水酸基を含有している樹脂であれば特に制限はなく、例えば、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール-性水酸基を含有するポリイミド、フェノール性水酸基を含有するポリアミック酸、フェノール-ジシクロペンタジエン縮合樹脂等が用いられる。これらのなかでも、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール-キシリレングリコール縮合樹脂が好ましい。尚、これらのフェノール性水酸基含有樹脂(QN1)は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it contains a phenolic hydroxyl group. For example, a novolak resin, a polyhydroxystyrene, a copolymer of hydroxystyrene, a copolymer of hydroxystyrene and styrene Polymer, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation resin, cresol-xylylene glycol condensation resin, polyimide containing phenolic hydroxyl group, polyamic containing phenolic hydroxyl group Acid, phenol-dicyclopentadiene condensation resin and the like are used. Among these, novolak resin, polyhydroxystyrene, copolymer of hydroxystyrene, copolymer of hydroxystyrene and styrene, copolymer of hydroxystyrene, styrene and (meth) acrylic acid derivative, phenol-xylylene glycol condensation Resins are preferred. In addition, these phenolic hydroxyl group containing resin (QN1) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 上記ノボラック樹脂は、例えば、フェノール類とアルデヒド類とを触媒の存在下で縮合させることにより得ることができる。
 上記フェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α-ナフトール、β-ナフトール等が挙げられる。
 また、上記アルデヒド類としてはホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
The novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
Examples of the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples include trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol and the like.
Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
 具体的なノボラック樹脂としては、例えば、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂等が挙げられる。 Specific examples of the novolak resin include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, phenol-naphthol / formaldehyde condensed novolak resin, and the like.
 また、上記フェノール性水酸基含有樹脂(QN1)には、成分の一部としてフェノール性低分子化合物が含有されていてもよい。
 上記フェノール性低分子化合物としては、例えば、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、トリス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、トリス(4-ヒドロキシフェニル)エタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、4,4’-{1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エチリデン}ビスフェノール等が挙げられる。これらのフェノール性低分子化合物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
The phenolic hydroxyl group-containing resin (QN1) may contain a phenolic low molecular weight compound as a part of the component.
Examples of the phenolic low molecular weight compound include 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) -1- Phenylethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethane, 1,1,2,2-tetra (4-hydroxy) Phenyl) ethane, 4,4 '- {1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl] ethylidene} bisphenol and the like. These phenolic low molecular weight compounds may be used alone or in combination of two or more.
 このフェノール性低分子化合物のフェノール性水酸基含有樹脂(QN1)中における含有割合は、フェノール性水酸基含有樹脂(QN1)を100重量%とした場合、40重量%以下であることが好ましく、より好ましくは1~30重量%である。 The content ratio of the phenolic low molecular weight compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less, more preferably, based on 100% by weight of the phenolic hydroxyl group-containing resin (QN1). 1 to 30% by weight.
 フェノール性水酸基含有樹脂(QN1)の重量平均分子量は、得られる絶縁膜の解像性、熱衝撃性、耐熱性、残膜率等の観点から、2000以上であることが好ましく、より好ましくは2000~20000程度である。
 また、ネガ型化学増幅樹脂(QN)中におけるフェノール性水酸基含有樹脂(QN1)の含有割合は、溶剤を除いた組成物の全体を100重量%とした場合に、30~90重量%であることが好ましく、より好ましくは40~80重量%である。このフェノール性水酸基含有樹脂(QN1)の含有割合が30~90重量%である場合には、感光性絶縁樹脂組成物を用いて形成された膜がアルカリ水溶液による十分な現像性を有しているため好ましい。
The weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, more preferably 2000 from the viewpoint of the resolution, thermal shock resistance, heat resistance, residual film ratio, etc. of the obtained insulating film. About 20,000.
In addition, the content of the phenolic hydroxyl group-containing resin (QN1) in the negative chemically amplified resin (QN) is 30 to 90% by weight when the total composition excluding the solvent is 100% by weight. Is more preferable, and 40 to 80% by weight is more preferable. When the content of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
 架橋剤(QN2)としては、非イオン系光酸発生剤(A)から発生した強酸によりフェノール性水酸基含有樹脂(QN1)を架橋し得る化合物であれば特に限定されない。 The crosslinking agent (QN2) is not particularly limited as long as it is a compound capable of crosslinking the phenolic hydroxyl group-containing resin (QN1) with a strong acid generated from the nonionic photoacid generator (A).
 架橋剤(QN2)としては、例えば、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物、オキセタン化合物、メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有フェノール化合物、アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有メラミン樹脂、カルボキシメチル基含有ベンゾグアナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有尿素化合物及びカルボキシメチル基含有フェノール化合物等を挙げることができる。 Examples of the crosslinking agent (QN2) include bisphenol A epoxy compounds, bisphenol F epoxy compounds, bisphenol S epoxy compounds, novolac resin epoxy compounds, resole resin epoxy compounds, poly (hydroxystyrene) epoxy compounds, and oxetanes. Compound, methylol group-containing melamine compound, methylol group-containing benzoguanamine compound, methylol group-containing urea compound, methylol group-containing phenol compound, alkoxyalkyl group-containing melamine compound, alkoxyalkyl group-containing benzoguanamine compound, alkoxyalkyl group-containing urea compound, alkoxyalkyl group -Containing phenol compound, carboxymethyl group-containing melamine resin, carboxymethyl group-containing benzoguanamine resin, carboxymethyl group-containing urine Resins, carboxymethyl group-containing phenol resin, carboxymethyl group-containing melamine compounds, carboxymethyl group-containing benzoguanamine compounds, mention may be made of carboxymethyl group-containing urea compounds and carboxymethyl group-containing phenol compounds and the like.
 これら架橋剤(QN2)のうち、メチロール基含有フェノール化合物、メトキシメチル基含有メラミン化合物、メトキシメチル基含有フェノール化合物、メトキシメチル基含有グリコールウリル化合物、メトキシメチル基含有ウレア化合物及びアセトキシメチル基含有フェノール化合物が好ましく、さらに好ましくはメトキシメチル基含有メラミン化合物(例えばヘキサメトキシメチルメラミン等)、メトキシメチル基含有グリコールウリル化合物及びメトキシメチル基含有ウレア化合物等である。メトキシメチル基含有メラミン化合物は、CYMEL300、CYMEL301、CYMEL303、CYMEL305(三井サイアナミッド(株)製)等の商品名で、メトキシメチル基含有グリコールウリル化合物はCYMEL1174(三井サイアナミッド(株)製)等の商品名で、またメトキシメチル基含有ウレア化合物は、MX290(三和ケミカル(株)製)等の商品名で市販されている。 Among these crosslinking agents (QN2), methylol group-containing phenol compounds, methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds More preferred are methoxymethyl group-containing melamine compounds (for example, hexamethoxymethyl melamine), methoxymethyl group-containing glycoluril compounds, methoxymethyl group-containing urea compounds, and the like. The methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Cyanamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Cyanamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
 架橋剤(QN2)の含有量は、残膜率の低下、パターンの蛇行や膨潤及び現像性の観点から、フェノール性水酸基含有樹脂(QN1)中の全酸性官能基に対して、通常、5~60モル%、好ましくは10~50モル%、さらに好ましくは15~40モル%である。 The content of the crosslinking agent (QN2) is usually 5 to 5 with respect to all acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoints of reduction of the remaining film ratio, pattern meandering and swelling, and developability. The amount is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
 ポジ型化学増幅樹脂(QP)としては、フェノール性水酸基、カルボキシル基、又はスルホニル基等の1種以上の酸性官能基を含有するアルカリ可溶性樹脂(QP1)中の酸性官能基の水素原子の一部あるいは全部を、酸解離性基で置換した保護基導入樹脂(QP2)が挙げられる。
 なお、酸解離性基は非イオン系光酸発生剤(A)から発生した強酸の存在下で解離することができる基である。
 保護基導入樹脂(QP2)は、それ自体としてはアルカリ不溶性又はアルカリ難溶性である。
As a positive chemical amplification resin (QP), a part of hydrogen atoms of acidic functional groups in an alkali-soluble resin (QP1) containing one or more acidic functional groups such as phenolic hydroxyl group, carboxyl group, or sulfonyl group Or the protecting group introduction | transduction resin (QP2) which substituted all by the acid dissociable group is mentioned.
The acid dissociable group is a group that can be dissociated in the presence of a strong acid generated from the nonionic photoacid generator (A).
The protecting group-introduced resin (QP2) is itself insoluble in alkali or hardly soluble in alkali.
 アルカリ可溶性樹脂(QP1)としては、例えば、フェノール性水酸基含有樹脂(QP11)、カルボキシル基含有樹脂(QP12)、及びスルホン酸基含有樹脂(QP13)等が挙げられる。
 フェノール性水酸基含有樹脂(QP11)としては、上記水酸基含有樹脂(QN1)と同じものが使用できる。
Examples of the alkali-soluble resin (QP1) include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
As the phenolic hydroxyl group-containing resin (QP11), the same one as the hydroxyl group-containing resin (QN1) can be used.
