WO2018109359A1 - Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile - Google Patents

Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile Download PDF

Info

Publication number
WO2018109359A1
WO2018109359A1 PCT/FR2017/053516 FR2017053516W WO2018109359A1 WO 2018109359 A1 WO2018109359 A1 WO 2018109359A1 FR 2017053516 W FR2017053516 W FR 2017053516W WO 2018109359 A1 WO2018109359 A1 WO 2018109359A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
digital valve
fuel
opening
valve
Prior art date
Application number
PCT/FR2017/053516
Other languages
English (en)
Inventor
Yves Agnus
Nicolas Girard
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to US16/470,023 priority Critical patent/US10837383B2/en
Priority to CN201780077709.3A priority patent/CN110062843B/zh
Publication of WO2018109359A1 publication Critical patent/WO2018109359A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/205Quantity of fuel admitted to pumping elements being metered by an auxiliary metering device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • the invention relates to a method of estimating an angular position of a top dead center for a high pressure fuel injection pump forming part of a fuel injection system in an internal combustion engine of motor vehicle. This estimation method is used in a method of synchronizing a high-pressure fuel injection pump with the internal combustion engine of the vehicle.
  • the pump comprises at least one piston moving in a chamber of the pump between a top dead center for which a Room volume is the lowest and a low dead point for which a volume of the room is the highest.
  • a fuel injection system in an internal combustion engine comprises a low pressure fuel tank, a booster pump, a high pressure fuel injection pump fed by the booster pump, a controller of the high pressure fuel injection pump, means for activating the high pressure fuel injection pump via time control or angular control via the controller of the high pressure fuel injection pump and a control unit.
  • the fuel injection system also comprises a common rail, serving as a high pressure fuel tank, fed by said high pressure fuel injection pump, means for measuring the pressure in the common rail, injectors fueled by said common rail and controlled by the control unit for injecting the fuel into the cylinders of the internal combustion engine.
  • the high pressure fuel injection pump is driven by the internal combustion engine.
  • the fuel is transferred from the low pressure fuel tank to the high pressure fuel injection pump by the booster pump operating at low pressure.
  • the fuel pressure in the common rail is controlled by means of a PID (Proportional, Integral, Derivative) type controller, called a high pressure fuel injection pump controller.
  • PID Proportional, Integral, Derivative
  • This controller acts in combination with an actuator equipping the high pressure fuel injection pump, which allows to transfer in the common rail that the amount of fuel required according to the amount of fuel required by the engine control unit.
  • this actuator comprises a valve called DIV valve for "Digital Inlet Valve” in English or digital intake valve, to transfer the desired amount of fuel into the common rail.
  • the actuator makes it possible to reject the fuel displaced by the high pressure and unintended fuel injection pump in the common rail towards the supply circuit.
  • the high-pressure fuel injection pump is for example a rotary piston pump (s) driven continuously in rotation by the internal combustion engine.
  • valve DIV will be called digital valve and its actuator comprising a valve DIV may be called thereafter digital valve actuator.
  • the high-pressure fuel injection pump is phased between the piston or pistons thereof and the pistons of the internal combustion engine which drives it, for example between a top dead center of a piston of the engine and a top dead center of a piston of the high-pressure fuel injection pump, to allow control of the exact amount of fuel transferred in the common rail in relation to the position of the crankshaft.
  • the digital valve actuator is activated by means of an electric angular control, hereinafter referred to as angular control extension of the high-pressure fuel injection pump, performed with respect to a reference angle, that is to say ie, a command made at a precise angle of an axis of rotation of the high-pressure fuel injection pump.
  • This reference angle corresponds by construction to a position of the piston (s) of said pump, so that the digital valve closes at a precise position of the piston (s) of the corresponding high-pressure fuel injection pump. to a determined fuel volume that it is desired to transfer in the common rail.
  • the reference angle is generally established at the top dead center of the high-pressure fuel injection pump and defined by calibration.
  • the phasing of the high-pressure fuel injection pump is performed by means of an initial calibration of the reference angle and then learning of this reference angle in order to take into account the mounting and sensor tolerances. , especially in the present case the high-pressure fuel injection pump and its drive mechanism by the internal combustion engine.
  • the phasing of the high-pressure fuel injection pump is therefore the subject of a training based in a known manner on the detection of the integral part of the PID regulator or controller, to a certain extent. angular window, by varying the theoretical position of the top dead center of the pump to fuel injection at high pressure. This learning of the phasing is done by the control unit. Alternatively, the pressure signal in the rail can be analyzed.
  • the electrical control of the digital valve actuator is thus calibrated so that the electric source is positioned at the time of the desired closing of the digital valve relative to the position of the piston (s) of the fuel injection pump. high pressure, to obtain the transfer to the common rail of the amount of fuel determined by the engine control unit.
  • This electrical control requires of course to know the reference angle which is established as explained above.
  • the sequencing of realization of the electric control is defined during the debugging. Such angular control naturally requires the synchronization of the motor.
  • the high pressure fuel injection pump is adapted to be driven by the internal combustion engine.
  • the learning solutions proposed by the state of the art generally require that the engine is already running and stabilized enough to validate the measurement over several recurrences. This can pose a performance problem when first starting the engine.
  • the proposed learning processes do not converge to the actual phasing of the pump, which can reduce the performance of the injection system.
  • the problem underlying the present invention is, for a high-pressure pump in a fuel injection system of an internal combustion engine of a motor vehicle, to carry out a phasing of the high-pressure pump vis-à-vis of the internal combustion engine by estimating the top dead center of the high pressure pump.
  • the present invention relates to a method for estimating an angular position of a top dead center for a high-pressure fuel injection pump forming part of a fuel injection system in a combustion engine.
  • the pump comprising at least one piston moving in a pump chamber between a top dead center for which a volume of the chamber is the lowest and a low dead point for which a volume of the chamber is the highest, the pump being equipped with a digital control valve for a quantity of fuel driven electrically between an open position in which a high pressure part of the injection system is not supplied with fuel and a closed position in which the high pressure portion of the injection system is fed with the digital valve then having a fully closed position, an electric current being applied to the digital valve when closed and then canceled for the opening of the valve digital, a displacement of the digital valve towards its opening creating an induced current whose follow-up of the profile in time makes it possible to detect a position of opening of opening of the digital valve and its instant of appearance, characterized in that the position angle at a moment of passage
  • the invention therefore consists in using the current profile during the start-up phase as soon as the motor is synchronized. It is therefore possible to determine the opening start position from the first shots pump starter before the injection is activated. Indeed, once the opening start position of the localized digital valve, it can be deduced the angular position of the top dead center of the pump which is a few degrees before the opening opening position of the digital valve.
  • the estimation of the angular position at the moment of passage to the top dead center as a function of the instant of appearance of the opening opening position of the digital valve takes account of at least one of the following parameters : the pressures upstream and downstream of the pump, the modulus of elasticity of the fuel which depends on its temperature and its pressure, the technical characteristics of the pump as its dead volume and its capacity.
  • the pressures upstream and downstream of the pump are measured, the modulus of elasticity of the fuel is a given by the fuel supplier. while the temperature of the fuel is modeled and its measured pressure and the technical characteristics of the pump are data from the pump manufacturer.
  • the opening opening position of the digital valve results in an appearance of a point of inflection on a curve for monitoring the profile of the induced current, the instant of appearance of the inflection point being taken as moment of appearance of the opening start position of the digital valve.
  • the digital valve comprises a valve biased in the open position by a return element, the digital valve opening as soon as the fuel pressure in the chamber becomes lower than the pressure exerted by the return element on the valve of the digital valve.
  • the digital valve is activated according to an electric angular control.
  • the invention relates to a method of phasing a high pressure fuel injection pump forming part of a fuel injection system in a motor vehicle internal combustion engine, an appearance of the top dead center of the pump being synchronous with the motor, characterized in that it implements such a method for estimating an angular position of the top dead center for the pump.
  • the appearance of a top dead center of the pump is in phase with an appearance of a top dead center of a piston of the engine.
  • the method of estimating the angular position of the top dead center as previously described makes the phasing method more reliable and faster than those of the state of the art.
  • the invention relates to a fuel injection system in an internal combustion engine of a motor vehicle comprising a high-pressure fuel injection pump and a control unit, the pump comprising at least one piston moving in a chamber and being equipped with a digital control valve of a fuel flow controlled by the control unit via an electric control element connected to the digital valve by an electric circuit, characterized in that it implements such a method for estimating an angular position of a top dead center of the pump or such a phasing method, the control unit comprising a member for monitoring a current induced in the electric circuit during the opening of the digital valve and detection of a start position of opening of the digital valve and its instant of appearance and a calculation element of the moment of passage of the piston of the pump in neutral t of the pump according to the moment of appearance of the opening opening position of the digital valve.
  • the high pressure pump is fed by a booster pump and feeds a common rail forming a high pressure fuel tank, the common rail having at least one fuel pressure sensor in its interior and supplying fuel to a fuel injector for each cylinder of the internal combustion engine, the high pressure pump being driven the internal combustion engine.
  • the solution presented by the present invention does not require an additional sensor, nor any hardware modification of the control unit of which the motor control may be part. It allows a very fast detection of the phasing of the pump even before the first injection.
  • the preferred control is performed by a control unit of the motor, but a service check can also be routinely performed via a diagnostic socket connected to the control unit, including the motor control.
  • FIG. 1 is a schematic representation of a view of an embodiment of a high pressure fuel supply system of an internal combustion engine, this system being provided with a high pressure injection pump in fuel whose angular position of the top dead center can be estimated according to an estimation method according to the present invention
  • FIG. 2 is a schematic representation of a sectional view of a high pressure fuel injection pump can implement the method of estimating an angular position of the top dead center of the pump according to the present invention
  • FIG. 3 shows two respective curves of current at the digital valve and pressure in the common rail of the high pressure part of the injection system with identification of an angular position of the top dead center of the pump and the beginning of opening of the digital valve, a detection of an angular position of the top dead center of the pump according to the opening start position of the digital valve being implemented in accordance with the estimation method according to the present invention
  • FIG. 4 shows two current curves respectively relating to one of two digital valves having a phase difference between them, the two curves having combined opening start positions, the two valves. digital having the same angular positions for a top dead center estimated according to the method according to the present invention
  • FIG. 5 shows an enlargement of the pump of FIG. 2 taken at the digital valve, showing the balance of forces on this valve;
  • FIGS. 6A and 6B correspond to two diagrammatic representations of a sectional view of the high-pressure fuel injection pump according to FIG. 2, enlarged at the level of the digital valve, so as to respectively represent two particular points of operation of the pump, accompanied by the corresponding synchronized curves of the position of the piston of the pump and of the signal current applied and induced by the movement of the digital valve, for each operating point.
  • a system 1 of high pressure fuel injection of an internal combustion engine comprises a booster pump 2, which takes the fuel at low pressure in a tank 3 of low pressure fuel , a high-pressure pump 4 with fuel injection being supplied by the booster pump 2.
  • This high-pressure pump 4 comprises an actuator for a digital valve, not shown in Figure 1 but being in Figure 2 and which will be later Detailed.
  • the injection system 1 also comprises a controller 5 of the high-pressure pump 4 with fuel injection, and more particularly of the digital valve actuator and activation means of the high-pressure injection pump 4 via a time control. or via angular control via the controller 5 of the high-pressure pump 4 with fuel injection and a motor control unit 6, the time control being mainly used just after a starting of the motor vehicle.
  • the injection system 1 also comprises a high-pressure fuel tank or common rail 7 fed by the high-pressure pump 4 with fuel injection, the common rail 7 being provided with means 8 for measuring the pressure.
