WO2018110061A1 - Scintillator plate, radiation detector and radiation detection system - Google Patents

Scintillator plate, radiation detector and radiation detection system Download PDF

Info

Publication number
WO2018110061A1
WO2018110061A1 PCT/JP2017/037101 JP2017037101W WO2018110061A1 WO 2018110061 A1 WO2018110061 A1 WO 2018110061A1 JP 2017037101 W JP2017037101 W JP 2017037101W WO 2018110061 A1 WO2018110061 A1 WO 2018110061A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
layer
scintillator plate
protective film
plate according
Prior art date
Application number
PCT/JP2017/037101
Other languages
French (fr)
Japanese (ja)
Inventor
小林 玉樹
智之 大池
徹則 尾島
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018110061A1 publication Critical patent/WO2018110061A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • the present invention relates to a scintillator plate, a radiation detection apparatus, and a radiation detection system.
  • Radiation detection apparatuses that combine a scintillator that converts radiation into light and a photoelectric conversion element that detects light converted by the scintillator are widely used.
  • the scintillator is required to efficiently propagate light converted from radiation to the photoelectric conversion element.
  • a scintillator having a columnar crystal which may also be referred to as a needle-like crystal
  • Alkali halide crystals typified by CsI are widely used as scintillators having columnar crystals, but alkali halide crystals exhibit deliquescence, and when exposed to the atmosphere, they are easily deliquescent and altered by water vapor contained in the atmosphere.
  • Patent Document 1 discloses that the scintillator is covered with a polyparaxylylene film in order to prevent contact between the scintillator and water vapor in the atmosphere, thereby suppressing deliquescence of the scintillator.
  • the object of the present invention is to provide a technique advantageous for suppressing deterioration of the characteristics of the scintillator.
  • a scintillator plate is a scintillator plate that includes a scintillator having a plurality of columnar crystals arranged on a substrate, and a protective film that covers the scintillator. Includes a first layer and a second layer covering the first layer, the first layer includes a fluororesin, and the second layer is included in the metal alkoxide and the metal alkoxide. And a cross-linked product in which part of metal atoms are cross-linked with oxygen.
  • the above means provides a technique advantageous for suppressing deterioration of the characteristics of the scintillator.
  • the radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, ⁇ -rays, ⁇ -rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
  • FIG. 1 is a cross-sectional view showing a configuration of a scintillator plate 100 according to an embodiment of the present invention.
  • the scintillator plate 100 includes a scintillator 110 that converts incident radiation into light, a substrate 120 that holds the scintillator 110, and a protective film 130 that covers the scintillator 110.
  • the scintillator 110 is composed of a plurality of columnar crystals.
  • the protective film 130 has a stacked structure of a first layer 131 and a second layer 132 that covers the first layer 131.
  • the protective film 130 is provided to protect the scintillator 110 that exhibits deliquescence such as cesium iodide (CsI).
  • CsI cesium iodide
  • a fluororesin is used for the first layer 131 of the protective film 130 and can be in contact with a columnar crystal body (columnar crystal) of the scintillator 110.
  • the second layer 132 of the protective film 130 includes a metal alkoxide and a crosslinked body in which some metal atoms included in the metal alkoxide are crosslinked with oxygen.
  • the second layer 132 covers the side of the first layer 131 opposite to the scintillator 110 and can be in contact with the first layer 131.
  • the second layer 132 does not necessarily cover the scintillator 110 via the first layer 131, and the second layer 132 may be in contact with the scintillator 110 depending on the portion.
  • polytetrafluoroethylene tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoro Materials that contain fluorine in the constituent molecules such as ethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE) are used May be.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE
  • the first layer 131 may be formed by application using a spray using a fluorine-based coating agent used as a moisture-proof coating agent.
  • the film thickness of the first layer 131 can be reduced by diluting the fluororesin with a solvent to reduce the solid concentration.
  • the first layer 131 when the thickness of the first layer 131 using a fluororesin is reduced, the first layer 131 alone may be insufficient as a protective film for protecting the scintillator 110. This is because the film thickness of the first layer 131 is thin, so that intrusion of water molecules cannot be sufficiently suppressed, or there may be a site where the scintillator 110 cannot be covered. In order to prevent this, a second layer 132 described later is formed so as to cover the first layer 131. When the first layer 131 is formed by application using spray as described above, the first layer 131 can be formed relatively easily.
  • the first layer 131 covering the scintillator 110 can be formed immediately when the substrate 120 on which the scintillator 110 is formed is taken out of the vacuum container. Thereafter, the second layer 132 is formed. After the formation of the first layer 131, until the formation of the second layer 132, the influence of water molecules can be substantially suppressed even if exposed to the atmosphere for about several hours. It became clear by experiment (Example).
  • the protective film 130 including the first layer 131 and the second layer 132 has a function of suppressing the influence of water molecules if the fluororesin constituting the first layer 131 is in a short time (about several hours). Have. Furthermore, since the second layer 132 contains a metal alkoxide and a cross-linked product thereof, the second layer 132 has an effect of capturing and consuming water molecules and an effect of not allowing water molecules to physically permeate. By these effects, the influence of water molecules on the scintillator 110 can be suppressed.
  • the protective film using polyparaxylylene disclosed in Patent Document 1 only suppresses the permeation of water molecules, the water molecules that have once permeated the protective film remain inside the protective film, and the scintillator Degradation can proceed by contacting 110 with water molecules.
  • the metal alkoxide used for the second layer 132 consumes water molecules when contacted with water molecules, causes hydrolysis, and generates hydroxyl groups and alcohol molecules bonded to metal atoms. .
  • the protective film 130 can suppress the influence of the water molecules on the scintillator 110 by capturing and consuming the water again even when the water molecules permeate the protective film 130.
  • the protective film 130 not only the thickness of the first layer 131 is reduced, but also the thickness of the second layer 132 is reduced and the thickness of the entire protective film 130 is reduced. 110 can be prevented from deteriorating.
  • the stoichiometric ratio of the alkoxide atoms to the metal atoms is 0.02 or more and 1 or less. Also good.
  • An alkoxide atom means atoms other than a metal among the atoms contained in a metal alkoxide. Further, the stoichiometric ratio of the alkoxide atom to the metal atom may be 0.02 or more and 1 or less in the entire second layer 132.
  • the amount of the alkoxide can be controlled by adjusting the activation during the reaction for crosslinking the metal alkoxide.
  • the alkoxide contained in the compound of the metal alkoxide constituting the second layer 132 and its cross-linked product may be Fourier transform infrared spectroscopy (FT-IR) or time-of-flight secondary ion mass spectrometry (TOF-SIMS). Qualitative analysis can be performed by law.
  • the alkoxide contained in the compound can be quantitatively analyzed by FT-IR or X-ray photoelectron spectroscopy (XPS). However, when quantitative analysis is performed using the XPS method, the compound must contain carbon (C) other than alkoxide.
  • a compound in which C is contained only in alkoxide is prepared, and quantitative analysis is performed by XPS method. Subsequently, a calibration curve is prepared by measuring a compound in which C is contained only in the alkoxide by the FT-IR method. Thereafter, quantitative analysis can be performed by measuring a compound containing the desired metal alkoxide and its crosslinked product.
  • the crosslinked body of the second layer 132 constituting the protective film 130 decreases, and the strength of the entire protective film 130 may be weakened. In addition, the density of the protective film 130 may be reduced, and water molecules may be easily transmitted.
  • the amount of the alkoxide in the crosslinked body with respect to the metal atom is reduced, the effect of capturing and consuming water molecules is reduced, and the effect of suppressing the deterioration of the scintillator 110 can be reduced. For this reason, as described above, the amount of alkoxide atoms contained in the crosslinked product may be appropriately adjusted.
  • the film thickness of the protective film 130 may be 100 nm or less.
  • the light converted from the radiation in the scintillator 110 is guided through the columnar crystal of the scintillator 110 due to the difference in refractive index between the scintillator 110 and air.
  • the difference in refractive index between the scintillator 110 and the protective film 130 is smaller than the difference in refractive index between the scintillator 110 and air.
  • the gap between the columnar crystals is 200 nm or more near the tip of the columnar crystal of the scintillator 110 to be described later, if the film thickness of the protective film 130 is 100 nm or less, the gap between the columnar crystals may remain.
  • the light guided through the columnar crystal of the scintillator 110 is reflected between the protective film 130 and the air, and passes through the structure that combines the columnar crystal and the protective film 130. Can be guided. As a result, light diffusion can be suppressed.
  • the thickness of the protective film 130 may be as thin as possible in order to leave the voids even in a narrow place.
  • the film thickness of the first layer 131 in the protective film 130 may be, for example, 100 nm or less.
  • the thickness of the first layer 131 may be, for example, 50 nm or less in consideration of the thickness of the second layer 132.
  • the second layer 132 can capture and consume water molecules and suppress permeation even when the film thickness is small. For this reason, the film thickness of the second layer 132 may be, for example, 100 nm or less.
  • the thickness of the second layer 132 may be, for example, 50 nm or less in consideration of the thickness of the first layer 131.
  • the thinner the protective film 130 may be as a waveguide as described above.
  • the protective film 130 is too thin, the effect of suppressing the permeation of water molecules and the effect of capturing and consuming water molecules can be reduced.
  • the film thickness of the protective film 130 may be 0.3 nm or more. The film thicknesses of the first layer 131 and the second layer 132 can be appropriately set within a range in which deterioration of the scintillator 110 can be suppressed.
  • the protective film 130 may cover the columnar crystals of the scintillator 110 one by one from the tip to the side surface up to the substrate 120. Further, for example, the protective film 130 may cover at least 100 ⁇ m or more from the front end to the side surface of the scintillator 110 one by one. However, the portion where the adjacent columnar crystals of the scintillator 110 are in contact or close to each other may not be covered with the protective film 130.
  • the radiation detection apparatus using the scintillator plate 100 shown in this embodiment by thinning the protective film 130, most of the light generated in the scintillator 110 repeats total reflection or Fresnel reflection in the columnar crystal of the scintillator 110. As a result, much of the generated light can be guided through the scintillator 110 and the protective film 130 and incident on the light receiving surface. In this case, the light can be efficiently received in the vicinity of the position of the foot of the perpendicular line that is lowered from the light emitting point (where the light is generated) toward the light receiving surface. In other words, the light diffusion can be suppressed by the many optical interfaces guiding the light toward the light receiving surface.
  • the thickness of the protective film 130 at the tip of the scintillator 110 is thin, the light emitted from the tip of the scintillator 110 is scattered and spreads in the protective film 130 between the tip of the scintillator 110 and the light receiving surface. Can also be suppressed. As a result, diffusion of light generated in the scintillator 110 is suppressed, and a radiation detection apparatus with high spatial resolution can be obtained.
  • the protective film 130 has a two-layer structure of the first layer 131 and the second layer 132, but is not limited thereto.
  • a three-layer structure in which a layer using a fluororesin is further formed so as to cover the first layer 131 and the second layer 132 may be used.
  • a metal alkoxide and a part of the metal may be oxygen.
  • a four-layer structure in which a layer containing a crosslinked product is formed may be used.
  • metal alkoxide used for the second layer 132 a metal alkoxide represented by the following general formula (1) may be used.
  • M1 is at least one selected from silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr).
  • R is at least one selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • M1 may be phosphorus (P), boron (B), hafnium (Hf), or tantalum (Ta).
  • the metal alkoxide a metal-substituted derivative in which a halogen, an amino group and a hydrogen atom thereof are substituted, or acetylene may be used. These also react with water to cause hydrolysis and form a hydroxyl group on the metal atom.
  • tetraethyl orthosilicate Si (OC 2 H 5 ) 4
  • TEOS tetraethyl orthosilicate
  • the metal alkoxide precursor may be n when M1 is Si, Ti and Zr, and n may be 3 when M1 is Al.
  • the second layer 132 constituting the protective film 130 may include a hydroxyl group bonded to a metal atom. Hydroxyl groups can hydrogen bond with water molecules and trap water molecules. However, at the same time, the affinity for water is increased, so that when there are excessive hydroxyl groups, the permeability of water molecules is increased. For this reason, in the second layer 132, the stoichiometric ratio of the hydroxyl group to the metal atoms contained in the second layer 132 may be 2.5 or less, and may be 2 or less.
  • the second layer 132 constituting the protective film 130 may contain hydrogen atoms bonded to metal atoms.
  • the ratio of metal atoms having a structure in which all the bonds are bonded to other metal atoms through oxygen is increased, structural distortion may occur in the second layer 132, and cracks may occur. Therefore, the generation of cracks can be prevented by including a bond between a metal atom and a hydrogen atom.
  • the ratio of the bond between the metal atom and the hydrogen atom increases, a small gap increases in the structure of the second layer 132. Therefore, in the second layer 132, the stoichiometric ratio of hydrogen atoms to metal atoms contained in the second layer 132 may be 1 or less.
  • the protective film 130 has a two-layer structure as described above.
  • the first layer 131 is formed by spraying using a fluorine-based coating agent used as a moisture-proof coating agent. Also good.
  • a fluorine-based coating agent used as a moisture-proof coating agent.
  • Novec 2702 registered trademark
  • Novec 7200 registered trademark
  • the first layer 131 can be formed in a desired thickness.
  • the first layer 131 can be formed to have a thickness of 20 nm or less by diluting with a solvent 30 times and performing application by spraying. After the scintillator 110 is formed by a vacuum deposition method, the first layer 131 is quickly formed when the scintillator 110 is taken out of the vacuum vessel. It has been confirmed from the measurement of spatial resolution, which will be described later, that the moisture-proof effect of about several hours can be obtained by the first layer 131 made of a fluororesin formed using a fluorine-based coating agent. Therefore, the second layer 132 may be formed within a time during which the moistureproof effect can be maintained. In designing the formation process of the protective film 130, it is not necessary to store the substrate 120 on which the scintillator 110 is formed in a vacuum, and the inspection can be performed in the atmosphere. large.
  • the second layer 132 can be formed by causing a reaction by bringing the metal alkoxide into contact with the scintillator 110 having a plurality of columnar crystals held on the substrate 120. By activating the metal alkoxide, the reaction for forming the second layer 132 is promoted. As an activation method, heat, plasma, chemical reaction, or the like can be used. By appropriately controlling the activation of the metal alkoxide, the scintillator 110 can be covered with the second layer 132 constituting the protective film 130 from each tip of the columnar structure of the scintillator 110 to a portion close to the back substrate 120. . By covering the back of the columnar crystal of the scintillator 110 with the second layer 132, it can be expected to suppress the deterioration of the scintillator 110 even with the protective film 130 having a thinner thickness.
  • the scintillator 110 used for the scintillator plate 100 of this embodiment will be described.
  • the scintillator 110 is an aggregate of a plurality of columnar crystals that are formed on the substrate 120 and project from the surface of the substrate 120, and converts incident radiation into light.
  • the scintillator 110 absorbs the energy of incident radiation and can emit light in the range from 300 nm to 800 nm, that is, light from ultraviolet light to infrared light centering on so-called visible light.
  • the major axis of the columnar crystal of the scintillator 110 may intersect the substrate 120 perpendicularly, but does not have to be strictly perpendicular and may be inclined.
  • the light emitted from the scintillator 110 needs to be guided to the light receiving surface while propagating through the scintillator 110.
  • the angle formed by the long axis of the columnar crystal of the scintillator 110 and the perpendicular of the surface of the substrate 120 on which the scintillator 110 is formed may be less than 45 degrees.
  • the inclination of each columnar crystal of the scintillator 110 may not be uniform.
  • the scintillator 110 can include a large number of optical interfaces having an angle of less than 45 degrees with respect to the normal to the surface of the substrate 120.
  • the optical interface between the scintillator 110 and the protective film 130 is substantially equal to the optical interface between the scintillator 110 and air, and light diffusion is reduced. Can be suppressed.
  • the columnar crystal may be cylindrical or polygonal. Further, the scintillator 110 does not need to have a uniform columnar crystal, and the scintillator 110 may include, for example, a columnar crystal and a polygonal columnar crystal. Furthermore, the thickness of each columnar crystal of the scintillator 110 need not be uniform. Here, the thickness of the columnar crystal refers to the thickness in the direction orthogonal to the major axis of the columnar crystal that grows in the direction intersecting with the substrate 120 described above. In the scintillator 110, the thickness of each columnar crystal may be distributed.
  • each columnar crystal of the scintillator 110 may be not less than 0.1 ⁇ m and not more than 50 ⁇ m, and may be not less than 0.1 ⁇ m and not more than 15 ⁇ m.
  • the thickness of the columnar crystal of the scintillator 110 is less than 0.1 ⁇ m, the thickness of the columnar crystal is smaller than the wavelength of light generated in the scintillator 110, so that geometric light diffraction and optical scattering are reduced. It may be difficult to cause the light to be guided toward the light receiving surface. For this reason, light diffuses out of the columnar crystal of the scintillator 110, which can be a factor of reducing the spatial resolution in a radiation detector using such a scintillator 110.
  • each columnar crystal of the scintillator 110 is larger than 50 ⁇ m, for example, not only a high spatial frequency region such as 10 LP / mm but also a spatial resolution in a low spatial frequency region such as 1 LP / mm is reduced. It can be.
  • the thickness in the columnar crystal does not need to be uniform, and even if the change in thickness from one end to the other end is 50 ⁇ m or less, for example. Good.
  • the columnar crystal includes a needle-like structure that is thick on the side of the substrate 120 and becomes tapered as the distance from the substrate 120 increases.
  • the tip of the scintillator 110 (the end opposite to the side in contact with the substrate 120) is 50 ⁇ m or thinner than other portions such as the portion in contact with the substrate 120 of the scintillator 110. It may be.
  • the cross-sectional shape of the columnar crystal of the scintillator 110 may not be uniform from one end to the other end.
  • a crystal that has a polygonal columnar shape in a portion close to the substrate 120 is As the distance increases, it may change to a cylindrical shape.
  • the length (height) of the scintillator 110 is the length of the major axis of the columnar crystal, and it is better that the variation in the length of each columnar crystal of the scintillator 110 is smaller, even if the length is uniform. Good.
  • the length is not necessarily uniform, and the scintillator 110 may have a long columnar crystal and a short columnar crystal. Even when light leaks from the end of the short columnar crystal, the light can enter the adjacent columnar crystal and propagate through the columnar crystal of the scintillator 110 as it is toward the light receiving surface. Therefore, even the scintillator 110 in which long and short columnar crystals are mixed can suppress light diffusion and thus has optical waveguide properties.
  • the length of the long axis of each columnar crystal of the scintillator 110 does not greatly affect the effect of the present embodiment, and the effect of the present embodiment can be achieved regardless of whether the scintillator 110 is short or long. Therefore, the length of the scintillator 110 is not particularly limited, but may be 100 nm or more and 10 cm or less in consideration of a realistic manufacturing process. Furthermore, the length of the scintillator 110 may be 1 ⁇ m or more and 1 cm or less.
  • the columnar crystals adjacent to each other of the scintillator 110 may have independent columnar structures in which the distance between the side surfaces is 200 nm or more and 1 ⁇ m or less. However, the columnar crystals are not completely separated from each other, and the optical interface may exist intermittently in a direction intersecting the surface of the scintillator 110. Even when the optical interface is intermittently present, the scintillator 110 can have optical waveguide properties. A plurality of voids or light scatterers may exist in the scintillator 110. Light is scattered by the air gap or the light scatterer, but the scattered light can enter the columnar crystal of the nearby scintillator 110 and propagate toward the light receiving surface.
  • the scintillator 110 can have optical waveguide properties even if a plurality of voids or scatterers are included therein. Further, the scintillator 110 may have a flat end at each columnar crystal. In that case, the unevenness with the light receiving surface is reduced, and it can be expected that the light is efficiently received by the light receiving surface.
  • the scintillator 110 As a material for forming the scintillator 110, various known scintillator materials can be used. In this embodiment, since the scintillator 110 is covered with the thin protective film 130 and is not easily affected by water molecules, a material that deteriorates in contact with water molecules can be used as the scintillator 110. Specifically, the scintillator 110 includes a compound having deliquescence, and among them, a halide such as a metal halide can be used. When a metal halide is exposed to the atmosphere, it deliquesces and its structure changes. When the deliquescent structure changes, the light propagating in the scintillator 110 diffuses out of the scintillator 110, and the spatial resolution in the radiation detector can be reduced.
  • the present embodiment is not limited to deliquescence, but can be applied to the scintillator 110 using a material that degrades by contact with water molecules and can reduce the spatial resolution in the radiation detector.
  • CsI alkali halide
  • CsI has high conversion efficiency of X-rays into visible light in radiation.
  • CsI can easily form the scintillator 110 having columnar crystals by vapor deposition, and can increase the length of the scintillator 110. Since CsI alone does not have sufficient luminous efficiency, an activator is added. For example, indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), or the like is used as the activator.
  • the scintillator 110 can be formed using an additive containing one or more Tl compounds and CsI as a raw material for forming a CsI scintillator containing Tl.
  • CsI Tl has a broad emission wavelength from 400 nm to 750 nm.
  • Tl compound containing one or more types of Tl compounds monovalent and trivalent oxidation number compounds can be used.
  • TlI thallium iodide
  • TlBr thallium bromide
  • TlCl thallium chloride
  • TlF, TlF 3 thallium fluoride
  • the content of the activator may be appropriately adjusted according to the target performance. For example, it may be 0.01 mol% or more and 20 mol% or less with respect to CsI.
  • an alkali halide represented by the following general formula (2) may be used.
  • M2 is at least one selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs).
  • M3 is from beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), cadmium (Cd), copper (Cu), and nickel (Ni) At least one selected.
  • M4 is scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), aluminum (Al), gallium (Ga), and At least one selected from indium (In).
  • X1, X2, and X3 are each independently at least one selected from fluorine (F), chlorine, (Cl), bromine (Br), and iodine (I).
  • A1 is Eu, Tb, In, bismuth (Bi), Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, thallium (Tl), Na, silver (Ag), It is at least one selected from Cu and Mg.
  • ⁇ , ⁇ , and ⁇ represent numerical values in the ranges of 0 ⁇ ⁇ ⁇ 0.5, 0 ⁇ ⁇ ⁇ 0.5, and 0 ⁇ ⁇ 0.2, respectively.
  • a halide compound can be used in addition to the above-mentioned alkali halide, and a rare earth activated alkaline earth metal fluoride halogen compound represented by the general formula (3) may also be used.
  • M5 is at least one alkaline earth metal atom selected from Ba, Sr, and Ca.
  • A2 is at least one rare earth atom selected from Ce, Pr, Sm, Eu, Tb, Dy, Ho, Nd, Er, Tm, and Yb.
  • X4 is at least one halogen atom selected from Cl, Br, and I.
  • represents a numerical value within a range of 0 ⁇ ⁇ 0.2.
  • a compound other than the above-described halide compound may be used as the scintillator 110.
  • LnTaO 4 (Nb, Gd) system
  • Ln 2 SiO 5 Ce system
  • LnO X Tm system
  • Gd 2 O 2 S Tb
  • Gd 2 O 2 S Pr, Ce, ZnWO 4
  • LuAlO 3 Ce
  • Gd 3 Ga 5 O 12 Cr, HfO 2 and the like.
  • the substrate 120 may be a solid that can hold the scintillator 110.
  • a sensor panel in which a substrate formed of a material such as a metal and its oxide, a semiconductor and its oxide, glass, or resin, or a photoelectric conversion element for detecting light on these substrates is formed on the substrate 120. Can be used as
  • FIG. 2 is a cross-sectional view of a radiation detection apparatus 200 including the scintillator plate 100 of the present embodiment.
  • the radiation detection apparatus 200 includes a sensor panel 201 in addition to the scintillator plate 100 described above.
  • the sensor panel 201 includes a light detection unit 203 disposed on the substrate 202.
  • the light detection unit 203 is provided with a plurality of photoelectric conversion elements 204 for detecting light converted from radiation by the scintillator 110.
  • the radiation detection apparatus 200 detects radiation when light converted from radiation by the scintillator 110 enters the light receiving surface of the photoelectric conversion element 204.
  • the scintillator plate 100 is arranged such that the substrate 120 shown in FIG. 1 is outside the radiation detection apparatus 200, and the scintillator 110 and the photoelectric conversion element 204 are arranged to face each other.
  • a bonding layer 205 using an adhesive or the like may be provided between the scintillator plate 100 and the sensor panel 201.
  • the coupling layer 205 may have a function of protecting the scintillator plate 100 and the photoelectric conversion element 204 in addition to integrating the scintillator plate 100 and the sensor panel 201. Further, the coupling layer 205 may have a function of optically connecting the scintillator 110 and the light receiving surface of the photoelectric conversion element 204.
  • the bonding layer 205 may have a stacked structure in which two or more different materials are stacked.
  • the radiation detection apparatus 200 shown in FIG. 2 can be manufactured by combining the scintillator plate 100 and the sensor panel 201.
  • the scintillator plate 100 may have a reflective layer between the substrate 120 and the scintillator plate 100, the surface opposite to the surface of the scintillator plate 100 that contacts the sensor panel 201.
  • About half of the light generated by the scintillator 110 proceeds to the surface in contact with the sensor panel 201, but the other half can travel to the substrate 120 side. This light can be advanced in the direction of the sensor panel 201 by the reflective layer, and the light reaching the photoelectric conversion element 204 can be increased.
  • the reflective layer the sensitivity of the radiation detection apparatus 200 to radiation can be increased.
  • the scintillator plate 100 and the sensor panel 201 are bonded via the bonding layer 205.
  • the scintillator 110 and the protective film 130 may be formed on the sensor panel 201.
  • the sensor panel 201 can also serve as the substrate 120.
  • the scintillator 110 was formed on the substrate 120 using Si by a heating vapor deposition method.
  • a heating boat in a vacuum vessel was filled with CsI raw material powder, and four substrates 120 were mounted on a rotating disk so as to face the heating boat. Further, a boat different from the boat filled with the CsI raw material powder was installed in the vacuum vessel, and this boat was filled with the TlI raw material powder as the light emission center.
  • the inside of the vacuum vessel was put into a high vacuum state with a vacuum pump, and the scintillator 110 was formed on the substrate 120 while rotating the substrate 120 in the vacuum vessel.
  • the vacuum vessel containing the substrate was adjusted to atmospheric pressure using nitrogen gas.
  • the door of the vacuum vessel was opened, and fluorine resin was formed as the first layer 131 by immediately spraying a fluorine-based coating agent on three of the four substrates 120 on which the scintillator 110 was formed.
  • the fluorine-based coating agent 3M Japan Co., Ltd. Novec2702 (registered trademark) was diluted 30 times with Novec7200 (registered trademark) as a solvent.
  • the remaining one of the four substrates 120 on which the scintillator 110 was formed did not form the protective film 130 including the first layer 131, and was used as the scintillator plate of Comparative Example 1.
  • a second layer 132 including a metal alkoxide and a crosslinked body in which some metal atoms of the metal alkoxide are crosslinked with oxygen is formed on the surface of the scintillator 110 on which the first layer 131 is formed.
  • TEOS was used as a precursor of ethyl silicate.
  • the formed second layer 132 includes Si and an ethyl group.
  • a protective film in which the first layer 131 containing a fluororesin and the second layer 132 containing a metal alkoxide and a crosslinked body in which some metal atoms of the metal alkoxide are crosslinked with oxygen are laminated. 130 was formed, and the scintillator plate 100 of Example 1 was obtained.
  • another substrate 120 on which the first layer 131 is formed is exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for 60 minutes, and then the second layer 132 is formed.
  • the scintillator plate 100 of Example 2 was obtained. Further, among the substrates 120 on which the first layer 131 is formed, the other one of them is the scintillator plate of Comparative Example 2 in which only the first layer 131 is formed and the second layer 132 is not formed. It was.
  • MTF Modulation Transfer Function
  • a general edge method was used as a method for evaluating the resolution.
  • the quality of the X-ray used was RQA5 (radiation source: tungsten, tube voltage: 70 kV, tube current: 0.5 mA, filter: aluminum having a thickness of 21 mm).
  • MTF measurement is performed by pressing the samples of Examples 1 and 2 and Comparative Examples 1 and 2 against a CCD (Charge-Coupled Device) with a FOP (Fiber Optic Plate) and irradiating an evaluation X-ray. Went.
  • the results of MTF evaluation will be described below.
  • the scintillator plate 100 of Example 1 was exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for 100 minutes, and then MTF evaluation was performed. Further, after being exposed to the air atmosphere (room temperature 25 ° C., humidity 45%) for one week (about 10,000 minutes), the scintillator plate 100 of Example 1 was evaluated for MTF. At each measurement timing, the scintillator plate of Comparative Example 2 in which only the first layer 131 was formed was also measured. The results are shown in FIG.
  • the scintillator plate 100 of Example 1 has substantially the same MTF after being exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for one week after the second layer 132 is formed. It was found to be extremely stable. Further, from the result of the scintillator plate of Comparative Example 2, even when the first layer 131 was formed and exposed to the air atmosphere for 100 minutes, the MTF was not significantly different from that of Example 1. On the other hand, it was found that the MTF of the scintillator plate of Comparative Example 2 was lowered by exposure to the air atmosphere for one week. This is because the first layer 131 alone cannot prevent water molecules from acting on the scintillator 110 in the long term and causing the scintillator 110 to deliquesce.
  • the scintillator plate 100 of the present embodiment can effectively suppress the deliquescence of the scintillator 110 even when the protective film 130 has a thin film thickness of 50 nm or less.
  • X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through the chest 6062 of the patient or subject 6061 and enter the radiation detection apparatus 200 of the present invention.
  • This incident X-ray includes information inside the body of the patient or subject 6061.
  • the scintillator 110 emits light in response to the incidence of the X-ray 6060, and this is photoelectrically converted by the photoelectric conversion element 204 to obtain electrical information.
  • This information is converted into digital data, image-processed by an image processor 6070 as a signal processing unit, and can be observed on a display 6080 as a display unit of a control room.
  • this information can be transferred to a remote place by a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet.
  • a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet.
  • a display 6081 which is a display unit such as a doctor room in another place, and a doctor in a remote place can make a diagnosis.
  • this information can be recorded on a recording medium such as an optical disk, and can also be recorded on a film 6110 serving as a recording medium by the film processor 6100.