 カルボキシル基含有樹脂(QP12)としては、カルボキシル基を有するポリマーであれば特に制限はなく、例えば、カルボキシル基含有ビニルモノマー(Ba)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。 The carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group. For example, the carboxyl group-containing vinyl monomer (Ba) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are vinyl-polymerized. Can be obtained.
 カルボキシル基含有ビニルモノマー(Ba)としては、例えば、不飽和モノカルボン酸[(メタ)アクリル酸、クロトン酸および桂皮酸など]、不飽和多価(2~4価)カルボン酸[(無水)マレイン酸、イタコン酸、フマル酸およびシトラコン酸など]、不飽和多価カルボン酸アルキル(炭素数1~10のアルキル基)エステル[マレイン酸モノアルキルエステル、フマル酸モノアルキルエステルおよびシトラコン酸モノアルキルエステルなど]、並びにこれらの塩[アルカリ金属塩(ナトリウム塩およびカリウム塩等)、アルカリ土類金属塩(カルシウム塩およびマグネシウム塩等)、アミン塩およびアンモニウム塩等]が挙げられる。
 これらのうち好ましいのは重合性、及び入手のしやすさの観点から不飽和モノカルボン酸、さらに好ましいのは(メタ)アクリル酸である。
Examples of the carboxyl group-containing vinyl monomer (Ba) include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.], unsaturated polyvalent (2- to 4-valent) carboxylic acids [(anhydrous) maleic acid, and the like. Acid, itaconic acid, fumaric acid, citraconic acid and the like], unsaturated polyvalent carboxylic acid alkyl (alkyl group having 1 to 10 carbon atoms) ester [maleic acid monoalkyl ester, fumaric acid monoalkyl ester, citraconic acid monoalkyl ester, etc. And salts thereof [alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, etc.), amine salts, ammonium salts, etc.].
Of these, unsaturated monocarboxylic acids are preferred from the viewpoint of polymerizability and availability, and (meth) acrylic acid is more preferred.
疎水基含有ビニルモノマー(Bb)としては、(メタ)アクリル酸エステル(Bb1)、及び芳香族炭化水素モノマー(Bb2)等が挙げられる。 Examples of the hydrophobic group-containing vinyl monomer (Bb) include (meth) acrylic acid ester (Bb1) and aromatic hydrocarbon monomer (Bb2).
 (メタ)アクリル酸エステル(Bb1)としては、例えば、アルキル基の炭素数1~20のアルキル(メタ)アクリレート[例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレートなど]および脂環基含有(メタ)アクリレート[ジシクロペンタニル(メタ)アクリレート、シジクロペンテニル(メタ)アクリレートおよびイソボルニル(メタ)アクリレートなど]などが挙げられる。 Examples of the (meth) acrylic acid ester (Bb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms in the alkyl group [for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, Isopropyl (meth) acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, etc.] and alicyclic group-containing (meth) acrylate [dicyclopentanyl (meth) acrylate, Sidiclopentenyl (meth) acrylate, isobornyl (meth) acrylate, etc.].
 芳香族炭化水素モノマー(Bb2)としては、例えば、スチレン骨格を有する炭化水素モノマー[例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレンおよびベンジルスチレン]およびビニルナフタレンなどが挙げられる。 Examples of the aromatic hydrocarbon monomer (Bb2) include hydrocarbon monomers having a styrene skeleton [for example, styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene. Cyclohexyl styrene and benzyl styrene] and vinyl naphthalene.
 カルボキシル基含有樹脂(QP12)における、(Ba)/(Bb)の仕込みモノマーモル比は、通常10~100/0~90、現像性の観点から、好ましくは10~80/20~90、さらに好ましくは25~85/15~75である。 The charged monomer molar ratio of (Ba) / (Bb) in the carboxyl group-containing resin (QP12) is usually from 10 to 100/0 to 90, preferably from 10 to 80/20 to 90, more preferably from the viewpoint of developability. 25-85 / 15-75.
スルホン酸基含有樹脂(QP13)としては、スルホン酸基を有するポリマーであれば特に制限はなく、例えば、スルホン酸基含有ビニルモノマー(Bc)と、必要により疎水基含有ビニルモノマー(Bb)とをビニル重合することで得られる。
 疎水基含有ビニルモノマー(Bb)としては、上記と同じものが使用できる。
The sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group. For example, a sulfonic acid group-containing vinyl monomer (Bc) and, if necessary, a hydrophobic group-containing vinyl monomer (Bb) are used. Obtained by vinyl polymerization.
As the hydrophobic group-containing vinyl monomer (Bb), the same ones as described above can be used.
スルホン酸基含有ビニルモノマー(Bc)としては、例えば、ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、α-メチルスチレンスルホン酸、2-(メタ)アクリロイルアミド-2-メチルプロパンスルホン酸およびこれらの塩が挙げられる。塩としてはアルカリ金属(ナトリウムおよびカリウム等)塩、アルカリ土類金属(カルシウムおよびマグネシウム等)塩、第1~3級アミン塩、アンモニウム塩および第4級アンモニウム塩などが挙げられる。 Examples of the sulfonic acid group-containing vinyl monomer (Bc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, α-methyl styrene sulfonic acid, 2- (meth) acryloylamide-2-methylpropane sulfonic acid. And salts thereof. Examples of the salt include alkali metal (such as sodium and potassium) salts, alkaline earth metal (such as calcium and magnesium) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
 スルホン酸基含有樹脂(QP13)における、(Bc)/(Bb)の仕込みモノマーモル比は、通常10~100/0~90、現像性の観点から、好ましくは10~80/20~90、さらに好ましくは25~85/15~75である。 In the sulfonic acid group-containing resin (QP13), the charged monomer molar ratio of (Bc) / (Bb) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90, more preferably from the viewpoint of developability. Is 25 to 85/15 to 75.
 アルカリ可溶性樹脂(QP1)のHLB値は、アルカリ可溶性樹脂(QP1)の樹脂骨格によって好ましい範囲が異なるが、好ましくは4~19、さらに好ましくは5~18、特に好ましくは6~17である。
 HLB値が4以上であれば現像を行う際に、現像性がさらに良好であり、19以下であれば硬化物の耐水性がさらに良好である。
The preferred range of the HLB value of the alkali-soluble resin (QP1) varies depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
When the HLB value is 4 or more, developability is further improved when developing, and when it is 19 or less, the water resistance of the cured product is further improved.
 なお、本発明におけるHLB値は、小田法によるHLB値であり、親水性-疎水性バランス値のことであり、有機化合物の有機性の値と無機性の値との比率から計算することができる。
 HLB≒10×無機性/有機性
 また、無機性の値及び有機性の値は、文献「界面活性剤の合成とその応用」(槇書店発行、小田、寺村著)の501頁;または、「新・界面活性剤入門」(藤本武彦著、三洋化成工業株式会社発行)の198頁に詳しく記載されている。
The HLB value in the present invention is an HLB value according to the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio between the organic value and the inorganic value of the organic compound. .
HLB≈10 × inorganic / organic In addition, the inorganic value and the organic value are described on page 501 of the document “Synthesis of Surfactant and its Application” (published by Tsuji Shoten, written by Oda, Teramura); It is described in detail on page 198 of “Introduction to New Surfactants” (Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd.).
 保護基導入樹脂(QP2)中の酸解離性基としては、例えば、置換メチル基、1-置換エチル基、1-分岐アルキル基、シリル基、ゲルミル基、アルコキシカルボニル基、アシル基及び環式酸解離性基等を挙げることができる。これらは1種単独で用いてもよいし、2種以上を組み合わせて使用してもよい。 Examples of the acid dissociable group in the protecting group-introduced resin (QP2) include a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a germyl group, an alkoxycarbonyl group, an acyl group, and a cyclic acid. Examples include a dissociable group. These may be used individually by 1 type and may be used in combination of 2 or more type.
 1-置換メチル基としては、例えば、メトキシメチル基、メチルチオメチル基、エトキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、ベンジルオキシメチル基、ベンジルチオメチル基、フェナシル基、ブロモフェナシル基、メトキシフェナシル基、メチルチオフェナシル基、α-メチルフェナシル基、シクロプロピルメチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、ブロモベンジル基、ニトロベンジル基、メトキシベンジル基、メチルチオベンジル基、エトキシベンジル基、エチルチオベンジル基、ピペロニル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、i-プロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基、tert-ブトキシカルボニルメチル基等を挙げることができる。 Examples of the 1-substituted methyl group include methoxymethyl group, methylthiomethyl group, ethoxymethyl group, ethylthiomethyl group, methoxyethoxymethyl group, benzyloxymethyl group, benzylthiomethyl group, phenacyl group, bromophenacyl group, methoxyphena Sil group, methylthiophenacyl group, α-methylphenacyl group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl Group, ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, n-propoxycarbonylmethyl group, i-propoxycarbonylmethyl group, n-butoxycarbonylmethyl group, tert- Butoxycarbonyl methyl group, and the like.
 1-置換エチル基としては、例えば、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、1-エトキシプロピル基、1-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエチル基、1-シクロプロピルエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、1-メトキシカルボニルエチル基、1-エトキシカルボニルエチル基、1-n-プロポキシカルボニルエチル基、1-イソプロポキシカルボニルエチル基、1-n-ブトキシカルボニルエチル基、1-tert-ブトキシカルボニルエチル基等を挙げることができる。 Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group, 1,1-diethoxyethyl. Group, 1-ethoxypropyl group, 1-propoxyethyl group, 1-cyclohexyloxyethyl group, 1-phenoxyethyl group, 1-phenylthioethyl group, 1,1-diphenoxyethyl group, 1-benzyloxyethyl group, 1-benzylthioethyl group, 1-cyclopropylethyl group, 1-phenylethyl group, 1,1-diphenylethyl group, 1-methoxycarbonylethyl group, 1-ethoxycarbonylethyl group, 1-n-propoxycarbonylethyl group 1-isopropoxycarbonylethyl group, 1-n-butoxycarbonylethyl group, 1-tert It can be mentioned butoxycarbonyl ethyl group or the like.
 1-分岐アルキル基としては、例えば、i-プロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基等を挙げることができる。 Examples of the 1-branched alkyl group include i-propyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl group, 1,1-dimethylbutyl group and the like. it can.
 シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、i-プロピルジメチルシリル基、メチルジ-i-プロピルシリル基、トリ-i-プロピルシリル基、tert-ブチルジメチルシリル基、メチルジ-tert-ブチルシリル基、トリ-tert-ブチルシリル基、フェニルジメチルシリル基、メチルジフェニルシリル基、トリフェニルシリル基等のトリカルビルシリル基を挙げることができる。 Examples of the silyl group include trimethylsilyl group, ethyldimethylsilyl group, methyldiethylsilyl group, triethylsilyl group, i-propyldimethylsilyl group, methyldi-i-propylsilyl group, tri-i-propylsilyl group, tert-butyl. Examples thereof include tricarbylsilyl groups such as dimethylsilyl group, methyldi-tert-butylsilyl group, tri-tert-butylsilyl group, phenyldimethylsilyl group, methyldiphenylsilyl group, and triphenylsilyl group.
 ゲルミル基としては、例えば、トリメチルゲルミル基、エチルジメチルゲルミル基、メチルジエチルゲルミル基、トリエチルゲルミル基、イソプロピルジメチルゲルミル基、メチルジ-i-プロピルゲルミル基、トリ-i-プロピルゲルミル基、tert-ブチルジメチルゲルミル基、メチルジ-tert-ブチルゲルミル基、トリ-tert-ブチルゲルミル基、フェニルジメチルゲルミル基、メチルジフェニルゲルミル基、トリフェニルゲルミル基等のトリカルビルゲルミル基を挙げることができる。 Examples of the germyl group include trimethylgermyl group, ethyldimethylgermyl group, methyldiethylgermyl group, triethylgermyl group, isopropyldimethylgermyl group, methyldi-i-propylgermyl group, and tri-i-propylgel. Tricarbylgermyl groups such as mil group, tert-butyldimethylgermyl group, methyldi-tert-butylgermyl group, tri-tert-butylgermyl group, phenyldimethylgermyl group, methyldiphenylgermyl group, triphenylgermyl group, etc. Can be mentioned.
 アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、i-プロポキシカルボニル基、tert-ブトキシカルボニル基等を挙げることができる。 Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an i-propoxycarbonyl group, a tert-butoxycarbonyl group, and the like.
 アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p-トルエンスルホニル基、メシル基等を挙げることができる。 Acyl groups include, for example, acetyl, propionyl, butyryl, heptanoyl, hexanoyl, valeryl, pivaloyl, isovaleryl, lauroyl, myristoyl, palmitoyl, stearoyl, oxalyl, malonyl, succinyl Group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioroyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, camphoroyl group, benzoyl group , Phthaloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoyl group, hydroatropoyl group, atropoyl group, cinnamoyl group, furoyl group, thenoyl group, nicotinoyl group, isonico Hexanoyl group, p- toluenesulfonyl group, and mesyl group.
 環式酸解離性基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘキセニル基、4-メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3-ブロモテトラヒドロピラニル基、4-メトキシテトラヒドロピラニル基、4-メトキシテトラヒドロチオピラニル基、3-テトラヒドロチオフェン-1,1-ジオキシド基等を挙げることができる。 Examples of the cyclic acid dissociable group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl group. Group, 3-bromotetrahydropyranyl group, 4-methoxytetrahydropyranyl group, 4-methoxytetrahydrothiopyranyl group, 3-tetrahydrothiophene-1,1-dioxide group and the like.
 これらの酸解離性基のうち、tert-ブチル基、ベンジル基、1-メトキシエチル基、1-エトキシエチル基、トリメチルシリル基、tert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基及びテトラヒドロチオフラニル基等が好ましい。 Among these acid dissociable groups, tert-butyl group, benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group, a tetrahydrofuranyl group, and the like are preferable.
 保護基導入樹脂(QP2)における酸解離性基の導入率{保護基導入樹脂(QP2)中の保護されていない酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合}は、酸解離性基や該基が導入されるアルカリ可溶性樹脂の種類により一概には規定できないが、好ましくは10~100%、さらに好ましくは15~100%である。 Introduction rate of acid-dissociable groups in protecting group-introducing resin (QP2) {Ratio of the number of acid-dissociable groups to the total number of unprotected acidic functional groups and acid-dissociable groups in protecting group-introducing resin (QP2) } Cannot be generally defined by the type of acid-dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
 保護基導入樹脂(QP2)のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量(以下、「Mw」という。)は、好ましくは1,000~150,000、さらに好ましくは3,000~100,000である。 The polystyrene-converted weight average molecular weight (hereinafter referred to as “Mw”) of the protecting group-introduced resin (QP2) measured by gel permeation chromatography (GPC) is preferably 1,000 to 150,000, more preferably 3, 000 to 100,000.
 また、保護基導入樹脂(QP2)のMwとゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常1~10、好ましくは1~5である。 Further, the ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) and the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 to 10, preferably 1-5.
 フォトグラフィー用樹脂組成物(Q)の固形分の重量に基づく非イオン系光酸発生剤(A)の含有量は、0.001~20重量%が好ましく、さらに好ましくは0.01~15重量%、特に好ましくは0.05~7重量%である。
 0.001重量%以上であれば紫外線に対する感度がさらい良好に発揮でき、20重量%以下であればアルカリ現像液に対し不溶部分の物性がさらに良好に発揮できる。
The content of the nonionic photoacid generator (A) based on the weight of the solid content of the resin composition for photography (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. %, Particularly preferably 0.05 to 7% by weight.
If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble part in the alkali developer can be further improved.
 本発明のフォトグラフィー用樹脂組成物(Q)を用いたレジストは、例えば、所定の有機溶剤に溶解(無機微粒子を含んだ場合は溶解と分散)した樹脂溶液を、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いて基板に塗布後、加熱又は熱風吹き付けにより溶剤を乾燥させることで形成することができる。 The resist using the resin composition for photography (Q) of the present invention is prepared by, for example, applying a resin solution dissolved in a predetermined organic solvent (dissolved and dispersed when inorganic fine particles are included) to a spin coat, curtain coat, roll It can be formed by drying the solvent by heating or hot air blowing after applying to the substrate using a known method such as coating, spray coating or screen printing.
フォトグラフィー用樹脂組成物(Q)を溶解させる有機溶剤としては、樹脂組成物を溶解させることができ、樹脂溶液をスピンコート等に適用できる物性(粘度等)に調整できるものであれば特に限定されない。例えば、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン等の公知の溶媒が使用できる。
 これらの溶剤のうち、乾燥温度等の観点から、沸点が200℃以下のもの(トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン)が好ましく、単独又は2種類以上組み合わせで使用することもできる。
 有機溶剤を使用する場合、溶剤の配合量は、特に限定されないが、フォトグラフィー用樹脂組成物(Q)の固形分の重量に基づいて、通常30~1,000重量%が好ましく、さらに好ましくは40~900重量%、特に好ましくは50~800重量%である。
The organic solvent for dissolving the resin composition for photography (Q) is not particularly limited as long as the resin composition can be dissolved and the resin solution can be adjusted to physical properties (viscosity, etc.) applicable to spin coating or the like. Not. For example, known solvents such as N-methylpyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
Among these solvents, those having a boiling point of 200 ° C. or less (toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene) from the viewpoint of drying temperature and the like Are preferable, and can be used alone or in combination of two or more.
When an organic solvent is used, the amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, more preferably based on the weight of the solid content of the resin composition for photography (Q). It is 40 to 900% by weight, particularly preferably 50 to 800% by weight.
 塗布後の樹脂溶液の乾燥条件は、使用する溶剤により異なるが好ましくは50~2000℃で2~30分の範囲で実施され、乾燥後のフォトグラフィー用樹脂組成物(Q)の残留溶剤量(重量%)等で適宜決定する。 The drying condition of the resin solution after coating varies depending on the solvent used, but is preferably carried out at 50 to 2000 ° C. for 2 to 30 minutes, and the residual solvent amount of the resin composition for photography (Q) after drying ( Weight%) and the like.
 基板にレジストを形成した後、配線パターン形状の光照射を行う。その後、露光後加熱(PEB)を行った後に、アルカリ現像を行い、配線パターンを形成する。 After the resist is formed on the substrate, the wiring pattern shape is irradiated with light. Then, after performing post-exposure heating (PEB), alkali development is performed to form a wiring pattern.
 光照射する方法として、配線パターンを有するフォトマスクを介して活性光線により、レジストの露光を行う方法が挙げられる。光照射に用いる活性光線としては、本発明の
フォトグラフィー用樹脂組成物(Q)中の非イオン系光酸発生剤(A)を分解させることができれば特に制限はない。
 活性光線としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハロゲンランプ、電子線照射装置、X線照射装置、レーザー(アルゴンレーザー、色素レーザー、窒素レーザー、LED、ヘリウムカドミウムレーザー等)等がある。これらのうち、好ましくは高圧水銀灯及び超高圧水銀灯である。
As a method of irradiating with light, there is a method of exposing a resist with actinic rays through a photomask having a wiring pattern. The actinic ray used for the light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the resin composition for photography (Q) of the present invention can be decomposed.
Actinic rays include low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high-pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiation device, X-ray irradiation device, laser (argon laser, dye laser, nitrogen laser, LED, helium Cadmium laser). Of these, high pressure mercury lamps and ultrahigh pressure mercury lamps are preferred.
 露光後加熱(PEB)の温度としては、通常40~200℃であって、好ましくは50~190℃、さらに好ましくは60~180℃である。40℃未満では脱保護反応、又は架橋反応が十分にできないため、紫外線照射部と紫外線未照射部の溶解性に差が不足しパターンが形成できず、200℃より高いと生産性が低下する問題がある。
 加熱時間としては、通常0.5~120分未満では時間と温度の制御が困難で、120分より大きいと生産性が低下する問題がある。
