WO2022030107A1 - Nonionic photoacid generator, and photolithography resin composition - Google Patents

Nonionic photoacid generator, and photolithography resin composition Download PDF

Info

Publication number
WO2022030107A1
WO2022030107A1 PCT/JP2021/022438 JP2021022438W WO2022030107A1 WO 2022030107 A1 WO2022030107 A1 WO 2022030107A1 JP 2021022438 W JP2021022438 W JP 2021022438W WO 2022030107 A1 WO2022030107 A1 WO 2022030107A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
examples
compound
photoacid generator
Prior art date
Application number
PCT/JP2021/022438
Other languages
French (fr)
Japanese (ja)
Inventor
竜輔 高橋
智仁 木津
Original Assignee
サンアプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンアプロ株式会社 filed Critical サンアプロ株式会社
Priority to JP2022541135A priority Critical patent/JPWO2022030107A1/ja
Publication of WO2022030107A1 publication Critical patent/WO2022030107A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
    • C07C311/49Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom to nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Definitions

  • the present invention relates to a nonionic photoacid generator and a resin composition for photolithography. More specifically, it contains a nonionic photoacid generator containing a sulfonamide compound suitable for generating a superstrong acid by acting with ultraviolet rays (i-ray, KrF-ray), and the nonionic photoacid generator.
  • the present invention relates to a resin composition for photolithography.
  • a photolithography process obtained by transferring a desired pattern to a resist using light of various wavelengths has been widely used.
  • the resist material for example, a tert-butyl ester of a carboxylic acid or a resin composition containing a polymer having a tert-butyl carbonate of phenol and a photoacid generator is used.
  • the photoacid generator decomposes and a super strong acid such as trifluoromethanesulfonic acid (an acid showing higher acidity than 100% sulfuric acid). Occurs.
  • acid-reactive groups such as tert-butyl ester group or tert-butyl carbonate group in the polymer are dissociated by the generated acid, and carboxylic acid or phenolic hydroxyl group is generated. It is formed and the light-irradiated portion becomes easily soluble in the alkaline developing solution. Since pattern formation is performed using this phenomenon, the development of a highly sensitive resist material that can obtain a desired pattern with a small exposure amount is eagerly desired for energy saving and shortening of process time. Therefore, as a photoacid generator that realizes a highly sensitive resist material, it is desirable that the photodecomposition rate and the generated acid have higher acid strength.
  • ionic photoacid generators such as triarylsulfonium salt (Patent Document 1), phenacylsulfonium salt having a naphthalene skeleton (Patent Document 2), and oxime are preferable photoacid generators for the photolithography step.
  • a nonionic photoacid generator having a sulfonate structure (Patent Document 3), a naphthalimide structure (Patent Document 4, Patent Document 5) and the like is disclosed.
  • Near ultraviolet rays such as i-line (365 nm) and KrF line (248 nm) are widely used as a light source for a photolithography process that decomposes a photoacid generator in a resin composition for photolithography because of its availability and stability.
  • i-line 365 nm
  • KrF line 248 nm
  • the resist solvent contained in the photolithography resin composition is contained so that the solid does not precipitate or phase separate even in the high-concentration photolithography resin composition. Is required to be highly soluble.
  • ionic photoacid generators such as triarylsulfonium salt and phenacylsulfonium salt have a low photodecomposition rate for i-rays and low sensitivity, and because they are salts, they have a high concentration in the resin composition for photolithography. There was a problem that phase separation or precipitation occurred when it was contained.
  • a nonionic photoacid generator having an oxime sulfonate structure and a naphthalimide structure has a high photodecomposition rate for i-rays, but practically the generated acid is limited to sulfonic acid, and sufficient acidity cannot be obtained with low sensitivity. There was a problem.
  • an object of the present invention is a photoacid generator containing a sulfonamide compound that generates a bissulfonamide that has a high decomposition rate and is a super-strong acid with respect to near-ultraviolet rays such as i-rays and KrF rays and is highly soluble in a resist solvent. And a resin composition for photolithography having high sensitivity to near-ultraviolet rays containing the same.
  • the present invention comprises a nonionic photoacid generator (A) and the nonionic photoacid generator (A), which are characterized by containing a sulfonamide compound represented by the following general formula (1). It is a resin composition (Q) for photolithography including.
  • R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group
  • R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group
  • R f and R 1 are.
  • R2 may be bonded to each other to form a ring
  • R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, or an aryl.
  • R 3 is a cyclic alkyl group, an aryl group, or a heteroatomic aryl group, and R2 and R3 are bonded to each other to form a ring (containing a heteroatom). It may be formed).
  • the nonionic photoacid generator (A) of the present invention generates a super strong acid with a high decomposition rate with respect to near-ultraviolet rays, and has excellent solubility in a resist solvent. Further, the resin composition for photolithography (Q) containing this is highly sensitive to near-ultraviolet rays.
  • the sulfonamide compound contained in the nonionic photoacid generator (A) of the present invention is represented by the following general formula (1).
  • R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group
  • R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group
  • R f and R 1 are.
  • R2 may be bonded to each other to form a ring
  • R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, or an aryl.
  • R 3 is a cyclic alkyl group, an aryl group, or a heteroatomic aryl group, and R2 and R3 are bonded to each other to form a ring (containing a heteroatom). It may be formed).
  • R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group, and may have a substituent. R f may be combined with R 1 to form a ring.
  • the fluoroalkyl group is an alkyl group in which at least one hydrogen is substituted with fluorine, and examples thereof include fluoroalkyl groups having 1 to 10 carbon atoms (excluding substituents; the same applies hereinafter unless otherwise specified), and linear fluoro. Examples thereof include an alkyl group (RF1), a branched fluoroalkyl group (RF2), a cyclic fluoroalkyl group (RF3) and the like.
  • the linear fluoroalkyl group (RF1) includes a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a perfluorodecanyl group, and a difluoromethyl group.
  • 1,1,2,2,3,3,4,5,5,6,6-dodecafluorohexyl group difluoro (methoxycarbonyl) methyl group and 2-adamantyl carbonyloxy-1,1-difluoro Examples thereof include an ethyl group.
  • Examples of the branched fluoroalkyl group (RF2) include a hexafluoroisopropyl group, a nonafluoro-tert-butyl group and a perfluoro-2-ethylhexyl group.
  • cyclic fluoroalkyl group examples include a heptafluorocyclobutyl group, a nonafluorocyclopentyl group, a perfluorocyclohexyl group and a perfluoro (1-cyclohexyl) methyl group.
  • the fluoroaryl group is an aryl group in which at least one hydrogen is substituted with fluorine, and examples thereof include a fluoroaryl group (RF4) having 6 to 10 carbon atoms.
  • Fluoroaryl groups (RF4) having 6 to 10 carbon atoms include 3,4,5-trifluorophenyl group, pentafluorophenyl group, perfluoronaphthyl group, 3-trifluoromethyltetrafluorophenyl group and 3,5-. Examples thereof include a bistrifluoromethylphenyl group.
  • a linear fluoroalkyl group (RF1), a branched fluoroalkyl group (RF2), and a fluoroaryl group (RF4) are preferable from the viewpoint of the deprotective ability of the photoresist and the availability of raw materials.
  • Linear fluoroalkyl group (RF1), and fluoroaryl group (RF4) are more preferred, trifluoromethyl group (CF 3 ), pentafluoroethyl group (C 2 F 5 ), heptafluoropropyl group (C 3 F 7 ).
  • Nonafluorobutyl group (C 4 F 9 ) and pentafluorophenyl group (C 6 F 5 ) are particularly preferred.
  • R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group, and may have a substituent.
  • alkyl group examples include a linear alkyl group having 1 to 18 carbon atoms (RA1), a branched alkyl group having 1 to 18 carbon atoms (RA2), a cyclic alkyl group having 3 to 18 carbon atoms (RA3), and the like. ..
  • the linear alkyl group (RA1) includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, a benzyl group and a benzyloxymethyl group.
  • Branched alkyl groups include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, isohexyl group, 1-methylbutyl group and 2-ethylhexyl. Examples thereof include a group, a 2-hexyldecyl group, an isodecyl group and an isooctadecyl group.
  • cyclic alkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a 1-adamantyl group, a 2-adamantyl group, a menthyl group, a 10-campayl group, an octahydronaphthyl group, and a tri.
  • Cyclodecanyl group, tetracyclododecanyl group, 4-dodecylcyclohexyl group and the like can be mentioned.
  • fluoroalkyl group examples include the same as the above-mentioned linear fluoroalkyl group (RF1), branched fluoroalkyl group (RF2) or cyclic fluoroalkyl group (RF3).
  • aryl group examples include an aryl group (RA4) having 6 to 10 carbon atoms, such as a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-azurenyl group, a 2-tolyl group, a 3-tolyl group, and 4-.
  • RA4 aryl group having 6 to 10 carbon atoms
  • fluoroaryl group examples include the same group as the above-mentioned fluoroaryl group (RF4).
  • a linear alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 12 carbon atoms, a linear fluoroalkyl group having 1 to 10 carbon atoms (RF1), and a carbon number of carbon atoms are preferable. It is an aryl group of 6 to 8 and a fluoroaryl group having 6 to 8 carbon atoms, and more preferably a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a 10-campayl group, or a trifluoromethyl group (CF 3 ).
  • R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group and an alkylsulfonyl. It is a group or an arylsulfonyl group and may have a substituent. R 2 may be combined with R 3 to form a ring (which may contain a heteroatom).
  • alkyl group examples include the same as the linear alkyl group (RA1), the branched alkyl group (RA2) and the cyclic alkyl group (RA3).
  • alkenyl group examples include an alkenyl group (RE1) having 2 to 10 carbon atoms, and a linear, branched or cyclic alkenyl group (ethenyl, cyanoethenyl, dicyanoethenyl, phenylethenyl, 1-propenyl, 2-propenyl). , 1-butene-1-yl, 2-butene-1-yl, 2-methyl-2-propenyl, 1-cyclopentene-1-yl, 1-cyclohexene-1-yl, 1-decene-1-yl and norbornenyl Etc.) etc.
  • RE1 alkenyl group having 2 to 10 carbon atoms
  • a linear, branched or cyclic alkenyl group ethenyl, cyanoethenyl, dicyanoethenyl, phenylethenyl, 1-propenyl, 2-propenyl.
  • alkynyl group examples include an alkynyl group (RY1) having 2 to 10 carbon atoms, and a linear, branched, or cyclic alkynyl group (ethynyl, 1-propyne-1-yl, 2-propyne-1-yl).
  • aryl group examples include an aryl group (RA5) having 6 to 14 carbon atoms, such as a phenyl group, a 4-cyanophenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, and 9 -Anthrasenyl group, 3-phenanthrenyl, 9-phenanthrenyl, 1-azulenyl group, 2-fluorenyl group, 9', 9'-dimethyl-2-fluorenyl group and 9', 9'-bistrifluoromethyl-2-fluorenyl group, etc. Can be mentioned.
  • RA5 aryl group having 6 to 14 carbon atoms
  • heteroatom-containing aryl group examples include a heteroatom-containing aryl group (RA6) having 3 to 14 carbon atoms, and a furanyl group and a thienyl group containing one or more heteroatoms from the group consisting of oxygen, nitrogen and sulfur.
  • RA6 heteroatom-containing aryl group
  • Examples thereof include a group, a phenoxatyynyl group, a dibenzo-p-dioxynyl group, a thianthrenyl group, a xanthonyl group, a thioxanthonyl group, an anthraquinonyl group, a dibenzofuranyl group, a fluorenyl group, a carbazolyl group and a coumarinyl group.
  • alkylcarbonyl group examples include an alkylcarbonyl group (RC1) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkylcarbonyl group (acetyl, propionyl, butanoyl, 2-methylpropionyl, etc.). Pentanoyl, 2-methylbutanoyl, 3-methylbutanoyl, 2,2-dimethylpropanoyl, octanoyl, 2-ethylhexanoyl, decanoyl, etc.) and the like.
  • RC1 alkylcarbonyl group having 1 to 10 carbon atoms (not containing carbonyl carbon)
  • a linear or branched alkylcarbonyl group acetyl, propionyl, butanoyl, 2-methylpropionyl, etc.
  • arylcarbonyl group examples include an arylcarbonyl group (RC2) having 6 to 10 carbon atoms (without carbonyl carbon), and examples thereof include a benzoyl group, a naphthoyl group, and a 4-toluyl group.
  • RC2 arylcarbonyl group having 6 to 10 carbon atoms (without carbonyl carbon)
  • examples thereof include a benzoyl group, a naphthoyl group, and a 4-toluyl group.
  • alkoxycarbonyl group examples include an alkoxycarbonyl group (RC3) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkoxycarbonyl group (methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxy).
  • alkoxycarbonyl group examples include carbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, tert-amyloxycarbonyl, octyloxycarbonyl, 2-ethylhexyloxycarbonyl and benzyloxycarbonyl (Cbz)).
  • aryloxycarbonyl group examples include an aryloxycarbonyl group (RC4) having 6 to 10 carbon atoms (not including carbon on the carbonyl), such as a phenoxycarbonyl group, a 2-triloxycarbonyl group, and a 4-triloxycarbonyl group.
  • alkylsulfonyl group examples include an alkylsulfonyl group (RC5) having 1 to 10 carbon atoms, and a linear or branched alkylsulfonyl group (methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, etc.
  • RC5 alkylsulfonyl group having 1 to 10 carbon atoms
  • a linear or branched alkylsulfonyl group methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, etc.
  • aryl sulfonyl group examples include an aryl sulfonyl group (RC6) having 6 to 10 carbon atoms (benzenesulfonyl, 2-toluenesulfonyl, 4-toluenesulfonyl, 2-nitrobenzenesulfonyl, 4-nitrobenzenesulfonyl, 2,4-dinitrobenzenesulfonyl, 2-Mesitylene sulfonyl, 4-butylbenzene sulfonyl, 4-tert-butyl benzene sulfonyl, naphthyl sulfonyl, pentafluoro benzene sulfonyl and 3,5-bis (trifluoromethyl) benzene sulfonyl, etc.) and the like.
  • RC6 aryl sulfonyl group having 6 to 10 carbon atoms
  • R 3 is a cyclic alkyl group, an aryl group or a heteroatom-containing aryl group, and may have a substituent.
  • cyclic alkyl group examples include a cyclic alkyl group (RA7) having 3 to 12 carbon atoms, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
  • RA7 cyclic alkyl group having 3 to 12 carbon atoms
  • a cyclopropyl group a cyclobutyl group
  • a cyclopentyl group examples include a cyclohexyl group, a norbornyl group, a 1-adamantyl group, a 2-adamantyl group, and the like.
  • examples thereof include a mentyl group, a 10-campayl group, an octahydronaphthyl group, a tricyclodecanyl group, a tetra
  • aryl group examples include the same aryl group as the above-mentioned aryl group (RA5).
  • heteroatom-containing aryl group examples include the same as the above-mentioned heteroatom-containing aryl group (RA6).
  • Examples of the substituent of the aryl group (RA5) and the heteroatom-containing aryl group (RA6) include the same groups as those listed in (R6) described later.
  • R 3 is bonded to R 2 at an appropriate position on the carbon of the cyclic alkyl group (RA7), aryl group (RA5) and heteroatom-containing aryl group (RA6) to form a cyclic structure. And may contain heteroatoms.
  • R 2 is an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatom aryl group having 3 to 14 carbon atoms
  • R 3 is. It is a cyclic alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatom aryl group having 3 to 14 carbon atoms, and R 2 and R 3 are bonded to each other to form a 5- to 7-membered ring (5 to 7-membered ring). It may contain heteroatoms).
  • the following general formulas (1) -1, (1) -2, and (2) -1 to (2) -5 are mentioned. More preferably, the general formulas (1) -1 and (2) -1 to (2) -5.
  • a plurality of R 1s are independent of each other.
  • R 2 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, and a heteroatom containing 3 to 14 carbon atoms.
  • R 3 is a cyclic alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatomic aryl group having 3 to 14 carbon atoms.
  • the following general formulas (3) -1 to (3) -4, (4) -1 and (4) -2 are preferably mentioned. More preferably, the general formulas (3) -1, (3) -2, (3) -4, (4) -1 and (4) -2.
  • R 2 is a group selected from the above groups.
  • G 1 is a group in which R 2 and R 3 are combined to form a ring, and is -CH 2- , -CH 2 -CH 2- , -O-, -S-. , Or -NR 7- , etc.
  • R 7 is an alkyl group having 1 to 4 carbon atoms, a phenyl group, an acetyl group, a propionyl group, a butanoyl group, a benzoyl group, a mesyl group, a benzenesulfonyl group, a tosyl group, or a nosyl group.
  • the group is preferably an alkyl group having 1 to 4 carbon atoms, a phenyl group, an acetyl group or a benzoyl group, and more preferably a methyl group or a phenyl group from the viewpoint of availability of raw materials and ease of synthesis.
  • G 2 is a group in which R 2 and R 3 are bonded to form a ring, and is -CH 2- , -O-, -S-, or. -NR 8 -etc. (R 8 is the same as R 7 above), and R 8 is preferably an alkyl group or phenyl group having 1 to 4 carbon atoms from the viewpoint of availability of raw materials and ease of synthesis. It is an acetyl group and a benzoyl group.
  • R 4 and R 5 are hydrogen atoms or substituents of a ring formed by bonding R 2 and R 3 , and each of them is an independent hydrogen atom.
  • examples thereof include an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms (RA5), a halogen atom and the like, preferably a hydrogen atom and a linear alkyl group having 1 to 6 carbon atoms from the viewpoint of easiness of synthesis.
  • Phenyl group hydrogen atom.
  • halogen atom examples include those similar to those listed in (R 6 ) described later.
  • G 5 is -CMe 2- , -O-, -S-, or -NR 9- (Me represents a methyl group, and R 9 is the above.
  • R 9 is preferably an alkyl group, a phenyl group, an acetyl group, a benzoyl group having 1 to 4 carbon atoms, and more preferably a methyl group, from the viewpoint of availability of raw materials and ease of synthesis. Is.
  • (R 6 ) n is an mutually independent n substituents (n is an integer of 0 to 8) at arbitrary positions on the above aryl group (RA5) or heteroatomic aryl group (RA6).
  • Examples thereof include an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an alkyl carbonate group, an arylcarbonate group, an alkylsulfonyl group, an arylsulfonyl group, an amino group and a halogen atom.
  • the substitution position of (R 6 ) is the combination of R 2 and R 3 in the general formula (1).
  • the structure formed by the above is regarded as the mother skeleton and determined, and the substitution positions of (R 6 ) in the general formulas (3) -1 to (3) -4, (4) -1 and (4) -2 are general.
  • R 3 is regarded as the mother skeleton and determined.
  • Examples of the alkyl group of (R 6 ) include those similar to the above-mentioned linear alkyl group (RA1), branched alkyl group (RA2) and cyclic alkyl group (RA3), and availability of raw materials and easy synthesis. From the viewpoint of sex, it is preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, and more preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group or a tert-. It is a butyl group, a pentyl group, a hexyl group, a 2-ethylhexyl group, a cyclopentyl group and a cyclohexyl group.
  • Examples of the fluoroalkyl group of (R 6 ) include those similar to the above-mentioned linear fluoroalkyl group (RF1), branched fluoroalkyl group (RF2), and cyclic fluoroalkyl group (RF3), and availability of raw materials can be mentioned. From the viewpoint of ease of synthesis, a linear, branched or cyclic fluoroalkyl group having 1 to 8 carbon atoms is preferable, and a trifluoromethyl group, a pentafluoroethyl group or a heptafluoropropyl group is more preferable. It is a nonafluorobutyl group and a hexafluoroisopropyl group.
  • Examples of the alkenyl group of (R 6 ) include the same as the above-mentioned alkenyl group (RE1).
  • Examples of the alkynyl group of (R6) include the same as the above-mentioned alkynyl group (RY1), and from the viewpoint of easiness of synthesis, 1-propyne-1-yl group and 1-butyne-1-yl group. , 1-Pentyne-1-yl group and 2-phenylethin-1-yl group are preferable.
  • Examples of the aryl group of (R 6 ) include the same aryl group as the above-mentioned aryl group (RA5).
  • heteroatom-containing aryl group of (R6) examples include the same as the heteroatom-containing aryl group (RA6).
  • alkoxy group of (R 6 ) examples include an alkoxy group (RC7) having 1 to 10 carbon atoms, and a linear, branched or cyclic alkoxy group (methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.).
  • alkylthio group of (R6) examples include an alkylthio group having 1 to 10 carbon atoms (RC8), and a linear, branched or cyclic alkylthio group (methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio).
  • alkylcarbonyl group of (R 6 ) examples include the same group as the above-mentioned alkylcarbonyl group (RC1), preferably acetyl, propionyl, butanoyl, 2-methylbutanoyl and 2, from the viewpoint of ease of synthesis. 2-Dimethylpropanoyl.
  • Examples of the arylcarbonyl group of (R6) include the same arylcarbonyl group as the above-mentioned arylcarbonyl group (RC2).
  • alkoxycarbonyl group of (R 6 ) examples include the same as the alkoxycarbonyl group (RC3) described above, and from the viewpoint of ease of synthesis, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl and butoxy are preferable.
  • methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl and butoxy are preferable.
  • Examples of the aryloxycarbonyl group of (R6) include the same aryloxycarbonyl group as the above-mentioned aryloxycarbonyl group (RC4).
  • Examples of the alkylcarbonyloxy group of (R6) include an alkylcarbonyloxy group ( RC9 ) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkylcarbonyloxy group.
  • arylcarbonyloxy group of (R6) examples include an arylcarbonyloxy group (RC10) having 6 to 10 carbon atoms (without carbonyl carbon), such as a phenylcarbonyloxy group and 1-naphthylcarbo.
  • Nyloxy group 2-naphthylcarbonyloxy group, 1-azurenylcarbonyloxy group, 2-tolylcarbonyloxy group, 3-tolylcarbonyloxy group, 4-tolylcarbonyloxy group, 2-chlorophenylcarboni Loxy group, 3-chlorophenylcarbonyloxy group, 4-chlorophenylcarbonyloxy group, 2,4-xysilylcarbonyloxy group, 2,6-xysilylcarbonyloxy group, 3,5-xysilylcarbonyloxy Examples thereof include a group, a 2,4,6-mesitylcarbonyloxy group, a 3,5-bistrifluoromethylphenylcarbonyloxy group and a pentafluorophenylcarbonyloxy group.
  • Examples of the alkyl carbonate group of (R 6 ) include an alkyl carbonate group (RC11) having 1 to 10 carbon atoms (not containing carbonyl carbon), a methyl carbonate group, an ethyl carbonate group, a propyl carbonate group, and 2-.
  • RC11 alkyl carbonate group having 1 to 10 carbon atoms (not containing carbonyl carbon)
  • a methyl carbonate group an ethyl carbonate group
  • a propyl carbonate group and 2-.
  • a methyl carbonate group, an ethyl carbonate group, a propyl carbonate group, an isopropyl carbonate group, a butyl carbonate group, an isobutyl carbonate group, a tert-butyl carbonate group, a tert-amyl carbonate group and a 2-ethylhexyl carbonate group are preferable.
  • Examples of the aryl carbonate group of (R 6 ) include an aryl carbonate group (RC12) having 6 to 10 carbon atoms (without carbonyl carbon), such as a phenyl carbonate group, a 1-naphthyl carbonate group and a 2-naphthyl carbonate.
  • RC12 aryl carbonate group having 6 to 10 carbon atoms (without carbonyl carbon)
  • alkylsulfonyl group of (R6) examples include the same as the above-mentioned alkylsulfonyl group (RC5), and from the viewpoint of availability of raw materials, methylsulfonyl, ethylsulfonyl, butylsulfonyl, trifluoromethanesulfonyl, and nona are preferable. Fluorobutanesulfonyl and perfluorooctanesulfonyl.
  • Examples of the aryl sulfonyl group of (R 6 ) include the same aryl sulfonyl group as the above-mentioned aryl sulfonyl group (RC6), and from the viewpoint of availability of raw materials, benzenesulfonyl, 4-toluenesulfonyl, 2-nitrobenzenesulfonyl and penta are preferable. Fluorobenzenesulfonyl.
  • Examples of the halogen atom in ( R6 ) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and from the viewpoint of availability of raw materials and ease of synthesis, fluorine atoms, chlorine atoms and bromine atoms are preferable. be.
  • the three-dimensional structure (E, Z) may be either one or a mixture.
  • the method for synthesizing the sulfonamide compound contained in the nonionic photoacid generator (A) of the present invention is not particularly limited as long as the desired product can be synthesized, but for example, the compound of the general formula (1) is described below. Can be manufactured.
  • the first-stage reaction consists of a precursor (PR1), a sulfonic acid halide equivalent represented by R 1 SO 2 X, and a base (sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, pyridine, chloro).
  • the precursor (PR2) can be obtained by filtering the precipitated solid or extracting it with an appropriate solvent.
  • PR2 can be purified by recrystallization or washing with a solvent, if necessary. In some cases, a subsequent reaction can be carried out in an unpurified state.
  • the second-stage reaction consists of a precursor (PR2), a sulfonic acid halide equivalent represented by R f SO 2 X, and a base (sodium hydrogen carbonate, potassium carbonate, pyridine, chloropyridine, dichloropyridine, 2, 6).
  • the precipitated solid is filtered or extracted with an appropriate solvent and the volatile components are distilled off to obtain a solid sulfonamide compound of the general formula (1).
  • the obtained solid can be purified by column chromatography, washing with an organic solvent, recrystallization or the like, if necessary.
  • the non-ionic photoacid generator (A) of the present invention is suitable for use as a resin composition (resist) for photolithography because a super strong acid is generated by light irradiation.
  • the nonionic photoacid generator (A) of the present invention may be previously dissolved in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
  • Examples of the solvent that facilitates dissolution in the resist material include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.), esters (ethyl acetate, ethyl lactate, ⁇ -propiolactone, etc.).
  • ethers ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol) Dibutyl ether, etc.
  • ether esters ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc.
  • the ratio of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight, based on 100 parts by weight of the nonionic photoacid generator (A) of the present invention.
  • the resin composition for photolithography (Q) of the present invention contains a nonionic photoacid generator (A) as an essential component, it is exposed to an exposed portion and unexposed by performing ultraviolet irradiation and post-exposure heating (PEB). There is a difference in the solubility of the part in the developer.
  • the non-ionic photoacid generator (A) may be used alone or in combination of two or more, or may be used in combination with an ionic photoacid generator such as a sulfonium salt.
  • the resin composition (Q) for photolithography includes a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid.
  • QN negative chemical amplification resin
  • QP positive chemical amplification resin
  • a mixture with the generator (A) can be mentioned.
  • the negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a cross-linking agent (QN2).
  • the phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it is a resin containing a phenolic hydroxyl group. Combined, hydroxystyrene, styrene and (meth) acrylic acid derivative copolymer, phenol / xylylene glycol condensed resin, cresol / xylylene glycol condensed resin, polyimide containing phenolic hydroxyl group, polyamic acid containing phenolic hydroxyl group , Phenolic-dicyclopentadiene condensation resin is used.
  • novolak resin polyhydroxystyrene, hydroxystyrene copolymer, hydroxystyrene and styrene copolymer, hydroxystyrene, styrene and (meth) acrylic acid derivative copolymer, phenol / xylylene glycol condensation. Resin is preferred.
  • These phenolic hydroxyl group-containing resins (QN1) may be used alone or in combination of two or more.
  • the novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
  • phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-Xylenol, 2,4-Xylenol, 2,5-Xylenol, 2,6-Xylenol, 3,4-Xylenol, 3,5-Xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples thereof include trimethylphenol, catechol, resorcinol, pyrogallol, 1-naphthol and 2-naphthol.
  • aldehydes include formaldehyde, paraformaldehyde, acetaldehyde,
  • novolak resin examples include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, and phenol / naphthol / formaldehyde condensed novolak resin.
  • the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic small molecule compound as a part of the component.
  • the phenolic low molecular weight compound include 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) -1-.
  • These phenolic small molecule compounds may be used alone or in
  • the content ratio of this phenolic small molecule compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less when the phenolic hydroxyl group-containing resin (QN1) is 100% by weight, preferably 1 to 30%. % By weight is even more preferred.
  • the weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, preferably 2000 to 20000, from the viewpoints of resolution, thermal shock resistance, thermal stability, residual film ratio, etc. of the obtained insulating film. Is even more preferable.
  • the content ratio of the phenolic hydroxyl group-containing resin (QN1) in the negative chemical amplification resin (QN) is 30 to 90% by weight when the whole composition excluding the solvent is 100% by weight. Is preferable, and 40 to 80% by weight is more preferable.
  • the content ratio of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed by using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
  • the cross-linking agent (QN2) is not particularly limited as long as it is a compound capable of cross-linking the phenolic hydroxyl group-containing resin (QN1) with the strong acid generated from the nonionic photoacid generator (A).
  • cross-linking agent (QN2) examples include bisphenol A-based epoxy compound, bisphenol F-based epoxy compound, bisphenol S-based epoxy compound, novolak resin-based epoxy compound, resole resin-based epoxy compound, poly (hydroxystyrene) -based epoxy compound, and oxetane.
  • methylol group-containing phenol compounds methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycol uryl compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds.
  • methoxymethyl group-containing melamine compounds for example, hexamethoxymethyl melamine
  • methoxymethyl group-containing glycol uryl compounds, methoxymethyl group-containing urea compounds, and the like are even more preferable.
  • the methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Sianamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Sianamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
  • the content of the cross-linking agent (QN2) is usually 5 to 5 with respect to the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of lowering the residual film ratio, meandering and swelling of the pattern, and developability. It is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
  • the positive chemical amplification resin includes an alkali-soluble resin (QP1) containing one or more acidic functional groups such as a phenolic hydroxyl group, a carboxyl group, or a sulfonyl group, and an acidic functional group in (QP1).
  • alkali-soluble resin QP1 containing one or more acidic functional groups such as a phenolic hydroxyl group, a carboxyl group, or a sulfonyl group, and an acidic functional group in (QP1).
  • Examples thereof include a protective group-introduced resin (QP2) in which a part or all of the hydrogen atom is replaced with an acid dissociative group.
  • the protecting group-introduced resin (QP2) is itself alkali-insoluble or sparingly soluble in alkali.
  • the acid dissociable group is a group that can be dissociated in the presence of a super strong acid generated from the nonionic photoacid generator (A).
  • alkali-soluble resin examples include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
  • the phenolic hydroxyl group-containing resin (QP11) the same one as the above-mentioned hydroxyl group-containing resin (QN1) can be used.
  • the carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group.
  • a carboxyl group-containing vinyl monomer (Va) and, if necessary, a hydrophobic group-containing vinyl monomer (Vb) are vinyl-polymerized. It can be obtained by.
  • Examples of the carboxyl group-containing vinyl monomer (Va) include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.] and unsaturated polyvalent (2- to tetravalent) carboxylic acids [(anhydrous) malein.
  • hydrophobic group-containing vinyl monomer (Vb) examples include (meth) acrylic acid ester (Vb1) and an aromatic hydrocarbon monomer (Vb2).
  • Examples of the (meth) acrylic acid ester (Vb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms of the alkyl group [methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth).
  • aromatic hydrocarbon monomer (Vb2) examples include hydrocarbon monomers having a styrene skeleton [styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, Cyclocarbon styrene, benzyl styrene, etc.] and vinyl naphthalene.
  • hydrocarbon monomers having a styrene skeleton styrene, ⁇ -methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, Cyclocarbon styrene, benzyl styrene, etc
  • the charged monomer molar ratio of (Va) / (Vb) in the carboxyl group-containing resin (QP12) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90 from the viewpoint of developability, and 25 to 90. 85/15 to 75 are even more preferred.
  • the sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group.
  • a sulfonic acid group-containing vinyl monomer (Vc) and, if necessary, a hydrophobic group-containing vinyl monomer (Vb) can be used. Obtained by vinyl polymerization.
  • the hydrophobic group-containing vinyl monomer (Vb) the same ones as described above can be used.
  • Examples of the sulfonic acid group-containing vinyl monomer (Vc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ⁇ -methylstyrene sulfonic acid, and 2- (meth) acryloylamide-2-methylpropanesulfonic acid. And these salts.
  • Examples of the salt include alkali metal (sodium and potassium etc.) salts, alkaline earth metal (calcium and magnesium etc.) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
  • the charged monomer molar ratio of (Vc) / (Vb) in the sulfonic acid group-containing resin (QP13) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90 from the viewpoint of developability, 25. -85 / 15-75 is more preferable.
  • the HLB value of the alkali-soluble resin (QP1) varies in a preferable range depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
  • the HLB value is 4 or more, the developability is further good when developing, and when the HLB value is 19 or less, the water resistance of the cured product is further good.
  • the HLB value in the present invention is an HLB value obtained by the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio of the organic value and the inorganic value of the organic compound. .. ⁇ HLB evaluation method> HLB ⁇ 10 ⁇ Inorganic / Organic
  • HLB HLB ⁇ 10 ⁇ Inorganic / Organic
  • the acid dissociable group in the protective group-introduced resin (QP2) includes a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a gelmil group, an alkoxycarbonyl group, an acyl group and a cyclic acid dissociation.
  • Sexual groups and the like can be mentioned. These may be used alone or in combination of two or more.
  • Examples of the substituted methyl group include a methoxymethyl group, a methylthiomethyl group, an ethoxymethyl group, an ethylthiomethyl group, a methoxyethoxymethyl group, a benzyloxymethyl group, a benzylthiomethyl group, a phenacyl group, a bromophenacyl group, and a methoxyphenacil group.
  • Methylthiophenacil group ⁇ -methylphenacil group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl group, Examples thereof include ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, propoxycarbonylmethyl group, isopropoxycarbonylmethyl group, butoxycarbonylmethyl group and tert-butoxycarbonylmethyl group.
  • Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group and 1,1-diethoxyethyl group.
  • Examples of the 1-branched alkyl group include an isopropyl group, a sec-butyl group, a tert-butyl group, a 1,1-dimethylpropyl group, a 1-methylbutyl group and a 1,1-dimethylbutyl group.
  • silyl group examples include a trimethylsilyl group, an ethyldimethylsilyl group, a diethylmethylsilyl group, a triethylsilyl group, an isopropyldimethylsilyl group, a diisopropylmethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group and a di-tert-.
  • Examples thereof include a tricarbylsilyl group such as a butylmethylsilyl group, a tri-tert-butylsilyl group, a dimethylphenylsilyl group, a methyldiphenylsilyl group and a triphenylsilyl group.
  • a tricarbylsilyl group such as a butylmethylsilyl group, a tri-tert-butylsilyl group, a dimethylphenylsilyl group, a methyldiphenylsilyl group and a triphenylsilyl group.
  • Examples of the gel mill group include a trimethyl gel mill group, an ethyl dimethyl gel mill group, a methyl diethyl gel mill group, a triethyl gel mill group, an isopropyl dimethyl gel mill group, a methyl diisopropyl gel mill group, a triisopropyl gel mill group and tert-butyl.
  • Examples thereof include a tricarbylgelmill group such as a dimethylgelmill group, a di-tert-butylmethylgelmill group, a tri-tert-butylgelmill group, a dimethylphenylgelmill group, a methyldiphenylgelmill group and a triphenylgelmill group.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, and a tert-butoxycarbonyl group.
  • acyl group examples include an acetyl group, a propionyl group, a butyryl group, a heptanoyle group, a hexanoyl group, a valeryl group, a pivaloyl group, an isovaleryl group, a lauroyl group, a myritoyl group, a palmitoyl group, a stearoyl group, an oxalyl group, a malonyl group and a succinyl group.
  • Phthalloyl group isophthaloyl group, terephthaloyl group, naphthoyl group, toluoil group, hydroatropoil group, atropoil group, cinnamoyl group, floyl group, tenoyl group, nicotinoyle group, isonicotinoyl group, p-toluenesulfonyl group, mesyl group. Be done.
  • Examples of the cyclic acid dissociative group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl.
  • Examples thereof include a group, a 3-bromotetrahydropyranyl group, a 4-methoxytetrahydropyranyl group, a 4-methoxytetrahydrothiopyranyl group and a 3-tetrahydrothiophene-1,1-dioxide group.
  • tert-butyl group benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group and a tetrahydrothiofuranyl group are preferable.
  • Introduction rate of acid dissociative groups in the protective group-introduced resin (QP2) ⁇ Ratio of the number of acid dissociative groups to the total number of unprotected acidic functional groups and acid dissociative groups in the protective group-introduced resin (QP2) ⁇ Can not be unconditionally specified depending on the type of acid dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
  • the polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by gel permeation chromatography (GPC) of the protecting group-introduced resin (QP2) is preferably 1,000 to 150,000, preferably 3,000 to 100, 000 is more preferable.
  • the ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) to the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 to 1. It is 10, preferably 1 to 5.
  • the content of the nonionic photoacid generator (A) based on the weight of the solid content of the photolithography resin composition (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. It is preferable, and 0.05 to 7% by weight is particularly preferable. If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble portion with respect to the alkaline developer can be further exhibited.
  • the resist using the resin composition for photolithography (Q) of the present invention may contain a quencher (acid diffusion control agent) for the purpose of improving the shape of the pattern after exposure, changes over time, and the like.
  • the quencher is not particularly limited as long as it is a compound having a basic site showing pKa larger than the acid generated by the nonionic photoacid generator (A).
  • known amines tripentylamine, triisopropanolamine, dicyclohexylamine, N, N-dicyclohexylmethylamine, etc.
  • known pyridines pyridine, 2,6-lutidine, 2,6-di-tert-butyl.
  • the content of the quencher depends on the content of the nonionic photoacid generator (A), but is 5% by weight or less, preferably 5% by weight or less, based on the total solid content of the photolithography resin composition (Q). It is 3% by weight or less. If it exceeds 5% by weight, the effective concentration of the acid generated during exposure decreases, and there is a problem that a pattern cannot be obtained after development.
  • the resist using the photolithography resin composition (Q) of the present invention is prepared by, for example, spin-coating, curtain-coating, or rolling a resin solution dissolved in a predetermined organic solvent (dissolving and dispersing when inorganic fine particles are contained). It can be formed by applying to a substrate using a known method such as coating, spray coating, screen printing, and then drying the solvent by heating or hot air blowing.
  • the resin composition can be dissolved and the resin solution can be adjusted to have physical properties (viscosity, etc.) applicable to spin coating or the like. If there is, it is not particularly limited.
  • known solvents such as N-methylpyrrolidone, DMF, dimethylsulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
  • the blending amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, preferably 40 to 900%, based on the weight of the solid content of the photolithography resin composition (Q). By weight% is more preferred, and 50-800% by weight is particularly preferred.
  • the drying conditions of the resin solution after coating vary depending on the solvent used, but are preferably carried out at 50 to 200 ° C. for 1 to 30 minutes, and the residual solvent amount of the resin composition (Q) for photolithography after drying (Q). Weight%) etc. will be determined as appropriate.
  • Examples of the method of irradiating light include a method of exposing a resist with an active ray through a photomask having a wiring pattern.
  • the active light beam used for light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the photolithography resin composition (Q) of the present invention can be decomposed.
  • low pressure mercury lamp low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiator, X-ray irradiator, laser (argon laser, argon / fluorine (ArF) excimer laser, Crypton / fluorine (KrF) excimer laser, dye laser, nitrogen laser, LED, helium cadmium laser, etc.).
  • high pressure mercury lamps, ultrahigh pressure mercury lamps, LEDs and krypton-fluorine (KrF) excimer lasers are preferable.
  • the temperature of the post-exposure heating is usually 40 to 200 ° C., preferably 50 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C, the deprotection reaction or the cross-linking reaction cannot be sufficiently performed, so that the difference in solubility between the UV-irradiated portion and the UV-non-irradiated portion is insufficient and a pattern cannot be formed. There is.
  • the heating time is usually 0.5 to 120 minutes, and if it is less than 0.5 minutes, it is difficult to control the time and temperature, and if it is longer than 120 minutes, there is a problem that productivity is lowered.
  • Examples of the method of alkaline development include a method of dissolving and removing the wiring pattern shape using an alkaline developer.
  • the alkaline developer is not particularly limited as long as the solubility of the ultraviolet-irradiated portion and the non-ultraviolet-irradiated portion of the photolithography resin composition (Q) can be different.
  • Examples of the alkaline developer include an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydrogencarbonate and an aqueous solution of tetramethylammonium salt.
  • a water-soluble organic solvent may be added to these alkaline developers. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, THF, N-methylpyrrolidone and the like.
  • a developing method there are a dip method using an alkaline developer, a shower method, and a spray method, but the spray method is preferable.
  • the temperature of the developer is preferably 25-40 ° C.
  • the development time is appropriately determined according to the thickness of the resist.
  • Example 4> ⁇ Synthesis of compound (A4)> The same as in Example 1 except that the precursor (P1) synthesized in Production Example 1 was used as a raw material and the trifluoromethanesulfonic anhydride was made into 36 parts of perfluoropropane-1,3-disulfonyldifluoride. 15 parts of compound (A4) were obtained.
  • Example 12> ⁇ Synthesis of compound (A12)> Example 7 except that the precursor (P5) synthesized in Production Example 5 was 10 parts, dichloromethane was 150 parts, N-ethyldiisopropylamine was 4.2 parts, and trifluoromethanesulfonic anhydride was 7.4 parts. By doing the same, 10 parts of compound (A12) was obtained.
  • Example 15 ⁇ Synthesis of compound (A15)> Example 7 except that a precursor synthesized in the same manner as in Production Example 5 by converting pentafluorobenzenesulfonic acid chloride into methanesulfonyl chloride from the corresponding raw material (synthesized according to the method described in Production Example 4) was used. By doing the same, 10 parts of compound (A15) was obtained.
  • Example 28 and 29> ⁇ Synthesis of compounds (A28) and (A29)> Compounds (A28) and (A29) were synthesized in the same manner as in Example 24 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 7 was used.
  • Example 30> Synthesis of compound (A30)> Using the precursor (P9) synthesized in Production Example 9 as a raw material, 15 parts of compound (A30) was obtained in the same manner as in the synthesis method described in Example 1.
  • Example 33> 16 parts of compound (A33) was obtained in the same manner as in Example 32 except that the precursor synthesized according to the method described in Production Example 10 using 2-naphthol and 2-chloropropionyl chloride was used as a raw material.
  • Example 37> ⁇ Synthesis of compound (A37)> Using the precursor (P11) synthesized in Production Example 11 as a raw material, 22 parts of compound (A37) was obtained in the same manner as in the synthesis method described in Example 2.
  • Example 40> Synthesis of compound (A40)> Using the precursor (P12) synthesized in Production Example 12 as a raw material, 12 parts of compound (A40) was obtained by the same procedure as in the synthesis method described in Example 1.
  • Example 45 and 46> Synthesis of compounds (A45) and (A46)> Compounds (A45) and (A46) were synthesized in the same manner as in Example 1 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 12 was used.
  • Example 50> Synthesis of compound (A50)> Using the precursor (P17) synthesized in Production Example 17 as a raw material, 14 parts of compound (A50) was obtained in the same manner as in the synthesis method described in Example 1.
  • Example 52> ⁇ Synthesis of compound (A52)> 15 parts of compound (A52) was obtained in the same manner as in Example 1 except that a hydrazone compound (precursor) synthesized in the same manner as in Production Example 16 was used by converting benzothiazole to 1-methylbenzimidazole. rice field.
  • Example 54 ⁇ Synthesis of compound (A54)> Using the precursor (P19) synthesized in Production Example 19 as a raw material, 13 parts of compound (A54) was obtained in the same manner as in the synthesis method described in Example 1.
  • H is a hydrogen atom
  • Me is a methyl group
  • Et is an ethyl group
  • Pr is a propyl group
  • Bu is a butyl group
  • Hex is a hexyl group
  • Ph is a phenyl group
  • Bz is a benzoyl group.
  • Examples 1 to 54 Comparative Examples 1 and 2>
  • the i-ray sensitivity and resist solvent solubility of 2) were evaluated by the following methods, and the results are shown in Tables 5 and 6.
  • i-ray decomposition rate (integral value of compound signal before exposure-integral value of compound signal after exposure) / (integral value of compound signal before exposure)
  • a resin composition for positive photolithography (QP-1) was prepared by dissolving in 152 parts of monomethyl ether acetate and filtering through a membrane filter (pore size 0.45 ⁇ m, PTFE film).
  • the resin composition for positive photolithography (QP-1) prepared above was spin-coated on a silicon wafer substrate and then dried to obtain a photoresist layer having a film thickness of about 20 ⁇ m. This resist layer was prebaked on a hot plate at 130 ° C. for 6 minutes.
  • pattern exposure i-line
  • TME-150RSC-12 manufactured by Topcon
  • PEB post-exposure heating
  • Each of the negative photolithography resin compositions prepared above was applied onto a 10 cm square glass substrate at 200 rpm for 10 seconds using a spin coater. Then, it was vacuum dried at 25 ° C. for 5 minutes and then dried on a hot plate at 100 ° C. for 5 minutes to form a resist having a film thickness of about 40 ⁇ m.
  • an ultraviolet irradiation device HMW-661F-01 manufactured by ORC Manufacturing Co., Ltd.
  • L-34 340 nm low pass filter manufactured by Kenko Optical Co., Ltd.
  • the integrated exposure amount was measured at a wavelength of 365 nm. Then, after exposure for 10 minutes in a normal wind dryer at 150 ° C., heating (PEB) was performed, and then the mixture was developed by immersing it in a 0.5% potassium hydroxide solution for 60 seconds, and immediately washed with water and dried.
  • the film thickness of this resist was measured using a shape measuring microscope (ultra-depth shape measuring microscope UK-8550, manufactured by KEYENCE CORPORATION).
  • the minimum exposure amount [mJ / cm 2 ] at which the change in the film thickness of the resist before and after development is within 10% was defined as the curability of the exposed portion.
  • the curability of the exposed portion corresponds to the i-line sensitivity, and the smaller the minimum exposure amount, the better the i-line sensitivity. The results are shown in Tables 5 and 6.
  • Non-ionic photoacid generators (A5, A13, A23, A33, A40 and A50), ionic photoacid generators (A'1) and non-ionic photoacid generators (A'2) for comparison.
  • the i-line sensitivity and KrF line sensitivity of the positive photolithography resin compositions (QP-2) to (QP-4) were evaluated by the following methods, and the results are shown in Tables 7 and 8.
  • a resin composition for positive photolithography (QP-2) was prepared by filtering through (pore diameter 0.45 ⁇ m, PTFE film).
  • the resin composition for positive photolithography (QP-2) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 3 minutes to obtain a coating film having a film thickness of about 5 ⁇ m.
  • pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 90 ° C. for 60 seconds using a hot plate.
  • ⁇ Preparation of resin composition for positive photolithography > 100 parts of the resin having the following structural units (the number in the lower right of the parentheses in the structural formula represents the content weight% of the structural units in the resin), 1 part of the compounds of Examples and Comparative Examples, and 2-phenylbenz.
  • 0.2 parts of imidazole and 0.1 part of a surfactant (Futergent FTX-218, manufactured by Neos Co., Ltd.) were mixed and dissolved in 230 parts of propylene glycol monomethyl ether acetate, and then a membrane filter (pore size 0).
  • a resin composition for positive photolithography (QP-4) was prepared by filtering through a (.45 ⁇ m, PTFE film).
  • the resin composition for positive photolithography (QP-4) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 1 minute to obtain a coating film having a film thickness of 6 ⁇ m.
  • pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 90 ° C. for 1 minute using a hot plate.
  • ⁇ Minimum exposure (KrF line)> The resin composition for positive photolithography (QP-4) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 1 minute to obtain a coating film having a film thickness of 6 ⁇ m.
  • pattern exposure (KrF line) was performed using FPA-5000ES3 (manufactured by Canon Inc.), and post-exposure heating (PEB) was performed at 90 ° C. for 1 minute using a hot plate.
  • the nonionic photoacid generators (A) of Examples 1 to 72 of the present invention are efficiently decomposed by i-ray irradiation, and are widely used in resin compositions for photolithography. Since it is known that the nonionic photoacid generator (A) of the present invention exhibits high solubility in the propylene glycol monomethyl ether acetate produced, the photoacid generator (A) of the present invention has excellent i-ray sensitivity and solubility in a resist solvent. Is.
  • the compound of the present invention efficiently generates bissulfonamide, which is a superacid, by i-ray irradiation, the minimum exposure amount of the resin composition for positive photolithography containing this is small, and the resin for negative photolithography. The curability of the exposed portion of the composition is good, and the i-ray sensitivity is excellent. Further, as is clear from Table 8, the nonionic photoacid generator (A) of the present invention is efficiently decomposed by irradiation with KrF rays to generate bissulfonamide, which is a super strong acid.
  • the resin composition Since the minimum exposure amount of the resin composition for type photolithography is small and the KrF line sensitivity is excellent, it can be said that the resin composition is excellent in near-ultraviolet sensitivity.
  • Comparative Example (1, 3, 5, 7) which is an ionic photoacid generator, the generated acid is bissulfonamide, but the i-ray decomposition rate and solubility are poor, so that it is contained in the photolithography.
  • the resin composition has poor i-line sensitivity and KrF line sensitivity.
  • the i-ray decomposition rate is the same, but since the generated acid is trifluoromethanesulfonic acid, a photo containing it. It can be seen that the resin composition for lithography has low i-line and KrF line sensitivity and poor near-ultraviolet sensitivity.
  • nonionic photoacid generator (A) of the present invention decomposes with high sensitivity to near ultraviolet rays (i-ray, KrF-ray) to generate superstrong acid, photolithography for microfabrication represented by semiconductor production It is useful as a material.
  • i-ray near ultraviolet rays
  • KrF-ray near ultraviolet rays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Materials For Photolithography (AREA)