  • injectors 9 are supplied with fuel by the common rail 7 and controlled by the engine control unit 6 for injecting fuel into the cylinders 11 of the internal combustion engine 12.
  • the high-pressure pump 4 with fuel injection can be adapted to be driven in known manner by a drive means, not shown in FIG. 1, with the internal combustion engine 12, for example a mechanical transmission link mechanism, chain type, gears, belt or the like.
  • FIG. 2 shows a fuel injection high pressure pump 4 for the injection system shown in FIG. 1.
  • This pump 4 comprises a casing 14 of pump.
  • the housing 14 of the pump 4 houses inside a piston 19 biased by a spring 20, the piston 19 being driven by a drive mechanism 21 cam.
  • the pump casing 14 has at its upper end a displacement unit 15 housing a digital valve 13 or DIV valve.
  • the unit 15 comprises a supply duct 18 and return from and to the booster pump and an outlet duct 17 to the common rail, this outlet duct comprising a non-return valve 16.
  • the piston 19 draws fuel from the supply duct 18 in a cylinder while the nonreturn valve 16 of the outlet duct 17 is closed.
  • the digital valve 13 At the end of the filling phase, the digital valve 13 is always in the open position, the piston 19 pushes fuel into the supply duct 18 to the booster pump, that is to say the low pressure part of the fuel system. injection while the outlet nonreturn valve 16 of the outlet conduit 17 remains closed. This makes it possible to extend the excess fuel in the low pressure part of the injection system.
  • the digital valve 13 is electrically controlled closing, the supply duct 18 is then closed, the piston 19 pushes fuel in the outlet duct 17 to the common rail, that is to say towards the upper part pressure of the injection system, the nonreturn valve 16 of the outlet duct 17 then being open.
  • Figure 3 illustrates two curves as a function of time.
  • the first curve 26 illustrates the current supplying the digital valve and the second curve 27 illustrates the pressure in the common rail, that is to say in the high pressure part of the injection system.
  • the framed portion 28 represents a window for measuring the opening opening position 23 of the digital valve and a fully open position 24 of this digital valve by showing pulsations of current during the opening of the digital valve.
  • the top dead center of the pump is recognizable at the end of the increase in pressure in the common rail, while the opening start of the digital valve is recognizable at a point of inflection on the curve of the pulsed current.
  • Phasing of a high pressure pump equipping a high-pressure fuel injection system must be known precisely. Phasing is usually done mechanically with the engine but there are uncertainties related to the tolerances of all these components. It is therefore necessary to estimate an angular position of the top dead center of the high pressure pump quickly and accurately.
  • the present invention makes it possible to adapt the phasing more quickly at the first turns of the engine by using a readout of the current induced by the digital control valve of the fuel flow towards the high pressure part of the engine. injection system. This is done by detecting the opening start of the digital valve and a deduction of the position of an angular position of the top dead center of the pump from the first laps of the engine.
  • FIG. 4 shows two substantially superimposed curves of current respectively supplying a correctly phased digital valve and a phase-shifted digital valve.
  • FIG. 4 thus makes it possible to establish a comparison between the supply current of a digital valve of a correctly phased high-pressure pump with that of a pump whose reference angle is biased, with this figure of 10 ° which is not limiting.
  • the opening opening position 23 of the digital valve is therefore independent of the reference angle of the digital valve. This makes it possible to estimate reliably for the same type of digital valve an angular position of the top dead center of the high pressure pump which houses it, regardless of the phase shift of this digital valve and whatever its programmed angle.
  • the present invention relates to a method for estimating an angular position of a top dead center for a high-pressure fuel injection pump 4 forming part of an injection system 1 of fuel in an internal combustion engine 12 of a motor vehicle.
  • the pump 4 comprises at least one piston 19 moving in a chamber of the pump 4 between a top dead center 25 for which a volume of the chamber is the lowest and a low dead point for which a volume of the chamber is the highest. Student.
  • Such a pump 4 is equipped with a digital valve 13 for controlling a quantity of fuel electrically driven between an open position in which a high pressure part of the injection system 1 is not supplied with fuel and a position closure in which the high pressure part of the injection system 1 is fed with the digital valve 13 then having a fully closed position.
  • an electric current is applied to the digital valve 13 when closed and then canceled for the opening of the digital valve 13, a displacement of the digital valve 13 between its closed position and its open position creating a induced current whose track profile over time can detect a start opening position 23 of the digital valve 13 and its instant of appearance.
  • an angular position of an instant of passage of the piston 19 of the pump 4 to the top dead center 25 of the pump 4 is estimated as a function of an angular position of the instant of appearance of the position of opening start 23 of the digital valve 13.
  • the engine control unit 6 applies a current to the digital valve 13 to close it at the moment between the bottom dead center and the top dead center of the pump 4 during the phase during which it is desired to compress fuel in the pump. 4. This current is released a little before the top dead center 25 as shown in FIGS. 3 and 4. The compression of the fuel keeps the digital valve 13 closed.
  • the digital valve 13 will naturally open as soon as the pressure in the cylinder of the pump 4 becomes less than the force applied by a return element 22 of the valve. digital 13.
  • the offset between the times of passage of the top dead center 25 and opening start 23 of the digital valve 13 is also very low. , hence an even lower uncertainty and therefore a preferred instant of estimation of an angular position of the top dead center 25.
  • the estimation of an angular position of the moment of passage at the top dead center 25 as a function of an angular position of the instant of appearance of the opening opening position 23 of the digital valve 13 can take into account at least one of the following parameters: the pressures upstream and downstream of the pump 4, the modulus of elasticity of the fuel which depends on its temperature and its pressure, the technical characteristics of the pump 4 as its dead volume and its displacement.
  • the pressures upstream and downstream of the pump 4 can be measured respectively in the booster pump 2 and in the common rail 7.
  • the modulus of elasticity of the fuel is a fuel supplier data while the fuel temperature can be modeled and its measured pressure.
  • the technical characteristics of the pump 4 are known by being data communicated by the manufacturer of the pump 4.
  • the opening opening position 23 of the digital valve 13 may result in an appearance of an inflection point on a curve of followed by the profile of the induced current. It is this instant of appearance of the inflection point which is taken as instant of appearance of the opening opening position 23 of the digital valve 13.
  • the induced current passes through a point of inflection, for example in decreasing substantially through an inflection point which signals the opening start position 23 and then going up through a maximum which signals the fully open position 24 of the digital valve 13.
  • the digital valve 13 may comprise a valve 30 biased in the open position by a return element or spring 22.
  • the digital valve 13 or more precisely the valve 30 opens as soon as the pressure of the fuel in the chamber becomes lower than the pressure exerted by the return element on the valve 30 of the digital valve 13. This causes a delay between the angular positions of the top dead center 25 and the start position of opening 23 of the digital valve.
  • valve 30 of the digital valve 13 is subjected to a set of four forces F1, F2, F3 , and F4 as follows:
  • the forces F1, F2, F3, and F4 provide the valve 30 with the following effects: the forces F1 and F2 seek to open the valve 30 and the forces F3 and F4 keep it closed.
  • the digital valve 13 thus opens as soon as all the forces in the presence are such that F1 + F2> F3 + F4.
  • the force F1 which is therefore equal to the product of the stiffness constant of the spring by the difference of the empty and compressed lengths of the spring 22, is constant and known when the digital valve 13 is closed.
  • F2 Supply pressure * Contact surface of the valve flap With: - Supply pressure which is the measured supply pressure of low pressure fuel supply, and
  • the pressure in the cylinder is the fuel pressure in the cylinder of the pump 4, and
  • the contact surface of the valve is as defined above the contact surface of the valve of the digital valve on its seat, which is known by construction.
  • the pressure in the cylinder starts from a maximum which is the common rail pressure at the top dead center of the piston 19 and decreases as the piston descends.
  • the force F4 is characterized from the current flowing through the digital valve actuator, for example the coil of a solenoid acting on the valve 30. This current is measured by the fuel injection system 1 and is known.
  • FIG. 6A shows the digital valve 13 with the piston 19 of the pump 4 represented at its top dead center of operation, referenced point 0.
  • FIG. 6A furthermore represents two diagrams with the abscissa the position of the crankshaft "CRK” and on the ordinate , for the top diagram the piston stroke of the "Pump” pump, and for the bottom diagram the "DIV CUR” current applied and induced from the valve 13.
  • the abscissae are synchronized for the two diagrams.
  • the curve 31 shows the position of the piston 19 of the pump according to the position of the crankshaft, and in the diagram below the signal 26 of the applied and induced current of the valve 13.
  • FIG. 6B represents the digital valve 13 with the piston 19 of the pump 4 represented at its point of operation of the opening start position of the digital valve 13, referenced point 1.
  • FIG. 6B also shows two diagrams with the position of the crankshaft "CRK” on the abscissa and on the ordinate, for the top diagram the piston stroke of the "Pump” pump, and for the bottom diagram the “DIV CUR” flow. applied and induced the valve 13.
  • the abscissae are synchronized for the two diagrams.
  • the curve 31 shows the position of the piston 19 of the pump as a function of the position of the crankshaft, and on the bottom diagram the signal 26 of the applied and induced current of the valve 13.
  • FIG. the expansion of the piston 19 of the pump, between the two respective positions of the piston of Figures 6A and 6B, which is referenced by the term "Expansion” in Figure 6B.
  • ⁇ Point 0 top dead center 25 or PMH 25 of the piston 19, characterized by a pressure PO equal to the pressure of the common rail, the volume VO corresponding to the chamber of the pump 4 being equal to the dead volume of the pump 4, and the angular position of the top dead center 25 of the pump 4, referenced Alpha_0 in Figure 6A, which is the unknown.
  • Point 1 opening opening position of the digital valve 13, characterized by a pressure P1, the volume V1 corresponding to the chamber of the pump 4, and the angular position of the opening start 23 of the digital valve 13 referenced Alpha_1 in Figure 6B.
  • the law of elasticity of the fuels makes it possible to calculate V1 with the modulus of elasticity of the fuel and the pressures PO and P1, as follows.
  • VO dead volume
  • Point 1 starting point of opening of the valve
  • P1, V1, and apha_1 known position, measured by the system.
  • V1 is determined by the fuel elasticity equation:
  • V1 VO + (PO - P1) * VO / E is determined.
  • V1 is equal to VO to which is added the volume released by the piston 19, the volume equal to the surface of the piston 19 multiplied by the stroke of the piston 19.
  • the surface of the piston 19 being known, we deduce the Piston stroke 19 as follows:
  • the cam profile (lifting of the piston 19 depending on the angle) being known, it is known to express the stroke of the piston 19 according to the difference (alpha_1 - alpha_0). Since Alpha_1 is measured by the system as the angle at which the inflection of the current is observed, Alpha_0 is deduced, which is the desired PMH of the pump.
  • the digital valve 13 can be activated according to an electric angular command.
  • the electric angular control requires a synchronization of the pump 4 with the internal combustion engine 12.
  • the angular control can follow a crankshaft angle of the internal combustion engine 12.
  • Angular control of the high-pressure pump 4 with fuel injection can be carried out in a known manner by means of a plurality of electrical pulses, for example of the maintenance of peak values also known as "Peak". and Hold "for a specified number of segments.
  • the determination of the top dead center of the pump 4 serves to phase the pump 4 high pressure vis-à-vis the internal combustion engine 12, preferably but not only by matching the top dead center 25 of the pump 4 with a point dead top of a motor piston 12.
  • the invention therefore relates to a phasing method of a high-pressure fuel injection pump 4 forming part of a fuel injection system 1 in a motor vehicle internal combustion engine 12.
  • a phasing method of a high-pressure fuel injection pump 4 forming part of a fuel injection system 1 in a motor vehicle internal combustion engine 12.
  • an appearance of the top dead center 25 of the pump 4 is synchronous with the motor 12, advantageously in phase with the appearance of a top dead center of a piston of the engine 12.
  • This method of phasing the pump uses a method of estimating a top dead center angular position for the pump 4 as previously described.
  • the invention finally relates to a fuel injection system 1 in a motor vehicle internal combustion engine 12 comprising a high-pressure fuel injection pump 4 and a control unit 5, 6.
  • the control unit can comprise a controller 5 specific to the fuel injection high pressure pump 4 and a motor control unit 6 with wider allocations in concerning the operation of the engine 12 with thermal combustion and in particular the injection of fuel into the engine 12.
  • the pump 4 comprises at least one piston 19 moving in a chamber and is equipped with a digital valve 13 for controlling a fuel flow controlled by the control unit 5, 6 via an electric control element connected to the digital valve 13 by an electric circuit.
  • the injection system 1 implements a method of estimating an angular position of a top dead center of the pump 4 or a phasing method as described above.
  • the control unit 5, 6 and more particularly the controller 5 specific to the pump comprises a member for monitoring a current induced in the electrical circuit when opening the digital valve 13 and detecting a position of beginning of opening 23 of the digital valve 13 and its instant of appearance.
  • the control unit 5, 6 also comprises an element for calculating the instant of passage of the piston 19 of the pump 4 at the top dead center 25 of the pump 4 as a function of the instant of appearance of the start position. opening 23 of the digital valve 13.