The post-exposure heating (PEB) temperature is usually 40 to 200 ° C., preferably 50 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C., the deprotection reaction or the crosslinking reaction cannot be sufficiently performed. Therefore, there is not enough difference in solubility between the ultraviolet irradiated portion and the ultraviolet unirradiated portion, and a pattern cannot be formed. There is.
When the heating time is usually less than 0.5 to 120 minutes, it is difficult to control the time and temperature, and when it is longer than 120 minutes, the productivity is lowered.
 アルカリ現像する方法としては、アルカリ現像液を用いて配線パターン形状に溶解除去する方法が挙げられる。アルカリ現像液としては、フォトグラフィー用樹脂組成物(Q)の紫外線照射部と紫外線未照射部の溶解性に差ができる条件であれば特に制限はない。
 アルカリ現像液としては水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム及びテトラメチルアンモニウム塩水溶液等がある。
 これらアルカリ現像液は水溶性の有機溶剤を加えてもよい。水溶性の有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、N-メチルピロリドン等がある。
Examples of the alkali developing method include a method of dissolving and removing the wiring pattern shape using an alkali developer. The alkali developer is not particularly limited as long as the solubility of the ultraviolet light irradiated portion and the ultraviolet light unirradiated portion of the resin composition for photography (Q) can be varied.
Examples of the alkali developer include a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution, sodium hydrogen carbonate, and a tetramethylammonium salt aqueous solution.
These alkaline developers may contain a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, N-methylpyrrolidone and the like.
 現像方法としては、アルカリ現像液を用いたディップ方式、シャワー方式、及びスプレー方式があるが、スプレー方式の法が好ましい。
 現像液の温度は、好ましくは25~40℃で使用される。現像時間は、レジストの厚さに応じて適宜決定される。
As a developing method, there are a dip method, a shower method, and a spray method using an alkali developer, and a spray method is preferable.
The temperature of the developer is preferably 25 to 40 ° C. The development time is appropriately determined according to the resist thickness.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.
<製造例1>
<N-ヒドロキシ-3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミド[中間体(1)]の製造法>
 3-ヒドロキシ-1,8-ナフタル酸無水物(東京化成工業株式会社製)5.5部、二炭酸ジ-tert-ブチル(東京化成工業株式会社製)5.9部をアセトニトリル32部に分散させ、ピリジン2.2部を加えて50℃で2時間攪拌した。室温に冷却後、水に投入し析出物をろ別して白色固体を得た。この白色固体を水洗し乾燥することで3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸無水物8.1部を得た。
 得られた3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸無水物8.1部をアセトニトリル137部に溶解させ、ヒドロキシルアミン水溶液(東京化成工業株式会社製、50%水溶液)2.0部を加えて室温で2時間攪拌した。反応液を水に投入し析出物をろ別して白色固体を得た。この白色固体を水洗し乾燥することで表題の化合物[中間体(1)]8.0部を得た。
<Production Example 1>
<Production Method of N-Hydroxy-3-tert-Butoxycarbonyloxy-1,8-Naphthalimide [Intermediate (1)]>
Disperse 5.5 parts of 3-hydroxy-1,8-naphthalic anhydride (Tokyo Chemical Industry Co., Ltd.) and 5.9 parts di-tert-butyl dicarbonate (Tokyo Chemical Industry Co., Ltd.) in 32 parts of acetonitrile. Then, 2.2 parts of pyridine was added and stirred at 50 ° C. for 2 hours. After cooling to room temperature, it was poured into water and the precipitate was filtered off to obtain a white solid. This white solid was washed with water and dried to obtain 8.1 parts of 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride.
8.1 parts of the resulting 3-tert-butoxycarbonyloxy-1,8-naphthalic anhydride was dissolved in 137 parts of acetonitrile, and 2.0 parts of a hydroxylamine aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd., 50% aqueous solution). And stirred at room temperature for 2 hours. The reaction solution was poured into water and the precipitate was filtered off to obtain a white solid. The white solid was washed with water and dried to give 8.0 parts of the title compound [Intermediate (1)].
<製造例2>
<N-ヒドロキシ-3-(2-イソプロピル-5-メチル-シクロヘキソキシ)カルボニルオキシ-1,8-ナフタル酸イミド[中間体(2)]の製造法>
 3-ヒドロキシ-1,8-ナフタル酸無水物(東京化成工業株式会社製)5.5部、クロロギ酸メンチル(東京化成工業株式会社製)5.9部をアセトニトリル47部に分散させ、トリエチルアミン2.8部を加えて50℃で2時間攪拌した。室温に冷却後、水に投入し析出物をろ別して白色固体を得た。この白色固体を水洗し乾燥することで3-(2-イソプロピル-5-メチル-シクロヘキソキシ)カルボニルオキシ-1,8-ナフタル酸無水物8.0部を得た。
 得られた3-(2-イソプロピル-5-メチル-シクロヘキソキシ)カルボニルオキシ-1,8-ナフタル酸無水物8.0部をアセトニトリル124部に溶解させ、ヒドロキシルアミン水溶液(東京化成工業株式会社製、50%水溶液)1.5部を加えて室温で2時間攪拌した。反応液を水に投入し析出物をろ別して白色固体を得た。この白色固体を水洗し乾燥することで表題の化合物[中間体(2)]4.0部を得た。
<Production Example 2>
<Method for producing N-hydroxy-3- (2-isopropyl-5-methyl-cyclohexoxy) carbonyloxy-1,8-naphthalimide (intermediate (2)]>
Trihydroxyamine 2 was dispersed in 5.5 parts of acetonitrile by 5.5 parts of 3-hydroxy-1,8-naphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 5.9 parts of menthyl chloroformate (manufactured by Tokyo Chemical Industry Co., Ltd.). .8 parts was added and stirred at 50 ° C. for 2 hours. After cooling to room temperature, it was poured into water and the precipitate was filtered off to obtain a white solid. This white solid was washed with water and dried to obtain 8.0 parts of 3- (2-isopropyl-5-methyl-cyclohexoxy) carbonyloxy-1,8-naphthalic anhydride.
The obtained 3- (2-isopropyl-5-methyl-cyclohexoxy) carbonyloxy-1,8-naphthalic anhydride 8.0 parts was dissolved in 124 parts of acetonitrile, and a hydroxylamine aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd.). , 50% aqueous solution) was added and stirred at room temperature for 2 hours. The reaction solution was poured into water and the precipitate was filtered off to obtain a white solid. The white solid was washed with water and dried to give 4.0 parts of the title compound [Intermediate (2)].
<製造例3>
<N-ヒドロキシ-3-(2-テトラヒドロピラニル)オキシ-1,8-ナフタル酸イミド[中間体(3)]の合成法>
 3-ヒドロキシ-1,8-ナフタル酸無水物(東京化成工業株式会社製)5.5部、3,4-ジヒドロ-2H-ピラン(東京化成工業株式会社製)2.3部をアセトニトリル32部に分散させ、p-トルエンスルホン酸4.9部を加えて50℃で2時間攪拌した。室温に冷却後、水に投入し析出物をろ別して赤褐色固体を得た。この赤褐色固体を水洗し乾燥することで3-(2-テトラヒドロピラニル)オキシ-1,8-ナフタル酸無水物7.6部を得た。
 得られた3-(2-テトラヒドロピラニル)オキシ-1,8-ナフタル酸無水物7.6部をアセトニトリル137部に溶解させ、ヒドロキシルアミン水溶液(東京化成工業株式会社製、50%水溶液)2.0部を加えて室温で2時間攪拌した。反応液を水に投入し析出物をろ別して赤褐色固体を得た。この赤褐色固体を水洗し乾燥することで表題の化合物[中間体(3)]7.6部を得た。
<Production Example 3>
<Synthesis Method of N-Hydroxy-3- (2-tetrahydropyranyl) oxy-1,8-naphthalimide [Intermediate (3)]>
5.5 parts of 3-hydroxy-1,8-naphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.), 2.3 parts of 3,4-dihydro-2H-pyran (manufactured by Tokyo Chemical Industry Co., Ltd.) and 32 parts of acetonitrile 4.9 parts of p-toluenesulfonic acid was added and stirred at 50 ° C. for 2 hours. After cooling to room temperature, it was poured into water and the precipitate was filtered off to obtain a reddish brown solid. This reddish brown solid was washed with water and dried to obtain 7.6 parts of 3- (2-tetrahydropyranyl) oxy-1,8-naphthalic anhydride.
7.6 parts of the obtained 3- (2-tetrahydropyranyl) oxy-1,8-naphthalic anhydride was dissolved in 137 parts of acetonitrile, and a hydroxylamine aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd., 50% aqueous solution) 2 0.0 part was added and it stirred at room temperature for 2 hours. The reaction solution was poured into water and the precipitate was filtered off to obtain a reddish brown solid. The reddish brown solid was washed with water and dried to obtain 7.6 parts of the title compound [intermediate (3)].
<製造例4>
<N-ヒドロキシ-3-トリメチルシリルオキシ-1,8-ナフタル酸イミド[中間体(4)]の合成法>
 3-ヒドロキシ-1,8-ナフタル酸無水物(東京化成工業株式会社製)5.5部、トリメチルシリルクロリド(東京化成工業株式会社製)2.9部をアセトニトリル32部に分散させ、トリエチルアミン2.8部を加えて50℃で2時間攪拌した。室温に冷却後、水に投入し析出物をろ別して赤褐色固体を得た。この赤褐色固体を水洗し乾燥することで3-トリメチルシリルオキシ-1,8-ナフタル酸無水物7.3部を得た。
 得られた3-トリメチルシリルオキシ-1,8-ナフタル酸無水物7.3部をアセトニトリル137部に溶解させ、ヒドロキシルアミン水溶液(東京化成工業株式会社製、50%水溶液)2.0部を加えて室温で2時間攪拌した。反応液を水に投入し析出物をろ別して赤褐色固体を得た。この赤褐色固体を水洗し乾燥することで表題の化合物[中間体(4)]7.3部を得た。
<Production Example 4>
<Synthesis Method of N-Hydroxy-3-trimethylsilyloxy-1,8-naphthalimide [Intermediate (4)]>
Disperse 5.5 parts of 3-hydroxy-1,8-naphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2.9 parts of trimethylsilyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) in 32 parts of acetonitrile. 8 parts were added and stirred at 50 ° C. for 2 hours. After cooling to room temperature, it was poured into water and the precipitate was filtered off to obtain a reddish brown solid. This reddish brown solid was washed with water and dried to obtain 7.3 parts of 3-trimethylsilyloxy-1,8-naphthalic anhydride.
7.3 parts of the obtained 3-trimethylsilyloxy-1,8-naphthalic anhydride was dissolved in 137 parts of acetonitrile, and 2.0 parts of a hydroxylamine aqueous solution (manufactured by Tokyo Chemical Industry Co., Ltd., 50% aqueous solution) was added. Stir at room temperature for 2 hours. The reaction solution was poured into water and the precipitate was filtered off to obtain a reddish brown solid. The reddish brown solid was washed with water and dried to obtain 7.3 parts of the title compound [intermediate (4)].