Abstract

A scintillator plate which comprises: a scintillator that has a plurality of columnar crystals arranged on a substrate; and a protective film that covers the scintillator. The protective film comprises a first layer and a second layer that covers the first layer; the first layer contains a fluorine resin; and the second layer contains a metal alkoxide and a crosslinked body that is obtained by crosslinking some of the metal atoms contained in the metal alkoxide by means of oxygen.

Description

シンチレータプレート、放射線検出装置および放射線検出システムScintillator plate, radiation detection apparatus and radiation detection system
 本発明は、シンチレータプレート、放射線検出装置および放射線検出システムに関するものである。 The present invention relates to a scintillator plate, a radiation detection apparatus, and a radiation detection system.
 放射線を光に変換するシンチレータと、シンチレータによって変換された光を検出する光電変換素子と、を組み合わせた放射線検出装置が広く用いられている。シンチレータには、放射線から変換された光を光電変換素子に効率よく伝搬させることが求められる。光を効率よく伝搬させるために、柱状結晶(針状結晶とも呼ばれうる)を有するシンチレータを用い、柱状結晶内で光を伝搬させることが知られている。柱状結晶を有するシンチレータとして、CsIに代表されるアルカリハライド結晶が広く用いられるが、アルカリハライド結晶は潮解性を示し、大気暴露をすると大気に含まれる水蒸気によって容易に潮解、変質してしまう。特許文献1には、シンチレータと大気中の水蒸気との接触を防止するためにシンチレータをポリパラキシリレン膜で覆い、シンチレータの潮解を抑制することが示されている。 Radiation detection apparatuses that combine a scintillator that converts radiation into light and a photoelectric conversion element that detects light converted by the scintillator are widely used. The scintillator is required to efficiently propagate light converted from radiation to the photoelectric conversion element. In order to propagate light efficiently, it is known to use a scintillator having a columnar crystal (which may also be referred to as a needle-like crystal) to propagate light within the columnar crystal. Alkali halide crystals typified by CsI are widely used as scintillators having columnar crystals, but alkali halide crystals exhibit deliquescence, and when exposed to the atmosphere, they are easily deliquescent and altered by water vapor contained in the atmosphere. Patent Document 1 discloses that the scintillator is covered with a polyparaxylylene film in order to prevent contact between the scintillator and water vapor in the atmosphere, thereby suppressing deliquescence of the scintillator.
特開2000-9845号公報Japanese Patent Laid-Open No. 2000-9845
 大気中の水蒸気からシンチレータを保護するための保護膜として、特許文献1に示されるように厚いポリパラキシリレン膜を用いた場合、シンチレータの潮解を抑制する効果は向上する。一方、保護膜を厚くすると、放射線検出装置の空間分解能が低下する可能性がある。しかしながら、ポリパラキシリレン膜を用いた保護膜を薄くするとシンチレータの潮解を抑制する効果が低下する。 When a thick polyparaxylylene film is used as a protective film for protecting the scintillator from water vapor in the atmosphere as shown in Patent Document 1, the effect of suppressing the deliquescence of the scintillator is improved. On the other hand, when the protective film is thickened, the spatial resolution of the radiation detection apparatus may be reduced. However, if the protective film using the polyparaxylylene film is thinned, the effect of suppressing the deliquescence of the scintillator is lowered.
 本発明は、シンチレータの特性の劣化を抑制するのに有利な技術を提供することを目的とする。 The object of the present invention is to provide a technique advantageous for suppressing deterioration of the characteristics of the scintillator.
 上記課題に鑑みて、本発明の実施形態に係るシンチレータプレートは、基板の上に配された複数の柱状結晶を有するシンチレータと、シンチレータを覆う保護膜と、を含むシンチレータプレートであって、保護膜は、第1の層と、第1の層を覆う第2の層と、を含み、第1の層は、フッ素樹脂を含み、第2の層は、金属アルコキシドと、金属アルコキシドに含まれる一部の金属原子間が酸素によって架橋された架橋体と、を含むことを特徴とする。 In view of the above problems, a scintillator plate according to an embodiment of the present invention is a scintillator plate that includes a scintillator having a plurality of columnar crystals arranged on a substrate, and a protective film that covers the scintillator. Includes a first layer and a second layer covering the first layer, the first layer includes a fluororesin, and the second layer is included in the metal alkoxide and the metal alkoxide. And a cross-linked product in which part of metal atoms are cross-linked with oxygen.
 上記手段によって、シンチレータの特性の劣化を抑制するのに有利な技術を提供する。 The above means provides a technique advantageous for suppressing deterioration of the characteristics of the scintillator.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の実施形態に係るシンチレータプレートの構成例を示す断面図。 図1のシンチレータプレートを用いた放射線検出装置の構成例を示す断面図。 図1のシンチレータプレートのMTF評価の結果を示す図。 図1のシンチレータプレートのMTF評価の結果を示す図。 図2の放射線検出装置を用いた放射線検出システムの構成例を示す図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
Sectional drawing which shows the structural example of the scintillator plate which concerns on embodiment of this invention. Sectional drawing which shows the structural example of the radiation detection apparatus using the scintillator plate of FIG. The figure which shows the result of MTF evaluation of the scintillator plate of FIG. The figure which shows the result of MTF evaluation of the scintillator plate of FIG. The figure which shows the structural example of the radiation detection system using the radiation detection apparatus of FIG.
 以下、本発明に係るシンチレータプレート、放射線検出装置および放射線検出システムの具体的な実施形態を、添付図面を参照して説明する。なお、本発明における放射線には、放射線崩壊によって放出される粒子(光子を含む)の作るビームであるα線、β線、γ線などの他に、同程度以上のエネルギを有するビーム、例えばX線や粒子線、宇宙線なども含みうる。 Hereinafter, specific embodiments of a scintillator plate, a radiation detection apparatus, and a radiation detection system according to the present invention will be described with reference to the accompanying drawings. The radiation in the present invention includes a beam having energy of the same degree or more, such as X-rays, β-rays, γ-rays, etc., which are beams formed by particles (including photons) emitted by radiation decay, such as X It can also include rays, particle rays, and cosmic rays.
 図1を参照して、本発明の実施形態によるシンチレータプレートの構成について説明する。図1は、本発明の実施形態によるシンチレータプレート100の構成を示す断面図である。シンチレータプレート100は、入射した放射線を光に変換するシンチレータ110と、シンチレータ110を保持する基板120と、シンチレータ110を覆う保護膜130とを含む。本実施形態において、シンチレータ110は、複数の柱状結晶によって構成される。また、保護膜130は、第1の層131と、第1の層131を覆う第2の層132との積層構造を有する。 With reference to FIG. 1, the structure of the scintillator plate according to the embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing a configuration of a scintillator plate 100 according to an embodiment of the present invention. The scintillator plate 100 includes a scintillator 110 that converts incident radiation into light, a substrate 120 that holds the scintillator 110, and a protective film 130 that covers the scintillator 110. In the present embodiment, the scintillator 110 is composed of a plurality of columnar crystals. The protective film 130 has a stacked structure of a first layer 131 and a second layer 132 that covers the first layer 131.
 まず、保護膜130について詳細に説明する。保護膜130は、ヨウ化セシウム(CsI)など潮解性を示すシンチレータ110を保護するために設けられる。保護膜130のうち第1の層131には、フッ素樹脂が用いられ、シンチレータ110の柱状構造の結晶体(柱状結晶)に接しうる。また、保護膜130のうち第2の層132は、金属アルコキシドと、金属アルコキシドに含まれる一部の金属原子間が酸素によって架橋された架橋体とによって構成される。第2の層132は、第1の層131のシンチレータ110とは反対側を覆い、第1の層131と接しうる。第2の層132は、必ずしも第1の層131を介してシンチレータ110を覆うことはなく、部分によっては、第2の層132が、シンチレータ110と接していてもよい。 First, the protective film 130 will be described in detail. The protective film 130 is provided to protect the scintillator 110 that exhibits deliquescence such as cesium iodide (CsI). A fluororesin is used for the first layer 131 of the protective film 130 and can be in contact with a columnar crystal body (columnar crystal) of the scintillator 110. The second layer 132 of the protective film 130 includes a metal alkoxide and a crosslinked body in which some metal atoms included in the metal alkoxide are crosslinked with oxygen. The second layer 132 covers the side of the first layer 131 opposite to the scintillator 110 and can be in contact with the first layer 131. The second layer 132 does not necessarily cover the scintillator 110 via the first layer 131, and the second layer 132 may be in contact with the scintillator 110 depending on the portion.
 第1の層131に用いるフッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)など、構成する分子にフッ素を含む材料が用いられてもよい。また、第1の層131に用いるフッ素樹脂の形成方法として、防湿コート剤として用いられるフッ素系コーティング剤を用いて、スプレーを用いた塗布によって第1の層131を形成してもよい。フッ素樹脂を溶媒で希釈し固形分濃度を低くすることによって、第1の層131の膜厚を薄くすることができる。 As the fluororesin used for the first layer 131, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoro Materials that contain fluorine in the constituent molecules such as ethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE) are used May be. Further, as a method for forming the fluororesin used for the first layer 131, the first layer 131 may be formed by application using a spray using a fluorine-based coating agent used as a moisture-proof coating agent. The film thickness of the first layer 131 can be reduced by diluting the fluororesin with a solvent to reduce the solid concentration.
 しかしながら、フッ素樹脂を用いた第1の層131の膜厚を薄くした場合、第1の層131だけでは、シンチレータ110を保護するための保護膜として不十分な可能性がある。これは、第1の層131の膜厚が薄いため、水分子の侵入を十分に抑止することができない場合や、シンチレータ110を被覆することができない部位ができる可能性があるためである。これを防ぐために、後述する第2の層132を第1の層131を覆うように形成する。第1の層131を、上述のようにスプレーを用いた塗布によって形成する場合、比較的簡便に第1の層131を形成することが可能である。このため、真空蒸着法などを用いてシンチレータ110を形成した後、シンチレータ110が形成された基板120を真空容器外に取り出す際、直ちにシンチレータ110を覆う第1の層131が形成できる。その後、第2の層132を形成する。第1の層131の形成後、第2の層132を形成するまでの間、数時間程度であれば大気に暴露させても水分子の影響を実質的に抑制できることが、後述する発明者の実験(実施例)によって明らかになった。 However, when the thickness of the first layer 131 using a fluororesin is reduced, the first layer 131 alone may be insufficient as a protective film for protecting the scintillator 110. This is because the film thickness of the first layer 131 is thin, so that intrusion of water molecules cannot be sufficiently suppressed, or there may be a site where the scintillator 110 cannot be covered. In order to prevent this, a second layer 132 described later is formed so as to cover the first layer 131. When the first layer 131 is formed by application using spray as described above, the first layer 131 can be formed relatively easily. For this reason, after forming the scintillator 110 using a vacuum deposition method or the like, the first layer 131 covering the scintillator 110 can be formed immediately when the substrate 120 on which the scintillator 110 is formed is taken out of the vacuum container. Thereafter, the second layer 132 is formed. After the formation of the first layer 131, until the formation of the second layer 132, the influence of water molecules can be substantially suppressed even if exposed to the atmosphere for about several hours. It became clear by experiment (Example).
 第1の層131および第2の層132を含む保護膜130において、第1の層131を構成するフッ素樹脂が、短時間(数時間程度)であれば、水分子の影響を抑制できる機能を有する。さらに、第2の層132が金属アルコキシドとその架橋体とを含むことによって、第2の層132が、水分子を捕捉・消費する効果と、物理的に水分子を透過させない効果とを有する。これらの効果によって、シンチレータ110に対する水分子の影響を抑制することができる。特許文献1に示されるポリパラキシリレンを用いた保護膜は、水分子の透過を抑制するだけであるため、一度、保護膜を透過してしまった水分子は保護膜の内部に残り、シンチレータ110が、水分子に接触することによって劣化が進行しうる。これに対して、本実施形態において、第2の層132に用いられる金属アルコキシドは、水分子と接触すると水分子を消費して加水分解を起こし、金属原子に結合した水酸基とアルコール分子とを生じる。このため、保護膜130は、水分子が保護膜130を透過してしまった場合でも、再び、水分を捕獲・消費することによってシンチレータ110への水分子の影響を抑制することができる。このため、保護膜130において、第1の層131の膜厚を薄くするだけでなく、第2の層132の膜厚を薄くし、保護膜130全体での膜厚を薄くしても、シンチレータ110の劣化を抑制することが可能となる。 The protective film 130 including the first layer 131 and the second layer 132 has a function of suppressing the influence of water molecules if the fluororesin constituting the first layer 131 is in a short time (about several hours). Have. Furthermore, since the second layer 132 contains a metal alkoxide and a cross-linked product thereof, the second layer 132 has an effect of capturing and consuming water molecules and an effect of not allowing water molecules to physically permeate. By these effects, the influence of water molecules on the scintillator 110 can be suppressed. Since the protective film using polyparaxylylene disclosed in Patent Document 1 only suppresses the permeation of water molecules, the water molecules that have once permeated the protective film remain inside the protective film, and the scintillator Degradation can proceed by contacting 110 with water molecules. On the other hand, in this embodiment, the metal alkoxide used for the second layer 132 consumes water molecules when contacted with water molecules, causes hydrolysis, and generates hydroxyl groups and alcohol molecules bonded to metal atoms. . For this reason, the protective film 130 can suppress the influence of the water molecules on the scintillator 110 by capturing and consuming the water again even when the water molecules permeate the protective film 130. For this reason, in the protective film 130, not only the thickness of the first layer 131 is reduced, but also the thickness of the second layer 132 is reduced and the thickness of the entire protective film 130 is reduced. 110 can be prevented from deteriorating.
