WO2018110078A1 - Rubber composition for antivibration rubber - Google Patents
Rubber composition for antivibration rubber Download PDFInfo
- Publication number
- WO2018110078A1 WO2018110078A1 PCT/JP2017/037835 JP2017037835W WO2018110078A1 WO 2018110078 A1 WO2018110078 A1 WO 2018110078A1 JP 2017037835 W JP2017037835 W JP 2017037835W WO 2018110078 A1 WO2018110078 A1 WO 2018110078A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- weight
- vibration
- ethylene
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
- F16F15/08—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
Definitions
- the present invention relates to a rubber composition for vibration-proof rubber containing at least an ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber.
- vibration-proof rubber strength characteristics for supporting heavy objects such as engines and vibration-proof performance for absorbing and controlling the vibration are required.
- the anti-vibration rubber is exposed to high temperatures, so it is required to have excellent creep resistance at high temperatures in addition to strength properties and anti-vibration performance.
- EPDM ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber
- Patent Document 1 an object is to produce an anti-vibration rubber having a low dynamic magnification by using EPDM having a high ethylene content and performing organic peroxide crosslinking while blending carbon black.
- Patent Document 1 has a certain effect in reducing the dynamic magnification of the vibration-proof rubber, but the workability of the rubber composition and the creep resistance at high temperatures are high. It has been found that there is no improvement in terms of heat resistance, sag resistance, and strength properties.
- the present invention (1) A rubber composition for vibration-proof rubber having a low dynamic magnification and excellent vibration-proof performance and excellent workability; (2) A rubber composition for anti-vibration rubber, which is a raw material for anti-vibration rubber with low dynamic magnification and excellent anti-vibration performance, and excellent creep resistance at high temperatures, (3) Rubber composition for anti-vibration rubber, which is a raw material of anti-vibration rubber having excellent vibration-proof performance at low dynamic magnification and excellent creep resistance and sag resistance at high temperature, or (4) Low dynamic magnification An object of the present invention is to provide a rubber composition for a vibration-proof rubber having excellent vibration-proof performance and excellent creep resistance and strength properties at high temperatures.
- the present invention contains an ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur, and the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber contains ethylene.
- the rubber component having a content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more and containing the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is 100 parts by weight.
- the present invention relates to a rubber composition for vibration-proof rubber, wherein the amount of silica is 12 to 24 parts by weight and the amount of sulfur is 0.75 to 2.5 parts by weight.
- specific EPDM is blended as a rubber component in the rubber composition for vibration-proof rubber, and silica and a silane coupling agent are added thereto to perform sulfur crosslinking.
- the anti-vibration rubber obtained by vulcanizing the rubber composition for anti-vibration rubber according to the present invention can improve the anti-vibration performance without deteriorating the creep resistance at high temperature.
- the reason why such an effect is obtained is not clear, but by crosslinking the specific EPDM with sulfur, the crosslinking density is increased, and the elastic term is dominant over the viscous term with respect to viscoelasticity when used as a vibration-proof rubber. Become.
- the reduction in dynamic magnification can be achieved, and coupled with the presence of silica, the decrease in elastic modulus at high temperature is suppressed, and the creep resistance at high temperature is improved.
- the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is preferably contained at 100% by weight when the total amount of the rubber component is 100% by weight. This configuration is preferable because the vibration-proof performance of the vibration-proof rubber obtained by vulcanizing the rubber composition can be improved without deteriorating the processability of the rubber composition.
- the rubber composition for vibration-proof rubber it is preferable to further contain 21 to 38 parts by weight of oil when the total amount of rubber components is 100 parts by weight.
- specific EPDM is blended as a rubber component in the rubber composition for vibration-proof rubber, and silica and a silane coupling agent are added thereto to perform sulfur crosslinking.
- the anti-vibration rubber obtained by vulcanizing the rubber composition for anti-vibration rubber can improve the anti-vibration performance without deteriorating the creep resistance at high temperature.
- the rubber composition for an anti-vibration rubber when the total amount of the rubber component including the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is 100 parts by weight, the rubber composition further contains 30 to 60 parts by weight of carbon black. Is preferred. Thereby, the anti-vibration rubber after vulcanization can be further increased in hardness, and the sag resistance can be particularly improved.
- the present invention also provides an ethylene- ⁇ -olefin-nonconjugated diene having an ethylene content of 50% by weight or more and a Mooney viscosity (ML1 + 4 (125 ° C.)) of 65 or more when the total amount of rubber components is 100% by weight.
- the present invention relates to a rubber composition for vibration-proof rubber, characterized in that the copolymer rubber is 100% by weight or more.
- the rubber composition for an anti-vibration rubber when the ethylene content of the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is 60% by weight or more and the total amount of rubber components is 100 parts by weight, silica It is preferable to contain 12 to 24 parts by weight and less than 1.2 parts by weight of sulfur.
- the specific EPDM is blended in an amount of 100% by weight while suppressing the amount of sulfur.
- the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is preferably a non-oil-extended type, and the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber
- the Mooney viscosity (ML1 + 4 (125 ° C.)) is more preferably less than 100. In this case, since the Mooney viscosity of EPDM is kept low even in non-oil-extended, the anti-vibration performance of the obtained anti-vibration rubber is improved while improving the processability of the rubber composition for anti-vibration rubber. Can be improved.
- the rubber composition for vibration-proof rubber according to the present invention contains at least ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber (EPDM).
- EPDM ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber
- EPDM is a ternary copolymer in which an unsaturated bond is introduced by copolymerizing a small amount of a copolymer of ethylene and propylene and a non-conjugated diene monomer, which is a third component as a crosslinking monomer, as a non-conjugated diene.
- examples thereof include dicyclopentadiene, 1,4-hexadiene, 5-ethylidene-2-norbornene and the like.
- EPDM satisfying the following conditions can be used as EPDM.
- the ethylene content is 50% by weight or more, and (2) the Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
- the Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
- it is preferably 60 to 70% by weight, and more preferably 62 to 64% by weight.
- two or more types of EPDM can be used in combination, and the ethylene content of EPDM in that case means an average value in consideration of the amount used.
- the ethylene content of EPDM can be calculated based on ASTM D 3900.
- a preferable lower limit is 68 or more, and a preferable upper limit is less than 100.
- the Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
- EPDM ethylene content of 50% by weight or more and (2) Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more.
- IP5565 ethylene content 50% by weight, ML1 + 4 (125 ° C.) 65, diene content (hereinafter abbreviated as “DN”) 7.5% by weight) and IP4770 (ethylene content 70% by weight, ML1 + 4 (125 C) 70, DN 4.9% by weight).
- DN diene content
- IP4770 ethylene content 70% by weight, ML1 + 4 (125 C) 70, DN 4.9% by weight.
- the combined ratio is a ratio of IP5565 having an ethylene content of 50% by weight and IP4770 having an ethylene content of 70% by weight. 70 to 50/50 is preferable, and 35/65 to 45/55 is preferable.
- EPDM satisfying the following conditions can also be used as EPDM.
- Ethylene content is 60% by weight or more
- Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
- it is preferably 65 to 75% by weight, more preferably 67 to 72% by weight.
- the ethylene content of EPDM can be calculated based on ASTM D 3900.
- a preferable lower limit is 68 or more, and a preferable upper limit is less than 100.
- the Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
- EPDM ethylene content of 60% by weight or more and (4) Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more.
- IP4770 ethylene content 70% by weight, ML1 + 4 (125 ° C.) 70, diene amount (hereinafter abbreviated as “DN”) 4.9% by weight
- DN diene amount
- oil-extended rubber means rubber obtained by adding mineral oil, paraffin oil, naphthenic oil or the like as an oil-extended component to rubber.
- oil-extended 50 type means the total amount of rubber component. Of 100% by weight means that 50% by weight of an oil component such as oil is blended.
- an oil-extended EPDM may be used.
- an EPDM that is a non-oil-extended EPDM and satisfies the above (1) and (2) is used, a rubber composition is used. This is preferable because the processing stability of the rubber and the dynamic ratio of the vulcanized rubber can be improved in a balanced manner.
- non-oil-extended EPDM means “the blending amount of oil components such as oil is 0 wt% when the total amount of rubber components is 100 wt%”.
- the rubber composition for vibration-proof rubber according to the present invention may contain silica, a silane coupling agent, oil and sulfur in addition to the above EPDM.
- silica wet silica, dry silica, sol-gel silica, surface-treated silica or the like used for usual rubber reinforcement is used. Of these, wet silica is preferable. These may be used alone or in combination of two or more.
- the compounding amount of silica in the rubber composition is preferably 12 to 24 parts by weight, and more preferably 12 to 15 parts by weight when the total amount of the rubber component containing EPDM is 100 parts by weight.
- a silane coupling agent may be added to improve the dispersibility of silica in the rubber composition.
- the silane coupling agent include sulfides such as bis- (3- (triethoxysilyl) propyl) tetrasulfide, mercaptos such as 3-mercaptopropyltrimethoxysilane, aminos such as 3-aminopropyltrimethoxysilane, A vinyl-based silane coupling agent such as vinyltriethoxysilane is usually used. These may be used singly or in combination of two or more.
- the compounding amount of the silane coupling agent in the rubber composition part is preferably 8 to 12% by weight when the total amount of silica is 100% by weight.
- carbon black may be blended in the rubber composition.
- examples of carbon black include SAF, ISAF, HAF, FEF, GPF, and SRF. These may be used singly or in combination of two or more.
- the amount of carbon black to be blended is not particularly limited. For example, when the total amount of rubber components including EPDM is 100 parts by weight, about 30 to 90 parts by weight can be exemplified.
- Sulfur may be normal sulfur for rubber, and for example, powdered sulfur, precipitated sulfur, insoluble sulfur, highly dispersible sulfur and the like can be used.
- the sulfur content in the rubber composition for vibration-proof rubber according to the present invention is 0.5 to 2.5 parts by weight with respect to 100 parts by weight of the rubber component. If the sulfur content is less than 0.5 parts by weight, the dynamic ratio of the vulcanized rubber increases and the durability tends to deteriorate. On the other hand, when the sulfur content exceeds 2.5 parts by weight, the heat resistance tends to deteriorate.
- the sulfur content relative to 100 parts by weight of the rubber component is preferably 0.75 to 1.2 parts by weight.
- oil may be blended in the rubber composition.
- the hardness of the vibration-proof rubber finally obtained can be adjusted by appropriately adjusting the blending amount of the oil.
- the oil paraffinic, naphthenic and aromatic types can be used.
- the amount of oil blended can be varied according to the hardness of the finally obtained anti-vibration rubber. For example, when the total amount of rubber components including EPDM is 100 parts by weight, it is appropriately adjusted within the range of 21 to 74 parts by weight. Is possible.
- the rubber composition for anti-vibration rubber according to the present invention together with the rubber component containing the above EPDM, silica, silane coupling agent and sulfur, carbon black, oil, zinc oxide, stearic acid, vulcanization accelerator, vulcanization accelerator Additives usually used in the rubber industry such as auxiliary agents, vulcanization retarders, anti-aging agents, reversion inhibitors, softening agents such as waxes, processing aids, etc., as long as the effects of the present invention are not impaired. It can be blended and used.
- vulcanization accelerator As the vulcanization accelerator, sulfenamide vulcanization accelerator, thiuram vulcanization accelerator, thiazole vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization, which are usually used for rubber vulcanization. Vulcanization accelerators such as accelerators and dithiocarbamate vulcanization accelerators may be used alone or in admixture as appropriate. Considering the rubber physical properties and durability after vulcanization, the blending amount of the vulcanization accelerator with respect to 100 parts by weight of the rubber component is preferably 0.5 to 2 parts by weight.
- an aromatic amine-based anti-aging agent an aromatic amine-based anti-aging agent, an amine-ketone-based anti-aging agent, a dithiocarbamate-based anti-aging agent, a thiourea-based anti-aging agent, etc., which are usually used for rubber in addition to a phenol-based anti-aging agent May be used as needed.