<実施例1>
<3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A-1)]の合成法>
 製造例1で得られたN-ヒドロキシ-3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミド[中間体(1)]8.0部をジクロロメタン52部に分散させてピリジン3.8部を加えた後、0℃以下に冷却しながらトリフルオロメタンスルホン酸無水物(東京化成工業株式会社製)10.2部を滴下し、2時間攪拌した。0℃を保ったまま反応液を水に投入し4回水洗した後、ジクロロメタンを減圧留去することで、表題の化合物[非イオン系光酸発生剤(A-1)]10.0部を得た。
<Example 1>
<Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalimide trifluoromethanesulfonate [nonionic photoacid generator (A-1)]>
8.0 parts of N-hydroxy-3-tert-butoxycarbonyloxy-1,8-naphthalimide [Intermediate (1)] obtained in Production Example 1 is dispersed in 52 parts of dichloromethane to obtain 3.8 parts of pyridine. Then, 10.2 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower, and the mixture was stirred for 2 hours. The reaction mixture was poured into water while maintaining 0 ° C. and washed four times, and then dichloromethane was distilled off under reduced pressure to obtain 10.0 parts of the title compound [nonionic photoacid generator (A-1)]. Obtained.
<実施例2>
<3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドペンタフルオロエタンスルホネート[非イオン系光酸発生剤(A-2)]の合成法>
 実施例1において、トリフルオロメタンスルホン酸無水物10.2部をペンタフルオロエタンスルホン酸クロリド(東京化成工業株式会社製)7.9部としたこと以外は、実施例1と同様な操作を行い、表題の化合物[非イオン系光酸発生剤(A-2)]11.1部を得た。
<Example 2>
<Synthesis Method of 3-tert-Butoxycarbonyloxy-1,8-Naphthalimidopentafluoroethanesulfonate [Nonionic Photoacid Generator (A-2)]>
In Example 1, 10.2 parts of trifluoromethanesulfonic anhydride was changed to 7.9 parts of pentafluoroethanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), and the same operation as in Example 1 was performed. 11.1 parts of the title compound [nonionic photoacid generator (A-2)] were obtained.
<実施例3>
<3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドヘプタフルオロプロパンスルホネート[非イオン系光酸発生剤(A-3)]の合成法>
 実施例1において、トリフルオロメタンスルホン酸無水物10.2部をヘプタフルオロプロパンスルホン酸クロリド(東京化成工業株式会社製)9.7部としたこと以外は、実施例1と同様な操作を行い、表題の化合物[非イオン系光酸発生剤(A-3)]12.2部を得た。
<Example 3>
<Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalic acid imidoheptafluoropropane sulfonate [nonionic photoacid generator (A-3)]>
In Example 1, 10.2 parts of trifluoromethanesulfonic anhydride was changed to 9.7 parts of heptafluoropropanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), and the same operation as in Example 1 was performed. 12.2 parts of the title compound [nonionic photoacid generator (A-3)] were obtained.
<実施例4>
<3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドノナフルオロブタンスルホネート[非イオン系光酸発生剤(A-4)]の合成法>
 実施例1において、トリフルオロメタンスルホン酸無水物10.2部をノナフルオロブタンスルホン酸クロリド(東京化成工業株式会社製)11.6部としたこと以外は、実施例1と同様な操作を行い、表題の化合物[非イオン系光酸発生剤(A-4)]13.3部を得た。
<Example 4>
<Method of synthesizing 3-tert-butoxycarbonyloxy-1,8-naphthalic acid imidononafluorobutanesulfonate [nonionic photoacid generator (A-4)]>
In Example 1, 10.2 parts of trifluoromethanesulfonic anhydride was changed to 11.6 parts of nonafluorobutanesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.). 13.3 parts of the title compound [nonionic photoacid generator (A-4)] were obtained.
<実施例5>
<3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドペンタフルオロベンゼンスルホネート[非イオン系光酸発生剤(A-5)]の合成法>
 実施例1において、トリフルオロメタンスルホン酸無水物10.2部をペンタフルオロベンゼンスルホン酸クロリド(東京化成工業株式会社製)9.7部としたこと以外は、実施例1と同様な操作を行い、表題の化合物[非イオン系光酸発生剤(A-5)]12.2部を得た。
<Example 5>
<Synthesis Method of 3-tert-Butoxycarbonyloxy-1,8-Naphthalimide Imidopentafluorobenzenesulfonate [Nonionic Photoacid Generator (A-5)]>
In Example 1, except that 10.2 parts of trifluoromethanesulfonic anhydride was changed to 9.7 parts of pentafluorobenzenesulfonic acid chloride (manufactured by Tokyo Chemical Industry Co., Ltd.), the same operation as in Example 1 was performed, 12.2 parts of the title compound [nonionic photoacid generator (A-5)] were obtained.
<実施例6>
<3-(2-イソプロピル-5-メチル-シクロヘキソキシ)カルボニルオキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A-6)]の合成法>
 製造例2で得られたN-ヒドロキシ-3-(2-イソプロピル-5-メチル-シクロヘキソキシ)カルボニルオキシ-1,8-ナフタル酸イミド[中間体(2)]4.0部をジクロロメタン21部に分散させてピリジン1.5部を加えた後、0℃以下に冷却しながらトリフルオロメタンスルホン酸無水物(東京化成工業株式会社製)4.1部を滴下し、2時間攪拌した。0℃を保ったまま反応液を水に投入し4回水洗した後、ジクロロメタンを減圧留去することで、表題の化合物[非イオン系光酸発生剤(A-6)]4.1部を得た。
<Example 6>
<Synthesis Method of 3- (2-Isopropyl-5-methyl-cyclohexoxy) carbonyloxy-1,8-naphthalimide trifluoromethanesulfonate [nonionic photoacid generator (A-6)]>
4.0 parts of N-hydroxy-3- (2-isopropyl-5-methyl-cyclohexoxy) carbonyloxy-1,8-naphthalimide [Intermediate (2)] obtained in Production Example 2 was added to 21 parts of dichloromethane. After adding 1.5 parts of pyridine to the mixture, 4.1 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower and stirred for 2 hours. The reaction solution was poured into water while maintaining 0 ° C. and washed 4 times, and then dichloromethane was distilled off under reduced pressure to obtain 4.1 parts of the title compound [nonionic photoacid generator (A-6)]. Obtained.
<実施例7>
<3-(2-テトラヒドロピラニル)オキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A-7)]の合成法>
 製造例3で得られたN-ヒドロキシ-3-(2-テトラヒドロピラニル)オキシ-1,8-ナフタル酸イミド[中間体(3)]7.6部をジクロロメタン52部に分散させてピリジン3.8部を加えた後、0℃以下に冷却しながらトリフルオロメタンスルホン酸無水物(東京化成工業株式会社製)10.2部を滴下し、2時間攪拌した。0℃を保ったまま反応液を水に投入し4回水洗した後、ジクロロメタンを減圧留去することで、表題の化合物[非イオン系光酸発生剤(A-7)]9.7部を得た。
<Example 7>
<Synthesis of 3- (2-tetrahydropyranyl) oxy-1,8-naphthalic acid imide trifluoromethanesulfonate [nonionic photoacid generator (A-7)]>
7.6 parts of N-hydroxy-3- (2-tetrahydropyranyl) oxy-1,8-naphthalimide [Intermediate (3)] obtained in Production Example 3 is dispersed in 52 parts of dichloromethane to give pyridine 3 After adding 8 parts, 10.2 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower and stirred for 2 hours. The reaction solution was poured into water while maintaining 0 ° C. and washed four times, and then dichloromethane was distilled off under reduced pressure to obtain 9.7 parts of the title compound [nonionic photoacid generator (A-7)]. Obtained.
<実施例8>
<3-トリメチルシリルオキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A-8)]の合成法>
 製造例4で得られたN-ヒドロキシ-3-トリメチルシリルオキシ-1,8-ナフタル酸イミド[中間体(4)]7.3部をジクロロメタン52部に分散させてピリジン3.8部を加えた後、0℃以下に冷却しながらトリフルオロメタンスルホン酸無水物(東京化成工業株式会社製)10.2部を滴下し、2時間攪拌した。0℃を保ったまま反応液を水に投入し4回水洗した後、ジクロロメタンを減圧留去することで、表題の化合物[非イオン系光酸発生剤(A-8)]9.7部を得た。
<Example 8>
<Synthesis Method of 3-Trimethylsilyloxy-1,8-Naphthalimide Imidotrifluoromethanesulfonate [Nonionic Photoacid Generator (A-8)]>
7.3 parts of N-hydroxy-3-trimethylsilyloxy-1,8-naphthalimide [Intermediate (4)] obtained in Production Example 4 was dispersed in 52 parts of dichloromethane, and 3.8 parts of pyridine was added. Thereafter, 10.2 parts of trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise while cooling to 0 ° C. or lower, and the mixture was stirred for 2 hours. The reaction solution was poured into water while maintaining 0 ° C. and washed with water four times, and then dichloromethane was distilled off under reduced pressure to obtain 9.7 parts of the title compound [nonionic photoacid generator (A-8)]. Obtained.
<比較例1>
<1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A’-1)]の合成法>
 下記式(4)で表される1,8-ナフタル酸イミドトリフルオロメタンスルホネート(Aldlich社製)をそのまま使用した。
<Comparative Example 1>
<Synthesis Method of 1,8-Naphthalimide Imidotrifluoromethanesulfonate [Nonionic Photoacid Generator (A'-1)]>
1,8-Naphthalimide trifluoromethanesulfonate (manufactured by Aldrich) represented by the following formula (4) was used as it was.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<比較例2>
<3-ヒドロキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A’-2)]の合成法>
実施例1で得られた3-tert-ブトキシカルボニルオキシ-1,8-ナフタル酸イミドトリフルオロメタンスルホネート[非イオン系光酸発生剤(A-1)]10.0部をジクロロメタン52部に溶解させ、トリフルオロメタンスルホン酸4.0部を滴下して室温で1時間撹拌した。反応液から析出物をろ別した後、水洗し乾燥することで、下記式(5)で表される非イオン系光酸発生剤(A’-2)7.9部を得た。
<Comparative example 2>
<Synthesis Method of 3-Hydroxy-1,8-Naphthalimide Imidotrifluoromethanesulfonate [Nonionic Photoacid Generator (A'-2)]>
10.0 parts of 3-tert-butoxycarbonyloxy-1,8-naphthalimide trifluoromethanesulfonate [nonionic photoacid generator (A-1)] obtained in Example 1 was dissolved in 52 parts of dichloromethane. Then, 4.0 parts of trifluoromethanesulfonic acid was added dropwise and stirred at room temperature for 1 hour. The precipitate was filtered off from the reaction solution, washed with water and dried to obtain 7.9 parts of a nonionic photoacid generator (A′-2) represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<比較例3>
<(4-フェニルチオフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネート[イオン系光酸発生剤(A’-3)の合成法]>