Abstract

The purpose of the present invention is to provide: a photoacid generator containing a sulfonamide compound which has a high decomposition rate in response to near-ultraviolet rays, generates a superacid bis-sulfonamide, and is highly soluble in a resist solvent; and a photolithography resin composition which contains the photoacid generator and is highly sensitive to near-ultraviolet rays. The present invention pertains to: a nonionic photoacid generator (A) characterized by containing a sulfonamide compound represented by general formula (1); and a photolithography resin composition (Q) containing the nonionic photoacid generator (A).

Description

非イオン系光酸発生剤、及びフォトリソグラフィー用樹脂組成物Nonionic photoacid generator and resin composition for photolithography
本発明は、非イオン系光酸発生剤、及びフォトリソグラフィー用樹脂組成物に関する。さらに詳しくは、紫外線(i線、KrF線)を作用させて超強酸を発生させうるに好適なスルホンアミド化合物を含有する非イオン系光酸発生剤、及び当該非イオン系光酸発生剤を含有するフォトリソグラフィー用樹脂組成物に関する。 The present invention relates to a nonionic photoacid generator and a resin composition for photolithography. More specifically, it contains a nonionic photoacid generator containing a sulfonamide compound suitable for generating a superstrong acid by acting with ultraviolet rays (i-ray, KrF-ray), and the nonionic photoacid generator. The present invention relates to a resin composition for photolithography.
従前より、半導体の製造に代表される微細加工の分野では、様々な波長の光を用いて望みのパターンをレジストに転写して得るフォトリソグラフィー工程が広く用いられている。
レジスト材料としては、例えば、カルボン酸のtert-ブチルエステル、又はフェノールのtert-ブチルカーボネートを有する重合体と光酸発生剤とを含有する樹脂組成物が用いられている。このレジスト材料を溶媒に溶解したものを基板上に塗布し光を照射することで光酸発生剤が分解してトリフルオロメタンスルホン酸等の超強酸(100%硫酸よりも高い酸性度を示す酸)を発生する。さらに露光後加熱(PEB)を行うことで、発生した酸により重合体中のtert-ブチルエステル基、又はtert-ブチルカーボネート基等の酸反応性基が解離し、カルボン酸、またはフェノール性水酸基が形成され、光照射部がアルカリ現像液に易溶性となる。この現象を利用してパターン形成が行われているため、少ない露光量で望むパターンの得られる高感度なレジスト材料の開発が省エネルギー化や工程時間の短縮のため切望されている。
従って高感度なレジスト材料を実現する光酸発生剤としては、高い光分解率及び発生酸がより高い酸強度を持つことが望ましい。
Conventionally, in the field of microfabrication represented by the manufacture of semiconductors, a photolithography process obtained by transferring a desired pattern to a resist using light of various wavelengths has been widely used.
As the resist material, for example, a tert-butyl ester of a carboxylic acid or a resin composition containing a polymer having a tert-butyl carbonate of phenol and a photoacid generator is used. When this resist material is dissolved in a solvent and applied on a substrate and irradiated with light, the photoacid generator decomposes and a super strong acid such as trifluoromethanesulfonic acid (an acid showing higher acidity than 100% sulfuric acid). Occurs. Further, by heating after exposure (PEB), acid-reactive groups such as tert-butyl ester group or tert-butyl carbonate group in the polymer are dissociated by the generated acid, and carboxylic acid or phenolic hydroxyl group is generated. It is formed and the light-irradiated portion becomes easily soluble in the alkaline developing solution. Since pattern formation is performed using this phenomenon, the development of a highly sensitive resist material that can obtain a desired pattern with a small exposure amount is eagerly desired for energy saving and shortening of process time.
Therefore, as a photoacid generator that realizes a highly sensitive resist material, it is desirable that the photodecomposition rate and the generated acid have higher acid strength.
以上の理由から、フォトリソグラフィー工程に好ましい光酸発生剤として、トリアリールスルホニウム塩(特許文献1)、ナフタレン骨格を有するフェナシルスルホニウム塩(特許文献2)等のイオン系光酸発生剤、及びオキシムスルホネート構造(特許文献3)、またはナフタルイミド構造(特許文献4、特許文献5)等を有する非イオン系光酸発生剤が開示されている。 For the above reasons, ionic photoacid generators such as triarylsulfonium salt (Patent Document 1), phenacylsulfonium salt having a naphthalene skeleton (Patent Document 2), and oxime are preferable photoacid generators for the photolithography step. A nonionic photoacid generator having a sulfonate structure (Patent Document 3), a naphthalimide structure (Patent Document 4, Patent Document 5) and the like is disclosed.
特開昭50-151997号公報Japanese Unexamined Patent Publication No. 50-151997 特開平9-118663号公報Japanese Unexamined Patent Publication No. 9-118663 特開平6-67433号公報Japanese Unexamined Patent Publication No. 6-67433 特開2004-217748号公報Japanese Unexamined Patent Publication No. 2004-217748 特許第5990447号公報Japanese Patent No. 5990447
フォトリソグラフィー用樹脂組成物中の光酸発生剤を分解するフォトリソグラフィー工程用の光源としては、入手性、安定性からi線(365nm)やKrF線(248nm)等の近紫外線が広く用いられており、半導体市場の成長につれてこれらの近紫外線に対し高感度な光酸発生剤開発の需要が高まっている。また、フォトリソグラフィー工程が多様化している現在においては、高濃度なフォトリソグラフィー用樹脂組成物中においても固体の析出や相分離することが無いようにフォトリソグラフィー用樹脂組成物に含有されるレジスト溶媒に高溶解性であることが求められている。 Near ultraviolet rays such as i-line (365 nm) and KrF line (248 nm) are widely used as a light source for a photolithography process that decomposes a photoacid generator in a resin composition for photolithography because of its availability and stability. As the semiconductor market grows, there is an increasing demand for the development of photoacid generators that are highly sensitive to these near-ultraviolet rays. Further, in the present day when the photolithography process is diversified, the resist solvent contained in the photolithography resin composition is contained so that the solid does not precipitate or phase separate even in the high-concentration photolithography resin composition. Is required to be highly soluble.
しかし、トリアリールスルホニウム塩やフェナシルスルホニウム塩等のイオン系光酸発生剤は、i線に対する光分解率が低く低感度であり、さらに塩であるためにフォトリソグラフィー用樹脂組成物に高濃度に含有させると相分離あるいは析出してしまう問題があった。 However, ionic photoacid generators such as triarylsulfonium salt and phenacylsulfonium salt have a low photodecomposition rate for i-rays and low sensitivity, and because they are salts, they have a high concentration in the resin composition for photolithography. There was a problem that phase separation or precipitation occurred when it was contained.
オキシムスルホネート構造及びナフタルイミド構造を有する非イオン系光酸発生剤は、i線に対する光分解率は高いが、実用上発生酸がスルホン酸に限られ、十分な酸性度が得られず低感度である問題があった。 A nonionic photoacid generator having an oxime sulfonate structure and a naphthalimide structure has a high photodecomposition rate for i-rays, but practically the generated acid is limited to sulfonic acid, and sufficient acidity cannot be obtained with low sensitivity. There was a problem.
すなわち、本発明の目的はi線、KrF線等の近紫外線に対し高分解率かつ超強酸であるビススルホンアミドを発生し、レジスト溶媒に高溶解なスルホンアミド化合物を含有する光酸発生剤、及びこれを含有する近紫外線に対し高感度なフォトリソグラフィー用樹脂組成物の提供にある。 That is, an object of the present invention is a photoacid generator containing a sulfonamide compound that generates a bissulfonamide that has a high decomposition rate and is a super-strong acid with respect to near-ultraviolet rays such as i-rays and KrF rays and is highly soluble in a resist solvent. And a resin composition for photolithography having high sensitivity to near-ultraviolet rays containing the same.
本発明者らは、上記の目的を達成するべく鋭意検討を行った結果、本発明に到達した。
すなわち、本発明は、下記一般式(1)で表されるスルホンアミド化合物を含有することを特徴とする非イオン系光酸発生剤(A);及び該非イオン系光酸発生剤(A)を含むフォトリソグラフィー用樹脂組成物(Q)である。
The present inventors have reached the present invention as a result of diligent studies to achieve the above object.
That is, the present invention comprises a nonionic photoacid generator (A) and the nonionic photoacid generator (A), which are characterized by containing a sulfonamide compound represented by the following general formula (1). It is a resin composition (Q) for photolithography including.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式中、Rはフッ素原子、フルオロアルキル基、またはフルオロアリール基であり、Rはフッ素原子、アルキル基、フルオロアルキル基、アリール基、またはフルオロアリール基であり、RとRは互いに結合して環を形成していてもよく、Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、含ヘテロ原子アリール基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルスルホニル基、またはアリールスルホニル基であり、Rは環状アルキル基、アリール基、または含ヘテロ原子アリール基であり、RとRは互いに結合して環(ヘテロ原子を含んでいてもよい)を形成していてもよい。] [In the formula, R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group, R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group, and R f and R 1 are. R2 may be bonded to each other to form a ring, and R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, or an aryl. It is an oxycarbonyl group, an alkylsulfonyl group, or an arylsulfonyl group, R 3 is a cyclic alkyl group, an aryl group, or a heteroatomic aryl group, and R2 and R3 are bonded to each other to form a ring (containing a heteroatom). It may be formed). ]
本発明の非イオン系光酸発生剤(A)は近紫外線に対し高分解率で超強酸を発生し、レジスト溶媒への溶解性に優れる。また、これを含有するフォトリソグラフィー用樹脂組成物(Q)は、近紫外線に対し高感度である。 The nonionic photoacid generator (A) of the present invention generates a super strong acid with a high decomposition rate with respect to near-ultraviolet rays, and has excellent solubility in a resist solvent. Further, the resin composition for photolithography (Q) containing this is highly sensitive to near-ultraviolet rays.
本発明の非イオン系光酸発生剤(A)に含有されるスルホンアミド化合物は下記一般式(1)で表される。 The sulfonamide compound contained in the nonionic photoacid generator (A) of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、Rはフッ素原子、フルオロアルキル基、またはフルオロアリール基であり、Rはフッ素原子、アルキル基、フルオロアルキル基、アリール基、またはフルオロアリール基であり、RとRは互いに結合して環を形成していてもよく、Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、含ヘテロ原子アリール基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルスルホニル基、またはアリールスルホニル基であり、Rは環状アルキル基、アリール基、または含ヘテロ原子アリール基であり、RとRは互いに結合して環(ヘテロ原子を含んでいてもよい)を形成していてもよい。] [In the formula, R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group, R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group, and R f and R 1 are. R2 may be bonded to each other to form a ring, and R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, or an aryl. It is an oxycarbonyl group, an alkylsulfonyl group, or an arylsulfonyl group, R 3 is a cyclic alkyl group, an aryl group, or a heteroatomic aryl group, and R2 and R3 are bonded to each other to form a ring (containing a heteroatom). It may be formed). ]
一般式(1)中、Rは、フッ素原子、フルオロアルキル基、またはフルオロアリール基であり、置換基を有してもよい。RはRと結合して環を形成してもよい。 In the general formula (1), R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group, and may have a substituent. R f may be combined with R 1 to form a ring.
フルオロアルキル基とは少なくとも一つの水素がフッ素で置換されたアルキル基であり、炭素数1~10(置換基を含まない。特記なければ以下同じ)のフルオロアルキル基等が挙げられ、直鎖フルオロアルキル基(RF1)、分枝フルオロアルキル基(RF2)、または環状フルオロアルキル基(RF3)等が挙げられる。 The fluoroalkyl group is an alkyl group in which at least one hydrogen is substituted with fluorine, and examples thereof include fluoroalkyl groups having 1 to 10 carbon atoms (excluding substituents; the same applies hereinafter unless otherwise specified), and linear fluoro. Examples thereof include an alkyl group (RF1), a branched fluoroalkyl group (RF2), a cyclic fluoroalkyl group (RF3) and the like.
直鎖フルオロアルキル基(RF1)としては、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロデカニル基、ジフルオロメチル基、1,1,2,2,3,3,4,4,5,5,6,6-ドデカフルオロヘキシル基、ジフルオロ(メトキシカルボニル)メチル基及び2-アダマンチルカルボニロキシ-1,1-ジフルオロエチル基等が挙げられる。 The linear fluoroalkyl group (RF1) includes a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a perfluorodecanyl group, and a difluoromethyl group. , 1,1,2,2,3,3,4,5,5,6,6-dodecafluorohexyl group, difluoro (methoxycarbonyl) methyl group and 2-adamantyl carbonyloxy-1,1-difluoro Examples thereof include an ethyl group.
分枝フルオロアルキル基(RF2)としては、ヘキサフルオロイソプロピル基、ノナフルオロ-tert-ブチル基及びパーフルオロ-2-エチルヘキシル基等が挙げられる。 Examples of the branched fluoroalkyl group (RF2) include a hexafluoroisopropyl group, a nonafluoro-tert-butyl group and a perfluoro-2-ethylhexyl group.
環状フルオロアルキル基(RF3)としては、ヘプタフルオロシクロブチル基、ノナフルオロシクロペンチル基、パーフルオロシクロヘキシル基及びパーフルオロ(1-シクロヘキシル)メチル基等が挙げられる。 Examples of the cyclic fluoroalkyl group (RF3) include a heptafluorocyclobutyl group, a nonafluorocyclopentyl group, a perfluorocyclohexyl group and a perfluoro (1-cyclohexyl) methyl group.
フルオロアリール基とは少なくとも一つの水素がフッ素で置換されたアリール基であり、炭素数6~10のフルオロアリール基(RF4)等が挙げられる。 The fluoroaryl group is an aryl group in which at least one hydrogen is substituted with fluorine, and examples thereof include a fluoroaryl group (RF4) having 6 to 10 carbon atoms.
炭素数6~10のフルオロアリール基(RF4)としては、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、パーフルオロナフチル基、3-トリフルオロメチルテトラフルオロフェニル基及び3,5-ビストリフルオロメチルフェニル基等が挙げられる。 Fluoroaryl groups (RF4) having 6 to 10 carbon atoms include 3,4,5-trifluorophenyl group, pentafluorophenyl group, perfluoronaphthyl group, 3-trifluoromethyltetrafluorophenyl group and 3,5-. Examples thereof include a bistrifluoromethylphenyl group.
のうち、フォトレジストの脱保護能、および原料の入手のしやすさの観点から、直鎖フルオロアルキル基(RF1)、分岐フルオロアルキル基(RF2)、及びフルオロアリール基(RF4)が好ましく、直鎖フルオロアルキル基(RF1)、及びフルオロアリール基(RF4)がさらに好ましく、トリフルオロメチル基(CF)、ペンタフルオロエチル基(C)、ヘプタフルオロプロピル基(C)、ノナフルオロブチル基(C)及びペンタフルオロフェニル基(C)が特に好ましい。 Of the R fs , a linear fluoroalkyl group (RF1), a branched fluoroalkyl group (RF2), and a fluoroaryl group (RF4) are preferable from the viewpoint of the deprotective ability of the photoresist and the availability of raw materials. , Linear fluoroalkyl group (RF1), and fluoroaryl group (RF4) are more preferred, trifluoromethyl group (CF 3 ), pentafluoroethyl group (C 2 F 5 ), heptafluoropropyl group (C 3 F 7 ). ), Nonafluorobutyl group (C 4 F 9 ) and pentafluorophenyl group (C 6 F 5 ) are particularly preferred.
一般式(1)中、Rはフッ素原子、アルキル基、フルオロアルキル基、アリール基、またはフルオロアリール基であり、置換基を有してもよい。 In the general formula (1), R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group, and may have a substituent.
アルキル基としては、炭素数1~18の直鎖アルキル基(RA1)、炭素数1~18の分枝アルキル基(RA2)及び炭素数3~18の環状のアルキル基(RA3)等が挙げられる。 Examples of the alkyl group include a linear alkyl group having 1 to 18 carbon atoms (RA1), a branched alkyl group having 1 to 18 carbon atoms (RA2), a cyclic alkyl group having 3 to 18 carbon atoms (RA3), and the like. ..
直鎖アルキル基(RA1)としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、ベンジル基、ベンジロキシメチル基、メトキシメチル基、エトキシメチル基、2-メトキシエチル基、1-メトキシエチル基、トリメチルシロキシメチル基、トリエチルシロキシメチル基及びtert-ブチルジメチルシロキシメチル基等が挙げられる。 The linear alkyl group (RA1) includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, an octyl group, a decyl group, a dodecyl group, a tetradecyl group, a hexadecyl group, an octadecyl group, a benzyl group and a benzyloxymethyl group. , Methoxymethyl group, ethoxymethyl group, 2-methoxyethyl group, 1-methoxyethyl group, trimethylsiloxymethyl group, triethylsiloxymethyl group, tert-butyldimethylsiloxymethyl group and the like.
分枝アルキル基(RA2)としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、イソへキシル基、1-メチルブチル基、2-エチルヘキシル基、2-ヘキシルデシル基、イソデシル基及びイソオクタデシル基等が挙げられる。 Branched alkyl groups (RA2) include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, tert-pentyl group, isohexyl group, 1-methylbutyl group and 2-ethylhexyl. Examples thereof include a group, a 2-hexyldecyl group, an isodecyl group and an isooctadecyl group.
環状アルキル基(RA3)としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、1-アダマンチル基、2-アダマンチル基、メンチル基、10-カンファーイル基、オクタヒドロナフチル基、トリシクロデカニル基、テトラシクロドデカニル基及び4-ドデシルシクロヘキシル基等が挙げられる。 Examples of the cyclic alkyl group (RA3) include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a 1-adamantyl group, a 2-adamantyl group, a menthyl group, a 10-campayl group, an octahydronaphthyl group, and a tri. Cyclodecanyl group, tetracyclododecanyl group, 4-dodecylcyclohexyl group and the like can be mentioned.
フルオロアルキル基としては、上記直鎖フルオロアルキル基(RF1)、分枝フルオロアルキル基(RF2)または環状フルオロアルキル基(RF3)と同様のものが挙げられる。 Examples of the fluoroalkyl group include the same as the above-mentioned linear fluoroalkyl group (RF1), branched fluoroalkyl group (RF2) or cyclic fluoroalkyl group (RF3).
アリール基としては炭素数6~10のアリール基(RA4)等が挙げられ、フェニル基、1-ナフチル基、2-ナフチル基、1-アズレニル基、2-トリル基、3-トリル基、4-トリル基、2-クロロフェニル基、3-クロロフェニル基、4-クロロフェニル基、2-ニトロフェニル基、4-ニトロフェニル基、2,4-キシリル基、2,6-キシリル基、3,5-キシリル基、2,4-ジニトロフェニル基及び2,4,6-メシチル基等が挙げられる。 Examples of the aryl group include an aryl group (RA4) having 6 to 10 carbon atoms, such as a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-azurenyl group, a 2-tolyl group, a 3-tolyl group, and 4-. Tolyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2-nitrophenyl group, 4-nitrophenyl group, 2,4-kisilyl group, 2,6-xysilyl group, 3,5-xysilyl group , 2,4-Dinitrophenyl group, 2,4,6-mesityl group and the like.
フルオロアリール基としては、上記フルオロアリール基(RF4)と同様のものが挙げられる。 Examples of the fluoroaryl group include the same group as the above-mentioned fluoroaryl group (RF4).
これらのうち原料の入手性の観点から好ましくは炭素数1~12の直鎖アルキル基、炭素数3~12の環状アルキル基、炭素数1~10の直鎖フルオロアルキル基(RF1)、炭素数6~8のアリール基及び炭素数6~8のフルオロアリール基であり、より好ましくはメチル基、エチル基、プロピル基、ブチル基、オクチル基、10-カンファーイル基、トリフルオロメチル基(CF)、ペンタフルオロエチル基(C)、ヘプタフルオロプロピル基(C)、ノナフルオロブチル基(C)、フェニル基、4-トリル基、2-ニトロフェニル基、4-ニトロフェニル基、2,4-ジニトロフェニル基及びペンタフルオロフェニル基(C)であり、特に好ましくはトリフルオロメチル基(CF)、ペンタフルオロエチル基(C)、ヘプタフルオロプロピル基(C)、ノナフルオロブチル基(C)及びペンタフルオロフェニル基(C)である。 Of these, from the viewpoint of availability of raw materials, a linear alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 12 carbon atoms, a linear fluoroalkyl group having 1 to 10 carbon atoms (RF1), and a carbon number of carbon atoms are preferable. It is an aryl group of 6 to 8 and a fluoroaryl group having 6 to 8 carbon atoms, and more preferably a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a 10-campayl group, or a trifluoromethyl group (CF 3 ). ), Pentafluoroethyl group (C 2 F 5 ), heptafluoropropyl group (C 3 F 7 ), nonafluorobutyl group (C 4 F 9 ), phenyl group, 4-tolyl group, 2-nitrophenyl group, 4 -Nitrophenyl group, 2,4-dinitrophenyl group and pentafluorophenyl group (C 6 F 5 ), particularly preferably trifluoromethyl group (CF 3 ), pentafluoroethyl group (C 2 F 5 ), hepta. Fluoropropyl group (C 3 F 7 ), nonafluorobutyl group (C 4 F 9 ) and pentafluorophenyl group (C 6 F 5 ).
一般式(1)中、Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、含ヘテロ原子アリール基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルスルホニル基、またはアリールスルホニル基であり、置換基を有してもよい。RはRと結合して環(ヘテロ原子を含んでいてもよい)を形成してもよい。 In the general formula (1), R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group and an alkylsulfonyl. It is a group or an arylsulfonyl group and may have a substituent. R 2 may be combined with R 3 to form a ring (which may contain a heteroatom).
アルキル基としては、上記直鎖アルキル基(RA1)、分枝アルキル基(RA2)及び環状のアルキル基(RA3)と同様のものが挙げられる。 Examples of the alkyl group include the same as the linear alkyl group (RA1), the branched alkyl group (RA2) and the cyclic alkyl group (RA3).
アルケニル基としては、炭素数2~10のアルケニル基(RE1)等が挙げられ、直鎖、分枝、または環状のアルケニル基(エテニル、シアノエテニル、ジシアノエテニル、フェニルエテニル、1-プロペニル、2-プロペニル、1-ブテン-1-イル、2-ブテン-1-イル、2-メチル-2-プロペニル、1-シクロペンテン-1-イル、1-シクロヘキセン-1-イル、1-デセン-1-イル及びノルボルネニル等)等が挙げられる。 Examples of the alkenyl group include an alkenyl group (RE1) having 2 to 10 carbon atoms, and a linear, branched or cyclic alkenyl group (ethenyl, cyanoethenyl, dicyanoethenyl, phenylethenyl, 1-propenyl, 2-propenyl). , 1-butene-1-yl, 2-butene-1-yl, 2-methyl-2-propenyl, 1-cyclopentene-1-yl, 1-cyclohexene-1-yl, 1-decene-1-yl and norbornenyl Etc.) etc.
アルキニル基としては、炭素数2~10のアルキニル基(RY1)等が挙げられ、直鎖、分枝、又は環状のアルキニル基(エチニル、1-プロピン-1-イル、2-プロピン-1-イル、1-ブチン-1-イル、2-ブチン-1-イル、3-ブチン-1-イル、1-ペンチン-1-イル、2-ペンチン-1-イル、3-ペンチン-1-イル、4-ペンチン-1-イル、1-ヘキシン-1-イル、3-メチル-1-ブチン-1-イル、1-メチル-2-ブチン-1-イル、1-メチル-3-ブチン-1-イル、1,1-ジメチル-2-プロピン-1-イル、1-シクロオクチン-1-イル及び2-フェニルエチン-1-イル等)等が挙げられる。 Examples of the alkynyl group include an alkynyl group (RY1) having 2 to 10 carbon atoms, and a linear, branched, or cyclic alkynyl group (ethynyl, 1-propyne-1-yl, 2-propyne-1-yl). , 1-butyne-1-yl, 2-butyne-1-yl, 3-butyne-1-yl, 1-pentyne-1-yl, 2-pentyne-1-yl, 3-pentyne-1-yl, 4 -Pentin-1-yl, 1-hexin-1-yl, 3-methyl-1-butyne-1-yl, 1-methyl-2-butyne-1-yl, 1-methyl-3-butyne-1-yl , 1,1-dimethyl-2-propin-1-yl, 1-cyclooctyne-1-yl, 2-phenylethin-1-yl, etc.) and the like.
アリール基としては炭素数6~14のアリール基(RA5)等が挙げられ、フェニル基、4-シアノフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、3-フェナントレニル、9-フェナントレニル、1-アズレニル基、2-フルオレニル基、9’,9’-ジメチル-2-フルオレニル基及び9’,9’-ビストリフルオロメチル-2-フルオレニル基等が挙げられる。 Examples of the aryl group include an aryl group (RA5) having 6 to 14 carbon atoms, such as a phenyl group, a 4-cyanophenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, and 9 -Anthrasenyl group, 3-phenanthrenyl, 9-phenanthrenyl, 1-azulenyl group, 2-fluorenyl group, 9', 9'-dimethyl-2-fluorenyl group and 9', 9'-bistrifluoromethyl-2-fluorenyl group, etc. Can be mentioned.
含ヘテロ原子アリール基としては、炭素数3~14の含ヘテロ原子アリール基(RA6)等が挙げられ、酸素、窒素及び硫黄からなる群から一つ以上のヘテロ原子を含有するフラニル基、チエニル基、ピロリル基、オキサゾリル基、チアゾリル基、チオフェニル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾピラニル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、インドリル基、インドレニニル基、ナフトチアゾリル基、ナフトオキサゾリル基、キサンテニル基、チオキサンテニル基、フェノキサチイニル基、ジベンゾーp-ジオキシニル基、チアントレニル基、キサントニル基、チオキサントニル基、アントラキノニル基、ジベンゾフラニル基、フルオレニル基、カルバゾリル基及びクマリニル基等が挙げられる。 Examples of the heteroatom-containing aryl group include a heteroatom-containing aryl group (RA6) having 3 to 14 carbon atoms, and a furanyl group and a thienyl group containing one or more heteroatoms from the group consisting of oxygen, nitrogen and sulfur. , Pyrrolyl group, oxazolyl group, thiazolyl group, thiophenyl group, benzofuranyl group, isobenzofuranyl group, benzopyranyl group, benzothiazolyl group, benzoimidazolyl group, indolyl group, indoleninyl group, naphthothiazolyl group, naphthoxazolyl group, xanthenyl group, thioxanthenyl. Examples thereof include a group, a phenoxatyynyl group, a dibenzo-p-dioxynyl group, a thianthrenyl group, a xanthonyl group, a thioxanthonyl group, an anthraquinonyl group, a dibenzofuranyl group, a fluorenyl group, a carbazolyl group and a coumarinyl group.
アルキルカルボニル基としては、炭素数1~10(カルボニル炭素を含まない)のアルキルカルボニル基(RC1)等が挙げられ、直鎖または分枝アルキルカルボニル基(アセチル、プロピオニル、ブタノイル、2-メチルプロピオニル、ペンタノイル、2-メチルブタノイル、3-メチルブタノイル、2,2-ジメチルプロパノイル、オクタノイル、2-エチルヘキサノイル及びデカノイル等)等が挙げられる。 Examples of the alkylcarbonyl group include an alkylcarbonyl group (RC1) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkylcarbonyl group (acetyl, propionyl, butanoyl, 2-methylpropionyl, etc.). Pentanoyl, 2-methylbutanoyl, 3-methylbutanoyl, 2,2-dimethylpropanoyl, octanoyl, 2-ethylhexanoyl, decanoyl, etc.) and the like.
アリールカルボニル基としては、炭素数6~10(カルボニル炭素を含まない)のアリールカルボニル基(RC2)等が挙げられ、ベンゾイル基、ナフトイル基、4-トルイル基等が挙げられる。 Examples of the arylcarbonyl group include an arylcarbonyl group (RC2) having 6 to 10 carbon atoms (without carbonyl carbon), and examples thereof include a benzoyl group, a naphthoyl group, and a 4-toluyl group.
アルコキシカルボニル基としては、炭素数1~10(カルボニル炭素を含まない)のアルコキシカルボニル基(RC3)等が挙げられ、直鎖または分枝アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、イソブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、tert-アミロキシカルボニル、オクチロキシカルボニル、2-エチルヘキシロキシカルボニル及びベンジロキシカルボニル(Cbz)等)等が挙げられる。 Examples of the alkoxycarbonyl group include an alkoxycarbonyl group (RC3) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkoxycarbonyl group (methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxy). Examples thereof include carbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, tert-amyloxycarbonyl, octyloxycarbonyl, 2-ethylhexyloxycarbonyl and benzyloxycarbonyl (Cbz)).
アリールオキシカルボニル基としては、炭素数6~10(カルボニル上の炭素を含まない)のアリールオキシカルボニル基(RC4)等が挙げられ、フェノキシカルボニル基、2-トリルオキシカルボニル基、4-トリルオキシカルボニル基、4-メトキシフェノキシカルボニル基、4-クロロフェノキシカルボニル基、1-ナフトキシカルボニル基、2-ナフトキシカルボニル基等が挙げられる。 Examples of the aryloxycarbonyl group include an aryloxycarbonyl group (RC4) having 6 to 10 carbon atoms (not including carbon on the carbonyl), such as a phenoxycarbonyl group, a 2-triloxycarbonyl group, and a 4-triloxycarbonyl group. Examples thereof include a group, a 4-methoxyphenoxycarbonyl group, a 4-chlorophenoxycarbonyl group, a 1-naphthoxycarbonyl group, a 2-naphthoxycarbonyl group and the like.
アルキルスルホニル基としては、炭素数1~10のアルキルスルホニル基(RC5)等が挙げられ、直鎖又は分枝アルキルスルホニル基(メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、ブチルスルホニル、イソブチルスルホニル、sec-ブチルスルホニル、tert-ブチルスルホニル、ペンチルスルホニル、イソペンチルスルホニル、ネオペンチルスルホニル、tert-ペンチルスルホニル、オクチルスルホニル、デシルスルホニル、トルフルオロメタンスルホニル、ペンタフルオロエタンスルホニル、ノナフルオロブタンスルホニル及びパーフルオロオクタンスルホニル等)等が挙げられる。 Examples of the alkylsulfonyl group include an alkylsulfonyl group (RC5) having 1 to 10 carbon atoms, and a linear or branched alkylsulfonyl group (methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, etc. sec-butylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, isopentylsulfonyl, neopentylsulfonyl, tert-pentylsulfonyl, octylsulfonyl, decylsulfonyl, tolfluoromethanesulfonyl, pentafluoroethanesulfonyl, nonafluorobutanesulfonyl and perfluorooctane (Sulfonyl, etc.)) and the like.
アリールスルホニル基としては、炭素数6~10のアリールスルホニル基(RC6)(ベンゼンスルホニル、2-トルエンスルホニル、4-トルエンスルホニル、2-ニトロベンゼンスルホニル、4-ニトロベンゼンスルホニル、2,4-ジニトロベンゼンスルホニル、2-メシチレンスルホニル、4-ブチルベンゼンスルホニル、4-tert-ブチルベンゼンスルホニル、ナフチルスルホニル、ペンタフルオロベンゼンスルホニル及び3,5-ビス(トリフルオロメチル)ベンゼンスルホニル等)等が挙げられる。 Examples of the aryl sulfonyl group include an aryl sulfonyl group (RC6) having 6 to 10 carbon atoms (benzenesulfonyl, 2-toluenesulfonyl, 4-toluenesulfonyl, 2-nitrobenzenesulfonyl, 4-nitrobenzenesulfonyl, 2,4-dinitrobenzenesulfonyl, 2-Mesitylene sulfonyl, 4-butylbenzene sulfonyl, 4-tert-butyl benzene sulfonyl, naphthyl sulfonyl, pentafluoro benzene sulfonyl and 3,5-bis (trifluoromethyl) benzene sulfonyl, etc.) and the like.
一般式(1)中、Rは環状アルキル基、アリール基または含ヘテロ原子アリール基であり、置換基を有してもよい。 In the general formula (1), R 3 is a cyclic alkyl group, an aryl group or a heteroatom-containing aryl group, and may have a substituent.
環状アルキル基としては、炭素数3~12の環状のアルキル基(RA7)等が挙げられ、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、1-アダマンチル基、2-アダマンチル基、メンチル基、10-カンファーイル基、オクタヒドロナフチル基、トリシクロデカニル基、テトラシクロドデカニル基及び4-ヘキシルシクロヘキシル基等が挙げられる。 Examples of the cyclic alkyl group include a cyclic alkyl group (RA7) having 3 to 12 carbon atoms, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, a 1-adamantyl group, a 2-adamantyl group, and the like. Examples thereof include a mentyl group, a 10-campayl group, an octahydronaphthyl group, a tricyclodecanyl group, a tetracyclododecanyl group and a 4-hexylcyclohexyl group.
アリール基としては、上記アリール基(RA5)と同様のものが挙げられる。 Examples of the aryl group include the same aryl group as the above-mentioned aryl group (RA5).
含ヘテロ原子アリール基としては、上記含ヘテロ原子アリール基(RA6)と同様のものが挙げられる。 Examples of the heteroatom-containing aryl group include the same as the above-mentioned heteroatom-containing aryl group (RA6).
上記アリール基(RA5)及び含ヘテロ原子アリール基(RA6)の置換基としては、後述する(R)に挙げたものと同様のものが挙げられる。 Examples of the substituent of the aryl group (RA5) and the heteroatom-containing aryl group (RA6) include the same groups as those listed in (R6) described later.
一般式(1)中、Rは上記環状アルキル基(RA7)、アリール基(RA5)及び含ヘテロ原子アリール基(RA6)の炭素上の適当な位置でRと結合し、環状構造を形成することができ、ヘテロ原子を含んでいてもよい。 In the general formula (1), R 3 is bonded to R 2 at an appropriate position on the carbon of the cyclic alkyl group (RA7), aryl group (RA5) and heteroatom-containing aryl group (RA6) to form a cyclic structure. And may contain heteroatoms.
一般式(1)中、前述のR及びRのうち、原料の入手性、合成容易性及び安定性の観点から、好ましくは以下(a)及び(b)が挙げられる。 Among the above - mentioned R2 and R3 in the general formula (1), the following (a) and (b) are preferably mentioned from the viewpoint of availability of raw materials, ease of synthesis and stability.
(a):一般式(1)中、Rは炭素数1~18のアルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基であり、Rは炭素数3~12の環状アルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基であり、RとRは互いに結合して5~7員環(ヘテロ原子を含んでいてもよい)を形成する。
好ましくは下記一般式(1)-1、(1)-2、および(2)-1~(2)-5が挙げられる。さらに好ましくは、一般式(1)-1および(2)-1~(2)-5である。
一般式(1)-2中、複数のRは互いに独立である。
(A): In the general formula (1), R 2 is an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatom aryl group having 3 to 14 carbon atoms, and R 3 is. It is a cyclic alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatom aryl group having 3 to 14 carbon atoms, and R 2 and R 3 are bonded to each other to form a 5- to 7-membered ring (5 to 7-membered ring). It may contain heteroatoms).