- the blending amount of the anti-aging agent with respect to 100 parts by weight of the rubber component is preferably 0 to 3 parts by weight.
- the rubber composition for vibration-proof rubber comprises carbon rubber, oil, zinc oxide, stearic acid, vulcanization accelerator, vulcanization accelerator together with the rubber component containing the above EPDM, silica, silane coupling agent and sulfur.
- Additives normally used in the rubber industry such as auxiliaries, vulcanization retarders, anti-aging agents, vulcanization reversion inhibitors, softeners such as waxes, processing aids, ordinary ingredients such as Banbury mixers, kneaders, rolls, etc. It can be obtained by kneading using a kneader used in the rubber industry.
- the blending method of each of the above components is not particularly limited, and blending components other than vulcanizing components such as sulfur and a vulcanization accelerator are previously kneaded to form a master batch, and the remaining components are added and further kneaded. Any of a method, a method of adding and kneading each component in an arbitrary order, a method of adding all components simultaneously and kneading may be used.
- anti-vibration rubber includes anti-vibration rubber for automobiles such as engine mounts, torsional dampers, body mounts, cap mounts, member mounts, strut mounts, and muffler mounts, as well as anti-vibration rubbers for railway vehicles and industrial machines. It can be suitably used for vibration isolation and isolation rubber for rubber, building isolation rubber, and isolation rubber bearings, and is particularly useful as a component for automotive vibration isolation rubber that requires heat resistance such as engine mounts. is there.
- the rubber composition for vibration-proof rubber comprises ⁇ 1> an ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur, and the ethylene- ⁇ -olefin-
- the non-conjugated diene copolymer rubber has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more, and the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber is
- the amount of silica is 12 to 24 parts by weight and the amount of sulfur is 0.75 to 2.5 parts by weight.
- the rubber composition for vibration-proof rubber according to the present invention contains ⁇ 2> ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber, silica, silane coupling agent, oil and sulfur, and the ethylene- ⁇
- the olefin-nonconjugated diene copolymer rubber has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more.
- the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber When the total amount of rubber components including the combined rubber is 100 parts by weight, the amount of silica is 12 to 24 parts by weight, the amount of sulfur is 0.75 to 2.5 parts by weight, and the amount of oil is 21 to 21 parts by weight. It is preferably 38 parts by weight.
- the rubber composition for vibration-proof rubber according to the present invention has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) when the total amount of ⁇ 3> rubber components is 100% by weight. It is preferable to contain 100% by weight of an ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber having an A of 65 or more.
- the ethylene content is 60% by weight or more and the Mooney viscosity (ML 1 + 4 (125 ° C.))
- the content of the ethylene- ⁇ -olefin-nonconjugated diene copolymer rubber having a rubber content of 65 or more is 100% by weight and the total amount of the rubber component is 100 parts by weight, 12 to 24 parts by weight of silica and 1% of sulfur It is preferable to contain less than 2 parts by weight.
- EPDM EP33 ethylene content 52% by weight, ML 1 + 4 (125 ° C.) 28, DN 8.1% by weight
- JSR EP57C ethylene content 67% by weight, ML 1 + 4 (125 ° C.) 58, DN 4.5% by weight
- JSR EPT3072 ethylene content 64 wt%, ML 1 + 4 (125 ° C) 51, DN 5.4 wt%, oil extended 40 parts by weight
- EP96 ethylene content 66 wt%, ML 1 + 4 (125 ° C) 61, DN 5.8% by weight, oil extended 50 parts by weight
- IPSR 5565 ethylene content 50% by weight, ML 1 + 4 (125 ° C.) 65, DN 7.5% by weight
- JSR IP4770 ethylene content 70% by weight
- Dow Inc. b) carbon black GPF Tokai carbon Co. SR -HF Nippon Steel & Carbon Co., Ltd.
- Paraffinic oil Paraffinic oil "Process oil PW-380", Idemitsu Kosan Co., Ltd.
- Vulcanization accelerator A) Vulcanization accelerator (CZ) Sulfenamide vulcanization accelerator Agent N-Cyclohexyl-2-benzothiazolylsulfenamide “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
- Vulcanization accelerator (M) Thiazole vulcanization accelerator 2-mercaptobenzothiazole “Noxeller M- P (M) ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
- C Vulcanization accelerator (TT) thiuram compound tetramethylthiuram disulfide“ Noxeller TT ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
- D Vulcanization accelerator (PX) Dithiocarbamate-based zinc N-ethyl-N-phenyldithiocarbamate “Noxeller PX”, manufactured by Ouchi Shinsei Chemical Co., Ltd. i) Vulcanizing agent (R) “Barnock R”, Ouchi Shinsei Chemical Co., Ltd. j) Vulcanization retarder (CTP) “Retarder CTP”, manufactured by Toray Industries, Inc.
- (Dynamic magnification) (Dynamic spring constant (Kd)) / (Static spring constant (Ks))
- the dynamic magnification was calculated based on the calculated dynamic spring constant and static spring constant.
- the dynamic magnification of the Example with respect to each comparative example was evaluated as a dynamic magnification INDEX. Specifically, for Examples 1 to 3, index evaluation is performed when the dynamic magnification of Comparative Example 1 is 100, and for Example 4, index evaluation is performed when the dynamic magnification of Comparative Example 2 is 100.
- Example 5 index evaluation is performed when the dynamic magnification of Comparative Example 3 is 100, for Example 6, index evaluation is performed when the dynamic magnification of Comparative Example 4 is 100, and for Example 7, Index evaluation was performed when the dynamic magnification of Comparative Example 5 was set to 100. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The rubber composition for antivibration rubber according to the present invention contains an ethylene-α-olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur, wherein the ethylene-α-olefin-nonconjugated diene copolymer rubber has an ethylene content of at least 50 weight% and has a Mooney viscosity (ML1+4 (125°C)) of at least 65, and the silica content is 12 to 24 weight parts and the sulfur content is 0.75 to 2.5 weight parts relative to 100 weight parts of the total amount of rubber components including the ethylene-α-olefin-nonconjugated diene copolymer rubber. The ethylene-α-olefin-nonconjugated diene copolymer rubber is preferably contained at 100 weight% relative to 100 weight% of the total amount of the rubber components.
Description
本発明は、少なくともエチレン-α-オレフィン-非共役ジエン共重合体ゴムを含有する防振ゴム用ゴム組成物に関する。
The present invention relates to a rubber composition for vibration-proof rubber containing at least an ethylene-α-olefin-nonconjugated diene copolymer rubber.
防振ゴムに要求される特性として、エンジンなどの重量物を支えるための強度特性、またその振動を吸収し制御する防振性能が要求される。なお、自動車用途などでは、例えばエンジンルームなどに使用される場合、防振ゴムは高温下に曝されるため、強度特性および防振性能に加え、高温時の耐クリープ性に優れることが要求される。
As characteristics required for vibration-proof rubber, strength characteristics for supporting heavy objects such as engines and vibration-proof performance for absorbing and controlling the vibration are required. In automotive applications, for example, when used in an engine room, the anti-vibration rubber is exposed to high temperatures, so it is required to have excellent creep resistance at high temperatures in addition to strength properties and anti-vibration performance. The
一般的に、エチレン-α-オレフィン-非共役ジエン共重合体ゴム(以下、「EPDM」とも言う)は耐熱性に優れたゴム材料と言われており、高温環境下で使用される防振ゴムを構成するゴム材料として使用される場合がある。例えば、下記特許文献1では、エチレン含有量が高いEPDMを使用し、カーボンブラックを配合しつつ有機過酸化物架橋を行うことにより、低動倍率の防振ゴムを製造することを目的としている。
Generally, ethylene-α-olefin-nonconjugated diene copolymer rubber (hereinafter also referred to as “EPDM”) is said to be a rubber material having excellent heat resistance, and is a vibration-proof rubber used in a high temperature environment. May be used as a rubber material that constitutes. For example, in the following Patent Document 1, an object is to produce an anti-vibration rubber having a low dynamic magnification by using EPDM having a high ethylene content and performing organic peroxide crosslinking while blending carbon black.
ただし、本発明者の鋭意検討の結果、上記特許文献1に記載の技術では、防振ゴムの低動倍率化にはある程度の効果があるが、ゴム組成物の加工性、高温時の耐クリープ性および耐へたり性、さらには強度物性の点で改善が見られないことが判明した。本発明は、
(1)低動倍率で防振性能に優れ、かつ加工性に優れた防振ゴム用ゴム組成物、
(2)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性に優れた防振ゴムの原料となる防振ゴム用ゴム組成物、
(3)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性および耐へたり性に優れた防振ゴムの原料となる防振ゴム用ゴム組成物、または
(4)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性および強度物性に優れた防振ゴム用ゴム組成物、を提供することにある。 However, as a result of intensive studies by the inventor, the technique described in Patent Document 1 has a certain effect in reducing the dynamic magnification of the vibration-proof rubber, but the workability of the rubber composition and the creep resistance at high temperatures are high. It has been found that there is no improvement in terms of heat resistance, sag resistance, and strength properties. The present invention
(1) A rubber composition for vibration-proof rubber having a low dynamic magnification and excellent vibration-proof performance and excellent workability;
(2) A rubber composition for anti-vibration rubber, which is a raw material for anti-vibration rubber with low dynamic magnification and excellent anti-vibration performance, and excellent creep resistance at high temperatures,
(3) Rubber composition for anti-vibration rubber, which is a raw material of anti-vibration rubber having excellent vibration-proof performance at low dynamic magnification and excellent creep resistance and sag resistance at high temperature, or (4) Low dynamic magnification An object of the present invention is to provide a rubber composition for a vibration-proof rubber having excellent vibration-proof performance and excellent creep resistance and strength properties at high temperatures.
(1)低動倍率で防振性能に優れ、かつ加工性に優れた防振ゴム用ゴム組成物、
(2)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性に優れた防振ゴムの原料となる防振ゴム用ゴム組成物、
(3)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性および耐へたり性に優れた防振ゴムの原料となる防振ゴム用ゴム組成物、または
(4)低動倍率で防振性能に優れ、かつ高温時の耐クリープ性および強度物性に優れた防振ゴム用ゴム組成物、を提供することにある。 However, as a result of intensive studies by the inventor, the technique described in Patent Document 1 has a certain effect in reducing the dynamic magnification of the vibration-proof rubber, but the workability of the rubber composition and the creep resistance at high temperatures are high. It has been found that there is no improvement in terms of heat resistance, sag resistance, and strength properties. The present invention
(1) A rubber composition for vibration-proof rubber having a low dynamic magnification and excellent vibration-proof performance and excellent workability;
(2) A rubber composition for anti-vibration rubber, which is a raw material for anti-vibration rubber with low dynamic magnification and excellent anti-vibration performance, and excellent creep resistance at high temperatures,
(3) Rubber composition for anti-vibration rubber, which is a raw material of anti-vibration rubber having excellent vibration-proof performance at low dynamic magnification and excellent creep resistance and sag resistance at high temperature, or (4) Low dynamic magnification An object of the present invention is to provide a rubber composition for a vibration-proof rubber having excellent vibration-proof performance and excellent creep resistance and strength properties at high temperatures.
上記課題は、下記構成により解決可能である。すなわち、本発明は、エチレン-α-オレフィン-非共役ジエン共重合体ゴム、シリカ、シランカップリング剤、および硫黄を含有し、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムは、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であり、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを含むゴム成分の全量を100重量部としたとき、シリカの配合量が12~24重量部かつ硫黄の配合量が0.75~2.5重量部であることを特徴とする防振ゴム用ゴム組成物に関する。
The above problem can be solved by the following configuration. That is, the present invention contains an ethylene-α-olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur, and the ethylene-α-olefin-nonconjugated diene copolymer rubber contains ethylene. The rubber component having a content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more and containing the ethylene-α-olefin-nonconjugated diene copolymer rubber is 100 parts by weight. Then, the present invention relates to a rubber composition for vibration-proof rubber, wherein the amount of silica is 12 to 24 parts by weight and the amount of sulfur is 0.75 to 2.5 parts by weight.