 ここで、第2の層132に含まれる金属アルコキシドの一部の金属原子が酸素で架橋された架橋体において、金属原子に対するアルコキシド原子の化学量論比が0.02以上かつ1以下であってもよい。アルコキシド原子とは、金属アルコキシドに含まれる原子のうち金属以外の原子のことを言う。また、金属原子に対するアルコキシド原子の化学量論比が、第2の層132の全体において、0.02以上かつ1以下であってもよい。アルコキシドの量は、金属アルコキシドを架橋する反応時の活性化を調整することによって制御可能であり、例えば、金属アルコキシドの活性化量を増やすと、生成物である架橋体のアルコキシドの量が減少する。第2の層132を構成する金属アルコキシドとその架橋体との化合物中に含まれるアルコキシドは、フーリエ変換型赤外分光(FT-IR)法や飛行時間型二次イオン質量分析(TOF-SIMS)法によって定性分析できる。また、化合物中に含まれるアルコキシドは、FT-IRやX線光電子分光(XPS)法によって定量分析できる。ただし、XPS法を用いて定量分析を行う場合、炭素(C)がアルコキシド以外に含まれない化合物でなければならない。また、FT-IRを用いて定量分析を行う場合、まず、Cがアルコキシドにのみ含まれる化合物を作成し、XPS法によって定量分析を行う。次いで、FT-IR法によって、Cがアルコキシドにのみ含まれる化合物を測定し、検量線を作成する。その後、所望の金属アルコキシドとその架橋体を含む化合物を測定することによって、定量分析をすることができる。 Here, in the crosslinked body in which some metal atoms of the metal alkoxide included in the second layer 132 are crosslinked with oxygen, the stoichiometric ratio of the alkoxide atoms to the metal atoms is 0.02 or more and 1 or less. Also good. An alkoxide atom means atoms other than a metal among the atoms contained in a metal alkoxide. Further, the stoichiometric ratio of the alkoxide atom to the metal atom may be 0.02 or more and 1 or less in the entire second layer 132. The amount of the alkoxide can be controlled by adjusting the activation during the reaction for crosslinking the metal alkoxide. For example, when the activation amount of the metal alkoxide is increased, the amount of the alkoxide of the crosslinked product is reduced. . The alkoxide contained in the compound of the metal alkoxide constituting the second layer 132 and its cross-linked product may be Fourier transform infrared spectroscopy (FT-IR) or time-of-flight secondary ion mass spectrometry (TOF-SIMS). Qualitative analysis can be performed by law. The alkoxide contained in the compound can be quantitatively analyzed by FT-IR or X-ray photoelectron spectroscopy (XPS). However, when quantitative analysis is performed using the XPS method, the compound must contain carbon (C) other than alkoxide. In addition, when performing quantitative analysis using FT-IR, first, a compound in which C is contained only in alkoxide is prepared, and quantitative analysis is performed by XPS method. Subsequently, a calibration curve is prepared by measuring a compound in which C is contained only in the alkoxide by the FT-IR method. Thereafter, quantitative analysis can be performed by measuring a compound containing the desired metal alkoxide and its crosslinked product.
 金属原子に対して架橋体中のアルコキシドの量が多くなると、保護膜130を構成する第2の層132の架橋体が少なくなり、保護膜130全体での強度が弱くなりうる。また、保護膜130の密度が低下し、水分子を透過しやすくなりうる。一方、金属原子に対して架橋体中のアルコキシドの量が少なくなると、水分子を捕獲・消費する効果が小さくなり、シンチレータ110の劣化を抑制する効果が低くなりうる。このため、上述のように、架橋体中に含まれるアルコキシドの原子の量を適正に調整するとよい。 When the amount of the alkoxide in the crosslinked body increases with respect to the metal atoms, the crosslinked body of the second layer 132 constituting the protective film 130 decreases, and the strength of the entire protective film 130 may be weakened. In addition, the density of the protective film 130 may be reduced, and water molecules may be easily transmitted. On the other hand, when the amount of the alkoxide in the crosslinked body with respect to the metal atom is reduced, the effect of capturing and consuming water molecules is reduced, and the effect of suppressing the deterioration of the scintillator 110 can be reduced. For this reason, as described above, the amount of alkoxide atoms contained in the crosslinked product may be appropriately adjusted.
 保護膜130の膜厚は、100nm以下であってもよい。シンチレータ110中で放射線から変換された光は、シンチレータ110と空気との屈折率の差によって、シンチレータ110の柱状結晶の中を導波して伝わる。一方、シンチレータ110と保護膜130との屈折率の差は、シンチレータ110と空気との屈折率の差よりも小さい。保護膜130が、隣接するシンチレータ110の柱状結晶間の間隙を埋め込んだ場合、保護膜130を介して隣接する柱状結晶間で光が拡散してしまう可能性がある。柱状結晶間の空隙は、後述するシンチレータ110の柱状結晶の先端付近で200nm以上のため、保護膜130の膜厚を100nm以下とすると、柱状結晶間の空隙が残りうる。保護膜130の外側に空気がある場合、シンチレータ110の柱状結晶中を導波する光は、保護膜130と空気との間で反射し、柱状結晶と保護膜130とを合わせた構造体中を導波できる。結果として、光の拡散を抑制しうる。シンチレータ110の柱状結晶の空隙は一様でないため、狭い場所でも空隙を残すため、保護膜130の厚みは、可能なだけ薄くしてもよい。 The film thickness of the protective film 130 may be 100 nm or less. The light converted from the radiation in the scintillator 110 is guided through the columnar crystal of the scintillator 110 due to the difference in refractive index between the scintillator 110 and air. On the other hand, the difference in refractive index between the scintillator 110 and the protective film 130 is smaller than the difference in refractive index between the scintillator 110 and air. When the protective film 130 fills the gap between the columnar crystals of the adjacent scintillators 110, light may diffuse between the adjacent columnar crystals through the protective film 130. Since the gap between the columnar crystals is 200 nm or more near the tip of the columnar crystal of the scintillator 110 to be described later, if the film thickness of the protective film 130 is 100 nm or less, the gap between the columnar crystals may remain. When air is present outside the protective film 130, the light guided through the columnar crystal of the scintillator 110 is reflected between the protective film 130 and the air, and passes through the structure that combines the columnar crystal and the protective film 130. Can be guided. As a result, light diffusion can be suppressed. Since the voids of the columnar crystals of the scintillator 110 are not uniform, the thickness of the protective film 130 may be as thin as possible in order to leave the voids even in a narrow place.
 保護膜130のうち第1の層131の膜厚は、例えば100nm以下であってもよい。また、保護膜130を上述のように100nm以下とする場合、第2の層132の膜厚を考慮し、第1の層131の膜厚は、例えば50nm以下であってもよい。また、第2の層132は、膜厚が薄い場合でも水分子を捕捉・消費、また透過を抑制できる。このため、第2の層132の膜厚は、例えば100nm以下であってもよい。また、保護膜130を上述のように100nm以下とする場合、第1の層131の膜厚を考慮し、第2の層132の膜厚は、例えば50nm以下であってもよい。シンチレータ110において、柱状結晶間の間隙が局所的に狭い部分もあるため、保護膜130の膜厚は薄い方が、上述のように導波路としてよい。一方、保護膜130の膜厚が薄すぎる場合、水分子の透過を抑制する効果、水分子を捕獲・消費する効果が低下しうる。また、保護膜130の膜厚が薄すぎる場合、保護膜130自体の強度が低下しうる。このため、保護膜130の膜厚は、0.3nm以上であってもよい。第1の層131および第2の層132の膜厚は、シンチレータ110の劣化を抑制できる範囲で適宜設定可能である。 The film thickness of the first layer 131 in the protective film 130 may be, for example, 100 nm or less. When the protective film 130 is set to 100 nm or less as described above, the thickness of the first layer 131 may be, for example, 50 nm or less in consideration of the thickness of the second layer 132. Further, the second layer 132 can capture and consume water molecules and suppress permeation even when the film thickness is small. For this reason, the film thickness of the second layer 132 may be, for example, 100 nm or less. When the protective film 130 is set to 100 nm or less as described above, the thickness of the second layer 132 may be, for example, 50 nm or less in consideration of the thickness of the first layer 131. In the scintillator 110, since there is a portion where the gap between the columnar crystals is locally narrow, the thinner the protective film 130 may be as a waveguide as described above. On the other hand, when the protective film 130 is too thin, the effect of suppressing the permeation of water molecules and the effect of capturing and consuming water molecules can be reduced. In addition, when the thickness of the protective film 130 is too thin, the strength of the protective film 130 itself may be reduced. For this reason, the film thickness of the protective film 130 may be 0.3 nm or more. The film thicknesses of the first layer 131 and the second layer 132 can be appropriately set within a range in which deterioration of the scintillator 110 can be suppressed.
 また、保護膜130は、図1に示すように、シンチレータ110の柱状結晶を先端から側面にかけて1本ずつ、基板120まで覆っていてもよい。また例えば、保護膜130は、シンチレータ110の先端から側面にかけて少なくとも100μm以上、1本ずつ覆っていてもよい。ただし、シンチレータ110の隣接する柱状結晶同士が接触または近接している部分は、保護膜130に覆われていなくてもよい。 Further, as shown in FIG. 1, the protective film 130 may cover the columnar crystals of the scintillator 110 one by one from the tip to the side surface up to the substrate 120. Further, for example, the protective film 130 may cover at least 100 μm or more from the front end to the side surface of the scintillator 110 one by one. However, the portion where the adjacent columnar crystals of the scintillator 110 are in contact or close to each other may not be covered with the protective film 130.
 本実施形態に示すシンチレータプレート100を用いた放射線検出装置において、保護膜130を薄くすることによって、シンチレータ110で発生した光の多くが、シンチレータ110の柱状結晶内で全反射またはフレネル反射を繰り返す。その結果、発生した光の多くが、シンチレータ110および保護膜130内を導波し受光面に入射しうる。この場合、光は、発光点(光が発生した場所)から受光面に向けて下ろした垂線の足の位置付近に効率よく受光されうる。つまり、多数の光学界面が光を受光面に向かって導波することによって、光の拡散を抑制することができる。また、シンチレータ110の先端における保護膜130の膜厚が薄いことによって、シンチレータ110の先端から出射された光が、シンチレータ110の先端と受光面との間の保護膜130内で散乱して広がることも抑制されうる。結果として、シンチレータ110内で発生した光の拡散が抑制され、高い空間分解能の放射線検出装置が得られる。 In the radiation detection apparatus using the scintillator plate 100 shown in this embodiment, by thinning the protective film 130, most of the light generated in the scintillator 110 repeats total reflection or Fresnel reflection in the columnar crystal of the scintillator 110. As a result, much of the generated light can be guided through the scintillator 110 and the protective film 130 and incident on the light receiving surface. In this case, the light can be efficiently received in the vicinity of the position of the foot of the perpendicular line that is lowered from the light emitting point (where the light is generated) toward the light receiving surface. In other words, the light diffusion can be suppressed by the many optical interfaces guiding the light toward the light receiving surface. Further, since the thickness of the protective film 130 at the tip of the scintillator 110 is thin, the light emitted from the tip of the scintillator 110 is scattered and spreads in the protective film 130 between the tip of the scintillator 110 and the light receiving surface. Can also be suppressed. As a result, diffusion of light generated in the scintillator 110 is suppressed, and a radiation detection apparatus with high spatial resolution can be obtained.
 本実施形態において、保護膜130は、第1の層131と第2の層132との2層構造であるが、これに限られるものではない。第1の層131および第2の層132を覆うように、さらにフッ素樹脂を用いた層を形成した3層構造としてもよいし、その上に、さらに金属アルコキシドとその一部の金属が酸素で架橋された架橋体とを含む層を形成した4層構造であってもよい。 In this embodiment, the protective film 130 has a two-layer structure of the first layer 131 and the second layer 132, but is not limited thereto. A three-layer structure in which a layer using a fluororesin is further formed so as to cover the first layer 131 and the second layer 132 may be used. Further, a metal alkoxide and a part of the metal may be oxygen. A four-layer structure in which a layer containing a crosslinked product is formed may be used.
 第2の層132に用いる金属アルコキシドに、以下の一般式(1)で表される金属アルコキシドを用いてもよい。 As the metal alkoxide used for the second layer 132, a metal alkoxide represented by the following general formula (1) may be used.
 M1(OR) ・・・ (1) M1 (OR) n ... (1)
 ここで、M1は、シリコン(Si)、アルミニウム(Al)、チタン(Ti)、および、ジルコニウム(Zr)から選ばれる少なくとも1種である。Rは、メチル基、エチル基、プロピル基、イソプロピル基、および、ブチル基から選ばれる少なくとも1種である。また、M1が、リン(P)、ホウ素(B)、ハフニウム(Hf)、タンタル(Ta)であってもよい。また、金属アルコキシドとして、金属に、ハロゲン、アミノ基およびその水素原子が置換された誘導体、または、アセチレンが結合したものを用いてもよい。これらも、水と反応して加水分解を起こし金属原子に水酸基を生じる。 Here, M1 is at least one selected from silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr). R is at least one selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. M1 may be phosphorus (P), boron (B), hafnium (Hf), or tantalum (Ta). Further, as the metal alkoxide, a metal-substituted derivative in which a halogen, an amino group and a hydrogen atom thereof are substituted, or acetylene may be used. These also react with water to cause hydrolysis and form a hydroxyl group on the metal atom.
 例えば、後述する第2の層132を成膜する際の金属アルコキシドの前駆体として、オルトケイ酸テトラエチル(TEOS:Si(OC)を用いてもよい。また、上述の一般式(1)において、金属アルコキシドの前駆体は、M1がSi、TiおよびZrの場合nは4であり、M1がAlの場合nは3でありうる。 For example, tetraethyl orthosilicate (TEOS: Si (OC 2 H 5 ) 4 ) may be used as a precursor of a metal alkoxide when forming a second layer 132 described later. In the above general formula (1), the metal alkoxide precursor may be n when M1 is Si, Ti and Zr, and n may be 3 when M1 is Al.
 また、保護膜130を構成する第2の層132が、金属原子に結合した水酸基を含んでいてもよい。水酸基は水分子と水素結合し、水分子を捕捉することができる。しかしながら、同時に水への親和性が高くなってしまうため、過剰に水酸基を有する場合、水分子の透過性が高くなってしまう。このため、第2の層132において、第2の層132に含まれる金属原子に対する水酸基の化学量論比が2.5以下であってもよく、さらに2以下であってもよい。 Further, the second layer 132 constituting the protective film 130 may include a hydroxyl group bonded to a metal atom. Hydroxyl groups can hydrogen bond with water molecules and trap water molecules. However, at the same time, the affinity for water is increased, so that when there are excessive hydroxyl groups, the permeability of water molecules is increased. For this reason, in the second layer 132, the stoichiometric ratio of the hydroxyl group to the metal atoms contained in the second layer 132 may be 2.5 or less, and may be 2 or less.
 また、保護膜130を構成する第2の層132が、金属原子に結合した水素原子を含んでいてもよい。全ての結合が酸素を介して他の金属原子に結合した構造を有する金属原子の割合が高くなると、第2の層132中に構造的なひずみが生じ、クラックが発生する可能性がある。そのため、金属原子と水素原子との結合を含むことによって、クラックの発生を防止することができる。しかしながら、金属原子と水素原子との結合の割合が高くなると、第2の層132の構造に小さな隙間が増えてしまう。このため、第2の層132において、第2の層132に含まれる金属原子に対する水素原子の化学量論比が1以下であってもよい。 Further, the second layer 132 constituting the protective film 130 may contain hydrogen atoms bonded to metal atoms. When the ratio of metal atoms having a structure in which all the bonds are bonded to other metal atoms through oxygen is increased, structural distortion may occur in the second layer 132, and cracks may occur. Therefore, the generation of cracks can be prevented by including a bond between a metal atom and a hydrogen atom. However, when the ratio of the bond between the metal atom and the hydrogen atom increases, a small gap increases in the structure of the second layer 132. Therefore, in the second layer 132, the stoichiometric ratio of hydrogen atoms to metal atoms contained in the second layer 132 may be 1 or less.