Preferably, the following general formulas (1) -1, (1) -2, and (2) -1 to (2) -5 are mentioned. More preferably, the general formulas (1) -1 and (2) -1 to (2) -5.
In the general formula (1) -2, a plurality of R 1s are independent of each other.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(b):一般式(1)中、Rは炭素数1~18のアルキル基、炭素数2~10のアルケニル基、炭素数6~14のアリール基、炭素数3~14の含ヘテロ原子アリール基、炭素数6~10(カルボニル炭素を含まない)のアリールカルボニル基、炭素数1~10(カルボニル炭素を含まない)のアルコキシカルボニル基、または炭素数1~10のアルキルスルホニル基であり、Rは炭素数3~12の環状アルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基である。
好ましくは下記一般式(3)-1~(3)-4、(4)-1および(4)-2が挙げられる。さらに好ましくは、一般式(3)-1、(3)-2、(3)-4、(4)-1および(4)-2である。なお、Rは上記の基から選ばれる基である。
(B): In the general formula (1), R 2 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, and a heteroatom containing 3 to 14 carbon atoms. An aryl group, an arylcarbonyl group having 6 to 10 carbon atoms (without carbonyl carbon), an alkoxycarbonyl group having 1 to 10 carbon atoms (without carbonyl carbon), or an alkylsulfonyl group having 1 to 10 carbon atoms. R 3 is a cyclic alkyl group having 3 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatomic aryl group having 3 to 14 carbon atoms.
The following general formulas (3) -1 to (3) -4, (4) -1 and (4) -2 are preferably mentioned. More preferably, the general formulas (3) -1, (3) -2, (3) -4, (4) -1 and (4) -2. R 2 is a group selected from the above groups.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
一般式(1)-1中、Gは、RとRが結合して環を形成する基であり、-CH-、-CH-CH-、-O-、-S-、または-NR-等が挙げられ、Rは炭素数1~4のアルキル基、フェニル基、アセチル基、プロピオニル基、ブタノイル基、ベンゾイル基、メシル基、ベンゼンスルホニル基、トシル基、またはノシル基であり、原料の入手性、合成の容易性の観点から好ましくは炭素数1~4のアルキル基、フェニル基、アセチル基、ベンゾイル基であり、さらに好ましくはメチル基、フェニル基である。 In the general formula (1) -1, G 1 is a group in which R 2 and R 3 are combined to form a ring, and is -CH 2- , -CH 2 -CH 2- , -O-, -S-. , Or -NR 7- , etc., and R 7 is an alkyl group having 1 to 4 carbon atoms, a phenyl group, an acetyl group, a propionyl group, a butanoyl group, a benzoyl group, a mesyl group, a benzenesulfonyl group, a tosyl group, or a nosyl group. The group is preferably an alkyl group having 1 to 4 carbon atoms, a phenyl group, an acetyl group or a benzoyl group, and more preferably a methyl group or a phenyl group from the viewpoint of availability of raw materials and ease of synthesis.
一般式(2)-1~(2)-5中、Gは、RとRが結合して環を形成する基であり、-CH-、-O-、-S-、または-NR-等が挙げられ(Rは上記Rと同様である)、Rは原料の入手性、合成の容易性の観点から好ましくは炭素数1~4のアルキル基、フェニル基、アセチル基、ベンゾイル基である。 In the general formulas (2) -1 to (2) -5, G 2 is a group in which R 2 and R 3 are bonded to form a ring, and is -CH 2- , -O-, -S-, or. -NR 8 -etc. (R 8 is the same as R 7 above), and R 8 is preferably an alkyl group or phenyl group having 1 to 4 carbon atoms from the viewpoint of availability of raw materials and ease of synthesis. It is an acetyl group and a benzoyl group.
一般式(2)-1~(2)-5中、R及びRは、RとRが結合して形成した環の水素原子または置換基であり、それぞれ独立に、水素原子、炭素数1~12のアルキル基、炭素数6~14のアリール基(RA5)、ハロゲン原子等が挙げられ、合成の容易性の観点から好ましくは水素原子、炭素数1~6の直鎖アルキル基、フェニル基、ハロゲン原子である。 In the general formulas (2) -1 to (2) -5, R 4 and R 5 are hydrogen atoms or substituents of a ring formed by bonding R 2 and R 3 , and each of them is an independent hydrogen atom. Examples thereof include an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 14 carbon atoms (RA5), a halogen atom and the like, preferably a hydrogen atom and a linear alkyl group having 1 to 6 carbon atoms from the viewpoint of easiness of synthesis. , Phenyl group, hydrogen atom.
上記ハロゲン原子としては、後述する(R)に挙げたものと同様のものが挙げられる。 Examples of the halogen atom include those similar to those listed in (R 6 ) described later.
一般式(3)-4中、GとGは縮合環を構成する基であり、その組み合わせを(G,G)と表す時、(-O-,-O-)、(-S-,-S-)、(-C(O)-,-O-)、(-C(O)-,-S-)、(-C(O)-、-C(O)-)、(-CH=CH-,単結合)、(-O-,単結合)、(-S-,単結合)、(-CH-、単結合)または(-C(O)-,単結合)等が挙げられる。 In the general formula (3) -4, G 3 and G 4 are groups constituting a fused ring, and when the combination thereof is expressed as (G 3 , G 4 ), (-O-, -O-), (-). S-, -S-), (-C (O)-, -O-), (-C (O)-, -S-), (-C (O)-, -C (O)-), (-CH = CH-, single bond), (-O-, single bond), (-S-, single bond), (-CH 2- , single bond) or (-C (O)-, single bond) And so on.
一般式(4)-1及び(4)-2中、Gは-CMe-、-O-、-S-、または-NR-であり(Meはメチル基を表し、Rは上記Rと同様である)、Rは原料の入手性、合成の容易性の観点から好ましくは炭素数1~4のアルキル基、フェニル基、アセチル基、ベンゾイル基であり、さらに好ましくはメチル基である。 In the general formulas (4) -1 and (4) -2, G 5 is -CMe 2- , -O-, -S-, or -NR 9- (Me represents a methyl group, and R 9 is the above. (Similar to R 7 ), R 9 is preferably an alkyl group, a phenyl group, an acetyl group, a benzoyl group having 1 to 4 carbon atoms, and more preferably a methyl group, from the viewpoint of availability of raw materials and ease of synthesis. Is.
上記一般式中、(Rは上記アリール基(RA5)または含ヘテロ原子アリール基(RA6)上の任意の位置の互いに独立なn個(nは0~8の整数)の置換基であり、互いに結合して環を形成してもよく、アルキル基、フルオロアルキル基、アルケニル基、アルキニル基、アリール基、含ヘテロ原子アリール基、アルコキシ基、アルキルチオ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルカルボニロキシ基、アリールカルボニロキシ基、アルキルカーボネート基、アリールカーボネート基、アルキルスルホニル基、アリールスルホニル基、アミノ基及びハロゲン原子等が挙げられる。 In the above general formula, (R 6 ) n is an mutually independent n substituents (n is an integer of 0 to 8) at arbitrary positions on the above aryl group (RA5) or heteroatomic aryl group (RA6). Alkyl group, fluoroalkyl group, alkenyl group, alkynyl group, aryl group, heteroatomic aryl group including alkoxy group, alkylthio group, alkylcarbonyl group, arylcarbonyl group, which may be bonded to each other to form a ring. Examples thereof include an alkoxycarbonyl group, an aryloxycarbonyl group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an alkyl carbonate group, an arylcarbonate group, an alkylsulfonyl group, an arylsulfonyl group, an amino group and a halogen atom.
一般式(1)-1、(1)-2及び(2)-1~(2)-5中、(R)の置換位置は一般式(1)中、R及びRが結合して形成される構造を母骨格とみなして決定し、一般式(3)-1~(3)-4、(4)-1及び(4)-2中、(R)の置換位置は一般式(1)中、Rを母骨格とみなして決定する。 In the general formulas (1) -1, (1) -2 and (2) -1 to (2) -5, the substitution position of (R 6 ) is the combination of R 2 and R 3 in the general formula (1). The structure formed by the above is regarded as the mother skeleton and determined, and the substitution positions of (R 6 ) in the general formulas (3) -1 to (3) -4, (4) -1 and (4) -2 are general. In equation (1), R 3 is regarded as the mother skeleton and determined.
(R)の、アルキル基としては、上記直鎖アルキル基(RA1)、分枝アルキル基(RA2)、環状アルキル基(RA3)と同様のものが挙げられ、原料の入手性、合成の容易性の観点から好ましくは炭素数1~8の直鎖、分枝、又は環状のアルキル基であり、さらに好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、2-エチルへキシル基、シクロペンチル基及びシクロヘキシル基である。 Examples of the alkyl group of (R 6 ) include those similar to the above-mentioned linear alkyl group (RA1), branched alkyl group (RA2) and cyclic alkyl group (RA3), and availability of raw materials and easy synthesis. From the viewpoint of sex, it is preferably a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, and more preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group or a tert-. It is a butyl group, a pentyl group, a hexyl group, a 2-ethylhexyl group, a cyclopentyl group and a cyclohexyl group.
(R)の、フルオロアルキル基としては、上記直鎖フルオロアルキル基(RF1)、分枝フルオロアルキル基(RF2)、環状フルオロアルキル基(RF3)と同様のものが挙げられ、原料の入手性、合成の容易性の観点から好ましくは炭素数1~8の直鎖、分枝、又は環状のフルオロアルキル基であり、さらに好ましくは、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基及びヘキサフルオロイソプロピル基である。 Examples of the fluoroalkyl group of (R 6 ) include those similar to the above-mentioned linear fluoroalkyl group (RF1), branched fluoroalkyl group (RF2), and cyclic fluoroalkyl group (RF3), and availability of raw materials can be mentioned. From the viewpoint of ease of synthesis, a linear, branched or cyclic fluoroalkyl group having 1 to 8 carbon atoms is preferable, and a trifluoromethyl group, a pentafluoroethyl group or a heptafluoropropyl group is more preferable. It is a nonafluorobutyl group and a hexafluoroisopropyl group.
(R)の、アルケニル基としては、上記アルケニル基(RE1)と同様のものが挙げられる。 Examples of the alkenyl group of (R 6 ) include the same as the above-mentioned alkenyl group (RE1).
(R)の、アルキニル基としては、上記アルキニル基(RY1)と同様のものが挙げられ、合成の容易性の観点から、1-プロピン-1-イル基、1-ブチン-1-イル基、1-ペンチン-1-イル基、2-フェニルエチン-1-イル基が好ましい。 Examples of the alkynyl group of (R6) include the same as the above-mentioned alkynyl group (RY1), and from the viewpoint of easiness of synthesis, 1-propyne-1-yl group and 1-butyne-1-yl group. , 1-Pentyne-1-yl group and 2-phenylethin-1-yl group are preferable.
(R)の、アリール基としては、上記アリール基(RA5)と同様のものが挙げられる。 Examples of the aryl group of (R 6 ) include the same aryl group as the above-mentioned aryl group (RA5).
(R)の、含ヘテロ原子アリール基としては、上記含ヘテロ原子アリール基(RA6)と同様のものが挙げられる。 Examples of the heteroatom-containing aryl group of (R6) include the same as the heteroatom-containing aryl group (RA6).
(R)の、アルコキシ基としては、炭素数1~10のアルコキシ基(RC7)等が挙げられ、直鎖、分枝または環状アルコキシ基(メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ヘキシルオキシ、シクロヘキシルオキシ、フェノキシ、トリルオキシ、ベンジロキシ、デシルオキシ、ナフトキシ、メトキシメトキシ、エトキシメトキシ、2-メトキシエトキシ、1-メトキシエトキシ、ベンジロキシメトキシ、トリメチルシロキシ、トリエチルシロキシ、トリイソプロピルシロキシ及びtert-ブチルジメチルシロキシ等)等であり、合成の容易性の観点から好ましくはメトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、tert-ブトキシ、ペンチロキシ、ヘキシロキシ、ベンジロキシ及びtert-ブチルジメチルシロキシである。 Examples of the alkoxy group of (R 6 ) include an alkoxy group (RC7) having 1 to 10 carbon atoms, and a linear, branched or cyclic alkoxy group (methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, etc.). sec-butoxy, tert-butoxy, hexyloxy, cyclohexyloxy, phenoxy, triloxy, benzyloxy, decyloxy, naphthoxy, methoxymethoxy, ethoxymethoxy, 2-methoxyethoxy, 1-methoxyethoxy, benzyloxymethoxy, trimethylsiloxy, triethylsiloxy, (Triisopropylsiloxy, tert-butyldimethylsiloxy, etc.), etc., preferably from the viewpoint of ease of synthesis, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, tert-butoxy, pentyroxy, hexyloxy, benzyloxy and tert-butyl. It is dimethylsiloxy.
(R)の、アルキルチオ基としては、炭素数1~10のアルキルチオ基(RC8)等が挙げられ、直鎖、分枝または環状アルキルチオ基(メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、イソブチルチオ、sec-ブチルチオ、tert-ブチルチオ、ペンチルチオ、イソペンチルチオ、ネオペンチルチオ、tert-ペンチルチオ、フェニルチオ、トリルチオ、ベンジルチオ、オクチルチオ、デシルチオ及びナフチルチオ等)等であり、合成の容易性の観点から好ましくはメチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、ブチルチオ、ベンジルチオ、オクチルチオ、フェニルチオである。 Examples of the alkylthio group of (R6) include an alkylthio group having 1 to 10 carbon atoms (RC8), and a linear, branched or cyclic alkylthio group (methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio). , St-butylthio, tert-butylthio, pentylthio, isopentylthio, neopentylthio, tert-pentylthio, phenylthio, trilthio, benzylthio, octylthio, decylthio, naphthylthio, etc.), and methylthio is preferable from the viewpoint of ease of synthesis. , Ethylthio, propylthio, isopropylthio, butylthio, benzylthio, octylthio, phenylthio.
(R)の、アルキルカルボニル基としては、上記アルキルカルボニル基(RC1)と同様のものが挙げられ、合成の容易性の観点から好ましくはアセチル、プロピオニル、ブタノイル、2-メチルブタノイル及び2,2-ジメチルプロパノイルである。 Examples of the alkylcarbonyl group of (R 6 ) include the same group as the above-mentioned alkylcarbonyl group (RC1), preferably acetyl, propionyl, butanoyl, 2-methylbutanoyl and 2, from the viewpoint of ease of synthesis. 2-Dimethylpropanoyl.
(R)の、アリールカルボニル基としては、上記アリールカルボニル基(RC2)と同様のものが挙げられる。 Examples of the arylcarbonyl group of (R6) include the same arylcarbonyl group as the above-mentioned arylcarbonyl group (RC2).
(R)の、アルコキシカルボニル基としては、上記アルコキシカルボニル基(RC3)と同様のものが挙げられ、合成の容易性の観点から好ましくはメトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、sec-ブトキシカルボニル、tert-ブトキシカルボニル、tert-アミロキシカルボニル、及び2-エチルヘキシロキシカルボニルである。 Examples of the alkoxycarbonyl group of (R 6 ) include the same as the alkoxycarbonyl group (RC3) described above, and from the viewpoint of ease of synthesis, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl and butoxy are preferable. Carbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, tert-amyloxycarbonyl, and 2-ethylhexyloxycarbonyl.
(R)の、アリールオキシカルボニル基としては、上記アリールオキシカルボニル基(RC4)と同様のものが挙げられる。 Examples of the aryloxycarbonyl group of (R6) include the same aryloxycarbonyl group as the above-mentioned aryloxycarbonyl group (RC4).
(R)の、アルキルカルボニロキシ基としては、炭素数1~10(カルボニル炭素を含まない)のアルキルカルボニロキシ基(RC9)等が挙げられ、直鎖または分枝アルキルカルボニロキシ基(アセトキシ、エチルカルボニロキシ、プロピルカルボニロキシ、イソプロピルカルボニロキシ、ブチルカルボニロキシ、イソブチルカルボニロキシ、sec-ブチルカルボニロキシ、tert-ブチルカルボニロキシ、ペンチルカルボニロキシ、ヘキシルカルボニロキシ、オクチルカルボニロキシ、2-エチルヘキシルカルボニロキシ、デシルカルボニロキシ及びベンジルカルボニロキシ等)等であり、原料の入手性の観点から好ましくはアセトキシ、エチルカルボニロキシ、プロピルカルボニロキシ、イソプロピルカルボニロキシ、ブチルカルボニロキシ、イソブチルカルボニロキシ、sec-ブチルカルボニロキシ、tert-ブチルカルボニロキシ、ペンチルカルボニロキシ、ヘキシルカルボニロキシ及び2-エチルヘキシルカルボニロキシである。 Examples of the alkylcarbonyloxy group of (R6) include an alkylcarbonyloxy group ( RC9 ) having 1 to 10 carbon atoms (not containing carbonyl carbon), and a linear or branched alkylcarbonyloxy group. (Acetoxy, Ethyl Carbonyloxy, Propyl Carbonyloxy, Isopropyl Carbonyloxy, Butyl Carbonyloxy, Isobutyl Carbonyloxy, sec-Butyl Carbonyloxy, tert-Butyl Carbonyloxy, Pentyl Carbonyloxy, Hexyl Carbony Roxy, octylcarbonyloxy, 2-ethylhexylcarbonyloxy, decylcarbonyloxy, benzylcarbonyloxy, etc.), etc., preferably acetoxy, ethylcarboniloxy, propylcarbonyloxy, etc. Isopropylcarbonyloxy, butylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyloxy, tert-butylcarbonyloxy, pentylcarboniloxy, hexylcarbonyloxy and 2-ethylhexylcarbonyloxy.
(R)の、アリールカルボニロキシ基としては、炭素数6~10(カルボニル炭素を含まない)のアリールカルボニロキシ基(RC10)等が挙げられ、フェニルカルボニロキシ基、1-ナフチルカルボニロキシ基、2-ナフチルカルボニロキシ基、1-アズレニルカルボニロキシ基、2-トリルカルボニロキシ基、3-トリルカルボニロキシ基、4-トリルカルボニロキシ基、2-クロロフェニルカルボニロキシ基、3-クロロフェニルカルボニロキシ基、4-クロロフェニルカルボニロキシ基、2,4-キシリルカルボニロキシ基、2,6-キシリルカルボニロキシ基、3,5-キシリルカルボニロキシ基、2,4,6-メシチルカルボニロキシ基、3,5-ビストリフルオロメチルフェニルカルボニロキシ基及びペンタフルオロフェニルカルボニロキシ基等が挙げられる。 Examples of the arylcarbonyloxy group of (R6) include an arylcarbonyloxy group (RC10) having 6 to 10 carbon atoms (without carbonyl carbon), such as a phenylcarbonyloxy group and 1-naphthylcarbo. Nyloxy group, 2-naphthylcarbonyloxy group, 1-azurenylcarbonyloxy group, 2-tolylcarbonyloxy group, 3-tolylcarbonyloxy group, 4-tolylcarbonyloxy group, 2-chlorophenylcarboni Loxy group, 3-chlorophenylcarbonyloxy group, 4-chlorophenylcarbonyloxy group, 2,4-xysilylcarbonyloxy group, 2,6-xysilylcarbonyloxy group, 3,5-xysilylcarbonyloxy Examples thereof include a group, a 2,4,6-mesitylcarbonyloxy group, a 3,5-bistrifluoromethylphenylcarbonyloxy group and a pentafluorophenylcarbonyloxy group.
(R)の、アルキルカーボネート基としては、炭素数1~10(カルボニル炭素を含まない)のアルキルカーボネート基(RC11)等が挙げられ、メチルカーボネート基、エチルカーボネート基、プロピルカーボネート基、2-プロピルカーボネート基、ブチルカーボネート基、2-ブチルカーボネート基、イソブチルカーボネート基、tert-ブチルカーボネート基、tert-アミルカーボネート基、ベンジルカーボネート基、2-エチルヘキシルカーボネート基及びメンチルカーボネート基等であり、原料の入手性の観点から好ましくはメチルカーボネート基、エチルカーボネート基、プロピルカーボネート基、イソプロピルカーボネート基、ブチルカーボネート基、イソブチルカーボネート基、tert-ブチルカーボネート基、tert-アミルカーボネート基、2-エチルヘキシルカーボネート基である。 Examples of the alkyl carbonate group of (R 6 ) include an alkyl carbonate group (RC11) having 1 to 10 carbon atoms (not containing carbonyl carbon), a methyl carbonate group, an ethyl carbonate group, a propyl carbonate group, and 2-. Obtaining raw materials for propyl carbonate group, butyl carbonate group, 2-butyl carbonate group, isobutyl carbonate group, tert-butyl carbonate group, tert-amyl carbonate group, benzyl carbonate group, 2-ethylhexyl carbonate group, mentyl carbonate group and the like. From the viewpoint of properties, a methyl carbonate group, an ethyl carbonate group, a propyl carbonate group, an isopropyl carbonate group, a butyl carbonate group, an isobutyl carbonate group, a tert-butyl carbonate group, a tert-amyl carbonate group and a 2-ethylhexyl carbonate group are preferable.
(R)の、アリールカーボネート基としては、炭素数6~10(カルボニル炭素を含まない)のアリールカーボネート基(RC12)等が挙げられ、フェニルカーボネート基、1-ナフチルカーボネート基、2-ナフチルカーボネート基、1-アズレニルカーボネート基、2-トリルカーボネート基、3-トリルカーボネート基、4-トリルカーボネート基、2-クロロフェニルカーボネート基、3-クロロフェニルカーボネート基、4-クロロフェニルカーボネート基、2,4-キシリルカーボネート基、2,6-キシリルカーボネート基、3,5-キシリルカーボネート基、2,4,6-メシチルカーボネート基、3,5-ビストリフルオロメチルフェニルカーボネート基及びペンタフルオロフェニルカーボネート基等が挙げられる。 Examples of the aryl carbonate group of (R 6 ) include an aryl carbonate group (RC12) having 6 to 10 carbon atoms (without carbonyl carbon), such as a phenyl carbonate group, a 1-naphthyl carbonate group and a 2-naphthyl carbonate. Group, 1-azurenyl carbonate group, 2-tolyl carbonate group, 3-tolyl carbonate group, 4-tolyl carbonate group, 2-chlorophenyl carbonate group, 3-chlorophenyl carbonate group, 4-chlorophenyl carbonate group, 2,4-chi Cyril carbonate group, 2,6-xysilyl carbonate group, 3,5-kisilyl carbonate group, 2,4,6-mesityl carbonate group, 3,5-bistrifluoromethylphenyl carbonate group, pentafluorophenyl carbonate group, etc. Can be mentioned.
(R)の、アルキルスルホニル基としては、上記アルキルスルホニル基(RC5)と同様のものが挙げられ、原料の入手性の観点から好ましくはメチルスルホニル、エチルスルホニル、ブチルスルホニル、トリフルオロメタンスルホニル、ノナフルオロブタンスルホニル及びパーフルオロオクタンスルホニルである。 Examples of the alkylsulfonyl group of (R6) include the same as the above-mentioned alkylsulfonyl group (RC5), and from the viewpoint of availability of raw materials, methylsulfonyl, ethylsulfonyl, butylsulfonyl, trifluoromethanesulfonyl, and nona are preferable. Fluorobutanesulfonyl and perfluorooctanesulfonyl.
(R)の、アリールスルホニル基としては、上記アリールスルホニル基(RC6)と同様のものが挙げられ、原料の入手性の観点から好ましくはベンゼンスルホニル、4-トルエンスルホニル、2-ニトロベンゼンスルホニル及びペンタフルオロベンゼンスルホニルである。 Examples of the aryl sulfonyl group of (R 6 ) include the same aryl sulfonyl group as the above-mentioned aryl sulfonyl group (RC6), and from the viewpoint of availability of raw materials, benzenesulfonyl, 4-toluenesulfonyl, 2-nitrobenzenesulfonyl and penta are preferable. Fluorobenzenesulfonyl.
(R)の、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられ、原料の入手性及び合成の容易性の観点から好ましくはフッ素原子、塩素原子及び臭素原子である。 Examples of the halogen atom in ( R6 ) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and from the viewpoint of availability of raw materials and ease of synthesis, fluorine atoms, chlorine atoms and bromine atoms are preferable. be.
上記化合物において、立体構造(E,Z)については、どちらか一方であっても、混合物であってもよい。 In the above compound, the three-dimensional structure (E, Z) may be either one or a mixture.
本発明の非イオン系光酸発生剤(A)に含有されるスルホンアミド化合物の合成方法は目的物を合成できれば特に限定はされないが、例えば、一般式(1)の化合物は以下に述べる方法で製造できる。 The method for synthesizing the sulfonamide compound contained in the nonionic photoacid generator (A) of the present invention is not particularly limited as long as the desired product can be synthesized, but for example, the compound of the general formula (1) is described below. Can be manufactured.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
上記の反応式中、R~R及びRは一般式(1)における定義に同じである。
第1段目の反応は、前駆体(PR1)、RSOXで表されるスルホン酸ハロゲン化物等価体、塩基(炭酸水素ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、ピリジン、クロロピリジン、ジクロロピリジン、ルチジン、2,6-ジターシャリーブチルピリジン、トリエチルアミン、エチルジイソプロピルアミン、ジアザビシクロウンデセン(DBU)、テトラメチルピペリジン(TMP)、テトラメチルグアニジン(TMG)、ヘキサメチルジシラザン(HMDS)、カリウムターシャリーブトキシド、リチウムジイソプロピルアミド、ナトリウムヘキサメチルジシラザン等)を有機溶剤(トルエン、酢酸ブチル、アセトニトリル、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジクロロメタン、クロロホルム、ベンズトリフルオリド等)や水中、-78℃~還流条件で5分~3時間反応させる。反応完了後、析出する固体をろ過するか適当な溶剤で抽出することで前駆体(PR2)が得られる。(PR2)は必要に応じて再結晶するか溶剤で洗浄して精製することができる。場合により未精製のまま引き続く反応を行うこともできる。
In the above reaction formula, R 1 to R 3 and R f are the same as the definitions in the general formula (1).
The first-stage reaction consists of a precursor (PR1), a sulfonic acid halide equivalent represented by R 1 SO 2 X, and a base (sodium hydrogen carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, pyridine, chloro). Pyridine, dichloropyrididine, rutidin, 2,6-ditercious butylpyridine, triethylamine, ethyldiisopropylamine, diazabicycloundecene (DBU), tetramethylpiperidin (TMP), tetramethylguanidine (TMG), hexamethyldisilazane ( HMDS), potassium tertiary butoxide, lithium diisopropylamide, sodium hexamethyldisilazane, etc.) in organic solvents (toluene, butyl acetate, acetonitrile, dimethylformamide (DMF), dimethylacetamide (DMAc), dichloromethane, chloroform, benztrifluoride, etc.) ) Or in water at −78 ° C. to reflux conditions for 5 minutes to 3 hours. After the reaction is completed, the precursor (PR2) can be obtained by filtering the precipitated solid or extracting it with an appropriate solvent. (PR2) can be purified by recrystallization or washing with a solvent, if necessary. In some cases, a subsequent reaction can be carried out in an unpurified state.
第2段目の反応は、前駆体(PR2)、RSOXで表されるスルホン酸ハロゲン化物等価体、塩基(炭酸水素ナトリウム、炭酸カリウム、ピリジン、クロロピリジン、ジクロロピリジン、2,6-ジターシャリーブチルピリジン、トリエチルアミン、エチルジイソプロピルアミン、TMP、TMG、HMDS、カリウムターシャリーブトキシド、リチウムジイソプロピルアミド、ナトリウムビスヘキサメチルジシラザン等)を有機溶剤(トルエン、酢酸ブチル、アセトニトリル、DMF、DMAc、ジクロロメタン、クロロホルム、ベンズトリフルオリド等)中、-78~30℃で5分~3時間反応させる。反応完了後、析出する固体をろ過するか適当な溶剤で抽出し揮発分を留去することで固体の一般式(1)のスルホンアミド化合物が得られる。得られた固体は、必要に応じてカラムクロマトグラフィー、有機溶剤で洗浄、再結晶などで精製することができる。 The second-stage reaction consists of a precursor (PR2), a sulfonic acid halide equivalent represented by R f SO 2 X, and a base (sodium hydrogen carbonate, potassium carbonate, pyridine, chloropyridine, dichloropyridine, 2, 6). -Ditertial butyl pyridine, triethylamine, ethyl diisopropylamine, TMP, TMG, HMDS, potassium tertiary butoxide, lithium diisopropylamide, sodium bishexamethyl disilazane, etc.) in organic solvents (toluene, butyl acetate, acetonitrile, DMF, DMAc, etc.) In dichloromethane, chloroform, benztrifluoride, etc.), react at −78 to 30 ° C. for 5 minutes to 3 hours. After the reaction is completed, the precipitated solid is filtered or extracted with an appropriate solvent and the volatile components are distilled off to obtain a solid sulfonamide compound of the general formula (1). The obtained solid can be purified by column chromatography, washing with an organic solvent, recrystallization or the like, if necessary.
本発明の非イオン系光酸発生剤(A)は、光照射によって超強酸が発生することから、フォトリソグラフィー用樹脂組成物(レジスト)用途に好適である。 The non-ionic photoacid generator (A) of the present invention is suitable for use as a resin composition (resist) for photolithography because a super strong acid is generated by light irradiation.
本発明の非イオン系光酸発生剤(A)は、レジスト材料への溶解を容易にするため、あらかじめ反応を阻害しない溶剤に溶かしておいてもよい。 The nonionic photoacid generator (A) of the present invention may be previously dissolved in a solvent that does not inhibit the reaction in order to facilitate dissolution in the resist material.
レジスト材料への溶解を容易にする溶剤としては、カーボネート(プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネート等)、エステル(酢酸エチル、乳酸エチル、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン及びε-カプロラクトン等)、エーテル(エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等)、及びエーテルエステル(エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート及びジエチレングリコールモノブチルエーテルアセテート等)等が挙げられる。 Examples of the solvent that facilitates dissolution in the resist material include carbonates (propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, diethyl carbonate, etc.), esters (ethyl acetate, ethyl lactate, β-propiolactone, etc.). β-butyrolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, etc.), ethers (ethylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, triethylene glycol diethyl ether, tripropylene glycol) Dibutyl ether, etc.), ether esters (ethylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, etc.) and the like.
溶剤を使用する場合、溶剤の使用割合は、本発明の非イオン系光酸発生剤(A)100重量部に対して、15~1000重量部が好ましく、30~500重量部がさらに好ましい。 When a solvent is used, the ratio of the solvent used is preferably 15 to 1000 parts by weight, more preferably 30 to 500 parts by weight, based on 100 parts by weight of the nonionic photoacid generator (A) of the present invention.
本発明のフォトリソグラフィー用樹脂組成物(Q)は、非イオン系光酸発生剤(A)を必須成分として含むため、紫外線照射及び露光後加熱(PEB)を行うことで、露光部と未露光部の現像液に対する溶解性に差がつく。非イオン系光酸発生剤(A)は1種単独、又は2種以上を組み合わせて使用することも、スルホニウム塩等のイオン系光酸発生剤と併用することもできる。
フォトリソグラフィー用樹脂組成物(Q)としては、ネガ型化学増幅樹脂(QN)と非イオン系光酸発生剤(A)との混合物;及びポジ型化学増幅樹脂(QP)と非イオン系光酸発生剤(A)との混合物が挙げられる。
Since the resin composition for photolithography (Q) of the present invention contains a nonionic photoacid generator (A) as an essential component, it is exposed to an exposed portion and unexposed by performing ultraviolet irradiation and post-exposure heating (PEB). There is a difference in the solubility of the part in the developer. The non-ionic photoacid generator (A) may be used alone or in combination of two or more, or may be used in combination with an ionic photoacid generator such as a sulfonium salt.
The resin composition (Q) for photolithography includes a mixture of a negative chemical amplification resin (QN) and a nonionic photoacid generator (A); and a positive chemical amplification resin (QP) and a nonionic photoacid. A mixture with the generator (A) can be mentioned.
ネガ型化学増幅樹脂(QN)としては、フェノール性水酸基含有樹脂(QN1)と架橋剤(QN2)から構成される。 The negative chemical amplification resin (QN) is composed of a phenolic hydroxyl group-containing resin (QN1) and a cross-linking agent (QN2).
フェノール性水酸基含有樹脂(QN1)としてはフェノール性水酸基を含有している樹脂であれば特に制限はなく、例えば、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール/キシリレングリコール縮合樹脂、クレゾール/キシリレングリコール縮合樹脂、フェノール性水酸基を含有するポリイミド、フェノール性水酸基を含有するポリアミック酸、フェノール-ジシクロペンタジエン縮合樹脂が用いられる。これらのなかでも、ノボラック樹脂、ポリヒドロキシスチレン、ヒドロキシスチレンの共重合体、ヒドロキシスチレンとスチレンの共重合体、ヒドロキシスチレン、スチレン及び(メタ)アクリル酸誘導体の共重合体、フェノール/キシリレングリコール縮合樹脂が好ましい。尚、これらのフェノール性水酸基含有樹脂(QN1)は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。 The phenolic hydroxyl group-containing resin (QN1) is not particularly limited as long as it is a resin containing a phenolic hydroxyl group. Combined, hydroxystyrene, styrene and (meth) acrylic acid derivative copolymer, phenol / xylylene glycol condensed resin, cresol / xylylene glycol condensed resin, polyimide containing phenolic hydroxyl group, polyamic acid containing phenolic hydroxyl group , Phenolic-dicyclopentadiene condensation resin is used. Among these, novolak resin, polyhydroxystyrene, hydroxystyrene copolymer, hydroxystyrene and styrene copolymer, hydroxystyrene, styrene and (meth) acrylic acid derivative copolymer, phenol / xylylene glycol condensation. Resin is preferred. These phenolic hydroxyl group-containing resins (QN1) may be used alone or in combination of two or more.
上記ノボラック樹脂は、例えば、フェノール類とアルデヒド類とを触媒の存在下で縮合させることにより得ることができる。
上記フェノール類としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、1-ナフトール、2-ナフトールが挙げられる。
また、上記アルデヒド類としてはホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。
The novolak resin can be obtained, for example, by condensing phenols and aldehydes in the presence of a catalyst.
Examples of the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol, 2 , 3-Xylenol, 2,4-Xylenol, 2,5-Xylenol, 2,6-Xylenol, 3,4-Xylenol, 3,5-Xylenol, 2,3,5-trimethylphenol, 3,4,5- Examples thereof include trimethylphenol, catechol, resorcinol, pyrogallol, 1-naphthol and 2-naphthol.
Examples of the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like.
上記ノボラック樹脂としては、例えば、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール/ナフトール/ホルムアルデヒド縮合ノボラック樹脂が挙げられる。 Examples of the novolak resin include phenol / formaldehyde condensed novolak resin, cresol / formaldehyde condensed novolak resin, and phenol / naphthol / formaldehyde condensed novolak resin.
また、上記フェノール性水酸基含有樹脂(QN1)には、成分の一部としてフェノール性低分子化合物が含有されていてもよい。
上記フェノール性低分子化合物としては、例えば、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、トリス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、トリス(4-ヒドロキシフェニル)エタン、1,3-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、1,4-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]ベンゼン、4,6-ビス[1-(4-ヒドロキシフェニル)-1-メチルエチル]-1,3-ジヒドロキシベンゼン、1,1-ビス(4-ヒドロキシフェニル)-1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、4,4’-{1-[4-〔1-(4-ヒドロキシフェニル)-1-メチルエチル〕フェニル]エチリデン}ビスフェノールが挙げられる。これらのフェノール性低分子化合物は、1種単独で用いてもよいし、2種以上を混合して用いてもよい。