上記発明では、防振ゴム用ゴム組成物中にゴム成分として特定のEPDMを配合し、これにシリカおよびシランカップリング剤を加え、硫黄架橋を行う。その結果、本発明に係る防振ゴム用ゴム組成物を加硫した防振ゴムでは、高温時の耐クリープ性を悪化させることなく、防振性能を向上することができる。かかる効果が得られる理由は明らかでは無いが、上記特定のEPDMを硫黄架橋することにより、架橋密度が高まり、防振ゴムとしたときの粘弾性に関し、粘性項に対し、弾性項が支配的となる。その結果、低動倍率化が図れると共に、シリカが存在することと相俟って、高温時の弾性率低下が抑制され、高温時の耐クリープ性が向上することが原因と考えられる。
In the above invention, specific EPDM is blended as a rubber component in the rubber composition for vibration-proof rubber, and silica and a silane coupling agent are added thereto to perform sulfur crosslinking. As a result, the anti-vibration rubber obtained by vulcanizing the rubber composition for anti-vibration rubber according to the present invention can improve the anti-vibration performance without deteriorating the creep resistance at high temperature. The reason why such an effect is obtained is not clear, but by crosslinking the specific EPDM with sulfur, the crosslinking density is increased, and the elastic term is dominant over the viscous term with respect to viscoelasticity when used as a vibration-proof rubber. Become. As a result, the reduction in dynamic magnification can be achieved, and coupled with the presence of silica, the decrease in elastic modulus at high temperature is suppressed, and the creep resistance at high temperature is improved.
上記防振ゴム用ゴム組成物において、ゴム成分の全量を100重量%としたとき、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%含有することが好ましい。かかる構成によれば、ゴム組成物の加工性を悪化させることなく、ゴム組成物を加硫することにより得られる防振ゴムの防振性能を向上することができるため好ましい。
In the rubber composition for an anti-vibration rubber, the ethylene-α-olefin-nonconjugated diene copolymer rubber is preferably contained at 100% by weight when the total amount of the rubber component is 100% by weight. This configuration is preferable because the vibration-proof performance of the vibration-proof rubber obtained by vulcanizing the rubber composition can be improved without deteriorating the processability of the rubber composition.
上記防振ゴム用ゴム組成物において、ゴム成分の全量を100重量部としたとき、さらにオイルを21~38重量部含有することが好ましい。かかる防振ゴム用ゴム組成物は、防振ゴム用ゴム組成物中にゴム成分として特定のEPDMを配合し、これにシリカおよびシランカップリング剤を加え、硫黄架橋を行う。その結果、かかる防振ゴム用ゴム組成物を加硫した防振ゴムでは、高温時の耐クリープ性を悪化させることなく、防振性能を向上することができる。かかる効果が得られる理由は明らかでは無いが、上記特定のEPDMを硫黄架橋することにより、架橋密度が高まり、防振ゴムとしたときの粘弾性に関し、粘性項に対し、弾性項が支配的となる。その結果、低動倍率化が図れると共に、シリカが存在することと相俟って、高温時の弾性率低下が抑制され、高温時の耐クリープ性が向上することが原因と考えられる。さらに、かかる防振ゴム用ゴム組成物中にゴム成分として特定のEPDMを配合しているため、ゴム組成物の加工性を悪化することなく、オイル配合量を低減することができる。その結果、加硫後の防振ゴムを高硬度化し、耐へたり性を向上することができる。
In the rubber composition for vibration-proof rubber, it is preferable to further contain 21 to 38 parts by weight of oil when the total amount of rubber components is 100 parts by weight. In such a rubber composition for vibration-proof rubber, specific EPDM is blended as a rubber component in the rubber composition for vibration-proof rubber, and silica and a silane coupling agent are added thereto to perform sulfur crosslinking. As a result, the anti-vibration rubber obtained by vulcanizing the rubber composition for anti-vibration rubber can improve the anti-vibration performance without deteriorating the creep resistance at high temperature. The reason why such an effect is obtained is not clear, but by crosslinking the specific EPDM with sulfur, the crosslinking density is increased, and the elastic term is dominant over the viscous term with respect to viscoelasticity when used as a vibration-proof rubber. Become. As a result, the reduction in dynamic magnification can be achieved, and coupled with the presence of silica, the decrease in elastic modulus at high temperature is suppressed, and the creep resistance at high temperature is improved. Furthermore, since specific EPDM is blended as a rubber component in the rubber composition for vibration-proof rubber, the amount of oil blended can be reduced without deteriorating the processability of the rubber composition. As a result, the anti-vibration rubber after vulcanization can be increased in hardness and sag resistance can be improved.
上記防振ゴム用ゴム組成物において、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを含むゴム成分の全量を100重量部としたとき、さらにカーボンブラックを30~60重量部含有することが好ましい。これにより、加硫後の防振ゴムをさらに高硬度化し、耐へたり性を特に向上することができる。
In the rubber composition for an anti-vibration rubber, when the total amount of the rubber component including the ethylene-α-olefin-nonconjugated diene copolymer rubber is 100 parts by weight, the rubber composition further contains 30 to 60 parts by weight of carbon black. Is preferred. Thereby, the anti-vibration rubber after vulcanization can be further increased in hardness, and the sag resistance can be particularly improved.
また本発明は、ゴム成分の全量を100重量%としたとき、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であるエチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%以上することを特徴とする防振ゴム用ゴム組成物に関する。
The present invention also provides an ethylene-α-olefin-nonconjugated diene having an ethylene content of 50% by weight or more and a Mooney viscosity (ML1 + 4 (125 ° C.)) of 65 or more when the total amount of rubber components is 100% by weight. The present invention relates to a rubber composition for vibration-proof rubber, characterized in that the copolymer rubber is 100% by weight or more.
上記発明では、上記特定のEPDMを100重量%配合する。その結果、ゴム組成物の加工性を悪化させることなく、ゴム組成物を加硫することにより得られる防振ゴムの防振性能を向上することができる。
In the above invention, 100% by weight of the specific EPDM is blended. As a result, the vibration-proof performance of the vibration-proof rubber obtained by vulcanizing the rubber composition can be improved without deteriorating the processability of the rubber composition.
上記防振ゴム用ゴム組成物において、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムのエチレン含有量が60重量%以上であり、かつゴム成分の全量を100重量部としたとき、シリカを12~24重量部、かつ硫黄を1.2重量部未満含有することが好ましい。かかる防振ゴム用ゴム組成物では、硫黄の配合量を抑えつつ、上記特定のEPDMを100重量%配合する。その結果、ゴム組成物の加工性を悪化させることなく、ゴム組成物を加硫することにより得られる防振ゴムの防振性能を向上させることができるとともに、高温時の耐クリープ性および強度物性も向上させることができる。
In the rubber composition for an anti-vibration rubber, when the ethylene content of the ethylene-α-olefin-nonconjugated diene copolymer rubber is 60% by weight or more and the total amount of rubber components is 100 parts by weight, silica It is preferable to contain 12 to 24 parts by weight and less than 1.2 parts by weight of sulfur. In such a rubber composition for an anti-vibration rubber, the specific EPDM is blended in an amount of 100% by weight while suppressing the amount of sulfur. As a result, the anti-vibration performance of the anti-vibration rubber obtained by vulcanizing the rubber composition can be improved without deteriorating the processability of the rubber composition, and the creep resistance and strength properties at high temperatures can be improved. Can also be improved.
上記防振ゴム用ゴム組成物において、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムが非油展タイプであることが好ましく、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムのムーニー粘度(ML1+4(125℃))が100未満であることがより好ましい。この場合、非油展であってもEPDMのムーニー粘度が低く保たれていることになるため、防振ゴム用ゴム組成物の加工性を向上しつつ、得られる防振ゴムの防振性能を向上させることができる。
In the rubber composition for an anti-vibration rubber, the ethylene-α-olefin-nonconjugated diene copolymer rubber is preferably a non-oil-extended type, and the ethylene-α-olefin-nonconjugated diene copolymer rubber The Mooney viscosity (ML1 + 4 (125 ° C.)) is more preferably less than 100. In this case, since the Mooney viscosity of EPDM is kept low even in non-oil-extended, the anti-vibration performance of the obtained anti-vibration rubber is improved while improving the processability of the rubber composition for anti-vibration rubber. Can be improved.
本発明に係る防振ゴム用ゴム組成物は、少なくともエチレン-α-オレフィン-非共役ジエン共重合体ゴム(EPDM)を含有する。
The rubber composition for vibration-proof rubber according to the present invention contains at least ethylene-α-olefin-nonconjugated diene copolymer rubber (EPDM).
EPDMは、エチレンとプロピレンの共重合体と、架橋モノマーとしての第3成分である非共役ジエンモノマーとを少量で共重合させ不飽和結合を導入した3元共重合体であり、非共役ジエンとしてはジシクロペンタジエン、1,4-ヘキサジエン、5-エチリデン-2-ノルボルネンなどが挙げられる。
EPDM is a ternary copolymer in which an unsaturated bond is introduced by copolymerizing a small amount of a copolymer of ethylene and propylene and a non-conjugated diene monomer, which is a third component as a crosslinking monomer, as a non-conjugated diene. Examples thereof include dicyclopentadiene, 1,4-hexadiene, 5-ethylidene-2-norbornene and the like.
本発明においては、EPDMとして、下記条件を満たすEPDMが使用可能である。
(1)エチレン含有量が50重量%以上、かつ
(2)ムーニー粘度(ML1+4(125℃))が65以上。
(1)に関し、好ましくは60~70重量%であり、さらに好ましくは62~64重量%である。本発明においては2種類以上のEPDMを併用可能であり、その場合のEPDMのエチレン含有量は、使用量を加味した平均値を意味する。なお、EPDMのエチレン含有量は、ASTM D 3900に基づき算出可能である。また、(2)に関し、好ましい下限は68以上であり、好ましい上限は100未満である。2種類以上のEPDMを使用する場合は、同様に使用量を加味した平均値を意味する。なお、EPDMのムーニー粘度(ML1+4(125℃))は、ASTM D 1646に基づき算出可能である。 In the present invention, EPDM satisfying the following conditions can be used as EPDM.
(1) The ethylene content is 50% by weight or more, and (2) the Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
Regarding (1), it is preferably 60 to 70% by weight, and more preferably 62 to 64% by weight. In the present invention, two or more types of EPDM can be used in combination, and the ethylene content of EPDM in that case means an average value in consideration of the amount used. The ethylene content of EPDM can be calculated based on ASTM D 3900. Moreover, regarding (2), a preferable lower limit is 68 or more, and a preferable upper limit is less than 100. When two or more types of EPDM are used, it means an average value in consideration of the amount used. The Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
(1)エチレン含有量が50重量%以上、かつ
(2)ムーニー粘度(ML1+4(125℃))が65以上。
(1)に関し、好ましくは60~70重量%であり、さらに好ましくは62~64重量%である。本発明においては2種類以上のEPDMを併用可能であり、その場合のEPDMのエチレン含有量は、使用量を加味した平均値を意味する。なお、EPDMのエチレン含有量は、ASTM D 3900に基づき算出可能である。また、(2)に関し、好ましい下限は68以上であり、好ましい上限は100未満である。2種類以上のEPDMを使用する場合は、同様に使用量を加味した平均値を意味する。なお、EPDMのムーニー粘度(ML1+4(125℃))は、ASTM D 1646に基づき算出可能である。 In the present invention, EPDM satisfying the following conditions can be used as EPDM.