Abstract

La présente invention a pour objet un procédé d'estimation d'une position angulaire d'un point mort haut (25) pour une pompe à injection de carburant à haute pression faisant partie d'un système d'injection dans un moteur de véhicule automobile, la pompe comprenant au moins un piston en déplacement dans une chambre entre des points morts haut (25) et bas, la pompe étant équipée d'une vanne digitale de contrôle d'une quantité de carburant, un courant électrique étant appliqué à la vanne digitale lors de sa fermeture puis annulé pour l'ouverture de la vanne digitale, un déplacement de la vanne digitale vers son ouverture créant un courant induit permettant de détecter une position de début d'ouverture (23) de la vanne digitale. Un instant de passage du piston de la pompe au point mort haut (25) est estimé en fonction de l'instant d'apparition de la position de début d'ouverture (23) de la vanne digitale.

Description

Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile
L'invention se rapporte à un procédé d'estimation d'une position angulaire d'un point mort haut pour une pompe à injection de carburant à haute pression faisant partie d'un système d'injection de carburant dans un moteur à combustion interne de véhicule automobile. Ce procédé d'estimation sert dans un procédé de synchronisation d'une pompe à injection de carburant à haute pression avec le moteur à combustion interne du véhicule.
Dans ce procédé d'estimation d'une position angulaire du point mort haut d'une pompe à injection de carburant à haute pression, la pompe comprend au moins un piston en déplacement dans une chambre de la pompe entre un point mort haut pour lequel un volume de la chambre est le plus faible et un point mort bas pour lequel un volume de la chambre est le plus élevé.
De manière classique, un système d'injection de carburant dans un moteur à combustion interne comprend un réservoir de carburant basse pression, une pompe de gavage, une pompe à injection de carburant à haute pression alimentée par la pompe de gavage, un contrôleur de la pompe à injection de carburant à haute pression, des moyens d'activation de la pompe à injection de carburant à haute pression via une commande temporelle ou via une commande angulaire par l'intermédiaire du contrôleur de la pompe à injection de carburant à haute pression et d'une unité de commande.
Le système d'injection de carburant comprend aussi un rail commun, servant de réservoir de carburant haute pression, alimenté par ladite pompe à injection de carburant à haute pression, des moyens de mesure de la pression dans le rail commun, des injecteurs alimentés en carburant par ledit rail commun et commandés par l'unité de commande pour injecter le carburant dans les cylindres du moteur à combustion interne. La pompe à injection de carburant à haute pression est entraînée par le moteur à combustion interne.
Dans un tel système d'alimentation en carburant haute pression, le carburant est transféré du réservoir de carburant à basse pression vers la pompe à injection de carburant à haute pression par la pompe de gavage qui travaille à basse pression. La pression du carburant dans le rail commun est contrôlée au moyen d'un régulateur de type PID (pour Proportionnel, Intégral, Dérivé), appelé contrôleur de pompe à injection de carburant à haute pression.
Ce contrôleur agit en combinaison avec un actuateur équipant la pompe à injection de carburant à haute pression, qui permet de ne transférer dans le rail commun que la quantité de carburant nécessaire en fonction de la quantité de carburant requise par l'unité de contrôle moteur. Pour cela, cet actuateur comporte une vanne appelée vanne DIV pour « Digital Inlet Valve » en anglais ou vanne d'admission digitale, permettant de transférer la quantité voulue de carburant dans le rail commun.
L'actuateur permet de rejeter le carburant déplacé par la pompe à injection de carburant à haute pression et non voulu dans le rail commun vers le circuit d'alimentation. La pompe à injection de carburant à haute pression est par exemple une pompe rotative à piston(s) entraînée de manière continue en rotation par le moteur à combustion interne.
Dans ce qui va suivre, la vanne DIV sera dénommée vanne digitale et son actuateur comportant une vanne DIV pourra être appelé par la suite actuateur de vanne digitale.
La pompe à injection de carburant à haute pression fait l'objet d'un phasage entre le ou les pistons de celle-ci et les pistons du moteur à combustion interne qui l'entraîne, par exemple entre un point mort haut d'un piston du moteur et un point mort haut d'un piston de la pompe à injection de carburant à haute pression, afin de permettre le contrôle de la quantité exacte de carburant transférée dans le rail commun en relation avec la position du vilebrequin. L'actuateur de vanne digitale est activé au moyen d'une commande angulaire électrique, ci-après dénommée par extension commande angulaire de la pompe à injection de carburant à haute pression, réalisée par rapport à un angle de référence, c'est-à-dire une commande effectuée à un angle précis d'un axe de rotation de la pompe à injection de carburant à haute pression.
Cet angle de référence correspond par construction à une position du ou des piston(s) de ladite pompe, afin que la vanne digitale se ferme à une position précise du ou des piston(s) de cette pompe à injection de carburant à haute pression correspondant à un volume de carburant déterminé que l'on souhaite transférer dans le rail commun.
Selon l'état de la technique, l'angle de référence est en général établi au point mort haut de la pompe à injection de carburant à haute pression et défini par calibration. Le phasage de la pompe à injection de carburant à haute pression est réalisé au moyen d'une calibration initiale de l'angle de référence et ensuite d'un apprentissage de cet angle de référence afin de prendre en compte les tolérances de montage et de capteur, notamment dans le cas présent de la pompe à injection de carburant à haute pression et de son mécanisme d'entraînement par le moteur à combustion interne.
Si le phasage de la pompe à injection de carburant à haute pression est incorrect, la quantité de carburant transférée dans le rail commun est également incorrecte, ainsi que, par voie de conséquence, la pression établie dans celui-ci.
Toujours selon l'état de la technique, le phasage de la pompe à injection de carburant à haute pression fait donc l'objet d'un apprentissage basé de manière connue sur la détection de la partie intégrale du régulateur PID ou contrôleur, dans une certaine fenêtre angulaire, en faisant varier la position théorique du point mort haut de la pompe à injection de carburant à haute pression. Cet apprentissage du phasage est effectué par l'unité de commande. En alternative, le signal de la pression dans le rail peut être analysé.
La commande électrique de l'actuateur de vanne digitale est donc calibrée pour que le puise électrique soit positionné au moment de la fermeture souhaitée de la vanne digitale par rapport à la position du ou des piston(s) de la pompe à injection de carburant à haute pression, afin d'obtenir le transfert vers le rail commun de la quantité de carburant déterminée par l'unité de contrôle moteur. Cette commande électrique nécessite bien entendu de connaître l'angle de référence qui est établi comme expliqué plus haut. Le séquencement de réalisation de la commande électrique est défini lors de la mise au point. Une telle commande angulaire nécessite bien entendu la synchronisation du moteur.
La pompe à injection de carburant à haute pression est apte à être entraînée par le moteur à combustion interne.
Pour être commandées avec précision, les pompes haute pression doivent présenter un phasage précisément connu. Ce phasage est généralement assuré de manière mécanique au niveau de la distribution du moteur, notamment pignons, clavettes et courroie crantée. Néanmoins, il demeure des incertitudes liées aux tolérances de tous ces composants. Ceci est le but de l'apprentissage précédemment mentionné.
Les solutions d'apprentissage proposées par l'état de la technique nécessitent en général que le moteur tourne déjà et de manière suffisamment stabilisée pour valider la mesure sur plusieurs récurrences. Cela peut poser un problème de performance lors du premier démarrage du moteur.
De plus, en cas de dysfonctionnement d'un injecteur ou bien en cas de fuite, les procédés d'apprentissage proposés ne convergent pas vers le phasage réel de la pompe, ce qui peut réduire la performance du système d'injection.
Le problème à la base de la présente invention est, pour une pompe à haute pression dans un système d'injection de carburant d'un moteur à combustion interne de véhicule automobile, de réaliser un phasage de la pompe haute pression vis-à-vis du moteur à combustion interne par estimation du point mort haut de la pompe haute pression.
A cet effet, la présente invention concerne un procédé d'estimation d'une position angulaire d'un point mort haut pour une pompe à injection de carburant à haute pression faisant partie d'un système d'injection de carburant dans un moteur à combustion interne de véhicule automobile, la pompe comprenant au moins un piston en déplacement dans une chambre de la pompe entre un point mort haut pour lequel un volume de la chambre est le plus faible et un point mort bas pour lequel un volume de la chambre est le plus élevé, la pompe étant équipée d'une vanne digitale de contrôle d'une quantité de carburant pilotée électriquement entre une position d'ouverture dans laquelle une partie haute pression du système d'injection n'est pas alimentée en carburant et une position de fermeture dans laquelle la partie haute pression du système d'injection est alimentée avec la vanne digitale présentant alors une position entièrement fermée, un courant électrique étant appliqué à la vanne digitale lors de sa fermeture puis annulé pour l'ouverture de la vanne digitale, un déplacement de la vanne digitale vers son ouverture créant un courant induit dont le suivi du profil dans le temps permet de détecter une position de début d'ouverture de la vanne digitale et son instant d'apparition, caractérisé en ce que la position angulaire à un instant de passage du piston de la pompe au point mort haut de la pompe est estimée en fonction d'une position angulaire de l'instant d'apparition de la position de début d'ouverture de la vanne digitale.