Further, the phenolic hydroxyl group-containing resin (QN1) may contain a phenolic small molecule compound as a part of the component.
Examples of the phenolic low molecular weight compound include 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, tris (4-hydroxyphenyl) methane, and 1,1-bis (4-hydroxyphenyl) -1-. Phenyl ethane, tris (4-hydroxyphenyl) ethane, 1,3-bis [1- (4-hydroxyphenyl) -1-methylethyl] benzene, 1,4-bis [1- (4-hydroxyphenyl) -1 -Methylethyl] benzene, 4,6-bis [1- (4-hydroxyphenyl) -1-methylethyl] -1,3-dihydroxybenzene, 1,1-bis (4-hydroxyphenyl) -1- [4 -[1- (4-Hydroxyphenyl) -1-methylethyl] phenyl] ethane, 1,1,2,2-tetra (4-hydroxyphenyl) ethane, 4,4'-{1- [4- [1] -(4-Hydroxyphenyl) -1-methylethyl] phenyl] ethylidene} bisphenol. These phenolic small molecule compounds may be used alone or in admixture of two or more.
このフェノール性低分子化合物のフェノール性水酸基含有樹脂(QN1)中における含有割合は、フェノール性水酸基含有樹脂(QN1)を100重量%とした場合、40重量%以下であることが好ましく、1~30重量%がさらに好ましい。 The content ratio of this phenolic small molecule compound in the phenolic hydroxyl group-containing resin (QN1) is preferably 40% by weight or less when the phenolic hydroxyl group-containing resin (QN1) is 100% by weight, preferably 1 to 30%. % By weight is even more preferred.
フェノール性水酸基含有樹脂(QN1)の重量平均分子量は、得られる絶縁膜の解像性、熱衝撃性、熱安定性、残膜率等の観点から、2000以上であることが好ましく、2000~20000がさらに好ましい。
また、ネガ型化学増幅樹脂(QN)中におけるフェノール性水酸基含有樹脂(QN1)の含有割合は、溶剤を除いた組成物の全体を100重量%とした場合に、30~90重量%であることが好ましく、40~80重量%がさらに好ましい。このフェノール性水酸基含有樹脂(QN1)の含有割合が30~90重量%である場合には、感光性絶縁樹脂組成物を用いて形成された膜がアルカリ水溶液による十分な現像性を有しているため好ましい。
The weight average molecular weight of the phenolic hydroxyl group-containing resin (QN1) is preferably 2000 or more, preferably 2000 to 20000, from the viewpoints of resolution, thermal shock resistance, thermal stability, residual film ratio, etc. of the obtained insulating film. Is even more preferable.
Further, the content ratio of the phenolic hydroxyl group-containing resin (QN1) in the negative chemical amplification resin (QN) is 30 to 90% by weight when the whole composition excluding the solvent is 100% by weight. Is preferable, and 40 to 80% by weight is more preferable. When the content ratio of the phenolic hydroxyl group-containing resin (QN1) is 30 to 90% by weight, the film formed by using the photosensitive insulating resin composition has sufficient developability with an alkaline aqueous solution. Therefore, it is preferable.
架橋剤(QN2)としては、非イオン系光酸発生剤(A)から発生した強酸によりフェノール性水酸基含有樹脂(QN1)を架橋し得る化合物であれば特に限定されない。 The cross-linking agent (QN2) is not particularly limited as long as it is a compound capable of cross-linking the phenolic hydroxyl group-containing resin (QN1) with the strong acid generated from the nonionic photoacid generator (A).
架橋剤(QN2)としては、例えば、ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物、オキセタン化合物、メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有フェノール化合物、アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有メラミン樹脂、カルボキシメチル基含有ベンゾグアナミン樹脂、カルボキシメチル基含有尿素樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有尿素化合物及びカルボキシメチル基含有フェノール化合物が挙げられる。 Examples of the cross-linking agent (QN2) include bisphenol A-based epoxy compound, bisphenol F-based epoxy compound, bisphenol S-based epoxy compound, novolak resin-based epoxy compound, resole resin-based epoxy compound, poly (hydroxystyrene) -based epoxy compound, and oxetane. Compounds, methylol group-containing melamine compounds, methylol group-containing benzoguanamine compounds, methylol group-containing urea compounds, methylol group-containing phenol compounds, alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl groups Phenolic compound contained, carboxymethyl group-containing melamine resin, carboxymethyl group-containing benzoguanamine resin, carboxymethyl group-containing urea resin, carboxymethyl group-containing phenol resin, carboxymethyl group-containing melamine compound, carboxymethyl group-containing benzoguanamine compound, carboxymethyl group-containing Examples thereof include urea compounds and carboxymethyl group-containing phenol compounds.
これら架橋剤(QN2)のうち、メチロール基含有フェノール化合物、メトキシメチル基含有メラミン化合物、メトキシメチル基含有フェノール化合物、メトキシメチル基含有グリコールウリル化合物、メトキシメチル基含有ウレア化合物及びアセトキシメチル基含有フェノール化合物が好ましく、メトキシメチル基含有メラミン化合物(例えばヘキサメトキシメチルメラミン)、メトキシメチル基含有グリコールウリル化合物及びメトキシメチル基含有ウレア化合物等がさらに好ましい。メトキシメチル基含有メラミン化合物は、CYMEL300、CYMEL301、CYMEL303、CYMEL305(三井サイアナミッド(株)製)等の商品名で、メトキシメチル基含有グリコールウリル化合物はCYMEL1174(三井サイアナミッド(株)製)等の商品名で、またメトキシメチル基含有ウレア化合物は、MX290(三和ケミカル(株)製)等の商品名で市販されている。 Among these cross-linking agents (QN2), methylol group-containing phenol compounds, methoxymethyl group-containing melamine compounds, methoxymethyl group-containing phenol compounds, methoxymethyl group-containing glycol uryl compounds, methoxymethyl group-containing urea compounds and acetoxymethyl group-containing phenol compounds. Is preferable, and methoxymethyl group-containing melamine compounds (for example, hexamethoxymethyl melamine), methoxymethyl group-containing glycol uryl compounds, methoxymethyl group-containing urea compounds, and the like are even more preferable. The methoxymethyl group-containing melamine compound is a trade name such as CYMEL300, CYMEL301, CYMEL303, CYMEL305 (manufactured by Mitsui Sianamid Co., Ltd.), and the methoxymethyl group-containing glycoluril compound is a trade name such as CYMEL1174 (manufactured by Mitsui Sianamid Co., Ltd.). Further, the methoxymethyl group-containing urea compound is commercially available under a trade name such as MX290 (manufactured by Sanwa Chemical Co., Ltd.).
架橋剤(QN2)の含有量は、残膜率の低下、パターンの蛇行や膨潤及び現像性の観点から、フェノール性水酸基含有樹脂(QN1)中の全酸性官能基に対して、通常、5~60モル%であり、10~50モル%が好ましく、15~40モル%がさらに好ましい。 The content of the cross-linking agent (QN2) is usually 5 to 5 with respect to the total acidic functional groups in the phenolic hydroxyl group-containing resin (QN1) from the viewpoint of lowering the residual film ratio, meandering and swelling of the pattern, and developability. It is 60 mol%, preferably 10 to 50 mol%, more preferably 15 to 40 mol%.
ポジ型化学増幅樹脂(QP)としては、フェノール性水酸基、カルボキシル基、又はスルホニル基等の1種以上の酸性官能基を含有するアルカリ可溶性樹脂(QP1)、及び(QP1)中の酸性官能基の水素原子の一部あるいは全部を、酸解離性基で置換した保護基導入樹脂(QP2)が挙げられる。
保護基導入樹脂(QP2)は、それ自体としてはアルカリ不溶性又はアルカリ難溶性である。
なお、酸解離性基とは非イオン系光酸発生剤(A)から発生した超強酸の存在下で解離することができる基である。
The positive chemical amplification resin (QP) includes an alkali-soluble resin (QP1) containing one or more acidic functional groups such as a phenolic hydroxyl group, a carboxyl group, or a sulfonyl group, and an acidic functional group in (QP1). Examples thereof include a protective group-introduced resin (QP2) in which a part or all of the hydrogen atom is replaced with an acid dissociative group.
The protecting group-introduced resin (QP2) is itself alkali-insoluble or sparingly soluble in alkali.
The acid dissociable group is a group that can be dissociated in the presence of a super strong acid generated from the nonionic photoacid generator (A).
アルカリ可溶性樹脂(QP1)としては、例えば、フェノール性水酸基含有樹脂(QP11)、カルボキシル基含有樹脂(QP12)、及びスルホン酸基含有樹脂(QP13)等が挙げられる。
フェノール性水酸基含有樹脂(QP11)としては、上記水酸基含有樹脂(QN1)と同じものが使用できる。
Examples of the alkali-soluble resin (QP1) include a phenolic hydroxyl group-containing resin (QP11), a carboxyl group-containing resin (QP12), and a sulfonic acid group-containing resin (QP13).
As the phenolic hydroxyl group-containing resin (QP11), the same one as the above-mentioned hydroxyl group-containing resin (QN1) can be used.
カルボキシル基含有樹脂(QP12)としては、カルボキシル基を有するポリマーであれば特に制限はなく、例えば、カルボキシル基含有ビニルモノマー(Va)と、必要により疎水基含有ビニルモノマー(Vb)とをビニル重合することで得られる。 The carboxyl group-containing resin (QP12) is not particularly limited as long as it is a polymer having a carboxyl group. For example, a carboxyl group-containing vinyl monomer (Va) and, if necessary, a hydrophobic group-containing vinyl monomer (Vb) are vinyl-polymerized. It can be obtained by.
カルボキシル基含有ビニルモノマー(Va)としては、例えば、不飽和モノカルボン酸[(メタ)アクリル酸、クロトン酸および桂皮酸等]、不飽和多価(2~4価)カルボン酸[(無水)マレイン酸、イタコン酸、フマル酸およびシトラコン酸等]、不飽和多価カルボン酸アルキル(炭素数1~10のアルキル基)エステル[マレイン酸モノアルキルエステル、フマル酸モノアルキルエステルおよびシトラコン酸モノアルキルエステル等]、並びにこれらの塩[アルカリ金属塩(ナトリウム塩およびカリウム塩等)、アルカリ土類金属塩(カルシウム塩およびマグネシウム塩等)、アミン塩およびアンモニウム塩等]が挙げられる。
これらのうち重合性、及び入手のしやすさの観点から不飽和モノカルボン酸が好ましく、(メタ)アクリル酸がさらに好ましい。
Examples of the carboxyl group-containing vinyl monomer (Va) include unsaturated monocarboxylic acids [(meth) acrylic acid, crotonic acid, cinnamic acid, etc.] and unsaturated polyvalent (2- to tetravalent) carboxylic acids [(anhydrous) malein. Acid, itaconic acid, fumaric acid, citraconic acid, etc.], unsaturated polyvalent carboxylic acid alkyl (alkyl group having 1 to 10 carbon atoms) ester [maleic acid monoalkyl ester, fumaric acid monoalkyl ester, citraconic acid monoalkyl ester, etc.] ], And these salts [alkali metal salts (sodium salt, potassium salt, etc.), alkaline earth metal salts (calcium salt, magnesium salt, etc.), amine salts, ammonium salts, etc.].
Of these, unsaturated monocarboxylic acids are preferable, and (meth) acrylic acid is more preferable, from the viewpoint of polymerizability and availability.
疎水基含有ビニルモノマー(Vb)としては、(メタ)アクリル酸エステル(Vb1)、及び芳香族炭化水素モノマー(Vb2)等が挙げられる。 Examples of the hydrophobic group-containing vinyl monomer (Vb) include (meth) acrylic acid ester (Vb1) and an aromatic hydrocarbon monomer (Vb2).
(メタ)アクリル酸エステル(Vb1)としては、アルキル基の炭素数1~20のアルキル(メタ)アクリレート[メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレートおよび2-エチルヘキシル(メタ)アクリレート等]および脂環基含有(メタ)アクリレート[ジシクロペンタニル(メタ)アクリレート、シジクロペンテニル(メタ)アクリレートおよびイソボルニル(メタ)アクリレート等]等が挙げられる。 Examples of the (meth) acrylic acid ester (Vb1) include alkyl (meth) acrylates having 1 to 20 carbon atoms of the alkyl group [methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth). ) Acrylate, n-butyl (meth) acrylate, n-hexyl (meth) acrylate and 2-ethylhexyl (meth) acrylate, etc.] and alicyclic group-containing (meth) acrylate [dicyclopentanyl (meth) acrylate, sidiclopentenyl (Meta) acrylate, isobornyl (meth) acrylate, etc.] and the like.
芳香族炭化水素モノマー(Vb2)としては、例えば、スチレン骨格を有する炭化水素モノマー[スチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレンおよびベンジルスチレン等]およびビニルナフタレンが挙げられる。 Examples of the aromatic hydrocarbon monomer (Vb2) include hydrocarbon monomers having a styrene skeleton [styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, Cyclocarbon styrene, benzyl styrene, etc.] and vinyl naphthalene.
カルボキシル基含有樹脂(QP12)における、(Va)/(Vb)の仕込みモノマーモル比は、通常10~100/0~90であり、現像性の観点から10~80/20~90が好ましく、25~85/15~75がさらに好ましい。 The charged monomer molar ratio of (Va) / (Vb) in the carboxyl group-containing resin (QP12) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90 from the viewpoint of developability, and 25 to 90. 85/15 to 75 are even more preferred.
スルホン酸基含有樹脂(QP13)としては、スルホン酸基を有するポリマーであれば特に制限はなく、例えば、スルホン酸基含有ビニルモノマー(Vc)と、必要により疎水基含有ビニルモノマー(Vb)とをビニル重合することで得られる。
疎水基含有ビニルモノマー(Vb)としては、上記と同じものが使用できる。
The sulfonic acid group-containing resin (QP13) is not particularly limited as long as it is a polymer having a sulfonic acid group. For example, a sulfonic acid group-containing vinyl monomer (Vc) and, if necessary, a hydrophobic group-containing vinyl monomer (Vb) can be used. Obtained by vinyl polymerization.
As the hydrophobic group-containing vinyl monomer (Vb), the same ones as described above can be used.
スルホン酸基含有ビニルモノマー(Vc)としては、例えば、ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、α-メチルスチレンスルホン酸、2-(メタ)アクリロイルアミド-2-メチルプロパンスルホン酸およびこれらの塩が挙げられる。塩としてはアルカリ金属(ナトリウムおよびカリウム等)塩、アルカリ土類金属(カルシウムおよびマグネシウム等)塩、第1~3級アミン塩、アンモニウム塩および第4級アンモニウム塩等が挙げられる。 Examples of the sulfonic acid group-containing vinyl monomer (Vc) include vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, α-methylstyrene sulfonic acid, and 2- (meth) acryloylamide-2-methylpropanesulfonic acid. And these salts. Examples of the salt include alkali metal (sodium and potassium etc.) salts, alkaline earth metal (calcium and magnesium etc.) salts, primary to tertiary amine salts, ammonium salts and quaternary ammonium salts.
スルホン酸基含有樹脂(QP13)における、(Vc)/(Vb)の仕込みモノマーモル比は、通常10~100/0~90であり、現像性の観点から10~80/20~90が好ましく、25~85/15~75がさらに好ましい。 The charged monomer molar ratio of (Vc) / (Vb) in the sulfonic acid group-containing resin (QP13) is usually 10 to 100/0 to 90, preferably 10 to 80/20 to 90 from the viewpoint of developability, 25. -85 / 15-75 is more preferable.
アルカリ可溶性樹脂(QP1)のHLB値は、アルカリ可溶性樹脂(QP1)の樹脂骨格によって好ましい範囲が異なるが、4~19が好ましく、5~18がさらに好ましく、6~17が特に好ましい。
HLB値が4以上であれば現像を行う際に、現像性がさらに良好であり、19以下であれば硬化物の耐水性がさらに良好である。
The HLB value of the alkali-soluble resin (QP1) varies in a preferable range depending on the resin skeleton of the alkali-soluble resin (QP1), but is preferably 4 to 19, more preferably 5 to 18, and particularly preferably 6 to 17.
When the HLB value is 4 or more, the developability is further good when developing, and when the HLB value is 19 or less, the water resistance of the cured product is further good.
なお、本発明におけるHLB値は、小田法によるHLB値であり、親水性-疎水性バランス値のことであり、有機化合物の有機性の値と無機性の値との比率から計算することができる。
<HLBの評価方法>
HLB≒10×無機性/有機性
また、無機性の値及び有機性の値は、文献「界面活性剤の合成とその応用」(槇書店発行、小田、寺村著)の501頁;または、「新・界面活性剤入門」(藤本武彦著、三洋化成工業株式会社発行)の198頁に詳しく記載されている。
The HLB value in the present invention is an HLB value obtained by the Oda method, which is a hydrophilic-hydrophobic balance value, and can be calculated from the ratio of the organic value and the inorganic value of the organic compound. ..
<HLB evaluation method>
HLB ≈ 10 × Inorganic / Organic For the values of inorganic and organic, refer to page 501 of the document "Synthesis of Surfactants and Their Applications" (published by Maki Shoten, Oda, Teramura); or " It is described in detail on page 198 of "Introduction to New Surfactants" (written by Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd.).
保護基導入樹脂(QP2)中の酸解離性基としては、置換メチル基、1-置換エチル基、1-分枝アルキル基、シリル基、ゲルミル基、アルコキシカルボニル基、アシル基及び環式酸解離性基等を挙げることができる。これらは1種単独で用いてもよいし、2種以上を組み合わせて使用してもよい。 The acid dissociable group in the protective group-introduced resin (QP2) includes a substituted methyl group, a 1-substituted ethyl group, a 1-branched alkyl group, a silyl group, a gelmil group, an alkoxycarbonyl group, an acyl group and a cyclic acid dissociation. Sexual groups and the like can be mentioned. These may be used alone or in combination of two or more.
置換メチル基としては、例えば、メトキシメチル基、メチルチオメチル基、エトキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、ベンジルオキシメチル基、ベンジルチオメチル基、フェナシル基、ブロモフェナシル基、メトキシフェナシル基、メチルチオフェナシル基、α-メチルフェナシル基、シクロプロピルメチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、ブロモベンジル基、ニトロベンジル基、メトキシベンジル基、メチルチオベンジル基、エトキシベンジル基、エチルチオベンジル基、ピペロニル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、ブトキシカルボニルメチル基、tert-ブトキシカルボニルメチル基が挙げられる。 Examples of the substituted methyl group include a methoxymethyl group, a methylthiomethyl group, an ethoxymethyl group, an ethylthiomethyl group, a methoxyethoxymethyl group, a benzyloxymethyl group, a benzylthiomethyl group, a phenacyl group, a bromophenacyl group, and a methoxyphenacil group. , Methylthiophenacil group, α-methylphenacil group, cyclopropylmethyl group, benzyl group, diphenylmethyl group, triphenylmethyl group, bromobenzyl group, nitrobenzyl group, methoxybenzyl group, methylthiobenzyl group, ethoxybenzyl group, Examples thereof include ethylthiobenzyl group, piperonyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group, propoxycarbonylmethyl group, isopropoxycarbonylmethyl group, butoxycarbonylmethyl group and tert-butoxycarbonylmethyl group.
1-置換エチル基としては、例えば、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、1-エトキシプロピル基、1-プロポキシエチル基、1-シクロヘキシルオキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエチル基、1-シクロプロピルエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、1-メトキシカルボニルエチル基、1-エトキシカルボニルエチル基、1-プロポキシカルボニルエチル基、1-イソプロポキシカルボニルエチル基、1-ブトキシカルボニルエチル基、1-tert-ブトキシカルボニルエチル基が挙げられる。 Examples of the 1-substituted ethyl group include 1-methoxyethyl group, 1-methylthioethyl group, 1,1-dimethoxyethyl group, 1-ethoxyethyl group, 1-ethylthioethyl group and 1,1-diethoxyethyl group. Group, 1-ethoxypropyl group, 1-propoxyethyl group, 1-cyclohexyloxyethyl group, 1-phenoxyethyl group, 1-phenylthioethyl group, 1,1-diphenoxyethyl group, 1-benzyloxyethyl group, 1-benzylthioethyl group, 1-cyclopropylethyl group, 1-phenylethyl group, 1,1-diphenylethyl group, 1-methoxycarbonylethyl group, 1-ethoxycarbonylethyl group, 1-propoxycarbonylethyl group, 1 -Isopropoxycarbonylethyl group, 1-butoxycarbonylethyl group, 1-tert-butoxycarbonylethyl group can be mentioned.
1-分枝アルキル基としては、例えば、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基が挙げられる。 Examples of the 1-branched alkyl group include an isopropyl group, a sec-butyl group, a tert-butyl group, a 1,1-dimethylpropyl group, a 1-methylbutyl group and a 1,1-dimethylbutyl group.
シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、ジエチルメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、ジイソプロピルメチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、ジ-tert-ブチルメチルシリル基、トリ-tert-ブチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリフェニルシリル基等のトリカルビルシリル基が挙げられる。 Examples of the silyl group include a trimethylsilyl group, an ethyldimethylsilyl group, a diethylmethylsilyl group, a triethylsilyl group, an isopropyldimethylsilyl group, a diisopropylmethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group and a di-tert-. Examples thereof include a tricarbylsilyl group such as a butylmethylsilyl group, a tri-tert-butylsilyl group, a dimethylphenylsilyl group, a methyldiphenylsilyl group and a triphenylsilyl group.
ゲルミル基としては、例えば、トリメチルゲルミル基、エチルジメチルゲルミル基、メチルジエチルゲルミル基、トリエチルゲルミル基、イソプロピルジメチルゲルミル基、メチルジイソプロピルゲルミル基、トリイソプロピルゲルミル基、tert-ブチルジメチルゲルミル基、ジ-tert-ブチルメチルゲルミル基、トリ-tert-ブチルゲルミル基、ジメチルフェニルゲルミル基、メチルジフェニルゲルミル基、トリフェニルゲルミル基等のトリカルビルゲルミル基が挙げられる。 Examples of the gel mill group include a trimethyl gel mill group, an ethyl dimethyl gel mill group, a methyl diethyl gel mill group, a triethyl gel mill group, an isopropyl dimethyl gel mill group, a methyl diisopropyl gel mill group, a triisopropyl gel mill group and tert-butyl. Examples thereof include a tricarbylgelmill group such as a dimethylgelmill group, a di-tert-butylmethylgelmill group, a tri-tert-butylgelmill group, a dimethylphenylgelmill group, a methyldiphenylgelmill group and a triphenylgelmill group.
アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基が挙げられる。 Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, and a tert-butoxycarbonyl group.
アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p-トルエンスルホニル基、メシル基が挙げられる。 Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a heptanoyle group, a hexanoyl group, a valeryl group, a pivaloyl group, an isovaleryl group, a lauroyl group, a myritoyl group, a palmitoyl group, a stearoyl group, an oxalyl group, a malonyl group and a succinyl group. Group, glutalyl group, adipoil group, piperoyl group, suberoyl group, azella oil group, sebacyl group, acryloyl group, propioloyl group, methacryloyl group, crotonoyle group, oleoyl group, male oil group, fumaroyl group, mesaconoyl group, camphoroyl group, benzoyl group. , Phthalloyl group, isophthaloyl group, terephthaloyl group, naphthoyl group, toluoil group, hydroatropoil group, atropoil group, cinnamoyl group, floyl group, tenoyl group, nicotinoyle group, isonicotinoyl group, p-toluenesulfonyl group, mesyl group. Be done.
環式酸解離性基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘキセニル基、4-メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3-ブロモテトラヒドロピラニル基、4-メトキシテトラヒドロピラニル基、4-メトキシテトラヒドロチオピラニル基、3-テトラヒドロチオフェン-1,1-ジオキシド基が挙げられる。 Examples of the cyclic acid dissociative group include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexenyl group, a 4-methoxycyclohexyl group, a tetrahydropyranyl group, a tetrahydrofuranyl group, a tetrahydrothiopyranyl group, and a tetrahydrothiofuranyl. Examples thereof include a group, a 3-bromotetrahydropyranyl group, a 4-methoxytetrahydropyranyl group, a 4-methoxytetrahydrothiopyranyl group and a 3-tetrahydrothiophene-1,1-dioxide group.
これらの酸解離性基のうち、tert-ブチル基、ベンジル基、1-メトキシエチル基、1-エトキシエチル基、トリメチルシリル基、tert-ブトキシカルボニル基、tert-ブトキシカルボニルメチル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基及びテトラヒドロチオフラニル基が好ましい。 Among these acid dissociative groups, tert-butyl group, benzyl group, 1-methoxyethyl group, 1-ethoxyethyl group, trimethylsilyl group, tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tetrahydropyranyl group, A tetrahydrofuranyl group, a tetrahydrothiopyranyl group and a tetrahydrothiofuranyl group are preferable.
保護基導入樹脂(QP2)における酸解離性基の導入率{保護基導入樹脂(QP2)中の保護されていない酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合}は、酸解離性基や該基が導入されるアルカリ可溶性樹脂の種類により一概には規定できないが10~100%が好ましく、15~100%がさらに好ましい。 Introduction rate of acid dissociative groups in the protective group-introduced resin (QP2) {Ratio of the number of acid dissociative groups to the total number of unprotected acidic functional groups and acid dissociative groups in the protective group-introduced resin (QP2) } Can not be unconditionally specified depending on the type of acid dissociable group or the alkali-soluble resin into which the group is introduced, but is preferably 10 to 100%, more preferably 15 to 100%.
保護基導入樹脂(QP2)のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量(以下、「Mw」という。)は1,000~150,000が好ましく、3,000~100,000がさらに好ましい。 The polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) measured by gel permeation chromatography (GPC) of the protecting group-introduced resin (QP2) is preferably 1,000 to 150,000, preferably 3,000 to 100, 000 is more preferable.
また、保護基導入樹脂(QP2)のMwとゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算数平均分子量(以下、「Mn」という。)との比(Mw/Mn)は、通常1~10であり、1~5が好ましい。 The ratio (Mw / Mn) of the Mw of the protecting group-introduced resin (QP2) to the polystyrene-equivalent number average molecular weight (hereinafter referred to as “Mn”) measured by gel permeation chromatography (GPC) is usually 1 to 1. It is 10, preferably 1 to 5.
フォトリソグラフィー用樹脂組成物(Q)の固形分の重量に基づく非イオン系光酸発生剤(A)の含有量は、0.001~20重量%が好ましく、0.01~15重量%がさらに好ましく、0.05~7重量%が特に好ましい。
0.001重量%以上であれば紫外線に対する感度がさらに良好に発揮でき、20重量%以下であればアルカリ現像液に対し不溶部分の物性がさらに良好に発揮できる。
The content of the nonionic photoacid generator (A) based on the weight of the solid content of the photolithography resin composition (Q) is preferably 0.001 to 20% by weight, more preferably 0.01 to 15% by weight. It is preferable, and 0.05 to 7% by weight is particularly preferable.
If it is 0.001% by weight or more, the sensitivity to ultraviolet rays can be exhibited more satisfactorily, and if it is 20% by weight or less, the physical properties of the insoluble portion with respect to the alkaline developer can be further exhibited.
本発明のフォトリソグラフィー用樹脂組成物(Q)を用いたレジストは、露光後のパターンの形状や経時変化等を改善する目的で、クエンチャー(酸拡散制御剤)を含有していても良い。クエンチャーとしては、非イオン系光酸発生剤(A)が発生する酸より大きいpKを示す塩基性サイトを持つ化合物であれば特に限定されない。例えば、公知のアミン類(トリペンチルアミン、トリイソプロパノールアミン、ジシクロヘキシルアミン、N,N-ジシクロヘキシルメチルアミン等)、公知のピリジン類(ピリジン、2,6-ルチジン、2,6-ジ-tert-ブチルピリジン、2,6-ジフェニルピリジン等)、公知のアニリン類(2,6-ジイソプロピルアニリン等)、公知のイミダゾール類(2,4,5-トリフェニルイミダゾール、4,5-ジフェニルイミダゾール、2-フェニルイミダゾール等)、及び露光時に分解して弱酸を発生する公知のオニウムと弱酸アニオンとの塩類(安息香酸トリフェニルスルホニウム、サリチル酸トリフェニルスルホニウム、3,5-ビストリフルオロメチル安息香酸トリフェニルスルホニウム、ペンタフルオロ安息香酸ジフェニルヨードニウム、4-フルオロ安息香酸-4-イソブチル-4’-トリルヨードニウム等)が挙げられる。クエンチャーの含有量は、非イオン系光酸発生剤(A)の含有量に依存するが、フォトリソグラフィー用樹脂組成物(Q)の全固形分に対して5重量%以下であり、好ましくは3重量%以下である。5重量%を超えると露光時に発生した酸の有効濃度が減少し、現像後にパターンが得られない問題がある。 The resist using the resin composition for photolithography (Q) of the present invention may contain a quencher (acid diffusion control agent) for the purpose of improving the shape of the pattern after exposure, changes over time, and the like. The quencher is not particularly limited as long as it is a compound having a basic site showing pKa larger than the acid generated by the nonionic photoacid generator (A). For example, known amines (tripentylamine, triisopropanolamine, dicyclohexylamine, N, N-dicyclohexylmethylamine, etc.), known pyridines (pyridine, 2,6-lutidine, 2,6-di-tert-butyl). Pyridine, 2,6-diphenylpyridine, etc.), known anilins (2,6-diisopropylaniline, etc.), known imidazoles (2,4,5-triphenylimidazole, 4,5-diphenylimidazole, 2-phenyl) (Imidazole, etc.), and salts of known onium and weak acid anion that decompose during exposure to generate weak acid (triphenylsulfonium benzoate, triphenylsulfonium salicylate, 3,5-bistrifluoromethyltriphenylsulfonium benzoate, pentafluoro). (Diphenyliodonium benzoate, -4-isobutyl-4'-tolyliodonium 4-fluorobenzoate, etc.) can be mentioned. The content of the quencher depends on the content of the nonionic photoacid generator (A), but is 5% by weight or less, preferably 5% by weight or less, based on the total solid content of the photolithography resin composition (Q). It is 3% by weight or less. If it exceeds 5% by weight, the effective concentration of the acid generated during exposure decreases, and there is a problem that a pattern cannot be obtained after development.
本発明のフォトリソグラフィー用樹脂組成物(Q)を用いたレジストは、例えば、所定の有機溶剤に溶解(無機微粒子を含んだ場合は溶解と分散)した樹脂溶液を、スピンコート、カーテンコート、ロールコート、スプレーコート、スクリーン印刷等公知の方法を用いて基板に塗布後、加熱又は熱風吹き付けにより溶剤を乾燥させることで形成することができる。 The resist using the photolithography resin composition (Q) of the present invention is prepared by, for example, spin-coating, curtain-coating, or rolling a resin solution dissolved in a predetermined organic solvent (dissolving and dispersing when inorganic fine particles are contained). It can be formed by applying to a substrate using a known method such as coating, spray coating, screen printing, and then drying the solvent by heating or hot air blowing.
フォトリソグラフィー用樹脂組成物(Q)を溶解させる有機溶剤(レジスト溶媒)としては、樹脂組成物を溶解させることができ、樹脂溶液をスピンコート等に適用できる物性(粘度等)に調整できるものであれば特に限定されない。例えば、N-メチルピロリドン、DMF、ジメチルスルホキシド、トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン等の公知の溶媒が使用できる。
これらの溶剤のうち、乾燥温度等の観点から、沸点が200℃以下のもの(トルエン、エタノール、シクロヘキサノン、メタノール、メチルエチルケトン、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、アセトン及びキシレン)が好ましく、単独又は2種類以上組み合わせで使用することもできる。
有機溶剤を使用する場合、溶剤の配合量は、特に限定されないが、フォトリソグラフィー用樹脂組成物(Q)の固形分の重量に基づいて、通常30~1,000重量%が好ましく、40~900重量%がさらに好ましく、50~800重量%が特に好ましい。
As the organic solvent (resist solvent) for dissolving the resin composition (Q) for photolithography, the resin composition can be dissolved and the resin solution can be adjusted to have physical properties (viscosity, etc.) applicable to spin coating or the like. If there is, it is not particularly limited. For example, known solvents such as N-methylpyrrolidone, DMF, dimethylsulfoxide, toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene glycol monomethyl ether acetate, acetone and xylene Can be used.
Among these solvents, those having a boiling point of 200 ° C. or lower (toluene, ethanol, cyclohexanone, methanol, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, acetone and xylene) from the viewpoint of drying temperature and the like). Is preferable, and it can be used alone or in combination of two or more.
When an organic solvent is used, the blending amount of the solvent is not particularly limited, but is usually preferably 30 to 1,000% by weight, preferably 40 to 900%, based on the weight of the solid content of the photolithography resin composition (Q). By weight% is more preferred, and 50-800% by weight is particularly preferred.