(1) The ethylene content is 50% by weight or more, and (2) the Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
Regarding (1), it is preferably 60 to 70% by weight, and more preferably 62 to 64% by weight. In the present invention, two or more types of EPDM can be used in combination, and the ethylene content of EPDM in that case means an average value in consideration of the amount used. The ethylene content of EPDM can be calculated based on ASTM D 3900. Moreover, regarding (2), a preferable lower limit is 68 or more, and a preferable upper limit is less than 100. When two or more types of EPDM are used, it means an average value in consideration of the amount used. The Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
本発明において、(1)エチレン含有量が50重量%以上、かつ(2)ムーニー粘度(ML1+4(125℃))が65以上、を満たすEPDMとして市販品も好適に使用可能であり、例えば、Dow社製のIP5565(エチレン含有量50重量%、ML1+4(125℃)65、ジエン量(以下、「DNと略す」)7.5重量%)およびIP4770(エチレン含有量70重量%、ML1+4(125℃)70、DN4.9重量%)が例示可能である。本発明においては、この2種類のEPDMを併用する実施形態も好ましく、その併用比率としては、エチレン含有量50重量%であるIP5565とエチレン含有量70重量%であるIP4770との比率を、30/70~50/50とすることが好ましく、35/65~45/55とすることが好ましい。
In the present invention, commercially available products can also be suitably used as EPDM satisfying (1) ethylene content of 50% by weight or more and (2) Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more. IP5565 (ethylene content 50% by weight, ML1 + 4 (125 ° C.) 65, diene content (hereinafter abbreviated as “DN”) 7.5% by weight) and IP4770 (ethylene content 70% by weight, ML1 + 4 (125 C) 70, DN 4.9% by weight). In the present invention, an embodiment in which these two types of EPDM are used in combination is also preferable, and the combined ratio is a ratio of IP5565 having an ethylene content of 50% by weight and IP4770 having an ethylene content of 70% by weight. 70 to 50/50 is preferable, and 35/65 to 45/55 is preferable.
また、本発明においては、EPDMとして、下記条件を満たすEPDMも使用可能である。
(3)エチレン含有量が60重量%以上、かつ
(4)ムーニー粘度(ML1+4(125℃))が65以上。
(3)に関し、好ましくは65~75重量%であり、さらに好ましくは67~72重量%である。なお、EPDMのエチレン含有量は、ASTM D 3900に基づき算出可能である。また、(4)に関し、好ましい下限は68以上であり、好ましい上限は100未満である。なお、EPDMのムーニー粘度(ML1+4(125℃))は、ASTM D 1646に基づき算出可能である。 In the present invention, EPDM satisfying the following conditions can also be used as EPDM.
(3) Ethylene content is 60% by weight or more, and (4) Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
Regarding (3), it is preferably 65 to 75% by weight, more preferably 67 to 72% by weight. The ethylene content of EPDM can be calculated based on ASTM D 3900. Moreover, regarding (4), a preferable lower limit is 68 or more, and a preferable upper limit is less than 100. The Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
(3)エチレン含有量が60重量%以上、かつ
(4)ムーニー粘度(ML1+4(125℃))が65以上。
(3)に関し、好ましくは65~75重量%であり、さらに好ましくは67~72重量%である。なお、EPDMのエチレン含有量は、ASTM D 3900に基づき算出可能である。また、(4)に関し、好ましい下限は68以上であり、好ましい上限は100未満である。なお、EPDMのムーニー粘度(ML1+4(125℃))は、ASTM D 1646に基づき算出可能である。 In the present invention, EPDM satisfying the following conditions can also be used as EPDM.
(3) Ethylene content is 60% by weight or more, and (4) Mooney viscosity (ML 1 + 4 (125 ° C.)) is 65 or more.
Regarding (3), it is preferably 65 to 75% by weight, more preferably 67 to 72% by weight. The ethylene content of EPDM can be calculated based on ASTM D 3900. Moreover, regarding (4), a preferable lower limit is 68 or more, and a preferable upper limit is less than 100. The Mooney viscosity (ML 1 + 4 (125 ° C.)) of EPDM can be calculated based on ASTM D 1646.
本発明において、(3)エチレン含有量が60重量%以上、かつ(4)ムーニー粘度(ML1+4(125℃))が65以上、を満たすEPDMとして市販品も好適に使用可能であり、例えば、IP4770(エチレン含有量70重量%、ML1+4(125℃)70、ジエン量(以下、「DNと略す」)4.9重量%)が例示可能である。
In the present invention, commercially available products can also be suitably used as EPDM satisfying (3) ethylene content of 60% by weight or more and (4) Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more. IP4770 (ethylene content 70% by weight, ML1 + 4 (125 ° C.) 70, diene amount (hereinafter abbreviated as “DN”) 4.9% by weight) can be exemplified.
本発明において、「油展ゴム」とは、ゴムに油展成分として鉱物オイル、パラフィンオイル、ナフテン系オイルなどを添加したゴムを意味し、例えば「油展50タイプ」とは、ゴム成分の全量を100重量%としたとき、オイルなどの油成分が50重量%配合されたものであることを意味する。本発明においては、EPDMとして油展されたものを使用しても良いが、非油展タイプのEPDMであって、かつ上記(1)および(2)を満たすEPDMを使用する場合、ゴム組成物の加工安定性と加硫ゴムの動倍率とをバランス良く向上できるため好ましい。なお本発明では「非油展タイプのEPDM」とは、「ゴム成分の全量を100重量%としたとき、オイルなどの油成分の配合量が0重量%であることを意味するものとする。
In the present invention, “oil-extended rubber” means rubber obtained by adding mineral oil, paraffin oil, naphthenic oil or the like as an oil-extended component to rubber. For example, “oil-extended 50 type” means the total amount of rubber component. Of 100% by weight means that 50% by weight of an oil component such as oil is blended. In the present invention, an oil-extended EPDM may be used. However, when an EPDM that is a non-oil-extended EPDM and satisfies the above (1) and (2) is used, a rubber composition is used. This is preferable because the processing stability of the rubber and the dynamic ratio of the vulcanized rubber can be improved in a balanced manner. In the present invention, “non-oil-extended EPDM” means “the blending amount of oil components such as oil is 0 wt% when the total amount of rubber components is 100 wt%”.
本発明に係る防振ゴム用ゴム組成物は、上記EPDMに加え、シリカ、シランカップリング剤、オイルおよび硫黄を含有しても良い。
The rubber composition for vibration-proof rubber according to the present invention may contain silica, a silane coupling agent, oil and sulfur in addition to the above EPDM.
シリカは、通常のゴム補強に用いられる湿式シリカ、乾式シリカ、ゾル-ゲルシリカ、表面処理シリカなどが用いられる。なかでも、湿式シリカが好ましい。また、これらは単独で使用してもよく、また2種以上を混合して使用してもよい。ゴム組成物中のシリカの配合量は、EPDMを含むゴム成分の全量を100重量部としたとき、12~24重量部であることが好ましく、12~15重量部であることがより好ましい。
As the silica, wet silica, dry silica, sol-gel silica, surface-treated silica or the like used for usual rubber reinforcement is used. Of these, wet silica is preferable. These may be used alone or in combination of two or more. The compounding amount of silica in the rubber composition is preferably 12 to 24 parts by weight, and more preferably 12 to 15 parts by weight when the total amount of the rubber component containing EPDM is 100 parts by weight.
本発明においては、ゴム組成物中でのシリカの分散性向上のため、シランカップリング剤を配合しても良い。シランカップリング剤としては、ビス-(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系、3-メルカプトプロピルトリメトキシシランなどのメルカプト系、3-アミノプロピルトリメトキシシランなどのアミノ系、ビニルトリエトキシシランなどのビニル系などのシランカップリング剤が通常用いられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。ゴム組成部中でのシランカップリング剤の配合量は、シリカの配合量の全量を100重量%としたとき、8~12重量%とすることが好ましい。
In the present invention, a silane coupling agent may be added to improve the dispersibility of silica in the rubber composition. Examples of the silane coupling agent include sulfides such as bis- (3- (triethoxysilyl) propyl) tetrasulfide, mercaptos such as 3-mercaptopropyltrimethoxysilane, aminos such as 3-aminopropyltrimethoxysilane, A vinyl-based silane coupling agent such as vinyltriethoxysilane is usually used. These may be used singly or in combination of two or more. The compounding amount of the silane coupling agent in the rubber composition part is preferably 8 to 12% by weight when the total amount of silica is 100% by weight.
なお、本発明においてはシリカに加えて、ゴム組成物中にカーボンブラックを配合しても良い。カーボンブラックとしては、例えばSAF、ISAF、HAF、FEF、GPF、SRFなどが用いられる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。カーボンブラックの配合量としては特に限定はないが、例えばEPDMを含むゴム成分の全量を100重量部としたとき、30~90重量部程度が例示可能である。
In the present invention, in addition to silica, carbon black may be blended in the rubber composition. Examples of carbon black include SAF, ISAF, HAF, FEF, GPF, and SRF. These may be used singly or in combination of two or more. The amount of carbon black to be blended is not particularly limited. For example, when the total amount of rubber components including EPDM is 100 parts by weight, about 30 to 90 parts by weight can be exemplified.
硫黄は通常のゴム用硫黄であればよく、例えば粉末硫黄、沈降硫黄、不溶性硫黄、高分散性硫黄などを用いることができる。本発明に係る防振ゴム用ゴム組成物における硫黄の含有量は、ゴム成分100重量部に対して0.5~2.5重量部である。硫黄の含有量が0.5重量部未満であると、加硫ゴムの動倍率が上昇し、かつ耐久性が悪化する傾向がある。一方、硫黄の含有量が2.5重量部を超えると、耐熱性が悪化する傾向がある。加硫ゴムの動倍率、耐熱性および耐久性をさらにバランス良く向上するためには、ゴム成分100重量部に対する硫黄の含有量を0.75~1.2重量部とすることが好ましい。
Sulfur may be normal sulfur for rubber, and for example, powdered sulfur, precipitated sulfur, insoluble sulfur, highly dispersible sulfur and the like can be used. The sulfur content in the rubber composition for vibration-proof rubber according to the present invention is 0.5 to 2.5 parts by weight with respect to 100 parts by weight of the rubber component. If the sulfur content is less than 0.5 parts by weight, the dynamic ratio of the vulcanized rubber increases and the durability tends to deteriorate. On the other hand, when the sulfur content exceeds 2.5 parts by weight, the heat resistance tends to deteriorate. In order to further improve the dynamic magnification, heat resistance, and durability of the vulcanized rubber in a well-balanced manner, the sulfur content relative to 100 parts by weight of the rubber component is preferably 0.75 to 1.2 parts by weight.
本発明においては、ゴム組成物中にオイルを配合しても良い。オイルの配合量を適宜調整することで、最終的に得られる防振ゴムの硬度を調整することができる。オイルとしては、パラフィン系、ナフテン系、芳香族系が使用可能である。オイルの配合量は最終的に得られる防振ゴムの硬度に応じて変量可能であり、例えばEPDMを含むゴム成分の全量を100重量部としたとき、21~74重量部の範囲内で適宜調整可能である。
In the present invention, oil may be blended in the rubber composition. The hardness of the vibration-proof rubber finally obtained can be adjusted by appropriately adjusting the blending amount of the oil. As the oil, paraffinic, naphthenic and aromatic types can be used. The amount of oil blended can be varied according to the hardness of the finally obtained anti-vibration rubber. For example, when the total amount of rubber components including EPDM is 100 parts by weight, it is appropriately adjusted within the range of 21 to 74 parts by weight. Is possible.
本発明に係る防振ゴム用ゴム組成物は、上記EPDMを含有するゴム成分とともに、シリカ、シランカップリング剤および硫黄、カーボンブラック、オイル、酸化亜鉛、ステアリン酸、加硫促進剤、加硫促進助剤、加硫遅延剤、老化防止剤、加硫戻り抑制剤、ワックスなどの軟化剤、加工助剤などの通常ゴム工業で使用される配合剤を、本発明の効果を損なわない範囲において適宜配合し用いることができる。
The rubber composition for anti-vibration rubber according to the present invention, together with the rubber component containing the above EPDM, silica, silane coupling agent and sulfur, carbon black, oil, zinc oxide, stearic acid, vulcanization accelerator, vulcanization accelerator Additives usually used in the rubber industry such as auxiliary agents, vulcanization retarders, anti-aging agents, reversion inhibitors, softening agents such as waxes, processing aids, etc., as long as the effects of the present invention are not impaired. It can be blended and used.