 次に、本実施形態における、保護膜130の形成方法について説明する。保護膜130は、上述のように2層の積層構造を有する。まず、第1の層131に用いるフッ素樹脂の形成方法として、上述のように、防湿コート剤として用いられるフッ素系コーティング剤を用いて、スプレーを用いた塗布によって第1の層131を形成してもよい。例えば、フッ素系コーティング剤として、スリーエムジャパン株式会社製Novec2702(登録商標)と、溶媒としてNovec7200(登録商標)とを用いることができる。溶媒で希釈することによって、第1の層131を所望の膜厚に形成することが可能である。例えば、溶媒で30倍に希釈してスプレーによる塗布を行うことによって、第1の層131を20nm以下に形成することができる。シンチレータ110を真空蒸着法によって形成した後、真空容器外へ取り出す際に、速やかに第1の層131を形成する。フッ素系コーティング剤を用いて形成したフッ素樹脂によって構成される第1の層131によって、数時間程度の防湿の効果が得られることを、後述する空間分解能の測定から確認している。従って、防湿の効果を維持可能な時間内に、第2の層132を形成すればよい。これは保護膜130の形成工程を設計するにあたり、シンチレータ110の形成された基板120を真空中で保管する必要がなく、また、大気中で検査などを実施することが可能となり、極めてそのメリットは大きい。 Next, a method for forming the protective film 130 in this embodiment will be described. The protective film 130 has a two-layer structure as described above. First, as a method of forming the fluororesin used for the first layer 131, as described above, the first layer 131 is formed by spraying using a fluorine-based coating agent used as a moisture-proof coating agent. Also good. For example, Novec 2702 (registered trademark) manufactured by 3M Japan Co., Ltd. can be used as the fluorine-based coating agent, and Novec 7200 (registered trademark) can be used as the solvent. By diluting with a solvent, the first layer 131 can be formed in a desired thickness. For example, the first layer 131 can be formed to have a thickness of 20 nm or less by diluting with a solvent 30 times and performing application by spraying. After the scintillator 110 is formed by a vacuum deposition method, the first layer 131 is quickly formed when the scintillator 110 is taken out of the vacuum vessel. It has been confirmed from the measurement of spatial resolution, which will be described later, that the moisture-proof effect of about several hours can be obtained by the first layer 131 made of a fluororesin formed using a fluorine-based coating agent. Therefore, the second layer 132 may be formed within a time during which the moistureproof effect can be maintained. In designing the formation process of the protective film 130, it is not necessary to store the substrate 120 on which the scintillator 110 is formed in a vacuum, and the inspection can be performed in the atmosphere. large.
 次いで、第2の層132の形成方法について説明する。第2の層132は、基板120に保持された複数の柱状結晶を有するシンチレータ110と金属アルコキシドを接触させることによって反応を起こし、成膜することができる。金属アルコキシドを活性化することによって、第2の層132を成膜する反応が促進される。活性化の方法として、熱、プラズマ、化学反応などが用いられうる。金属アルコキシドの活性化を適切に制御することによって、シンチレータ110は、シンチレータ110の柱状構造のそれぞれ先端から奥の基板120に近い部分まで、保護膜130を構成する第2の層132で覆われうる。シンチレータ110の柱状結晶の奥まで第2の層132で覆うことによって、より薄い膜厚の保護膜130であっても、シンチレータ110の劣化を抑止することが期待できる。 Next, a method for forming the second layer 132 will be described. The second layer 132 can be formed by causing a reaction by bringing the metal alkoxide into contact with the scintillator 110 having a plurality of columnar crystals held on the substrate 120. By activating the metal alkoxide, the reaction for forming the second layer 132 is promoted. As an activation method, heat, plasma, chemical reaction, or the like can be used. By appropriately controlling the activation of the metal alkoxide, the scintillator 110 can be covered with the second layer 132 constituting the protective film 130 from each tip of the columnar structure of the scintillator 110 to a portion close to the back substrate 120. . By covering the back of the columnar crystal of the scintillator 110 with the second layer 132, it can be expected to suppress the deterioration of the scintillator 110 even with the protective film 130 having a thinner thickness.
 次に、本実施形態のシンチレータプレート100に用いるシンチレータ110について説明する。本実施形態において、シンチレータ110は、基板120上に形成され、基板120の表面から突出する複数の柱状結晶の集合体であり、入射する放射線を光に変換する。シンチレータ110は、入射した放射線のエネルギを吸収し、波長300nm~800nm程度の範囲内の光、いわゆる可視光を中心に紫外光から赤外光の光を発しうる。シンチレータ110の柱状結晶の長軸は、基板120と垂直に交差してもよいが、厳密に垂直である必要はなく、傾いていてもよい。厳密に垂直でないことがおよぼす本実施形態の効果への影響は小さい。シンチレータ110の発する光は、シンチレータ110内を伝搬しながら、受光面へ導波される必要がある。このため、シンチレータ110の柱状結晶の長軸と基板120のシンチレータ110が形成された表面の垂線とのなす角度は、45度未満でありうる。また、シンチレータ110のそれぞれの柱状結晶の傾きは、一様でなくてもよい。このため、シンチレータ110は、基板120の表面の垂線に対してなす角度が45度未満の光学界面を多数含みうる。本実施形態において、前述のように、保護膜130を薄くしてもよいため、シンチレータ110と保護膜130との光学界面は、シンチレータ110と空気との光学界面にほぼ等しくなり、光の拡散が抑制されうる。 Next, the scintillator 110 used for the scintillator plate 100 of this embodiment will be described. In this embodiment, the scintillator 110 is an aggregate of a plurality of columnar crystals that are formed on the substrate 120 and project from the surface of the substrate 120, and converts incident radiation into light. The scintillator 110 absorbs the energy of incident radiation and can emit light in the range from 300 nm to 800 nm, that is, light from ultraviolet light to infrared light centering on so-called visible light. The major axis of the columnar crystal of the scintillator 110 may intersect the substrate 120 perpendicularly, but does not have to be strictly perpendicular and may be inclined. The influence on the effect of the present embodiment, which is not strictly vertical, is small. The light emitted from the scintillator 110 needs to be guided to the light receiving surface while propagating through the scintillator 110. For this reason, the angle formed by the long axis of the columnar crystal of the scintillator 110 and the perpendicular of the surface of the substrate 120 on which the scintillator 110 is formed may be less than 45 degrees. Further, the inclination of each columnar crystal of the scintillator 110 may not be uniform. For this reason, the scintillator 110 can include a large number of optical interfaces having an angle of less than 45 degrees with respect to the normal to the surface of the substrate 120. In the present embodiment, as described above, since the protective film 130 may be thinned, the optical interface between the scintillator 110 and the protective film 130 is substantially equal to the optical interface between the scintillator 110 and air, and light diffusion is reduced. Can be suppressed.
 シンチレータ110は、柱状結晶構造を有していれば、その柱状結晶が円柱状であっても、多角柱状であってもよい。また、シンチレータ110は、柱状結晶が一様である必要はなく、シンチレータ110において、例えば、円柱状と多角柱状との結晶を含んでいていてもよい。さらに、シンチレータ110のそれぞれの柱状結晶の太さが一様である必要はない。ここで柱状結晶の太さとは、上述の基板120と交差する方向に成長する柱状結晶の長軸と直交する方向の太さのことを言う。シンチレータ110において、それぞれの柱状結晶の太さに分布があってもよい。シンチレータ110のそれぞれの柱状結晶の太さは、0.1μm以上かつ50μm以下であってもよく、さらに、0.1μm以上かつ15μm以下であってもよい。シンチレータ110の柱状結晶の太さが0.1μm未満の場合、シンチレータ110内で発生する光の波長と比較して、柱状結晶の太さが小さくなるため、幾何学的光回折や光学的散乱を起こし難くなり、光が受光面に向かって導波され難くなりうる。このため、光がシンチレータ110の柱状結晶の外へ拡散してしまい、このようなシンチレータ110を用いた放射線検出器における空間分解能を下げる要因になりうる。一方、理論上、シンチレータプレート100は、シンチレータ110のそれぞれの柱状結晶の太さよりも小さいものを解像することは困難である。従って、シンチレータ110のそれぞれの柱状結晶の太さが50μmより大きい場合、例えば10LP/mmのような高空間周波数域だけではなく、1LP/mmのような低空間周波数域における空間分解能も低下させる要因となりうる。 As long as the scintillator 110 has a columnar crystal structure, the columnar crystal may be cylindrical or polygonal. Further, the scintillator 110 does not need to have a uniform columnar crystal, and the scintillator 110 may include, for example, a columnar crystal and a polygonal columnar crystal. Furthermore, the thickness of each columnar crystal of the scintillator 110 need not be uniform. Here, the thickness of the columnar crystal refers to the thickness in the direction orthogonal to the major axis of the columnar crystal that grows in the direction intersecting with the substrate 120 described above. In the scintillator 110, the thickness of each columnar crystal may be distributed. The thickness of each columnar crystal of the scintillator 110 may be not less than 0.1 μm and not more than 50 μm, and may be not less than 0.1 μm and not more than 15 μm. When the thickness of the columnar crystal of the scintillator 110 is less than 0.1 μm, the thickness of the columnar crystal is smaller than the wavelength of light generated in the scintillator 110, so that geometric light diffraction and optical scattering are reduced. It may be difficult to cause the light to be guided toward the light receiving surface. For this reason, light diffuses out of the columnar crystal of the scintillator 110, which can be a factor of reducing the spatial resolution in a radiation detector using such a scintillator 110. On the other hand, in theory, it is difficult to resolve the scintillator plate 100 that is smaller than the thickness of each columnar crystal of the scintillator 110. Therefore, when the thickness of each columnar crystal of the scintillator 110 is larger than 50 μm, for example, not only a high spatial frequency region such as 10 LP / mm but also a spatial resolution in a low spatial frequency region such as 1 LP / mm is reduced. It can be.
 また、シンチレータ110のそれぞれの柱状結晶において、柱状結晶内での太さは一様である必要はなく、一方の端から他方の端までの太さの変化が、例えば、50μm以下であってもよい。ただし、本実施形態において、柱状結晶とは、基板120の側が太く、基板120から離れるにつれて先の細くなった針状構造を含む。シンチレータ110の柱状結晶が針状構造を有する場合、シンチレータ110の先端(基板120に接する側とは逆側の端部)が、シンチレータ110の基板120に接する部分など他の部分よりも50μm以上細くなってもよい。また、シンチレータ110の柱状結晶の断面の形状も、一方の端から他方の端まで一様でなくてもよく、例えば、基板120との距離が近い部分では多角柱状だった結晶が、基板120との距離が遠くなるにつれて円柱状に変化してもよい。 Further, in each columnar crystal of the scintillator 110, the thickness in the columnar crystal does not need to be uniform, and even if the change in thickness from one end to the other end is 50 μm or less, for example. Good. However, in the present embodiment, the columnar crystal includes a needle-like structure that is thick on the side of the substrate 120 and becomes tapered as the distance from the substrate 120 increases. When the columnar crystal of the scintillator 110 has a needle-like structure, the tip of the scintillator 110 (the end opposite to the side in contact with the substrate 120) is 50 μm or thinner than other portions such as the portion in contact with the substrate 120 of the scintillator 110. It may be. In addition, the cross-sectional shape of the columnar crystal of the scintillator 110 may not be uniform from one end to the other end. For example, a crystal that has a polygonal columnar shape in a portion close to the substrate 120 is As the distance increases, it may change to a cylindrical shape.
 シンチレータ110の長さ(高さ)は、柱状結晶の長軸の長さであり、シンチレータ110のそれぞれの柱状結晶の長さのばらつきがより小さい方がよく、長さが一様であってもよい。ただし、必ずしも長さが一様である必要はなく、シンチレータ110において、長さの長い柱状結晶と短い柱状結晶とを有していてもよい。短い柱状結晶の端から光が漏れ出た場合であっても、その光は、近接する柱状結晶の中に入り、そのまま受光面に向かってそのシンチレータ110の柱状結晶内を伝播しうる。従って、長短の柱状結晶が混在するシンチレータ110であっても、光の拡散を抑制することができるため、光導波性を有する。 The length (height) of the scintillator 110 is the length of the major axis of the columnar crystal, and it is better that the variation in the length of each columnar crystal of the scintillator 110 is smaller, even if the length is uniform. Good. However, the length is not necessarily uniform, and the scintillator 110 may have a long columnar crystal and a short columnar crystal. Even when light leaks from the end of the short columnar crystal, the light can enter the adjacent columnar crystal and propagate through the columnar crystal of the scintillator 110 as it is toward the light receiving surface. Therefore, even the scintillator 110 in which long and short columnar crystals are mixed can suppress light diffusion and thus has optical waveguide properties.
 シンチレータ110のそれぞれの柱状結晶の長軸の長さは、本実施形態の効果に大きな影響を与えるものではなく、シンチレータ110の長さが短くても長くても本実施形態の効果を奏する。従って、シンチレータ110の長さは特に制限されないが、現実的な作製プロセスを考慮した場合、100nm以上かつ10cm以下であってもよい。さらに、シンチレータ110の長さは1μm以上かつ1cm以下であってもよい。 The length of the long axis of each columnar crystal of the scintillator 110 does not greatly affect the effect of the present embodiment, and the effect of the present embodiment can be achieved regardless of whether the scintillator 110 is short or long. Therefore, the length of the scintillator 110 is not particularly limited, but may be 100 nm or more and 10 cm or less in consideration of a realistic manufacturing process. Furthermore, the length of the scintillator 110 may be 1 μm or more and 1 cm or less.
 シンチレータ110の互いに隣接する柱状結晶は、互いの側面と側面との間隔が200nm以上かつ1μm以下の、それぞれ独立した柱状構造であってもよい。しかしながら、柱状結晶が互いに完全には分離しておらず、シンチレータ110の表面に対して交差する方向に光学界面が断続的に存在してもよい。光学界面が断続的に存在する場合であっても、シンチレータ110は光導波性を有しうる。また、シンチレータ110内に空隙または光散乱体が複数存在していても良い。空隙または光散乱体によって光は散乱するが、その散乱光は、近隣のシンチレータ110の柱状結晶の中に入り受光面に向かって伝播できる。このため、シンチレータ110は、空隙または散乱体を複数内在させていても、光導波性を有しうる。また、シンチレータ110は、柱状結晶のそれぞれの先端が平坦化されていてもよく、その場合、受光面との凹凸が小さくなり、効率的に光が受光面に受光されることが期待できる。 The columnar crystals adjacent to each other of the scintillator 110 may have independent columnar structures in which the distance between the side surfaces is 200 nm or more and 1 μm or less. However, the columnar crystals are not completely separated from each other, and the optical interface may exist intermittently in a direction intersecting the surface of the scintillator 110. Even when the optical interface is intermittently present, the scintillator 110 can have optical waveguide properties. A plurality of voids or light scatterers may exist in the scintillator 110. Light is scattered by the air gap or the light scatterer, but the scattered light can enter the columnar crystal of the nearby scintillator 110 and propagate toward the light receiving surface. For this reason, the scintillator 110 can have optical waveguide properties even if a plurality of voids or scatterers are included therein. Further, the scintillator 110 may have a flat end at each columnar crystal. In that case, the unevenness with the light receiving surface is reduced, and it can be expected that the light is efficiently received by the light receiving surface.