La relation entre positions angulaires du point mort haut d'une pompe haute pression et de début d'ouverture de la vanne digitale peut être considérée comme connue de l'état de la technique. Cependant il n'a jamais été mis en œuvre une estimation de la position angulaire du point mort haut de la pompe haute pression en fonction de la position de début d'ouverture de la vanne digitale et c'est plutôt la démarche inverse pour une estimation de la position angulaire de début d'ouverture de la vanne digitale qui était mise en œuvre par l'état de la technique.
L'invention consiste donc à utiliser le profil de courant pendant la phase de démarrage dès que le moteur est synchronisé. On peut donc déterminer la position de début d'ouverture dès les premiers coups de pompe sous démarreur avant même que l'injection ne soit activée. En effet, une fois la position de début d'ouverture de la vanne digitale localisée, il peut être déduit la position angulaire du point mort haut de la pompe qui se situe quelques degrés avant la position de début d'ouverture de la vanne digitale.
Avantageusement, l'estimation de la position angulaire à l'instant de passage au point mort haut en fonction de l'instant d'apparition de la position de début d'ouverture de la vanne digitale tient compte d'au moins un des paramètres suivants : les pressions en amont et en aval de la pompe, le module d'élasticité du carburant qui dépend de sa température et de sa pression, des caractéristiques techniques de la pompe comme son volume mort et sa cylindrée.
En effet, il existe un délai entre l'instant de passage au point mort haut et la position de début d'ouverture. Ce délai est dû à la détente du carburant et les paramètres précédemment mentionnés permettent de quantifier cette détente du carburant selon les conditions régnantes et les paramètres du carburant.
Avantageusement, les pressions en amont et en aval de la pompe sont mesurées, le module d'élasticité du carburant est une donnée du fournisseur de carburant tandis que la température du carburant est modélisée et sa pression mesurée et les caractéristiques techniques de la pompe sont des données du constructeur de la pompe.
Avantageusement, la position de début d'ouverture de la vanne digitale se traduit par une apparition d'un point d'inflexion sur une courbe de suivi du profil du courant induit, l'instant d'apparition du point d'inflexion étant pris comme instant d'apparition de la position de début d'ouverture de la vanne digitale.
Avantageusement, la vanne digitale comprend un clapet rappelé en position d'ouverture par un élément de rappel, la vanne digitale s'ouvrant dès que la pression du carburant dans la chambre devient inférieure à la pression qu'exerce l'élément de rappel sur le clapet de la vanne digitale.
Avantageusement, la vanne digitale est activée selon une commande angulaire électrique.
L'invention concerne un procédé de phasage d'une pompe à injection de carburant à haute pression faisant partie d'un système d'injection de carburant dans un moteur à combustion interne de véhicule automobile, une apparition du point mort haut de la pompe étant synchrone avec le moteur, caractérisé en ce qu'il met en œuvre un tel procédé d'estimation d'une position angulaire du point mort haut pour la pompe.
Par synchrone, il est entendu qu'un événement point mort haut de la pompe se reproduit périodiquement dans le cycle moteur.
Avantageusement, l'apparition d'un point mort haut de la pompe est en phase avec une apparition d'un point mort haut d'un piston du moteur.
Le procédé d'estimation de la position angulaire du point mort haut tel que précédemment décrit rend le procédé de phasage plus fiable et plus rapide que ceux de l'état de la technique.
L'invention concerne enfin un système d'injection de carburant dans un moteur à combustion interne de véhicule automobile comprenant une pompe à injection de carburant à haute pression et une unité de commande, la pompe comprenant au moins un piston en déplacement dans une chambre et étant équipée d'une vanne digitale de contrôle d'un débit de carburant pilotée par l'unité de commande via un élément de commande électrique raccordé à la vanne digitale par un circuit électrique, caractérisé en ce qu'il met en œuvre un tel procédé d'estimation d'une position angulaire d'un point mort haut de la pompe ou un tel procédé de phasage, l'unité de commande comportant un élément de suivi d'un courant induit dans le circuit électrique lors de l'ouverture de la vanne digitale et de détection d'une position de début d'ouverture de la vanne digitale et de son instant d'apparition et un élément de calcul de l'instant de passage du piston de la pompe au point mort haut de la pompe en fonction de l'instant d'apparition de la position de début d'ouverture de la vanne digitale. Avantageusement, la pompe haute pression est alimentée par une pompe de gavage et alimente un rail commun formant un réservoir de carburant haute pression, le rail commun comportant au moins un capteur de pression du carburant en son intérieur et alimentant en carburant un injecteur de carburant pour chaque cylindre du moteur à combustion interne, la pompe haute pression étant entraînée le moteur à combustion interne.
La solution présentée par la présente invention ne nécessite pas de capteur additionnel, ni de modification matérielle de l'unité de commande dont le contrôle moteur peut faire partie. Elle permet une détection très rapide du phasage de la pompe avant même la première injection. Le contrôle préféré est exécuté par une unité de contrôle commande du moteur mais un contrôle de service après-vente peut être également exécuté en routine par l'intermédiaire d'une prise diagnostic branchée à l'unité de commande, notamment au contrôle moteur.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 est une représentation schématique d'une vue d'un mode de réalisation d'un système d'alimentation en carburant haute pression d'un moteur à combustion interne, ce système étant muni d'une pompe haute pression d'injection en carburant dont une position angulaire du point mort haut peut être estimée conformément à un procédé d'estimation selon la présente invention,
- la figure 2 est une représentation schématique d'une vue en coupe d'une pompe haute pression d'injection de carburant pouvant mettre en œuvre le procédé d'estimation d'une position angulaire du point mort haut de la pompe selon la présente invention,
- la figure 3 montre deux courbes respectives de courant à la vanne digitale et de pression dans le rail commun de la partie haute pression du système d'injection avec identification d'une position angulaire du point mort haut de la pompe et du début d'ouverture de la vanne digitale, une détection d'une position angulaire du point mort haut de la pompe selon la position de début d'ouverture de la vanne digitale étant mise en œuvre conformément au procédé d'estimation selon la présente invention,
- la figure 4 montre deux courbes de courant relatives respectivement à une de deux vannes digitales présentant un déphasage entre elles, les deux courbes présentant des positions de début d'ouverture confondues, les deux vannes digitales présentant les mêmes positions angulaires pour un point mort haut estimées conformément au procédé selon la présente invention,
- la figure 5 montre un agrandissement de la pompe de la figure 2 pris au niveau de la vanne digitale, montrant l'équilibre des forces sur cette vanne, - les figures 6A et 6B correspondent à deux représentations schématiques d'une vue en coupe de la pompe haute pression d'injection de carburant selon la figure 2, agrandies au niveau de la vanne digitale, afin de représenter respectivement deux points particuliers de fonctionnement de la pompe, accompagnées des courbes synchronisées correspondantes de position du piston de la pompe et du signal de courant appliqué et induit par le mouvement de la vanne digitale, pour chaque point de fonctionnement.
En se référant plus particulièrement à la figure 1 , un système 1 d'injection en carburant haute pression d'un moteur à combustion interne comprend une pompe de gavage 2, qui prend le carburant à basse pression dans un réservoir 3 de carburant à basse pression, une pompe haute pression 4 à injection de carburant étant alimentée par la pompe de gavage 2. Cette pompe haute pression 4 comporte un actuateur pour une vanne digitale, non représenté à la figure 1 mais l'étant à la figure 2 et qui sera ultérieurement détaillée.
Le système 1 d'injection comprend aussi un contrôleur 5 de la pompe haute pression 4 à injection de carburant, et plus particulièrement de l'actuateur de vanne digitale et des moyens d'activation de la pompe à injection haute pression 4 via une commande temporelle ou via une commande angulaire par l'intermédiaire du contrôleur 5 de la pompe haute pression 4 à injection de carburant et d'une unité 6 de contrôle moteur, la commande temporelle étant principalement utilisée juste après un démarrage du véhicule automobile.
Le système 1 d'injection comprend aussi un réservoir de carburant haute pression ou rail 7 commun alimenté par la pompe haute pression 4 à injection de carburant, le rail 7 commun étant doté de moyens 8 de mesure de la pression. Des injecteurs 9 sont alimentés en carburant par le rail 7 commun et commandés par l'unité 6 de contrôle moteur pour injecter le carburant dans les cylindres 1 1 du moteur 12 à combustion interne.