塗布後の樹脂溶液の乾燥条件は、使用する溶剤により異なるが好ましくは50~200℃で1~30分の範囲で実施され、乾燥後のフォトリソグラフィー用樹脂組成物(Q)の残留溶剤量(重量%)等で適宜決定する。 The drying conditions of the resin solution after coating vary depending on the solvent used, but are preferably carried out at 50 to 200 ° C. for 1 to 30 minutes, and the residual solvent amount of the resin composition (Q) for photolithography after drying (Q). Weight%) etc. will be determined as appropriate.
基板にレジストを形成した後、配線パターン形状の光照射を行う。その後、露光後加熱(PEB)を行った後に、アルカリ現像を行い、配線パターンを形成する。 After forming a resist on the substrate, light irradiation in the shape of a wiring pattern is performed. Then, after exposure and heating (PEB), alkaline development is performed to form a wiring pattern.
光照射する方法として、配線パターンを有するフォトマスクを介して活性光線により、レジストの露光を行う方法が挙げられる。光照射に用いる活性光線としては、本発明の
フォトリソグラフィー用樹脂組成物(Q)中の非イオン系光酸発生剤(A)を分解させることができれば特に制限はない。
活性光線としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハロゲンランプ、電子線照射装置、X線照射装置、レーザー(アルゴンレーザー、アルゴン・フッ素(ArF)エキシマレーザー、クリプトン・フッ素(KrF)エキシマレーザー、色素レーザー、窒素レーザー、LED、ヘリウムカドミウムレーザー等)等がある。これらのうち、好ましくは高圧水銀灯、超高圧水銀灯、LED及びクリプトン・フッ素(KrF)エキシマレーザーである。
Examples of the method of irradiating light include a method of exposing a resist with an active ray through a photomask having a wiring pattern. The active light beam used for light irradiation is not particularly limited as long as the nonionic photoacid generator (A) in the photolithography resin composition (Q) of the present invention can be decomposed.
As active light, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, metal halogen lamp, electron beam irradiator, X-ray irradiator, laser (argon laser, argon / fluorine (ArF) excimer laser, Crypton / fluorine (KrF) excimer laser, dye laser, nitrogen laser, LED, helium cadmium laser, etc.). Of these, high pressure mercury lamps, ultrahigh pressure mercury lamps, LEDs and krypton-fluorine (KrF) excimer lasers are preferable.
露光後加熱(PEB)の温度としては、通常40~200℃であって、50~190℃が好ましく、60~180℃がさらに好ましい。40℃未満では脱保護反応、又は架橋反応が十分にできないため、紫外線照射部と紫外線未照射部の溶解性に差が不足しパターンが形成できず、200℃より高いと生産性が低下する問題がある。
加熱時間としては、通常0.5~120分であり、0.5分未満では時間と温度の制御が困難で、120分より大きいと生産性が低下する問題がある。
The temperature of the post-exposure heating (PEB) is usually 40 to 200 ° C., preferably 50 to 190 ° C., more preferably 60 to 180 ° C. If the temperature is lower than 40 ° C, the deprotection reaction or the cross-linking reaction cannot be sufficiently performed, so that the difference in solubility between the UV-irradiated portion and the UV-non-irradiated portion is insufficient and a pattern cannot be formed. There is.
The heating time is usually 0.5 to 120 minutes, and if it is less than 0.5 minutes, it is difficult to control the time and temperature, and if it is longer than 120 minutes, there is a problem that productivity is lowered.
アルカリ現像する方法としては、アルカリ現像液を用いて配線パターン形状に溶解除去する方法が挙げられる。アルカリ現像液としては、フォトリソグラフィー用樹脂組成物(Q)の紫外線照射部と紫外線未照射部の溶解性に差ができる条件であれば特に制限はない。
アルカリ現像液としては水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム及びテトラメチルアンモニウム塩水溶液等がある。
これらアルカリ現像液は水溶性の有機溶剤を加えてもよい。水溶性の有機溶剤としては、メタノール、エタノール、イソプロピルアルコール、THF、N-メチルピロリドン等がある。
Examples of the method of alkaline development include a method of dissolving and removing the wiring pattern shape using an alkaline developer. The alkaline developer is not particularly limited as long as the solubility of the ultraviolet-irradiated portion and the non-ultraviolet-irradiated portion of the photolithography resin composition (Q) can be different.
Examples of the alkaline developer include an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of sodium hydrogencarbonate and an aqueous solution of tetramethylammonium salt.
A water-soluble organic solvent may be added to these alkaline developers. Examples of the water-soluble organic solvent include methanol, ethanol, isopropyl alcohol, THF, N-methylpyrrolidone and the like.
現像方法としては、アルカリ現像液を用いたディップ方式、シャワー方式、及びスプレー方式があるが、スプレー方式が好ましい。
現像液の温度は、好ましくは25~40℃で使用される。現像時間は、レジストの厚さに応じて適宜決定される。
As a developing method, there are a dip method using an alkaline developer, a shower method, and a spray method, but the spray method is preferable.
The temperature of the developer is preferably 25-40 ° C. The development time is appropriately determined according to the thickness of the resist.
以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified,% indicates weight% and parts indicate parts by weight.
<製造例1>
<9-フルオレノンヒドラゾン[前駆体(P1)]の合成>
9-フルオレノンを原料として、文献(Angew.Chem.,Int.Ed.,2019,58,8762.)に記載の方法に従って前駆体(P1)を得た。
<Manufacturing example 1>
<Synthesis of 9-fluorenone hydrazone [precursor (P1)]>
Using 9-fluorenone as a raw material, a precursor (P1) was obtained according to the method described in the literature (Angew. Chem., Int. Ed., 2019, 58, 8762.).
<製造例2>
<2-ブチル-9-フルオレノンヒドラゾン[前駆体(P2)]の合成>
2-ブロモ-9-フルオレノンを原料に、再表2014/084269に記載の方法と同様にしてアルキル化体を得た。
次いで、得られたアルキル化体を用いて製造例1に記載の方法に従って前駆体(P2)を得た。
<Manufacturing example 2>
<Synthesis of 2-butyl-9-fluorenone hydrazone [precursor (P2)]>
Using 2-bromo-9-fluorenone as a raw material, an alkylated product was obtained in the same manner as in the method shown in Table 2014/084269.
Then, the obtained alkylated product was used to obtain a precursor (P2) according to the method described in Production Example 1.
<製造例3>
<9(10H)-アントラセノンヒドラゾン[前駆体(P3)]の合成>
アントロンを原料に、文献(Chem.Sci.,2011,2,2029.)に記載の方法と同様にして前駆体(P3)を得た。
<Manufacturing example 3>
<Synthesis of 9 (10H) -anthrasenon hydrazone [precursor (P3)]>
Using anthrone as a raw material, a precursor (P3) was obtained in the same manner as described in the literature (Chem. Sci., 2011, 2, 2029.).
<製造例4>
<チオキサントンヒドラゾン[前駆体(P4)]の合成>
チオキサントンを原料として、文献(Angew.Chem.,Int.Ed.,2010,49,6580.)に記載の合成法に従って前駆体(P4)を合成した。
<Manufacturing example 4>
<Synthesis of thioxanthone hydrazone [precursor (P4)]>
Using thioxanthone as a raw material, a precursor (P4) was synthesized according to the synthetic method described in the literature (Angew. Chem., Int. Ed., 2010, 49, 6580.).
<製造例5>
<前駆体(P5)の合成>
製造例4で合成した前駆体(P4)をジクロロメタンに分散し、-78℃に冷却したスラリーにトリエチルアミンを滴下し、5分間攪拌した。次いでペンタフルオロベンゼンスルホン酸クロリドを滴下し1時間攪拌後、0℃まで昇温した。脱イオン水を入れて反応停止後、析出した固体をろ過して減圧乾燥することで下記式の前駆体(P5)を得た。
<Manufacturing example 5>
<Synthesis of precursor (P5)>
The precursor (P4) synthesized in Production Example 4 was dispersed in dichloromethane, triethylamine was added dropwise to the slurry cooled to −78 ° C., and the mixture was stirred for 5 minutes. Then, pentafluorobenzenesulfonic acid chloride was added dropwise, and the mixture was stirred for 1 hour and then heated to 0 ° C. After the reaction was stopped by adding deionized water, the precipitated solid was filtered and dried under reduced pressure to obtain a precursor (P5) of the following formula.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<製造例6>
<前駆体(P6)の合成>
4-ヒドロキシカルバゾールを原料として、文献(J.Photopolym.Sci.Technol.,2018,31,37.)に記載の方法に従ってケトン体を合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P6)を得た。
<Manufacturing example 6>
<Synthesis of precursor (P6)>
Using 4-hydroxycarbazole as a raw material, a ketone body was synthesized according to the method described in the literature (J. Photopolym. Sci. Technol., 2018, 31, 37.).
Then, using the obtained ketone body, a precursor (P6) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
<製造例7>
<前駆体(P7)の合成>
特開2010-024290に記載の方法に従って対応するケトン体を合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P7)を得た。
<Manufacturing example 7>
<Synthesis of precursor (P7)>
The corresponding ketone bodies were synthesized according to the method described in JP-A-2010-024290.
Then, using the obtained ketone body, a precursor (P7) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
<製造例8>
<前駆体(P8)の合成>
6,7-ジメチル-1-テトラロンを原料として、ペンタフルオロベンゼンスルホン酸クロリドを2-ニトロベンゼンスルホニルクロリドとしたこと以外は製造例1次いで製造例5と同様にすることで下記式の前駆体(P8)を得た。
<Manufacturing example 8>
<Synthesis of precursor (P8)>
The precursor of the following formula (P8) was obtained in the same manner as in Production Example 1 and then in Production Example 5 except that the pentafluorobenzenesulfonic acid chloride was changed to 2-nitrobenzenesulfonyl chloride using 6,7-dimethyl-1-tetralone as a raw material. ) Was obtained.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
<製造例9>
<前駆体(P9)の合成>
6-メトキシ-2-ナフタレンプロピオン酸を原料として、文献(Synthesis,2005,1789.)に記載の方法に従って、ケトン体である2,3-ジヒドロ-7-メトキシ-1H-ベンズ[e]インデン-1-オンを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P9)を得た。
<Manufacturing example 9>
<Synthesis of precursor (P9)>
Using 6-methoxy-2-naphthalene propionic acid as a raw material and following the method described in the literature (Synthesis, 2005, 1789.), The ketone body 2,3-dihydro-7-methoxy-1H-benz [e] indene- 1-on was synthesized.
Then, using the obtained ketone body, a precursor (P9) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<製造例10>
<前駆体(P10)の合成>
2-ナフトール及び2-ブロモオクタン酸エチルを原料として、特開2011-209719に記載の方法に従って、ケトン体である2-へキシルナフト[2,1-b]フラン-1(2H)-オンを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P10)を得た。
<Manufacturing example 10>
<Synthesis of precursor (P10)>
Using 2-naphthol and ethyl 2-bromooctanoate as raw materials, 2-hexylnaphtho [2,1-b] furan-1 (2H) -one, which is a ketone body, is synthesized according to the method described in JP-A-2011-209719. did.
Then, using the obtained ketone body, a precursor (P10) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<製造例11>
<前駆体(P11)の合成>
1-ヒドロキシ-2-ナフトエ酸メチル及び2-ブロモプロピオン酸メチルを原料として、文献(Synthetic Communications.,2012,42,989.)に記載の方法に従って、ケトン体である2-メチルナフト[1,2-b]フラン-3(2H)-オンを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P11)を得た。
<Manufacturing example 11>
<Synthesis of precursor (P11)>
2-Methylnaphtho [1, 2] which is a ketone body according to the method described in the literature (Synthetic Communications., 2012, 42, 989.) Using methyl 1-hydroxy-2-naphthoate and methyl 2-bromopropionate as raw materials. -B] Fran-3 (2H) -on was synthesized.
Then, using the obtained ketone body, a precursor (P11) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
<製造例12>
<前駆体(P12)の合成>
ジフェニルスルフィド及びヘプタノイルクロリドを原料に、溶媒をジクロロメタンにしたこと以外は特開2009-242469に記載の方法に従って、ケトン体である1-[4-(フェニルチオ)フェニル]-1-ヘプタノンを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P12)を得た。
<Manufacturing example 12>
<Synthesis of precursor (P12)>
1- [4- (Phenylthio) phenyl] -1-heptanone, which is a ketone body, was synthesized according to the method described in JP-A-2009-242469, except that diphenylsulfide and heptanoyl chloride were used as raw materials and the solvent was dichloromethane. ..
Then, using the obtained ketone body, a precursor (P12) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<製造例13>
<前駆体(P13)の合成>
9-エチルカルバゾールを原料として、特開2009-242469に記載の方法に従って、対応するケトン体を合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P13)を得た。
<Manufacturing example 13>
<Synthesis of precursor (P13)>
Using 9-ethylcarbazole as a raw material, the corresponding ketone body was synthesized according to the method described in JP-A-2009-24469.
Then, using the obtained ketone body, a precursor (P13) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<製造例14>
<前駆体(P14)の合成>
特開2016-113504に記載の方法に従って、2-ベンジル-3,3-ジメチル-3H-インドールを合成し、さらに文献(Chem.Sci.,2016,7.346.)に記載の方法に従って対応するケトン体を合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P14)を得た。
<Manufacturing example 14>
<Synthesis of precursor (P14)>
2-Benzyl-3,3-dimethyl-3H-indole is synthesized according to the method described in JP-A-2016-11354, and further corresponds to the method described in the literature (Chem. Sci., 2016, 7.346.). Ketone bodies were synthesized.
Then, using the obtained ketone body, a precursor (P14) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<製造例15>
<前駆体(P15)の合成>
2-アミノ-4-メトキシフェノール及び2,2-ジブロモアセトフェノン(文献Chem.Asian J.,2012,7,2240.に従って合成)を原料に、文献(J.Org.Chem.,2016,81.51.)に記載の方法に従ってケトン体である2-ベンゾイル-5-メトキシ-1,3-ベンゾオキサゾールを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P15)を得た。
<Manufacturing example 15>
<Synthesis of precursor (P15)>
Using 2-amino-4-methoxyphenol and 2,2-dibromoacetophenone (synthesized according to the literature Chem. Asian J., 2012, 7, 2240.) As raw materials, the literature (J. Org. Chem., 2016, 81.51. The ketone form 2-benzoyl-5-methoxy-1,3-benzoxazole was synthesized according to the method described in (.).
Then, using the obtained ketone body, a precursor (P15) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<製造例16>
<前駆体(P16)の合成>
ベンゾチアゾール及びクロログリオキシル酸エチルを原料に、文献(Synthesis,2011,1633.)に記載の方法に従って対応するケトン体を合成し、さらに製造例1に記載の方法に従って対応するヒドラゾン体を合成した。
次いで、ペンタフルオロベンゼンスルホン酸クロリドをp-トルエンスルホン酸クロリドにしたこと以外は製造例5と同様にすることで下記式の前駆体(P16)を得た。
<Manufacturing example 16>
<Synthesis of precursor (P16)>
Using benzothiazole and ethyl chloroglycyoxylate as raw materials, the corresponding ketone bodies were synthesized according to the method described in the literature (Synthesis, 2011, 1633.), And the corresponding hydrazone bodies were further synthesized according to the method described in Production Example 1.
Next, the precursor (P16) of the following formula was obtained in the same manner as in Production Example 5 except that the pentafluorobenzenesulfonic acid chloride was changed to p-toluenesulfonic acid chloride.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<製造例17>
<前駆体(P17)の合成>
ベンゾチアゾール及び4-シアノベンゾイルクロリドを原料として、文献(Synlett,2013,24,2233.)に記載の方法に従って、ケトン体である4-(2-ベンゾチアゾリルカルボニル)ベンゾニトリルを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P17)を得た。
<Manufacturing example 17>
<Synthesis of precursor (P17)>
4- (2-Benzothiazolylcarbonyl) benzonitrile, which is a ketone body, was synthesized from benzothiazole and 4-cyanobenzoyl chloride as raw materials according to the method described in the literature (Synlett, 2013, 24, 2233.).
Then, using the obtained ketone body, a precursor (P17) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<製造例18>
<前駆体(P18)の合成>
2-アミノベンゼンチオール及び3-(ジメチルアミノ)-1-フェニル-2-プロペン-1-オンを原料として、文献(Green Chem.,2016,18,402.)に記載の方法に従って、ケトン体である1-(2-ベンゾチアゾイル)-2-フェニル-1,2-エタンジオンを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P18)を得た。
<Manufacturing example 18>
<Synthesis of precursor (P18)>
Using 2-aminobenzenethiol and 3- (dimethylamino) -1-phenyl-2-propen-1-one as raw materials, in a ketone form according to the method described in the literature (Green Chem., 2016, 18, 402.). A certain 1- (2-benzothiazoyl) -2-phenyl-1,2-ethandione was synthesized.
Then, using the obtained ketone body, a precursor (P18) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
<製造例19>
<前駆体(P19)の合成>
3-アミノ-2-ナフタレンチオールを原料として、WO2015/087094に記載の方法に従って、ケトン体である2-アセチルナフト[2,3-d]チアゾールを合成した。
次いで、得られたケトン体を用いて製造例1に記載の方法に従って下記式の前駆体(P19)を得た。
<Manufacturing example 19>
<Synthesis of precursor (P19)>
Using 3-amino-2-naphthalenethiol as a raw material, 2-acetylnaphtho [2,3-d] thiazole, which is a ketone body, was synthesized according to the method described in WO2015 / 087094.
Then, using the obtained ketone body, a precursor (P19) of the following formula was obtained according to the method described in Production Example 1.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<実施例1>
<化合物(A1)の合成>
製造例1で合成した前駆体(P1)10部をジクロロメタン350部に分散し0℃に冷却したスラリーに2,6-ジ-tert-ブチルピリジン30部を滴下し、5分間攪拌した。次いでトリフルオロメタンスルホン酸無水物35部を滴下し1時間攪拌した。反応液に脱イオン水を加えて反応を停止し、有機層を脱イオン水で3回洗浄した。有機層を濃縮することで黄色固体の化合物(A1)18部を得た。
<Example 1>
<Synthesis of compound (A1)>
10 parts of the precursor (P1) synthesized in Production Example 1 was dispersed in 350 parts of dichloromethane, 30 parts of 2,6-di-tert-butylpyridine was added dropwise to the slurry cooled to 0 ° C., and the mixture was stirred for 5 minutes. Then, 35 parts of trifluoromethanesulfonic anhydride was added dropwise and stirred for 1 hour. Deionized water was added to the reaction solution to stop the reaction, and the organic layer was washed with deionized water three times. By concentrating the organic layer, 18 parts of the yellow solid compound (A1) was obtained.
<実施例2>
<化合物(A2)の合成>
製造例1で合成した前駆体(P1)を原料に、トリフルオロメタンスルホン酸無水物をノナフルオロブタンスルホン酸無水物72部としたこと以外実施例1と同様にすることで化合物(A2)23部を得た。
<Example 2>
<Synthesis of compound (A2)>
Using the precursor (P1) synthesized in Production Example 1 as a raw material, 23 parts of compound (A2) were prepared in the same manner as in Example 1 except that the trifluoromethanesulfonic anhydride was 72 parts of nonafluorobutanesulfonic anhydride. Got
<実施例3>
<化合物(A3)の合成>
製造例1で合成した前駆体(P1)を原料に、トリフルオロメタンスルホン酸無水物をペンタフルオロベンゼンスルホン酸クロリド30部としたこと以外は実施例1と同様にすることで化合物(A3)20部を得た。
<Example 3>
<Synthesis of compound (A3)>
Using the precursor (P1) synthesized in Production Example 1 as a raw material, 20 parts of compound (A3) was prepared in the same manner as in Example 1 except that the trifluoromethanesulfonic anhydride was made into 30 parts of pentafluorobenzenesulfonic acid chloride. Got
<実施例4>
<化合物(A4)の合成>
製造例1で合成した前駆体(P1)を原料に、トリフルオロメタンスルホン酸無水物をペルフルオロプロパン-1,3-ジスルホニルジフルオライド36部としたこと以外は実施例1と同様にすることで化合物(A4)15部を得た。
<Example 4>
<Synthesis of compound (A4)>
The same as in Example 1 except that the precursor (P1) synthesized in Production Example 1 was used as a raw material and the trifluoromethanesulfonic anhydride was made into 36 parts of perfluoropropane-1,3-disulfonyldifluoride. 15 parts of compound (A4) were obtained.
<実施例5>
<化合物(A5)の合成>
製造例2で合成した前駆体(P2)を原料に、実施例1と同様にすることで化合物(A5)14部を得た。
<Example 5>
<Synthesis of compound (A5)>
Using the precursor (P2) synthesized in Production Example 2 as a raw material, 14 parts of compound (A5) was obtained in the same manner as in Example 1.
<実施例6>
<化合物(A6)の合成>
11H-ベンゾ[b]フルオレン-11-オンを原料に製造例1に記載の方法に従って合成した前駆体を用いたこと以外は、実施例1と同様にすることで下記式の化合物(A6)14部を得た。
<Example 6>
<Synthesis of compound (A6)>
The compound (A6) 14 of the following formula was prepared in the same manner as in Example 1 except that a precursor synthesized from 11H-benzo [b] fluorene-11-one as a raw material according to the method described in Production Example 1 was used. I got a part.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<実施例7>
<化合物(A7)の合成>
製造例3で合成した前駆体(P3)10部をジクロロメタン320部に分散し0℃に冷却したスラリーにN-エチルジイソプロピルアミン19部を滴下し、5分間攪拌した。次いでトリフルオロメタンスルホン酸無水物33部を滴下し1時間攪拌した。反応液に脱イオン水を加えて反応を停止し、有機層を脱イオン水で3回洗浄した。有機層を濃縮することで黄褐色固体の化合物(A7)16部を得た。
<Example 7>
<Synthesis of compound (A7)>
10 parts of the precursor (P3) synthesized in Production Example 3 was dispersed in 320 parts of dichloromethane, and 19 parts of N-ethyldiisopropylamine was added dropwise to the slurry cooled to 0 ° C., and the mixture was stirred for 5 minutes. Then, 33 parts of trifluoromethanesulfonic anhydride was added dropwise and stirred for 1 hour. Deionized water was added to the reaction solution to stop the reaction, and the organic layer was washed with deionized water three times. By concentrating the organic layer, 16 parts of a yellowish brown solid compound (A7) was obtained.
<実施例8~実施例10>
<化合物(A8)~(A10)の合成>
対応する原料から製造例1または3に記載の方法に従って合成した前駆体を用いた以外は、実施例7に記載の合成法と同様にすることで、化合物(A8)~(A10)を合成した。
<Examples 8 to 10>
<Synthesis of compounds (A8) to (A10)>
Compounds (A8) to (A10) were synthesized in the same manner as in Example 7 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 1 or 3 was used. ..
<実施例11>
<化合物(A11)の合成>
製造例4で合成した前駆体(P4)を原料に、実施例7と同様にすることで化合物(A11)14部を得た。
<Example 11>
<Synthesis of compound (A11)>
Using the precursor (P4) synthesized in Production Example 4 as a raw material, 14 parts of compound (A11) was obtained in the same manner as in Example 7.
<実施例12>
<化合物(A12)の合成>
製造例5で合成した前駆体(P5)10部、ジクロロメタンを150部、N-エチルジイソプロピルアミンを4.2部、トリフルオロメタンスルホン酸無水物を7.4部にしたこと以外は実施例7と同様にすることで化合物(A12)10部を得た。
<Example 12>
<Synthesis of compound (A12)>
Example 7 except that the precursor (P5) synthesized in Production Example 5 was 10 parts, dichloromethane was 150 parts, N-ethyldiisopropylamine was 4.2 parts, and trifluoromethanesulfonic anhydride was 7.4 parts. By doing the same, 10 parts of compound (A12) was obtained.
<実施例13及び14>
<化合物(A13)及び(A14)の合成>
対応する原料から製造例4に記載の方法に従って合成した前駆体を用いた以外は、実施例7に記載の合成法と同様にすることで、化合物(A13)及び(A14)を合成した。
<Examples 13 and 14>
<Synthesis of compounds (A13) and (A14)>
Compounds (A13) and (A14) were synthesized in the same manner as in Example 7 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 4 was used.
<実施例15>
<化合物(A15)の合成>
対応する原料(製造例4に記載の方法に従って合成)からペンタフルオロベンゼンスルホン酸クロリドをメタンスルホニルクロリドにして製造例5に記載の方法と同様に合成した前駆体を用いた以外は実施例7と同様にすることで、化合物(A15)10部を得た。
<Example 15>
<Synthesis of compound (A15)>
Example 7 except that a precursor synthesized in the same manner as in Production Example 5 by converting pentafluorobenzenesulfonic acid chloride into methanesulfonyl chloride from the corresponding raw material (synthesized according to the method described in Production Example 4) was used. By doing the same, 10 parts of compound (A15) was obtained.
<実施例16~実施例22>
<化合物(A16)~(A22)の合成>
対応する原料から製造例1または4に記載の方法に従って合成した前駆体を用いた以外は、実施例1または7に記載の合成法と同様にすることで、化合物(A16)~(A22)を合成した。
<Examples 16 to 22>
<Synthesis of compounds (A16) to (A22)>
Compounds (A16) to (A22) were prepared in the same manner as in Example 1 or 7 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 1 or 4 was used. Synthesized.
<実施例23>
<化合物(A23)の合成>
製造例6で合成した前駆体(P6)を原料に、実施例1に記載の合成法と同様にすることで下記式の化合物(A23)10部を得た。
<Example 23>
<Synthesis of compound (A23)>
Using the precursor (P6) synthesized in Production Example 6 as a raw material, 10 parts of the compound (A23) of the following formula was obtained in the same manner as in the synthesis method described in Example 1.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
<実施例24>
<化合物(A24)の合成>
製造例7で合成した前駆体(P7)を原料に、実施例1に記載の合成法と同様にすることで化合物(A24)16部を得た。
<Example 24>
<Synthesis of compound (A24)>
Using the precursor (P7) synthesized in Production Example 7 as a raw material, 16 parts of compound (A24) was obtained in the same manner as in the synthesis method described in Example 1.
<実施例25>
<化合物(A25)の合成>
前駆体(P1)を製造例8で合成した前駆体(P8)10部、ジクロロメタンを180部、2,6-ジ-tert-ブチルピリジンを7.7部、トリフルオロメタンスルホン酸無水物を9.1部にしたこと以外は実施例1と同様にすることで化合物(A25)11部を得た。
<Example 25>
<Synthesis of compound (A25)>
9. 10 parts of the precursor (P8) synthesized in Production Example 8 of the precursor (P1), 180 parts of dichloromethane, 7.7 parts of 2,6-di-tert-butylpyridine, and 9. of trifluoromethanesulfonic anhydride. 11 parts of compound (A25) were obtained in the same manner as in Example 1 except that 1 part was used.
<実施例26及び27>
<化合物(A26)及び(A27)の合成>
対応する原料から製造例1に記載の方法に従って合成した前駆体を用いた以外は実施例1と同様にすることで化合物(A26)及び(A27)を合成した。
<Examples 26 and 27>
<Synthesis of compounds (A26) and (A27)>
Compounds (A26) and (A27) were synthesized in the same manner as in Example 1 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 1 was used.
<実施例28及び29>
<化合物(A28)及び(A29)の合成>
対応する原料から製造例7に記載の方法に従って合成した前駆体を用いた以外は実施例24と同様にすることで化合物(A28)及び(A29)を合成した。
<Examples 28 and 29>
<Synthesis of compounds (A28) and (A29)>
Compounds (A28) and (A29) were synthesized in the same manner as in Example 24 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 7 was used.
<実施例30>
<化合物(A30)の合成>
製造例9で合成した前駆体(P9)を原料に、実施例1に記載の合成法と同様にすることで化合物(A30)15部を得た。
<Example 30>
<Synthesis of compound (A30)>
Using the precursor (P9) synthesized in Production Example 9 as a raw material, 15 parts of compound (A30) was obtained in the same manner as in the synthesis method described in Example 1.
<実施例31>
<化合物(A31)の合成>
対応する原料から製造例7に記載の方法に従って合成した前駆体を原料として、トリフルオロメタンスルホン酸無水物をヘプタデカフルオロオクタンスルホン酸フルオリド61部としたこと以外は実施例1と同様にすることで化合物(A31)35部を得た。
<Example 31>
<Synthesis of compound (A31)>
By using the precursor synthesized from the corresponding raw material according to the method described in Production Example 7 as a raw material and using 61 parts of heptadecafluorooctanesulfonic acid fluoride as the trifluoromethanesulfonic anhydride in the same manner as in Example 1. 35 parts of compound (A31) was obtained.
<実施例32>
<化合物(A32)の合成>
製造例10で合成した前駆体(P10)を原料に、実施例1に記載の合成法と同様にすることで化合物(A32)14部を得た。
<Example 32>
<Synthesis of compound (A32)>
Using the precursor (P10) synthesized in Production Example 10 as a raw material, 14 parts of compound (A32) was obtained in the same manner as in the synthesis method described in Example 1.
<実施例33>
<化合物(A33)の合成>
2-ナフトール及び2-クロロプロピオニルクロリドを用いて製造例10に記載の方法に従って合成した前駆体を原料に用いた以外は実施例32と同様にすることで化合物(A33)16部を得た。
<Example 33>
<Synthesis of compound (A33)>
16 parts of compound (A33) was obtained in the same manner as in Example 32 except that the precursor synthesized according to the method described in Production Example 10 using 2-naphthol and 2-chloropropionyl chloride was used as a raw material.
<実施例34~実施例36>
<化合物(A34)~(A36)の合成>
対応する原料から製造例7に記載の方法に従って合成した前駆体を用いた以外は実施例24と同様にすることで化合物(A34~A36)を合成した。
<Examples 34 to 36>
<Synthesis of compounds (A34) to (A36)>
Compounds (A34 to A36) were synthesized in the same manner as in Example 24 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 7 was used.
<実施例37>
<化合物(A37)の合成>
製造例11で合成した前駆体(P11)を原料に、実施例2に記載の合成法と同様にすることで化合物(A37)22部を得た。
<Example 37>
<Synthesis of compound (A37)>
Using the precursor (P11) synthesized in Production Example 11 as a raw material, 22 parts of compound (A37) was obtained in the same manner as in the synthesis method described in Example 2.
<実施例38>
<化合物(A38)の合成>
2-ブロモプロピオン酸メチルを2-ブロモオクタン酸メチルにして製造例11に記載の方法と同様に合成した前駆体を用いた以外は実施例37と同様にすることで化合物(A38)12部を得た。
<Example 38>
<Synthesis of compound (A38)>
12 parts of compound (A38) were prepared in the same manner as in Example 37 except that a precursor synthesized by converting methyl 2-bromopropionate to methyl 2-bromooctanoate in the same manner as in Production Example 11 was used. Obtained.
<実施例39>
<化合物(A39)の合成>
前駆体(P1)をベンゾフェノンヒドラゾンにしたこと以外は実施例1と同様にすることで化合物(A39)18部を得た。
<Example 39>
<Synthesis of compound (A39)>
18 parts of compound (A39) was obtained in the same manner as in Example 1 except that the precursor (P1) was changed to benzophenone hydrazone.
<実施例40>
<化合物(A40)の合成>
製造例12で合成した前駆体(P12)を原料に、実施例1に記載の合成法と同様にすることで化合物(A40)12部を得た。
<Example 40>
<Synthesis of compound (A40)>
Using the precursor (P12) synthesized in Production Example 12 as a raw material, 12 parts of compound (A40) was obtained by the same procedure as in the synthesis method described in Example 1.
<実施例41>
<化合物(A41)の合成>
製造例13で合成した前駆体(P13)を原料に、実施例1に記載の合成法と同様にすることで下記式の化合物(A41)10部を得た。
<Example 41>
<Synthesis of compound (A41)>
Using the precursor (P13) synthesized in Production Example 13 as a raw material, 10 parts of the compound (A41) of the following formula was obtained in the same manner as in the synthesis method described in Example 1.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<実施例42~実施例44>
<化合物(A42)~(A44)の合成>
対応する原料から製造例1に記載の方法に従って合成した前駆体を用いて、実施例1または2に記載の合成法と同様にすることで化合物(A42~A44)を合成した。
<Example 42 to Example 44>
<Synthesis of compounds (A42) to (A44)>
Compounds (A42 to A44) were synthesized from the corresponding raw materials by using a precursor synthesized according to the method described in Production Example 1 in the same manner as in the synthesis method described in Example 1 or 2.
<実施例45及び46>
<化合物(A45)及び(A46)の合成>
対応する原料から製造例12に記載の方法に従って合成した前駆体を用いた以外は実施例1と同様にすることで化合物(A45)及び(A46)を合成した。
<Examples 45 and 46>
<Synthesis of compounds (A45) and (A46)>
Compounds (A45) and (A46) were synthesized in the same manner as in Example 1 except that the precursor synthesized from the corresponding raw material according to the method described in Production Example 12 was used.