 シンチレータ110を形成する材料として、種々の公知のシンチレータ材料を使用することができる。本実施形態において、シンチレータ110が薄い保護膜130で覆われることによって水分子の影響を受け難くなるため、水分子と接触して劣化する材料をシンチレータ110として用いることができる。具体的には、シンチレータ110として、潮解性を有する化合物が挙げられ、中でも、金属ハライドなどのハロゲン化物が用いられうる。金属ハライドは、大気に暴露されると潮解し、構造が変化してしまう。潮解し構造が変化すると、シンチレータ110内を伝播する光が、シンチレータ110外に拡散し、放射線検出器における空間分解能を低下させうる。ここで、本実施形態は、潮解性に限らず、水分子と接触することで劣化し、放射線検出器における空間分解能を低下させうる材料を用いたシンチレータ110に対して、適用されうる。 As a material for forming the scintillator 110, various known scintillator materials can be used. In this embodiment, since the scintillator 110 is covered with the thin protective film 130 and is not easily affected by water molecules, a material that deteriorates in contact with water molecules can be used as the scintillator 110. Specifically, the scintillator 110 includes a compound having deliquescence, and among them, a halide such as a metal halide can be used. When a metal halide is exposed to the atmosphere, it deliquesces and its structure changes. When the deliquescent structure changes, the light propagating in the scintillator 110 diffuses out of the scintillator 110, and the spatial resolution in the radiation detector can be reduced. Here, the present embodiment is not limited to deliquescence, but can be applied to the scintillator 110 using a material that degrades by contact with water molecules and can reduce the spatial resolution in the radiation detector.
 金属ハライドの中で代表的な材料としてCsIなどのアルカリハライドがある。CsIは、放射線のうちX線の可視光への変換効率が高い。また、CsIは、蒸着によって容易に柱状結晶を有するシンチレータ110を形成でき、また、シンチレータ110の長さを長くすることが可能である。CsIは、単独では発光効率が十分でないために、賦活剤が添加される。例えばインジウム(In)、タリウム(Tl)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などが、賦活剤として用いられる。 As a representative material among metal halides, there is an alkali halide such as CsI. CsI has high conversion efficiency of X-rays into visible light in radiation. CsI can easily form the scintillator 110 having columnar crystals by vapor deposition, and can increase the length of the scintillator 110. Since CsI alone does not have sufficient luminous efficiency, an activator is added. For example, indium (In), thallium (Tl), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), or the like is used as the activator.
 例えば、Tlを含有するCsIシンチレータを形成するための原材料として、1種類以上のTl化合物を含む添加剤とCsIとを用いて、シンチレータ110を形成することができる。CsI:Tlは400nmから750nmまでの広い発光波長を有する。1種類以上のTl化合物を含有するTl化合物としては、一価と三価の酸化数の化合物を用いることができる。例えば、ヨウ化タリウム(TlI)、臭化タリウム(TlBr)、塩化タリウム(TlCl)、フッ化タリウム(TlF、TlF)などが用いられうる。賦活剤の含有量は、目的性能に応じて、適宜調整すればよく、例えば、CsIに対して0.01モル%以上かつ20モル%以下にしてもよい。 For example, the scintillator 110 can be formed using an additive containing one or more Tl compounds and CsI as a raw material for forming a CsI scintillator containing Tl. CsI: Tl has a broad emission wavelength from 400 nm to 750 nm. As the Tl compound containing one or more types of Tl compounds, monovalent and trivalent oxidation number compounds can be used. For example, thallium iodide (TlI), thallium bromide (TlBr), thallium chloride (TlCl), thallium fluoride (TlF, TlF 3 ), or the like can be used. The content of the activator may be appropriately adjusted according to the target performance. For example, it may be 0.01 mol% or more and 20 mol% or less with respect to CsI.
 シンチレータ110に用いるアルカリハライドに、以下の一般式(2)で表されるアルカリハライドを用いてもよい。 As the alkali halide used for the scintillator 110, an alkali halide represented by the following general formula (2) may be used.
 M2X1・αM3X2・βM4X3:γA1 ・・・ (2) M2X1, αM3X2, βM4X3: γA1 (2)
 ここで、M2は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、および、セシウム(Cs)から選ばれる少なくとも1種である。M3は、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、カドミウム(Cd)、銅(Cu)、および、ニッケル(Ni)から選ばれる少なくとも1種である。M4は、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、アルミニウム(Al)、ガリウム(Ga)、および、インジウム(In)から選ばれる少なくとも1種である。X1、X2、および、X3は、それぞれ独立にフッ素(F)、塩素、(Cl)、臭素(Br)、ヨウ素(I)から選ばれる少なくとも1種である。A1は、Eu、Tb、In、ビスマス(Bi)、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、タリウム(Tl)、Na、銀(Ag)、Cu、および、Mgから選ばれる少なくとも1種である。α、β、γは、それぞれ、0≦α<0.5、0≦β<0.5、0<γ≦0.2の範囲の数値を表す。 Here, M2 is at least one selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). M3 is from beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), cadmium (Cd), copper (Cu), and nickel (Ni) At least one selected. M4 is scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), aluminum (Al), gallium (Ga), and At least one selected from indium (In). X1, X2, and X3 are each independently at least one selected from fluorine (F), chlorine, (Cl), bromine (Br), and iodine (I). A1 is Eu, Tb, In, bismuth (Bi), Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, thallium (Tl), Na, silver (Ag), It is at least one selected from Cu and Mg. α, β, and γ represent numerical values in the ranges of 0 ≦ α <0.5, 0 ≦ β <0.5, and 0 <γ ≦ 0.2, respectively.
 また、シンチレータ110として、上述のアルカリハライド以外にも、ハライド化合物を用いることができ、一般式(3)に示す希土類賦活アルカリ土類金属フッ化ハロゲン化合物も用いてもよい。 Further, as the scintillator 110, a halide compound can be used in addition to the above-mentioned alkali halide, and a rare earth activated alkaline earth metal fluoride halogen compound represented by the general formula (3) may also be used.
 M5FX4:δA2 ・・・ (3) M5FX4: δA2 (3)
 ここで、M5は、Ba、Sr、Caから選ばれる少なくとも1種のアルカリ土類金属原子である。A2はCe、Pr、Sm、Eu、Tb、Dy、Ho、Nd、Er、Tm、Ybから選ばれる少なくとも1種の希土類原子である。X4は、Cl、Br、Iから選ばれる少なくとも1種のハロゲン原子である。δは、0<δ≦0.2の範囲内の数値を表す。 Here, M5 is at least one alkaline earth metal atom selected from Ba, Sr, and Ca. A2 is at least one rare earth atom selected from Ce, Pr, Sm, Eu, Tb, Dy, Ho, Nd, Er, Tm, and Yb. X4 is at least one halogen atom selected from Cl, Br, and I. δ represents a numerical value within a range of 0 <δ ≦ 0.2.
 また本実施形態において、上述のハライド化合物以外の化合物をシンチレータ110として用いいてもよい。具体的には、LnTaO:(Nb,Gd)系、LnSiO:Ce系、LnO:Tm系(Lnは、希土類元素を表す)、GdS:Tb、GdS:Pr、Ce、ZnWO、LuAlO:Ce、GdGa12:Cr、HfOなどがある。 In the present embodiment, a compound other than the above-described halide compound may be used as the scintillator 110. Specifically, LnTaO 4 : (Nb, Gd) system, Ln 2 SiO 5 : Ce system, LnO X : Tm system (Ln represents a rare earth element), Gd 2 O 2 S: Tb, Gd 2 O 2 S: Pr, Ce, ZnWO 4 , LuAlO 3 : Ce, Gd 3 Ga 5 O 12 : Cr, HfO 2 and the like.
 本実施形態において、基板120は、シンチレータ110を保持できる固体でありうる。金属及びその酸化物、半導体及びその酸化物、ガラス、樹脂などの材料で構成された基板や、これらの基板の上に光を検出するための光電変換素子などが形成されたセンサパネルを基板120として用いることができる。 In this embodiment, the substrate 120 may be a solid that can hold the scintillator 110. A sensor panel in which a substrate formed of a material such as a metal and its oxide, a semiconductor and its oxide, glass, or resin, or a photoelectric conversion element for detecting light on these substrates is formed on the substrate 120. Can be used as
 次いで、本実施形態におけるシンチレータプレート100を備えた放射線検出装置200について、図2を用いて説明をする。図2は、本実施形態のシンチレータプレート100を備えた放射線検出装置200の断面図である。放射線検出装置200は、上述のシンチレータプレート100以外にセンサパネル201を含む。センサパネル201は、基板202の上に配された光検出部203を含む。光検出部203には、シンチレータ110で放射線から変換された光を検出するための複数の光電変換素子204が配される。シンチレータ110で放射線から変換された光が、光電変換素子204の受光面に入射することによって、放射線検出装置200は放射線を検出する。図2に示す構成において、シンチレータプレート100は、図1に示した基板120が、放射線検出装置200の外側になるように配され、シンチレータ110と光電変換素子204とが向かい合うように配される。 Next, the radiation detection apparatus 200 including the scintillator plate 100 according to the present embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view of a radiation detection apparatus 200 including the scintillator plate 100 of the present embodiment. The radiation detection apparatus 200 includes a sensor panel 201 in addition to the scintillator plate 100 described above. The sensor panel 201 includes a light detection unit 203 disposed on the substrate 202. The light detection unit 203 is provided with a plurality of photoelectric conversion elements 204 for detecting light converted from radiation by the scintillator 110. The radiation detection apparatus 200 detects radiation when light converted from radiation by the scintillator 110 enters the light receiving surface of the photoelectric conversion element 204. In the configuration shown in FIG. 2, the scintillator plate 100 is arranged such that the substrate 120 shown in FIG. 1 is outside the radiation detection apparatus 200, and the scintillator 110 and the photoelectric conversion element 204 are arranged to face each other.
 また、シンチレータプレート100とセンサパネル201との間に、接着剤などを用いた結合層205が設けられてもよい。結合層205は、シンチレータプレート100とセンサパネル201とを一体化する以外に、シンチレータプレート100や光電変換素子204を保護する機能を有していてもよい。また、結合層205は、シンチレータ110と光電変換素子204の受光面とを光学的に接続する機能を備えていてもよい。また、結合層205は、異なる材料を2層以上重ねた積層構造を有していてもよい。 Further, a bonding layer 205 using an adhesive or the like may be provided between the scintillator plate 100 and the sensor panel 201. The coupling layer 205 may have a function of protecting the scintillator plate 100 and the photoelectric conversion element 204 in addition to integrating the scintillator plate 100 and the sensor panel 201. Further, the coupling layer 205 may have a function of optically connecting the scintillator 110 and the light receiving surface of the photoelectric conversion element 204. The bonding layer 205 may have a stacked structure in which two or more different materials are stacked.
 図2に示す放射線検出装置200は、シンチレータプレート100と、センサパネル201とを組み合わせることによって製造することができる。また、シンチレータプレート100は、シンチレータプレート100のセンサパネル201と接する面とは逆の面、基板120とシンチレータプレート100との間に反射層を有していてもよい。シンチレータ110で発生した光の約半分は、センサパネル201と接している面に進むが、残り半分は基板120の側に進みうる。この光を反射層によってセンサパネル201の方向に進ませることが可能となり、光電変換素子204に到達する光を増やすことができる。反射層を用いることによって、放射線検出装置200の放射線に対する感度を高めることができる。 The radiation detection apparatus 200 shown in FIG. 2 can be manufactured by combining the scintillator plate 100 and the sensor panel 201. The scintillator plate 100 may have a reflective layer between the substrate 120 and the scintillator plate 100, the surface opposite to the surface of the scintillator plate 100 that contacts the sensor panel 201. About half of the light generated by the scintillator 110 proceeds to the surface in contact with the sensor panel 201, but the other half can travel to the substrate 120 side. This light can be advanced in the direction of the sensor panel 201 by the reflective layer, and the light reaching the photoelectric conversion element 204 can be increased. By using the reflective layer, the sensitivity of the radiation detection apparatus 200 to radiation can be increased.
 また、本実施形態では、シンチレータプレート100とセンサパネル201とを結合層205を介して接合する形態を示したが、センサパネル201の上にシンチレータ110および保護膜130を形成してもよい。この場合、センサパネル201が基板120を兼ねうる。 In the present embodiment, the scintillator plate 100 and the sensor panel 201 are bonded via the bonding layer 205. However, the scintillator 110 and the protective film 130 may be formed on the sensor panel 201. In this case, the sensor panel 201 can also serve as the substrate 120.
 実施例
 次いで、上述の実施形態の実施例について説明する。まず、Siを用いた基板120の上に、加熱蒸着法によってシンチレータ110を形成した。加熱蒸着は、真空容器内の加熱用ボートに、CsI原料粉末を充填し、加熱用ボートに対向して基板120を4枚、回転盤に据え付けた。また、真空容器内にCsI原料粉末を充填したボートとは別のボートを設置し、このボートには、発光中心としてのTlI原料粉末を充填した。原料および基板120をセットした後、真空容器内を真空ポンプで高真空状態にし、基板120を真空容器内で回転させながら基板120上にシンチレータ110を形成した。
Example Next, an example of the above-described embodiment will be described. First, the scintillator 110 was formed on the substrate 120 using Si by a heating vapor deposition method. In the heating vapor deposition, a heating boat in a vacuum vessel was filled with CsI raw material powder, and four substrates 120 were mounted on a rotating disk so as to face the heating boat. Further, a boat different from the boat filled with the CsI raw material powder was installed in the vacuum vessel, and this boat was filled with the TlI raw material powder as the light emission center. After the raw material and the substrate 120 were set, the inside of the vacuum vessel was put into a high vacuum state with a vacuum pump, and the scintillator 110 was formed on the substrate 120 while rotating the substrate 120 in the vacuum vessel.
 次に、シンチレータ110を形成した基板120を真空容器から取り出すのに際し、窒素ガスを用いて、基板の入った真空容器を大気圧に調整した。真空容器の扉を開け、シンチレータ110を形成した4枚の基板120のうちの3枚に対して、直ちにフッ素系コーティング剤をスプレー塗布することによって第1の層131としてフッ素樹脂を形成した。フッ素系コーティング剤は、スリーエムジャパン株式会社製Novec2702(登録商標)を、溶媒としてNovec7200(登録商標)で30倍に希釈したものを用いた。シンチレータ110を形成した4枚の基板120のうち残りの1枚は、第1の層131を含む保護膜130を形成せず、比較例1のシンチレータプレートとした。 Next, when the substrate 120 on which the scintillator 110 was formed was taken out from the vacuum vessel, the vacuum vessel containing the substrate was adjusted to atmospheric pressure using nitrogen gas. The door of the vacuum vessel was opened, and fluorine resin was formed as the first layer 131 by immediately spraying a fluorine-based coating agent on three of the four substrates 120 on which the scintillator 110 was formed. As the fluorine-based coating agent, 3M Japan Co., Ltd. Novec2702 (registered trademark) was diluted 30 times with Novec7200 (registered trademark) as a solvent. The remaining one of the four substrates 120 on which the scintillator 110 was formed did not form the protective film 130 including the first layer 131, and was used as the scintillator plate of Comparative Example 1.