La pompe haute pression 4 à injection de carburant peut être apte à être entraînée de manière connue par un moyen d'entraînement, non représenté à la figure 1 , avec le moteur 12 à combustion interne, par exemple un mécanisme de liaison par transmission mécanique, de type chaîne, engrenages, courroie ou analogue.
La figure 2 montre une pompe haute pression 4 à injection de carburant pour le système d'injection montré à la figure 1 . Cette pompe 4 comprend un carter 14 de pompe. Le carter 14 de la pompe 4 loge en son intérieur un piston 19 rappelé par un ressort 20, le piston 19 étant entraîné par un mécanisme d'entraînement 21 à came.
Le carter 14 de pompe présente à son extrémité supérieure une unité de déplacement 15 logeant une vanne digitale 13 ou vanne DIV. L'unité 15 comprend un conduit d'alimentation 18 et de retour à partir et vers la pompe de gavage ainsi qu'un conduit de sortie 17 vers le rail commun, ce conduit de sortie comprenant un clapet antiretour 16.
Quand la vanne digitale 13 est en position ouverte, le piston 19 aspire du carburant en provenance du conduit d'alimentation 18 dans un cylindre tandis que le clapet anti-retour 16 du conduit de sortie 17 est fermé.
En fin de phase de remplissage, la vanne digitale 13 est toujours en position ouverte, le piston 19 pousse du carburant dans le conduit d'alimentation 18 vers la pompe de gavage, c'est-à-dire la partie basse pression du système d'injection tandis que le clapet anti-retour de sortie 16 du conduit de sortie 17 reste fermée. Cela permet de reconduire le surplus de carburant dans la partie basse pression du système d'injection.
Ensuite, la vanne digitale 13 est commandée électriquement en fermeture, le conduit d'alimentation 18 étant alors fermé, le piston 19 pousse du carburant dans le conduit de sortie 17 vers le rail commun, c'est-à-dire vers la partie haute pression du système d'injection, le clapet anti-retour 16 du conduit de sortie 17 étant alors ouvert.
La figure 3 illustre deux courbes en fonction du temps. La première courbe 26 illustre le courant alimentant la vanne digitale et la deuxième courbe 27 illustre la pression dans le rail commun c'est-à-dire dans la partie haute pression du système d'injection. La partie encadrée 28 représente une fenêtre de mesure de la position de début d'ouverture 23 de la vanne digitale et une position entièrement ouverte 24 de cette vanne digitale en montrant des pulsations de courant lors de l'ouverture de la vanne digitale.
Le point mort haut 25 de la pompe est reconnaissable à la fin de l'augmentation de pression dans le rail commun, tandis que le début d'ouverture de la vanne digitale est reconnaissable à un point d'inflexion sur la courbe du courant puisé.
Comme précédemment mentionné, pour être commandé avec précision, un phasage d'une pompe haute pression équipant un système d'injection haute pression de carburant doit être connu précisément. Le phasage est généralement assuré de manière mécanique avec le moteur mais il demeure des incertitudes liées aux tolérances de tous ces composants. Il est donc nécessaire d'estimer une position angulaire du point mort haut de la pompe haute pression rapidement et précisément.
La présente invention permet d'effectuer une adaptation du phasage plus rapidement dès les premiers tours du moteur en utilisant une relecture du courant induit par la vanne digitale de contrôle du débit de carburant vers la partie haute pression du système d'injection. Ceci se fait par détection du début d'ouverture de la vanne digitale et une déduction de la position d'une position angulaire du point mort haut de la pompe dès les premiers tours du moteur.
La figure 4 montre deux courbes sensiblement superposées de courant alimentant respectivement une vanne digitale correctement phasée et une vanne digitale déphasée. La figure 4 permet donc d'établir une comparaison entre le courant d'alimentation d'une vanne digitale d'une pompe haute pression correctement phasée avec celui d'une pompe dont l'angle de référence est biaisée, à cette figure de 10° ce qui n'est pas limitatif.
Lors de cette comparaison, il est constaté que le profil de courant généré par l'unité de commande est différent. Par contre, l'instant de début d'ouverture 23 de la vanne digitale phasée ou déphasée est au même endroit dans les deux cas car il correspond à un phénomène physique : la réouverture de la vanne digitale lorsque le piston redescend juste après le point mort haut de la pompe.
La position de début d'ouverture 23 de la vanne digitale est donc indépendante de l'angle de référence de la vanne digitale. Ceci permet donc d'estimer de manière fiable pour un même type de vanne digitale une position angulaire du point mort haut de la pompe haute pression qui la loge, indépendamment du déphasage de cette vanne digitale et quel que soit son angle programmé.
En se référant à toutes les figures, la présente invention concerne un procédé d'estimation d'une position angulaire d'un point mort haut 25 pour une pompe 4 à injection de carburant à haute pression faisant partie d'un système 1 d'injection de carburant dans un moteur 12 à combustion interne de véhicule automobile. La pompe 4 comprend au moins un piston 19 en déplacement dans une chambre de la pompe 4 entre un point mort haut 25 pour lequel un volume de la chambre est le plus faible et un point mort bas pour lequel un volume de la chambre est le plus élevé.
Une telle pompe 4 est équipée d'une vanne digitale 13 de contrôle d'une quantité de carburant pilotée électriquement entre une position d'ouverture dans laquelle une partie haute pression du système 1 d'injection n'est pas alimentée en carburant et une position de fermeture dans laquelle la partie haute pression du système 1 d'injection est alimentée avec la vanne digitale 13 présentant alors une position entièrement fermée.
Pour ce faire, un courant électrique est appliqué à la vanne digitale 13 lors de sa fermeture puis annulé pour l'ouverture de la vanne digitale 13, un déplacement de la vanne digitale 13 entre sa position de fermeture et sa position d'ouverture créant un courant induit dont le suivi du profil dans le temps permet de détecter une position de début d'ouverture 23 de la vanne digitale 13 et son instant d'apparition. Selon l'invention, une position angulaire d'un instant de passage du piston 19 de la pompe 4 au point mort haut 25 de la pompe 4 est estimée en fonction d'une position angulaire de l'instant d'apparition de la position de début d'ouverture 23 de la vanne digitale 13.
L'unité 6 de contrôle moteur applique un courant à la vanne digitale 13 pour la fermer au moment entre le point mort bas et le point mort haut 25 de la pompe 4 lors de la phase pendant laquelle il est souhaité comprimer du carburant dans la pompe 4. Ce courant est relâché un peu avant le point mort haut 25 comme il est montré aux figures 3 et 4. La compression du carburant maintient la vanne digitale 13 fermée.
Une fois la position angulaire du point mort haut 25 de la pompe 4 dépassé, la vanne digitale 13 s'ouvrira naturellement dès que la pression dans le cylindre de la pompe 4 deviendra inférieure à la force appliquée par un élément de rappel 22 de la vanne digitale 13.
En particulier, lors des premiers coups de piston 19, comme la pression dans le rail commun 7 est faible, le décalage entre les instants de passage du point mort haut 25 et de début d'ouverture 23 de la vanne digitale 13 est très faible également, d'où une incertitude d'autant plus faible et donc un instant préféré d'estimation d'une position angulaire du point mort haut 25.
Si l'on applique un courant d'intensité prédéterminée, il est possible de déterminer à travers le courant induit par le mouvement de la vanne digitale 13 le moment où la vanne digitale 13 va commencer à s'ouvrir, c'est-à-dire le début d'ouverture 23 de la vanne digitale 13 ainsi que la position entièrement ouverte 24 de la vanne digitale 13.
L'estimation d'une position angulaire de l'instant de passage au point mort haut 25 en fonction d'une position angulaire de l'instant d'apparition de la position de début d'ouverture 23 de la vanne digitale 13 peut tenir compte d'au moins un des paramètres suivants : les pressions en amont et en aval de la pompe 4, le module d'élasticité du carburant qui dépend de sa température et de sa pression, des caractéristiques techniques de la pompe 4 comme son volume mort et sa cylindrée.
Les pressions en amont et en aval de la pompe 4 peuvent être mesurées respectivement dans la pompe 2 de gavage et dans le rail commun 7. Le module d'élasticité du carburant est une donnée du fournisseur de carburant tandis que la température du carburant peut être modélisée et sa pression mesurée. Les caractéristiques techniques de la pompe 4 sont connues en étant des données communiquées par le constructeur de la pompe 4.
Comme il peut être vu aux figures 3 et 4 tout en se référant à toutes les figures pour les références numériques, la position de début d'ouverture 23 de la vanne digitale 13 peut se traduire par une apparition d'un point d'inflexion sur une courbe de suivi du profil du courant induit. C'est cet instant d'apparition du point d'inflexion qui est pris comme instant d'apparition de la position de début d'ouverture 23 de la vanne digitale 13. Le courant induit passe par un point d'inflexion, par exemple en décroissant sensiblement en passant par un point d'inflexion qui signale la position de début d'ouverture 23 puis en remontant en passant par un maximum qui signale la position entièrement ouverte 24 de la vanne digitale 13.
La vanne digitale 13 peut comprendre un clapet 30 rappelé en position d'ouverture par un élément de rappel ou ressort 22. D'une manière simplifiée, La vanne digitale 13 ou plus précisément le clapet 30 s'ouvre dès que la pression du carburant dans la chambre devient inférieure à la pression qu'exerce l'élément de rappel sur le clapet 30 de la vanne digitale 13. C'est ce qui provoque un délai entre les positions angulaires du point mort haut 25 et de la position de début d'ouverture 23 de la vanne digitale.