加硫促進剤としては、ゴム加硫用として通常用いられる、スルフェンアミド系加硫促進剤、チウラム系加硫促進剤、チアゾール系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤などの加硫促進剤を単独、または適宜混合して使用しても良い。加硫後のゴム物性や耐久性などを考慮した場合、ゴム成分100重量部に対する加硫促進剤の配合量は、0.5~2重量部が好ましい。
As the vulcanization accelerator, sulfenamide vulcanization accelerator, thiuram vulcanization accelerator, thiazole vulcanization accelerator, thiourea vulcanization accelerator, guanidine vulcanization, which are usually used for rubber vulcanization. Vulcanization accelerators such as accelerators and dithiocarbamate vulcanization accelerators may be used alone or in admixture as appropriate. Considering the rubber physical properties and durability after vulcanization, the blending amount of the vulcanization accelerator with respect to 100 parts by weight of the rubber component is preferably 0.5 to 2 parts by weight.
老化防止剤としては、フェノール系老化防止剤以外にゴム用として通常用いられる、芳香族アミン系老化防止剤、アミン-ケトン系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオウレア系老化防止剤などを必要に応じて使用しても良い。ゴム成分100重量部に対する老化防止剤の配合量は、0~3重量部が好ましい。
As an anti-aging agent, an aromatic amine-based anti-aging agent, an amine-ketone-based anti-aging agent, a dithiocarbamate-based anti-aging agent, a thiourea-based anti-aging agent, etc., which are usually used for rubber in addition to a phenol-based anti-aging agent May be used as needed. The blending amount of the anti-aging agent with respect to 100 parts by weight of the rubber component is preferably 0 to 3 parts by weight.
本発明に係る防振ゴム用ゴム組成物は、上記EPDMを含有するゴム成分、シリカ、シランカップリング剤および硫黄とともに、カーボンブラック、オイル、酸化亜鉛、ステアリン酸、加硫促進剤、加硫促進助剤、加硫遅延剤、老化防止剤、加硫戻り抑制剤、ワックスなどの軟化剤、加工助剤などの通常ゴム工業で使用される配合剤を、バンバリーミキサー、ニーダー、ロールなどの通常のゴム工業において使用される混練機を用いて混練りすることにより得られる。
The rubber composition for vibration-proof rubber according to the present invention comprises carbon rubber, oil, zinc oxide, stearic acid, vulcanization accelerator, vulcanization accelerator together with the rubber component containing the above EPDM, silica, silane coupling agent and sulfur. Additives normally used in the rubber industry such as auxiliaries, vulcanization retarders, anti-aging agents, vulcanization reversion inhibitors, softeners such as waxes, processing aids, ordinary ingredients such as Banbury mixers, kneaders, rolls, etc. It can be obtained by kneading using a kneader used in the rubber industry.
また、上記各成分の配合方法は特に限定されず、硫黄、および加硫促進剤などの加硫系成分以外の配合成分を予め混練してマスターバッチとし、残りの成分を添加してさらに混練する方法、各成分を任意の順序で添加し混練する方法、全成分を同時に添加して混練する方法などのいずれでもよい。
Moreover, the blending method of each of the above components is not particularly limited, and blending components other than vulcanizing components such as sulfur and a vulcanization accelerator are previously kneaded to form a master batch, and the remaining components are added and further kneaded. Any of a method, a method of adding and kneading each component in an arbitrary order, a method of adding all components simultaneously and kneading may be used.
上記各成分を混練し、成形加工した後、加硫を行うことで、耐熱性と耐久性との両方をバランス良く向上した防振ゴムを得ることができる。かかる防振ゴムは、エンジンマウント、トーショナルダンパー、ボディマウント、キャップマウント、メンバーマウント、ストラットマウント、マフラーマウントなどの自動車用防振ゴムを始めとして、鉄道車両用防振ゴム、産業機械用防振ゴム、建築用免震ゴム、免震ゴム支承などの防振、免震ゴムに好適に用いることができ、特にエンジンマウントなどの耐熱性を必要とする自動車用防振ゴムの構成部材として有用である。
The above-mentioned components are kneaded, molded, and then vulcanized to obtain a vibration-proof rubber that improves both heat resistance and durability in a well-balanced manner. Such anti-vibration rubber includes anti-vibration rubber for automobiles such as engine mounts, torsional dampers, body mounts, cap mounts, member mounts, strut mounts, and muffler mounts, as well as anti-vibration rubbers for railway vehicles and industrial machines. It can be suitably used for vibration isolation and isolation rubber for rubber, building isolation rubber, and isolation rubber bearings, and is particularly useful as a component for automotive vibration isolation rubber that requires heat resistance such as engine mounts. is there.
本発明に係る防振ゴム用ゴム組成物は、<1>エチレン-α-オレフィン-非共役ジエン共重合体ゴム、シリカ、シランカップリング剤、および硫黄を含有し、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムは、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であり、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを含むゴム成分の全量を100重量部としたとき、シリカの配合量が12~24重量部かつ硫黄の配合量が0.75~2.5重量部であることが好ましい。
The rubber composition for vibration-proof rubber according to the present invention comprises <1> an ethylene-α-olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur, and the ethylene-α-olefin- The non-conjugated diene copolymer rubber has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more, and the ethylene-α-olefin-nonconjugated diene copolymer rubber is When the total amount of the rubber component is 100 parts by weight, it is preferable that the amount of silica is 12 to 24 parts by weight and the amount of sulfur is 0.75 to 2.5 parts by weight.
また、本発明に係る防振ゴム用ゴム組成物は、<2>エチレン-α-オレフィン-非共役ジエン共重合体ゴム、シリカ、シランカップリング剤、オイルおよび硫黄を含有し、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムは、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であり、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを含むゴム成分の全量を100重量部としたとき、シリカの配合量が12~24重量部、硫黄の配合量が0.75~2.5重量部かつ前記オイルの配合量が21~38重量部であることが好ましい。
The rubber composition for vibration-proof rubber according to the present invention contains <2> ethylene-α-olefin-nonconjugated diene copolymer rubber, silica, silane coupling agent, oil and sulfur, and the ethylene-α The olefin-nonconjugated diene copolymer rubber has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more. The ethylene-α-olefin-nonconjugated diene copolymer rubber When the total amount of rubber components including the combined rubber is 100 parts by weight, the amount of silica is 12 to 24 parts by weight, the amount of sulfur is 0.75 to 2.5 parts by weight, and the amount of oil is 21 to 21 parts by weight. It is preferably 38 parts by weight.
また、本発明に係る防振ゴム用ゴム組成物は、<3>ゴム成分の全量を100重量%としたとき、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であるエチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%含有することが好ましい。
The rubber composition for vibration-proof rubber according to the present invention has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) when the total amount of <3> rubber components is 100% by weight. It is preferable to contain 100% by weight of an ethylene-α-olefin-nonconjugated diene copolymer rubber having an A of 65 or more.
さらに、本発明に係る防振ゴム用ゴム組成物は、<4>ゴム成分の全量を100重量%としたとき、エチレン含有量が60重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であるエチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%含有し、かつゴム成分の全量を100重量部としたとき、シリカを12~24重量部、かつ硫黄を1.2重量部未満含有することが好ましい。
Furthermore, in the rubber composition for vibration-proof rubber according to the present invention, when the total amount of <4> rubber components is 100% by weight, the ethylene content is 60% by weight or more and the Mooney viscosity (ML 1 + 4 (125 ° C.)) When the content of the ethylene-α-olefin-nonconjugated diene copolymer rubber having a rubber content of 65 or more is 100% by weight and the total amount of the rubber component is 100 parts by weight, 12 to 24 parts by weight of silica and 1% of sulfur It is preferable to contain less than 2 parts by weight.
前記<1>の実施形態について、以下に実施例を記載してより具体的に説明する。
The embodiment of <1> will be described more specifically with reference to the following examples.
(ゴム組成物の調製)
ゴム成分100重量部に対して、表1の配合処方に従い、実施例1~7、比較例1~5のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表1に記載の各配合剤を以下に示す。 (Preparation of rubber composition)
The rubber compositions of Examples 1 to 7 and Comparative Examples 1 to 5 are blended with 100 parts by weight of the rubber component according to the formulation of Table 1, and kneaded using an ordinary Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 1 is shown below.
ゴム成分100重量部に対して、表1の配合処方に従い、実施例1~7、比較例1~5のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表1に記載の各配合剤を以下に示す。 (Preparation of rubber composition)
The rubber compositions of Examples 1 to 7 and Comparative Examples 1 to 5 are blended with 100 parts by weight of the rubber component according to the formulation of Table 1, and kneaded using an ordinary Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 1 is shown below.
a)EPDM
EP33(エチレン含有量52重量%、ML1+4(125℃)28、DN8.1重量%) JSR社製
EP57C(エチレン含有量67重量%、ML1+4(125℃)58、DN4.5重量%) JSR社製
EPT3072(エチレン含有量64重量%、ML1+4(125℃)51、DN5.4重量%、油展40重量部) 三井化学社製
EP96(エチレン含有量66重量%、ML1+4(125℃)61、DN5.8重量%、油展50重量部) JSR社製
IP5565(エチレン含有量50重量%、ML1+4(125℃)65、DN7.5重量%) Dow社製
IP4770(エチレン含有量70重量%、ML1+4(125℃)70、DN4.9重量%) Dow社製
b)カーボンブラック
GPF 東海カーボン社製
SRF-HF 新日化カーボン社製
c)パラフィン系オイル 「プロセスオイルPW-380」、出光興産社製
d)シリカ 「ニップシールAQ」、東ソー・シリカ社製
e)硫黄 5%オイル処理硫黄、鶴見化学工業社製
f)酸化亜鉛 「酸化亜鉛3種」、堺化学工業社製
g)ステアリン酸、日油社製
h)加硫促進剤
(A)加硫促進剤(CZ) スルフェンアミド系加硫促進剤 N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド 「ノクセラー CZ」、大内新興化学工業社製
(B)加硫促進剤(M) チアゾール系加硫促進剤 2-メルカプトベンゾチアゾール 「ノクセラーM-P(M)」、大内新興化学工業社製
(C)加硫促進剤(TT) チウラム化合物 テトラメチルチウラムジスルフィド 「ノクセラー TT」、大内新興化学工業社製
(D)加硫促進剤(PX) ジチオカルバミン酸塩系 N-エチル-N-フェニルジチオカルバミン酸亜鉛 「ノクセラー PX」、大内新興化学工業社製
i)加硫剤(R) 「バルノックR」、大内新興化学工業社製
j)加硫遅延剤(CTP) 「リターダーCTP」、東レ社製 a) EPDM
EP33 (ethylene content 52% by weight, ML 1 + 4 (125 ° C.) 28, DN 8.1% by weight) manufactured by JSR EP57C (ethylene content 67% by weight, ML 1 + 4 (125 ° C.) 58, DN 4.5% by weight) JSR EPT3072 (ethylene content 64 wt%, ML 1 + 4 (125 ° C) 51, DN 5.4 wt%, oil extended 40 parts by weight) Mitsui Chemicals Co., Ltd. EP96 (ethylene content 66 wt%, ML 1 + 4 (125 ° C) 61, DN 5.8% by weight, oil extended 50 parts by weight) IPSR 5565 (ethylene content 50% by weight, ML 1 + 4 (125 ° C.) 65, DN 7.5% by weight) manufactured by JSR IP4770 (ethylene content 70% by weight) %, ML 1 + 4 (125 ℃) 70, DN4.9 wt%) Dow Inc. b) carbon black GPF Tokai carbon Co. SR -HF Nippon Steel & Carbon Co., Ltd. c) Paraffinic oil "Process oil PW-380", Idemitsu Kosan Co., Ltd. d) Silica "Nip seal AQ", Tosoh Silica Co., Ltd. e) Sulfur 5% oil-treated sulfur F) Zinc oxide "Zinc oxide 3 types", Sakai Chemical Industry Co., Ltd. g) Stearic acid, NOF Corporation h) Vulcanization accelerator (A) Vulcanization accelerator (CZ) Sulfenamide vulcanization accelerator Agent N-Cyclohexyl-2-benzothiazolylsulfenamide “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (B) Vulcanization accelerator (M) Thiazole vulcanization accelerator 2-mercaptobenzothiazole “Noxeller M- P (M) ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (C) Vulcanization accelerator (TT) thiuram compound tetramethylthiuram disulfide“ Noxeller TT ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. ( D) Vulcanization accelerator (PX) Dithiocarbamate-based zinc N-ethyl-N-phenyldithiocarbamate “Noxeller PX”, manufactured by Ouchi Shinsei Chemical Co., Ltd. i) Vulcanizing agent (R) “Barnock R”, Ouchi Shinsei Chemical Co., Ltd. j) Vulcanization retarder (CTP) “Retarder CTP”, manufactured by Toray Industries, Inc.