<実施例47>
<化合物(A47)の合成>
製造例14で合成した前駆体(P14)を原料に、実施例1に記載の合成法と同様にすることで化合物(A47)12部を得た。
<Example 47>
<Synthesis of compound (A47)>
Using the precursor (P14) synthesized in Production Example 14 as a raw material, 12 parts of compound (A47) was obtained by the same procedure as in the synthesis method described in Example 1.
<実施例48>
<化合物(A48)の合成>
製造例15で合成した前駆体(P15)を原料に、実施例1に記載の合成法と同様にすることで化合物(A48)13部を得た。
<Example 48>
<Synthesis of compound (A48)>
Using the precursor (P15) synthesized in Production Example 15 as a raw material, 13 parts of compound (A48) was obtained in the same manner as in the synthesis method described in Example 1.
<実施例49>
<化合物(A49)の合成>
前駆体(P1)を製造例16で合成した前駆体(P16)10部、ジクロロメタンを170部、2,6-ジ-tert-ブチルピリジンを7.1部、トリフルオロメタンスルホン酸無水物を8.4部にしたこと以外は実施例1と同様にすることで化合物(A49)11部を得た。
<Example 49>
<Synthesis of compound (A49)>
8. 10 parts of the precursor (P16) synthesized in Production Example 16 of the precursor (P1), 170 parts of dichloromethane, 7.1 parts of 2,6-di-tert-butylpyridine, and 8. trifluoromethanesulfonic anhydride. 11 parts of compound (A49) were obtained in the same manner as in Example 1 except that 4 parts were used.
<実施例50>
<化合物(A50)の合成>
製造例17で合成した前駆体(P17)を原料に、実施例1に記載の合成法と同様にすることで化合物(A50)14部を得た。
<Example 50>
<Synthesis of compound (A50)>
Using the precursor (P17) synthesized in Production Example 17 as a raw material, 14 parts of compound (A50) was obtained in the same manner as in the synthesis method described in Example 1.
<実施例51>
<化合物(A51)の合成>
製造例18で合成した前駆体(P18)を原料に、実施例2に記載の合成法と同様にすることで化合物(A51)18部を得た。
<Example 51>
<Synthesis of compound (A51)>
Using the precursor (P18) synthesized in Production Example 18 as a raw material, 18 parts of compound (A51) was obtained in the same manner as in the synthesis method described in Example 2.
<実施例52>
<化合物(A52)の合成>
ベンゾチアゾールを1-メチルベンゾイミダゾールにして製造例16に記載の方法と同様に合成したヒドラゾン体(前駆体)を用いた以外は実施例1と同様にすることで化合物(A52)15部を得た。
<Example 52>
<Synthesis of compound (A52)>
15 parts of compound (A52) was obtained in the same manner as in Example 1 except that a hydrazone compound (precursor) synthesized in the same manner as in Production Example 16 was used by converting benzothiazole to 1-methylbenzimidazole. rice field.
<実施例53>
<化合物(A53)の合成>
2-アミノ-4-メトキシフェノールを3-アミノ-2-ナフトールにして製造例15に記載の方法と同様に合成した前駆体を用いた以外は実施例1と同様にすることで化合物(A53)12部を得た。
<Example 53>
<Synthesis of compound (A53)>
Compound (A53) was prepared in the same manner as in Example 1 except that a precursor synthesized by converting 2-amino-4-methoxyphenol to 3-amino-2-naphthol in the same manner as in Production Example 15 was used. I got 12 copies.
<実施例54>
<化合物(A54)の合成>
製造例19で合成した前駆体(P19)を原料に、実施例1に記載の合成法と同様にすることで化合物(A54)13部を得た。
<Example 54>
<Synthesis of compound (A54)>
Using the precursor (P19) synthesized in Production Example 19 as a raw material, 13 parts of compound (A54) was obtained in the same manner as in the synthesis method described in Example 1.
 化合物(A1)~(A54)の構造及び性状を表1~表4に記載した。 The structures and properties of the compounds (A1) to (A54) are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
[表3中、R結合位置とは、一般式(1)中、R-CR=Nで表されるRと結合する炭素の結合位置を表す。] [ In Table 3 , the R3 bond position represents the bond position of the carbon bonded to R3 represented by R3 - CR2 = N in the general formula (1). ]
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表1~表4中、Hは水素原子、Meはメチル基、Etはエチル基、Prはプロピル基、Buはブチル基、Hexはヘキシル基、Phはフェニル基、Bzはベンゾイル基を表す。 In Tables 1 to 4, H is a hydrogen atom, Me is a methyl group, Et is an ethyl group, Pr is a propyl group, Bu is a butyl group, Hex is a hexyl group, Ph is a phenyl group, and Bz is a benzoyl group.
<比較例1>
<イオン系光酸発生剤[化合物(A’1)]の合成>
トリフェニルスルホニウムブロミド10部をクロロホルム109部に分散し、ナトリウムビストリフルオロメタンスルホンアミド9.3部と脱イオン水109部を加えた。1時間激しく撹拌した後静置して分離した水層を取り除き、さらに2回有機層を水洗した。有機層を濃縮し減圧乾燥器で乾燥することで比較例のイオン系光酸発生剤[化合物(A’1)]13部を得た。
<Comparative Example 1>
<Synthesis of ionic photoacid generator [Compound (A'1)]>
10 parts of triphenylsulfonium bromide was dispersed in 109 parts of chloroform, and 9.3 parts of sodium bistrifluoromethanesulfonamide and 109 parts of deionized water were added. After stirring vigorously for 1 hour, the mixture was allowed to stand to remove the separated aqueous layer, and the organic layer was washed with water twice. By concentrating the organic layer and drying it in a vacuum dryer, 13 parts of the ionic photoacid generator [Compound (A'1)] of Comparative Example was obtained.
<比較例2>
<非イオン系光酸発生剤[化合物(A’2)]の合成>
1,8-ナフタル酸イミドトリフルオロメタンスルホネート(A’2)(Aldrich社製)をそのまま使用した。
<Comparative Example 2>
<Synthesis of nonionic photoacid generator [Compound (A'2)]>
1,8-Naphthalic acid imide trifluoromethanesulfonate (A'2) (manufactured by Aldrich) was used as it was.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<実施例1~54、比較例1及び2>
実施例1~54で得られた非イオン系光酸発生剤(A1)~(A54)、比較のためのイオン系光酸発生剤(A’1)及び非イオン系光酸発生剤(A’2)のi線感度及びレジスト溶媒溶解性について以下の方法で評価し、その結果を表5及び6に記載した。
<Examples 1 to 54, Comparative Examples 1 and 2>
The nonionic photoacid generators (A1) to (A54) obtained in Examples 1 to 54, the ionic photoacid generator (A'1) and the nonionic photoacid generator (A'1) for comparison. The i-ray sensitivity and resist solvent solubility of 2) were evaluated by the following methods, and the results are shown in Tables 5 and 6.
<i線分解率>
重アセトニトリル100部に合成した実施例及び比較例の化合物0.3部と、標準物質であるパーフルオロベンゼン0.1部とを溶解しNMR管に0.6mL注入し、19F-NMR分析を行った。次いでこのNMR管に紫外線照射装置(株式会社オーク製作所社製、HMW-661F-01)を用いて、L-34(株式会社ケンコー光学製、340nm未満の光をカットするフィルター)フィルターによって波長を限定した紫外光を500mJ・cm露光した。なお積算露光量は365nmの波長を測定した。露光後のNMR管を再度19F-NMRで分析し、露光前後の化合物の19F-NMRシグナルの積分値(標準物質を基準とした)からi線分解率を算出した。同一の露光量で高い分解率が光酸発生剤として優れているのでi線分解率を以下のように評価し、結果を表5及び6に記載した。
i線分解率=(露光前の化合物シグナルの積分値-露光後の化合物シグナルの積分値)/(露光前の化合物シグナルの積分値)
<I-line decomposition rate>
0.3 parts of the compounds of Examples and Comparative Examples synthesized in 100 parts of heavy acetonitrile and 0.1 part of perfluorobenzene as a standard substance were dissolved and 0.6 mL was injected into an NMR tube, and 19 F-NMR analysis was performed. gone. Next, the wavelength of this NMR tube is limited by an ultraviolet irradiation device (manufactured by ORC Manufacturing Co., Ltd., HMW-661F-01) and an L-34 (filter manufactured by Kenko Optics Co., Ltd. that cuts light less than 340 nm). The ultraviolet light was exposed to 500 mJ · cm 2 . The integrated exposure amount was measured at a wavelength of 365 nm. The NMR tube after exposure was analyzed again by 19 F-NMR, and the i-ray resolution rate was calculated from the integrated value of the 19 F-NMR signals of the compounds before and after exposure (based on the standard substance). Since the high decomposition rate is excellent as a photoacid generator at the same exposure amount, the i-ray decomposition rate was evaluated as follows, and the results are shown in Tables 5 and 6.
i-ray decomposition rate = (integral value of compound signal before exposure-integral value of compound signal after exposure) / (integral value of compound signal before exposure)
<溶解性>
実施例及び比較例の化合物を50%濃度になるように汎用レジスト溶媒であるプロピレングリコールモノメチルエーテルアセテートに加え、ボルテクスミキサーで一分間攪拌した後25℃の恒温槽に浸けて一時間静置し、均一に溶解したか目視で確認した。不均一の場合、濃度が5%ずつ減少するようにプロピレングリコールモノメチルエーテルアセテートを追加し、操作を繰り返した。濃度5%以下は1%刻みで繰り返した。初めて均一になった濃度をその化合物のレジスト溶媒への溶解性とした。溶解性が高い方がフォトリソグラフィー用樹脂組成物にしたとき析出や相分離しにくいので優れている。結果を表5及び6に記載した。
<Solubility>
The compounds of Examples and Comparative Examples were added to propylene glycol monomethyl ether acetate as a general-purpose resist solvent so as to have a concentration of 50%, stirred with a vortex mixer for 1 minute, and then immersed in a constant temperature bath at 25 ° C. and allowed to stand for 1 hour. It was visually confirmed whether the mixture was uniformly dissolved. In the case of non-uniformity, propylene glycol monomethyl ether acetate was added so that the concentration decreased by 5%, and the operation was repeated. The concentration of 5% or less was repeated in 1% increments. The first uniform concentration was defined as the solubility of the compound in the resist solvent. The higher the solubility, the more difficult it is to precipitate or phase-separate when the resin composition for photolithography is obtained. The results are shown in Tables 5 and 6.
<ポジ型フォトリソグラフィー用樹脂組成物の評価>
<ポジ型フォトリソグラフィー用樹脂組成物(QP-1)の調製>
下記式で示される樹脂40部、m-クレゾールとp-クレゾールとをホルムアルデヒド及び酸触媒の存在下で付加縮合して得たノボラック樹脂60部と実施例及び比較例の化合物1部とをプロピレングリコールモノメチルエーテルアセトート152部に溶解し、メンブレンフィルター(孔径0.45μm、PTFE膜)を通して濾過することでポジ型フォトリソグラフィー用樹脂組成物(QP-1)を調製した。
<Evaluation of resin composition for positive photolithography>
<Preparation of resin composition for positive photolithography (QP-1)>
40 parts of the resin represented by the following formula, 60 parts of the novolak resin obtained by polycondensing m-cresol and p-cresol in the presence of formaldehyde and an acid catalyst, and 1 part of the compounds of Examples and Comparative Examples are propylene glycol. A resin composition for positive photolithography (QP-1) was prepared by dissolving in 152 parts of monomethyl ether acetate and filtering through a membrane filter (pore size 0.45 μm, PTFE film).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<最低露光量>
シリコンウェハー基板上に,上記で調製したポジ型フォトリソグラフィー用樹脂組成物(QP-1)をスピンコートした後,乾燥して約20μmの膜厚を有するフォトレジスト層を得た。このレジスト層をホットプレートにより130℃で6分間プリベークした。次いでTME-150RSC-12(トプコン社製)を用いてパターン露光(i線)を行い,ホットプレートにより75℃で5分間の露光後加熱(PEB)を行った。その後,2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を用いた浸漬法により,5分間の現像処理を行い,流水洗浄し,窒素でブローして10μmのラインアンドスペース(L&S)パターンを得た。更に,それ以下ではこのパターンの残渣が認められなくなる最低限の露光量、すなわちレジストパターンを形成するのに必要な最低露光量[mJ/cm]を測定した。最低露光量はi線感度に対応し少ない方が優れる。その結果を表5及び6に記載した。
<Minimum exposure>
The resin composition for positive photolithography (QP-1) prepared above was spin-coated on a silicon wafer substrate and then dried to obtain a photoresist layer having a film thickness of about 20 μm. This resist layer was prebaked on a hot plate at 130 ° C. for 6 minutes. Next, pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 75 ° C. for 5 minutes using a hot plate. Then, it was developed by a dipping method using a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 5 minutes, washed with running water, and blown with nitrogen to obtain a 10 μm line-and-space (L & S) pattern. Further, below that, the minimum exposure amount at which the residue of this pattern was not recognized, that is, the minimum exposure amount [mJ / cm 2 ] required to form the resist pattern was measured. It is better that the minimum exposure amount corresponds to the i-line sensitivity and is small. The results are shown in Tables 5 and 6.
<ネガ型フォトリソグラフィー用樹脂組成物の評価>
<ネガ型フォトリソグラフィー用樹脂組成物の調製>
フェノール樹脂(DIC社製、「フェノライトTD431」)75部、メラミン硬化剤(三井サイアナミッド株式会社製、「サイメル300」)25部、合成した実施例及び比較例の化合物1部、及びプロピレングリコールモノメチルエーテルアセテート100部に溶解し、メンブレンフィルター(孔径0.45μm、PTFE膜)を通して濾過することでそれぞれのネガ型フォトリソグラフィー用樹脂組成物を調製した。
<Evaluation of resin composition for negative photolithography>
<Preparation of resin composition for negative photolithography>
75 parts of phenol resin ("Phenolite TD431" manufactured by DIC), 25 parts of melamine curing agent ("Simel 300" manufactured by Mitsui Sianamid Co., Ltd.), 1 part of the synthesized compound of Examples and Comparative Examples, and propylene glycol monomethyl. Each resin composition for negative photolysis was prepared by dissolving it in 100 parts of ether acetate and filtering it through a membrane filter (pore diameter 0.45 μm, PTFE film).
<露光部硬化性>
上記で調製した各々のネガ型フォトリソグラフィー用樹脂組成物を10cm角のガラス基板上にスピンコーターを用いて200rpmで10秒の条件で塗布した。次いで25℃で5分間真空乾燥した後、100℃のホットプレート上で5分間乾燥させることで、膜厚約40μmのレジストを形成した。このレジストに紫外線照射装置(株式会社オーク製作所社製、HMW-661F-01)を用いて、L-34(株式会社ケンコー光学製、340nmローパスフィルター)によって波長を限定した紫外光を所定量全面に露光した。なお積算露光量は365nmの波長を測定した。次いで、150℃の順風乾燥機で10分間露光後加熱(PEB)を行った後、0.5%水酸化カリウム溶液を用いて60秒間浸漬することで現像し、直ちに水洗、乾燥を行った。このレジストの膜厚を形状測定顕微鏡(超深度形状測定顕微鏡UK-8550、株式会社キーエンス製)を用いて測定した。ここで現像前後のレジストの膜厚変化が10%以内となる最低露光量[mJ/cm]を露光部硬化性とした。露光部硬化性はi線感度に対応し、最低露光量が少ないほどi線感度は優れる。その結果を表5及び6に記載した。
<Currability of exposed part>
Each of the negative photolithography resin compositions prepared above was applied onto a 10 cm square glass substrate at 200 rpm for 10 seconds using a spin coater. Then, it was vacuum dried at 25 ° C. for 5 minutes and then dried on a hot plate at 100 ° C. for 5 minutes to form a resist having a film thickness of about 40 μm. Using an ultraviolet irradiation device (HMW-661F-01 manufactured by ORC Manufacturing Co., Ltd.) for this resist, ultraviolet light whose wavelength is limited by L-34 (340 nm low pass filter manufactured by Kenko Optical Co., Ltd.) is applied to the entire surface of a predetermined amount. Exposed. The integrated exposure amount was measured at a wavelength of 365 nm. Then, after exposure for 10 minutes in a normal wind dryer at 150 ° C., heating (PEB) was performed, and then the mixture was developed by immersing it in a 0.5% potassium hydroxide solution for 60 seconds, and immediately washed with water and dried. The film thickness of this resist was measured using a shape measuring microscope (ultra-depth shape measuring microscope UK-8550, manufactured by KEYENCE CORPORATION). Here, the minimum exposure amount [mJ / cm 2 ] at which the change in the film thickness of the resist before and after development is within 10% was defined as the curability of the exposed portion. The curability of the exposed portion corresponds to the i-line sensitivity, and the smaller the minimum exposure amount, the better the i-line sensitivity. The results are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
<実施例55~72、比較例3~8>
非イオン系光酸発生剤(A5、A13、A23、A33、A40及びA50)、比較のためのイオン系光酸発生剤(A’1)及び非イオン系光酸発生剤(A’2)のポジ型フォトリソグラフィー用樹脂組成物(QP-2)~(QP-4)におけるi線感度及びKrF線感度について以下の方法で評価し、その結果を表7及び8に記載した。
<Examples 55 to 72, Comparative Examples 3 to 8>
Non-ionic photoacid generators (A5, A13, A23, A33, A40 and A50), ionic photoacid generators (A'1) and non-ionic photoacid generators (A'2) for comparison. The i-line sensitivity and KrF line sensitivity of the positive photolithography resin compositions (QP-2) to (QP-4) were evaluated by the following methods, and the results are shown in Tables 7 and 8.
<ポジ型フォトリソグラフィー用樹脂組成物の評価>
<ポジ型フォトリソグラフィー用樹脂組成物(QP-2)の調製>
 メタクリル酸tert-ブチル43部、メタクリル酸メトキシポリエチレングリコール30部、メタクリル酸メトキシジエチレングリコール45部、アゾビスイソブチロニトリル0.4部をジオキサン下で反応させて得られた下記構造単位(m≒9)を有する樹脂10部と、ノボラック樹脂20部(m-クレゾールとp-クレゾールとをホルムアルデヒドにより縮合させた共縮合体(m-クレゾール/p-クレゾール=40/60(質量比)、Mw=7,000))と、実施例及び比較例の化合物1部と、N,N-ジシクロヘキシメチルアミン0.03部とをプロピレングリコールモノメチルエーテルアセテート87部に混合して溶解させた後、メンブレンフィルター(孔径0.45μm、PTFE膜)を通して濾過することでポジ型フォトリソグラフィー用樹脂組成物(QP-2)を調製した。
<Evaluation of resin composition for positive photolithography>
<Preparation of resin composition for positive photolithography (QP-2)>
The following structural unit (m≈9) obtained by reacting 43 parts of tert-butyl methacrylate, 30 parts of methoxypolyethylene glycol methacrylate, 45 parts of methoxydiethylene glycol methacrylate, and 0.4 part of azobisisobutyronitrile under dioxane. ) And 20 parts of novolak resin (m-cresol / p-cresol = 40/60 (mass ratio), Mw = 7 by condensing m-cresol and p-cresol with formaldehyde). , 000)), 1 part of the compounds of Examples and Comparative Examples, and 0.03 part of N, N-dicyclohexymethylamine were mixed and dissolved in 87 parts of propylene glycol monomethyl ether acetate, and then a membrane filter. A resin composition for positive photolithography (QP-2) was prepared by filtering through (pore diameter 0.45 μm, PTFE film).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
<最低露光量>
シリコンウェハー上に銅が蒸着された基板に,上記で調製したポジ型フォトリソグラフィー用樹脂組成物(QP-2)をスピンコートした後,乾燥してフォトレジスト層を得た。このレジスト層をホットプレートにより110℃で3分間プリベークし膜厚約5μmの塗膜を得た。次いでTME-150RSC-12(トプコン社製)を用いてパターン露光(i線)を行い,ホットプレートにより90℃で60秒間の露光後加熱(PEB)を行った。その後,2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を用いた浸漬法により,5分間の現像処理を行い,流水洗浄し,窒素でブローして10μmのラインアンドスペース(L&S)パターンを得た。更に,それ以下ではこのパターンの残渣が認められなくなる最低限の露光量、すなわちレジストパターンを形成するのに必要な最低露光量[mJ/cm]を測定した。最低露光量はi線感度に対応し少ない方が優れる。その結果を表7に記載した。
<Minimum exposure>
The resin composition for positive photolithography (QP-2) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 3 minutes to obtain a coating film having a film thickness of about 5 μm. Next, pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 90 ° C. for 60 seconds using a hot plate. Then, it was developed by a dipping method using a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 5 minutes, washed with running water, and blown with nitrogen to obtain a 10 μm line-and-space (L & S) pattern. Further, below that, the minimum exposure amount at which the residue of this pattern was not recognized, that is, the minimum exposure amount [mJ / cm 2 ] required to form the resist pattern was measured. It is better that the minimum exposure amount corresponds to the i-line sensitivity and is small. The results are shown in Table 7.
<ポジ型フォトリソグラフィー用樹脂組成物(QP-3)の調製>
 下記構造単位(構造式中の括弧の右下の数字は、樹脂中の構造単位の含有重量%を表す)を有する樹脂35部と、ポリヒドロキシスチレン樹脂10部(p-ヒドロキシスチレン:スチレン:tert-ブチルアクリレート=12:3:5の共重合体、Mw=1.0×10)と、ノボラック樹脂27.5部(m-クレゾールとp-クレゾールとをホルムアルデヒドにより縮合させた共縮合体(m-クレゾール/p-クレゾール=40/60(質量比)、Mw=5,000))とノボラック樹脂27.5部(m-クレゾールとp-クレゾールとをホルムアルデヒドにより縮合させた共縮合体(m-クレゾール/p-クレゾール=40/60(質量比)、Mw=7,000))と、界面活性剤(BYK310、ビッグケミー社製)0.05部と、実施例及び比較例の化合物1部とを、固形分濃度が40重量%になるように混合溶剤(メトキシブチルアセテート/プロピレングリコールモノメチルエーテルアセテート=60/40(質量比))に混合して溶解させた後、メンブレンフィルター(孔径0.45μm、PTFE膜)を通して濾過することでポジ型フォトリソグラフィー用樹脂組成物(QP-3)を調製した。
<Preparation of resin composition for positive photolithography (QP-3)>
35 parts of the resin having the following structural units (the number in the lower right of the parentheses in the structural formula represents the content weight% of the structural units in the resin) and 10 parts of the polyhydroxystyrene resin (p-hydroxystyrene: styrene: tert). -Butyl acrylate = 12: 3: 5 copolymer, Mw = 1.0 x 10 4 ) and 27.5 parts of novolak resin (m-cresol and p-cresol) fused with formaldehyde (cocondensate) m-cresol / p-cresol = 40/60 (mass ratio), Mw = 5,000)) and 27.5 parts of novolak resin (m-cresol and p-cresol) condensate with formaldehyde (m) -Cresol / p-cresol = 40/60 (mass ratio), Mw = 7,000)), 0.05 part of surfactant (BYK310, manufactured by Big Chemie), and 1 part of the compound of Examples and Comparative Examples. Was mixed and dissolved in a mixed solvent (methoxybutyl acetate / propylene glycol monomethyl ether acetate = 60/40 (mass ratio)) so that the solid content concentration became 40% by weight, and then a membrane filter (pore size 0.45 μm) was dissolved. , PTFE film) to prepare a resin composition for positive photolithography (QP-3).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
<最低露光量>
銅基板上に,上記で調製したポジ型フォトリソグラフィー用樹脂組成物(QP-3)をスピンコートした後、乾燥して膜厚約11μmのフォトレジスト層を得た。このレジスト層をホットプレートにより130℃で5分間プリベークした。次いでTME-150RSC-12(トプコン社製)を用いてパターン露光(i線)を行い,ホットプレートにより90℃で90秒間の露光後加熱(PEB)を行った。その後,2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を基板上に滴下し23℃で30秒間静置する操作を2回行った後,流水洗浄し,窒素でブローして10μmのラインアンドスペース(L&S)パターンを得た。更に,それ以下ではこのパターンの残渣が認められなくなる最低限の露光量、すなわちレジストパターンを形成するのに必要な最低露光量[mJ/cm]を測定した。最低露光量はi線感度に対応し少ない方が優れる。その結果を表7に記載した。
<Minimum exposure>
The resin composition for positive photolithography (QP-3) prepared above was spin-coated on a copper substrate and then dried to obtain a photoresist layer having a film thickness of about 11 μm. This resist layer was prebaked on a hot plate at 130 ° C. for 5 minutes. Next, pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 90 ° C. for 90 seconds using a hot plate. Then, a 2.38 wt% tetramethylammonium hydroxide aqueous solution was dropped onto the substrate and allowed to stand at 23 ° C. for 30 seconds twice, washed with running water, blown with nitrogen, and line-and-space (10 μm). L & S) pattern was obtained. Further, below that, the minimum exposure amount at which the residue of this pattern was not recognized, that is, the minimum exposure amount [mJ / cm 2 ] required to form the resist pattern was measured. It is better that the minimum exposure amount corresponds to the i-line sensitivity and is small. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
<ポジ型フォトリソグラフィー用樹脂組成物(QP-4)の調製>
 下記構造単位(構造式中の括弧の右下の数字は、樹脂中の構造単位の含有重量%を表す)を有する樹脂100部と、実施例及び比較例の化合物1部と、2-フェニルベンズイミダゾール0.2部と、界面活性剤(フタージェントFTX-218、ネオス株式会社製)0.1部とを、プロピレングリコールモノメチルエーテルアセテート230部に混合して溶解させた後、メンブレンフィルター(孔径0.45μm、PTFE膜)を通して濾過することでポジ型フォトリソグラフィー用樹脂組成物(QP-4)を調製した。
<Preparation of resin composition for positive photolithography (QP-4)>
100 parts of the resin having the following structural units (the number in the lower right of the parentheses in the structural formula represents the content weight% of the structural units in the resin), 1 part of the compounds of Examples and Comparative Examples, and 2-phenylbenz. 0.2 parts of imidazole and 0.1 part of a surfactant (Futergent FTX-218, manufactured by Neos Co., Ltd.) were mixed and dissolved in 230 parts of propylene glycol monomethyl ether acetate, and then a membrane filter (pore size 0). A resin composition for positive photolithography (QP-4) was prepared by filtering through a (.45 μm, PTFE film).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<最低露光量>
シリコンウェハー上に銅が蒸着された基板上に,上記で調製したポジ型フォトリソグラフィー用樹脂組成物(QP-4)をスピンコートした後、乾燥してフォトレジスト層を得た。このレジスト層をホットプレートにより110℃で1分間プリベークし膜厚6μmの塗膜を得た。次いでTME-150RSC-12(トプコン社製)を用いてパターン露光(i線)を行い,ホットプレートにより90℃で1分間の露光後加熱(PEB)を行った。その後,2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を用いた浸漬法により,80秒間の現像処理を行い,流水洗浄し,窒素でブローして10μmのラインアンドスペース(L&S)パターンを得た。更に,それ以下ではこのパターンの残渣が認められなくなる最低限の露光量、すなわちレジストパターンを形成するのに必要な最低露光量(i線)[mJ/cm]を測定した。最低露光量はi線感度に対応し少ない方が優れる。その結果を表8に記載した。
<Minimum exposure>
The resin composition for positive photolithography (QP-4) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 1 minute to obtain a coating film having a film thickness of 6 μm. Next, pattern exposure (i-line) was performed using TME-150RSC-12 (manufactured by Topcon), and post-exposure heating (PEB) was performed at 90 ° C. for 1 minute using a hot plate. Then, it was developed by a dipping method using a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 80 seconds, washed with running water, and blown with nitrogen to obtain a 10 μm line-and-space (L & S) pattern. Further, below that, the minimum exposure amount at which the residue of this pattern was not recognized, that is, the minimum exposure amount (i-line) [mJ / cm 2 ] required to form the resist pattern was measured. It is better that the minimum exposure amount corresponds to the i-line sensitivity and is small. The results are shown in Table 8.
<最低露光量(KrF線)>
シリコンウェハー上に銅が蒸着された基板上に,上記で調製したポジ型フォトリソグラフィー用樹脂組成物(QP-4)をスピンコートした後、乾燥してフォトレジスト層を得た。このレジスト層をホットプレートにより110℃で1分間プリベークし膜厚6μmの塗膜を得た。次いでFPA-5000ES3(キヤノン社製)を用いてパターン露光(KrF線)を行い,ホットプレートにより90℃で1分間の露光後加熱(PEB)を行った。その後,2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を用いた浸漬法により,80秒間の現像処理を行い,流水洗浄し,窒素でブローして10μmのラインアンドスペース(L&S)パターンを得た。更に,それ以下ではこのパターンの残渣が認められなくなる最低限の露光量、すなわちレジストパターンを形成するのに必要な最低露光量(KrF線)[mJ/cm]を測定した。最低露光量はKrF線感度に対応し少ない方が優れる。その結果を表8に記載した。
<Minimum exposure (KrF line)>
The resin composition for positive photolithography (QP-4) prepared above was spin-coated on a substrate on which copper was vapor-deposited on a silicon wafer, and then dried to obtain a photoresist layer. This resist layer was prebaked on a hot plate at 110 ° C. for 1 minute to obtain a coating film having a film thickness of 6 μm. Next, pattern exposure (KrF line) was performed using FPA-5000ES3 (manufactured by Canon Inc.), and post-exposure heating (PEB) was performed at 90 ° C. for 1 minute using a hot plate. Then, it was developed by a dipping method using a 2.38 wt% tetramethylammonium hydroxide aqueous solution for 80 seconds, washed with running water, and blown with nitrogen to obtain a 10 μm line-and-space (L & S) pattern. Further, below that, the minimum exposure amount at which the residue of this pattern was not recognized, that is, the minimum exposure amount (KrF line) [mJ / cm 2 ] required to form the resist pattern was measured. The minimum exposure amount corresponds to the KrF line sensitivity, and the smaller the exposure amount, the better. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
表5~表8から明らかなように、本発明の実施例1~72の非イオン系光酸発生剤(A)は、i線照射によって効率よく分解し、またフォトリソグラフィー用樹脂組成物に汎用されるプロピレングリコールモノメチルエーテルアセテートに対して高い溶解性を発揮すると分かるので、本発明の非イオン系光酸発生剤(A)はi線感度及びレジスト溶剤への溶解性に優れた光酸発生剤である。また、本発明の化合物はi線照射によって効率よく超強酸であるビススルホンアミドを発生するので、これを含有するポジ型フォトリソグラフィー用樹脂組成物の最低露光量は少なく、ネガ型フォトリソグラフィー用樹脂組成物の露光部硬化性は良好であり、i線感度に優れる。
また表8から明らかなように、本発明の非イオン系光酸発生剤(A)は、KrF線照射によって効率よく分解し、超強酸であるビススルホンアミドを発生するので、これを含有するポジ型フォトリソグラフィー用樹脂組成物の最低露光量は少なく、KrF線感度に優れるので、近紫外線感度に優れるといえる。
一方でイオン系光酸発生剤である比較例(1、3、5、7)は、発生酸はビススルホンアミドであるがi線分解率、溶解性が悪いためにそれを含有するフォトリソグラフィー用樹脂組成物はi線感度及びKrF線感度が悪い。また非イオン系光酸発生剤である比較例(2、4、6、8)は、i線分解率は同等であるが、発生酸がトリフルオロメタンスルホン酸であるために、それを含有するフォトリソグラフィー用樹脂組成物はi線及びKrF線感度が低く近紫外線感度が悪いと分かる。
As is clear from Tables 5 to 8, the nonionic photoacid generators (A) of Examples 1 to 72 of the present invention are efficiently decomposed by i-ray irradiation, and are widely used in resin compositions for photolithography. Since it is known that the nonionic photoacid generator (A) of the present invention exhibits high solubility in the propylene glycol monomethyl ether acetate produced, the photoacid generator (A) of the present invention has excellent i-ray sensitivity and solubility in a resist solvent. Is. Further, since the compound of the present invention efficiently generates bissulfonamide, which is a superacid, by i-ray irradiation, the minimum exposure amount of the resin composition for positive photolithography containing this is small, and the resin for negative photolithography. The curability of the exposed portion of the composition is good, and the i-ray sensitivity is excellent.
Further, as is clear from Table 8, the nonionic photoacid generator (A) of the present invention is efficiently decomposed by irradiation with KrF rays to generate bissulfonamide, which is a super strong acid. Since the minimum exposure amount of the resin composition for type photolithography is small and the KrF line sensitivity is excellent, it can be said that the resin composition is excellent in near-ultraviolet sensitivity.
On the other hand, in Comparative Example (1, 3, 5, 7), which is an ionic photoacid generator, the generated acid is bissulfonamide, but the i-ray decomposition rate and solubility are poor, so that it is contained in the photolithography. The resin composition has poor i-line sensitivity and KrF line sensitivity. Further, in the comparative example (2, 4, 6, 8) which is a nonionic photoacid generator, the i-ray decomposition rate is the same, but since the generated acid is trifluoromethanesulfonic acid, a photo containing it. It can be seen that the resin composition for lithography has low i-line and KrF line sensitivity and poor near-ultraviolet sensitivity.
本発明の非イオン系光酸発生剤(A)は近紫外線(i線、KrF線)に対し高感度に分解し超強酸を発生するため、半導体の製造に代表される微細加工用のフォトリソグラフィー材料として有用である。 Since the nonionic photoacid generator (A) of the present invention decomposes with high sensitivity to near ultraviolet rays (i-ray, KrF-ray) to generate superstrong acid, photolithography for microfabrication represented by semiconductor production It is useful as a material.