Plus précisément, comme représenté sur la figure 5, de manière agrandie afin de monter les détails de construction d'un exemple de vanne digitale 13, le clapet 30 de la vanne digitale 13 est soumis à un ensemble de quatre forces F1 , F2, F3, et F4 comme suit :
• F1 : force appliquée sur le clapet 30 par le ressort 22,
• F2 : force appliquée sur le clapet 30 par le carburant à basse pression,
· F3 : force appliquée sur le clapet 30 par le carburant à haute pression,
• F4 : force électromagnétique appliquée sur le clapet 30 par l'actuateur de la vanne digitale.
Les forces F1 , F2, F3, et F4 procurent sur le clapet 30 les effets suivants : les forces F1 et F2 cherchent à ouvrir le clapet 30 et les forces F3 et F4 le maintiennent fermé. La vanne digitale 13 s'ouvre donc dès que l'ensemble des forces en présence est tel que F1 + F2 > F3 + F4.
Définition des forces :
F1 = K * (x - xO)
Avec :
K : constante de raideur du ressort
x : longueur comprimée du ressort
xO : longueur à vide du ressort
La force F1 qui est donc égale au produit de la constante de raideur du ressort par la différence des longueurs à vide et comprimée du ressort 22, est constante et connue lorsque la vanne digitale 13 est fermée.
F2 = Pression d'alimentation * Surface de contact du clapet de la vanne Avec : - Pression d'alimentation qui est la pression d'alimentation mesurée d'alimentation en carburant à basse pression, et
- Surface de contact du clapet de la vanne qui est la surface de contact du clapet 30 sur son siège de vanne 13, qui est connue par construction. La force F2 qui est donc égale au produit de la pression d'alimentation mesurée en carburant à basse pression par la surface de contact du clapet de la vanne digitale sur son siège, est constante et connue lorsque la vanne digitale 13 est fermée.
F3 = Pression dans le cylindre * Surface de contact du clapet
Avec :
La pression dans le cylindre est la pression du carburant dans le cylindre de la pompe 4, et
La surface de contact du clapet est comme définie plus haut la surface de contact du clapet de la vanne digitale sur son siège, qui est connue par construction.
Relativement à la force F3, la pression dans le cylindre part d'un maximum qui est la pression dans rail commun au point mort haut du piston 19 et diminue lorsque le piston descend.
La force F4 est caractérisée à partir du courant traversant l'actuateur de vanne digitale, par exemple la bobine d'un solénoïde agissant sur le clapet 30. Ce courant est mesuré par le système 1 d'injection de carburant et est connu.
La figure 6A représente la vanne digitale 13 avec le piston 19 de la pompe 4 représenté à son point mort haut de fonctionnement, référencé point 0. La figure 6A représente en outre deux diagrammes avec en abscisses la position du vilebrequin « CRK » et en ordonnées, pour le diagramme du haut la course du piston de la pompe « Pump », et pour le diagramme du bas le courant « DIV CUR » appliqué et induit de la vanne 13. Les abscisses sont synchronisées pour les deux diagrammes. Sur le diagramme du haut la courbe 31 montre la position du piston 19 de la pompe en fonction de la position du vilebrequin, et sur le diagramme du bas le signal 26 du courant appliqué et induit de la vanne 13.
La figure 6B représente la vanne digitale 13 avec le piston 19 de la pompe 4 représenté à son point de fonctionnement de position de début d'ouverture de la vanne digitale 13, référencé point 1 . La figure 6B représente en outre deux diagrammes avec en abscisses la position du vilebrequin « CRK » et en ordonnées, pour le diagramme du haut la course du piston de la pompe « Pump », et pour le diagramme du bas le courant « DIV CUR » appliqué et induit de la vanne 13. Les abscisses sont synchronisées pour les deux diagrammes. Sur le diagramme du haut la courbe 31 montre la position du piston 19 de la pompe en fonction de la position du vilebrequin, et sur le diagramme du bas le signal 26 du courant appliqué et induit de la vanne 13. La figure 6B montre en outre l'expansion du piston 19 de la pompe, entre les deux positions respectives du piston des figures 6A et 6B, qui est référencée par le terme « Expansion » sur la figure 6B.
Soient donc les deux points de fonctionnement particuliers, selon les figures
6A et 6B :
· Point 0 : point mort haut 25 ou PMH 25 du piston 19, caractérisé par une pression PO égale à la pression du rail commun, le volume VO correspondant de la chambre de la pompe 4 étant égal au volume mort de la pompe 4, et la position angulaire du point mort haut 25 de la pompe 4, référencée Alpha_0 sur la figure 6A, qui est l'inconnue.
· Point 1 : position de début d'ouverture de la vanne digitale 13, caractérisé par une pression P1 , le volume V1 correspondant de la chambre de la pompe 4, et la position angulaire de début d'ouverture 23 de la vanne digitale 13 référencée Alpha_1 sur la figure 6B.
La pression P1 est déterminée au point 1 à partir de l'équilibre des forces suivant : F3 = F1 + F2 - F4. La loi d'élasticité des carburants permet de calculer V1 avec le module d'élasticité du carburant et les pressions PO et P1 , comme suit.
Soit Point 0 (PMH) défini par :
PO = Pression du rail commun 7,
VO = Volume mort, connu par conception,
Alpha_0 = Position PMH = inconnue.
Soit Point 1 (point de début d'ouverture de la vanne) défini par P1 , V1 , et apha_1 = position connue, mesurée par le système.
Au Point 1 , on a l'équilibre des forces suivant : F3 = F1 + F2 - F4 ; les forces F1 , F2 et F4 étant connues, on détermine F3 sachant que F4 dépendant du courant, elle sera caractérisée par des mesures opérées par le système 1 d'injection de carburant :
F3 = P1 * surface de contact de la vanne. On détermine :
P1 = (F1 + F2 - F4) / surface de contact de la vanne.
Ensuite on détermine V1 par l'équation d'élasticité des carburants :
dV
dP = -E * (— )
Avec :
dP : variation de pression en Pa,
E : module d'élasticité cubique en Pa,
dV : variation de volume,
V : volume.
On a la relation suivante : dP = - E * dV / VO, soit (PO - P1 ) = - E * (VO -
V1 ) / VO, avec le module d'élasticité E qui est une caractéristique du carburant, fonction de sa pression et de sa température. On détermine le volume V1 = VO + (PO - P1 ) * VO / E.
D'autre part V1 est égal à VO auquel on ajoute le volume libéré par le piston 19, soit le volume égal à la surface du piston 19 multipliée par la course du piston 19. La surface du piston 19 étant connue, on en déduit la course du piston 19 comme suit :
Course du piston = (V1 - VO) / surface du piston
Le profil de came (levée du piston 19 en fonction de l'angle) étant connu, on sait exprimer la course du piston 19 en fonction de la différence (alpha_1 - alpha_0). Alpha_1 étant mesuré par le système comme l'angle où l'on observe l'inflexion du courant, on en déduit Alpha_0 qui est le PMH recherché de la pompe.
La vanne digitale 13 peut être activée selon une commande angulaire électrique. La commande angulaire électrique nécessite une synchronisation de la pompe 4 avec le moteur 12 à combustion interne. La commande angulaire peut suivre un angle de vilebrequin du moteur 12 à combustion interne.
Une commande angulaire de la pompe haute pression 4 à injection de carburant peut être réalisée de manière connue au moyen d'une pluralité d'impulsions électriques par exemple de type maintien de valeurs de crêtes aussi connues sous l'appellation anglo-saxonne de « Peak and Hold » pendant un nombre déterminé de segments.
La détermination du point mort haut 25 de la pompe 4 sert au phasage de la pompe 4 haute pression vis-à-vis du moteur 12 à combustion interne, avantageusement mais pas uniquement par correspondance du point mort haut 25 de la pompe 4 avec un point mort haut d'un piston du moteur 12.
L'invention concerne donc un procédé de phasage d'une pompe 4 à injection de carburant à haute pression faisant partie d'un système 1 d'injection de carburant dans un moteur 12 à combustion interne de véhicule automobile. Dans ce procédé de phasage, une apparition du point mort haut 25 de la pompe 4 est synchrone au moteur 12, avantageusement en phase avec une apparition d'un point mort haut d'un piston du moteur 12. Ce procédé de phasage de la pompe utilise un procédé d'estimation d'une position angulaire du point mort haut 25 pour la pompe 4 tel que décrit précédemment.
L'invention concerne enfin un système 1 d'injection de carburant dans un moteur 12 à combustion interne de véhicule automobile comprenant une pompe 4 à injection de carburant à haute pression et une unité de commande 5, 6. L'unité de commande peut comprendre un contrôleur 5 spécifique à la pompe haute pression 4 à injection de carburant et une unité 6 de contrôle moteur aux attributions plus larges en concernant le fonctionnement du moteur 12 à combustion thermique et notamment l'injection de carburant dans le moteur 12.
La pompe 4 comprend au moins un piston 19 en déplacement dans une chambre et est équipée d'une vanne digitale 13 de contrôle d'un débit de carburant pilotée par l'unité de commande 5, 6 via un élément de commande électrique raccordé à la vanne digitale 13 par un circuit électrique.
Selon l'invention, le système 1 d'injection met en œuvre un procédé d'estimation d'une position angulaire d'un point mort haut 25 de la pompe 4 ou un procédé de phasage tels que décrits précédemment. L'unité de commande 5, 6 et plus particulièrement le contrôleur 5 spécifique à la pompe comporte un élément de suivi d'un courant induit dans le circuit électrique lors de l'ouverture de la vanne digitale 13 et de détection d'une position de début d'ouverture 23 de la vanne digitale 13 et de son instant d'apparition.
L'unité de commande 5, 6 comporte aussi un élément de calcul de l'instant de passage du piston 19 de la pompe 4 au point mort haut 25 de la pompe 4 en fonction de l'instant d'apparition de la position de début d'ouverture 23 de la vanne digitale 13.