特開2007-091628公報の実施例1にしたがって、下記式(6)で表される(4-フェニルチオフェニル)ジフェニルスルホニウムトリフルオロメタンスルホネート[イオン系光酸発生剤(A’-3)を得た。
<Comparative Example 3>
<(4-Phenylthiophenyl) diphenylsulfonium trifluoromethanesulfonate [Synthesis Method of Ionic Photoacid Generator (A′-3)]>
According to Example 1 of Japanese Patent Application Laid-Open No. 2007-091628, (4-phenylthiophenyl) diphenylsulfonium trifluoromethanesulfonate represented by the following formula (6) [ion-based photoacid generator (A′-3) was obtained. .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<実施例1~8、比較例1~3>
 光酸発生剤の性能評価として、実施例1~8で得られた非イオン系光酸発生剤(A-1)~(A-8)、比較のための非イオン系光酸発生剤(A’-1)、(A’-2)及び比較のためのイオン系光酸発生剤(A’-3)のモル吸光係数、レジスト硬化性、熱分解温度、溶剤溶解性、及びアルカリ現像性について以下の方法で評価し、その結果を表1に記載した。
<Examples 1 to 8, Comparative Examples 1 to 3>
As the performance evaluation of the photoacid generator, the nonionic photoacid generators (A-1) to (A-8) obtained in Examples 1 to 8 and the nonionic photoacid generator (A Molar extinction coefficient, resist curability, thermal decomposition temperature, solvent solubility, and alkali developability of '-1), (A'-2) and comparative ionic photoacid generator (A'-3) Evaluation was performed by the following method, and the results are shown in Table 1.
<モル吸光係数>
 合成した光酸発生剤をアセトニトリルにより0.25mmol/Lに希釈し、紫外可視分光光度計(島津製作所社製、UV-2550)を用いて、200nmから500nmの範囲で1cmのセル長の吸光度を測定した。下記式からi線(365nm)のモル吸光係数(ε365)を算出した。
ε365(L・mol-1・cm-1)=A365/(0.00025mol/L×1cm)
[式中、A365は365nmの吸光度を表す。]
<Molar extinction coefficient>
The synthesized photoacid generator was diluted to 0.25 mmol / L with acetonitrile, and the absorbance of a cell length of 1 cm was measured in the range of 200 nm to 500 nm using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, UV-2550). It was measured. The molar extinction coefficient (ε 365 ) of i-line (365 nm) was calculated from the following formula.
ε 365 (L · mol −1 · cm −1 ) = A 365 /(0.00025 mol / L × 1 cm)
[In the formula, A 365 represents absorbance at 365 nm. ]
<レジスト硬化性>
フェノール樹脂(DIC社製、「フェノライトTD431」)75部、メラミン硬化剤(三井サイアナミッド(株)社製、「サイメル300」)25部、合成した光酸発生剤1部、及びプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略記する。)200部の樹脂溶液を、10cm角のガラス基板上にスピンコーターを用いて1000rpmで10秒の条件で塗布した。次いで25℃で5分間真空乾燥した後、80℃のホットプレート上で3分間乾燥させることで、膜厚約3μmのレジストを形成した。このレジストに紫外線照射装置(株式会社オーク製作所社製、HMW-661F-01)を用いて、L-34(株式会社ケンコー光学製、340nm未満の光をカットするフィルター)フィルターによって波長を限定した紫外光を所定量全面に露光した。なお積算露光量は365nmの波長を測定した。次いで、120℃の順風乾燥機で10分間露光後加熱(PEB)を行った後、0.5%水酸化カリウム溶液を用いて30秒間浸漬することで現像し、直ちに水洗、乾燥を行った。このレジストの膜厚を形状測定顕微鏡(超深度形状測定顕微鏡UK-8550、株式会社キーエンス製)を用いて測定した。ここで現像前後のレジストの膜厚変化が10%以内となる最低露光量から、レジスト硬化性を以下の基準により評価した。
○: 最低露光量が250mJ/cm以下
△: 最低露光量が250mJ/cmより大きく、500mJ/cm以下
×: 最低露光量が500mJ/cmより大きい
<Resistance curability>
75 parts of phenolic resin (manufactured by DIC, “Phenolite TD431”), 25 parts of melamine curing agent (manufactured by Mitsui Cyanamid Co., Ltd., “Cymel 300”), 1 part of synthesized photoacid generator, and propylene glycol monomethyl ether 200 parts of a resin solution of acetate (hereinafter abbreviated as PGMEA) was applied on a 10 cm square glass substrate using a spin coater at 1000 rpm for 10 seconds. Next, after vacuum drying at 25 ° C. for 5 minutes, it was dried on a hot plate at 80 ° C. for 3 minutes to form a resist having a film thickness of about 3 μm. An ultraviolet ray irradiation device (OMW Corporation, HMW-661F-01) is used for this resist, and the wavelength is limited by an L-34 (Kenko Optical Co., Ltd. filter that cuts light of less than 340 nm) filter. A predetermined amount of light was exposed on the entire surface. The integrated exposure was measured at a wavelength of 365 nm. Subsequently, after performing post-exposure heating (PEB) for 10 minutes with a 120 ° C. normal air dryer, development was performed by immersing in a 0.5% potassium hydroxide solution for 30 seconds, followed by immediately washing with water and drying. The film thickness of the resist was measured using a shape measurement microscope (ultra-depth shape measurement microscope UK-8550, manufactured by Keyence Corporation). Here, the resist curability was evaluated according to the following criteria from the minimum exposure amount at which the change in resist film thickness before and after development was within 10%.
○: minimum exposure amount 250 mJ / cm 2 or less △: Minimum exposure amount greater than 250mJ / cm 2, 500mJ / cm 2 or less ×: Minimum exposure amount is greater than 500 mJ / cm 2
<熱分解温度>
 合成した光酸発生剤を示差熱・熱重量同時測定装置(SII社製、TG/DTA6200)を用いて、窒素雰囲気下、30℃から500℃まで10℃/分の昇温条件で重量変化を測定し、5%重量が減少した点を熱分解温度とした。
<Thermal decomposition temperature>
Using the differential thermal / thermogravimetric simultaneous measurement device (TG / DTA6200, manufactured by SII), the synthesized photoacid generator was subjected to weight change from 30 ° C. to 500 ° C. under a temperature rising condition of 10 ° C./min. The point at which 5% weight was measured was determined as the thermal decomposition temperature.
<溶剤溶解性>
 合成した光酸発生剤を0.1g試験管にとり、25℃温調下でプロピレングリコールモノメチルエーテルアセテート(PGMEA)を加えていき、光酸発生剤が完全に溶解するまで加えた。なお20g加えても完全に溶解しない場合には、溶解しないものと評価した。
<Solvent solubility>
The synthesized photoacid generator was placed in a 0.1 g test tube, and propylene glycol monomethyl ether acetate (PGMEA) was added under temperature control at 25 ° C. until the photoacid generator was completely dissolved. When 20 g was not completely dissolved, it was evaluated as not dissolved.
<アルカリ現像性>
 合成した光酸発生剤を0.5部試験管にとり、2.38%のテトラメチルアンモニウムヒドロキシド水溶液を加えて100部にした後、超音波洗浄器でテトラメチルアンモニウムヒドロキシド水溶液中に1分間分散させた。この分散液を各光酸発生剤2本ずつ調製し、そのうち1本のみに紫外線照射装置(アイグラフィックス社製、ECS-151U)を用いて、340nm未満の光をカットするフィルターによって波長を限定した紫外光を100mJ/cm照射した。遮光下で24時間静置後の分散液の様子から、アルカリ現像性を以下の基準により評価した。
○: 完全に溶解している
△: 完全に溶解しておらず、濁りがある
×: 完全に溶解しておらず、溶け残りが試験管底部に沈殿している
<Alkali developability>
Take 0.5 parts of the synthesized photoacid generator in a test tube, add 2.38% tetramethylammonium hydroxide aqueous solution to 100 parts, and then in an aqueous solution of tetramethylammonium hydroxide for 1 minute with an ultrasonic cleaner. Dispersed. Two dispersions of this photoacid generator were prepared for each dispersion, and only one of them was limited in wavelength by a filter that cuts light of less than 340 nm using an ultraviolet irradiation device (ECS-151U, manufactured by Eye Graphics). The irradiated ultraviolet light was irradiated at 100 mJ / cm 2 . From the state of the dispersion after standing for 24 hours under light shielding, alkali developability was evaluated according to the following criteria.
○: completely dissolved △: not completely dissolved and turbid ×: not completely dissolved, and undissolved residue is deposited at the bottom of the test tube
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1から明らかなように、本発明の実施例1~8の非イオン系光酸発生剤(A)は、モル吸光係数が500~10,000の範囲にあり、レジスト硬化性に優れており、また紫外光を照射した際に酸解離性基が脱離することで極性が増大し、アルカリ現像性に優れるため、スカムの発生が少ないことが分かる。また、溶剤に対する溶解性、および熱分解温度の観点から、フォトレジストとして使用するために十分な性能を有していることが分かる。
 一方、置換基を有さないナフチルイミド骨格からなる比較例1では、ナフチル骨格同士が分子配向しやすく結晶性が高くなるため、溶剤に対する溶解性が低くすぎることが分かる。また、酸解離性基で水酸基が保護されていない比較例2では、レジスト硬化性及び溶剤溶解性が不足していることが分かる。
 また、イオン系光酸発生剤の比較例3では、酸発生剤のレジストへの分散性が低いため、レジスト硬化性が低下していることが分かる。
As is clear from Table 1, the nonionic photoacid generators (A) of Examples 1 to 8 of the present invention have a molar extinction coefficient in the range of 500 to 10,000 and are excellent in resist curability. Further, it can be seen that the acid dissociable group is eliminated when irradiated with ultraviolet light, so that the polarity is increased and the alkali developability is excellent, so that the occurrence of scum is small. Moreover, it turns out that it has sufficient performance for using as a photoresist from the viewpoint of the solubility with respect to a solvent, and thermal decomposition temperature.
On the other hand, in Comparative Example 1 composed of a naphthylimide skeleton having no substituent, the naphthyl skeletons are easily molecularly aligned with each other, and the crystallinity is high, so that the solubility in a solvent is too low. Further, it can be seen that in Comparative Example 2 in which the hydroxyl group is not protected by the acid dissociable group, the resist curability and the solvent solubility are insufficient.
In Comparative Example 3 of the ionic photoacid generator, it can be seen that the resist curability is lowered because the dispersibility of the acid generator in the resist is low.
 本発明の非イオン系光酸発生剤(A)はi線に高い光感度を有し、かつアルカリ現像性に優れているため、半導体の製造に代表される微細加工用のフォトリソグラフィー材料として有用である。
 