Claims (5)

  1. 下記一般式(1)で表されるスルホンアミド化合物を含有することを特徴とする非イオン系光酸発生剤(A)。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rはフッ素原子、フルオロアルキル基、またはフルオロアリール基であり、Rはフッ素原子、アルキル基、フルオロアルキル基、アリール基、またはフルオロアリール基であり、RとRは互いに結合して環を形成していてもよく、Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、含ヘテロ原子アリール基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アルキルスルホニル基、またはアリールスルホニル基であり、Rは環状アルキル基、アリール基、または含ヘテロ原子アリール基であり、RとRは互いに結合して環(ヘテロ原子を含んでいてもよい)を形成していてもよい。]
    A nonionic photoacid generator (A) containing a sulfonamide compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R f is a fluorine atom, a fluoroalkyl group, or a fluoroaryl group, R 1 is a fluorine atom, an alkyl group, a fluoroalkyl group, an aryl group, or a fluoroaryl group, and R f and R 1 are. R2 may be bonded to each other to form a ring, and R 2 is a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroatomic aryl group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, or an aryl. It is an oxycarbonyl group, an alkylsulfonyl group, or an arylsulfonyl group, R 3 is a cyclic alkyl group, an aryl group, or a heteroatomic aryl group, and R2 and R3 are bonded to each other to form a ring (containing a heteroatom). It may be formed). ]
  2. 一般式(1)中、Rは炭素数1~18のアルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基であり、Rは炭素数3~12の環状アルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基であり、RとRは互いに結合して5~7員環(ヘテロ原子を含んでいてもよい)を形成する請求項1に記載の非イオン系光酸発生剤(A)。 In the general formula (1), R 2 is an alkyl group having 1 to 18 carbon atoms, an aryl group having 6 to 14 carbon atoms, or a heteroatom aryl group having 3 to 14 carbon atoms, and R 3 has 3 to 14 carbon atoms. It is a cyclic alkyl group of 12, an aryl group having 6 to 14 carbon atoms, or a heteroatom-containing aryl group having 3 to 14 carbon atoms, and R2 and R3 are bonded to each other to form a 5- to 7-membered ring (containing a heteroatom). The nonionic photoacid generator (A) according to claim 1, which forms (may be).
  3. 一般式(1)中、Rは炭素数1~18のアルキル基、炭素数2~10のアルケニル基、炭素数6~14のアリール基、炭素数3~14の含ヘテロ原子アリール基、炭素数6~10(カルボニル炭素を含まない)のアリールカルボニル基、炭素数1~10(カルボニル炭素を含まない)のアルコキシカルボニル基、または炭素数1~10のアルキルスルホニル基であり、Rは炭素数3~12の環状アルキル基、炭素数6~14のアリール基、または炭素数3~14の含ヘテロ原子アリール基である請求項1に記載の非イオン系光酸発生剤(A)。 In the general formula (1), R 2 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, a heteroatomic aryl group having 3 to 14 carbon atoms, and carbon. It is an arylcarbonyl group having 6 to 10 (without carbonyl carbon), an alkoxycarbonyl group having 1 to 10 carbons (without carbonyl carbon), or an alkylsulfonyl group having 1 to 10 carbon atoms , and R3 is carbon. The nonionic photoacid generator (A) according to claim 1, which is a cyclic alkyl group having 3 to 12, an aryl group having 6 to 14 carbon atoms, or a heteroatomic aryl group having 3 to 14 carbon atoms.
  4. 一般式(1)中、R及びRが互いに独立にCF、C、C、C、またはCである請求項1~3のいずれかに記載の非イオン系光酸発生剤(A)。 In any of claims 1 to 3, wherein R f and R 1 are independently CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 , or C 6 F 5 in the general formula (1). The non-ionic photoacid generator (A) according to the above.
  5. 請求項1~4のいずれかに記載の非イオン系光酸発生剤(A)を含有するフォトリソグラフィー用樹脂組成物(Q)。 A resin composition for photolithography (Q) containing the nonionic photoacid generator (A) according to any one of claims 1 to 4.
PCT/JP2021/022438 2020-08-06 2021-06-14 Nonionic photoacid generator, and photolithography resin composition WO2022030107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022541135A JPWO2022030107A1 (en) 2020-08-06 2021-06-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133632 2020-08-06
JP2020-133632 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030107A1 true WO2022030107A1 (en) 2022-02-10