Claims

REVENDICATIONS
1 . Procédé d'estimation d'une position angulaire d'un point mort haut (25) pour une pompe (4) à injection de carburant à haute pression faisant partie d'un système (1 ) d'injection de carburant dans un moteur (12) à combustion interne de véhicule automobile, la pompe (4) comprenant au moins un piston (19) en déplacement dans une chambre de la pompe (4) entre un point mort haut (25) pour lequel un volume de la chambre est le plus faible et un point mort bas pour lequel un volume de la chambre est le plus élevé, la pompe (4) étant équipée d'une vanne digitale (13) de contrôle d'une quantité de carburant débit de carburant pilotée électriquement entre une position d'ouverture dans laquelle une partie haute pression du système d'injection n'est pas alimentée en carburant et une position de fermeture dans laquelle la partie haute pression du système d'injection est alimentée avec la vanne digitale (13) présentant alors une position entièrement fermée, un courant électrique étant appliqué à la vanne digitale (13) lors de sa fermeture puis annulé pour l'ouverture de la vanne digitale (13), un déplacement de la vanne digitale (13) vers son ouverture créant un courant induit dont le suivi du profil dans le temps permet de détecter une position de début d'ouverture (23) de la vanne digitale (13) et son instant d'apparition, caractérisé en ce qu'une position angulaire à un instant de passage du piston (19) de la pompe (4) au point mort haut (25) de la pompe (4) est estimée en fonction d'une position angulaire à l'instant d'apparition de la position de début d'ouverture (23) de la vanne digitale (13), l'estimation de la position angulaire à l'instant de passage au point mort haut (25) en fonction de la position angulaire à l'instant d'apparition de la position de début d'ouverture (23) de la vanne digitale (13) tenant compte d'au moins un des paramètres suivants : les pressions en amont et en aval de la pompe (4), le module d'élasticité du carburant qui dépend de sa température et de sa pression, des caractéristiques techniques de la pompe (4) comme son volume mort et sa cylindrée.
2. Procédé selon la revendication précédente, dans lequel les pressions en amont et en aval de la pompe (4) sont mesurées, le module d'élasticité du carburant est une donnée du fournisseur de carburant tandis que la température du carburant est modélisée et sa pression mesurée et les caractéristiques techniques de la pompe (4) sont des données du constructeur de la pompe (4).
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel la position de début d'ouverture (23) de la vanne digitale (13) se traduit par une apparition d'un point d'inflexion sur une courbe de suivi du profil du courant induit, l'instant d'apparition du point d'inflexion étant pris comme instant d'apparition de la position de début d'ouverture (23) de la vanne digitale (13).
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la vanne digitale (13) comprend un clapet rappelé en position d'ouverture par un élément de rappel (22), la vanne digitale (13) s'ouvrant dès que la pression du carburant dans la chambre devient inférieure à la pression qu'exerce l'élément de rappel sur le clapet de la vanne digitale (13).
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel la vanne digitale (13) est activée selon une commande angulaire électrique.
6. Procédé de phasage d'une pompe (4) à injection de carburant à haute pression faisant partie d'un système (1 ) d'injection de carburant dans un moteur (12) à combustion interne de véhicule automobile, une apparition du point mort haut (25) de la pompe (4) étant synchrone avec le moteur (12), caractérisé en ce qu'il met en œuvre un procédé d'estimation d'une position angulaire du point mort haut (25) pour la pompe (4) selon l'une quelconque des revendications précédentes.
7. Procédé de phasage selon la revendication précédente, dans lequel l'apparition d'un point mort haut (25) de la pompe (4) est en phase avec une apparition d'un point mort haut d'un piston du moteur.
8. Système (1 ) d'injection de carburant dans un moteur (12) à combustion interne de véhicule automobile comprenant une pompe (4) à injection de carburant à haute pression et une unité de commande (5, 6), la pompe (4) comprenant au moins un piston (19) en déplacement dans une chambre et étant équipée d'une vanne digitale (13) de contrôle d'un débit de carburant pilotée par l'unité de commande (5, 6) via un élément de commande électrique raccordé à la vanne digitale (13) par un circuit électrique, caractérisé en ce qu'il met en œuvre un procédé d'estimation d'une position angulaire d'un point mort haut (25) de la pompe (4) selon l'une quelconque des revendications 1 à 5 ou un procédé de phasage selon la revendication 6 ou 7, l'unité de commande (5, 6) comportant un élément de suivi d'un courant induit dans le circuit électrique lors de l'ouverture de la vanne digitale (13) et de détection d'une position de début d'ouverture (23) de la vanne digitale (13) et de son instant d'apparition et un élément de calcul de l'instant de passage du piston (19) de la pompe (4) au point mort haut (25) de la pompe (4) en fonction de l'instant d'apparition de la position de début d'ouverture (23) de la vanne digitale (13).
9. Système (1 ) d'injection selon la revendication précédente, dans lequel la pompe (4) haute pression est alimentée par une pompe (2) de gavage et alimente un rail commun (7) formant un réservoir de carburant haute pression, le rail commun (7) comportant au moins un capteur de pression du carburant en son intérieur et alimentant en carburant un injecteur de carburant pour chaque cylindre du moteur (12) à combustion interne, la pompe (4) haute pression étant entraînée par le moteur (12) à combustion interne.
PCT/FR2017/053516 2016-12-15 2017-12-12 Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile WO2018109359A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/470,023 US10837383B2 (en) 2016-12-15 2017-12-12 Method for estimating a top dead centre for a high-pressure pump of a fuel injection system in an automotive vehicle engine
CN201780077709.3A CN110062843B (zh) 2016-12-15 2017-12-12 用于估计机动车辆发动机中的燃料喷射系统的高压泵的上止点的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1662526 2016-12-15
FR1662526A FR3060657B1 (fr) 2016-12-15 2016-12-15 Procede d'estimation d'un point mort haut pour une pompe haute pression d'un systeme d'injection de carburant dans un moteur de vehicule automobile