 次に上述の第1の層131を形成した基板120のうちの1枚に対して、直ちに適切に活性化したケイ酸エチルを接触させた。これによって、第1の層131の形成されたシンチレータ110の表面に金属アルコキシドと、金属アルコキシドの一部の金属原子間が酸素で架橋された架橋体とを含む第2の層132を形成した。本実施例において、ケイ酸エチルの前駆体としてTEOSを用いた。また、形成された第2の層132は、Siとエチル基とを含む。以上の工程によって、フッ素樹脂を含む第1の層131、および、金属アルコキシドと金属アルコキシドの一部の金属原子間が酸素で架橋された架橋体とを含む第2の層132が積層した保護膜130が形成され、実施例1のシンチレータプレート100を得た。また、第1の層131を形成した基板120のうちの別の1枚に対して、大気雰囲気中(室温25℃、湿度45%)に60分間曝した後に、第2の層132を形成し、実施例2のシンチレータプレート100を得た。また、第1の層131を形成した基板120のうち、さらに別の1枚は、第1の層131を形成するだけで、第2の層132を形成せずに、比較例2のシンチレータプレートとした。 Next, one of the substrates 120 on which the first layer 131 was formed was immediately brought into contact with appropriately activated ethyl silicate. As a result, a second layer 132 including a metal alkoxide and a crosslinked body in which some metal atoms of the metal alkoxide are crosslinked with oxygen is formed on the surface of the scintillator 110 on which the first layer 131 is formed. In this example, TEOS was used as a precursor of ethyl silicate. The formed second layer 132 includes Si and an ethyl group. Through the above steps, a protective film in which the first layer 131 containing a fluororesin and the second layer 132 containing a metal alkoxide and a crosslinked body in which some metal atoms of the metal alkoxide are crosslinked with oxygen are laminated. 130 was formed, and the scintillator plate 100 of Example 1 was obtained. In addition, another substrate 120 on which the first layer 131 is formed is exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for 60 minutes, and then the second layer 132 is formed. The scintillator plate 100 of Example 2 was obtained. Further, among the substrates 120 on which the first layer 131 is formed, the other one of them is the scintillator plate of Comparative Example 2 in which only the first layer 131 is formed and the second layer 132 is not formed. It was.
 得られた実施例1、2および比較例1、2のそれぞれのサンプルに対してX線を照射し、MTF(Modulation Transfer Function:変調伝達関数)評価による分解能評価を行った。MTF評価の方法を以下に記す。分解能を評価する手法として、一般的なエッジ法を使用した。使用したX線の線質はRQA5(線源:タングステン、管電圧:70kV、管電流:0.5mA、フィルタ:厚さ21mmのアルミニウム)であった。実施例1、2および比較例1、2のそれぞれのサンプルをFOP(Fiber Optic Plate)付きのCCD(Charge-Coupled Device:電荷結合素子)に押し付け、評価用のX線を照射することでMTF測定を行った。 The obtained samples of Examples 1 and 2 and Comparative Examples 1 and 2 were irradiated with X-rays, and resolution evaluation was performed by MTF (Modulation Transfer Function) evaluation. The method of MTF evaluation is described below. A general edge method was used as a method for evaluating the resolution. The quality of the X-ray used was RQA5 (radiation source: tungsten, tube voltage: 70 kV, tube current: 0.5 mA, filter: aluminum having a thickness of 21 mm). MTF measurement is performed by pressing the samples of Examples 1 and 2 and Comparative Examples 1 and 2 against a CCD (Charge-Coupled Device) with a FOP (Fiber Optic Plate) and irradiating an evaluation X-ray. Went.
 MTF評価の結果について、以下に説明する。実施例1のシンチレータプレート100を、第2の層132を形成した後、100分間大気雰囲気中(室温25℃、湿度45%)に曝した後にMTF評価を実施した。さらに1週間(約10000分)大気雰囲気中(室温25℃、湿度45%)に曝した後、実施例1のシンチレータプレート100のMTF評価を実施した。なお、各々の測定のタイミングにおいて、第1の層131のみを形成した比較例2のシンチレータプレートについても測定を実施した。結果を図3に示す。 The results of MTF evaluation will be described below. After the second layer 132 was formed, the scintillator plate 100 of Example 1 was exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for 100 minutes, and then MTF evaluation was performed. Further, after being exposed to the air atmosphere (room temperature 25 ° C., humidity 45%) for one week (about 10,000 minutes), the scintillator plate 100 of Example 1 was evaluated for MTF. At each measurement timing, the scintillator plate of Comparative Example 2 in which only the first layer 131 was formed was also measured. The results are shown in FIG.
 図3に示す結果から、実施例1のシンチレータプレート100は、第2の層132を形成した後、1週間、大気雰囲気中(室温25℃、湿度45%)に曝した後もMTFが略変わらず、極めて安定であることがわかった。また、比較例2のシンチレータプレートの結果から、第1の層131を形成後100分間大気雰囲気中に曝した場合でも、MTFは実施例1との大きな差異は見られなかった。一方、1週間、大気雰囲気に曝すことによって比較例2のシンチレータプレートのMTFが低下することがわかった。これは、第1の層131のみでは、長期的に水分子がシンチレータ110に作用し、シンチレータ110が潮解することを抑制できないためである。 From the results shown in FIG. 3, the scintillator plate 100 of Example 1 has substantially the same MTF after being exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for one week after the second layer 132 is formed. It was found to be extremely stable. Further, from the result of the scintillator plate of Comparative Example 2, even when the first layer 131 was formed and exposed to the air atmosphere for 100 minutes, the MTF was not significantly different from that of Example 1. On the other hand, it was found that the MTF of the scintillator plate of Comparative Example 2 was lowered by exposure to the air atmosphere for one week. This is because the first layer 131 alone cannot prevent water molecules from acting on the scintillator 110 in the long term and causing the scintillator 110 to deliquesce.
 また、図3に結果を示す測定に先立ち、実施例2のシンチレータプレート100において、第1の層131の形成後かつ第2の層132を形成する前に実施したMTF評価の結果を図4に示す。図4に示す結果から、実施例2のシンチレータプレート100のMTFは、上述の実施例1のシンチレータプレート100と差異がないことが分かった。実施例2のシンチレータプレート100は、第1の層131を形成してから、第2の層132を形成するまでに、大気雰囲気中(室温25℃、湿度45%)に60分間曝した。この結果から第1の層131を形成することによって、60分間はMTFの低下を防止可能であることが分かった。上述のように、比較例2の結果を鑑みると、第1の層131を形成してから、第2の層132を形成するまでに、100分程度は大気雰囲気中に曝してもMTFの低下を招かないことがわかった。 In addition, prior to the measurement whose results are shown in FIG. 3, in the scintillator plate 100 of Example 2, the results of the MTF evaluation performed after forming the first layer 131 and before forming the second layer 132 are shown in FIG. Show. From the results shown in FIG. 4, it was found that the MTF of the scintillator plate 100 of Example 2 was not different from the scintillator plate 100 of Example 1 described above. The scintillator plate 100 of Example 2 was exposed to the atmosphere (room temperature 25 ° C., humidity 45%) for 60 minutes after the first layer 131 was formed and before the second layer 132 was formed. From this result, it was found that by forming the first layer 131, it is possible to prevent a decrease in MTF for 60 minutes. As described above, in view of the result of Comparative Example 2, the MTF decreases even after being exposed to the atmosphere for about 100 minutes from the formation of the first layer 131 to the formation of the second layer 132. I found out that
 さらに、実施例2のシンチレータプレート100を、第2の層を形成後に、1週間、大気雰囲気(室温25℃、湿度45%)に曝した後にMTFを測定したところ、0.422(2LP/mm)であった。実施例1のシンチレータプレート100と同様、有意な経時変化が見られなかった。これらの結果から、フッ素樹脂を用いた第1の層131を形成後、金属アルコキシドと、その一部の金属原子間が酸素で架橋された架橋体とを用いた第2の層132を形成することによって、実質的にMTFの変化を恒久的に抑制可能であることが分かった。以上の結果から、本実施例に示す保護膜130はシンチレータ110の潮解を抑止可能であると考えられる。 Further, when the MTF was measured after the scintillator plate 100 of Example 2 was exposed to the air atmosphere (room temperature 25 ° C., humidity 45%) for one week after the second layer was formed, 0.422 (2 LP / mm )Met. Similar to the scintillator plate 100 of Example 1, no significant change with time was observed. From these results, after forming the first layer 131 using a fluororesin, the second layer 132 using a metal alkoxide and a crosslinked body in which some of the metal atoms are crosslinked with oxygen is formed. Thus, it has been found that the change in MTF can be substantially suppressed. From the above results, it is considered that the protective film 130 shown in the present embodiment can suppress the deliquescent of the scintillator 110.
 次に、上述の実施例1、2及び比較例2のシンチレータプレートについて、上述のMTF評価を実施した後、走査型電子顕微鏡(SEM)による断面観察を実施した。その結果、いずれのシンチレータプレートも特徴的な差異はなく、シンチレータ110の太さもほぼ変わらなかった。加えて、シンチレータ110の柱状結晶の結晶間の間隙の大きさも同程度であった。 Next, the scintillator plates of Examples 1 and 2 and Comparative Example 2 described above were subjected to the MTF evaluation described above, and then subjected to cross-sectional observation using a scanning electron microscope (SEM). As a result, none of the scintillator plates had a characteristic difference, and the thickness of the scintillator 110 was not substantially changed. In addition, the size of the gap between the columnar crystals of the scintillator 110 was about the same.
 比較例1のシンチレータプレートにおいて、シンチレータ110の蒸着終了後に速やかに断面観察した際は、上述の実施例1、2及び比較例2の観察結果と同様に特徴的な差異は見られなかった。しかしながら、1週間、大気雰囲気(室温25℃、湿度45%)に曝した後に観察した結果、隣接する柱状結晶が互いに結合する様子や、溶けている様子が観察された。これは比較例1のシンチレータ110に対して保護膜130が形成されていないため、シンチレータ110が潮解したものであり、上述の実施例1、2及び比較例2のシンチレータ110の断面とは大きく異なっていた。 In the scintillator plate of Comparative Example 1, when the cross section was promptly observed after the completion of the deposition of the scintillator 110, no characteristic difference was observed as in the observation results of Examples 1 and 2 and Comparative Example 2 described above. However, as a result of observation after exposure to an air atmosphere (room temperature 25 ° C., humidity 45%) for one week, it was observed that adjacent columnar crystals were bonded to each other and dissolved. This is because the protective film 130 is not formed on the scintillator 110 of the first comparative example, so that the scintillator 110 is deliquescent, which is greatly different from the cross sections of the scintillators 110 of the first and second embodiments and the second comparative example. It was.
 上述のように、比較例1のシンチレータプレートにおいて、シンチレータ110の蒸着終了後に速やかに断面観察した際、実施例1、2のシンチレータ110と特徴的な差異が見られなかった。このため、実施例1、2において、保護膜130は、シンチレータ110の柱状結晶間の間隙を埋めるほどの膜厚を有していないことが分かった。シンチレータ110の柱状結晶間の間隙は200nm程度のため、保護膜130の膜厚は100nm以下であり、SEMによる断面観察などから50nm以下であると推測された。以上の結果から、本実施例のシンチレータプレート100は、保護膜130が50nm以下の薄い膜厚であっても、シンチレータ110の潮解を効果的に抑止可能であると考えられる。 As described above, in the scintillator plate of Comparative Example 1, when the cross section was promptly observed after the completion of vapor deposition of the scintillator 110, no characteristic difference from the scintillator 110 of Examples 1 and 2 was found. For this reason, in Examples 1 and 2, it was found that the protective film 130 did not have a film thickness enough to fill the gap between the columnar crystals of the scintillator 110. Since the gap between the columnar crystals of the scintillator 110 is about 200 nm, the thickness of the protective film 130 is 100 nm or less, and is estimated to be 50 nm or less from cross-sectional observation by SEM. From the above results, it is considered that the scintillator plate 100 of the present embodiment can effectively suppress the deliquescence of the scintillator 110 even when the protective film 130 has a thin film thickness of 50 nm or less.
 以上、本発明に係る実施形態および実施例を示したが、本発明はこれらの実施形態および実施例に限定されないことはいうまでもなく、本発明の要旨を逸脱しない範囲で、上述した実施形態および実施例は適宜変更、組み合わせが可能である。 As mentioned above, although embodiment and the Example which concern on this invention were shown, it cannot be overemphasized that this invention is not limited to these Embodiment and Example, In the range which does not deviate from the summary of this invention, embodiment mentioned above The embodiments can be appropriately changed and combined.
 以下、図5を参照しながら上述の保護膜130によって覆われたシンチレータ110と、シンチレータ110で発生する光を検出するための光電変換素子204とを用いた放射線検出装置200が組み込まれた放射線検出システムを例示的に説明する。放射線源であるX線チューブ6050で発生したX線6060は、患者又は被験者6061の胸部6062を透過し、本発明の放射線検出装置200に入射する。この入射したX線に患者又は被験者6061の体内部の情報が含まれる。放射線検出装置200において、X線6060の入射に対応してシンチレータ110が発光し、これが光電変換素子204で光電変換され、電気的情報を得る。この情報は、デジタルに変換され信号処理部としてのイメージプロセッサ6070によって画像処理され、制御室の表示部としてのディスプレイ6080で観察できる。 Hereinafter, radiation detection in which a radiation detection apparatus 200 using the scintillator 110 covered with the protective film 130 described above with reference to FIG. 5 and a photoelectric conversion element 204 for detecting light generated by the scintillator 110 is incorporated. The system will be exemplarily described. X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through the chest 6062 of the patient or subject 6061 and enter the radiation detection apparatus 200 of the present invention. This incident X-ray includes information inside the body of the patient or subject 6061. In the radiation detection apparatus 200, the scintillator 110 emits light in response to the incidence of the X-ray 6060, and this is photoelectrically converted by the photoelectric conversion element 204 to obtain electrical information. This information is converted into digital data, image-processed by an image processor 6070 as a signal processing unit, and can be observed on a display 6080 as a display unit of a control room.
 また、この情報は、電話、LAN、インターネットなどのネットワーク6090などの伝送処理部によって遠隔地へ転送できる。これによって別の場所のドクタールームなどの表示部であるディスプレイ6081に表示し、遠隔地の医師が診断することも可能である。また、この情報は、光ディスクなどの記録媒体に記録することができ、またフィルムプロセッサ6100によって記録媒体となるフィルム6110に記録することもできる。 Further, this information can be transferred to a remote place by a transmission processing unit such as a network 6090 such as a telephone, a LAN, and the Internet. In this way, it can be displayed on a display 6081 which is a display unit such as a doctor room in another place, and a doctor in a remote place can make a diagnosis. In addition, this information can be recorded on a recording medium such as an optical disk, and can also be recorded on a film 6110 serving as a recording medium by the film processor 6100.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年12月12日提出の日本国特許出願特願2016-240569を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-240569 filed on Dec. 12, 2016, the entire contents of which are incorporated herein by reference.