EP33(エチレン含有量52重量%、ML1+4(125℃)28、DN8.1重量%) JSR社製
EP57C(エチレン含有量67重量%、ML1+4(125℃)58、DN4.5重量%) JSR社製
EPT3072(エチレン含有量64重量%、ML1+4(125℃)51、DN5.4重量%、油展40重量部) 三井化学社製
EP96(エチレン含有量66重量%、ML1+4(125℃)61、DN5.8重量%、油展50重量部) JSR社製
IP5565(エチレン含有量50重量%、ML1+4(125℃)65、DN7.5重量%) Dow社製
IP4770(エチレン含有量70重量%、ML1+4(125℃)70、DN4.9重量%) Dow社製
b)カーボンブラック
GPF 東海カーボン社製
SRF-HF 新日化カーボン社製
c)パラフィン系オイル 「プロセスオイルPW-380」、出光興産社製
d)シリカ 「ニップシールAQ」、東ソー・シリカ社製
e)硫黄 5%オイル処理硫黄、鶴見化学工業社製
f)酸化亜鉛 「酸化亜鉛3種」、堺化学工業社製
g)ステアリン酸、日油社製
h)加硫促進剤
(A)加硫促進剤(CZ) スルフェンアミド系加硫促進剤 N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド 「ノクセラー CZ」、大内新興化学工業社製
(B)加硫促進剤(M) チアゾール系加硫促進剤 2-メルカプトベンゾチアゾール 「ノクセラーM-P(M)」、大内新興化学工業社製
(C)加硫促進剤(TT) チウラム化合物 テトラメチルチウラムジスルフィド 「ノクセラー TT」、大内新興化学工業社製
(D)加硫促進剤(PX) ジチオカルバミン酸塩系 N-エチル-N-フェニルジチオカルバミン酸亜鉛 「ノクセラー PX」、大内新興化学工業社製
i)加硫剤(R) 「バルノックR」、大内新興化学工業社製
j)加硫遅延剤(CTP) 「リターダーCTP」、東レ社製 a) EPDM
EP33 (ethylene content 52% by weight, ML 1 + 4 (125 ° C.) 28, DN 8.1% by weight) manufactured by JSR EP57C (ethylene content 67% by weight, ML 1 + 4 (125 ° C.) 58, DN 4.5% by weight) JSR EPT3072 (ethylene content 64 wt%, ML 1 + 4 (125 ° C) 51, DN 5.4 wt%, oil extended 40 parts by weight) Mitsui Chemicals Co., Ltd. EP96 (ethylene content 66 wt%, ML 1 + 4 (125 ° C) 61, DN 5.8% by weight, oil extended 50 parts by weight) IPSR 5565 (ethylene content 50% by weight, ML 1 + 4 (125 ° C.) 65, DN 7.5% by weight) manufactured by JSR IP4770 (ethylene content 70% by weight) %, ML 1 + 4 (125 ℃) 70, DN4.9 wt%) Dow Inc. b) carbon black GPF Tokai carbon Co. SR -HF Nippon Steel & Carbon Co., Ltd. c) Paraffinic oil "Process oil PW-380", Idemitsu Kosan Co., Ltd. d) Silica "Nip seal AQ", Tosoh Silica Co., Ltd. e) Sulfur 5% oil-treated sulfur F) Zinc oxide "Zinc oxide 3 types", Sakai Chemical Industry Co., Ltd. g) Stearic acid, NOF Corporation h) Vulcanization accelerator (A) Vulcanization accelerator (CZ) Sulfenamide vulcanization accelerator Agent N-Cyclohexyl-2-benzothiazolylsulfenamide “Noxeller CZ” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (B) Vulcanization accelerator (M) Thiazole vulcanization accelerator 2-mercaptobenzothiazole “Noxeller M- P (M) ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (C) Vulcanization accelerator (TT) thiuram compound tetramethylthiuram disulfide“ Noxeller TT ”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. ( D) Vulcanization accelerator (PX) Dithiocarbamate-based zinc N-ethyl-N-phenyldithiocarbamate “Noxeller PX”, manufactured by Ouchi Shinsei Chemical Co., Ltd. i) Vulcanizing agent (R) “Barnock R”, Ouchi Shinsei Chemical Co., Ltd. j) Vulcanization retarder (CTP) “Retarder CTP”, manufactured by Toray Industries, Inc.
(評価)
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
(未加硫ゴム物性)
JIS-K 6300-1に基づき、配合後の未加硫ゴムのムーニー粘度(ML1+4(100℃))を測定した。結果を表1に示す。 (Physical properties of unvulcanized rubber)
Based on JIS-K 6300-1, the Mooney viscosity (ML 1 + 4 (100 ° C.)) of the unvulcanized rubber after blending was measured. The results are shown in Table 1.
JIS-K 6300-1に基づき、配合後の未加硫ゴムのムーニー粘度(ML1+4(100℃))を測定した。結果を表1に示す。 (Physical properties of unvulcanized rubber)
Based on JIS-K 6300-1, the Mooney viscosity (ML 1 + 4 (100 ° C.)) of the unvulcanized rubber after blending was measured. The results are shown in Table 1.
(加硫ゴムばね特性)
(静的バネ定数(Ks))
各ゴム組成物を加硫しつつプレス成形して、円柱形状(直径50mm、高さ25mm)の加硫ゴムサンプルを作製した後、かかる加硫ゴムサンプルの上下面に対し、円柱状金具(直径60mm、厚み6mm)の一対を、接着剤を使用して接着することによりテストピースを作製した。作製したテストピースを円柱軸方向に2回、5mm圧縮させた後、歪が復元する際の荷重たわみ曲線から、1.25mmおよび3.75mmのたわみ荷重を測定し、これらの値から静的バネ定数(Ks)(N/mm)を算出した。
(動的バネ定数(Kd))
静的バネ定数(Ks)を測定する際に使用したテストピースを円柱軸方向に2.5mm圧縮し、この2.5mm圧縮した位置を中心として、下方から100Hzの周波数で振幅0.05mmの定変位調和圧縮振動を与え、上方のロードセルにて動的加重を検出し、JIS-K 6394に準拠して動的バネ定数(Kd)(N/mm)を算出した。
(動倍率:Kd/Ks)
動倍率は、以下の式より算出した。
(動倍率)=(動的バネ定数(Kd))/(静的バネ定数(Ks))
算出した動的バネ定数と静的バネ定数とに基づき、動倍率を算出した。
なお、各比較例に対する実施例の動倍率を、動倍率INDEXとして評価した。具体的には、実施例1~3については比較例1の動倍率を100としたときの指数評価を行い、実施例4については比較例2の動倍率を100としたときの指数評価を行い、実施例5については比較例3の動倍率を100としたときの指数評価を行い、実施例6については比較例4の動倍率を100としたときの指数評価を行い、実施例7については比較例5の動倍率を100としたときの指数評価を行った。結果を表1に示す。 (Vulcanized rubber spring characteristics)
(Static spring constant (Ks))
Each rubber composition is press-molded while vulcanized to prepare a vulcanized rubber sample having a cylindrical shape (diameter 50 mm, height 25 mm), and then a cylindrical metal fitting (diameter on the upper and lower surfaces of the vulcanized rubber sample. A test piece was prepared by bonding a pair of 60 mm and a thickness of 6 mm using an adhesive. After compressing the prepared test piece twice in the cylinder axis direction for 5 mm, the deflection load of 1.25 mm and 3.75 mm is measured from the load deflection curve when the strain is restored, and the static spring is determined from these values. Constant (Ks) (N / mm) was calculated.
(Dynamic spring constant (Kd))
The test piece used for measuring the static spring constant (Ks) was compressed 2.5 mm in the direction of the cylinder axis, and a constant of 0.05 mm in amplitude at a frequency of 100 Hz from the bottom centered on this 2.5 mm compressed position. Displacement harmonic compression vibration was applied, the dynamic load was detected by the upper load cell, and the dynamic spring constant (Kd) (N / mm) was calculated according to JIS-K 6394.
(Dynamic magnification: Kd / Ks)
The dynamic magnification was calculated from the following formula.
(Dynamic magnification) = (Dynamic spring constant (Kd)) / (Static spring constant (Ks))
The dynamic magnification was calculated based on the calculated dynamic spring constant and static spring constant.
In addition, the dynamic magnification of the Example with respect to each comparative example was evaluated as a dynamic magnification INDEX. Specifically, for Examples 1 to 3, index evaluation is performed when the dynamic magnification of Comparative Example 1 is 100, and for Example 4, index evaluation is performed when the dynamic magnification of Comparative Example 2 is 100. For Example 5, index evaluation is performed when the dynamic magnification of Comparative Example 3 is 100, for Example 6, index evaluation is performed when the dynamic magnification of Comparative Example 4 is 100, and for Example 7, Index evaluation was performed when the dynamic magnification of Comparative Example 5 was set to 100. The results are shown in Table 1.
(静的バネ定数(Ks))
各ゴム組成物を加硫しつつプレス成形して、円柱形状(直径50mm、高さ25mm)の加硫ゴムサンプルを作製した後、かかる加硫ゴムサンプルの上下面に対し、円柱状金具(直径60mm、厚み6mm)の一対を、接着剤を使用して接着することによりテストピースを作製した。作製したテストピースを円柱軸方向に2回、5mm圧縮させた後、歪が復元する際の荷重たわみ曲線から、1.25mmおよび3.75mmのたわみ荷重を測定し、これらの値から静的バネ定数(Ks)(N/mm)を算出した。
(動的バネ定数(Kd))
静的バネ定数(Ks)を測定する際に使用したテストピースを円柱軸方向に2.5mm圧縮し、この2.5mm圧縮した位置を中心として、下方から100Hzの周波数で振幅0.05mmの定変位調和圧縮振動を与え、上方のロードセルにて動的加重を検出し、JIS-K 6394に準拠して動的バネ定数(Kd)(N/mm)を算出した。
(動倍率:Kd/Ks)
動倍率は、以下の式より算出した。
(動倍率)=(動的バネ定数(Kd))/(静的バネ定数(Ks))
算出した動的バネ定数と静的バネ定数とに基づき、動倍率を算出した。
なお、各比較例に対する実施例の動倍率を、動倍率INDEXとして評価した。具体的には、実施例1~3については比較例1の動倍率を100としたときの指数評価を行い、実施例4については比較例2の動倍率を100としたときの指数評価を行い、実施例5については比較例3の動倍率を100としたときの指数評価を行い、実施例6については比較例4の動倍率を100としたときの指数評価を行い、実施例7については比較例5の動倍率を100としたときの指数評価を行った。結果を表1に示す。 (Vulcanized rubber spring characteristics)
(Static spring constant (Ks))
Each rubber composition is press-molded while vulcanized to prepare a vulcanized rubber sample having a cylindrical shape (diameter 50 mm, height 25 mm), and then a cylindrical metal fitting (diameter on the upper and lower surfaces of the vulcanized rubber sample. A test piece was prepared by bonding a pair of 60 mm and a thickness of 6 mm using an adhesive. After compressing the prepared test piece twice in the cylinder axis direction for 5 mm, the deflection load of 1.25 mm and 3.75 mm is measured from the load deflection curve when the strain is restored, and the static spring is determined from these values. Constant (Ks) (N / mm) was calculated.