Publications (1)

Publication Number Publication Date
WO2018109359A1 true WO2018109359A1 (fr) 2018-06-21

Family

ID=58501519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053516 WO2018109359A1 (fr) 2016-12-15 2017-12-12 Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile

Country Status (4)

Country Link
US (1) US10837383B2 (fr)
CN (1) CN110062843B (fr)
FR (1) FR3060657B1 (fr)
WO (1) WO2018109359A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595339A (zh) * 2019-08-09 2019-12-20 上海柏楚电子科技股份有限公司 一种测量圆弧对称型金属管材中心的方法
GB2575275A (en) * 2018-07-04 2020-01-08 Delphi Tech Ip Ltd A method of determining the functionality of an NRV in a high pressure fuel pump system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3083828B1 (fr) * 2018-07-13 2020-06-12 Continental Automotive France Procede de diagnostic d'une vanne digitale de regulation de debit d'une pompe a injection de carburant a haute pression
CN114060190B (zh) * 2020-07-31 2022-08-23 长城汽车股份有限公司 高压油泵上止点位置自学习方法、轨压控制方法、车辆控制器及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873382A2 (fr) * 2002-06-20 2008-01-02 Hitachi, Ltd. Dispositif de commande de pompe à carburant haute pression de moteur à combustion interne
DE102010030447A1 (de) * 2010-06-23 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung der Lage eines oberen Totpunkts bei einer Kolben-Hochdruckpumpe in einer Kraftstoffversorgung eines Verbrennungsmotors
JP2014001738A (ja) * 2013-09-02 2014-01-09 Hitachi Automotive Systems Ltd 内燃機関の高圧燃料ポンプ制御装置
DE102014219459A1 (de) * 2013-10-01 2015-04-02 Ford Global Technologies, Llc Hochdruck-kraftstoffpumpensteuerung zur reduzierung von tickgeräuschen im leerlauf
US20150337783A1 (en) * 2014-05-21 2015-11-26 Ford Global Technologies, Llc Direct injection pump control for low fuel pumping volumes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215321A (ja) * 2007-03-08 2008-09-18 Hitachi Ltd 内燃機関の高圧燃料ポンプ制御装置
ATE460582T1 (de) * 2007-09-26 2010-03-15 Magneti Marelli Spa Verfahren zur steuerung eines common-rail- direkteinspritzungsystems mit einer hochdruckkraftstoffpumpe
DE102011075271B4 (de) 2011-05-04 2014-03-06 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern eines Ventils
DE102014223322A1 (de) * 2014-11-14 2016-05-19 Robert Bosch Gmbh Verfahren zur Erkennung der Pumpenorientierung einer Kraftstoffhochdruckpumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1873382A2 (fr) * 2002-06-20 2008-01-02 Hitachi, Ltd. Dispositif de commande de pompe à carburant haute pression de moteur à combustion interne
DE102010030447A1 (de) * 2010-06-23 2011-12-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung der Lage eines oberen Totpunkts bei einer Kolben-Hochdruckpumpe in einer Kraftstoffversorgung eines Verbrennungsmotors
JP2014001738A (ja) * 2013-09-02 2014-01-09 Hitachi Automotive Systems Ltd 内燃機関の高圧燃料ポンプ制御装置
DE102014219459A1 (de) * 2013-10-01 2015-04-02 Ford Global Technologies, Llc Hochdruck-kraftstoffpumpensteuerung zur reduzierung von tickgeräuschen im leerlauf
US20150337783A1 (en) * 2014-05-21 2015-11-26 Ford Global Technologies, Llc Direct injection pump control for low fuel pumping volumes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2575275A (en) * 2018-07-04 2020-01-08 Delphi Tech Ip Ltd A method of determining the functionality of an NRV in a high pressure fuel pump system
CN110595339A (zh) * 2019-08-09 2019-12-20 上海柏楚电子科技股份有限公司 一种测量圆弧对称型金属管材中心的方法

Also Published As

Publication number Publication date
FR3060657A1 (fr) 2018-06-22
CN110062843B (zh) 2021-12-28
CN110062843A (zh) 2019-07-26
US10837383B2 (en) 2020-11-17
US20190353110A1 (en) 2019-11-21
FR3060657B1 (fr) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2018109359A1 (fr) Procédé d'estimation d'un point mort haut pour une pompe haute pression d'un système d'injection de carburant dans un moteur de véhicule automobile
FR2811016A1 (fr) Procede pour determiner la tension de commande d'un injecteur avec un actionneur piezo-electrique
FR2818694A1 (fr) Procede et dispositif de commande d'un remplissage de gaz des cylindres d'un moteur a combustion interne
EP3517756B1 (fr) Moteur à taux de compression variable avec dispositif de levée de bille à vis
FR2734213A1 (fr) Procede de diagnostic de l'etancheite d'un systeme de ventilation de reservoir
WO2020012011A1 (fr) Procédé de diagnostic d'une vanne digitale de régulation de débit d'une pompe à injection de carburant à haute pression
FR2712350A1 (fr) Procédé et dispositif d'optimisation ou remplissage en air d'un cylindre de moteur à combustion interne.
EP0063523B1 (fr) Pompe d'injection pour moteur à combustion interne comprenant un dispositif de réglage de l'instant de refoulement du combustible d'injection
FR2904660A1 (fr) Determination d'un debut de combustion dans un moteur a combustion interne
EP2318689A1 (fr) Procede permettant d'analyser le debit d'injection coup par coup fourni par un systeme d'injection de carburant utilise dans un moteur thermique de forte puissance
FR3072124B1 (fr) Procede et systeme de detection du sens de rotation d'un moteur de vehicule
EP1920144A2 (fr) Dispositif pour la detection en temps reel du commencement de la phase de combustion et procede correspondant
WO2017071797A1 (fr) Procede de verification de la fonctionnalite d'un systeme d'alimentation en carburant haute pression d'un moteur a combustion interne
WO2020193795A1 (fr) Determination d'une derive du debit statique de carburant d'un injecteur piezo-electrique d'un moteur thermique de vehicule automobile
FR3035684B1 (fr) Procede de determination du calage angulaire relatif entre un moteur a combustion et une pompe d'alimentation de carburant
FR2849897A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
FR2909413A1 (fr) Procede d'estimation et de reglage du debit de la combustion
FR2989166A3 (fr) Procede de diagnostic du fonctionnement de la purge d'un filtre a vapeurs de carburant.
WO2019073154A1 (fr) Procédé et système de validation de la phase d'un moteur de véhicule
FR2617908A1 (fr) Systeme d'injection de carburant pour moteurs a combustion interne
FR3087494A1 (fr) Procédé et système de contrôle d’un régime moteur de véhicule
EP1916404A1 (fr) Procede d`estimation de parametres caracteritique d`un moteur thermique et de controle des flux thermiques appliques a des composants de ce moteur
FR3117540A1 (fr) Arbre à cames d’un moteur à combustion interne.
WO2020016341A1 (fr) Procédé de détermination de la pression du carburant dans un rail commun d'injection d'un moteur à combustion interne
FR3011280A1 (fr) Procede de determination d'une temporisation optimale entre une commande d'actionnement et une commande de test d'un obturateur mobile d'une electrovanne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17821983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17821983

Country of ref document: EP

Kind code of ref document: A1