Claims (16)

  1.  基板の上に配された複数の柱状結晶を有するシンチレータと、前記シンチレータを覆う保護膜と、を含むシンチレータプレートであって、
     前記保護膜は、第1の層と、前記第1の層を覆う第2の層と、を含み、
     前記第1の層は、フッ素樹脂を含み、
     前記第2の層は、金属アルコキシドと、金属アルコキシドに含まれる一部の金属原子間が酸素によって架橋された架橋体と、を含むことを特徴とするシンチレータプレート。
    A scintillator plate including a scintillator having a plurality of columnar crystals disposed on a substrate, and a protective film covering the scintillator,
    The protective film includes a first layer and a second layer covering the first layer,
    The first layer includes a fluororesin,
    The scintillator plate, wherein the second layer includes a metal alkoxide and a crosslinked body in which some metal atoms included in the metal alkoxide are crosslinked by oxygen.
  2.  前記架橋体において、前記架橋体に含まれる金属原子に対するアルコキシド原子の化学量論比が0.02以上かつ1以下であることを特徴とする請求項1に記載のシンチレータプレート。 2. The scintillator plate according to claim 1, wherein in the crosslinked body, a stoichiometric ratio of an alkoxide atom to a metal atom contained in the crosslinked body is 0.02 or more and 1 or less.
  3.  前記保護膜の膜厚が、0.3nm以上かつ100nm以下であることを特徴とする請求項1または2に記載のシンチレータプレート。 The scintillator plate according to claim 1 or 2, wherein the protective film has a thickness of 0.3 nm or more and 100 nm or less.
  4.  前記第1の層の膜厚が、50nm以下であることを特徴とする請求項1乃至3の何れか1項に記載のシンチレータプレート。 The scintillator plate according to any one of claims 1 to 3, wherein the first layer has a thickness of 50 nm or less.
  5.  前記金属アルコキシドが、以下の一般式(1)で表され、
     M1(OR) ・・・ (1)
     ここで、M1は、シリコン(Si)、アルミニウム(Al)、チタン(Ti)、および、ジルコニウム(Zr)から選ばれる少なくとも1種であり、
     Rは、メチル基、エチル基、プロピル基、イソプロピル基、および、ブチル基から選ばれる少なくとも1種であることを特徴とする請求項1乃至4の何れか1項に記載のシンチレータプレート。
    The metal alkoxide is represented by the following general formula (1):
    M1 (OR) n ... (1)
    Here, M1 is at least one selected from silicon (Si), aluminum (Al), titanium (Ti), and zirconium (Zr),
    The scintillator plate according to any one of claims 1 to 4, wherein R is at least one selected from a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  6.  前記M1がシリコンであり、かつ、前記Rがエチル基であることを特徴とする請求項5に記載のシンチレータプレート。 The scintillator plate according to claim 5, wherein the M1 is silicon and the R is an ethyl group.
  7.  前記第2の層が、金属原子に結合した水酸基をさらに含み、
     前記第2の層に含まれる金属原子に対する水酸基の化学量論比が2.5以下であることを特徴とする請求項1乃至6の何れか1項に記載のシンチレータプレート。
    The second layer further comprises a hydroxyl group bonded to a metal atom;
    The scintillator plate according to any one of claims 1 to 6, wherein a stoichiometric ratio of a hydroxyl group to a metal atom contained in the second layer is 2.5 or less.
  8.  前記第2の層が、金属原子に結合した水素原子をさらに含み、
     前記第2の層に含まれる金属原子に対する水素原子の化学量論比が1以下であることを特徴とする請求項1乃至7の何れか1項に記載のシンチレータプレート。
    The second layer further comprises hydrogen atoms bonded to metal atoms;
    The scintillator plate according to any one of claims 1 to 7, wherein a stoichiometric ratio of hydrogen atoms to metal atoms contained in the second layer is 1 or less.
  9.  前記保護膜は、前記複数の柱状結晶のそれぞれの側面を覆い、
     前記シンチレータは、前記複数の柱状結晶のうち互いに隣接する柱状結晶の前記保護膜に覆われた側面と側面との間に空隙を含むことを特徴とする請求項1乃至8の何れか1項に記載のシンチレータプレート。
    The protective film covers each side surface of the plurality of columnar crystals,
    9. The scintillator according to any one of claims 1 to 8, wherein the scintillator includes a gap between a side surface covered with the protective film of the columnar crystals adjacent to each other among the plurality of columnar crystals. The scintillator plate described.
  10.  前記複数の柱状結晶のうち互いに隣接する柱状結晶の側面と側面との間隔が、200nm以上かつ1μm以下であることを特徴とする請求項9に記載のシンチレータプレート。 10. The scintillator plate according to claim 9, wherein an interval between the side surfaces of the columnar crystals adjacent to each other among the plurality of columnar crystals is 200 nm or more and 1 μm or less.
  11.  前記複数の柱状結晶の太さが、0.1μm以上かつ50μm以下であることを特徴とする請求項1乃至10の何れか1項に記載のシンチレータプレート。 The scintillator plate according to any one of claims 1 to 10, wherein a thickness of the plurality of columnar crystals is 0.1 µm or more and 50 µm or less.
  12.  前記シンチレータが、ハロゲン化物を含むことを特徴とする請求項1乃至11の何れか1項に記載のシンチレータプレート。 The scintillator plate according to any one of claims 1 to 11, wherein the scintillator contains a halide.
  13.  前記ハロゲン化物が、アルカリハライドを含むことを特徴とする請求項12に記載のシンチレータプレート。 The scintillator plate according to claim 12, wherein the halide contains an alkali halide.
  14.  前記アルカリハライドが、以下の一般式(2)で表され、
     M2X1・αM3X2・βM4X3:γA1 ・・・ (2)
     ここで、M2は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、および、セシウム(Cs)から選ばれる少なくとも1種であり、
     M3は、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、亜鉛(Zn)、カドミウム(Cd)、銅(Cu)、および、ニッケル(Ni)から選ばれる少なくとも1種であり、
     M4は、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、アルミニウム(Al)、ガリウム(Ga)、および、インジウム(In)から選ばれる少なくとも1種であり、
     X1、X2、および、X3は、それぞれ独立にフッ素(F)、塩素、(Cl)、臭素(Br)、ヨウ素(I)から選ばれる少なくとも1種であり、
     A1は、Eu、Tb、In、ビスマス(Bi)、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、タリウム(Tl)、Na、銀(Ag)、Cu、および、Mgから選ばれる少なくとも1種であり、
     α、β、γは、それぞれ、
     0≦α<0.5
     0≦β<0.5
     0<γ≦0.2
    であることを特徴とする請求項13に記載のシンチレータプレート。
    The alkali halide is represented by the following general formula (2):
    M2X1, αM3X2, βM4X3: γA1 (2)
    Here, M2 is at least one selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs),
    M3 is from beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), zinc (Zn), cadmium (Cd), copper (Cu), and nickel (Ni) At least one selected,
    M4 is scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), aluminum (Al), gallium (Ga), and At least one selected from indium (In),
    X1, X2 and X3 are each independently at least one selected from fluorine (F), chlorine, (Cl), bromine (Br) and iodine (I);
    A1 is Eu, Tb, In, bismuth (Bi), Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, thallium (Tl), Na, silver (Ag), At least one selected from Cu and Mg;
    α, β, and γ are respectively
    0 ≦ α <0.5
    0 ≦ β <0.5
    0 <γ ≦ 0.2
    The scintillator plate according to claim 13, wherein
  15.  請求項1乃至14の何れか1項に記載のシンチレータプレートと、
     前記シンチレータで放射線から変換された光を検出するための光電変換素子と、
    を含むことを特徴とする放射線検出装置。
    The scintillator plate according to any one of claims 1 to 14,
    A photoelectric conversion element for detecting light converted from radiation by the scintillator;
    A radiation detection apparatus comprising:
  16.  請求項15に記載の放射線検出装置と、
     前記放射線検出装置からの信号を処理する信号処理部と、
    を備えることを特徴とする放射線検出システム。
    A radiation detection apparatus according to claim 15;
    A signal processing unit for processing a signal from the radiation detection device;
    A radiation detection system comprising:
PCT/JP2017/037101 2016-12-12 2017-10-13 Scintillator plate, radiation detector and radiation detection system WO2018110061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240569A JP2018096792A (en) 2016-12-12 2016-12-12 Scintillator plate, radiation detector, and radiation detection system
JP2016-240569 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110061A1 true WO2018110061A1 (en) 2018-06-21