Family

ID=80117837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022438 WO2022030107A1 (en) 2020-08-06 2021-06-14 Nonionic photoacid generator, and photolithography resin composition

Country Status (3)

Country Link
JP (1) JPWO2022030107A1 (en)
TW (1) TW202206410A (en)
WO (1) WO2022030107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332811A (en) * 2023-03-08 2023-06-27 南京工业大学 Ditrifluoromethanesulfonyl imide formamidine compound structure and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798485A (en) * 1993-05-26 1995-04-11 Philips Electron Nv Labelling method of material body surface by laser beam
DE4445968A1 (en) * 1994-12-22 1996-06-27 Bayer Ag Use of new and known sulphonyl guanazine cpds.
JP2020501173A (en) * 2017-09-11 2020-01-16 エルジー・ケム・リミテッド Photoacid generator and chemically amplified positive photoresist composition for thick film containing the same
WO2021012264A1 (en) * 2019-07-25 2021-01-28 东莞市东阳光农药研发有限公司 Triazole sulfonamide derivative, preparation method therefor and application thereof
WO2021029158A1 (en) * 2019-08-09 2021-02-18 サンアプロ株式会社 Sulfonamide compound, nonionic photoacid generator, and photolithography resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798485A (en) * 1993-05-26 1995-04-11 Philips Electron Nv Labelling method of material body surface by laser beam
DE4445968A1 (en) * 1994-12-22 1996-06-27 Bayer Ag Use of new and known sulphonyl guanazine cpds.
JP2020501173A (en) * 2017-09-11 2020-01-16 エルジー・ケム・リミテッド Photoacid generator and chemically amplified positive photoresist composition for thick film containing the same
WO2021012264A1 (en) * 2019-07-25 2021-01-28 东莞市东阳光农药研发有限公司 Triazole sulfonamide derivative, preparation method therefor and application thereof
WO2021029158A1 (en) * 2019-08-09 2021-02-18 サンアプロ株式会社 Sulfonamide compound, nonionic photoacid generator, and photolithography resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332811A (en) * 2023-03-08 2023-06-27 南京工业大学 Ditrifluoromethanesulfonyl imide formamidine compound structure and preparation method thereof

Also Published As

Publication number Publication date
JPWO2022030107A1 (en) 2022-02-10
TW202206410A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP2013145384A (en) Radiation-sensitive composition and method for manufacturing low-molecular-weight compound for use therein
TWI788602B (en) Photoacid generator and resin composition for photolithography
WO2014061063A1 (en) Photo-acid generator, and resin composition for photolithography
TWI704136B (en) Non-ionic photoacid generator and resin composition for photolithography
KR20160005011A (en) Methanofullerenes
JP7498179B2 (en) Sulfonamide compound, nonionic photoacid generator, and resin composition for photolithography
JP7022009B2 (en) Photoacid generator and resin composition for photolithography
KR102354196B1 (en) Sulfonate compound, photoacid generator, and photolithographic resin composition
JP4123920B2 (en) Copolymer, polymer mixture and radiation-sensitive resin composition
JP6591699B2 (en) Photoacid generator and resin composition for photolithography
WO2022030107A1 (en) Nonionic photoacid generator, and photolithography resin composition
JP6747990B2 (en) Photo-acid generator and resin composition for photolithography
JP2003215791A (en) Superstrong acid onium salt compound and radiation sensitive resin composition
JP7248956B2 (en) Composition, method for forming resist pattern, and method for forming insulating film
WO2019216174A1 (en) Photoacid generator and photolithographic resin composition
JP2015152669A (en) Photoacid generator and resin composition for photolithography
JP6205285B2 (en) Photoacid generator and resin composition for photolithography
JP6059953B2 (en) Photoacid generator and resin composition for photolithography
WO2015146053A1 (en) Imide sulfonate compound, photoacid generator, and resin composition for photolithography
WO2022168632A1 (en) Photoacid generator and resin composition for photolithography
JP2005314572A (en) Radiosensitive resin composition
JP2003186196A (en) Radiation-sensitive resin composition
JP2005330336A (en) Copolymer and radiation-sensitive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853580

Country of ref document: EP

Kind code of ref document: A1