The nonionic photoacid generator (A) of the present invention has high photosensitivity to i-line and excellent alkali developability, so it is useful as a photolithography material for microfabrication represented by semiconductor manufacturing. It is.

Claims (5)

  1. 下記一般式(1)で表されることを特徴とする非イオン系光酸発生剤(A)。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは酸の作用により脱離して水素原子に置換されうる1価の有機基であり、Rfは炭素数1~18の炭化水素基(水素の一部又は全部がフッ素で置換されていてよい)を表す。]
    A nonionic photoacid generator (A) represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X is a monovalent organic group that can be eliminated by the action of an acid and substituted with a hydrogen atom, and Rf is a hydrocarbon group having 1 to 18 carbon atoms (a part or all of hydrogen is fluorine. Which may be substituted with ]
  2. 一般式(1)において、Xがシリル基、アルキルオキシカルボニル基又は下記一般式(2)で表される基である請求項1に記載の非イオン系光酸発生剤(A)。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rは炭素数1~10の炭化水素基、R及びRは水素原子又は炭素数1~10の炭化水素基を表し、RとR又はRは互いに結合して環構造を形成してもよい。]
    The nonionic photoacid generator (A) according to claim 1, wherein, in the general formula (1), X is a silyl group, an alkyloxycarbonyl group or a group represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (2), R 1 represents a hydrocarbon group having 1 to 10 carbon atoms, R 2 and R 3 represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and R 1 and R 2 or R 3 represent They may combine with each other to form a ring structure. ]
  3.  一般式(1)において、Xが下記一般式(3)で表されるアルキルオキシカルボニル基である請求項1又は2に記載の非イオン系光酸発生剤(A)。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、R、R及びRはそれぞれ独立に、水素原子又は炭素数1~10の炭化水素基を表し、環構造又は分岐構造を有してもよく、互いに結合して環構造を形成してもよい。]
    The nonionic photoacid generator (A) according to claim 1 or 2, wherein in the general formula (1), X is an alkyloxycarbonyl group represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (3), R 4 , R 5 and R 6 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a ring structure or a branched structure, and may be bonded to each other. To form a ring structure. ]
  4.  一般式(1)において、RfがCF,C、C、C、またはCである請求項1~3のいずれかに記載の非イオン系光酸発生剤(A)。 The nonionic photoacid according to any one of claims 1 to 3, wherein in the general formula (1), Rf is CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , or C 6 F 5. Generator (A).
  5.  請求項1~4のいずれかに記載の非イオン系光酸発生剤(A)を含むフォトリソグラフィー用樹脂組成物(Q)。
     