Family

ID=62559565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037101 WO2018110061A1 (en) 2016-12-12 2017-10-13 Scintillator plate, radiation detector and radiation detection system

Country Status (2)

Country Link
JP (1) JP2018096792A (en)
WO (1) WO2018110061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620827A1 (en) * 2018-09-06 2020-03-11 Canon Kabushiki Kaisha Scintillator plate, radiation detecting apparatus, and radiation detecting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467178B2 (en) 2020-03-16 2024-04-15 キヤノンメディカルシステムズ株式会社 Collimator and collimator module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075598A (en) * 2001-08-31 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd X-ray generation method and x-ray generator
JP2006098242A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2015141190A (en) * 2014-01-30 2015-08-03 キヤノン株式会社 Radiation detection apparatus and radiation detection system
JP2016128791A (en) * 2015-01-09 2016-07-14 キヤノン株式会社 Radiographic imaging apparatus, manufacturing method therefor, and radiation detection apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075598A (en) * 2001-08-31 2003-03-12 Ishikawajima Harima Heavy Ind Co Ltd X-ray generation method and x-ray generator
JP2006098242A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Radiation image conversion panel
JP2015141190A (en) * 2014-01-30 2015-08-03 キヤノン株式会社 Radiation detection apparatus and radiation detection system
JP2016128791A (en) * 2015-01-09 2016-07-14 キヤノン株式会社 Radiographic imaging apparatus, manufacturing method therefor, and radiation detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620827A1 (en) * 2018-09-06 2020-03-11 Canon Kabushiki Kaisha Scintillator plate, radiation detecting apparatus, and radiation detecting system
US11199636B2 (en) 2018-09-06 2021-12-14 Canon Kabushiki Kaisha Scintillator plate, radiation detecting apparatus, and radiation detecting system

Also Published As

Publication number Publication date
JP2018096792A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5089195B2 (en) Radiation detection apparatus, scintillator panel, radiation detection system, and method for manufacturing radiation detection apparatus
JP4569529B2 (en) Radiation scintillator plate and manufacturing method thereof
JP2016095189A (en) Scintillator panel and radiation detector
JP2007139604A (en) Scintillator plate for radiation
WO2018110061A1 (en) Scintillator plate, radiation detector and radiation detection system
JP6771981B2 (en) Scintillator plate and radiation detector using it
JP2008185393A (en) Scintillator panel
JP7080630B2 (en) Scintillator plate and radiation detector using it
JP6262419B2 (en) Radiation image detector and method for manufacturing radiation image detector
JP6266324B2 (en) Scintillator panel and manufacturing method thereof
JP2006098242A (en) Radiation image conversion panel
JP6701288B2 (en) Scintillator plate, radiation detector and radiation detection system
JP2018036198A (en) Scintillator panel
JP2004085367A (en) Radiation image conversion panel
JP2006058171A (en) Radiographic image conversion panel for mammography, and manufacturing method therefor
US9971042B2 (en) Scintillator panel
JP5194796B2 (en) Radiation scintillator plate
JP2004093560A (en) Radiation image conversion panel
JP2884350B2 (en) Radiation image conversion panel
JP2005195571A (en) Radiation image conversion panel
JP2002107852A (en) Radiographic image conversion panel and radiographic image information reading method
JP2003098299A (en) Radiological image conversion panel
JP2656795B2 (en) Radiation image conversion panel
JP2825497B2 (en) Radiation image conversion panel
JP6442988B2 (en) Scintillator having X-ray durability deterioration function, radiation detector having the scintillator, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880179

Country of ref document: EP

Kind code of ref document: A1