(Dynamic spring constant (Kd))
The test piece used for measuring the static spring constant (Ks) was compressed 2.5 mm in the direction of the cylinder axis, and a constant of 0.05 mm in amplitude at a frequency of 100 Hz from the bottom centered on this 2.5 mm compressed position. Displacement harmonic compression vibration was applied, the dynamic load was detected by the upper load cell, and the dynamic spring constant (Kd) (N / mm) was calculated according to JIS-K 6394.
(Dynamic magnification: Kd / Ks)
The dynamic magnification was calculated from the following formula.
(Dynamic magnification) = (Dynamic spring constant (Kd)) / (Static spring constant (Ks))
The dynamic magnification was calculated based on the calculated dynamic spring constant and static spring constant.
In addition, the dynamic magnification of the Example with respect to each comparative example was evaluated as a dynamic magnification INDEX. Specifically, for Examples 1 to 3, index evaluation is performed when the dynamic magnification of Comparative Example 1 is 100, and for Example 4, index evaluation is performed when the dynamic magnification of Comparative Example 2 is 100. For Example 5, index evaluation is performed when the dynamic magnification of Comparative Example 3 is 100, for Example 6, index evaluation is performed when the dynamic magnification of Comparative Example 4 is 100, and for Example 7, Index evaluation was performed when the dynamic magnification of Comparative Example 5 was set to 100. The results are shown in Table 1.
(加硫ゴム物性)
JIS-K 6251に基づき、加硫ゴムのTB(MPa)、およびEB(%)を評価した。結果を表1に示す。 (Physical properties of vulcanized rubber)
Based on JIS-K 6251, TB (MPa) and EB (%) of the vulcanized rubber were evaluated. The results are shown in Table 1.
JIS-K 6251に基づき、加硫ゴムのTB(MPa)、およびEB(%)を評価した。結果を表1に示す。 (Physical properties of vulcanized rubber)
Based on JIS-K 6251, TB (MPa) and EB (%) of the vulcanized rubber were evaluated. The results are shown in Table 1.
(加硫ゴム耐ヘタリ性)
JIS-K 6262に基づき、加硫ゴムの耐ヘタリ性(CS(%)@125℃,72h)を評価した。結果を表1に示す。 (Resistance to vulcanized rubber)
Based on JIS-K 6262, the vulcanized rubber was evaluated for its stickiness resistance (CS (%) @ 125 ° C., 72 h). The results are shown in Table 1.
JIS-K 6262に基づき、加硫ゴムの耐ヘタリ性(CS(%)@125℃,72h)を評価した。結果を表1に示す。 (Resistance to vulcanized rubber)
Based on JIS-K 6262, the vulcanized rubber was evaluated for its stickiness resistance (CS (%) @ 125 ° C., 72 h). The results are shown in Table 1.
(加硫ゴムの高温時の耐クリープ性)
動的粘弾性特性(貯蔵弾性率:E’)の室温時と高温時(100℃)を比較。高温時の室温時に対する弾性率の低下度合い(%)を求めた。測定条件は、周波数0.5Hz、初期歪み10%、歪み振幅±5%で行った。結果を表1に示す。 (Creep resistance of vulcanized rubber at high temperature)
Comparison of room temperature and high temperature (100 ° C.) of dynamic viscoelastic properties (storage modulus: E ′). The degree of decrease in elastic modulus (%) relative to room temperature at high temperature was determined. The measurement conditions were a frequency of 0.5 Hz, an initial strain of 10%, and a strain amplitude of ± 5%. The results are shown in Table 1.
動的粘弾性特性(貯蔵弾性率:E’)の室温時と高温時(100℃)を比較。高温時の室温時に対する弾性率の低下度合い(%)を求めた。測定条件は、周波数0.5Hz、初期歪み10%、歪み振幅±5%で行った。結果を表1に示す。 (Creep resistance of vulcanized rubber at high temperature)
Comparison of room temperature and high temperature (100 ° C.) of dynamic viscoelastic properties (storage modulus: E ′). The degree of decrease in elastic modulus (%) relative to room temperature at high temperature was determined. The measurement conditions were a frequency of 0.5 Hz, an initial strain of 10%, and a strain amplitude of ± 5%. The results are shown in Table 1.
(動倍率および高温時の耐クリープ性評価)
動倍率については、各比較例に対する実施例の動倍率INDEXを(X)としたとき、100<(X)≦120であれば○、(X)>120であれば◎とした。高温時の耐クリープ性については、高温時の弾性率低下率(%)を(Y)としたとき、(Y)>-20であれば◎、-25≦(Y)≦-20であれば○、(Y)<-25であれば×とした。結果を表1に示す。 (Dynamic magnification and creep resistance evaluation at high temperature)
As for the dynamic magnification, when the dynamic magnification INDEX of the example for each comparative example is (X), 100 <(X) ≦ 120, ◯, and (X)> 120, ◎. Regarding the creep resistance at high temperature, when (Y)> − 20 when the elastic modulus decrease rate (%) at high temperature is (Y), ◎, and −25 ≦ (Y) ≦ −20 ○, if (Y) <− 25, × The results are shown in Table 1.
動倍率については、各比較例に対する実施例の動倍率INDEXを(X)としたとき、100<(X)≦120であれば○、(X)>120であれば◎とした。高温時の耐クリープ性については、高温時の弾性率低下率(%)を(Y)としたとき、(Y)>-20であれば◎、-25≦(Y)≦-20であれば○、(Y)<-25であれば×とした。結果を表1に示す。 (Dynamic magnification and creep resistance evaluation at high temperature)
As for the dynamic magnification, when the dynamic magnification INDEX of the example for each comparative example is (X), 100 <(X) ≦ 120, ◯, and (X)> 120, ◎. Regarding the creep resistance at high temperature, when (Y)> − 20 when the elastic modulus decrease rate (%) at high temperature is (Y), ◎, and −25 ≦ (Y) ≦ −20 ○, if (Y) <− 25, × The results are shown in Table 1.
前記<2>の実施形態について、以下に実施例を記載してより具体的に説明する。
<Embodiment <2> will be described more specifically with reference to the following examples.
(ゴム組成物の調製)
ゴム成分100重量部に対して、表2の配合処方に従い、実施例8~12、比較例6~8のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表2に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 8 to 12 and Comparative Examples 6 to 8 were blended with 100 parts by weight of the rubber component in accordance with the blending formulation of Table 2, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 2 was the same as described above.
ゴム成分100重量部に対して、表2の配合処方に従い、実施例8~12、比較例6~8のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表2に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 8 to 12 and Comparative Examples 6 to 8 were blended with 100 parts by weight of the rubber component in accordance with the blending formulation of Table 2, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 2 was the same as described above.
(評価)
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
未加硫ゴム物性、加硫ゴムばね特性、加硫ゴム物性、加硫ゴム耐ヘタリ性、加硫ゴムの高温時の耐クリープ性の測定方法は前記のとおりである。なお、動倍率INDEXについては、各比較例に対する実施例の動倍率を、動倍率INDEXとして評価した。具体的には、実施例8~10については比較例6の動倍率を100としたときの指数評価を行い、実施例11については比較例7の動倍率を100としたときの指数評価を行い、実施例12については比較例8の動倍率を100としたときの指数評価を行った。
The methods for measuring the properties of unvulcanized rubber, the properties of vulcanized rubber springs, the properties of vulcanized rubber, the resistance to vulcanized rubber, and the creep resistance of vulcanized rubber at high temperatures are as described above. In addition, about dynamic magnification INDEX, the dynamic magnification of the Example with respect to each comparative example was evaluated as dynamic magnification INDEX. Specifically, for Examples 8 to 10, index evaluation is performed when the dynamic magnification of Comparative Example 6 is 100, and for Example 11, index evaluation is performed when the dynamic magnification of Comparative Example 7 is 100. For Example 12, index evaluation was performed when the dynamic magnification of Comparative Example 8 was set to 100.
(動倍率および高温時の耐クリープ性および耐へたり性評価)
動倍率については、各比較例に対する実施例の動倍率INDEXを(X)としたとき、100<(X)≦120であれば○、(X)>120であれば◎とした。高温時の耐クリープ性については、高温時の弾性率低下率(%)を(Y)としたとき、(Y)>-20であれば◎、-25≦(Y)≦-20であれば○、(Y)<-25であれば×とした。耐ヘタリ性については、比較例の同程度のKsのものと比較して、優れていれば〇とした。結果を表2に示す。 (Dynamic magnification and creep resistance and sag resistance evaluation at high temperature)
As for the dynamic magnification, when the dynamic magnification INDEX of the example for each comparative example is (X), 100 <(X) ≦ 120, ◯, and (X)> 120, ◎. Regarding the creep resistance at high temperature, when (Y)> − 20 when the elastic modulus decrease rate (%) at high temperature is (Y), ◎, and −25 ≦ (Y) ≦ −20 ○, if (Y) <− 25, × As for the anti-sag property, it was evaluated as ◯ if it was superior compared to the Ks of the same degree as in the comparative example. The results are shown in Table 2.
動倍率については、各比較例に対する実施例の動倍率INDEXを(X)としたとき、100<(X)≦120であれば○、(X)>120であれば◎とした。高温時の耐クリープ性については、高温時の弾性率低下率(%)を(Y)としたとき、(Y)>-20であれば◎、-25≦(Y)≦-20であれば○、(Y)<-25であれば×とした。耐ヘタリ性については、比較例の同程度のKsのものと比較して、優れていれば〇とした。結果を表2に示す。 (Dynamic magnification and creep resistance and sag resistance evaluation at high temperature)
As for the dynamic magnification, when the dynamic magnification INDEX of the example for each comparative example is (X), 100 <(X) ≦ 120, ◯, and (X)> 120, ◎. Regarding the creep resistance at high temperature, when (Y)> − 20 when the elastic modulus decrease rate (%) at high temperature is (Y), ◎, and −25 ≦ (Y) ≦ −20 ○, if (Y) <− 25, × As for the anti-sag property, it was evaluated as ◯ if it was superior compared to the Ks of the same degree as in the comparative example. The results are shown in Table 2.
前記<3>の実施形態について、以下に実施例を記載してより具体的に説明する。
The embodiment of <3> will be described more specifically with reference to the following examples.
(ゴム組成物の調製)
ゴム成分100重量部に対して、表3の配合処方に従い、実施例13~19、比較例9~13のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表3に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 13 to 19 and Comparative Examples 9 to 13 are blended with 100 parts by weight of the rubber component according to the formulation of Table 3, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 3 was the same as described above.
ゴム成分100重量部に対して、表3の配合処方に従い、実施例13~19、比較例9~13のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表3に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 13 to 19 and Comparative Examples 9 to 13 are blended with 100 parts by weight of the rubber component according to the formulation of Table 3, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 3 was the same as described above.
(評価)
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
未加硫ゴム物性、加硫ゴムばね特性、加硫ゴム物性、加硫ゴム耐ヘタリ性、加硫ゴムの高温時の耐クリープ性、動倍率および高温時の耐クリープ性評価の測定方法は前記のとおりである。なお、動倍率INDEXについては、各比較例に対する実施例の動倍率を、動倍率INDEXとして評価した。具体的には、実施例13~15については比較例9の動倍率を100としたときの指数評価を行い、実施例16については比較例10の動倍率を100としたときの指数評価を行い、実施例17については比較例11の動倍率を100としたときの指数評価を行い、実施例18については比較例12の動倍率を100としたときの指数評価を行い、実施例19については比較例13の動倍率を100としたときの指数評価を行った。
The measurement methods of unvulcanized rubber properties, vulcanized rubber spring properties, vulcanized rubber properties, vulcanized rubber settling resistance, vulcanized rubber creep resistance at high temperature, dynamic magnification, and creep resistance evaluation at high temperature are described above. It is as follows. In addition, about dynamic magnification INDEX, the dynamic magnification of the Example with respect to each comparative example was evaluated as dynamic magnification INDEX. Specifically, for Examples 13 to 15, index evaluation is performed when the dynamic magnification of Comparative Example 9 is 100, and for Example 16, index evaluation is performed when the dynamic magnification of Comparative Example 10 is 100. For Example 17, an index evaluation is performed when the dynamic magnification of Comparative Example 11 is 100. For Example 18, an index evaluation is performed when the dynamic magnification of Comparative Example 12 is 100. For Example 19, Index evaluation was performed when the dynamic magnification of Comparative Example 13 was set to 100.