    A resin composition for photolithography (Q) comprising the nonionic photoacid generator (A) according to any one of claims 1 to 4.
PCT/JP2017/043929 2016-12-12 2017-12-07 Photoacid generator and resin composition for photolithography WO2018110399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018556616A JP6591699B2 (en) 2016-12-12 2017-12-07 Photoacid generator and resin composition for photolithography
KR1020197006989A KR102438543B1 (en) 2016-12-12 2017-12-07 Photoacid generator and resin composition for photolithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240165 2016-12-12
JP2016-240165 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110399A1 true WO2018110399A1 (en) 2018-06-21

Family

ID=62558707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043929 WO2018110399A1 (en) 2016-12-12 2017-12-07 Photoacid generator and resin composition for photolithography

Country Status (4)

Country Link
JP (1) JP6591699B2 (en)
KR (1) KR102438543B1 (en)
TW (1) TWI741097B (en)
WO (1) WO2018110399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105364A1 (en) * 2018-11-22 2020-05-28 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217748A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Active ray-curable ink composition, method of image formation using the same, and ink jet printer using the same
WO2011087011A1 (en) * 2010-01-13 2011-07-21 株式会社Adeka Novel sulfonic acid derivative compound and novel naphthalic acid derivative compound
JP2014186309A (en) * 2013-02-19 2014-10-02 Jsr Corp Negative-type radiation-sensitive resin composition, hardened film for display element, method of forming hardened film for display element and display element
WO2015001804A1 (en) * 2013-07-05 2015-01-08 サンアプロ株式会社 Photoacid generator, and resin composition for photolithography
WO2015046501A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
WO2016043941A1 (en) * 2014-09-18 2016-03-24 Heraeus Precious Metals North America Daychem LLC Sulfonic derivative compounds as photoacid generators in resist applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1516511A (en) 1974-05-02 1978-07-05 Gen Electric Curable epoxide compositions
JP3024621B2 (en) 1990-01-30 2000-03-21 和光純薬工業株式会社 Acid generator for resist material
EP0571330B1 (en) 1992-05-22 1999-04-07 Ciba SC Holding AG High-resolution photoresist with enhanced sensitivity for I-line exposure
JPH09118663A (en) 1995-08-22 1997-05-06 Nippon Soda Co Ltd New sulfonium salt compound, polymerization initiator, curable composition containing the same compound and curing
KR102138141B1 (en) * 2013-02-19 2020-07-27 제이에스알 가부시끼가이샤 Nagative radiation-sensitive resin composition, cured film, forming method of the cured film, and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217748A (en) * 2003-01-14 2004-08-05 Konica Minolta Holdings Inc Active ray-curable ink composition, method of image formation using the same, and ink jet printer using the same
WO2011087011A1 (en) * 2010-01-13 2011-07-21 株式会社Adeka Novel sulfonic acid derivative compound and novel naphthalic acid derivative compound
JP2014186309A (en) * 2013-02-19 2014-10-02 Jsr Corp Negative-type radiation-sensitive resin composition, hardened film for display element, method of forming hardened film for display element and display element
WO2015001804A1 (en) * 2013-07-05 2015-01-08 サンアプロ株式会社 Photoacid generator, and resin composition for photolithography
WO2015046501A1 (en) * 2013-09-30 2015-04-02 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, liquid crystal display device and organic el display device
WO2016043941A1 (en) * 2014-09-18 2016-03-24 Heraeus Precious Metals North America Daychem LLC Sulfonic derivative compounds as photoacid generators in resist applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105364A1 (en) * 2018-11-22 2020-05-28 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography
JP2020086083A (en) * 2018-11-22 2020-06-04 サンアプロ株式会社 Photo-acid generator and resin composition for photolithography
CN112888676A (en) * 2018-11-22 2021-06-01 三亚普罗股份有限公司 Photoacid generators and resin compositions for lithography
JP7116669B2 (en) 2018-11-22 2022-08-10 サンアプロ株式会社 Photoacid generator and resin composition for photolithography

Also Published As

Publication number Publication date
KR102438543B1 (en) 2022-08-30
TW201835052A (en) 2018-10-01
KR20190091436A (en) 2019-08-06
JPWO2018110399A1 (en) 2019-04-04
JP6591699B2 (en) 2019-10-16
TWI741097B (en) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2014061063A1 (en) Photo-acid generator, and resin composition for photolithography
JP5715892B2 (en) Photoacid generator and resin composition for photolithography
TWI704136B (en) Non-ionic photoacid generator and resin composition for photolithography
TWI788602B (en) Photoacid generator and resin composition for photolithography
EP3216783B1 (en) Sulfonate compound, photoacid generator, and photolithographic resin composition
JP2019215388A (en) Photoacid generator and resin composition for photolithography
JP6591699B2 (en) Photoacid generator and resin composition for photolithography
WO2021029158A1 (en) Sulfonamide compound, nonionic photoacid generator, and photolithography resin composition
JP6747990B2 (en) Photo-acid generator and resin composition for photolithography
WO2022030107A1 (en) Nonionic photoacid generator, and photolithography resin composition
JP6723914B2 (en) Photo-acid generator and resin composition for photolithography
WO2019216174A1 (en) Photoacid generator and photolithographic resin composition
JP6205285B2 (en) Photoacid generator and resin composition for photolithography
JP2015152669A (en) Photoacid generator and resin composition for photolithography
JP6059953B2 (en) Photoacid generator and resin composition for photolithography
WO2015146053A1 (en) Imide sulfonate compound, photoacid generator, and resin composition for photolithography
WO2022168632A1 (en) Photoacid generator and resin composition for photolithography

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556616

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006989

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881221

Country of ref document: EP

Kind code of ref document: A1