前記<4>の実施形態について、以下に実施例を記載してより具体的に説明する。
The embodiment <4> will be described more specifically by describing examples below.
(ゴム組成物の調製)
ゴム成分100重量部に対して、表4の配合処方に従い、実施例20~25、比較例14~18のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表4に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 20 to 25 and Comparative Examples 14 to 18 were blended with 100 parts by weight of the rubber component in accordance with the blending formulation shown in Table 4, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 4 was the same as described above.
ゴム成分100重量部に対して、表4の配合処方に従い、実施例20~25、比較例14~18のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調製した。表4に記載の各配合剤は前記と同様のものを使用した。 (Preparation of rubber composition)
The rubber compositions of Examples 20 to 25 and Comparative Examples 14 to 18 were blended with 100 parts by weight of the rubber component in accordance with the blending formulation shown in Table 4, and kneaded using a normal Banbury mixer to prepare a rubber composition. did. Each compounding agent described in Table 4 was the same as described above.
(評価)
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
評価は、各ゴム組成物を所定の金型を使用して、170℃で20分間加熱、加硫して得られたゴムについて行った。 (Evaluation)
The evaluation was performed on rubber obtained by heating and vulcanizing each rubber composition at 170 ° C. for 20 minutes using a predetermined mold.
未加硫ゴム物性、加硫ゴムばね特性、加硫ゴム物性、加硫ゴム耐ヘタリ性、加硫ゴムの高温時の耐クリープ性、動倍率および高温時の耐クリープ性評価の測定方法は前記のとおりである。なお、動倍率INDEXについては、各比較例に対する実施例の動倍率を、動倍率INDEXとして評価した。具体的には、実施例20~22については比較例14の動倍率を100としたときの指数評価を行い、実施例23については比較例15の動倍率を100としたときの指数評価を行い、実施例24については比較例16の動倍率を100としたときの指数評価を行い、実施例25については比較例17の動倍率を100としたときの指数評価を行った。
The measurement methods of unvulcanized rubber properties, vulcanized rubber spring properties, vulcanized rubber properties, vulcanized rubber settling resistance, vulcanized rubber creep resistance at high temperature, dynamic magnification, and creep resistance evaluation at high temperature are described above. It is as follows. In addition, about dynamic magnification INDEX, the dynamic magnification of the Example with respect to each comparative example was evaluated as dynamic magnification INDEX. Specifically, for Examples 20 to 22, index evaluation is performed when the dynamic magnification of Comparative Example 14 is 100, and for Example 23, index evaluation is performed when the dynamic magnification of Comparative Example 15 is 100. For Example 24, index evaluation was performed when the dynamic magnification of Comparative Example 16 was 100, and for Example 25, index evaluation was performed when the dynamic magnification of Comparative Example 17 was 100.
(強度物性評価)
加硫ゴムの強度物性については、TB≧14MPaを○、TB<14MPaを△とした。結果を表4に示す。 (Strength property evaluation)
Regarding the strength physical properties of the vulcanized rubber, TB ≧ 14 MPa was evaluated as “◯” and TB <14 MPa as “Δ”. The results are shown in Table 4.
加硫ゴムの強度物性については、TB≧14MPaを○、TB<14MPaを△とした。結果を表4に示す。 (Strength property evaluation)
Regarding the strength physical properties of the vulcanized rubber, TB ≧ 14 MPa was evaluated as “◯” and TB <14 MPa as “Δ”. The results are shown in Table 4.
Claims (8)
- エチレン-α-オレフィン-非共役ジエン共重合体ゴム、シリカ、シランカップリング剤、および硫黄を含有し、
前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムは、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であり、
前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを含むゴム成分の全量を100重量部としたとき、シリカの配合量が12~24重量部かつ硫黄の配合量が0.75~2.5重量部であることを特徴とする防振ゴム用ゴム組成物。 An ethylene-α-olefin-nonconjugated diene copolymer rubber, silica, a silane coupling agent, and sulfur;
The ethylene-α-olefin-nonconjugated diene copolymer rubber has an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more.
When the total amount of the rubber component including the ethylene-α-olefin-nonconjugated diene copolymer rubber is 100 parts by weight, the amount of silica is 12 to 24 parts by weight and the amount of sulfur is 0.75 to 2. A rubber composition for vibration-proof rubber, characterized by being 5 parts by weight. - ゴム成分の全量を100重量%としたとき、前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%含有する請求項1に記載の防振ゴム用ゴム組成物。 The rubber composition for vibration-proof rubber according to claim 1, comprising 100% by weight of the ethylene-α-olefin-nonconjugated diene copolymer rubber when the total amount of the rubber component is 100% by weight.
- ゴム成分の全量を100重量部としたとき、さらにオイルを21~38重量部含有する請求項1または2に記載の防振ゴム用ゴム組成物。 The rubber composition for vibration-proof rubber according to claim 1, further comprising 21 to 38 parts by weight of oil when the total amount of rubber components is 100 parts by weight.
- ゴム成分の全量を100重量部としたとき、さらにカーボンブラックを30~60重量部含有する請求項1~3いずれかに記載の防振ゴム用ゴム組成物。 4. The rubber composition for vibration-proof rubber according to claim 1, further comprising 30 to 60 parts by weight of carbon black when the total amount of rubber components is 100 parts by weight.
- ゴム成分の全量を100重量%としたとき、エチレン含有量が50重量%以上、かつムーニー粘度(ML1+4(125℃))が65以上であるエチレン-α-オレフィン-非共役ジエン共重合体ゴムを100重量%含有することを特徴とする防振ゴム用ゴム組成物。 An ethylene-α-olefin-nonconjugated diene copolymer rubber having an ethylene content of 50% by weight or more and a Mooney viscosity (ML 1 + 4 (125 ° C.)) of 65 or more when the total amount of rubber components is 100% by weight. 100% by weight of rubber composition for vibration-proof rubber, characterized in that
- 前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムのエチレン含有量が60重量%以上であり、かつゴム成分の全量を100重量部としたとき、シリカを12~24重量部、かつ硫黄を1.2重量部未満含有する請求項5に記載の防振ゴム用ゴム組成物。 When the ethylene content of the ethylene-α-olefin-nonconjugated diene copolymer rubber is 60% by weight or more and the total amount of the rubber component is 100 parts by weight, 12-24 parts by weight of silica and sulfur The rubber composition for vibration-proof rubber according to claim 5, containing less than 1.2 parts by weight.
- 前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムが非油展タイプである請求項1~6いずれかに記載の防振ゴム用ゴム組成物。 The rubber composition for vibration-proof rubber according to any one of claims 1 to 6, wherein the ethylene-α-olefin-nonconjugated diene copolymer rubber is a non-oil-extended type.
- 前記エチレン-α-オレフィン-非共役ジエン共重合体ゴムのムーニー粘度(ML1+4(125℃))が100未満である請求項1~7いずれかに記載の防振ゴム用ゴム組成物。 The rubber composition for vibration-proof rubber according to any one of claims 1 to 7, wherein the ethylene-α-olefin-nonconjugated diene copolymer rubber has a Mooney viscosity (ML 1 + 4 (125 ° C)) of less than 100.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-244422 | 2016-12-16 | ||
JP2016-244429 | 2016-12-16 | ||
JP2016-244377 | 2016-12-16 | ||
JP2016244429A JP2018095809A (en) | 2016-12-16 | 2016-12-16 | Rubber composition for vibration-proof rubber |
JP2016244377A JP6803219B2 (en) | 2016-12-16 | 2016-12-16 | Rubber composition for anti-vibration rubber |
JP2016244444A JP6860338B2 (en) | 2016-12-16 | 2016-12-16 | Rubber composition for anti-vibration rubber |
JP2016-244444 | 2016-12-16 | ||
JP2016244422A JP6860337B2 (en) | 2016-12-16 | 2016-12-16 | Rubber composition for anti-vibration rubber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110078A1 true WO2018110078A1 (en) | 2018-06-21 |
Family
ID=62558239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/037835 WO2018110078A1 (en) | 2016-12-16 | 2017-10-19 | Rubber composition for antivibration rubber |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018110078A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05239289A (en) * | 1991-12-19 | 1993-09-17 | Degussa Ag | Vulcanizable rubber composition and its vulcanization method |
JP2006052281A (en) * | 2004-08-11 | 2006-02-23 | Dow Corning Toray Co Ltd | Rubber composition for vibration-proof or quake-isolation, method for preparing the composition, rubber product for vibration-proof or quake-isolation and method for producing the product |
JP2006052282A (en) * | 2004-08-11 | 2006-02-23 | Dow Corning Toray Co Ltd | Rubber composition for vibration-proof or quake-isolation, method for producing the composition, rubber product for vibration-proof or quake-isolation and method for molding the product |
JP2010270835A (en) * | 2009-05-21 | 2010-12-02 | Kurashiki Kako Co Ltd | Vibration isolating member |
-
2017
- 2017-10-19 WO PCT/JP2017/037835 patent/WO2018110078A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05239289A (en) * | 1991-12-19 | 1993-09-17 | Degussa Ag | Vulcanizable rubber composition and its vulcanization method |
JP2006052281A (en) * | 2004-08-11 | 2006-02-23 | Dow Corning Toray Co Ltd | Rubber composition for vibration-proof or quake-isolation, method for preparing the composition, rubber product for vibration-proof or quake-isolation and method for producing the product |
JP2006052282A (en) * | 2004-08-11 | 2006-02-23 | Dow Corning Toray Co Ltd | Rubber composition for vibration-proof or quake-isolation, method for producing the composition, rubber product for vibration-proof or quake-isolation and method for molding the product |
JP2010270835A (en) * | 2009-05-21 | 2010-12-02 | Kurashiki Kako Co Ltd | Vibration isolating member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5133503B2 (en) | Anti-vibration rubber composition and anti-vibration rubber member | |
JP5420224B2 (en) | Rubber composition for anti-vibration rubber, anti-vibration rubber and method for producing the same | |
JP2006199792A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP6860338B2 (en) | Rubber composition for anti-vibration rubber | |
JP5465317B2 (en) | Anti-vibration rubber composition and anti-vibration rubber using the same | |
JP5210801B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP2010111742A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP2018095809A (en) | Rubber composition for vibration-proof rubber | |
WO2018110078A1 (en) | Rubber composition for antivibration rubber | |
JP6803219B2 (en) | Rubber composition for anti-vibration rubber | |
JP6546570B2 (en) | Vibration-proof rubber composition and vibration-proof rubber | |
JP6860337B2 (en) | Rubber composition for anti-vibration rubber | |
JP7405593B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP2020090665A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP5166813B2 (en) | Anti-vibration rubber composition and anti-vibration rubber using the same | |
JP5166814B2 (en) | Anti-vibration rubber composition and anti-vibration rubber using the same | |
JP7411400B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP7296414B2 (en) | Anti-vibration rubber composition and anti-vibration rubber | |
JPH08269237A (en) | Vibration-proofing rubber composition | |
JP2008208204A (en) | Vibration-proof rubber composition and vibration-proof rubber by using the same | |
JP4581760B2 (en) | Anti-vibration rubber composition for vehicle anti-vibration rubber and vehicle anti-vibration rubber using the same | |
JP2011111504A (en) | Rubber composition for vibration-proof rubber and vibration-proof rubber | |
JP7288749B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP4922886B2 (en) | Anti-vibration rubber composition and anti-vibration rubber using the same | |
JP2019131761A (en) | Vibration-proof rubber composition and vibration-proof rubber member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17880824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17880824 Country of ref document: EP Kind code of ref document: A1 |